AUTSSAR

D ment Titl Specification of Service
ez € Discovery

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 616

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Updated ACL check sequence for offer
AUTOSAR entry and removed redundant
2025-11-27 R25-11 Release requirements
Management
* Minor bugfixes and editorial changes
* Enable/Disable ACL at runtime
AUTOSAR « Configuration parameter'with Max
2024-11-27 | R24-11 Release number of IP addresses in ACL
Management « Change the Callback from SD to SoAd
» Minor bugfixes and editorial changes
AUTOSAR « Added Secure SOME/IP-ACL
2023-11-23 R23-11 Release
Management » Minor bugfixes and editorial changes
AUTOSAR « TTL for FindService entries
2022-11-24 | R22-11 Release

Management

* Minor bugfixes and editorial changes

AUTSSAR

* Introduced optional functionality to
subscribe to a multicast address
pre-defined by a ClientService

+ Consideration of the connection status of
a security associations for clients and
servers was added

AUTOSAR . Harmonlzgtlon of Spec:f/catlgn of
2021-11-25 | R21-11 Release Service Discovery and Service
021-11- i Discovery Protocol specification:
Management
— removal of duplicate specification
items
— moving of specification items from
Specification of Service Discovery to
Service Discovery Protocol
specification

* Minor bugfixes and editorial changes

* Alignments with Service Discovery

AUTOSAR Protocol specification
2020-11-30 | R20-11 Release + Several minor bugfixes
Management

« Editorial changes

* Service activation depending on PNCs

* Retry mechanism in combination with
Cyclic Offers

AUTOSAR » EventGroup subscription updates from
2019-11-28 R19-11 Release different servers
Management o

* Clarification of
SubscribeEventgroupNack handling

» Changed Document Status from Final to
published

* Retry subscription feature added

AUTOSAR
2018-10-31 440 Release * Load Balancing Option added
Management))
* Minor bugfixes
AUTOSAR « Several minor bugfixes
2017-12-08 | 4.3.1 Release
Management « Editorial Changes

AUTSSAR

* Major improvement (SoAd interaction)

AUTOSAR
2016-11-30 | 4.3.0 Release * Several bugfixes
Management o
« Editorial changes
AUTOSAR Debugging support marked as obsolete
2015-07-31 422 Release « Clarifications
Management))
» Minor bugfixes
* Fixed Service Migration support at client
AUTOSAR side
2014-10-31 | 4.2.1 Release « Support for more efficient SoAd interface
Management
* Optimized StopSubscribe/Subscribe
load
« Editorial changes
AUTOSAR
2014-03-31 41.3 Release » More detailed endpoint handling
Management) o
* More detailed message building
* No major changes have been made
AUTOSAR o
2013-10-31 | 4.1.2 Release * Editorial changes
Management + Removed chapter(s) on change
documentation
AUTOSAR
2013-03-15 | 4.1.1 Release « Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms, Abbreviations and Definitions

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations e
4.2 Limitations for communication with Adaptive Platform
4.3 Applicabilitytocardomains

5 Dependencies to other modules

5.1 AUTOSAR BSW Scheduler
5.2 AUTOSAR BSW Mode Manager
5.3 AUTOSAR Socket Adaptor
5.4 AUTOSAR Default Error Tracer
5.5 AUTOSAR Diagnostic Event Manager.
5.6 AUTOSAR Non Volatile Memory
5.7 Filestructure L

5.7.1 Codefilestructure

5.7.2 Headerfilestructure

6 Requirements Tracing

7 Functional specification

7.1 Background & Rationale
7.2 Requirements
7.21 Generalrequirements
7.2.2 Ethernet Communication
7.2.3 StateHandling
7.2.4 Interaction with Socket Adaptor
7.2.5 Subscribe Eventgroup retry handling
7.3 Messageformat
7.3.1 RequestID
7.3.2 Protocol Versionfield
7.3.3 Interface Versionfield
7.3.4 Message Typefield
7.3.5 ReturnCodefield
7.3.6 Flagsfield.
7.3.7 Reservedfield
7.3.8 EntriesArray

10
11

13

13
13

14

14
14
14

15

15
15
15
15
16
16
16
16
16

17

AUTSSAR

7.3.8.1 Entry FormatType1 38
7.3.8.2 Entry FormatType2 40
7.3.9 Options Array e 41
7.3.9.1 Configuration Option 41
7.3.9.2 IPv4 EndpointOption L. 43
7.3.9.3 IPv6 EndpointOption L. 43
7.3.9.4 |IPv4 Multicast Option 44
7.3.9.5 IPv6 MulticastOption 44
7.3.9.6 IPv4 SD EndpointOption. 45
7.3.9.7 IPv6 SD EndpointOption. 46
7.3.9.8 Handling missing, redundant, and conflicting Options 46
7.3.9.9 Security considerations for Options 47
7.3.10 Entries referencing Options 47
7.4 Service Discovery Entry Types 49
7.4.1 Entries for Services (common requirements) 49
7.4.2 FindServiceentry 50
7.4.3 OfferServiceentry Lo 51
7.4.4 Building OfferService entries, 51
7.4.5 StopOfferServiceentry L. 52
7.4.6 Eventgroup Entries (Common requirements) 52
7.4.7 SubscribeEventgroupentry oo 53
7.4.8 StopSubscribeEventgroupentryo oL 54
7.4.9 SubscribeEventgroupAckentryo oL 54
7.4.10 SubscribeEventgroupNackentry oL, 54
7.4.11 Building SubscribeEventgroup entries L. 55
7.5 Sending and ReceivingofMessages 56
7.5.1 Sequence for message transmission 57
7.5.2 Sequence for messagereception. L. 58
7.5.3 ReceivingEntries o 59
7.5.3.1 Answering behaviour, if receiving Service Discovery Entries via
Multicastaddress 61
7.6 Timings and repetitions for Server Service and Event Handlers 62
7.6.1 Initial Wait Phase for Server Services 63
7.6.2 Repetition Phase for Server Services 65
7.6.3 Main Phase for Server Services 69
7.6.4 Fanoutcontrol 72
7.6.5 Sharing of SdServerTimer. 76
7.7 Timings and repetitions for Client Service and Consumed Eventgroups . 76
7.7.1 Down Phase for Client Services 77
7.7.2 Initial Wait Phase for Client Services 78
7.7.3 Repetition Phase for Client Services 80
7.7.4 Main Phase for ClientServices 82
7.7.5 Fanincontrol 89
7.7.6 Sharing of SdClientTimer 91

AUTSSAR

7.8 Handling of SdServiceGroupS 91
7.8.1 SdServiceGroup definitions oL 91
7.8.1.1 Initialization of SdServiceGroupS 92
7.8.1.2 Starting of SdServiceGroupSo 93
7.8.1.3 Stopping of SdServiceGroupS 93
7.9 SOME/IP-ACL e 93
7.9.1 ACL Configuration 94
7.9.11 ACLupdate 95
7.9.2 ACLPolicyCheck 97
7.9.21 ClientACL 97
7.9.22 ServerACL 97
7.10Security Events 100
711Error Classification 100
7.11.1 Development Errors 101
711.2Runtime Errors 102
7.11.3 Production Errors oo 102
7.11.4 Extended ProductionErrors oL 102

8 API specification 104
8.1 Importedtypes 104
8.2 Typedefinitions 104
8.2.1 Sd_ConfigType 104
8.2.2 Sd_ServerServiceSetStateType 105
8.2.3 Sd_ClientServiceSetStateType 105
8.2.4 Sd_ConsumedEventGroupSetStateType 106
8.2.5 Sd_ClientServiceCurrentStateType 106
8.2.6 Sd_ConsumedEventGroupCurrentStateType 107
8.2.7 Sd_EventHandlerCurrentStateType 107
8.2.8 Sd_ConfigOptionStringType 107
8.2.9 Sd_ServiceGroupldType oL 108
8.2.10 Sd_ServiceAclUpdateType 108
8.3 Functiondefinitions 109
8.3.1 Sd Init 109
8.3.2 Sd GetVersionInfo 110
8.3.3 Sd_ServerServiceSetState 111
8.3.4 Sd ClientServiceSetState, 112
8.3.5 Sd_ConsumedEventGroupSetState 113
8.3.6 Sd_LocallpAddrAssignmentChg 114
8.3.7 Sd_SoConModeChg 115
8.3.8 Sd_ServiceGroupStart 115
8.3.9 Sd _ServiceGroupStop 116
8.3.10Sd_AclUpdate 116
8.3.11 Sd_RequestRoutingGroupEnable 117

8.3.12Sd _AclCheckEnable, 118

AUTSSAR

8.4 Callback notifications 118
8.4.1 Sd _RxIndicationo 118
8.5 Scheduled functions 119
8.5.1 Sd_MainFunction 120
8.6 Expectedinterfaces 120
8.6.1 Mandatory Interfaces 120
8.6.2 Optional Interfaces L. 121
8.6.3 Configurable Interfaces, 123
8.6.3.1 Sd_CapabilityRecordMatchCallout 123

9 Sequence diagrams 124
9.1 CLIENT /SERVER: Sd_RxIndication 124
9.2 SERVER: Response Behavior 125
9.3 CLIENT: Response Behavior. 126
9.4 SERVER: buildOfferServiceEntry 127
9.5 CLIENT: buildSubscribeEventgroupEntry 128
9.6 SERVER: buildSubscribeEventgroupAckEntry 129
9.7 CLIENT / SERVER: TransmitSdMessage 129
9.8 SERVER: AddClientToFanOut 130
9.9 SERVER: Start e 131
9.10CLIENT: Start e 132
9.11ACL: Service Offer 133
9.12ACL: SubscribeEventgroup L 133
9.13ACL: Method callrequest 134
10 Configuration specification 135
10.1How toread thischapter 135
10.2Containers and configuration parameters 136
10.218d e e 136
10.2.2SdGeneral 138
10.2.3SdConfig 144
10.2.4 SdCapabilityRecordMatchCallout 146
10.2.5SdServiceGroup L 147
10.26SdInstance 148
10.2.7 SdClientService 149
10.2.8 SdBlocklistedVersions oo 158
10.2.9 SdClientCapabilityRecord 159
10.2.10 SdConsumedEventGroup L. 161
10.2.11 SdConsumedMethods 166
10.2.12 SdClientTimer e 167
10.2.13 SdInstanceDemEventParameterRefs 173
10.2.14 SdInstanceMulticastRxPdu 174
10.2.15 SdInstanceTxPdu 176
10.2.16 SdInstanceUnicastRxPdu 176

10.2.17 SdServerService e 177

AUTSSAR

10.2.18 SdEventHandler 185
10.2.19 SdEventHandlerMulticast 188
10.2.20 SdEventHandlerTcp o 190
10.2.21 SdEventHandlerUdp 191
10.2.22 SdProvidedMethods 192
10.2.23 SdServerCapabilityRecord 192
10.2.24 SdServerTimer e e 194
10.2.25 SdServerServiceAllowedConsumers 198
10.2.26 SdClientServiceAllowedProvider 199
10.3Published Information. 201
A Change history of AUTOSAR traceable items 202
A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 202
A.1.1 Added Specification Itemsin R25-11 202
A.1.2 Changed Specification Itemsin R25-11 202
A.1.3 Deleted Specification ltemsin R25-11 202
A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 202
A.2.1 Added Specification ltemsin R24-11 202
A.2.2 Changed Specification Itemsin R24-11 202

A.2.3 Deleted Specification ltemsinR24-11 204

ANUTSAR Specification of Service Discovery

AUTOSAR CP R25-11

1 Introduction and functional overview

The AUTOSAR Service Discovery module offers functionality to detect and offer avail-
able services - i.e. functional entities - within the vehicle network. To do so, it makes
use of the IP Multicast and so called SOME/IP-SD messages.

The Service Discovery module (Sd) is located between the AUTOSAR BSW Mode
Manager module (BswM) and the AUTOSAR Socket Adaptor module (SoAd).

Socket Adaptor

Figure 1.1: - Interaction of the AUTOSAR Service Discovery module

10 of 204 Document ID 616: AUTOSAR_CP_SWS_ServiceDiscovery

AUTSSAR

2 Acronyms, Abbreviations and Definitions

The glossary below includes acronyms and abbreviations relevant to the Service Dis-
covery module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
BswM Basis software manager
ECU Electronic Control Unit
DEM Diagnostic Event Manager
DET Default Error Tracer
SD Service Discovery
Sd Service Discovery Module in AUTOSAR
SoAd Socket Adaptor
SOME/IP Scalable service-Oriented MiddlewarE over IP
SOME/IP-SD SOME/IP Service Discovery
Table 2.1: Acronyms and Abbreviations
Term: Description:
Service A functional entity that offers an interface

Service Instance

A single instance of the Service

Offer A message entry that offers a Service Instance

Stop Offer A message that stops offering a Service Instance

Find A message entry used to find a Service Instance

Event A message sent by an ECU implementing a Service
Instance to an ECU using this Service Instance.

Eventgroup A logical grouping of 1 or more events. An Eventgroup is

part of a Service.

Server Service

Provide a service

Client Service

Consumes a service

Server A ECU which host ServerServices

Client A ECU which host ClientServices

Endpoint Option Endpoint Options are used to announce a tuple of unicast
address and port

Multicast Option Multicast Options are used to announce a tuple of multicast

address and port

Unicast event

Events which are transmitted to a unicast endpoint by the
ECU which host an SdServerService. The unicast endpoint
is provided by a particular SdClientService which has
subscribed to this SdServerService within the Endpoint
Option referenced by a SubscribeEventgroup entry (see
Consumed Eventgroup unicast endpoint)

Multicast event

Events which are transmitted to a multicast endpoint by the
ECU which host an SdServerService. A multicast endpoint
could be provided by the SdServerService (see
Eventhandler multicast endpoint) and SdClientService (see
Consumed Eventgroup multicast endpoint).

AUTSSAR

Term:

Description:

Eventhandler multicast endpoint

Term to describe the tuple of multicast address and port,
which is pre-configured for a SdServerService per
Eventhandler. If the threshold for subscribed Clients with
different endpoint information has been reached, then the
Server sends the corresponding events to this
pre-configured multicast address and port. The Eventhandler
multicast endpoint is announced via a Multicast option
referenced by a SubscribeEventgroupAck entry

Consumed Eventgroup unicast endpoint

Term to describe the tuple of unicast address and port,
which is pre-configured for a SdClientService per Consumed
Eventgroup. A SdClientService which subscribes with this
unicast address and port, indicates the SdServer to which
endpoint, the corresponding events shall be sent. The
Consumed Eventgroup unicast endpoint is announced via a
Endpoint option referenced by a SubscribeEventgroup or
StopSubscribeEventgroup entry

Consumed Eventgroup multicast endpoint

Term to describe the tuple of multicast address and port,
which is pre-configured for a SdClientService per Consumed
Eventgroup. A SdClientService which subscribe with this
multicast address and port, indicates the SdServer to which
endpoint the corresponding events shall be sent. The
Consumed Eventgroup multicast endpoint is announced via
a Multicast option referenced by a SubscribeEventgroup or
StopSubscribeEventgroup

Eventhandler multicast connection

Term to describe the usage of an established socket
connection if a SdServerService provides the Multicast
events via the configured Eventhandler multicast endpoint

Consumed Eventgroup unicast connection

Term to describe the usage of an established socket
connection if a SdClientService receives the events via a
Consumed Eventgroup unicast endpoint

Consumed Eventgroup multicast connection

Term to describe the usage of an established socket
connection if a SdClientService receives the events via a
Consumed Eventgroup multicast endpoint

Table 2.2: Definitions

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[38] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[5] Requirements on SOME/IP Service Discovery Protocol
AUTOSAR_FO_ RS SOMEIPServiceDiscoveryProtocol

[6] SOME/IP Service Discovery Protocol Specification
AUTOSAR_FO_PRS_SOMEIPServiceDiscoveryProtocol

[7] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS BSWModeManager

[8] Specification of Socket Adaptor
AUTOSAR_CP_SWS_SocketAdaptor

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for Service Discovery.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Service Discovery.

[2, SWS BSW General] [3, SRS General] [4, EXP Layered Software Architecture] [5,
RS SOME/IP Service Discovery Protocol] [6, PRS SOME/IP Service Discovery Proto-
col] [7, SWS Basic Software Mode Manager] [8, SWS Socket Adaptor]

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

Although the AUTOSAR SD is able to respond to wildcard requests (ANY) for Service
ID, Instance ID, Major Version, and Minor Version, this module is only able to send
wildcard finds for Minor Version.

Load Balancing Option (Priority field and Weight field) can be configured for the Offer
Services. However, the Client does not evaluate these fields.

The specification does not support setting the Discardable flag of a SOME/IP entry
option to 1 and reacting to the reception of an (unknown/unsupported) option with the
Discardable flag set to 1 (see [PRS_SOMEIPSD_00273], [PRS_SOMEIPSD_00275],
[PRS_SOMEIPSD_00276], [PRS_SOMEIPSD_00544]).

The specification does not support that IPv4/IPv6é SD endpoint options are included
in any SOME/IP-SD entry of a transmitted SOME/IP-SD message (see [PRS._-
SOMEIPSD_00547] - [PRS_SOMEIPSD_00552], [PRS_SOMEIPSD_00554] - [PRS_
SOMEIPSD_00559], [PRS_SOMEIPSD_00650], [PRS_SOMEIPSD_00651], [PRS_-
SOMEIPSD_00654]).

SOME/IP-ACL contents will be the IP addresses of the allowed communication part-
ners, so this feature will not be applicable in case of dynamic IP via DHCP is used.

4.2 Limitations for communication with Adaptive Platform

The following limitations regarding the SOME/IP SD functionality described in SOME/IP
Service Discovery Protocol Specification and System Template apply:

» Configuration options (see [PRS_SOMEIPSD 00276] - [PRS_SOMEIPSD_-
00287])
Capability records that are received from CP side will not be evaluated on AP
side.

4.3 Applicability to car domains
N/A

AUTSSAR

5 Dependencies to other modules

5.1 AUTOSAR BSW Scheduler

The BSW Scheduler calls the main functions of the Service Discovery module, which
is necessary for the cyclic processes of the Service Discovery.

5.2 AUTOSAR BSW Mode Manager

The BswM module provides the link between the generic mode requests and the ser-
vice requests.

5.3 AUTOSAR Socket Adaptor

The Socket Adaptor hands over service requests between the Ethernet Stack and the
Service Discovery Module.

The Service Discovery module shall be able to activate and de-activate the PDU rout-
ing from and to TCP/IP-sockets and trigger the initial transport of events (triggered
transmit).

The SoAds Socket Connection Table needs to be pre-configured to receive the unicast
and multicast messages sent by Service Discovery modules of other ECUs. As the
ECU might be connected to multiple (virtual) networks, there can exist multiple Service
Discovery Instances, which may have multiple Socket Connection Table entries. The
triples of Unicast Rx, Multicast Rx, and Tx PdulDs for each (virtual) interface need to
be configured in the SoAd and known to the Service Discovery module.

Additionally the Service Discovery module updates endpoint information (IP address
and port number) in socket connections (SoAdSocketConnection), which the Service
Discovery module extracts from received Service Discovery messages.

For robustness reasons these UDP Sockets should only be used for SD messages and
the option SoAdSocketUdpStrictHeaderLenCheckEnabledshould be turned on.

5.4 AUTOSAR Default Error Tracer

In order to be able to report development errors, the Service Discovery module has to
have access to the error hook of the Default Error Tracer.

AUTSSAR

5.5 AUTOSAR Diagnostic Event Manager

In order to be able to report production errors the Service Discovery module has to
have access to the Diagnostic Event Manager.

5.6 AUTOSAR Non Volatile Memory

In order to save the updated ACL (Access Control List), the Service Discovery module
shall have access to Non Volatile Memory NVM.

5.7 File structure

5.7.1 Code file structure

[SWS_Sd_00001]
Upstream requirements: SRS_BSW_00396, SRS _BSW_ 00344, SRS BSW_ 00404

[The code file structure shall not be defined within this specification completely. At this
point it shall be pointed out that the code-file structure shall include the following files
named:

« Sd_Lcfg.c - for link time configurable parameters and
» Sd_PBcfg.c - for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters. |

5.7.2 Header file structure

[SWS_Sd_00003]

Upstream requirements: SRS_BSW_00339, SRS_BSW_00458
[The module shall include the Dem.h file. By this inclusion, the APIs to report errors
as well as the required Event Id symbols are included. |

[SWS_Sd_00762]
Status: DRAFT
Upstream requirements: SRS_BSW_00380

[The module shall include the header file NvM.h if the ACL check is configured. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [5] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_Ids_00810]

Basic SW security events

[SWS_Sd_00114]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_Sd _00135]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Sd_00136]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Sd_00134]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_Sd_00117]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data

types

[SWS_Sd 91002

[SRS_BSW_00305]

Data types naming convention

[SWS_Sd _00117] [SWS_Sd_00118]
[SWS_Sd_00405] [SWS_Sd_00551]
[SWS_Sd_91002] [SWS_Sd_91008]

[SRS_BSW_00310]

API naming convention

[SWS_Sd 00412]

[SRS_BSW_00337]

Classification of development errors

[SWS_Sd_00107] [SWS_Sd_00110]
[SWS_Sd_00408] [SWS_Sd_00411]
[SWS_Sd_00470] [SWS_Sd_00472]
[SWS_Sd_00474] [SWS_Sd_00475]
[SWS_Sd_00497] [SWS_Sd_00607]
[SWS_Sd_00608] [SWS_Sd_00609]
[SWS_Sd_00610]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_Sd_00003]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Sd_00001] [SWS_Sd_00019]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_Sd_00109]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Sd 00129]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Sd_00474]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Sd_00004] [SWS_Sd_00130]
[SWS_Sd_00131]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00380]

Configuration parameters being
stored in memory shall be placed into
separate c-files

[SWS_Sd_00762]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Sd_00108]

[SRS_BSW_00393]

Parameters shall have a range

[SWS_Sd_00136]

[SRS_BSW_00396]

The Basic Software Module
specifications shall specify the
supported configuration classes for
changing values and multiplicities for
each parameter/container

[SWS_Sd_00001]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Sd_00125]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Sd_00001] [SWS_Sd_00690]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Sd_00013] [SWS_Sd_00017]
[SWS_Sd_00400]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Sd_00122] [SWS_Sd_00407]
[SWS_Sd_00410] [SWS_Sd_00469]
[SWS_Sd_00471] [SWS_Sd_00473]
[SWS_Sd_00748]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Sd_00124] [SWS_Sd_00126]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Sd_00124] [SWS_Sd_00126]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Sd 00119]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_Sd 00133]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_Sd_00034] [SWS_Sd_00120]
[SWS_Sd_00462]

[SRS_BSW_00432]

Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_Sd 00131]

[SRS_BSW_00452]

Classification of runtime errors

SWS_Sd_00742]

[SRS_BSW_00458]

Classification of production errors

[SRS_BSW_00466]

Classification of extended production
errors

[
[SWS_Sd_00003]
[

SWS_Sd_00002] [SWS_Sd_00006]
[SWS_Sd_00008]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_Sd_00002] [SWS_Sd_00006]
[SWS_Sd_00008]

[SRS_BSW_00470]

Execution frequency of production
error detection

[SWS_Sd_00002] [SWS_Sd_00006]
[SWS_Sd_00008]

[SRS_BSW_00472]

Avoid detection of two production
errors with the same root cause.

[SWS_Sd_00002] [SWS_Sd_00006]
[SWS_Sd_00008]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_Sd_00475] [SWS_Sd_00497]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00482]

Get version information function shall
follow a naming rule

[SWS_Sd_00124]

[SRS_BSW_00487]

Errors for module initialization shall
follow a naming rule

[SWS_Sd_00407] [SWS_Sd_00410]
[SWS_Sd_00469] [SWS_Sd_00471]
[SWS_Sd_00473]

[SRS_Eth_00001]

The initialization the SoAd shall be
able to establish all TCP connections

[SWS_Sd_00040] [SWS_Sd_00317]
[SWS_Sd_00321] [SWS_Sd_00480]
[SWS_Sd_00606] [SWS_Sd_00651]
[SWS_Sd_00723]

[SRS_Eth_00002]

The IP addresses as well as the
method of acquisition shall be a
configurable item.

[SWS_Sd_00480] [SWS_Sd_00651]

[SRS_Eth_00004]

The SoAd shall support a local
multi-homed host

[SWS_Sd_00024] [SWS_Sd_00026]
[SWS_Sd_00029] [SWS_Sd_00040]
[SWS_Sd_00481] [SWS_Sd_00482]
[SWS_Sd_00696] [SWS_Sd_00698]
[SWS_Sd_00699] [SWS_Sd_00700]
[SWS_Sd_00709] [SWS_Sd_00723]
[SWS_Sd_00732]

[SRS_Eth_00005]

Both UDP or TCP shall be usable

[SWS_Sd_00700]

[SRS_Eth_00008]

The Socket Adaptor shall
immediately try to re-establish any
TCP connection if it is lost

[SWS_Sd_00380] [SWS_Sd_00731]
[SWS_Sd_00733]

[SRS_Eth_00009]

Upon Shutdown the Socket Adaptor
shall close all open TCP connections

[SWS_Sd_00348] [SWS_Sd_00354]
[SWS_Sd_00380] [SWS_Sd_00731]
[SWS_Sd_00733]

[SRS_Eth_00014]

IPv4 shall be implemented according
to IETF RFC 791

[SWS_Sd_00402] [SWS_Sd_00448]
[SWS_Sd_00697] [SWS_Sd_00755]
[SWS_Sd_00761] [SWS_Sd_00799]
[SWS_Sd_00805]

[SRS_Eth_00015]

ARP shall be implemented according
to IETF RFC 826

[SWS_Sd_00697]

[SRS_Eth_00017]

TCP shall be implemented according
to IETF RFC 793

[SWS_Sd_00478]

[SRS_Eth_00018]

UDP shall be implemented according
to IETF RFC 768

[SWS_Sd_00454] [SWS_Sd_00478]
[SWS_Sd_00703] [SWS_Sd_00753]

[SRS_Eth_00022]

The dynamic configuration of IPv4
link-local addresses as specified in
IETF RFC 3927 shall be implemented

[SWS_Sd_00325] [SWS_Sd_00340]
[SWS_Sd_00347] [SWS_Sd_00357]
[SWS_Sd_00373] [SWS_Sd_00720]
[SWS_Sd_00755] [SWS_Sd_00799]

[SRS_Eth_00032]

The Ethernet Interface shall provide
hardware configuration and
initialization.

[SWS_Sd _00318] [SWS_Sd_00330]

[SRS_Eth_00036]

The Ethernet Driver shall provide
hardware configuration and
initialization.

[SWS_Sd _00330]

[SRS_Eth_00039]

The Ethernet Transceiver Driver shall
provide hardware configuration and
initialization.

[SWS_Sd_00330]

[SRS_Eth_00053]

SWS shall specify configuration

[SWS_Sd_00013] [SWS_Sd_00019]
[SWS_Sd_00020] [SWS_Sd_00021]
[SWS_Sd_00121] [SWS_Sd_00400]
[SWS_Sd_00504]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Eth_00058]

SoAd shall support generic upper
layers

[SWS_Sd_00382] [SWS_Sd_00482]
[SWS_Sd_00704] [SWS_Sd_00706]
[SWS_Sd_00730] [SWS_Sd_00734]
[SWS_Sd_91003]

[SRS_Eth_00059]

IPv6 shall be implemented according
to IETF RFC 2460

[SWS_Sd_00402] [SWS_Sd_00448]
[SWS_Sd_00756] [SWS_Sd_00800]
[SWS_Sd_00805]

[SRS_Eth_00069]

The Socket Adaptor shall implement
a mechanism to share multiple PDUs
from/to the same or different upper
modules

[SWS_Sd_00459] [SWS_Sd_00460]

[SRS_Eth_00071]

The Socket Adaptor shall implement
a mechanism to activate or deactivate
an upper layer using a routing group

[SWS_Sd_00381] [SWS_Sd_00702]
[SWS_Sd_00749] [SWS_Sd_91006]
[SWS_Sd_91007]

[SRS_Eth_00076]

The APIs of the Service Discovery
module shall support any protocol

[SWS_Sd_00701] [SWS_Sd_00721]
[SWS_Sd_00806]

[SRS_Eth_00077]

The TCP/IP stack shall be
implemented as independent
sub-modules.

[SWS_Sd_00453]

[SRS_Eth_00078]

The SoAd module shall be the sole
upper layer PDU interface to the
TCP/IP stack

[SWS_Sd_00024] [SWS_Sd_00026]
[SWS_Sd_00029] [SWS_Sd_00453]
[SWS_Sd_00481] [SWS_Sd_00698]
[SWS_Sd_00699] [SWS_Sd_00700]
[SWS_Sd_00709]

[SRS_Eth_00092]

The IPv6 Addressing Architecture
shall be implemented according to
IETF RFC 4291

[SWS_Sd_00756] [SWS_Sd_00800]

[SRS_Eth_00093]

The Transmission of IPv6 Packets
shall be implemented according to
IETF RFC 2464

[SWS_Sd_00756] [SWS_Sd_00800]

[SRS_Eth_00111]

Robustness against unexpected
communication patterns

[SWS_Sd 91001]

[SRS_Eth_00151]

The Ethernet Transceiver Driver shall
support a controlled link shutdown
(sleep request)

[SWS_Sd_00007] [SWS_Sd_00605]

[SRS_Eth_00157]

The Ethernet Interface shall trigger
requested modes for Ethernet
hardware with wake-up capability
even if the requested mode has
already been reached.

[SWS_Sd_00005]

[SRS_Eth_00158]

The Ethernet state manager shall
trigger requested modes for Ethernet
hardware with wake-up capability
even if the requested mode has
already been reached.

[SWS_Sd_00005]

Y%

AUTSSAR

Requirement

Description

Satisfied by

[SRS_Eth_00161]

Service Provider Check

[SWS_Sd_00005] [SWS_Sd_00011]
[SWS_Sd_00020] [SWS_Sd_00021]
[SWS_Sd_00039] [SWS_Sd_00040]
[SWS_Sd_00173] [SWS_Sd_00175]
[SWS_Sd_00178] [SWS_Sd_00180]
[SWS_Sd_00182] [SWS_Sd_00193]
[SWS_Sd_00195] [SWS_Sd_00198]
[SWS_Sd_00200] [SWS_Sd_00204]
[SWS_Sd_00267] [SWS_Sd_00292]
[SWS_Sd_00295] [SWS_Sd_00296]
[SWS_Sd_00297] [SWS_Sd_00298]
[SWS_Sd_00299] [SWS_Sd_00317]
[SWS_Sd_00318] [SWS_Sd_00320]
[SWS_Sd_00329] [SWS_Sd_00331]
[SWS_Sd_00336] [SWS_Sd_00338]
[SWS_Sd_00341] [SWS_Sd_00342]
[SWS_Sd_00343] [SWS_Sd_00348]
[SWS_Sd_00349] [SWS_Sd_00350]
[SWS_Sd_00351] [SWS_Sd_00352]
[SWS_Sd_00353] [SWS_Sd_00355]
[SWS_Sd_00358] [SWS_Sd_00363]
[SWS_Sd_00365] [SWS_Sd_00367]
[SWS_Sd_00369] [SWS_Sd_00371]
[SWS_Sd_00375] [SWS_Sd_00381]
[SWS_Sd_00382] [SWS_Sd_00402]
[SWS_Sd_00409] [SWS_Sd_00437]
[SWS_Sd_00438] [SWS_Sd_00439]
[SWS_Sd_00442] [SWS_Sd_00443]
[SWS_Sd_00449] [SWS_Sd_00450]
[SWS_Sd_00451] [SWS_Sd_00456]
[SWS_Sd_00457] [SWS_Sd_00461]
[SWS_Sd_00463] [SWS_Sd_00464]
[SWS_Sd_00465] [SWS_Sd_00466]
[SWS_Sd_00467] [SWS_Sd_00468]
[SWS_Sd_00476] [SWS_Sd_00478]
[SWS_Sd_00479] [SWS_Sd_00488]
[SWS_Sd_00489] [SWS_Sd_00491]
[SWS_Sd_00492] [SWS_Sd_00493]
[SWS_Sd_00494] [SWS_Sd_00495]
[SWS_Sd_00496] [SWS_Sd_00503]
[SWS_Sd_00600] [SWS_Sd_00611]
[SWS_Sd_00612] [SWS_Sd_00663]
[SWS_Sd_00702] [SWS_Sd_00703]
[SWS_Sd_00704] [SWS_Sd_00708]
[SWS_Sd_00712] [SWS_Sd_00716]
[SWS_Sd_00717] [SWS_Sd_00718]
[SWS_Sd_00719] [SWS_Sd_00722]
[SWS_Sd_00724] [SWS_Sd_00725]
[SWS_Sd_00732] [SWS_Sd_00743]
[SWS_Sd_00744] [SWS_Sd_00745]
[SWS_Sd_00746] [SWS_Sd_00747]
[SWS_Sd_00749] [SWS_Sd_00750]
[SWS_Sd_00751] [SWS_Sd_00752]
[SWS_Sd_00764] [SWS_Sd_00765]
[SWS_Sd_00766] [SWS_Sd_00767]
[SWS_Sd_00785] [SWS_Sd_00798]
[SWS_Sd_01503] [SWS_Sd_04089]
[SWS_Sd_07016] [SWS_Sd_10503]
[SWS_Sd_91006] [SWS_Sd_91007]

AUTSSAR

Requirement

Description

Satisfied by

[SRS_Eth_00162]

Event Subscriber Check

[SWS_Sd_00173] [SWS_Sd_00175]
[SWS_Sd_00178] [SWS_Sd_00180]
[SWS_Sd_00182] [SWS_Sd_00193]
[SWS_Sd_00195] [SWS_Sd_00198]
[SWS_Sd_00200] [SWS_Sd_00204]
[SWS_Sd_00267] [SWS_Sd_00289]
[SWS_Sd_00291] [SWS_Sd_00292]
[SWS_Sd_00295] [SWS_Sd_00296]
[SWS_Sd_00297] [SWS_Sd_00298]
[SWS_Sd_00299] [SWS_Sd_00301]
[SWS_Sd_00304] [SWS_Sd_00307]
[SWS_Sd_00323] [SWS_Sd_00333]
[SWS_Sd_00334] [SWS_Sd_00344]
[SWS_Sd_00345] [SWS_Sd_00377]
[SWS_Sd_00403] [SWS_Sd_00440]
[SWS_Sd_00442] [SWS_Sd_00443]
[SWS_Sd_00452] [SWS_Sd_00453]
[SWS_Sd_00454] [SWS_Sd_00455]
[SWS_Sd_00458] [SWS_Sd_00461]
[SWS_Sd_00465] [SWS_Sd_00466]
[SWS_Sd_00467] [SWS_Sd_00468]
[SWS_Sd_00476] [SWS_Sd_00488]
[SWS_Sd_00489] [SWS_Sd_00491]
[SWS_Sd_00492] [SWS_Sd_00493]
[SWS_Sd_00494] [SWS_Sd_00495]
[SWS_Sd_00503] [SWS_Sd_00550]
[SWS_Sd_00552] [SWS_Sd_00553]
[SWS_Sd_00560] [SWS_Sd_00601]
[SWS_Sd_00611] [SWS_Sd_00612]
[SWS_Sd_00663] [SWS_Sd_00693]
[SWS_Sd_00695] [SWS_Sd_00698]
[SWS_Sd_00701] [SWS_Sd_00702]
[SWS_Sd_00703] [SWS_Sd_00711]
[SWS_Sd_00712] [SWS_Sd_00713]
[SWS_Sd_00716] [SWS_Sd_00717]
[SWS_Sd_00718] [SWS_Sd_00719]
[SWS_Sd_00724] [SWS_Sd_00725]
[SWS_Sd_00735] [SWS_Sd_00736]
[SWS_Sd_00737] [SWS_Sd_00738]
[SWS_Sd_00739] [SWS_Sd_00740]
[SWS_Sd_00741] [SWS_Sd_00752]
[SWS_Sd_00753] [SWS_Sd_00754]
[SWS_Sd_00757] [SWS_Sd_00758]
[SWS_Sd_00759] [SWS_Sd_00760]
[SWS_Sd_00761] [SWS_Sd_00789]
[SWS_Sd_00790] [SWS_Sd_00791]
[SWS_Sd_01503] [SWS_Sd_04089]
[SWS_Sd_07016] [SWS_Sd_10503]

[SRS_Eth_00163]

Method Call Request Check

[SWS_Sd_00793] [SWS_Sd_00794]
[SWS_Sd_00795] [SWS_Sd_00796]
[SWS_Sd 91011]

[SRS_Eth_00164]

ACL Policy Configuration

[SWS_Sd_00763] [SWS_Sd_00764]
[SWS_Sd_00765] [SWS_Sd_00766]
[SWS_Sd_00767] [SWS_Sd_00785]

[SRS_Eth_00165]

ACL Update

[SWS_Sd_00768] [SWS_Sd_00769]
[SWS_Sd_00780] [SWS_Sd_00781]
[SWS_Sd_00782] [SWS_Sd_00783]
[SWS_Sd_00784] [SWS_Sd_00801]
[SWS_Sd_00802] [SWS_Sd_00803]
[SWS_Sd_00804] [SWS_Sd_91009]
[SWS_Sd 91010] [SWS_Sd_91012]

AUTSSAR

Requirement

Description

Satisfied by

[SRS_Eth_00166]

Security Alerts Raising

[SWS_Sd_00797]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Background & Rationale

The main tasks of the Service Discovery Module are managing the availability of func-
tional entities called services in the in-vehicle communication as well as controlling the
send behavior of event messages. This allows sending only event messages to re-
ceivers requiring them (Publish/Subscribe). The solution described here is also known
as SOME/IP-SD (Scalable service-Oriented MiddlewarE over IP - Service Discovery).

With Service Discovery different ECUs can offer Service Instances and find available
Service Instances within the vehicle network. An ECU can stop offering a Service
Instance it was offering before. Later finds to such a service instance will remain unan-
swered. Service Instances are single implementations of a service that is defined by its
service interface. In the AUTOSAR context, a find is an operation to identify available
Service Instances and their locations.

In addition to the status of Service Instances, the Service Discovery is able to control
sending special messages called events. These events are grouped into Eventgroups,
which the Service Discovery can turn on/off in a Publish/Subscribe manner; thus, turn-
ing the sending and receiving of the events of this Eventgroup on/off.

For the remainder of this document, the definitions listed in Chapter 2 apply.

Figure 7.1 shows the interaction between Services and Eventgroups. On the abstract
level, the service can contain zero to many Eventgroups. However, when creating the
overall system, this information has to be configured into different ECUs with different
roles (clients and servers). When instancing the Services and the contained Event-
groups, the ServerServices and ClientServices as well as the EventHandlers and Con-
sumedEventgroups are instantiated from the Services and Eventgroups.

A local ECU needs to deal with two different kinds of services:

» Server Services - The local ECU offers Server Service Instances (i.e. located
locally) to the rest of the vehicle and can be considered the server for this Service
Instance.

* Client Services - The local ECU may use Server Service Instances offered by
another ECU inside the vehicle and can be considered a client to this Service
Instance.

For Server Services the local ECUs Service Discovery module has to (server role):

« Offer the local service, when it is available; i.e. the SWC(s) offering the service
are ready and the service is available in the current state of the ECU.

» Take back the offer of the local service (stop offer), when the service is no longer
available.

» Answer and respond to finds of other ECUs.

AUTSSAR

For Client Services the local ECUs Service Discovery module has to (client role):

« Listen for offers and finds depending of the configuration store this information in
volatile memory.

» Listen for stop offers and depending of the configuration store this information in
volatile memory.

» Send finds depending on the state of the current ECU and its SWCs.

Service Discovery can be used to manage Publish/Subscribe relationships as well. In
the Service Discovery based Publish/Subscribe use-case one ECU (Publish/Subscribe
Client with ConsumedEventgroup) is interested in receiving some data from (subscrib-
ing to) another ECU (Publish/Subscribe Server with EventHandler).

While the Subscribe is defined explicitly in the SD message, the Publish is based on
the availability of the service Instance itself (OfferService entry). Based on the offered
Service Instance the Publish/Subscribe Client may subscribe via SubscribeEventgroup
entries. The Publish/Subscribe Server will now use this subscription to register the
Publish/Subscribe Client as an interested party in some information specified by the
subscription and start sending that information to the Publish/Subscribe Client pending
some event or time-out.

As optimization, the SD supports sending event messages to multiple clients using
multicast messages instead of a unicast message per client. Please note, it has to be
differed between a multicast endpoint which could be pre-configured on Server side
and a multicast enpoint which could be pre-configured on Client side:

1. If an SdServerService has a pre-configured multicast address and port per Even-
thandler, then the SdServerService switches to this multicast address and port
(so-called "Eventhandler multicast endpoint"), if the threshold (SdEventHandler-
MulticastThreshold) for subscribed SdClientServices with different endpoint in-
formation has been reached

2. If an SdClientService has subcribed with a multicast address and port (so-called
"Consumed Eventgroup multicast endpoint"), then the SdServerService sends
its events upon a subscription to the Consumed Eventgroup multicast endpoint
(multicast address and port)

Services and Eventgroups Instanciated Services and Eventgroups

winterfaces ServerService ClientService
Service

- EventHandler ConsumedEventgroup
winterfaces

Eventgroup

1

Figure 7.1: - Overview of Services and Eventgroups

AUTSSAR

7.2 Requirements
7.2.1 General requirements

[SWS_Sd_00400]
Upstream requirements: SRS_Eth_00053, SRS_BSW_00405

[It shall be possible to configure the Service Discovery module as an optional
AUTOSAR BSW Module. Please refer to the SystemTemplate for configuration. |
[SWS_Sd_00004]

Upstream requirements: SRS_BSW_00373
[The Service Discovery shall implement a main function, which shall be called cycli-
cally according to configuration parameter SdMainFunctionCycleTime. |
[SWS_Sd_00005]

Upstream requirements: SRS_Eth_00157, SRS_Eth_00158, SRS_Eth_00161

[The Service Discovery module shall store the ServiceModeRequest, which is pro-
vided via the BswM by calling the following APIs:

» Sd_ServerServiceSetState() and Sd_ClientServiceSetState(), respectively, If the
SdServerService and SdClientService, respectively, is NOT referencing a SdSer-
viceGroup

» Sd_ServiceGroupStart and SdServiceGroupStop, if the SdServerService and Sd
ClientService, respectively is referencing a SdServiceGroup

+ Sd_ConsumedEventGroupSetState(), if dedicated SdEventGroupS are re-
quested by a SdClientService. (Note: This API call is allowed independent of
a reference to a SdServiceGroup of a SdClientService)

» Sd_EventHandlerSetState() does currently not exist, since this state is directly
deduced from the state of a Server Service by the Service Discovery.

]
Note:

Based on the interaction with SWCs, the following modes can be requested by the Bsw
M module:

Server SWCs via Sd_ServerServiceSetState() or, Sd_ServiceGroupStart() and Sd_
ServiceGroupStop(), respectively:

« SD_SERVER_SERVICE_DOWN
+ SD_SERVER_SERVICE_AVAILABLE

Client SWCs via Sd_ClientServiceSetState() or, Sd_ServiceGroupStart() and Sd_Ser-
viceGroupStop(), respectively:

AUTSSAR

« SD_CLIENT_SERVICE_RELEASED
« SD_CLIENT_SERVICE_REQUESTED
Client SWCs via Sd_ConsumedEventGroupSetState()
« SD_CONSUMED_EVENTGROUP_RELEASED
« SD_CONSUMED_EVENTGROUP_REQUESTED

"SD_SERVER_SERVICE_DOWN" implies that the local SWC(s) offering this Service
Instance are not ready to communicate,

"SD_SERVER_SERVICE_AVAILABLE" implies that the local SWC(s) offering this Ser-
vice Instance are ready to communicate,

"SD_CLIENT_SERVICE_RELEASED" implies that the local SWC(s) using this Service
Instance do not need to communicate with this Service Instance,

"SD_CLIENT_SERVICE_REQUESTED" implies that the local SWC(s) using this ser-
vice is ready to communicate with this Service Instance and needs this Service In-
stance,

"SD_CONSUMED EVENTGROUP_RELEASED" implies that the local SWC(s) using
this Consumed Eventgroup do not need the events of this Consumed Eventgroup,

"SD_CONSUMED_EVENTGROUP_REQUESTED" implies that the local SWC(s) us-
ing this Consumed Eventgroup need the events of this Consumed Eventgroup.

[SWS_Sd_00007]
Upstream requirements: SRS_Eth_00151

[The following CurrentStates shall be available for reporting to BswM module via Bsw
M_Sd_ClientServiceCurrentState(), BswM_Sd_ConsumedEventGroupCurrentState(),
and BswM_Sd_EventHandlerCurrentState() respectively:

- SD_CLIENT_SERVICE_DOWN

- SD_CLIENT_SERVICE_AVAILABLE

- SD_CONSUMED_EVENTGROUP_DOWN

- SD_CONSUMED_EVENTGROUP_AVAILABLE
- SD_EVENT_HANDLER_RELEASED

- SD_EVENT_HANDLER_REQUESTED |

Note:

"SD_CLIENT_SERVICE_DOWN" tells the local SWC(s) that this Service Instance is
not available,

"SD_CLIENT_SERVICE_AVAILABLE" tells the local SWC(s) that this Service Instance
is available,

AUTSSAR

"SD_CONSUMED_ EVENTGROUP_DOWN" tells the local SWC(s) that this Con-
sumed Eventgroup is not currently subscribed,

"SD_CONSUMED_EVENTGROUP_AVAILABLE" tells the local SWC(s) that this Con-
sumed Eventgroup is currently subscribed (i.e. events are received),

"SD_EVENT_HANDLER_RELEASED" tells the local SWC(s) that no client is currently
subscribed to this Eventgroup,

"SD_EVENT_HANDLER_REQUESTED" tells the local SWC(s) that at least one client
is currently subscribed to this Eventgroup.

[SWS_Sd_00011]

Upstream requirements: SRS_Eth_00161
[Every configured Server Service Instance shall have an ECU wide, unique SdServer
ServiceHandleld. |

[SWS_Sd_00437]

Upstream requirements: SRS_Eth_00161
[Every configured Client Service Instance shall have an ECU wide, unique SdClient
ServiceHandleld. |

[SWS_Sd_00438]

Upstream requirements: SRS_Eth_00161
[Every configured Consumed Event Group shall have an ECU wide, unique SdCon-
sumedEventGroupHandleld. |

[SWS_Sd_00439]
Upstream requirements: SRS_Eth_00161

[Every configured Event Handler shall have an ECU wide, unique SdEventHandler
Handleld. |

Note for [SWS_Sd_00011], _00437, _00438, and _00439:

The IDs defined by the above requirements are needed in order to identify the Service
Instances and Eventgroups in the control API between Sd and BswM.

This is even valid for Instances or Eventgroups with the same Service ID and/or the
same Service Instance ID.

AUTSSAR

7.2.2 Ethernet Communication

[SWS_Sd_00013]
Upstream requirements: SRS_Eth 00053, SRS_BSW_00405

[Every Service Discovery Configuration Instance (see configuration container Sdin-
stance) shall have at least one TxPdu ID, one RxPdu ID for Unicast, and one RxPdu
ID for Multicast (see configuration parameter SdinstanceTxPdu, SdinstanceUnicastRx
Pdu, and SdinstanceMulticastRxPdu respectively). |

[SWS_Sd_00017]
Upstream requirements: SRS_BSW_00405

[For different links, separate Service Discovery instance containers shall be config-
ured. |

Note:

Links in this regards also includes different virtual links using Ethernet VLANSs.

[SWS_Sd_00697]
Upstream requirements: SRS_Eth_00014, SRS_Eth_00015
[A SD Instance does only support a single Address Family (i.e. IPv4 or IPv6). This

address family shall be learned by means of the SoAd configuration of SdinstanceTx
Pdu, SdinstanceUnicastRxPdu, and SdinstanceMulticastRxPdu (local address). |

[SWS_Sd_00723]
Upstream requirements: SRS_Eth_00004, SRS_Eth_00001
[During initialization of the SD module, the APl SoAd_OpenSoCon() shall be called for

all Socket Connections associated with SdinstanceTxPdu, SdinstanceUnicastRxPdu
and SdlnstanceMulticastRxPdu. |

Note:
The SoAd module needs to be initialized before the SD module is initialized.
Note:

An implementer has to guarantee that SoAd_SetUniqgueRemoteAddr(), SoAd_GetLo-
calAddr(), and SoAd_SetRemoteAddr() can never return errors by validating the source
code and configuration of Service Discovery and Socket Adaptor. Failures of SoAd_
SetUniqueRemoteAddr(), SoAd_GetLocalAddr(), and SoAd _SetRemoteAddr() cannot
be recovered from.

AUTSSAR

7.2.3 State Handling

[SWS_Sd_00019]
Upstream requirements: SRS_BSW_00344, SRS _Eth_ 00053

[The Service Discovery module shall store the status of all statically configured Service
Instances and Eventgroups separately. |

[SWS_Sd_00020]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00053
[After initialization of the Service Discovery module by the call of the API Sd_Init(), all
configured Server Service Instances shall have the state "SD_SERVER_SERVICE_

DOWN", unless a Server Service Instance has SdServerServiceAutoAvailable set to
true, then the state shall be set to "SD_SERVER_SERVICE_AVAILABLE". |

Note:

SdServerServiceAutoAvailable set to true, is only allowed for Server Services which
are NOT referencing a SdServiceGroup.

[SWS_Sd _00021]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00053
[After initialization of the Service Discovery module by calling of the APl Sd_lInit(),
all configured Client Service Instances shall have the state "SD_CLIENT_SERVICE_

RELEASED", unless a Client Service Instance has SdClientServiceAutoRequired set
to true, then the state shall be set to "SD_CLIENT_SERVICE_REQUESTED". |

Note:

SdClientServiceAutoRequire set to true, is only allowed for Client Services which are
NOT referencing a SdServiceGroup.

[SWS_Sd_00440]

Upstream requirements: SRS_Eth_00162
[After initialization of the Service Discovery module by calling of the APl Sd_lInit(),
all configured Eventgroups shall have the state "SD_CONSUMED_EVENTGROUP_
RELEASED", unless a Consumed Eventgroup has "SdConsumedEventGroupAutoRe-

quired" set to true, then the state shall be set to "SD_CONSUMED_EVENTGROUP_
REQUESTED" as soon as the associated Client Service Instance is requested. |

[SWS_Sd_00402]
Upstream requirements: SRS_Eth_00059, SRS_Eth_00014, SRS_Eth_00161

[The Service Discovery module shall store all IP address assignment states referenced
by server and client Service Instances. |

AUTSSAR

[SWS_Sd_00442]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If Sd_ConsumedEventGroupSetState is called with SD_CONSUMED_EVENT-
GROUP_REQUESTED while its Client Service Instance is still released (SD_CLIENT _
SERVICE_RELEASED) E_NO_OK shall be returned. |

[SWS_Sd_00443]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If a SdClientService is set to SD_CLIENT_SERVICE_RELEASED (via Sd_ClientSer-
viceSetState() or Sd_ServiceGroupStop()) while one or more of its Eventgroups are
still requested (SD_CONSUMED_EVENTGROUP_REQUESTED) the Service Discov-
ery shall interpret this the same way as these Eventgroups were called with SD_CON-
SUMED_EVENTGROUP_RELEASED first. |

7.2.4 Interaction with Socket Adaptor

[SWS_Sd_00024]
Upstream requirements: SRS_Eth_00078, SRS_Eth 00004

[The Service Discovery module shall be able to enable/disable routing groups within
the SoAd module using the APIs SoAd_EnableSpecificRouting(), and SoAd_Disable
SpecificRouting() for Server-and Client Service Instances. |

[SWS_Sd_00699]
Upstream requirements: SRS_Eth_00078, SRS_Eth_ 00004

[The Service Discovery module shall be able to trigger the sending of initial Events
using the APl SoAd_IfSpecificRoutingGroupTransmit(). |

[SWS_Sd_00026]
Upstream requirements: SRS_Eth_00078, SRS_Eth_00004

[The Service Discovery module shall be able to reference RoutingGroup(s) per Service
Instance/Eventgroup. See the following configuration parameters:

» SdClientServiceActivationRef (in SdConsumedMethods)
» SdConsumedEventGroupMulticastActivationRef

+ SdConsumedEventGroupTcpActivationRef

+ SdConsumedEventGroupUdpActivationRef
SdServerServiceActivationRef (in SdProvidedMethods)
SdEventActivationRef (in SdEventHandlerMulticast)
SdEventActivationRef (in SdEventHandlerTcp)

AUTSSAR

» SdEventTriggeringRef (in SdEventHandlerTcp)
» SdEventActivationRef (in SdEventHandlerUdp)
« SdEventTriggeringRef (in SdEventHandlerUdp)

]

[SWS_Sd_00700]
Upstream requirements: SRS_Eth_00078, SRS_Eth_00004, SRS_Eth_00005

[The Service Discovery module shall be able to reference SocketConnections and
SocketConnectionGroups per Service Instance/Eventgroup. See the following config-
uration parameters:

« SdClientServiceTcpRef (Service Instance and Eventgroups)

SdClientServiceUdpRef (Service Instance and Eventgroups)

» SdConsumedEventGroupMulticastGroupRef (Eventgroup)

SdServerServiceTcpRef (Service Instance and Eventgroups)

SdServerServiceUdpRef (Service Instance and Eventgroups)

SdMulticastEventSoConRef in SdEventHandlerMulticast (Eventgroup)

]

[SWS_Sd_00029]
Upstream requirements: SRS_Eth_00078, SRS_Eth_00004

[The Service Discovery module shall only call SoAd_IfTransmit() if an IP address is
assigned; i.e.: Sd_LocallpAddrAssignmentChg() has been called with the current state
TCPIP_IPADDR_STATE_ASSIGNED. |

[SWS_Sd_00709]

Upstream requirements: SRS_Eth_00078, SRS_Eth_00004
[Ignore, if SOAd_IfTransmit() returns E_NOT_OK |
[SWS_Sd_00481]

Upstream requirements: SRS_Eth_00078, SRS_Eth 00004

[Every wildcard socket connection shall be reset to wildcard using SoAd_ReleaseRe-
moteAddr() if all of the following conditions apply:

» The remote address of a socket connection has been set by SD.

» The socket connection is not used by a ClientService anymore. l.e. no Offer was
received, a Stop Offer was received or the TTL has expired.

» The socket connection is not used by an Eventhandler anymore. l.e. the client
has unsubscribed all Eventgroups using this socket connection. The socket con-

AUTSSAR

nection shall not be reset if the routings get disabled because the SdEventHan-
dlerMulticastThreshold was reached.

]

Note: This requirement does not apply to the socket connections used for service
discovery.

7.2.5 Subscribe Eventgroup retry handling

The Subscribe Eventgroup retry mechanism is an optional feature for ClientServices.
This could be used to speed up the recovery if a SOME/IP-SD message is lost (e.g.
SubscribeEventGroupAck) and the interval between cycle offers are to large to get a
fast recovery, or to speed up subscriptions if an Eventgroup is requested somewhere
between two cyclic offers. The timing behavior of Subscribe Eventgroup retry mech-
anism could be configured per ClientService and has to match to the timing behavior
of the corresponding ServerService (see TPS SysT constr_5095). For ServerServices
which have their TLL (SdServerTimerTTL) set to OxFFFFFF and their interval between
cyclic offers in the main phase (SdServerTimerOfferCyclicDelay) set to 0, it's possi-
ble to set the Subscribe Eventgroup retry to OxFF (see TPS SysT constr_5096). This
would mean to retry the subscription to an EventGroup as along as the EventGroup is
setto SD_CONSUMED_EVENTGROUP_REQUESTED and no SubscribeEventGroup
Ack was received.

[SWS_Sd_00735]
Upstream requirements: SRS_Eth_00162

[The subscribe Eventgroup retry handling shall only be processed for Eventgroups of
a ServerService where

» SdSubscribeEventgroupRetryMax is greater than 0,
« and only if SdSubscribeEventgroupRetryEnable is set to TRUE.

]

[SWS_Sd_00736]

Upstream requirements: SRS_Eth_00162
[If SdSubscribeEventgroupRetryEnable is set to TRUE and SdSubscribeEventgroup
RetryMax is set to a value greater than 0, every time a Consumed Eventgroup transit to

the state SD_CONSUMED_EVENTGROUP_REQUESTED, the following actions shall
be done:

* the corresponding client service subscription retry delay timer shall be started
and set to SdSubscribeEventgroupRetryDelay, if the timer is not already running

+ the Eventgroup subscription retry counter shall be initialized with 1

AUTSSAR

[SWS_Sd_00737]
Upstream requirements: SRS_Eth_00162

[If the client service subscription retry delay timer elapsed and the counts of re-
tries of subscription (SdSubscribeEventgroupRetryMax) did not exceed for a config-
ured Eventgroup, client service subscription retry delay timer shall be re-intialized and
the subscription for the Eventgroup shall be re-triggered by sending a combination
of StopSubscribeEventgroup/SubscribeEventgroup, and the retry counter shall be in-
cremented. If the counts of retries of subscription (SdSubscribeEventgroupRetryMax)
exceeds, the ServiceDiscovery module shall raise the runtime error "SD_E_COUNT _
OF_RETRY_SUBSCRIPTION_EXCEEDED". |

[SWS_Sd_00738]

Upstream requirements: SRS_Eth_00162
[The retry of a subscription for a requested Eventgroup shall be stopped for the follow-
ing conditions:

« If a SubscribeEventGroupAck or SubscribeEventGroupNack was received for the
requested Eventgroup.

« If the count of retries exceeds SdEventgroupSubscribeRetryMax of the requested
Eventgroup.

* If the requested Eventgroup is set to "SD_CONSUMED_EVENTGROUP_RE-
LEASED".

]

[SWS_Sd_00739]
Upstream requirements: SRS_Eth_00162

[If SdSubscribeEventgroupRetryEnable is set to TRUE and SubscribeEventgroup
RetryMax is set to OxFF, the retries of subscription shall continue as long as all of
the following conditions are fulfilled:

* the corresponding Eventgroup is set to "SD_CONSUMED_EVENTGROUP_RE-
QUESTED"

* no SubscribeEventGroupAck or no SubscribeEventGroupNack was received

]

[SWS_Sd_00740]

Upstream requirements: SRS_Eth_00162
[The client service subscription retry delay timer shall be cancelled, if the retry is fin-
ished for all Eventgroups of a ClientService according to [SWS_Sd_00738]. |

When the client does not receive initial events before the next OfferService is received,
it should stop requesting the eventgroup, i.e. trigger StopSubscribeEventgroup, and

AUTSSAR

resume requesting the eventgroup, i.e. trigger SubscribeEventgroup when the next
OfferService is received.

This procedure can be triggered on application level and corresponds functionally to
a StopSubscribeEventgroup/SubscribeEventgroup combination after a loss of a Sub-
scribeEventgroupAck. This might imply notifying the SD-Module about reception of the
Initial Event of each and every Field, or other appropriate means.

If the procedures, described in the previous to paragraphs cannot be implemented
by the application, the retry-mechanism should be out-sourced to the BswM in a rule
that initiates re-sending of Initial Events via triggering a StopSubscribeEventgroup/-
SubscribeEventgroup SD message upon detecting that a security association is estab-
lished, to increase at least the robustness for a security association based communi-
cation.

Since the set-up of an security association is asynchronous, the BswM rule (BswM-
ModeRequestSource/BswMTimer) should thereby delay sending StopSubscribeEvent-
group/SubscribeEventgroup by an appropriate time that allows both peers to finish es-
tablishing the security association.

If the Subscribe Eventgroup Ack entry does not arrive before the next Subscribe Event-
group entry is sent (see [PRS_SOMEIPSD_00463]) or if the client does not receive
initial events before the next OfferService is received, this should not lead to re-
establishing security association connections, if the current connection is being set-up
or is already set-up.

For events that are transported using a security association the client has to make sure
that the security association is established and that it is ready to receive messages
before sending the SubscribeEventgroup entry (see [SWS_Sd_00761]). The server,
on the other hand, has to make sure that the security association is established and
that it is able to send messages before sending the SubscribeEventgroupAck entry
(see [SWS_Sd_00760]).

[SWS_Sd_00759]
Upstream requirements: SRS_Eth_00162

[If a SubscribeEventgroup entry is received, for which a security association is re-
quired, and the security association not yet established, this entry shall be answered
with a SubscribeEventgroupNack entry (see [SWS_Sd_00760]). |

7.3 Message format

Most of the requirements are handled in the PRS [5.1.2 Somelp SD message format]
and only the Classic Platform related is defined in this chapter.

AUTSSAR

0 \ 1 \ 2\ 3 \ 4\ 5 \ 6 \ 7 | 8 \ 9 \ 10\11\12|13| 14|15|1e|17|18119|2o|21\22\23\24\25\26|27\28\29\30\31 bit offset
Message ID (Service ID / Method ID) [32 bit]
(= OXFFFF 8100)

~

Length [32 bit]

SOME/IP
4

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type [8 bit] Return Code [8 bit]
v =0x01 =0x01 =0x02 =0x00
T+
Flags [8 bit] Reserved [24 bit]

Length of Entries Array [32 bit]

Entries Array

Covered ‘by Length
Covered by Length

SOME/IP SD

Length of Options Array [32 bit]

Options Array

Covered ‘by Length

e

Figure 7.2: - Overview of the Service Discovery message format

Note: All Service Discovery messages are in Network Byte Order (i.e. Big Endian Byte
Order), see [PRS_SOMEIPSD_00853]. This is ensured for SOME/IP header fields by
[PRS_SOMEIP_00368] and needs to be configured for SOMEIP Payload according to
[PRS_SOMEIP_00369].

7.3.1 Request ID

This chapter describes the requirements related to the Request ID field. The Request
ID is made up of Client ID and Session ID. While the Client ID is not used for Service
Discovery, the Session ID is used to detect the reboot or restart of other Service Dis-
covery instances in the vehicle in order to repair the local state of the Service Discovery
module.

[SWS_Sd_00034]
Upstream requirements: SRS_BSW_00416

[After initialization of the Service Discovery Module, the Session ID for messages sent
by the local ECU shall be 0x0001. |

Note to [SWS_Sd_00034]: This means that the first SD message sent out has Ses-
sion ID set to 0x0001. According to [PRS_SOMEIPSD_00160] the Service Discovery
module has to handle the session ID per communication partner. Thus, the first SD
message sent out to the multicast endpoint as well as the first SD message sent out to
any unicast endpoint has the Session ID set to 0x0001.

AUTSSAR

7.3.2 Protocol Version field

The Protocol Version field is used to describe the current version of SOME/IP.

7.3.3 Interface Version field

The Interface Version field is used to describe the current version of the SOME/IP
service; i.e. the current version of SOME/IP-SD itself.

7.3.4 Message Type field

The Message Type field is used to differentiate the types of SOME/IP messages.
SOME/IP-SD uses only event messages; thus, it always uses the same type.

7.3.5 Return Code field

The Return Code is used to signal whether a request was successfully been pro-
cessed. This is not applicable for SOME/IP-SD; therefore, the return code will be
statically set to 0x00.

7.3.6 Flags field

With the Flags field the SOME/IP-SD header starts. It is used to signal global Service
Discovery information, which includes currently the state of the last reboot as well as
the capability of receiving unicast messages.

Reboot Detection

[SWS_Sd_00805] Implement reboot detection
Upstream requirements: SRS_Eth_00014, SRS_Eth_00059

[The service discovery shall implement the reboot detection according to [PRS_-
SOMEIPSD_00254], [PRS_SOMEIPSD_00255], [PRS_SOMEIPSD_00256], [PRS_-
SOMEIPSD_00631], [PRS_SOMEIPSD_00258], and [PRS_SOMEIPSD_00503]. |

[SWS_Sd_00448]
Upstream requirements: SRS_Eth_00014, SRS_Eth_00059

[If a server or client detects a reboot by evaluating the Session ID and Reboot Flag of a
received SOME/IP-SD message which was send by a communication partner, then the
local state of the affected communication partner shall expire and the following actions
shall be performed:

AUTSSAR

* In case a client detects a reboot of a server and the client uses a service of this
server, the client shall handle the reboot as if a StopOffer entry was received (see
also [SWS_Sd_00367] for further details). Furthermore

— If SdClientServiceTcpRef is configured for this service, the active Client shall
close the corresponding TCP connection by calling SoAd_CloseSoCon()
with parameter "abort" set to TRUE.

— This Offer entry shall be processed according to [SWS_Sd_00721].

— In case a server detects a reboot of a client and the client uses a service of
this server, the server shall handle the reboot as if a StopSubscribeEvent-
group entry was received (see also [SWS_Sd_00345] for further details).
Furthermore

« |f SdServerServiceTcpRef is configured for this service, the active
Server shall close the corresponding TCP connection by calling SoAd_
CloseSoCon() with parameter "abort" set to TRUE , and re-establish the
TCP connection again by calling SoAd_OpenSoCon().

« Afterwards this message shall be processed according to
[SWS_Sd_00343] or [SWS_Sd_00344].

]

Note: A call of SoAd_CloseSoCon() with parameter "abort" set to TRUE will terminate
immediately the Tcplp connection by sending an TCP package with reset flag (RST
flag) set.

7.3.7 Reserved field

This Reserved field is not currently used and left empty for further enhancements of
the SOME/IP-SD protocol.

7.3.8 Entries Array

When SOME/IP-SD find or offers Service Instances or handles subscriptions this is
done by so called entries, which are transported in the entry array of the SOME/IP-SD
message (see Figure 7.2).

7.3.8.1 Entry Format Type 1

Two types of Entries exist: Type 1 Entries for Services and Type 2 Entries for Event-
groups.

For further details on the Entry Format Type 1, see [6] Chapter 5.1.2.3 “Entry Format”

AUTSSAR

The Type 1 Entries shall have the following layout:

] |1 |2 | 3 | 4 | 5 | [| 78] 9 J1u|11|12[13|14[15 15|1?|1aJ19|2n|21|22|23 24[25|26|2? 2&]29|3u|31 bit offsat

Type Index 1st options Index 2nd options #ofopt1 | # of opt 2

Service 1D Instance ID

Majaor Version TTL

Minor Version

Figure 7.3: - Layout of Type 1 Entries (Entries for Services)

[SWS_Sd_00173]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Service ID field of the Type 1 Entry format layout shall carry the Service ID of
the service, statically configured using the parameter SdServerServicelD and SdClient
ServicelD, depending on being a server or client entry. See also [[ECUC_SD_00009]]
and [[ECUC_SD_00020]]. |

[SWS_Sd_00175]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Instance ID field of the Type 1 Entry format layout shall carry the Instance ID
of the service, statically configured using the parameter SdServerServicelnstancelD
and SdClientServicelnstancelD, depending on being a server or client entry. See also
[[ECUC_SD_00011]] and [[ECUC_SD_00022]]. |

[SWS_Sd_00178]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Major Version field of the Type 1 Entry format layout shall carry the SdServer
ServiceMajorVersion and SdClientServiceMajorVersion, depending on being a server
or client entry. See also [[ECUC_SD_00068]] and [[ECUC_SD_000701]]. |

[SWS_Sd_00180]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The TTL field of the Type 1 Entry format layout defines the lifetime of the en-
try for Servers in seconds configured using the parameter SdServerTimerTTL and
SdClientTimerTTL, except for Stop-Entries, which have a TTL of 0. See also
[[ECUC_SD_00037]] and [[ECUC_SD 00075]].

Note: For Clients the TTL value is not used for Type 1 Entries and shall be ignored by
the server service. |

[SWS _Sd 00182]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[The Minor Version field of the Type 1 Entry format layout shall carry the SdServerSer-

viceMinorVersion and SdClientServiceMinorVersion. See also [[ECUC_SD 00069]]
and [[ECUC_SD_00071]].|

AUTSSAR

7.3.8.2 Entry Format Type 2

The Type 2 Entries format shall be used for Eventgroups.

For further details on the Entry Format Type 2, see see [6] Chapter 5.1.2.3 “Entry
Format”

of1|2|3f4fs]e|7]8]o|10f11]12]13[14]15]16]17]18]|19|20]21[22[23]24[25]26]27 |28 [20[30[31] bit offset
Type Index 1st options Index 2nd options #ofopt1 | #ofopt 2
Service ID Instance ID
Major Version TTL
Reserved (0x000) Counter Eventgroup ID

Figure 7.4: - Layout of Type 2 Entries (Entries for Eventgroups)

[SWS_Sd_00193]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Service ID field of the Type 2 Entry format layout shall carry the Service 1D
of the eventgroups service, statically configured using the parameter SdServerSer-
vicelD and SdClientServicelD, depending on being a server or client entry. See also
[[ECUC_SD_00009]] and [[ECUC_SD_00020]]. |

[SWS_Sd_00195]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Instance ID field of the Type 2 Entry format layout shall carry the Instance ID
of the eventgroups service statically configured using the parameter SdServerService
InstancelD and SdClientServicelnstancelD, depending on being a server or client entry.
See also [[ECUC_SD_00011]] and [[ECUC_SD_00022]]. |

[SWS_Sd _00198]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Major Version field of the Type 2 Entry format layout shall carry the SdServer
ServiceMajorVersion and SdClientServiceMajorVersion, depending on being a server
or client entry. See also [[ECUC_SD_00068]] and [[ECUC_SD_000701]].]

[SWS_Sd_00200]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The TTL field of the Type 2 Entry format layout defines the lifetime of the entry in
seconds configured using the parameter SdServerTimerTTL and SdClientTimerTTL,
except for Stop- or Nack-Entries, which use a TTL of 0. See also [[ECUC_SD_00037]]
and [[ECUC_SD_00075]].|

AUTSSAR

[SWS_Sd_00204]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[The Eventgroup ID field of the Type 2 Entry format layout shall carry the ID of an

Eventgroup, configured using the parameter SdConsumedEventGrouplD. See also
[[ECUC_SD_00057]].|

[SWS_Sd_00476]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[Type 2 Entries (Entries for Eventgroups) shall not use "any values" as Service ID (i.e.

OxFFFF), Instance ID (i.e. OXFFFF), Eventgroup ID (i.e. OxFFFF), and/or Major Version
(i.e. OXFF).|

7.3.9 Options Array

The Option array is the last part of the Service Discovery Message (see Figure 7.2).
The options in the options array carry additional information.

For further details on the Configuration Option, see [6] Chapter 5.1.2.4 “Options For-
mat”

7.3.9.1 Configuration Option

The Configuration Option transports additional attributes of entries in the Service Dis-
covery messages. Between 0 and n configuration items can be transported using the
Configuration Option. These configuration items can include for example the name of
the host or the Service.

0 | 1 | 2 [3 |4 [5 Is | 7 | 8] 9 |m|11 |12|13[14|15 16|1?|1a|19|2u|21|22[23 24[25|2s|2?|2a]29|3n|31 bit offset
Length Type (=0x01) Reserved (=0x00)

Zero-terminated Configuration String
{[len]id=value[len]id=value[0])

Covered by Length
{ind. Reserved)

Figure 7.5: - Configuration Option

[SWS_Sd_00292]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[The Configuration String shall be constructed as follows from the SdServerCapability

Record and SdClientCapabilityRecord (Eventgroups of Services with ID OxFFFE shall
include the Services CapabilityRecord):

» For every SdServerCapabilityRecordKey/ SdServerCapabilityRecordValue or Sd
ClientServiceCapabilityRecordKey/ SdClientServiceCapabilityRecordValue pair:

AUTSSAR

— A config_item_string is constructed of the concatenation of key, "=", and

value.

— The length of this config_item_string is written as uint8 to the configuration
string.

— The config_item_string is appended to the configuration string.

» Append a 0x00 uint8 at the end. This means no further config_item_string fol-
lows.

See also [PRS_SOMEIPSD_00276] and [PRS_SOMEIPSD_00278]. |

Example for Configuration Option:

] | 1 | 2 | 3 [4 | 5 [s | 7 J 8] 9 J1u|11|12[13|14[15 1s|1?|1aJ1s|2n|21 |22|23 24[25|26|2?Jza|29|3u|31 bit offset
Length (=0x0010) Type (=0x01) Reserved (=0x00)
[5] a b c %“Q
= X 7 d >
o f = 1 B
= 3%
2 3 [0] S

Figure 7.6: - Example for Configuration Option

[SWS Sd_00461]
Upstream requirements: SRS_Eth_00161, SRS_Eth_ 00162

[SdServerCapabilityRecordValue and SdClientServiceCapabilityRecordValue are al-
lowed to be empty.

This means that after "=" the next length uint8 or "0" follows. |

[SWS_Sd_00466]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[Receiving a config_item_string without an
without value. |

=" sign shall be interpreted as key present

[SWS_Sd_00467]
Upstream requirements: SRS_Eth_00161, SRS_Eth_ 00162

[Multiple config_item_string with the same key in a single configuration option shall be
supported. |
[SWS_Sd_00468]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If SdInstanceHostname exists, a key "hostname" with the value set to the string of this
configuration item shall be added to the Configuration Option. |

AUTSSAR

7.3.9.2 IPv4 Endpoint Option

This chapter describes the fields and values of the IPv4 Endpoint Option, which trans-
ports unicast IP Address, Layer 4 Protocols (e.g. UDP or TCP), and Port Number; thus,
the information needed to communicate with a service.

When receiving a Service Discovery message offering a service and transporting an
IPv4 Endpoint Option, ECUs receiving this message can dynamically configure the
Socket Adaptor for using this service by updating a Socket Connection.

] | 1 | 2 | 3 [4 | 5 [s | 7 J 8] 9 J1u|11|12[13|14[15 1s|1?|1aJ1s|2n|21 |22|23 24[25|26|2?Jza|29|3u|31 bit offset
Length (=0x0009) Type (=0x04) Reserved (=0x00)

IPv4-Address [32bit]

Covered by Length
{ind. Reserved)

Reserved (=0x00) L4-Proto {TCP/UDP...) Port Number

Figure 7.7: - IPv4 Endpoint Option format

[SWS_Sd_00755]
Upstream requirements: SRS_Eth 00014, SRS _Eth 00022

[The ports shall be used for the events and notification events as well.
* When using UDP the server uses the announced port as source port.

» With TCP the client shall check the status of the socket connection by calling
SoAd_GetSoConMode(). Calling this API has to provide SOAD_SOCON_ON-
LINE state for at the dedicated socket connection.

In addition, if a secure port was selected, an security association needs to be estab-
lished before sending the subscription. Otherwise events and notification events can
neither be sent secure ports nor received. |

7.3.9.3 IPv6 Endpoint Option

This chapter describes the fields and values of the IPv6 Endpoint Option, which is the
same as the IPv4 Endpoint Option except that it transport IPv6 Addresses instead IPv4
Addresses.

0 | 1 | 2 [3 |4 [5 Is | 7 | 8] 9 |m|11 |12|13[14|15 16|1?|1a|19|2u|21|22[23 24[25|2s|2?|2a]29|3n|31 bit offset
Length {=0x0015) Type (=0x06) Reserved (=0x00) —

IPvE-Address [128bit]

Coverad by Length
{ind. Reserved)

Reserved (=0x00) L4-Proto (TCP/UDP. ..} Port Mumber

Figure 7.8: - IPv6 Endpoint Option format

AUTSSAR

[SWS_Sd_00756]
Upstream requirements: SRS_Eth_00059, SRS_Eth_00092, SRS_Eth_00093

[The ports shall be used for the events and notification events as well.
» When using UDP the server uses the announced port as source port.

» With TCP the client shall check the status of the socket connection by calling
SoAd _GetSoConMode(). Calling this APl has to provide SOAD_SOCON_ON-
LINE state for at the dedicated socket connection.

In addition, if a secure port was selected, an security association needs to be estab-
lished before sending the subscription. Otherwise events and notification events can
neither be sent secure ports nor received.

]

7.3.9.4 IPv4 Multicast Option

The IPv4 Multicast option is either used by an SdServerService to announce its con-
figured Eventhandler multicast endpoint or by a SdClientService to announce its con-
figured Consumed Eventgroup multicast endpoint:

« If it is used as Eventhandler multicast endpoint, then an SdServerService an-
nounces the IPv4 multicast address, the transport layer protocol (ISO/OSI layer
4) and the port number, to where the multicast-events and multicast-notification-
events are sent to.

« If it is used as Consumed Eventgroup multicast endpoint, then an SdClientSer-
vice indicates the IPv4 multicast address, the transport layer protocol (ISO/OSI
layer 4) and the port number, where the SdClient expects events to be received.

As transport layer protocol, only UDP is supported.

0 | 1 | 2 | 3 [4 | 5 [6 | 7] 8 | g]1u|11|12[13|14[15 16|1?|IEJ19|2D|21 |22|23 24[25|26|2?’J28‘2Q|3D|31 bit offset
Length (=0x0009) Type (=0x14}) Reserved (=0x00)

IPvd-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/...) Port Number

Covered by Length
{ind, Reserved)

Figure 7.9: - IPv4 Multicast Option format

7.3.9.5 IPv6 Multicast Option

The IPv6 Multicast option is either used by an SdServerService to announce its con-
figured Eventhandler multicast endpoint or by an SdClientService to announce its con-
figured Consumed Eventgroup multicast endpoint:

AUTSSAR

« If it is used as Eventhandler multicast endpoint, then an SdServerService an-
nounces the IPv6 multicast address, the transport layer protocol (ISO/OSI layer
4) and the port number, to where the multicast-events and multicast-notification-
events are sent to.

« If it is used as Consumed Eventgroup multicast endpoint, then an SdClientSer-
vice indicates the IPv6 multicast address, the transport layer protocol (ISO/OSI
layer 4) and the port number, where the SdClient expects events to be received.

As transport layer protocol, only UDP is supported.

0 | 1 | 2 [3 |4 [5 Ia | 7] 8 J 9 |1n|11 |12|13[14|15 1a|1?|1a|19|zu|21|22[23 24[25|25|2?|2ﬂ]29|3n|31 bit offset
Length (=0x0015) Type (=0x16) Reserved (=0x00)

IPvE-Address [128bit]

Coverad by Langth
{ind, Reserved)

Reserved (=0x00) L4-Proto (UDP/...) Port Number

Figure 7.10: - IPv6 Multicast Option format

7.3.9.6 IPv4 SD Endpoint Option

The IPv4 SD Endpoint Option transports the endpoint (i.e. IP-Address and Port) of
the senders SD implementation. This is used to identify the SOME/IP-SD Instance in
cases in which the IP-Address and/or Port Number cannot be used.

0 | 1 |2 | 3 | 4 | 5 | B | 7 | 8 | 9 |1n|11|12|13|14|15 IE|1?|IB|19|2D|21|22|23 24|25|2a|2?|2a|29|30|31 bit offset
Length {=0x0009) Type (=0x24) Reserved (=0x00)
|Pv4-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/..) Port Number

Cowered by Length
(ind. Ressrved)

Figure 7.11: - IPv4 SD Endpoint Option

[SWS_Sd_00799] IPv4 Service Discovery Endpoint Options
Upstream requirements: SRS_Eth_00014, SRS_Eth_00022

[The SOME/IP-SD implementation shall support

[PRS_SOMEIPSD_00547], [PRS_SOMEIPSD_00650], [PRS_SOMEIPSD_00651],
[PRS_SOMEIPSD_00548], [PRS_SOMEIPSD_00549], [PRS_SOMEIPSD_00550],
[PRS_SOMEIPSD_00551], [PRS_SOMEIPSD_00552], [PRS_SOMEIPSD_00856],
[PRS_SOMEIPSD_00857], [PRS_SOMEIPSD_00854].

]
Note: The sending of the SD Endpoint Options is currently out of scope of AUTOSAR.

AUTSSAR

7.3.9.7 IPv6 SD Endpoint Option

The IPv6 SD Endpoint Option transports the endpoint (i.e. IP-Address and Port) of
the senders SD implementation. This is used to identify the SOME/IP-SD Instance in
cases in which the IP-Address and/or Port Number cannot be used.

0 | 1 |2 | 3 | 4 | 5 | B | 7 | 8 | 9 |1n|11|12|13|14|15 IE|1?|IB|19|2D|21|22|23 24|25|2a|2?|2a|29|30|31 bit offset
Length {=0x0015) Type (=0x26) Reserved (=0x00) _—

IPvB-Address [128bit]

(indl. Reserved)

Covered by Length

Reserved (=0x00) L4-Proto (UDP/..) Port Number

Figure 7.12: - IPv6 SD Endpoint Option

[SWS_Sd_00800] IPv6 Service Discovery Endpoint Options
Upstream requirements: SRS_Eth_00059, SRS_Eth_ 00092, SRS_Eth_00093

[The SOME/IP-SD implementation shall support

[PRS_SOMEIPSD_00554], [PRS_SOMEIPSD_00654], [PRS_SOMEIPSD_00555],
[PRS_SOMEIPSD_00556], [PRS_SOMEIPSD_00557], [PRS_SOMEIPSD_00558],
[PRS_SOMEIPSD_00559], [PRS_SOMEIPSD_00837], [PRS_SOMEIPSD_00859],
[PRS_SOMEIPSD_00860], [PRS_SOMEIPSD_00855].

]
Note: The sending of the SD Endpoint Options is currently out of scope of AUTOSAR.

7.3.9.8 Handling missing, redundant, and conflicting Options

This section describes the error handling of received options.
Note: Several entry types are used in combination with different option types:

 Offer and StopOffer entries use an IPv4 or IPv6 Endpoint Option. The Endpoint
Option content (IP address, port and L4-protocol) are identified via SdServerSer-
viceTcpRef and SdServerServiceUdpRef

» Subscribe and StopSubscribe entries use an IPv4 or IPv6 Endpoint Option, if
the corresponding Client Service refer to SdClientServiceTcpRef or SdClientSer-
viceUdpRef

» Subscribe and StopSubscribe entries use an IPv4 or IPv6 Multicast Option, if the
corresponding Client Service refer to SdClientServiceMulticastRef

AUTSSAR

» SubscribeEventGroupAck entries use an IPv4 or IPv6 Multicast Option. The End-
point Option content (multicast IP address and port) are identified via SdMulticas-
tEventSoConRef

For further details on Handling missing, redundant, and conflicting Options, see [6,
PRS SOME/IP Service Discovery Protocol] 4.1.4.6 Error Handling

[SWS_Sd _00663]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[SubscribeEventgroup entries shall be answered with SubscribeEventgroupNack, if
the SubscribeEventgroup entry reference two or more options that are in conflict or the
option type is unknown. |

Note:

For Service Endpoints Options see SdClientServiceTcpRef and SdClientServiceUdp
Ref. For Eventgroup Endpoint Options see SdEventActivationRef at SdEventHandler
Udp/SdEventHandlerTcp/SdEventHandlerMulticast.

See also [PRS_SOMEIPSD_00231] and [PRS_SOMEIPSD_00361].

7.3.9.9 Security considerations for Options

[SWS_Sd_00720]
Upstream requirements: SRS_Eth_00022

[For checking if endpoints are topological correct, the value of [ECUC_SD_00128]
shall be used in order to determine on how many leading bits shall be compared to
check if an IP address is qualified as local. If not present, the value of the locally
configured netmask for the IP address shall be used. |

7.3.10 Entries referencing Options

This chapter describes how Entries can reference two runs of Options with zero to
fifteen options each in order to reference additional information.

Note: Entries support two option runs to allow referencing the same Options by differ-
ent Entries. With a single option run, sharing Endpoint Options while having different
Configuration Options per Entry would not have work efficiently.

Note: Figure 7.13 shows an SD message example, which has an entry referencing
two options in the first run:

AUTSSAR

0 | 1 \2 \ 3 \ 4 | 5 \ 6 \ 7 \ 8 | 9 \10\11\12|13\14\15\16|17\18\19\20|21\22\23\24|25\26\27\28|29\30\31

Message ID (Service ID / Method ID) [32 bit]
(= OxFFFF 8100)

Length [32 bit]
= 0x0000 005 C (92)

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type [8 bit] Return Code [8 bit]
=0x01 =0x01 =0x02 =0x00

Flags [8 bit] = 0x80 Reserved [8 bit =0x00]

Length of Entries Array in Bytes [32 bit]
=0x0000 0020 (32)

Type Index 1st options Index 2nd options #ofopt 1 | #of opt 2
=0x00 (Find) =0 =0 =0 (none) | = 0 (none)
Service ID Instance ID
=0x1001 =0xFFFF (all)
Major Version JIRiE
=0xff (any) =3600 (search is valid for 1h)
Miner Version
=0xFFFF FFFF (any)
Type Index 1st options Index 2nd options #ofopt 1 | #of opt 2
=0x01 (Offer) =0 =0 =2 =0 (none)
Service ID Instance ID
=0xFFFE =0x0001
Major Version 1k
=0x01 =3 (offer is valid for 3 seconds)
Minor Version
=0x00000032
Length of Options Array in Bytes
= 0x0000 0028 (40)
Length Type Reserved
=0x0009 =0x04 (IPv4 Endpoint) =0x00
IPv4-Address = 192.168.0.1
Reserved L4-Proto Port Number
=0x00 =0x08 (TCP) =0x1A91 (Port 6801)
Length Type Reserved
=0x0025 =0x01 (Config) =0x00

[0x16]otherserv=internaldiag [0]

Figure 7.13: - Example with Entries referencing Options

bit offset

4

‘ |

K

SOME/IP

SOME/IP SD

The following table shows which Option is allowed to be carried by different Entries (all
other combinations shall not be used):

‘ Handled

by SoAd

AUTSSAR

7.4 Service Discovery Entry Types

ECUs shall distribute available Service Instances and Service Instances needed as
well as the Eventgroups of these Service Instances. For this purpose, they exchange
entries using Service Discovery messages. This chapter describes how these entries
are encoded to offer and find services as well as find and subscribe Eventgroups.

7.4.1 Entries for Services (common requirements)

These requirements are valid for all Entries concerning Services including Entries of
Type 0x00, 0x01, 0x02, and 0x083.

Note: Currently only Service Entries of type 0x00 and 0x01 are defined in this specifi-
cation.

[SWS_Sd_00295]
Upstream requirements: SRS_Eth 00161, SRS_Eth_00162

[An Instance ID of OxFFFF shall mean any possible instances and are not allowed for
OfferService and StopOfferService entries. |

[SWS_Sd_00296]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[FindService entries shall carry Service ID, Service Instance ID, Major Version, and Mi-
nor Version as configured in SdClientServicelD, SdClientServicelnstancelD, SdClient
ServiceMajorVersion, and SdClientServiceMinorVersion. |

[SWS_Sd_00297]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[OfferService and StopOfferService shall carry Service ID, Service Instance ID, Ma-
jor Version, Minor Version, and as configured in SdServerServicelD, SdServerService
InstancelD, SdServerServiceMajorVersion, and SdServerServiceMinorVersion. |

[SWS_Sd_00298]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[FindService entries shall carry the TTL as configured in SdClientTimerTTL.

Note:The TTL value for FindService shall be ignored by the server service, and the
configuration is only kept for backward compatibility. |

[SWS_Sd_00299]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[OfferService entries shall carry the TTL as configured in SdServerTimerTTL. |

AUTSSAR

[SWS_Sd _00267]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[All entries concerning Services (FindService, OfferService and StopOfferService
shall carry - i.e. reference - the options as configured. |

Note: see also chapter 7.3.9.6.

7.4.2 FindService entry

FindService entries allow finding Service Instances.

For further details on FindService entry, see [6] Chapter 5.1.2.5 “Service Entries”

[SWS_Sd 00503]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[If SdVersionDrivenFindBehavior is set to EXACT_OR_ANY_MINOR_VERSION, the

Service Discovery shall use exact minor version for the FindService entry, which means
services with this specific minor version shall only be returned. |

[SWS_Sd _00752]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[If SdVersionDrivenFindBehavior is set to EXACT_OR_ANY_MINOR_VERSION the

Service Discovery shall use OxFFFF FFFF (ANY) for the FindService entry, which
means that services with any minor version shall be returned |

Note to [SWS_Sd_00503] and [SWS_Sd_00752]: It is expected that the Minor Version
on client side is configured to OxFFFF FFFF in normal operation since the client should
accept all different Minor Versions. Different Minor Versions shall be compatible to
each other.

[SWS_Sd_10503]
Upstream requirements: SRS_Eth 00161, SRS_Eth_00162

[If SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION the following
points shall be considered by the Service Discovery module:

« the Minor Version shall be set to the minimum acceptable required minor version
in the configuration

« Service Discovery shall use OxFFFF FFFF (ANY) for the FindService entry, which
means that services with any minor version shall will be returned

]

Note: This described behavior of [SWS Sd 10503] is different from [PRS -
SOMEIPSD_00825]

AUTSSAR

Note: Handling of received services entries, where the SdVersionDrivenFindBehavior
is set to MINIMUM_MINOR_VERSION is specified in requirement [SWS_Sd_04089]
of chapter 7.5.3 Receiving Entries

[SWS_Sd_00504]
Upstream requirements: SRS_Eth_00053
[TTL shall be set according to the configuration. |

7.4.3 OfferService entry

To offer Service Instances, the OfferService entry shall be used.

For further details on OfferService entry, see [6] Chapter 5.1.2.5 “Service Entries”
[SWS_Sd_00612]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[If the Load Balancing Option is used, the Weight field shall be set to the configured
value of SdServerServiceLoadBalancingWeight. |
[SWS_Sd_00611]

Upstream requirements: SRS_Eth 00161, SRS_Eth 00162

[If the Load Balancing Option is used, the Priority field shall be set to the configured
value of SdServerServiceLoadBalancingPriority. |

7.4.4 Building OfferService entries

[SWS_Sd_00478]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00017, SRS_Eth 00018

[This chapter describes how to derive all necessary data to assemble an OfferService
Message:

1. Derive all static data from the configuration container. These are e.g:

» Container SdServerService: SdServerServiceld

Container SdServerService: SdServerServicelnstanceld

Container SdServerService: SdServerServiceMajorVersion

Container SdServerService: SdServerServiceMinorVersion

Container SdServerTimer: SdServerTimerTTL

Container Sdinstance: SdinstanceHostname

AUTSSAR

2. If TCP is configured for this service (configuration item SdServerServiceTcpRef
exists):

» The generator derives a SoConlD out of the SoConGroup referenced by the
configuration parameter SdServerServiceTcpRef

+ Call the Socket Adaptor's APl SoAd_GetLocalAddr() with the derived So
ConlD to get back the IP Address, Transport protocol (Layer 4), and the port
number needed for the Endpoint Option.

* Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be
same as in LocalAddr) .

3. If UDP is configured for this service (configuration item SdServerServiceUdpRef
exists):

» The generator derives a SoConlID out of the SoConGroup referenced by the
configuration parameter SdServerServiceUdpRef

» Call the Socket Adaptor's APl SoAd_GetLocalAddr() with the derived So
ConlID to get back the IP Address, Transport protocol (Layer 4), and the port
number needed for the Endpoint Option.

* Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be
same as in LocalAddr) .

4. Build Configuration Option if configured (see configuration item SdServerCapa-
bilityRecord and SdInstanceHostname).

5. Build OfferService Entry as described above.

7.4.5 StopOfferService entry

To stop offering Service Instances, the StopOfferService entry shall be used.

For further details on StopOfferService entry, see [6] Chapter 5.1.2.5 “Service Entries”

7.4.6 Eventgroup Entries (Common requirements)

The following requirements are valid for all Entries concerning Eventgroups including
Entries of Type 0x04, 0x05, 0x06, and 0x07.

Note: Currently only Eventgroup Entry of Type 0x06 and 0x07 are defined in this spec-
ification.

For further details on Eventgroup Entries, see [6] Chapter 5.1.3.1 “Eventgroup Entry”

AUTSSAR

[SWS_Sd_00289]
Upstream requirements: SRS_Eth_00162

[Eventgroups entries include:
» SubscribeEventgroup and StopSubscribeEventgroup
» SubscribeEventgroupAck and SubscribeEventgroupNack

]

[SWS_Sd_00291]
Upstream requirements: SRS_Eth_00162

[Eventgroup entries shall set the Eventgroup ID to the ID of the Eventgroup (configu-
ration parameters SdConsumedEventGroupld and SdEventHandlerEventGroupld). |

Note: Eventgroup ID 0x0000 is reserved.

[SWS_Sd_00301]
Upstream requirements: SRS_Eth_00162

[SubscribeEventgroup, and StopSubscribeEventgroup entries shall set the Service
IDs, Service Instance IDs, and Eventgroup IDs based on the configuration (configu-
ration parameters SdClientServiceld and SdClientServicelnstanceld). |

[SWS_Sd_00304]
Upstream requirements: SRS_Eth_00162

[SubscribeEventgroup entries shall have the TTL field set to the configured value
(configuration parameter SdClientTimerTTL of SdConsumedEventGroup) and the Sub-
scribeEventgroupAck entry shall use the TTL value of the SubscribeEventgroup entry
it acknowledges. |

[SWS_Sd_00307]
Upstream requirements: SRS_Eth_00162

[Eventgroup entries shall carry the options as configured. |

7.4.7 SubscribeEventgroup entry

To subscribe to Eventgroups, the SubscribeEventgroup entry shall be used.

For further details on SubscribeEventgroup Entries, see [6] Chapter 5.1.3.1 “Event-
group Entry”

AUTSSAR

[SWS_Sd_00693]
Upstream requirements: SRS_Eth_00162

[The Counter field in the Type 2 Entry format is used to differentiate different Subscribe
Eventgroups to otherwise identical Eventgroups (i.e. same Service ID, same Instance
ID, same Eventgroup ID, and same Major Version). The Counter field shall be reflected
by the Server to the Subscribe Eventgroup Ack and Nack entries.

If identical Consumed Eventgroups are configured with different Endpoints, then the
SD shall use the Counter to differentiate the different Subscriptions. The value of the
Counter can be determined by the implementation. |

Note:
A width of 4 bits limits this to 16 different Subscriptions to the same Eventgroup.
[SWS_Sd_00757]

Upstream requirements: SRS_Eth_00162

[In case network security protocols are in use clients shall be holding back their Sub-
scribeEventgroup, as long as the security association that enables secure communica-
tion is not established (see [SWS_Sd_00761]).

]

7.4.8 StopSubscribeEventgroup entry

To stop subscribing to an Eventgroup, the StopSubscribeEventgroup entry shall be
used.

For further details on StopSubscribeEventgroup Entries, see [6] Chapter 5.1.3.1
“Eventgroup Entry”

7.4.9 SubscribeEventgroupAck entry

To acknowledge a SubscribeEventgroup entry, the SubscribeEventgroupAck entry
shall be used and shall be used with the values as in the SubscribeEventgroup en-
try it stops.

For further details on SubscribeEventgroupAck Entries, see [6] Chapter 5.1.3.1 “Event-
group Entry”

7.4.10 SubscribeEventgroupNack entry

For further details on SubscribeEventgroupNack Entries, see [6] Chapter 5.1.3.1
“Eventgroup Entry”

AUTSSAR

[SWS_Sd_00698]
Upstream requirements: SRS_Eth_00004, SRS_Eth_00078, SRS_Eth_00162

[If a SubscribeEventgroup entry referencing two conflicting Endpoint Options (UDP
or TCP) is received then a SubscribeEventgroupNack shall be generated. Endpoint
options are considered conflicting if they are of the same type but hold different values,
like different IP or Port number. |

[SWS_Sd_00758]
Upstream requirements: SRS_Eth_00162

[When the client receives a SubscribeEventgroupNack as response to a Sub-
scribeEventgroup for which a security association is required, the client shall check
the state of the security protocol (see [SWS_Sd 00761]) and shall restart the security
protocol, if not yet started (see [SWS_Sd_00465]). |

7.4.11 Building SubscribeEventgroup entries

[SWS_Sd_00701]
Upstream requirements: SRS_Eth_00076, SRS_Eth_00162

[This requirement describes how to derive all necessary data to assemble a Subscribe
Eventgroup Message:

1. Derive all static data from the configuration container. These are e.g:

» Container SdClientService: SdClientServiceld

Container SdClientService: SdClientServicelnstanceld

Container SdClientService: SdClientServiceMajorVersion

Container SdClientService: SdClientServiceMinorVersion

Container SdConsumedEventGroupTimerRef - SdClientTimer: SdClient
TimerTTL

Container SdInstance: SdinstanceHostname

2. If TCP is configured for this service (configuration item SdClientServiceTcpRef
exists):

» Find the relevant SocketConnection based on the SdClientServiceTcpRef
(finding SoConGroup) and the Endpoint Option of the OfferService entry
(finding SoCon within).

+ Call the Socket Adaptor's APl SoAd_GetLocalAddr() with the derived So
ConlID to get back the IP Address, Transport protocol (Layer 4), and the port
number needed for the Endpoint Option.

AUTSSAR

* Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be
same as in LocalAddr).

3. If UDP is configured for this service and used as Consumed Eventgroup unicast
endpoint (configuration item SdClientServiceUdpRef exists):

» Find the relevant SocketConnection based on the SdClientServiceUdpRef
(finding SoConGroup) and the Endpoint Option of the OfferService entry
(finding SoCon within).

+ Call the Socket Adaptor's APl SoAd_GetLocalAddr() with the derived SoCon
ID to get back the unicast IP Address, Transport protocol (Layer 4), and the
port number needed for the Endpoint Option.

* Build the relevant Endpoint Option with L4-Protocol set to UDP (shall be
same as in LocalAddr).

4. If UDP is configured for this service and used as Consumed Eventgroup multicast
endpoint (configuration item SdClientServiceMulticastRef exists):

 Find the relevant SocketConnection based on the SdClientServiceMulticas-
tRef (finding SoConGroup) and the Endpoint Option of the OfferService en-
try (finding SoCon within).

» Call the Socket Adaptor's APl SoAd_GetLocalAddr() with the derived So-
ConlID to get back the multicast IP Address, Transport protocol (Layer 4),
and the port number needed for the Multicast Option.

* Build the relevant Multicast Option with L4-Protocol set to UDP (shall be
same as in LocalAddr).

5. Build Configuration Option if configured (see configuration item SdClientCapabil-
ityRecord and SdinstanceHostname).

6. Build SubscribeEventgroup Entry as described above.

7.5 Sending and Receiving of Messages

This chapter describes how messages are transmitted and received using the Socket
Adaptor module.

[SWS_Sd_00039]
Upstream requirements: SRS_Eth_00161
[The Service Discovery module sends Service Discovery messages (Offer, StopOffer,

Find,..) using the SoAd_IfTransmit() API carrying the referenced TxPdu (see configu-
ration parameter SdinstanceTxPdu). |

AUTSSAR

[SWS_Sd_00040]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00004, SRS_Eth_00001

[The Service Discovery module receives Service Discovery messages via the API Sd_
SoAdIfRxIndication() and the configuration items SdlnstanceUnicastRxPdu and Sdin-
stanceMulticastRxPdu. The received remote address must be saved in the call context
of the Sd_RxIndication. |

[SWS_Sd_00479]
Upstream requirements: SRS_Eth_00161

[When receiving Service Discovery messages the values of all reserved fields shall be
ignored. |

[SWS_Sd _00708]
Upstream requirements: SRS_Eth_00161

[Every time the Service Discovery module receives a SOME/IP-SD message, the con-
sistency of this message has to be checked. This includes but is not limited to:

+ Validating that the SOME/IP-SD message is long enough to fit the entries and
options arrays (total length = 12 + length of entries array + length of options
array).

« Check that entries reference existing options.

In case a malformed message has been received, the extended production error SD_
E_MALFORMED_MSG shall be reported. |

7.5.1 Sequence for message transmission

[SWS_Sd_00480]
Upstream requirements: SRS_Eth_00001, SRS_Eth_00002

[This chapter describes the interaction with the Socket Adaptor module to send Service
Discovery messages:

1. Precondition: Service Discovery message is assembled
2. In case the message shall be sent via unicast:

- Call the Socket Adaptor's APl SoAd_SetRemoteAddr
3. In case the message shall be sent via multicast:

- Call the APl SoAd_SetRemoteAddr to set the destination
4. Call SoAd_IfTransmit() to send the message on the bus

Please also refer to the sequence "CLIENT/SERVER: TransmitSdMessage" shown in
Chapter 9. |

AUTSSAR

Note:

This can be achieved for example by checking the status of all Service Instances and
Eventgroups cyclically and afterwards assembling the Service Discovery Messages.

[SWS_Sd_00651]
Upstream requirements: SRS_Eth_00001, SRS_Eth_00002

[The amount of separate Service Discovery messages shall be reduced, i.e.: Combine
as much information as possible into one Service Discovery message before calling the
Socket Adaptor’s transmit API. This means that when a entry is sent after waiting the
appropriate delay (i.e. based on Request-Response-Delay) all other entries for this
communication partner may be packed into the Service Discovery message as well. |

7.5.2 Sequence for message reception

[SWS_Sd _00482]
Upstream requirements: SRS_Eth_00058, SRS_Eth_00004

[This chapter describes the interaction with the Socket Adaptor on how Service Dis-
covery messages are received:

1. When the SocketAdaptor receives a Service Discovery message, the APl Sd_Rx
Indication() is called.

2. Using the indicated RxPduld, the associated SoConld for this SD Instance has to
be determined.

3. Call APl SoAd_GetRemoteAddr() with this SoConld.

4. Store address and message for further processing.

5. Reset the SoCon back to Wildcard using SoAd_ReleaseRemoteAddr()

6. The entries shall be processed exactly in the order they arrived.
Please also refer to the sequence "CLIENT/SERVER: Sd_RxIndication" shown in
Chapter 9. |

Note:

For deriving the SoConld, the SoAdSocketRoute corresponding to this RxPduld should
refer either to a SoAdSocketConnection or to a SoAdSocketConnectionGroup contain-
ing a single SoAdSocketConnection.

[SWS_Sd_00696]
Upstream requirements: SRS_Eth_00004
[If the entries of a single Service Discovery Message would lead to closing and opening

the same Socket Connection in the Socket Adaptor, the Service Discovery shall not
close the Socket Connection first. |

AUTSSAR

Note: Closing and opening Socket Connections (especially with TCP), conflicts with
the behavior of the Service Discovery and leads to suboptimal reaction times.

7.5.3 Receiving Entries

When receiving entries the relevant Service Instance or Eventgroups have to be iden-
tified, which is explained in this section.

[SWS_Sd_00488]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If SdClientServiceMinorVersion is set to OxFFFFFFFF and SdVersionDrivenFindBe-
havior is set to EXACT_OR_ANY_MINOR_VERSION, the Minor Version in a received
OfferService or StopOfferService entry is not checked for identifying Service Instances
and its associated Eventgroups. |

[SWS_Sd_00489]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If SdClientServiceMinorVersion is set to any value except OxFFFFFFFF and SdVer-
sionDrivenFindBehavior is set to EXACT_OR_ANY_MINOR_VERSION, the Minor Ver-
sion in a received OfferService or StopOfferService shall be checked for identifying
Service Instances and its associated Eventgroups. The Service Discovery module
shall process a OfferService or StopOfferService where the minor version of the re-
ceived entry match exact the configured minor version of the corresponding SdClient
Service. |

Note:

Each configured service instance that fulfills the SWS items [SWS_Sd 00488] and
[SWS_Sd 00489] is called as a service instance match candidate.

[SWS_Sd_04089]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION, the Minor
Version in a received OfferService or StopOfferService shall be checked for
identifying Service Instances and its associated Eventgroups. The Service Discovery
module shall process a OfferServices or StopOfferServices where the minor version
of the received entry are equal or greater than the configured minor version of the

corresponding SdClientService. |

Note: This described behavior of [SWS_Sd 04089] is different from [PRS._-
SOMEIPSD_00825]

AUTSSAR

[SWS_Sd _07016]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If a service match candidate is detected for a ClientService where
SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION and the
ClientService has already triggered a subscription to another ServerService, the

Service Discovery module shall silently discard this service match candidate. |

[SWS_Sd_01503]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The Service Discovery module shall ignore all received service entries of a Client
Service, where the minor version of the received entry is specified within a version
blocklist of the corresponding SdClientService (see SdBlocklistedVersions). |

[SWS_Sd_00716]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If either the received Type 1 SD entry references a configuration option or a service
match candidate has capability records configured (i.e., SdServerCapabilityRecord in
case of a received FindService entry or SdClientCapabilityRecord in case of a Offer
Service or a StopOfferService entry), the configured SdCapabilityRecordMatchCallout
shall be invoked by the SD implementation. |

[SWS_Sd_00717]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[A received Type 2 SD entry with Service ID OxFFFE (Non-SOMEIP) shall be matched
accordingly to [SWS_Sd_00716] with the capability records of the Service (SdServer
CapabilityRecord in case of a received SubscribeEventgroup or StopSubscribeEvent-
group entry or SdClientCapabilityRecord in case of SubscribeEventgroupAck or Sub-
scribeEventgroupNack entry). |

[SWS_Sd_00718]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[If the invoked SdCapabilityRecordMatchCallout returns true, the respective service

instance match candidate actually provides a match for the received SD message in-
cluding the configured capability records. |

[SWS_Sd_00719]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162
[If the invoked SdCapabilityRecordMatchCallout returns false, the respective service

instance match candidate actually does not provide a match for the received SD mes-
sage due to the mismatch with respect to the configured capability records. |

AUTSSAR

7.5.3.1 Answering behaviour, if receiving Service Discovery Entries via Multi-
cast address

When receiving Service Discovery messages using multicast, these messages may be
received by multiple ECUs at once and multiple ECUs may answer to such a message
in parallel. This could lead to overload situations of the ECU which sent the Service
Discovery message via multicast, if all receiving ECUs answer in a similar point in time.
In order to avoid a high workload on ECU which sent the Service Discovery message
via multicast, the answers of the receiving ECUs could delay answer as described in
this section.

[SWS_Sd_00491]
Upstream requirements: SRS_Eth_00161, SRS_Eth_ 00162

[Answers to Entries received via multicast shall be delayed based on the appropriate
configuration items:

 For ServerServices:
— SdServerTimerRequestResponseMinDelay
— SdServerTimerRequestResponseMaxDelay
+ For ConsumedEventgroups:
— SdClientTimerRequestResponseMinDelay

— SdClientTimerRequestResponseMaxDelay

|
[SWS_Sd_00492]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The configuration parameters for delaying OfferService entries as response to Find
Service entries received by multicast shall be taken from the Timer containers refer-
enced by the Service container:

« SdServerService

]

[SWS_Sd_00493]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[The configuration parameters for delaying SubscribeEventgroup entries as response
to OfferService entries received by multicast shall be taken from the Timer containers
referenced by the Eventgroup containers:

» SdConsumedEventGroup

AUTSSAR

[SWS_Sd_00494]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[There shall be a random delay between the appropriate MinDelay and MaxDelay be-
fore answering to an Entry received via multicast. |

[SWS_Sd_00724]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If SdServerTimerRequestResponseMinDelay and SdServerTimerRequestResponse
MaxDelay are set to the same value, this value shall be used as delay.

If SdServerTimerRequestResponseMinDelay and SdServerTimerRequestResponse
MaxDelay are set to 0, no delay shall be introduced. |

[SWS_Sd 00725]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If SdClientTimerRequestResponseMinDelay and SdClientTimerRequestResponse
MaxDelay are set to the same value, this value shall be used as delay.

If SdClientTimerRequestResponseMinDelay and SdClientTimerRequestResponse
MaxDelay are set to 0, no delay shall be introduced. |

[SWS_Sd_00495]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[Delayed answering Entries received via multicast (as in [SWS_Sd_00494]) shall no
influence other timers (e.g. for handling the Repetition Phase). |

7.6 Timings and repetitions for Server Service and Event Handlers

Especially after starting multiple ECUs, the multicast messages of the Service Discov-
ery come with the risk of overflowing ECUs with too many messages. Therefore, the
Service Discovery can be configured with a suitable message sending behavior.

For every Server Service Instance different phases are defined as shown in Figure
7.14.

* Down

* Available
— Initial Wait Phase
— Repetition Phase

— Main Phase

AUTSSAR

Find® recelved Find” recelved JFind” received
Server UP \
DOWN : s :
|‘Inilial Wait Phase i Repetition Phase ’|1Aa|n Phase ; _
| ! ¢ ' ! v
bx tx {x Ix fx

Figure 7.14: - Communication phases Server

[SWS_Sd_00605]
Upstream requirements: SRS_Eth_00151

[When the Down Phase is entered (coming from states other than init), the APl SoAd_
CloseSoCon() shall be called for all Socket Connections associated with this Server
Service Instance. |

[SWS_Sd_00760]
Upstream requirements: SRS_Eth_00162

[If a Sd server receives a SubscribeEventgroup entry and client end point is assigned
to a socket connection, the server shall call SoAd_lsConnectionReady() for this socket
connection and client endpoint:

 If the function returns TCPIP_E_OK, the server shall respond with Sub-
scribeEventgroupAck.

* For all other return values the server shall discard the entry and respond with
SubscribeEventgroupNack.

7.6.1 Initial Wait Phase for Server Services

This chapter describes the behavior of the Service Discovery in regard of a Server
Service Instance in the Initial Wait Phase.

[SWS_Sd_00317]
Upstream requirements: SRS_Eth_00001, SRS_Eth_00161

[If the following conditions apply, the Initial Wait Phase for this configured Server Ser-
vice Instance shall be entered:

» Sd_Init() has been called

» SdServerService state was setto SD_SERVER_SERVICE_AVAILABLE (via Sd_
ServerServiceSetState() or Sd_ServiceGroupStart())

AUTSSAR

» Sd_LocallpAddrAssignmentChg() with state "TCPIP_IPADDR_STATE_AS-
SIGNED" has been called for the first IpAddrld associated with the Sdinstance
TxPdu.

]

Note: Service Discovery expects that the IP address of the data/control path to be
always the same. This means that a call of Sd_LocallpAddrAssignmentChg() affects
the control path and data path simultaneously.

[SWS_Sd_00330]
Upstream requirements: SRS_Eth_00032, SRS_Eth_00036, SRS_Eth_00039

[When the Initial Wait Phase is entered, the routing of the Server Service shall be
disabled.See SdServerServiceActivationRef of this Server Service Instance. |

[SWS_Sd _00318]
Upstream requirements: SRS_Eth_00032, SRS_Eth_00161

[When entering the Initial Wait Phase, a random timer shall be started, using a random
value within the configured range of SdServerTimerlnitialOfferDelayMin and SdServer
TimerlInitialOfferDelayMax. |

[SWS_Sd_00320]
Upstream requirements: SRS_Eth_00161

[If a SubscribeEventgroup Entry or StopSubscribeEventgroup Entry are received
within the Initial Wait Phase (or other phases) for an Event Handler of this Server
Service Instance, it shall only be processed within the Service Discovery. |

Note to [SWS_Sd_00320]: Please refer to the according sequence diagrams and sec-
tion 7.6.4.

[SWS_Sd_00321]
Upstream requirements: SRS_Eth_00001

[

When the calculated random timer based on the min and max values SdServer-
TimerlnitialOfferDelayMin and SdServerTimerlnitialOfferDelayMax expires and SoAd_
GetSoConMode() provides SOAD_SOCON_ONLINE or SOAD_SOCON_RECON-
NECT state for at least one of the associated socket connection of this service (con-
figured in SdServerServiceTcpRef or SdServerServiceUdpRef) :

 OfferService Entry shall be sent.
« If the SdServerTimerlnitialOfferRepetitionsMax >0, enter the Repetition Phase

« If the SdServerTimerlnitialOfferRepetitionsMax =0, enter the Main Phase.

AUTSSAR

Note:

1. Init Wait Phase could be extended depends upon the out parameter of type SoAd
SoConModeType provided by SoAd_GetSoConMode() API.

2. In some case SoAd may need more time to change the socket connection state from
SOAD_SOCON_OFFLINE to SOAD_SOCON_RECONNECT or SOAD_SOCON_ON-
LINE. E.G. Socket Connection will not change to SOAD_SOCON_RECONNECT or
SOAD_SOCON_ONLINE only if InitWaitPhase of Service is configured as 0 or SoAd
main function period is greater then Sd main function period.

[SWS_Sd_00323]
Upstream requirements: SRS_Eth_00162

[If SdServerService is set to a state other than SD_SERVER_SERVICE_AVAILABLE (
via Sd_ServerServiceSetState() or Sd_ServiceGroupStop()) while being in Initial Wait
Phase:

» Enter the Down Phase.

» Set all associated EventHandler to SD_EVENT_HANDLER_RELEASED and re-
port it to the BswM by calling the APl BswM_Sd_EventHandlerCurrentState.

+ Cancle all relevant timers for service instance (see [SWS_Sd_00318]).

]

[SWS_Sd_00325]
Upstream requirements: SRS_Eth_00022

[If Sd_LocallpAddrAssignmentChg() is called with a state other than "TCPIP_
IPADDR_STATE_ASSIGNED" while being in Initial Wait Phase, this phase shall be
left and the Down Phase shall be entered. |

[SWS_Sd_00606]
Upstream requirements: SRS_Eth_00001

[When the Initial Wait Phase is entered, the APl SoAd_OpenSoCon() shall be called
for all Socket Connections associated with this Server Service Instance. |

Note: As soon as an IP address is assigned again and no SD_SERVER_SERVICE _
DOWN was received, the Initial Wait Phase shall be reentered with the random timer
reset to the random value.

7.6.2 Repetition Phase for Server Services

This chapter describes the timing behavior of the Service Discovery in regard of Server
Service Instances in the Repetition Phase.

AUTSSAR

[SWS_Sd_00329]
Upstream requirements: SRS_Eth_00161

[If the Repetition Phase is entered, the Service Discovery shall wait SdServerTimer
InitialOfferRepetitionBaseDelay and send an OfferService Entry. |

[SWS_Sd_00336]
Upstream requirements: SRS_Eth_00161

[After the amount of cyclically sent OfferServices within the Repetition Phase equals
the amount of SdServerTimerlnitialOfferRepetitionsMax, the Main Phase shall be en-
tered. |

Note:

Additionally sent OfferService messages which have been triggered by received Find
Service messages shall have no influence on the counter value of the cyclically Offer
Service messages.

[SWS_Sd_00331]
Upstream requirements: SRS_Eth_00161

[In the Repetition Phase up to SdServerTimerlnitialOfferRepetitionsMax OfferService
Entries shall be sent with doubling intervals (BaseDelay, first OfferService Entries, 2x
BaseDelay, second OfferService Entries, 4x BaseDelay, third OfferService Entries). |

Note: Example config and resulting behavior:
SdServerTimerlnitialOfferRepetitionBaseDelay=30
SdServerTimerlnitialOfferRepetitionsMax=3
[Initial Wait Phase starts]

Wait Initial Wait Delay based on Configured Min and Max
Send entry.

[Initial Wait Phase ends]

[Repetition Phase starts]

Wait 30ms (=30ms * 20).

Send entry.

Wait 60ms (=30ms * 21).

Send entry.

Wait 120ms (=30ms * 22).

Send entry.

[Repetition Phase ends]

AUTSSAR

Note: Currently this specification does not allow sending "FindService Entries" using
unicast. For compatibility reasons receiving such entries shall be supported.

[SWS_Sd_00333]
Upstream requirements: SRS_Eth_00162

[If the Service Discovery Module receives a "SubscribeEventgroup" entry, the following
step(s) shall be performed in the following order:

» Send a SubscribeEventgroupAck / Nack entry using Unicast considering the ap-
propriate delay without changing the current counter value and without influencing
the current running repetition timer.

» Call the BswM with the APl BswM_Sd_EventHandlerCurrentState() with state
SD_EVENT_HANDLER_REQUESTED only if the state for this EventHandler
changed (i.e. has not been SD_EVENT_HANDLER REQUESTED)

« Start the TTL timer according to the value received via the SubscribeEventgroup
Entry.

]
Note to: [SWS_Sd_00333]:

» For more details on sending a SubscribeEventgroupAck / Nack entry using Uni-
cast considering the appropriate delay, see Chapter 7.5.3)

[SWS_Sd_00334]
Upstream requirements: SRS_Eth_00162

[If the Service Discovery Module receives a StopSubscribeEventgroup Entry, the fol-
lowing step(s) shall be performed in the following order:

» Stop the TTL timer for this client
» Update State

« If this has been the last subscribed client, report "SD_EVENT_HANDLER_RE-
LEASED" to the BswM by calling the API BswM_Sd_EventHandlerCurrentState().

]

[SWS_Sd_00458]
Upstream requirements: SRS_Eth_00162

[If the TTL of a received SubscribeEventgroup Entry expires, the following step shall
be performed in the following order:

« If this has been the last subscribed client, report "SD_EVENT_HANDLER_RE-
LEASED" to the BswM by calling the API BswM_Sd_EventHandlerCurrentState()
and update the state within the Service Discovery Module

AUTSSAR

[SWS_Sd _00338]
Upstream requirements: SRS_Eth_00161

[If a ServerService is set to a state other than SD_SERVER_SERVICE_AVAILABLE
(i.,e. SD_SERVER_SERVICE_DOWN) (via Sd_ServerServiceSetState() or Sd_Ser-
viceGroupStop()) while being in Repetition Phase:

* Leave this phase and enter the Down Phase.
» Sent a StopOfferService.

« All associated EventHandler which state is not SD_EVENT HANDLER_RE-
LEASED shall be changed to SD_EVENT_HANDLER RELEASED and indicated
to the BswM by calling the API BswM_Sd_EventHandlerCurrentState().

]

[SWS_Sd_00340]
Upstream requirements: SRS_Eth_00022

[If Sd_LocallpAddrAssignmentChg()is called with a state other than "TCPIP_IPADDR_
STATE_ASSIGNED" while being in Repetition Phase, this phase shall be left and the
Down Phase shall be entered. |

[SWS_Sd _00732]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00004

[If the Service Discovery Module is in Repetition Phase and a TCP-based socket con-
nection has been lost (i.e. Socket connection is other than SOAD_SOCON_ONLINE),
the Service Discovery Module shall call:

» SoAd_ReleaseRemoteAddr()
» SoAd_DisableSpecificRouting()
* SoAd_CloseSoCon()

delete all internally stored subscriptions belonging to that connection.
* SoAd_OpenSoCon()

The Service Discovery Module shall stay in the Repetition Phase. |

[SWS_Sd_00341]
Upstream requirements: SRS_Eth_00161

[When the state SD_SERVER_SERVICE_DOWN is set by Sd_ServerServiceSet
State() or Sd_ServiceGroupStop() in Repetition Phase, the routing of this Server Ser-
vice Instance shall be disabled. See SdServerServiceActivationRef of this Server Ser-
vice Instance. |

AUTSSAR

7.6.3 Main Phase for Server Services

[SWS_Sd_00342]
Upstream requirements: SRS_Eth_00161

[The Service Discovery Module shall stay in the Main Phase for the configured Server
Service as long as the following conditions apply:

» Server Service is in state "SD_SERVER_SERVICE_AVAILABLE" (indicated by
a call of Sd_ServerServiceSetState() or Sd_ServiceGroupStart())

* IP address is assigned and can be used (i.e. Sd_LocallpAddrAssignmentChg
has been called with status TCPIP_IPADDR_STATE_ASSIGNED)

]

[SWS_Sd_00449]
Upstream requirements: SRS_Eth_00161

[If SdServerTimerOfferCyclicDelay is greater than 0, in the Main Phase an OfferSer-
vice entry shall be sent cyclically with an interval defined by configuration item Sd
ServerTimerOfferCyclicDelay. |

[SWS_Sd_00450]

Upstream requirements: SRS_Eth_00161
[The first OfferService is sent SdServerTimerOfferCyclicDelay after the beginning of
the Main Phase. |

[SWS_Sd_00451]

Upstream requirements: SRS_Eth_00161
[1f SdServerTimerOfferCyclicDelay is 0, no OfferService entries shall be sent in Main
Phase for this Server Service Instance. |

[SWS_Sd_00343]
Upstream requirements: SRS_Eth_00161

[If the Service Discovery Module receives a FindService Entry the following step shall
be performed:

» Send an "OfferService Entry" considering the appropriate delay.
]

Note: Currently this specification does not allow sending "FindService Entries" using
unicast. For compatibility reasons receiving such entries shall be supported.

Note to [SWS_Sd 00343]: For more details on sending an "OfferService Entry" con-
sidering the appropriate delay, see Chapter 7.5.3)

AUTSSAR

[SWS_Sd_00344]
Upstream requirements: SRS_Eth_00162

[If the Service Discovery Module receives a "SubscribeEventgroup”, the following
step(s) shall be performed in the following order:

» Send a SubscribeEventgroupAck / Nack entry using Unicast considering the ap-
propriate delay without influencing the current running main phase timer.

* Report to the BswM SD_EVENT_HANDLER_REQUESTED by calling the API
BswM_Sd_EventHandlerCurrentState().

 Start the TTL timer according to the value received via the "SubscribeEvent-
group".
]

Note: Currently this specification does not allow sending "SubscribeEventgroup En-
tries" using multicast. For compatibility reasons receiving such entries shall be sup-
ported.

Note to [SWS_Sd 00344]: For more details on sending a SubscribeEventgroupAck /
Nack entry using Unicast considering the appropriate delay, see Chapter 7.5.3)

[SWS_Sd_00345]
Upstream requirements: SRS_Eth_00162

[If the Service Discovery Module receives a "StopSubscribeEventgroup”, the following
step(s) shall be performed in the following order:

» Stop the TTL timer and remove it from the notification list

« If no other client is subscribed to this Eventgroup anymore, enter the State "SD__
EVENT_HANDLER_RELEASED" and report it to the BswM by calling the API
BswM_Sd_EventHandlerCurrentState () with state "SD _EVENT_HANDLER_RE-
LEASED".

]

[SWS_Sd_00347]
Upstream requirements: SRS_Eth_00022

[If the API LocallpAddrAssignmentChg has been called with a state other than TCPIP_
IPADDR_STATE_ASSIGNED,

» The Service Discovery Module shall leave the Main Phase and enter the DOWN
Phase

» All EventHandler which are not in state SD_EVENT_ HANDLER_ RELEASED
shall be setto SD_EVENT HANDLER_RELEASED and be indicated to the Bsw
M module by calling the APl BswM_Sd_EventHandlerCurrentState

AUTSSAR

[SWS_Sd _00733]
Upstream requirements: SRS_Eth_00009, SRS_Eth_00008

[If a TCP-based socket connection has been lost (i.e. Socket connection is other than
SOAD_SOCON_ONLINE), the Service Discovery Module shall call:

» SoAd_ReleaseRemoteAddr()

» SoAd_DisableSpecificRouting()

* SoAd_CloseSoCon()

+ delete all internally stored subscriptions belonging to that connection.

* SoAd_OpenSoCon()
The Service Discovery Module shall stay in the Main Phase. |
[SWS_Sd_00348]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00009

[If a SdServerService is set to state "SD_SERVER_SERVICE_DOWN?" (indicated by a
call of Sd_ServerServiceSetState() or Sd_ServiceGroupStop()) while the IP address is
still assigned (i.e. Sd_LocallpAddrAssignmentChg has been called with state TCPIP_
IPADDR_STATE_ASSIGNED), the Service Discovery module shall

» send a StopOfferService
» enter the DOWN Phase
« all subscriptions of the eventgroup(s) of this service instance shall be deleted

and SD_EVENT_HANDLER_RELEASED and reported to BswM using the API
BswM_Sd_EventHandlerCurrentState

]

[SWS_Sd_00349]

Upstream requirements: SRS_Eth_00161
[When the Main Phase is left, the routing of this Server Service Instance shall be
disabled. See SdServerServiceActivationRef of this Server Service Instance. |

[SWS_Sd_00403]
Upstream requirements: SRS_Eth_00162

[When the TTL timer (contained in TTL field find or Subscribe entry) expires in state
"SD_EVENT_HANDLER_REQUESTED",

enter the state SD_EVENT_HANDLER_ RELEASED and report it to the BswM by call-
ing the BswM_Sd_EventHandlerCurrentState(). |

AUTSSAR

7.6.4 Fan out control

This chapter describes the interaction between Service Discovery and Socket Adaptor
(SoAd) in order to configure the TX path for sending out events (fan out). It has to be
considered, that a SdClientService could either subscribe with an Consumed Event-
group unicast endpoint (transferred within a Endpoint Option) or with a Consumed
Eventgroup multicast endpoint (transferred within a Multicast Option).

[SWS_Sd_00452]
Upstream requirements: SRS_Eth_00162

[The Service Discovery shall keep track of the subscribed clients per Event Handler
and remove clients from the fan out, if the last SubscribeEventgroup entry was longer
ago than the time specified in its TTL field of that SubscribeEventgroup entry.This shall
be handled independently if the client subscribed with a Consumed Eventgroup unicast
endpoint, Consumed Eventgroup multicast endpoint or if the Event Handler has set
SdEventHandlerMulticastThreshold to 1 (Events are transmitted exclusively via Even-
thandler multicast endpoint |

Note: Service Discovery has to maintain the TTL time per subscribed Client Service In-
stance independent if the client subscribed with a Consumed Eventgroup unicast end-
point or Consumed Eventgroup multicast endpoint or if the affected SdServerService
transmit its Events via the Evenhandler multicast endpoint according to the configura-
tion of SdEventHandlerMulticastThreshold. In any case the Server Service Instance
must know its subscribed clients with respect to the unicast remote address (IP and
port) of the client.

[SWS_Sd_00453]
Upstream requirements: SRS_Eth_00162, SRS_Eth_00077, SRS_Eth 00078

[If SdEventHandlerTCP is configured: For every SubscribeEventgroup entry of this
Event Handler and the SubscribeEventgroup entry reference an Endpoint Option, the
following shall be done:

 The relevant Routing Groups shall be identified by SdEventHandlerTcp.

» The relevant TCP Socket Connection of this client shall be identified using the
Address/Port of Endpoint Option (TCP) referenced in the SubscribeEventgroup
entry and the SdServerServiceTcpRef, or shall be set up, if not existed before.

» Check state of incoming TCP connection using SoAd_GetSoConMode:

— If the return mode is SOAD_SOCON_ONLINE, then perform the following
actions:

= Answer this SubscribeEventgroup by using SubscribeEventgroupAck
entry.

= |f the client was not subscribed before receiving the aforementioned en-
try

AUTSSAR

- call SoAd_EnableSpecificRouting with SdEventActivationRef and
the Socket Connection.

- call SoAd_IfSpecificRoutingGroupTransmit with SdEventTriggering
Ref and the Socket Connection.

— If the returned mode is other than SOAD_SOCON_ONLINE, then this shall
be handled according to [SWS_Sd_00732] or [SWS_Sd 00733] (depend-
ing on current service state) and answer this SubscribeEventgroup by using
SubscribeEventgroupNack.

]

[SWS_Sd_00454]
Upstream requirements: SRS_Eth_00162, SRS_Eth_00018

[

If SdEventHandlerUdp is configured: For every SubscribeEventgroup entry of this
Eventhandler and if the SubscribeEventgroup entry references a Unicast Endpoint Op-
tion, the following shall be done:

 The relevant Routing Groups shall be identified by SdEventHandlerUdp.

« If the relevant UDP Socket Connection of this client shall be identified using
the Eventgroup unicast endpoint (Address/Port) of Endpoint Option (UDP) ref-
erenced in the SubscribeEventgroup entry and the SdServerServiceUdpRef, or
shall be set up (SoAd_SetUniqueRemoteAddr()), if not existed before.

— If no Wildcard Socket Connection is left, SD_E_OUT_OF_RES shall be re-
ported.

 Only if the client was not subscribed before receiving this entry:

— SoAd_EnableSpecificRouting with SdEventActivationRef and the Socket
Connection depending on current number of subscribed clients with different
endpoint information and the SdEventHandlerMulticastThreshold.

— SoAd_IfSpecificRoutingGroupTransmit with SdEventTriggeringRef and the
Socket Connection.

J
[SWS_Sd_00753]
Upstream requirements: SRS_Eth 00162, SRS _Eth 00018

[If SdEventHandlerUdp is configured: For every SubscribeEventgroup entry of this
Eventhandler and if the SubscribeEventgroup entry references a Multicast Option, the
following shall be done:

 The relevant Routing Groups shall be identified by SdEventHandlerUdp.

AUTSSAR

» The relevant UDP Socket Connection of this client shall be identified using the
Eventgroup multicast endpoint (Address/Port) of the Multicast Option referenced
in the SubscribeEventgroup entry and the SdServerServiceUdpRef, or shall be
set up (SoAd_SetUniqueRemoteAddr()), if not existed before.

— If no Wildcard Socket Connection is left, SD_E_OUT_OF_RES shall be re-
ported.

 The following action shall be performed, if no other client has already subscribed
with the same Comsumed Eventgroup Multicast endpoint information:

— Call SoAd_EnableSpecificRouting with SdEventActivationRef and the corre-
sponding Socket Connection. The corresponding Socket Connection shall
be the configured Socket Connection referenced by SdMulticastEventSo-
ConRef, if the number of subscribed clients with different endpoint informa-
tion has reached SdEventHandlerMulticastThreshold. Otherwise the identi-
fied Socket Connection (described in the previous point)

* Only if the client was not subscribed before receiving this entry:

— SoAd_IfSpecificRoutingGroupTransmit with SdEventTriggeringRef and the
Socket Connection.

]

Note:

« SdClientServices which subscribe with the same Consumed Eventgroup multi-
cast endpoint, share the same SoAdSocketConnection on SdServerService side

» A SdServiceService could send the same event at the same time to a Consumed
Eventgroup unicast endpoint or Consumed Eventgroup multicast endpoint. This
is announced within the SubscriptionEventgroup entry which could reference ei-
ther a IPv4/IPv6 Endpoint option (unicast endpoint) or via IPv4/IPv6 Multicast
option (multicast endpoint).

» Transmission of initial Events (SdEventTriggeringRef is configured) in combinan-
tion with a subscription using a Consumed Eventgroup multicast endpoint has
to be used carefully. This has to be ensured by the network communication de-
sign. Rational: every subscription to the same Consumed Eventgroup multicast
endpoint would trigger a transmission of an initial Event, which is received by all
currently subscribed Clients. This could cause misbehavior for communication
for example which use sequence counters (e.g. E2E communication).

[SWS_Sd_00754]
Upstream requirements: SRS_Eth_00162
[Each Eventhandler shall qualify based on the configured SdEventHandlerMulticast-

Threshold and the number of clients with different endpoint information (either received
as Eventgroup unicast endpoint or as Eventgroup multicast endpoint), if the threshold

AUTSSAR

has been reached to transmit the Events via the configured Evenhandler multicast end-
point (see SdMulticastEventSoConRef). |

[SWS_Sd_00455]
Upstream requirements: SRS_Eth_00162

[The number of subscribed clients with different endpoint information shall be used
to control when to enable/disable Consumed Eventgroup unicast or Consumed Event-
group multicast connention, or when to enable/disable Evenhandler Multicast connec-
tion by calling SoAd_EnableSpecificRouting and SoAd_DisableSpecificRouting:

« If SdEventHandlerMulticastThreshold = 0: Setup a Consumed Eventgroup uni-
cast connection or a Consumed Eventgroup multicast connection connection to
every subscribed client (please note: Eventhandler Multicast connection is al-
ways disabled).

« If SdEventHandlerMulticastThreshold = 1: Setup a Eventhandler Multicast con-
nection if one or more clients are subscribed (please note: Consumed Event-
group unicast connections and Consumed Eventgroup multicast connections are
always disabled).

 If SdEventHandlerMulticastThreshold > 1:

— Setup a Consumed Evengroup unicast connection or a Consumed Event-
group multicast connection for all subscribed clients if the number of sub-
scribed clients with different endpoint information < SdEventHandlerMulti-
castThreshold,

— else setup a Eventhandler Multicast connection and switch automatically
based on the number of subscribed clients with different endpoint informa-
tion:

= |f the number of subscribed clients with different endpoint information
is larger or equal than the threshold, then the Eventhandler multicast
connection shall be used for transmission.

= |f the number of subscribed clients with different endpoint information is
smaller than the threshold, the individual Consumed Eventgroup unicast
connections and Consumed Eventgroup multicast connections shall be
used for transmission.

]

Example:
» Precondition

— Server_Service_A contain Eventgroup_ A with SdEventHandlerMulticast-
Threshold = 3

— Server_Service_A.Evengroup_A has Multicast endpoint configured to EMc_
endpoint_A

AUTSSAR

— All Clients subscribe to ServerService_A.Eventgroup_A
» Example 1:
— Client_A subscribe with unicast endpoint
— Client_B and Client_C subscribe with the same multicast endpoint
— Result:
« SdEventHandlerMulticastThreshold has NOT reached

« Correspondings Events of ServerService A.Evengroup_ A transmitted
to Client_A via unicast endpoint and to Client_B and Client_C via the
same multicast endpoint

» Example 2:
— Client A subscribe with unicast endpoint A
— Client B subscribe with unicast endpoint B
— Client C subscribe with multicast endpoint C
— Result:
« SdEventHandlerMulticastThreshold has reached

= Corresponding Events of ServerService A.Eventgroup A are trans-
mitted via Multicast endpoint EMc_endpoint_A to Client_A, Client_B,
Client_ C

7.6.5 Sharing of SdServerTimer

[SWS_Sd_00743]
Upstream requirements: SRS_Eth_00161

[If several ServerServices refer to the same SdServerTimer, they shall share a com-
mon timer (and therefore a common random offset), if they either refer to the same
SdServiceGroup and do not refer to any other (additional) SdServiceGroup or, if Sd
ServerServiceAutoAvailable of all ServerServices are set to TRUE. |

7.7 Timings and repetitions for Client Service and Consumed
Eventgroups

The Service Discovery phases allow minimizing the number of Service Discovery mes-
sages sent while allowing for very fast synchronization upon ECU start.

This de-emphasis is realized by the following Phases:

AUTSSAR

* Down
* Requested
— Initial Wait Phase

— Repetition Phase

— Main Phase
. LOfter Service” received
Client Request

DOWN -
|‘Inilia| Wait Phase + i Repetition Phase ’|1Aa|n Phase

| vy X X

by tx X r tx Iy

|

Figure 7.15: - Communication phases Client

[SWS_Sd_00761]
Upstream requirements: SRS_Eth_00162, SRS_Eth_00014

[A client shall check the socket connection by calling SoAd_IsConnectionReady() to
ensure that the connection is ready for communication (i.e., ARP has finished, TCP
connection established, security association established etc. before subscribing or
calling a method).

« If the function returns TCPIP_E_OK, then the connection is ready for communi-
cation, thus the client can send a SubscribeEventgroup entry or call methods.

» If the function returns TCPIP_E_PENDING, then SD shall repeat the call in next
Sd_MainFunction() in accordance with the respective OfferService entry.

* For all other values SD shall apply [SWS_Sd_00785].

7.7.1 Down Phase for Client Services

[SWS_Sd_00462]
Upstream requirements: SRS_BSW_00416

[As long as a service is not requested by the BswM, the Service Discovery shall not
send FindService Entry entries. |
[SWS_Sd_00463]
Upstream requirements: SRS_Eth_00161
[If an OfferService Entry is received during Down Phase,

» The Service Discovery shall store the state of this Service instance.

AUTSSAR

» Atimer shall be set/reset to the TTL value of the received OfferService entry (TTL
timer).

 Until the TTL Timer expires or a StopOfferService entry is received, the Service
instance is considered Available.

]

[SWS_Sd_00464]
Upstream requirements: SRS_Eth_00161

[If a SdClientService is set to state SD_CLIENT_SERVICE_REQUESTED (by call of
Sd_ClientServiceSetState() or Sd_ServiceGroupStart()) while being in Down Phase:

+ If no OfferService entry was received before or its TTL timer expired already:
— The Initial Wait Phase shall be entered,

+ If an OfferService entry was received and its TTL timer did not expire yet:
— The Main Phase shall be entered.

= Further processing shall be done according to [SWS_Sd_00721].

7.7.2 Initial Wait Phase for Client Services

This chapter describes the behavior of the Service Discovery in regard of a Client
Service Instance in the Initial Wait Phase.

[SWS_Sd _00350]
Upstream requirements: SRS_Eth_00161

[If the following conditions apply, the Initial Wait Phase for this configured Client Ser-
vice Instance shall be entered:

» Sd_Init() has been called.

» SdClientService was set to state SD_CLIENT_SERVICE_REQUESTED (indi-
cated by a call of Sd_ClientServiceSetState() or Sd_ServiceGroupStart() or Sd
ClientServiceAutoRequired = TRUE)

» Sd_LocallpAddrAssignmentChg() with state "TCPIP_IPADDR_STATE_AS-
SIGNED" has been called for the first IpAddrld associated with the Sdinstance
TxPdu.

AUTSSAR

[SWS_Sd _00351]
Upstream requirements: SRS_Eth_00161

[This Client Service Instance shall stay in the Initial Wait Phase for a time within the
configured range of SdClientTimerlnitialFindDelayMin and SdClientTimerlnitialFindDe-
layMax unless an OfferService entry for this Client Service Instance is received or this
random timer expires. |

[SWS_Sd_00352]
Upstream requirements: SRS_Eth_00161

[If an OfferService Entry for this Client Service Instance is received within the Initial
Wait Phase,

» The calculated random timer, which has been started when entering the Initial
Wait Phase, shall be canceled.

» Leave the Initial Wait Phase and enter the Main Phase.

— Further processing shall be done according to [SWS_Sd_00721].

]

[SWS_Sd_00353]
Upstream requirements: SRS_Eth_00161

[When the calculated random timer based on the parameters SdClientTimerlnitial
FindDelayMin and SdClientTimerlnitialFindDelayMax expires (i.e. no OfferService has
been received within this timespan), the following shall be done in the following order:

» FindService Entry shall be sent.
« If the SdClientTimerlnitialFindRepetitionsMax>0, enter the Repetition Phase
« If the SdClientTimerlnitialFindRepetitionsMax=0, enter the Main Phase

]

[SWS_Sd_00355]
Upstream requirements: SRS_Eth_00161

[If a SdClientService it set to state SD_CLIENT_SERVICE_RELEASED (by call of Sd_
ClientServiceSetState() or Sd_ServiceGroupStop()) while being in Initial Wait Phase,
this phase shall be left and the Service shall enter Down Phase. |

[SWS_Sd_00456]
Upstream requirements: SRS_Eth_00161

[If for any reasons the Initial Wait Phase is left, the calculated random timer (of the
Initial Wait Phase) for this Service Instance shall be stopped. |

AUTSSAR

[SWS_Sd_00357]
Upstream requirements: SRS_Eth_00022

[If Sd_LocallpAddrAssignmentChg() is called with a state other than "TCPIP_
IPADDR_STATE_ASSIGNED" while being in Initial Wait Phase, the Down Phase shall
be entered. |

[SWS_Sd_00354]
Upstream requirements: SRS_Eth_00009

[If the API Sd_lInit() is called while being in Initial Wait Phase, the Down Phase shall
be entered. |

7.7.3 Repetition Phase for Client Services

[SWS_Sd_00358]
Upstream requirements: SRS_Eth_00161

[When the Repetition Phase is entered, the Service Discovery Module shall start the
timer SdClientTimerlnitialFindRepetitionsBaseDelay |
[SWS_Sd_00457]

Upstream requirements: SRS_Eth_00161
[When the timer SdClientTimerlnitialFindRepetitionsBaseDelay expires within the
Repetition Phase, a FindOffer Message shall be sent. |
[SWS Sd 00363]

Upstream requirements: SRS_Eth_00161

[In the Repetition Phase up to SdClientTimerlnitialFindRepetitionsMax FindServer en-
tries shall be sent with doubling intervals (BaseDelay, first FindService Entry, 2x Base
Delay, second FindService Entry, 4x BaseDelay, third FindService Entry,...). |

Note: Example config and resulting behavior (no OfferService received during exam-
ple):

SdClientTimerlnitialFindRepetitionBaseDelay=30
SdClientTimerlnitialFindRepetitionMax=3

[Initial Wait Phase starts]

Wait Initial Wait Delay based on Configured Min and Max

Send entry.

[Initial Wait Phase ends]

[Repetition Phase starts]

AUTSSAR

Wait 30ms (=30ms * 20).
Send entry.

Wait 60ms (=30ms * 21).
Send entry.

Wait 120ms (=30ms * 22).
Send entry.

[Repetition Phase ends]

[SWS_Sd_00365]
Upstream requirements: SRS_Eth_00161

[If the Service Discovery Module receives an OfferService Entry in the Repetition
Phase while the current state SD_CLIENT _SERVICE_REQUESTED is for this Client
Service Instance, the following step(s) shall be performed in the following order:

+ Cancel the repetition timer.
* Leave the Repetition Phase immediately and enter the Main Phase.

— Further processing shall be done according to [SWS_Sd_00721].

]

[SWS_Sd _00751]
Upstream requirements: SRS_Eth_00161

[If the Service Discovery Module receives an StopOfferService Entry while the current
state SD CLIENT_SERVICE_REQUESTED is for this Client Service Instance, the fol-
lowing step(s) shall be performed in the following order:

» Cancel the repetition timer.

 Leave the Repetition Phase immediately and enter the Main Phase.

]

[SWS_Sd_00369]
Upstream requirements: SRS_Eth_00161
[After sending the maximum amount of repetitions (defined by SdClientTimerlInitialFind

RepetitionsMax) of FindService entries, the Repetition Phase shall be left and the Main
Phase shall be entered. |

AUTSSAR

[SWS_Sd _00371]
Upstream requirements: SRS_Eth_00161

[If SdClientService it set to state SD_CLIENT_SERVICE_RELEASED (by call of Sd_
ClientServiceSetState() or Sd_ServiceGroupStop()) while being in Repetition Phase,
this phase shall be left and the service instance shall enter Down Phase. |

[SWS_Sd_00373]
Upstream requirements: SRS_Eth_00022

[If Sd_LocallpAddrAssignmentChg() is called with a state other than "TCPIP_
IPADDR_STATE_ASSIGNED" while being in Repetition Phase the Down Phase shall
be entered. |

[SWS_Sd _00730]
Upstream requirements: SRS_Eth_00058

[If the TCP/IP connection has been lost (Socket connection is other than SOAD_SO-
CON_ONLINE), the Service Discovery Module shall leave the Repetition Phase, enter
the Initial Wait Phase, and stop the TTL timers of the associated Client Service In-
stances and EventGroups. |

7.7.4 Main Phase for Client Services

[SWS_Sd_00375]
Upstream requirements: SRS_Eth_00161

[The Service Discovery Module shall stay in the Main Phase as long as the following
conditions apply:

* Client Service was set to state "SD_CLIENT_SERVICE_REQUESTED" (indi-
cated by a call of Sd_ClientServiceSetState() or Sd_ServiceGroupStart())

+ IP address assigned and can be used (i.e. Sd_LocallpAddrAssignmentChg has
been called with status TCPIP_IPADDR_STATE_ASSIGNED).

]

[SWS_Sd_00721]
Upstream requirements: SRS_Eth_00076

[If the Service Discovery Module receives an OfferService Entry and
[SWS_Sd_00375] applies, then the following step(s) shall be performed in the
following order:

» Update the TTL timer of the service with the received value considering the ser-
vice instance’s lifetime defined in [PRS_SOMEIPSD_00356].

« If the client service current state is indicated as SD_CLIENT_SERVICE_DOWN:

AUTSSAR

— A UDP/TCP connection shall be opened with APl soAd_OpenSoCon () if
SdClientServiceUdpRef /SdClientServiceTcpRef is configured.

— SoAd_SetUniqueRemoteAddr () shall be called with Address and Port of
the Endpoint Option referenced in the Offer entry of this service to request
a socket connection. If the call returns E_NOT_OK, SD shall report SD_E__
OUT_OF_RES.

— The socket connection shall be checked to be ready for communication ac-
cording to [SWS_Sd_00761].

— Methods shall be enabled for this service by calling SoAd_Enable-
SpecificRouting () with SdClientServiceActivationRef of Sd-
ConsumedMethods and the socket connection.

— BswM_Sd_ClientServiceCurrentState () shall be called with SD
CLIENT_SERVICE_AVAILABLE to indicate that the service is available.

— Event groups shall be subscribed according to [SWS_Sd_00806].

« If the client service current state is indicated as SD_CLIENT_SERVICE_AVAIL-
ABLE:

— Check that the socket connection is matching the Address and Port of the
Endpoint Option referenced in the OfferService entry. If it does not match,
apply [SWS_Sd_00798].

— The socket connection shall be rechecked to be still ready for communication
according to [SWS_Sd_00761].

— Event groups shall be resubscribed according to [SWS_Sd_00806].

]

[SWS_Sd_00806] Eventgroup Requested
Upstream requirements: SRS_Eth_00076

[Under consideration of [SWS_Sd_00721]: For each Consumed Eventgroup which is
either set to state SD_CONSUMED_EVENTGROUP_REQUESTED or automatically
requested on startup if SdConsumedEventGroupAutoRequire is configured to true
and the corresponding client service which is part of the received offer is in current
state SD_CLIENT_SERVICE_AVAILABLE then the following shall be done in exactly
this order:

» StopSubscribeEventgroup entry shall be sent out, if the last SubscribeEventgroup
entry was sent as reaction to an OfferService entry received via Multicast, it was
never answered with a SubscribeEventgroupAck, and the current OfferService
entry was received via Multicast.

» SD shall send out a SubscribeEventgroup entry. If SdSubscribeEventgroupRetry
Enable is set to TRUE and if SdSubscribeEventgroupRetryMax is greater 0, the
Eventgroup subscription retry counter shall be reset to 1.

AUTSSAR

]

Note:

Refer to [SWS_Sd 00702], [SWS_Sd_00703] and [SWS_Sd_00704] for the enabling
of routing groups. The transmission of a response to an Offer received via multicast
shall be delayed with the configured delay. When the request response delay elapses
before the associated Socket Connections are in state SOAD _SOCON_ONLINE, the
StopSubscribeEventgroup and SubscribeEventgroup shall be delayed until the Socket
Connections are online and shall not be considered as reaction to an OfferService
entry received via Multicast. When the request response delay elapses while the Client
Service is in state RELEASED, there shall be no response to this Offer entry. The
amount of separate Service Discovery messages shall be reduced, i.e.: Combine as
much information as possible into one Service Discovery message before calling the
Socket Adaptor’s transmit API.

[SWS_Sd_00722]
Upstream requirements: SRS_Eth_00161

[When the Client Service is reported as SD_CLIENT_SERVICE_DOWN to the BswM
by calling the APl BswM_Sd_ ClientServiceCurrentState()

» the API SoAd_DisableSpecificRouting() shall be called with SdClientServiceAc-
tivationRef (see SdConsumedMethods) and the relevant Socket Connections for
this Client Service Instance.

]

[SWS_Sd_00695]
Upstream requirements: SRS_Eth_00162

[If a StopSubscribeEventgroup and SubscribeEventgroup for the same Eventgroup
(i.e. same Service ID, Instance ID, Eventgroup ID, Counter, and Major Version) have to
be sent out, these entries have to be directly after each other in the same SD message
(no entry between them). |

[SWS_Sd_00377]
Upstream requirements: SRS_Eth_00162

[If the Service Discovery Module receives a SubscribeEventgroupAck fitting a Con-
sumed Eventgroup that is not yet available, the following steps shall be performed in
the following order:

« If the SubscribeEventgroupAck references a Multicast Endpointoption

— The relevant Socket Connection Group shall be identified using SdCon-
sumedEventGroupMulticastGroupRef with the local Address and Port of the
Multicast Endpoint Option or set one up using SoAd_RequestlpAddrAssign-
ment().

AUTSSAR

— If SdSetRemAddrOfClientRxMulticastSoCon is set to TRUE, the relevant
Socket Connection of this service shall be identified using the Address and
Port of the Endpoint Option referenced in the Offer entry of this service or
shall be set up (SoAd_SetUniqgueRemoteAddr()), if not existed before.

« If no Wildcard Socket Connection is left, SD_E_OUT_OF RES shall be
reported.

— If SdSetRemAddrOfClientRxMulticastSoCon is set to FALSE, a Wildcard
Socket Connection of this service shall be used without updating the ac-
cording remote Address, i.e. Wildcard of this Socket Connection shall be
kept.

= If no Wildcard Socket Connection is left, SD_E_OUT_OF_RES shall be
reported.

— The relevant Routing Group shall be identified by following SdConsumed
EventGroupMulticastActivationRef.

— Call SoAd_EnableSpecificRouting() with the SocketlD and the Routing
GrouplD .

» Call BswM_Sd_ConsumedEventGroupCurrentState with SD_CONSUMED _
EVENTGROUP_AVAILABLE if the datapath was set up successfully.

» Setup the TTL timer with the TTL of the SubscribeEventgroupAck entry if the
datapath was set up successfully.

]

[SWS_Sd_00465]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162

[If a Service Discovery Message contains only a SubscribeEventgroupNack entry but
no SubscribeEventgroupAck entry for the same Eventgroup, Service Discovery shall
do the following:

* Report the DEM error SD_E_SUBSCR_NACK_RECV (see [ECUC_SD_00123])

« If SdClientServiceTcpRef is configured for this service, or if SOAd_lsConnection-
Ready() returned a different value than TCPIP_E_OK, determine the used SoCon
and call the APl SoAd_CloseSoCon() with the SoConlID and parameter abort set
to TRUE

« If SdClientServiceTcpRef is configured for this service, or if SoAd_lsConnection-
Ready() returned a different value than TCPIP_E_OK, determine the used So
Con and call the API SoAd_OpenSoCon() with the SoConlD.

AUTSSAR

[SWS_Sd _00367]
Upstream requirements: SRS_Eth_00161

[If the Service Discovery Module receives a StopOfferService Entry, the following
step(s) shall be performed in the following order:

» Stop the TTL timers of this Client Service Instance and all related Consumed
Eventgroups.

» Report this Client Service as DOWN if it was reported AVAILABLE before (call
BswM_Sd_ClientServiceCurrentState with SD_CLIENT_SERVICE_DOWN and
the Client Service’s handle ID).

* Report all Consumed Eventgroups as DOWN that were reported AVAILABLE be-
fore (call BswM_Sd_ConsumedEventGroupCurrentState with SD_CONSUMED _
EVENTGROUP_DOWN and the Consumed Eventgroup’s handle ID).

+ If SdSubscribeEventgroupRetryEnable is set to TRUE and if SdSubscribeEvent-
groupRetryMax is greater 0, cancel the corresponding client service subscription
retry delay timer and reset subscription retry counter of all corresponding Event-
groups to 0.

» Close all Socket Connections associated with this Client Service Instance that
have been opened before.

+ Stay in Main Phase and do not send FindService entries.

]

[SWS_Sd_00741]
Upstream requirements: SRS_Eth_00162

[If a Consumed Eventgroup switches to the state SD_CONSUMED_EVENTGROUP_
REQUESTED while the corresponding state of the requested Service Instance was
already set to SD_CLIENT_SERVICE_AVAILABLE (due to an already received Offer
Service) then a SubscribeEventgroup entry shall be sent out. |

Note:

Requirement [[SWS_Sd_00741]] ensures that a Client can still subscribe to Event-
groups at any point in time when it is needed, even though cyclic Offers of the corre-
sponding ServerService are not present in the main phase (SdServerTimerOfferCyclic
Delay set to 0). In this case, no cyclic Offer is needed for triggering the transmissions
of SubscribeEventgroup entries.

[SWS_Sd_00712]
Upstream requirements: SRS_Eth 00161, SRS_Eth 00162

[If Sd_LocallpAddrAssignmentChg() is called with a state other than "TCPIP_
IPADDR_STATE_ASSIGNED" while being in Main Phase:

 The Down Phase shall be entered.

AUTSSAR

« "SD_CLIENT_SERVICE_DOWN" shall be indicated to the BswM module by call-
ing the API BswM_Sd_ClientServiceCurrentState(), if the present state is SD_
CLIENT_SERVICE_AVAILABLE.

« "SD CONSUMED EVENTGROUP_DOWN?" shall be indicated to the BswM
module by calling the APl BswM_Sd_ConsumedEventGroupCurrentState() for
all associated ConsumedEventgroups, if the present state is SD_CONSUMED _
EVENTGROUP_AVAILABLE.

« If SdSubscribeEventgroupRetryEnable is set to TRUE and if SdSubscribeEvent-
groupRetryMax is greater 0, cancel the corresponding client service subscription
retry delay timer and reset subscription retry counter of all corresponding Event-
groups to 0.

]

[SWS_Sd_00731]

Upstream requirements: SRS_Eth_00009, SRS_Eth_00008
[If the TCP/IP connection has been lost (Socket connection is other than SOAD_SO-
CON_ONLINE), the Service Discovery Module shall leave the Main Phase, enter the

Initial Wait Phase, and stop the TTL timers of the associated Client Service Instances
and EventGroups. |

[SWS_Sd_00380]
Upstream requirements: SRS_Eth_00009, SRS_Eth_00008
[The Service Discovery Module shall leave the Main Phase and enter the state

SD CLIENT_SERVICE_DOWN if at least one of the listed conditions described in
[SWS_Sd_00375] does not apply any more. |

[SWS_Sd_00381]

Upstream requirements: SRS_Eth_00161, SRS_Eth_00071
[If a SdClientService is set to state "SD_CLIENT_SERVICE_RELEASED" (indicated
by a call of Sd_ClientServiceSetState() or Sd_ServiceGroupStop()) while all other con-

ditions listed in [SWS_Sd_00375] still apply, the Service Discovery module shall per-
form the following steps:

» Enter the Down Phase and indicate the state SD_CLIENT_SERVICE_DOWN to
the BswM by calling the API BswM_Sd_ ClientServiceCurrentState ().

+ For all subscribed eventgroups of this Client Service,
— a StopSubscribeEventgroup shall be sent

— the status shall be setto SD CONSUMED EVENTGROUP_DOWN and re-
ported to BswM by calling the APl BswM_Sd_ConsumedEventGroupCurrent
State().

« If SdSubscribeEventgroupRetryEnable is set to TRUE and if SdSubscribeEvent-
groupRetryMax is greater 0, cancel the corresponding client service subscription

AUTSSAR

retry delay timer and reset subscription retry counter of all corresponding Event-
groups to 0.

]

[SWS_Sd_00713]
Upstream requirements: SRS_Eth_00162

[If the Consumed Event Group is not requested anymore as indicated by a call of
Sd_ConsumedEventGroupSetState with state SD_ CONSUMED_EVENTGROUP_RE-
LEASED, the Service Discovery module shall perform the following steps for the con-
sumed event group:

» A StopSubscribeEventgroup shall be sent.

» The status shall be set to SD_CONSUMED EVENTGROUP_DOWN and be re-
ported to the BswM by calling the APl BswM_Sd_ConsumedEventGroupCurrent
State(), if the status is not currently SD_CONSUMED_EVENTGROUP_DOWN.

+ If SdSubscribeEventgroupRetryEnable is set to TRUE and if SdSubscribeEvent-
groupRetryMax is greater 0, cancel the corresponding client service subscription
retry delay timer and reset subscription retry counter of all corresponding Event-
groups to 0.

]

[SWS_Sd_00600]
Upstream requirements: SRS_Eth_00161

[If the TTL Timer of a Client Service expires, the Service Discovery module shall per-
form the following steps:

« Enter the Initial Wait Phase and indicate the state SD CLIENT_SERVICE_
DOWN to the BswM by calling the API BswM_Sd_ ClientServiceCurrentState ().

» All subscribed Eventgroups of this Client Service shall expired in this in-
stance (stop TTL timer) and the expiration shall be handled as describe in
[SWS_Sd_00601].

]

[SWS_Sd_00601]
Upstream requirements: SRS_Eth_00162

[If the TTL Timer of an Eventgroup expires, the Service Discovery module shall per-
form the following step(s):

» the status shall be set to SD_CONSUMED EVENTGROUP_DOWN and re-
ported to BswM by calling the API BswM_Sd_ConsumedEventGroupCurrent
State().

AUTSSAR

[SWS_Sd_00382]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00058

[When the Main Phase is left,

» The API SoAd_DisableSpecificRouting()shall be called for all Socket Connections
associated with this Client Service ID that have been opened before.

* Close all Socket Connections associated with this Client Service Instance that
have been opened before.

7.7.5 Fan in control

This section describes the interaction between Service Discovery and Socket Adaptor
(SoAd) to configure the RX path for receiving events (fan in).

[SWS_Sd_00702]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00162, SRS_Eth_00071

[If SdConsumedEventGroupTcpActivationRef is configured: When sending Subscribe
Eventgroup entries for this Eventgroup, the following shall be done:

» The relevant Routing Group shall be identified by following SdConsumedEvent
GroupTcpActivationRef.

» The relevant TCP Socket Connection shall be identified by SdClientServiceTcp
Ref.

« A TCP Endpoint option shall be constructed with these parameters.
* Only if this client is currently not subscribed yet:

— SoAd_EnableSpecificRouting with the two parameters above.

]

[SWS_Sd_00703]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00018, SRS_Eth 00162

[If SdConsumedEventGroupUdpActivationRef is configured: When sending Subscribe
Eventgroup entries for this Eventgroup, the following shall be done:

» The relevant Routing Group shall be identified by following SdConsumedEvent
GroupUdpActivationRef.

» The relevant TCP Socket Connection shall be identified by SdClientServiceUdp
Ref.

« A UDP Endpoint option shall be constructed with these parameters.

AUTSSAR

 Only if this client is currently not subscribed yet:

— SoAd_EnableSpecificRouting with the two parameters above.

]

[SWS_Sd_00704]
Upstream requirements: SRS_Eth_00161, SRS_Eth_00058

[If SdConsumedEventGroupMulticastActivationRef is configured: When receiving
SubscribeEventgroupAck entries for this Eventgroup and with a referenced Multicast
Option, the following shall be done if this client is currently not subscribed yet:

» The relevant Routing Group shall be identified by following SdConsumedEvent
GroupMulticastActivationRef.

* The relevant UDP Socket Connection shall be identified:

— Find the relevant Socket Connection Group using SdConsumedEventGroup
MulticastGroupRef with the local Address and Port of the Multicast Option
or set one up.

— Find the relevant Socket Connection in this Socket Connection Group by
finding the Address and Port of this Services Endpoint or set one up.

« SoAd_EnableSpecificRouting with the two parameters above.

]

[SWS_Sd_00711]
Upstream requirements: SRS_Eth_00162

[Routing Groups of EventGroups (see SdConsumedEventGroupTcpActivationRef, Sd
ConsumedEventGroupUdpActivationRef, and SdConsumedEventGroupMulticastActi-
vationRef)

shall be deactivated, if they are not needed anymore (Main phase was left, StopOffer
received or ConsumedEventgroup was released). |

[SWS_Sd_00706]
Upstream requirements: SRS_Eth_00058

[Every wildcard socket connection shall be reset to wildcard using ReleaseSoAd_Re-
moteAddr() if all of the following conditions apply:

» The remote address of the socket connection has been set by SD according to
[SWS_Sd _00377].

» No Eventgroup Subscription for this socket connection is used anymore.

AUTSSAR

[SWS_Sd _00734]
Upstream requirements: SRS_Eth_00058

[Every wildcard socket connection group shall be reset to wildcard using SoAd_Re-
leaselpAddrAssignment() if all of the following conditions apply:

 Local address of the socket connection group has been set by SD according to
[SWS_Sd_00377].

+ All socket connections of this socket connection group have been released.

7.7.6 Sharing of SdClientTimer

[SWS_Sd_00744]

Upstream requirements: SRS_Eth_00161
[If several ClientServices refer to the same SdClientTimer, they shall share a common
timer (and therefore a common random offset), if they either refer to the same Sd

ServiceGroup and do not refer to any other (additional) SdServiceGroup or, if SdClient
ServiceAutoRequire of all ClientServices are set to TRUE. |

7.8 Handling of SdServiceGroup$S

7.8.1 SdServiceGroup definitions

For a SdServiceGroup the following rules apply:

1. A SdClientService and SdServerService, respectively, can belong to any SdSer-
viceGroup.

2. A SdClientService and SdServerService, respectively, is requested and available,
respectively, if it belong to a started SdServiceGroup (see [SWS_Sd_00745]). If
a SdClientService and SdServerService, respectively, does not belong to any
SdServiceGroup, the SdClientService and SdServerService, respectively, has to
be requested and set to available via Sd_ServerServiceSetState() or Sd_Client
ServiceSetState() explictly (see [SWS_Sd_00746]).

3. SdClientServices and SdServerServices of different Sdinstances could reference
the same SdServiceGroup

Note:

Rules 1 and 3 are supported by the ServiceDiscovery configuration.

AUTSSAR

[SWS_Sd_00745]
Upstream requirements: SRS_Eth_00161

[A SdClientService and SdServerService, respectively, is requested and available, re-
spectively, if at least one SdServiceGroup is started it refers to. |

Note:

It is expected that the complete state handling of SdServiceGroup is done outside of
the AUTOSAR ServiceDiscovery module, e.g. within the Basic Software Mode Man-
ager. In case of a state change, the module that managing the SdServiceGroup states
consistently starts or stops the SdServiceGroup via Sd_ServiceGroupStart() and Sd_
ServiceGroupStop().

The state of SdClientServiceS and SdServerServiceS that are NOT reference any Sd
ServiceGroup can be changed only via a direct call of Sd_ClientServiceSetState and
Sd_ServerServiceSetState, respectively.

[SWS_Sd_00746]
Upstream requirements: SRS_Eth_00161

[The state of a SdClientService and a SdServerService, respectively, which refer to at
least one SdServiceGroup shall only be changed via Sd_ServiceGroupStart and Sd_
ServiceGroupStop, respectively. The state of a SdClientService and SdServerService,
respectively, which do NOT reference any SdServiceGroup, shall only be changed via
Sd_ClientServiceSetState() and Sd_ServerServiceSetState(), respectively. |

[SWS_Sd_00747]
Upstream requirements: SRS_Eth_00161

[The AUTOSAR ServiceDiscovery module shall keep track of requests and availabil-
ities per SdClientServiceS and SdServerServiceS, respectively, which reference at
least one SdServiceGroup. Therefore each affected SdClientService and SdServer
Service shall have a client request counter and server availability counter, respectively.
Each time Sd_ServiceGroupStart() is called, the client request counter shall be in-
cremented for all affected SdClientServices and the server availability counter shall
be incremented for all affected SdServerServices. Each time Sd_ServiceGroupStop()
is called the client request counter shall be decremented for all affected SdClientSer-
vices, and the server availability counter shall be decremented for all affected SdServer
Services. |

7.8.1.1 Initialization of SdServiceGroup$S

[SWS_Sd_00748]
Upstream requirements: SRS_BSW_00406

[By default, all SdServiceGroupS shall be in the state stopped and they shall not be
started automatically by a call to Sd_Init. |

AUTSSAR

7.8.1.2 Starting of SdServiceGroupS

By default all SdServiceGroupS are stopped, see [SWS_Sd_00748]. A call to Sd_
ServiceGroupStart() starts a SdServiceGroup if it was previously stopped.

[SWS_Sd_00749]
Upstream requirements: SRS_Eth_00071, SRS_Eth_00161

[If an SdServiceGroup is started by Sd_ServiceGroupStart(), the AUTOSAR Service
Discovery module shall set all SdClientServiceS which are referencing the affected
SdServiceGroup to SD_CLIENT_SERVICE_REQUESTED and all SdServerService
S which are referencing the affected SdServiceGroup to SD_SERVER_SERVICE_
AVAILABLE. |

7.8.1.3 Stopping of SdServiceGroupS
A call to Sd_ServiceGroupStop() stops an SdServiceGroup, if it was previously started.

[SWS_Sd_00750]
Upstream requirements: SRS_Eth_00161

[If an SdServiceGroup is stopped by Sd_ServiceGroupStop(), the AUTOSAR Ser-
vice Discovery module shall set all SdClientServiceS, which are referencing the af-
fected SdServiceGroup to SD_CLIENT_SERVICE_RELEASED where the correspond-
ing client request counter (see [SWS_Sd _00747]) has reached 0, and all SdServerSer-
vices which are referencing the affected SdServiceGroup to SD_SERVER_SERVICE_
DOWN where the corresponding server availability counter (see [SWS_Sd_00747])
has reached 0. |

7.9 SOME/IP-ACL

The ACL "Access Control List" introduces the possibility of limiting service access to
listed authenticated communication partners. It is an effective way to minimize the
damage if one of the communication partners is hacked because this communication
partner cannot go beyond the services he could provide or consume in his healthy
state.

This can be reached by following steps:

Authentication: This is a pre-condition and not the scope of this chapter, the identity
of the communication partner shall be authenticated by e.g. TCAM rules Port-based
authentication, IPsec, or MACsec. In the case of IPsec or MACsec, Function SoAd
IsConnectionReady shall be used to make sure that the configured security association
has been established.

AUTSSAR

Authorization: This is the main focus of this chapter, it is about allowing or blocking
providing or consuming services based on an access control list (ACL) containing the
IP addresses of the allowed service providers and consumers.

7.9.1 ACL Configuration

[SWS_Sd_00763]
Status: DRAFT
Upstream requirements: SRS_Eth_00164

[In case of (SdEnableAclPolicyCheck is TRUE), SD shall activate the ACL fea-
ture. |

[SWS_Sd_00764]
Status: DRAFT
Upstream requirements: SRS_Eth 00161, SRS_Eth 00164

[In ClientService, the ACL sdClientServiceAllowedProvider shall be config-
ured with the allowed service provider’s IP address to enable the ACL check. |

[SWS_Sd_00765]
Status: DRAFT
Upstream requirements: SRS_Eth_00161, SRS_Eth 00164

[In ClientService, if the ACL sdClientServiceAllowedProvider is not config-
ured, the ACL check shall be disabled for this ClientService. |

[SWS_Sd_00766]
Status: DRAFT
Upstream requirements: SRS_Eth_00161, SRS_Eth_00164

[In ServerService, the ACL SdServerServiceAllowedConsumers shall be config-
ured with the allowed service consumers’ IP addresses to enable the ACL check. |

[SWS_Sd _00767]
Status: DRAFT
Upstream requirements: SRS_Eth_00161, SRS_Eth_00164

[In ServerService, if the ACL sdServerServiceAllowedConsumers is not config-
ured, the ACL check shall be disabled for this ServerService. |

Note: The ACL contents will be the IP addresses of the allowed communication part-
ners, so this concept will not be applicable in case of dynamic IP via DHCP is used.

AUTSSAR

7.9.1.1 ACL update

[SWS_Sd_00801] Enable Acl
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclCheckEnable is called with EnableAcl equal TRUE, The ACL policy
check shall be enabled. |

[SWS_Sd_00802] Disable ACL
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclCheckEnable is called with EnableAcl equal FALSE, The ACL policy
check shall be disabled. |

[SWS_Sd_00803] Maximum IP Addresses
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If Sd_AclUpdate is called to add a new IP address to an ACL, while the maximum
allowed number of IP addresses in this ACL SdMaxNumOflpAddressesInAcl has been
reached, Sd_AclUpdate shall do nothing and return E_NOT_OK. |

[SWS_Sd_00804] Maximum IP Addresses not configured
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If the ACL is enabled for a service instance and this parameter SdMaxNumOflpAd-
dresseslInAcl is not configured, the number of the allowed IP addresses in this service
instance’s ACL shall be based on the size of the referenced NVM block by the ACL. |

[SWS_Sd_00768]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[The ACL contents shall be updatable via function Sd_AclUpdate call with parameters
Service ID SdServiceld, Servicelnstanceld, the IP address RemoteAddrPtr and the
required action RequestType. |

[SWS_Sd_00769]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclUpdate is called with RequestType SD_ACL_ADD_PROVIDER and
the SD has a ClientService with service ID equals SdServiceld and service Instance ID
equals Servicelnstanceld, SD shall update the IP address in SdClientServiceAl-
lowedProvider of this ClientService with the IP address in RemoteAddrPtr. |

AUTSSAR

[SWS_Sd_00780]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclUpdate is called with RequestType SD_ACL_ADD_CONSUMER
and the SD has a ServerService with service ID equals SdServiceld and service In-
stance ID equals Servicelnstanceld, SD shall add the IP address in RemoteAddrPtr to
this ServerService ACL SdServerServiceAllowedConsumers. |

[SWS_Sd_00781]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclUpdate is called with RequestType SD_ACL_REMOVE_PROVIDER
and the SD has a ClientService with service ID equals SdServiceld and service In-
stance ID equals Servicelnstanceld and the IP address in RemoteAddrPtr equals the
IP address in sdClientServiceAllowedProvider, SD shall remove this IP ad-
dress from this ClientService ACL sdClientServiceAllowedProvider.]

[SWS_Sd_00782]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclUpdate is called with RequestType SD_ACL_REMOVE_CON-
SUMER and the SD has a ServerService with service ID equals SdServiceld and
service Instance ID equals Servicelnstanceld, SD shall remove the IP address in Re-
moteAddrPtr from this ServerService ACL SdServersServiceAllowedConsumers. |

[SWS_Sd_00783]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[If function Sd_AclUpdate is called with wrong parameters e.g. RequestType SD_
ACL_REMOVE_PROVIDER while this IP address is not equal to the IP address in this
ClientService ACL sdClientServiceAllowedProvider or there is no ClientSer-
vice with this SdServiceld or this Servicelnstanceld, function shall return E_NOT_OK. |

[SWS_Sd_00784]
Status: DRAFT
Upstream requirements: SRS_Eth_00165

[SD shall save the updated ACL and SdEnableAclPolicyCheck in the NVM block refer-
enced by this ACL SdAclCheckBlockDescriptorRef. |

Note: In case of ACL updated by a successful function Sd_AclUpdate call,it is recom-
mended to perform a reset immediately before the updated ACL is used by the SD.

AUTSSAR

7.9.2 ACL Policy Check

This chapter describes the ACL policy decision and Enforcement.

7.9.2.1 Client ACL

On the ClientService side:

7.9.2.1.1 Offer Service
When Client Service receives an OfferService:

[SWS_Sd_00785]
Status: DRAFT
Upstream requirements: SRS_Eth 00161, SRS_Eth 00164

[If the SD receives an OfferService Entry and [SWS_Sd_00375] applies, then SD shall
perform an ACL check prior to [SWS_Sd 00721] by checking the provided IP address
in the Endpoint option of this OfferService entry against this ClientService ACL sd-
ClientServiceAllowedProvider.

« If the service/IP address in the Endpoint option combination of this OfferService
entry is not on this ClientService ACL sdClientServiceAllowedProvider
list, SD shall ignore the offer. If security event reporting is enabled (SdEn-
ableSecurityEventReporting = true), SD shall log a security event SEV_
SOME_IP_ACL_CHECK_FAILED_OFFER.

* If the service/IP address in the Endpoint option of this OfferService entry combi-
nation is on this ClientService ACL sdClientServiceAllowedProvider list,
then the ACL check is passed and SD shall continue with [SWS_Sd_00721].

]
See Figure 9.11.

7.9.2.2 Server ACL

In the Server Service side:

7.9.2.2.1 SubscribeEventgroup

When Server Service receives a SubscribeEventgroup request:

AUTSSAR

[SWS_Sd_00789]
Status: DRAFT
Upstream requirements: SRS_Eth_00162

[SD shall call the function SoAd_lsConnectionReady with the parameters SoConld
and RemoteAddr to check if the connection is ready and if a security association is
configured that a secured connection is already established with the client, who has
sent this SubscribeEventgroup request. |

[SWS_Sd_00790]
Status: DRAFT
Upstream requirements: SRS_Eth_00162

[If function SoAd_IsConnectionReady return TCPIP_E_NOT_OK, SD shall ignore the
subscription request. |

[SWS_Sd_00791]
Status: DRAFT
Upstream requirements: SRS_Eth_00162

[If the connection is ready, SD shall check if the remote IP address of this client and
the IP address in this SubscribeEventgroup endpoint option are on this EventHandler’s
ServerService ACL sdServerServiceAllowedConsumers.

« If the remote IP address of this client or the IP address in this SubscribeEvent-
group endpoint option is not on this EventHandler’s ServerService ACL sdser-
verServiceAllowedConsumers, SD shall ignore the subscription request.
If security event reporting is enabled (SdEnableSecurityEventReporting
= true), SD shall log a security event SEV_SOME_IP_ACL_CHECK_FAILED_
EVENT_SUBSCRIPTION.

« If the remote IP address of this client and the IP address in this SubscribeEvent-
group endpoint option are on this EventHandler's ServerService ACL SdSer-
verServiceAllowedConsumers, SD shall call function SoAd_EnableSpecifi-
cRouting to enable the routing of event updates AddClientToFanOut.

]
See Figure 9.12.

7.9.2.2.2 Method Request

When Server Service receive a Method call request:

[SWS_Sd_00793]
Status: DRAFT
Upstream requirements: SRS_Eth_00163

[If function Sd_RequestRoutingGroupEnable() is called by SoAd,SD shall trigger ACL
policy check if configured for this SdProvidedMethods’ ServerService.In case ACL pol-

AUTSSAR

icy check is not configured for this SdProvidedMethods’ ServerService, SD shall call
function SoAd_EnableSpecificRouting() to enable the requested method routing for fu-
ture method requests and Sd_RequestRoutingGroupEnable() shall return E_OK. |

Note: In SoAd, if the routing of the received method call request is not enabled for the
selected socket route, SoAd will call the function Sd_RequestRoutingGroupEnable() to
inform Sd that a client wants to use a server method.

[SWS_Sd_00794]
Status: DRAFT
Upstream requirements: SRS_Eth_00163

[SD shall call the function SoAd_IsConnectionReady with the parameters SoConld
and RemoteAddr to check if the connection is ready and if a security association is
configured that a secured connection is already established with the client, who has
sent this Method call request. |

[SWS_Sd_00795]
Status: DRAFT
Upstream requirements: SRS_Eth_00163

[If function SoAd_IsConnectionReady return TCPIP_E_NOT_OK, SD shall ignore the
Method call request and function Sd_RequestRoutingGroupEnable() shall return E_
NOT_OK.]

[SWS_Sd_00796]
Status: DRAFT
Upstream requirements: SRS_Eth_00163

[If the connection is ready, SD shall check if the remote IP address of this client is on
this Method’s ServerService ACL sdServerServiceAllowedConsumers.

+ If the remote IP address of this client is not on this Method’s ServerService ACL
SdServerServiceAllowedConsumers, SD shall ignore the Method call re-
quest and function Sd_RequestRoutingGroupEnable() shall return E_NOT_OK.
If security event reporting is enabled (SdEnableSecurityEventReporting
= true), SD shall log a security event SEV_SOME_IP_ACL_CHECK_FAILED_
METHOD_REQUEST.

« If the remote IP address of this client is on this Method’s ServerService ACL
SdServerServiceAllowedConsumers, SD shall call function SoAd_Enable-
SpecificRouting to enable the Method routing and function Sd_RequestRouting-
GroupEnable() shall return E_OK.

]
See Figure 9.13.

AUTSSAR

7.10 Security Events

[SWS_Sd_00797]
Status: DRAFT
Upstream requirements: SRS_Eth_00166

[If security event reporting has been enabled for the SD module (SdEnableSecuri-
tyEventReporting = true) the respective security events shall be reported to the
ldsM via the interfaces defined in AUTOSAR_SWS_BSWGeneral [2]. |

[SWS_Sd_00798]

Upstream requirements: SRS_Eth_00161
[A SdClientService shall only connect to one offered service instance of the same
service at the same time. When a client is already connected to a service instance
it shall ignore all Offer Service entries for the same service instance with different

endpoint as long as the already connected service instance is considered available
and report SEV_SOME_IP_SD_DUPLICATE_OFFER. |

Note: Service not considered available with e.g. StopOffer received, TTL expired or
reboot detected.

Note: To ensure that this scenario cannot be exploited, SOME/IP-ACL can be used.

[SWS_Sd_00114] Security events for Service Discovery (Sd)

Status: DRAFT

Upstream requirements: RS_Ids_00810
Name Description ID
SEV_SOME_IP_ACL_CHECK_FAILED_OFFER | ACL check for a service offer failed. 84
SEV_SOME_IP_ACL_CHECK_FAILED _ ACL check for a subscribe event group request failed. 85
EVENT_SUBSCRIPTION
SEV_SOME_IP_ACL_CHECK_FAILED _ ACL check for a method request failed. 86
METHOD_REQUEST
SEV_SOME_IP_SD_DUPLICATE_OFFER SD rejected Offer for a Servicelnstance which is already 88

offered by a different endpoint and TTL still valid.

Note: Context data (Remote IP address of communication partner, Service ID) should
be saved to those security events.

7.11 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

AUTSSAR

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.11.1 Development Errors

[SWS_Sd_00107] Definition of development errors in module Sd
Upstream requirements: SRS _BSW_00337

[

Type of error Related error code Error value

SD has not been initialized

SD_E_UNINIT

0x01

Null pointer has been passed as an argument

SD_E_PARAM_POINTER

0x02

Invalid mode request

SD_E_INV_MODE

0x03

Invalid Id SD_E_INV_ID 0x04
Initialization failed SD_E_INIT_FAILED 0x05

|
[SWS_Sd _00108]
Upstream requirements: SRS_BSW_00386

[The detection of development errors shall be configurable (ON / OFF) at pre-compile
time. The switch SdDevErrorDetect (see chapter 9) shall activate or deactivate the
detection of all development errors. |

[SWS_Sd_00109]
Upstream requirements: SRS_BSW_00350
[If the SdDevErrorDetect switch is enabled API parameter checking is enabled. |

Note: The detection of production code errors cannot be switched off.
[SWS_Sd_00110]
Upstream requirements: SRS_BSW_00337

[Detected development errors shall be reported to the Det_ReportError service of the
Default Error Tracer (DET) if the pre-processor switch SdDevErrorDetect is set (see
chapter 10). |

AUTSSAR

7.11.2 Runtime Errors

[SWS_Sd_00742] Definition of runtime errors in module Sd
Upstream requirements: SRS_BSW_00452

[

Type of error Related error code Error value
Retry was not successful SD_E_COUNT_OF_RETRY_SUBSCRIPTION_ 0x06
EXCEEDED

7.11.3 Production Errors

There are no Production Errors.

7.11.4 Extended Production Errors

[SWS_Sd_00002] SD_ E_OUT OF RES
Upstream requirements: SRS_BSW_00472, SRS_BSW_00470, SRS_BSW_00469, SRS_BSW_

00466
Error Name: SD_E_OUT_OF_RES
Short Description: SD out of resources
Long Description: SD Instance does not have SoAd socket resources left to add client to Fan-Out.
Recommended DTC: N/A
Detection Criteria: FAIL Every time when a Socket connection
has to be opened but no Wildcard
Socket Connection is available.
PASS After first startup until first error
occurred.
Secondary Parameters: Local IP-Address and Port Number of Socket Connection Group that has not
enough Wildcard Socket Connections left
Time Required: N/A
Monitor Frequency Continuous
MIL illumination: N/A

AUTSSAR

[SWS_Sd 00006] SD_ E MALFORMED_MSG
Upstream requirements: SRS _BSW_ 00472, SRS _BSW 00470, SRS_BSW_00469, SRS BSW _

Error Name:

SD_E_MALFORMED_MSG

Short Description:

SD received malformed SOME/IP-SD message

Long Description:

The Service Discovery module received an inconsistent SOME/IP-SD message.
This includes:
* Inconsistent combination of SOME/IP length, entries length, and options length

* Inconsistent length field of option

« lllegal values of fields (e.g. IP Addresses and Ports).

Recommended DTC: N/A
Detection Criteria: FAIL Every time a malformed SOME/IP-SD
message has been received
PASS After first startup until first error
occurred.

Secondary Parameters:

IP Address of Sender (Source IP Address)

Time Required: N/A
Monitor Frequency Continuous
MIL illumination: N/A

]

[SWS Sd 00008] SD E SUBSCR_NACK RECV
Upstream requirements: SRS_BSW_00472, SRS_BSW_00470, SRS_BSW_00469, SRS_BSW_

Error Name:

SD_E_SUBSCR_NACK_RECV

Short Description:

SD received SubscribeEventgroupNack entry

Long Description:

The Service Discovery module received a SubscribeEventgroupNack entry, which
is not expected.

Recommended DTC: N/A
Detection Criteria: FAIL Every time a NACK is received.
PASS After first startup until first error
occurred.

Secondary Parameters:

IP Address of Sender (Source IP Address)

Time Required: N/A
Monitor Frequency Continuous
MIL illumination: N/A

AUTSSAR

8 API specification

8.1 Imported types

[SWS_Sd_00117] Definition of imported datatypes of module Sd
Upstream requirements: SRS_BSW_00301, SRS_BSW_00305

Module Header File Imported Type

Comtype ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

ldsM IdsM.h IdsM_SecurityEventldType
Rte_ldsM_Type.h ldsM_TimestampDataType

NvM Rte_NvM_Type.h NvM_BlockldType

SoAd SoAd.h SoAd_RoutingGroupldType
SoAd.h SoAd_SoConldType
SoAd.h SoAd_SoConModeType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

Teplp Teplp.h Teplp_DomainType
Teplp.h Teplp_lIpAddrAssignmentType
Teplp.h Teplp_IpAddrStateType
Teplp.h Teplp_ReturnType
Teplp.h Tcplp_SockAddrType

]

8.2 Type definitions

8.2.1 Sd_ConfigType

[SWS_Sd_00690] Definition of datatype Sd_ConfigType
Upstream requirements: SRS_BSW_00404

[

Name Sd_ConfigType
Kind Structure
Elements implementation specific

Type ‘ -

AUTSSAR

A

Comment The content of the configuration data structure is implementation
specific.

Description

Configuration data structure of Sd module.

Available via

Sd.h

8.2.2 Sd_ServerServiceSetStateType

[SWS_Sd_00118] Definition of datatype Sd_ServerServiceSetStateType
Upstream requirements: SRS_BSW_00305

Name Sd_ServerServiceSetState Type
Kind Enumeration
Range SD_SERVER_SERVICE_ 0x00 -
DOWN
SD_SERVER_SERVICE_ 0x01 —
AVAILABLE
Description This type defines the Server states that are reported to the SD using the expected APl Sd_Server

ServiceSetState.

Available via

Sd.h

8.2.3 Sd_ClientServiceSetStateType

[SWS_Sd_00405] Definition of datatype Sd_ClientServiceSetStateType
Upstream requirements: SRS_BSW_00305

Name Sd_ClientServiceSetState Type
Kind Enumeration
Range SD_CLIENT_SERVICE_ 0x00 -
RELEASED
SD_CLIENT_SERVICE_ 0x01 -
REQUESTED
Description This type defines the Client states that are reported to the BswM using the expected AP| Sd_Client

ServiceSetState.

Available via

Sd.h

AUTSSAR

8.2.4 Sd_ConsumedEventGroupSetStateType

[SWS_Sd_00550] Definition of datatype Sd_ConsumedEventGroupSetStateType
Upstream requirements: SRS_Eth_00162

Name Sd_ConsumedEventGroupSetState Type
Kind Enumeration
Range SD_CONSUMED _ 0x00 -
EVENTGROUP_
RELEASED
SD_CONSUMED_ 0x01 -
EVENTGROUP_
REQUESTED
Description This type defines the subscription policy by consumed EventGroup for the Client Service.
Available via Sd.h

8.2.5 Sd_ClientServiceCurrentStateType

[SWS_Sd_00551] Definition of datatype Sd_ClientServiceCurrentStateType
Upstream requirements: SRS _BSW_00305

Name Sd_ClientServiceCurrentState Type
Kind Enumeration
Range SD_CLIENT_SERVICE_ 0x00 -
DOWN
SD_CLIENT_SERVICE_ 0x01 -
AVAILABLE
Description This type defines the modes to indicate the current mode request of a Client Service.
Available via Sd.h

AUTSSAR

8.2.6 Sd_ConsumedEventGroupCurrentStateType

[SWS_Sd_00552] Definition of datatype Sd_ConsumedEventGroupCurrentState

Type
Upstream requirements: SRS_Eth_00162

Name Sd_ConsumedEventGroupCurrentStateType

Kind Enumeration

Range SD_CONSUMED _ 0x00 -
EVENTGROUP_DOWN
SD_CONSUMED_ 0x01 -
EVENTGROUP_
AVAILABLE

Description This type defines the subscription policy by consumed EventGroup for the Client Service.

Available via Sd.h

8.2.7 Sd_EventHandlerCurrentStateType

[SWS_Sd_00553] Definition of datatype Sd_EventHandlerCurrentStateType
Upstream requirements: SRS_Eth_00162

Name Sd_EventHandlerCurrentStateType
Kind Enumeration
Range SD_EVENT_HANDLER_ 0x00 -
RELEASED
SD_EVENT_HANDLER_ 0x01 -
REQUESTED
Description This type defines the subscription policy by EventHandler for the Server Service.
Available via Sd.h

8.2.8 Sd_ConfigOptionStringType

[SWS_Sd_91002] Definition of datatype Sd_ConfigOptionStringType
Upstream requirements: SRS_BSW_00305, SRS_BSW_00304

Name Sd_ConfigOptionStringType
Kind Const Pointer
Type const uint8*

AUTSSAR

A

Description Type for a zero-terminated string of configuration options.

Available via Sd.h

8.2.9 Sd_ServiceGroupldType

[SWS_Sd_91008] Definition of datatype Sd_ServiceGroupldType
Upstream requirements: SRS_BSW_00305

Name Sd_ServiceGroupldType

Kind Type

Derived from uint16

Range 0..65535 - Zero-based integer number
Description The AUTOSAR ServiceDiscovery module’s SdServiceGroup object identifier.

Available via Sd.h

8.2.10 Sd_ServiceAclUpdateType

[SWS_Sd_91009] Definition of datatype Sd_AclUpdateType
Status: DRAFT
Upstream requirements: SRS_Eth_00165

Name Sd_AclUpdateType (draft)

Kind Enumeration

Range SD_ACL_ADD_PROVIDER 0x00 Add this IP address to providers ACL sdClient

ServiceAllowedProviders

SD ACL_ADD_ 0x01 Add this IP address to consumers ACL sd
CONSUMER ServerServiceAllowedConsumers
SD_ACL_REMOVE_ 0x02 Remove this IP address from providers ACL
PROVIDER sdClientServiceAllowedProviders
SD_ACL_REMOVE_ 0x03 Remove this IP address from consumers ACL
CONSUMER sdServerServiceAllowedConsumers

Description This type defines the required ACL update action.
Tags: atp.Status=draft

Available via Sd.h

AUTSSAR

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Sd_Init

[SWS_Sd_00119] Definition of API function Sd_Init
Upstream requirements: SRS_BSW_00414

[
Service Name Sd_Init
Syntax void Sd_Init (
const Sd_ConfigTypex ConfigPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to a selected configuration structure.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initializes the Service Discovery.

Available via

Sd.h

]

[SWS_Sd_00120]

Upstream requirements: SRS_BSW_00416
[The Sd_lInit function shall initialize the state machines for all Service Instances ac-
cording to SWS_SD_00020 and SWS_SD_00021. |

[SWS_Sd_00121]

Upstream requirements: SRS_Eth_00053
[The Sd_Init function shall internally store the configuration data address to enable
subsequent API calls to access the configuration data. |

[SWS_Sd_00122]
Upstream requirements: SRS_BSW_00406

[The Sd_Init function shall remember internally the successful initialization for other
API functions to check for proper module initialization. |

AUTSSAR

8.3.2 Sd_GetVersioninfo

[SWS_Sd 00124] Definition of API function Sd_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411, SRS _BSW_00482

[

Service Name

Sd_GetVersioninfo

Syntax void Sd_GetVersionInfo (
Std_VersionInfoType* versioninfo

)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None

Description

Returns the version information of this module.

Available via

Sd.h

J
[SWS_Sd_00125]
Upstream requirements: SRS_BSW_00402

[The Sd_GetVersionInfo function shall return the version information of this module.
The version information includes:

- Module Id
- Vendor Id

- Vendor specific version numbers |

[SWS_Sd_00126]
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[Configuration of Sd_GetVersionInfo: This function shall be pre compile time config-
urable On/Off by the configuration parameter: SdVersionInfoApi |

[SWS_Sd_00497]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00480

[If development error detection for the Service Discovery module is enabled, then
the function Sd_GetVersioninfo shall check whether the parameter VersioninfoPtr is
a NULL pointer (NULL_PTR). If VersioninfoPtr is a NULL pointer, then the function
Sd_GetVersionInfo shall raise the development error SD_E_PARAM_POINTER and
return. |

AUTSSAR

8.3.3 Sd_ServerServiceSetState

[SWS_Sd_00496] Definition of API function Sd_ServerServiceSetState
Upstream requirements: SRS_Eth_00161

[
Service Name Sd_ServerServiceSetState
Syntax Std_ReturnType Sd_ServerServiceSetState (
uintl6 SdServerServiceHandleId,
Sd_ServerServiceSetStateType ServerServiceState
)
Service ID [hex] 0x07
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) SdServerServiceHandleld | ID to identify the Server Service Instance.
ServerServiceState The state the Server Service Instance shall be set to.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: State accepted
E_NOT_OK: State not accepted
Description This API function is used by the BswM to set the Server Service Instance state.
Available via Sd.h
|

[SWS_Sd_00407]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00487

[If development error detection is enabled and the Service Discovery module has not
been initialized using Sd_Init(), the Sd_ServerServiceSetState function shall raise the
development error code SD_E_UNINIT and the Sd_ServerServiceSetState function
shall return E_NOT_OK. |

[SWS_Sd_00408]
Upstream requirements: SRS_BSW_00337

[If the parameter ServerServiceState has an undefined value, the Service Discovery
module shall not store the requested mode and return E_NOT_OK.

In case development error detection is enabled, the Service Discovery module shall
additionally raise the development error code SD_E_INV_MODE. |

[SWS_Sd_00607]
Upstream requirements: SRS_BSW_00337

[If the parameter SdServerServiceHandleld has an invalid value, the Service Discov-
ery Module shall not store the requested mode and return E_NOT_OK. In case de-
velopment error detection is enabled, the Service Discovery module shall additionally
raise the development error code SD_E_INV_ID. |

AUTSSAR

8.3.4 Sd_ClientServiceSetState

[SWS_Sd_00409] Definition of API function Sd_ClientServiceSetState

Upstream requirements: SRS_Eth_00161

Service Name Sd_ClientServiceSetState

Syntax Std_ReturnType Sd_ClientServiceSetState (
uintl6 ClientServiceHandleld,
Sd_ClientServiceSetStateType ClientServiceState

)

Service ID [hex] 0x08

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in)

ClientServiceHandleld

ID to identify the Client Service Instance.

ClientServiceState

The state the Client Service Instance shall be set to.

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType

E_OK: State accepted

E_NOT_OK: State not accepted

Description This API function is used by the BswM to set the Client Service Instance state.
Available via Sd.h

]

[SWS_Sd 00410]

Upstream requirements: SRS_BSW_00406, SRS_BSW_00487
[If development error detection is enabled and the Service Discovery module has
not been initialized using Sd_Init(), the Sd_ClientServiceSetState function shall raise

the development error code SD_E_UNINIT and the Sd_ClientServiceSetState function
shall return E_NOT_OK. |

[SWS_Sd_00411]
Upstream requirements: SRS_BSW_00337

[If the parameter ClientServiceState has an undefined value, the Service Discovery
module shall not store the requested mode and return E_NOT_OK.

In case development error detection is enabled, the Service Discovery module shall
additionally raise the development error code SD_E_INV_MODE. |

[SWS_Sd_00608]
Upstream requirements: SRS_BSW_00337

[If the parameter ClientServiceHandleld has an invalid value, the Service Discovery
module shall not store the requested mode and return E_NOT_OK. In case develop-
ment error detection is enabled, the Service Discovery module shall additionally raise
the development error code SD_E_INV_ID. |

AUTSSAR

8.3.5 Sd_ConsumedEventGroupSetState

[SWS_Sd_00560] Definition of API function Sd_ConsumedEventGroupSetState
Upstream requirements: SRS_Eth_00162

Service Name Sd_ConsumedEventGroupSetState
Syntax Std_ReturnType Sd_ConsumedEventGroupSetState (
uintl6 SdConsumedEventGroupHandleId,
Sd_ConsumedEventGroupSetStateType ConsumedEventGroupState
)
Service ID [hex] 0x09
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) SdConsumedEventGroup | ID to identify the Consumed Eventgroup
Handleld
ConsumedEventGroup The state the EventGroup shall be set to.
State
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: State accepted
E_NOT_OK: State not accepted
Description This API function is used by the BswM to set the requested state of the EventGroupStatus.
Available via Sd.h

[SWS_Sd_00469]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00487

[If development error detection is enabled and the Service Discovery module has not
been initialized using Sd_Init(), the Sd_ConsumedEventGroupSetState function shall
raise the development error code SD_E_UNINIT and the Sd_ConsumedEventGroup
SetState function shall return E_NOT_OK |

[SWS_Sd_00470]
Upstream requirements: SRS_BSW_00337

[If ConsumedEventGroupSetState has an undefined value, the Service Discovery
module shall not store the requested mode and return E_NOT_OK.

In case development error detection is enabled, the Service Discovery module shall
additionally raise the development error code SD_E_INV_MODE. |

[SWS_Sd_00609]
Upstream requirements: SRS_BSW_00337

[If the parameter SdConsumedEventGroupHandleld has an invalid value, the Service
Discovery module shall not store the requested mode and return E_NOT_OK. In case
development error detection is enabled, the Service Discovery module shall addition-
ally raise the development error code SD_E_INV_ID. |

AUTSSAR

8.3.6 Sd_LocallpAddrAssignmentChg

[SWS_Sd_00412] Definition of API function Sd_LocallpAddrAssignmentChg
Upstream requirements: SRS_BSW_00310

Service Name Sd_LocallpAddrAssignmentChg
Syntax void Sd_LocalIpAddrAssignmentChg (
SoAd_SoConIdType SoConId,
TcpIp_IpAddrStateType State
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant for different SoConlds. Non Reentrant for the same SoConld.
Parameters (in) SoConld socket connection index specifying the socket connection where
the IP address assigment has changed.
State state of IP address assignment.
Parameters (inout) None
Parameters (out) None
Return value None
Description This function gets called by the SoAd if an IP address assignment related to a socket
connection changes (i.e. new address assigned or assigned address becomes invalid).
Available via Sd.h

]

[SWS_Sd_00471]

Upstream requirements: SRS_BSW_00406, SRS_BSW_00487
[If development error detection is enabled and the Service Discovery module has not
been initialized using Sd_Init(), the Sd_LocallpAddrAssignmentChg function shall raise

the development error code SD_E_UNINIT and the Sd_LocallpAddrAssignmentChg
function shall return without further action. |

[SWS_Sd_00472]
Upstream requirements: SRS_BSW_00337

[If the parameter State has an undefined value, the Service Discovery module shall
not store the requested mode and return.

In case development error detection is enabled, the Service Discovery module shall
additionally raise the development error code SD_E_INV_MODE. |

[SWS_Sd_00610]
Upstream requirements: SRS_BSW_00337

[If the parameter SoConld has an invalid value, the Service Discovery module shall not
store the requested mode and return. In case development error detection is enabled,
the Service Discovery module shall additionally raise the development error code SD__
E_INV_ID.]

AUTSSAR

8.3.7 Sd_SoConModeChg

[SWS_Sd_91003] Definition of callback function Sd_SoConModeChg
Upstream requirements: SRS_Eth_00058

Service Name

Sd_SoConModeChg

Syntax void Sd_SoConModeChg (
SoAd_SoConIdType SoConId,
SoAd_SoConModeType Mode
)
Service ID [hex] 0x43
Sync/Async Synchronous
Reentrancy Reentrant for different SoConlds. Non reentrant for the same SoConld.

Parameters (in)

SoConld Socket connection index specifying the socket connection with
the mode change.

Mode New socket connection mode.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Notification about a SoAd socket connection mode change, e.g. socket connection gets online.

Available via

Sd.h

8.3.8 Sd_ServiceGroupStart

[SWS_Sd_91006] Definition of API function Sd_ServiceGroupStart
Upstream requirements: SRS_Eth_00071, SRS_Eth_00161

Service Name

Sd_ServiceGroupStart

Syntax void Sd_ServiceGroupStart (
Sd_ServiceGroupldType ServiceGroupIld
)
Service ID [hex] 0x44
Sync/Async Synchronous
Reentrancy Reentrant for different SdServiceGroupS. Non reentrant for the same SdServiceGroup.

Parameters (in)

ServiceGroupld Id of SdServiceGroup to be started

Parameters (inout) None
Parameters (out) None
Return value None

Description

Starts a preconfigured SdServiceGroup. For example, OfferService entries will be sent out after
the call of Sd_ServiceGroupStart() for all ServerServives of a SdServiceGroup, which are not
requested yet.

Available via

Sd.h

AUTSSAR

8.3.9 Sd_ServiceGroupStop

[SWS_Sd_91007] Definition of API function Sd_ServiceGroupStop
Upstream requirements: SRS_Eth_00161, SRS_Eth_00071

Service Name

Sd_ServiceGroupStop

Syntax void Sd_ServiceGroupStop (
Sd_ServiceGroupIdType ServiceGroupId
)
Service ID [hex] 0x45
Sync/Async Synchronous
Reentrancy Reentrant for different SdServiceGroupS. Non reentrant for the same SdServiceGroup.

Parameters (in)

ServiceGroupld Id of SdServiceGroup to be stopped

Parameters (inout) None
Parameters (out) None
Return value None

Description

Stops a preconfigured SdServiceGroup. For example, StopOfferService entries will be sent out
after the call of Sd_ServiceGroupStop() for all ServerServices of a SdServiceGroup, which are
not requested by another SdServiceGroup.

Available via

Sd.h

8.3.10 Sd_AclUpdate

[SWS_Sd_91010] Definition of API function Sd_AclUpdate

Status:

DRAFT

Upstream requirements: SRS_Eth_00165

Service Name

Sd_AclUpdate (draft)

Syntax Std_ReturnType Sd_AclUpdate (
uintl6 SdServiceld,
uintl6é Servicelnstanceld,
const TcpIp_SockAddrType* RemoteAddrPtr,
Sd_AclUpdateType RequestType
)
Service ID [hex] 0x46
Sync/Async Synchronous
Reentrancy Reentrant for different Servicelds. Non reentrant for the same Serviceld.
Parameters (in) SdServiceld The service ID.
Servicelnstanceld The service instance ID.
RemoteAddrPtr The IP address to be added to or removed from this service ACL.
RequestType The type of the update request (add or remove from providers or
consumers ACL).
Parameters (inout) None
Parameters (out) None

Y%

AUTSSAR

A

Return value

Std_ReturnType

E_OK: ACL has been updated.
E_NOT_OK: ACL update failed

Description

Update Service ACL SdClientServiceAllowedProviders or SdServerServiceAllowedConsumers
depending on Client or Server service by adding or removing this IP address.

Tags: atp.Status=draft

Available via

Sd.h

8.3.11 Sd_RequestRoutingGroupEnable

[SWS_Sd_91011] Definition of API function Sd_RequestRoutingGroupEnable

Status:

Upstream requirements: SRS_Eth_00163

DRAFT

Service Name

Sd_RequestRoutingGroupEnable (draft)

Syntax Std_ReturnType Sd_RequestRoutingGroupEnable (
uint32 PduHeaderID,
SoAd_SoConIdType SoConId,
SoAd_RoutingGroupIdType RoutingGroupId
)
Service ID [hex] 0x47
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) PduHeaderID a combination of service ID and method ID
SoConld socket connection index specifying the socket connection on
which the PDUs has been received
RoutingGroupld routing group identifier
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: Request accepted
E_NOT_OK: Request denied

Description

Callback function, which will be provided to SoAd to be able to trigger the ACL policy check or
explicitly grant access on the received Method call request

Tags: atp.Status=draft

Available via

Sd.h

AUTSSAR

8.3.12 Sd_AcICheckEnable

[SWS_Sd 91012] Definition of API function Sd_AclCheckEnable
Upstream requirements: SRS_Eth_00165

[

Service Name

Sd_AcICheckEnable

Syntax Std_ReturnType Sd_AclCheckEnable (
boolean EnableAcl
)
Service ID [hex] 0x48
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) EnableAcl TRUE: Enable ACL policy check. FALSE: Disable ACL policy
check.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: ACL is Enabled/Disabled correctly.
E_NOT_OK: Enabling/Disabling ACL failed

Description

Enabling or Disabling ACL policy check for all service instance

Available via

Sd.h

8.4 Callback notifications

This is a list of functions provided for other modules.

8.4.1 Sd_RxiIndication

[SWS_Sd_00129] Definition of callback function Sd_RxIndication
Upstream requirements: SRS_BSW_00360

[

Service Name

Sd_RxIndication

Syntax void Sd_RxIndication (
PduldType RxPduld,
const PdulnfoTypex PdulnfoPtr
)
Service ID [hex] 0x42
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in)

RxPduld ID of the received PDU.

PdulnfoPtr Contains the length (SduLength) of the received PDU, a pointer
to a buffer (SduDataPtr) containing the PDU, and the MetaData
related to this PDU.

Y%

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value None
Description Indication of a received PDU from a lower layer communication interface module.
Available via Sd.h
|

[SWS_Sd_00473]

Upstream requirements: SRS_BSW_00406, SRS _BSW_00487
[If development error detection is enabled and the Service Discovery module has not
been initialized using Sd_Init(), the Sd_RxIndication function shall raise the develop-

ment error code SD_E_UNINIT and the Sd_RxIndication function shall return without
further action. |

[SWS_Sd_00474]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00369

[If RxPduld has an undefined value, the Service Discovery module shall discard the
message and return without further action.

In case development error detection is enabled, the Service Discovery module shall
additionally raise the development error code SD_E_INV_ID. |

[SWS_Sd_00475]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00480
[If development error detection is enabled: The function shall check parameter Pdu

InfoPtr for being a null pointer. In this case, the function shall raise the development
error SD_E_PARAM_POINTER and return without further action. |

8.5 Scheduled functions

The following functions are called directly by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

AUTSSAR

8.5.1 Sd_MainFunction

[SWS_Sd 00130] Definition of scheduled function Sd_MainFunction
Upstream requirements: SRS_BSW_00373

Service Name Sd_MainFunction
Syntax void Sd_MainFunction (
void
)
Service ID [hex] 0x06
Description -
Available via SchM_Sd.h

[SWS_Sd_00131]
Upstream requirements: SRS_BSW_00373, SRS_BSW_00432

[The Sd_MainFunction shall update all counters, timers, states and phases and pro-
cess the Rx and Tx data path. |

8.6 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_Sd_00133] Definition of mandatory interfaces required by module Sd
Upstream requirements: SRS_BSW_00415

[

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

SoAd_DisableSpecificRouting SoAd.h Disables routing of a group of PDUs in the SoAd
related to the RoutingGroup specified by parameter
id only on the socket connection identified by SoCon
Id.

AUTSSAR

API Function Header File Description

SoAd_EnableSpecificRouting SoAd.h Enables routing of a group of PDUs in the SoAd
related to the RoutingGroup specified by parameter
id only on the socket connection identified by SoCon
Id.

SoAd_GetLocalAddr SoAd.h Retrieves the local address (IP address and port)
actually used for the SoAd socket connection
specified by SoConld, the netmask and default
router

SoAd_GetPhysAddr SoAd.h Retrieves the physical source address of the Ethlf

controller used by the SoAd socket connection
specified by SoConld.

SoAd_GetRemoteAddr SoAd.h Retrieves the remote address (IP address and port)
actually used for the SoAd socket connection
specified by SoConld

SoAd_GetSoConMode SoAd.h Returns current state of the socket connection
specified by SoConld.

SoAd_IfSpecificRoutingGroupTransmit | SoAd.h Triggers the transmission of all If-TxPDUs identified
by the parameter id on the socket connection
specified by SoConld after requesting the data from
the related upper layer.

SoAd_IfTransmit SoAd.h Requests transmission of a PDU.

SoAd_IsConnectionReady SoAd.h API allows to check if a communication over this
socket connection is possible for a dedicated remote
address. It includes that the socket connection is
bound to a socket, a physical address is available for
the requested remote address and if a security
association is configured that a secured connection
is already established.

SoAd_ReleaseRemoteAddr SoAd.h By this API service the remote address (IP address
and port) of the specified socket connection shall be
released, i.e. set back to the configured remote
address setting.

SoAd_SetRemoteAddr SoAd.h By this API service the remote address (IP address
and port) of the specified socket connection shall be
set.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

AUTSSAR

[SWS_Sd_00134] Definition of optional interfaces requested by module Sd

Upstream requirements: SRS_BSW_00171

API Function Header File

Description

BswM_Sd_ClientServiceCurrentState BswM_Sd.h

Function called by Service Discovery to indicate
current state of the Client Service (available/down).

BswM_Sd_ConsumedEventGroup BswM_Sd.h
CurrentState

Function called by Service Discovery to indicate
current status of the Consumed Eventgroup
(available/down).

BswM_Sd_EventHandlerCurrentState BswM_Sd.h

Function called by Service Discovery to indicate
current status of the EventHandler (requested/
released).

Det_ReportError Det.h

Service to report development errors.

IdsM_ReportSecurityEvent ldsM.h

This APl is the interface to report security events to
the ldsM.

NvM_ReadBlock NvM.h

Service to copy the data of the NV block to its
corresponding RAM block.

NvM_WriteBlock NvM.h

Service to copy the data of the RAM block to its
corresponding NV block.

SoAd_CloseSoCon SoAd.h

This service closes the socket connection specified
by SoConld.

SoAd_GetSoConld SoAd.h

Returns socket connection index related to the
specified TxPduld.

SoAd_IfRoutingGroupTransmit SoAd.h

Triggers the transmission of all If-TxPDUs identified
by the parameter id after requesting the data from
the related upper layer.

SoAd_OpenSoCon SoAd.h

This service opens the socket connection specified
by SoConld.

SoAd_ReleaselpAddrAssignment SoAd.h

By this API service the local IP address assignment
used for the socket connection specified by SoConld
is released.

SoAd_RequestlpAddrAssignment SoAd.h

By this API service the local IP address assignment
which shall be used for the socket connection
specified by SoConld is initiated.

SoAd_SetUniqueRemoteAddr SoAd.h

This API service shall either return the socket
connection index of the SoAdSocketConnection
Group where the specified remote address (IP
address and port) is set or assign the remote
address to an unused socket connection from the
same SoAdSocketConnectionGroup.

AUTSSAR

8.6.3 Configurable Interfaces

8.6.3.1 Sd_CapabilityRecordMatchCallout

[SWS_Sd_91001] Definition of callout function <SdCapabilityRecordMatchCall-

out>

Upstream requirements: SRS_Eth_00111

[

Service Name

<SdCapabilityRecordMatchCallout>

Syntax

boolean <SdCapabilityRecordMatchCallout> (

PduIdType pdulD,

uint8 type,

uintl6 servicelD,

uintl6 instancelD,

uint8 majorVersion,

uint32 minorVersion,

const Sd_ConfigOptionStringTypex* receivedConfigOptionPtrArray,

const Sd_ConfigOptionStringType* configuredConfigOptionPtrArray
)

Service ID [hex]

0x10

Sync/Async

Synchronous

Reentrancy

Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in)

pdulD ID of the received I-PDU (used to to distinguish between different
SD instances)

type Content of the Type field of the received entry (see section 7.3.8)

servicelD Content of the Service ID field of the received entry (see section
7.3.8)

instancelD Content of the Instance ID field of the received entry (see section
7.3.8)

majorVersion Content of the Major Version field of the received entry (see

section 7.3.8)

minorVersion Content of the Minor Version field of the received entry (see

section 7.3.8)

receivedConfigOptionPtr NULL_PTR terminated array of pointers to zero-terminated
Array configuration strings received in the incoming entry, i.e. received
SD message (see Figure 6 - Configuration Option)

configuredConfigOption NULL_PTR terminated array of pointers to zero-terminated
PtrArray configuration strings configured in the local SD configuration (see
Figure 6 - Configuration Option)

Parameters (inout) None
Parameters (out) None
Return value boolean TRUE: The received configuration options match the configured

ones.
FALSE: The received configuration options do not match the
configured ones.

Description

This callout is invoked to determine whether the configuration options contained in a received
SD message match the ones configured in the local SD configuration (i.e., SdServerCapability
Record or SdClientCapabilityRecord).

Available via

Sd_Externals.h

]

This callout must be configured in the SdCapabilityRecordMatchCallout container. The
name of the callout functions is given by the SdCapabilityRecordMatchCalloutName
configuration element.

AUTSSAR

9 Sequence diagrams

9.1 CLIENT / SERVER: Sd_RxIndication

«module» «module»
Sd SoAd

T T
I I
! Sd_Rxindication(PduldType, const PdulnfoType*) !

determineSdIinstance(RxPduld):
[]4_—| Sdlnstance

SoAd_GetRemoteAddr(SoConld, IpAddrPtr)

P 1

saveMessageAndAddrForFurtherProcessing()

SoAd_ReleaseRemoteAddr(SoConld)

T
: Wildcard is written as *0.0.0.0" Ij
|
|

Figure 9.1: Sequence CLIENT / SERVER: Sd_RxIndication

AUTSSAR

9.2 SERVER: Response Behavior

«module»
Sd

J|;|]<__| disassemblelncomingMessage(): entries, options

«module»
SoAd

alt over received entries

[entry==FindService]

opt if entry isin Main Phase and entry is available/

buildOfferServiceEntry()

addToSendQueue(dest, entry, options,
I: sendTime="now"+delay)

determineRequestResponseDelay(SdServerTimerRequestResponseMinDelay,
I:]q_—l SdServerTimerRequestResponseMaxDelay)

[entry==SubscribeEventgrqup]

opt if eventgroup entry is available /

addClientToFanOut()

buildSubscribeAckEntry()
C

addToSendQueue(dest, entry, options,
I: sendTime="now")

[entry==StopSubscribeEyentgroup]

opt if client is subscribed /

removeClientFromFanOut()

Figure 9.2: Sequence SERVER: Response Behavior

AUTSSAR

9.3

CLIENT: Response Behavior

«module»
Sd

«module»
SoAd

disassemblelncomingMessage(entries, options)

loop over received entries/

[entry==0fferS¢|

rv|ce]

updateState()

opt Service contains TCP and SoCon not set up yet/

SoAd_SetUniqueRemoteAddr(SdClientServiceTcpRef, IpAddrPtr, TcpSoConld)

e — -
SoAd_OpenSoCon(SdClientServiceTcpRef)

opt Servi

ce contains UDP and SoCon not set up yet/

SoAd_SetUniqueRemoteAddr(SdClientServiceUdpRef, IpAddrPtr, UdpSoConld)

loop ove

rall active Eventgroups of this service inﬁance/

determineRequestResponseDelay(SdServerTimerRequestResponseMinDelay,
SdServerTimerRequestResponseMaxDelay)
buildSubscribeEventgroupEntry()

addToSendQueue(dest, entry, options, sendTime="Now"+delay)

All Subscribe Eventgroup entries to a
single client shall be send in a SD
message.

fService]

updateStateOfServiceAndRelatedEventgroups()
DisableRoutingForServiceAndEventgroups

0

cleanUpSoCons()

[entry==Subscri

EventgroupAck]

opt Service contains Multicast and SoCon not set up yet/

SoAd_RequestlpAddrAssignment(SoConld)

< _____________________________________

SoAd_EnableSpecificRouting(SdConsumedEventGroupMulticastActivationRef, SO&JF
L

Generator can determine SoConld by
SdConsumedEventGroupMulticastAct
ivationRef

g

Figure 9.3: Sequence CLIENT: Response Behavior

AUTSSAR

9.4 SERVER: buildOfferServiceEntry

«module» «module»
Sd SoAd
T T
| |
1 1
opt SdServerServiceUdpRef exis{s/ |
T |
| |
| SoAd_GetLocalAddr(Std_ReturnType, SoAd_SoConldType, |
: Tcplp_SockAddrType*, uint8*, Tcplp_SockAddrType*) - :
g
|
buildEndpointOptionUdp(Local AddrPtr) |
C : 1
I
|
|
|
L
opt SdServerServiceTcpRef exis(s/ |
|
|
SoAd_GetLocalAddr(Std_ReturnType, SoAd_SoConldType, |
Tcplp_SockAddrType*, uint8*, Tcplp_SockAddrType*) .y !
L

<_ ___

buildEndpointOptionTcp(LocalAddrPtr)
C

opt SdServerCapability and/or SdinstanceHostname exists/

i buildConfigurationOption()

buildOfferServiceEntry()

All options and entries used are filled out with static
parameters only; thus, they can be stored in rom.

Figure 9.4: Sequence SERVER: buildOfferServiceEntry

AUTSSAR

9.5 CLIENT: buildSubscribeEventgroupEntry

buildEndpointOptionUdp(LocalAddrPtr)

opt Routing not active /

SoAd_EnableSpecificRouting(SdConsumedEventGroupUdpActivationRef, UdpSoConld)
»

«module» «module»
Sd SoAd
T T
| |
1 1
opt SdConsumedEventGroupUdpActivationRef exists/ |
T | UdpSoConld is determined by choosing the
! ! SoConld from SoConGroup
! ! SdClientServiceUdpRef that fits the Endpoint
| SoAd_GetLocalAddr(UdpSoConld) - |
L

opt SdConsumedEventGroupT cpActivationRef exists/

SoAd_GetLocalAddr(TcpSoConld)

buildEndpointOptionTcp(LocalAddrPtr)

TcpSoConld is determined by choosing the
SoConld from SoConGroup SdClientServiceTcpRef
that fits the Endpoint

opt Routing not active/

1
SoAd_EnableSpecificRouting(SdConsumedEventGroupTcpActivationRef, TcpSoConld)
»

opt SdClientCapability and/or SdinstanceHostname exists/

buildConfigurationOption()
C

buildSubscribeEventgroupEntry()

Figure 9.5: Sequence CLIENT: buildSubscribeEventgroupEntry

AUTSSAR

9.6 SERVER: buildSubscribeEventgroupAckEntry

«module» «module»
Sd SoAd

opt SdEventHandlerMulticast exists/

: SoAd_Info::SoAd_GetRemoteAddr(return, SoConld, IpAddrPtr)

and/or SdEventActivationRef of

T
|
1}
|
: Generate SoConld from SdEventTriggeringRef
: SdEventHandlerMulticast

B —]

buildMulticastOption()
C

opt SdServerCapabilityRecord exists/

buildConfigurationOption()
[; ;
buildSubscribeEventgroupAckEntry()

Figure 9.6: Sequence CLIENT: buildSubscribeEventgroupAckEntry

9.7 CLIENT / SERVER: TransmitSdMessage

«module» «module»
Sd SoAd

E'r__l combineEntriesAndOptionsToSdMessage(entries, options)

based on destination and sendTime

entries and options are taken from send queue |l‘

alt

[unicag gntries]

SoAd_SetRemoteAddr(unicastAddress)

»
L
unicastAddress from SoAd_GetRemoteAddr in
St ettt Sd_RxIndication

[multicas| entries]

e] multicastSoConld generated based on
SdinstanceMulticastRxPdu

SoAd_IfTransmit(Std_ReturnType, PduldType, const PdulnfoType*)

Figure 9.7: Sequence CLIENT / SERVER: TransmitSdMessage

AUTSSAR

9.8 SERVER: AddClientToFanOut

SWC (Server)

«module»
BswM

«module» «module»
Sd SoAd
T T
IF numOfSubst++() :
opt if no SoConld is known for client and eventgroup (first for TCP, then for UDP)/ i
|
L L
loop Find SoConld in SoCt !
oop Find SoConld in oons/ | |
|
SoAd_GetRemoteAddr(Std_RetumnType, SoAd_SoConldType, o | [SoCon list
[Tcplp_SockAddrType*) Ll generated based
ISR 1|z
SdEventActivatio
nRef and/or
checkifAddrMatches() SdEventTriggerin
gRef

I

|

I

I

+

alt if SoCon not found/ |
[TCP] :
buildSubscribeNackentry() |

|

|

addToSendQueue() |

|

|

exit() :

I

[UDP] SoAd_SetUniqueRemoteAddr() |

rememberSoConld()

L

K e e e e e = =

o

e e —

SoAd_EnableSpecificRouting(SdEventHandlerT cp->SdEventActivationRef, TlcpSoCmId)

Ad_IfSpecificRoutingGroupTransmit(SdEventHandlerT cp->SdEventTriggeringRef, TcpSoConld)
1

opt
[NnumOf$ubs==0]
|

RTE ModeSwitch

BswM_Sd_EventHandlerCurrentState;

]

()

SDﬁEVENTGROUPfREQUESTEDﬁANDﬁAVAILABLE)

alt A

[MultigaptThreshhold==0 || numOfSubs<MulticastT hreshhold]

SoAd_EnableSpecificRouting(SdEventHandlerUdp->SdEventActivationRef, SoConld)

[num@f$ubs==MulticastThreshhold]

SoAd_EnableSpecificRouting(SdEventHandlerMulticast->SdEventActivationRs
SdEventHandlerMulticast->SdMulticastEventSoConRef)

»
L
=
loop over all subscribed clients (new client needs only Aclivate)/ : 1
SoAd_DisableSpecificRouting(SdEventHandlerUdp-- : SoConlds for
>SdEventActivationRef, SoConld) all relevant
S —— SoCons must
be determined
|
SoAd_IfSpecificRoutingGroupTransmit(SdEventHandlerUdp- :
>SdEventTriggeringRef, UdpSoConld) L
< ________________________________ ﬂ

-—A

Figure 9.8: Sequence SERVER: AddClientToFanOut

AUTSSAR

9.9

SERVER: Start

SWC (Server) «module»

BswM

«module»
Sd

| “Available"()

$erwceSetSl

| sd_Servel

«module»
SoAd

T

I

| SD_SERVER_SERVICE_DOWN

| G D
I

seq DOWN /

'
ate(SdServerServiceHandleld,

\ SD_SERVER_SERVICE_AVAILABLE)

i o)
RTE Mode Request

<l— — — —

L

check
HandlelD()

update
State()

T

opt LocalIPAddrAssignmen ==TCPIP_IPADDR_STATE_ASSIGNED/

SoAd_OpenSoCon(SoConld)

SdServerTimerlnitial OfferDelayMax)

startTimer(initialWait)

calculatelnitialWaitTimer(SdServerTimerlnitialOfferDelayMin,

T

CSD_SERVER_SERVICE_AVAILABLE)

Don’tanswer "Find entry” for this service
instance in Initial Wait Phase

seq Initial Wait Phase/

initialWaitTimerExpired()

buildOfferServiceEntry()

i

critical : Send combined with other entries and options/

addToSendQueue(dest, entry,
options, sendTime)

1]

opt

SdServerTimerlnitialOfferRepetitionMax > 0 /

seq Repetition Phase)

Timings for Repetition Phase:
SdServerServiceTimerRef -> SdServerTimer.
* SdServerTimerInitialOfferRepetitionBaseDe
lay

* SdServerTimerinitialOfferRepetitionMax

Timings for Main Phase "Send cyclic
Offers™:

SdServerServiceTimerRef ->
SdServerTimer.

* SdServerTimerOfferCyclicDelay

loop e.g. 30ms, 60ms, 120ms/
T
critical : Send combined with other entries and options/

J]‘__l buildOfferServiceEntryAndOptions()

addToSendQueue(dest, entry, options, sendTime)
C

seq Main Phase)

loop Send cyclic Offer Me&ages/

buildOptionsAndEntries()

addToSendQueue(dest, entry, options, sendTime)

Figure 9.9: Sequence configuration variants SERVER: Start

AUTSSAR

9.10 CLIENT: Start

SWC (Client) «module» «module» «module»
BswM Sd SoAd

T
l
Client == RELEASED 1 CSD_CLIENT_SERVICE_RELEASED)
l
1

| "Requested”() I

—————————— Sd7CIiemServiceSetState(CliemSeEviceHandleld s
L SD_CLIENT_SERVICE_REQUESTED)
25

RTE Mode Request check HandlelD()

update State()

startTimer(Initial Wait)

K ——————— — ———— —

T n

Client == REQUESTED | CSD_CLIENT_SERVICE_REQUESTE[D
I T
L seq Initial Wait Phase /J

Using SdClientServiceTimerRef look up: | -
SdClientTimerInitialFind DelayMin | Sd_RxIndication(PduldType, const PdulnfoType*)

T
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1}
I
I
I
]
SdClientTimerinitialFind DelayMax >I_I
Calculate random value [min:max] T
|
I
I
I
I
I
I
I

=> enter Main Phase immediately Iﬁ

timeExpired(Initial Wait)

buildFindEventgroupEntry()

addToSendQueue(dest, entry, options, sendTime)

seq Repetition Phase)

Timings for Repetition Phase: : . Sd_RxIndication(PduldType, const PdulnfoType*)
<
* SdClientTimerinitialFindRepetitionMax

I
I
I
I
L
SdClientServiceTimerRef -> SdServerTimer:
*SdClientTimerinitialFindRepetitonBaseDelay | | | fF—===—="="—"—"——-——————————————— — =
I
I

=> enter Main Phase immediately 5

I
I
loop e.g. 30ms, 60ms, 120ms/ i
T I
I
I
I
1

buildFindEventgroupEntry()
addToSendQueue(dest, entry, options, sendTime)

y

seq Main Phase

!
1

I

N I

Cyclic Find not allowed! [OfferNOT received] 1
! |

I

I

Sd_RxIndication(PduldType, const PdulnfoType*)

|
| @
d

[Offerlfecewed]

CSD7CLIENT75ERVICEiREQUESTEDiANDiAVAILABLE)

I
BswM_Sd_ClientServiceCurrentState(SdClientServiceHandleld,

SD_CLIENT_SERVICE_AVAILABLE) I

ModeSwitch(AVAILABLE),

Figure 9.10: Sequence CLIENT: Start

AUTSSAR

9.11 ACL: Service Offer

«module»
Sd

T

I

I
re

Sd_RxIndication[entry==0fferService]()

«module»
SoAd

SOME/IP-ACL check()

SoAd_SetUniqueRemoteAddr(SdClientServiceTcpRef, IpAddPtr, TcpSoConld)

SoAd_IsConnectionReady(SoConld, RemoteAddrPtr)

at

SoAd_EnableSpecificRouting(SdClientServiceActivationRef, TcpSoConld)

at

SoAd_EnableSpecificRouting(SdConsumedEventGroupT cpActivationRef, TcpSoConld)

at

Figure 9.11: ACL check Sequence for Service Offer

9.12 ACL: SubscribeEventgroup

«module»

Sd_RxIndication: [entry==SubscribeEventgroup]()

-

«module»
SoAd

SoAd_lIsConnectionReady(SoConld, RemoteAddrPtr)

SOME/IP-ACL check()
L

SoAd_EnableSpecificRouting(SdEventHandlerT cp->SdEventActivationRef, TcpSoConldL[

SoAd_EnableSpecificRouting(SdEventHandlerTcp->SdEventTriggeringRef, TcpSoConld)

Figure 9.12: ACL check Sequence for SubscribeEventgroup

AUTSSAR

9.13 ACL: Method call request

«module» «module»
Sd SoAd
I I
| |
| |
| |
J|_< Sd_RequestRoutingGroupEnable(PduHeaderlD, SoConld, RoutingGroupld) :

SoAd_IsConnectionReady(SoConld, RemoteAddrPtr)

SOME/IP-ACL check()

SoAd_EnableSpecificRouting(SdServerServiceActivationRef, TcpSoConld)

™

Figure 9.13: ACL check Sequence for Method Call Request

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
SD.

Chapter 10.3 specifies published information of the module SD.

[SWS_Sd_00135]
Upstream requirements: SRS_BSW_00159

[The Service Discovery module shall support tool based configuration. |

[SWS_Sd_00136]
Upstream requirements: SRS_BSW_00393, SRS_BSW_00167

[The configuration tool shall check the consistency of the configuration parameters at
system configuration time. |

[SWS_Sd_00459]
Upstream requirements: SRS_Eth_00069

[For all SD messages sent and received via the Socket Adaptor module, the header
mode shall be activated. |

[SWS_Sd_00460]
Upstream requirements: SRS_Eth_00069

[For all SD messages sent and received via the Socket Adaptor module, the SoAdTx-
PduHeaderld and the SoAdRxPduHeaderld shall be set to OxFFFF8100 respectively
by Socket Adaptor. |

Note: This ensures that the SoAd creates the first part of the SOME/IP header (32bit
Message ID followed by a 32bit Length field) as needed for SOME/IP-SD. The remain-
der of the SD messages is created by this module (see chapter 7.3).

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

AUTSSAR

10.2 Containers and configuration parameters

The configuration parameters as defined in this chapter are used to create a data model
for an AUTOSAR tool chain. The realization in the code is implementation specific.

10.2.1 Sd

[ECUC_SD_00001] Definition of EcucModuleDef Sd |

Module Name

Sd

Description

Configuration of the Service Discovery module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Dependency

SdConfig 1 This container contains the configuration parameters and sub
containers of the AUTOSAR Service Discovery module.
SdGeneral 1 This container lists the general configuration parameters for the

Service Discovery module.

AUTSSAR

Sd: EcucModuleDef SdServiceGroup: Pdu: EcucParamConfContainerDef
EcucParamConfContainerDef e ————
lowerMultiplicity = 0 —— lowerMultiplicity = 0
upperMultiplicity = 1 +subContainer lowsrMultiplicity = 0 upperMultiplicity = *
upperMultiplicity = *
. ? +deslination/|\ +destination +destination
+container
] SdinstanceTxPdu: +reference SATxPduRef:
SdConfig: EcucParamConfContainerDef ESToRETeTercehal
EcucParamConfContainerDef e
lowerMultiplicity = 1
i . erMultiplicit
+subConta|ne? +subContainer RRRSTEE RIS, SdRxPduld:
EcuclntegerParamDef
Sdinstance: +parameter
EcucParamConfContainerDef SdinstanceMulticastRxPdu: min =0
EcucParamConfContainerDef max = 65535
lowerMultiplicity = 0 +subContaine
upperMultiplicity = * lowerMultiplicity = 1
upperMultiplicity = +reference SdRxPduRef:)
EcucReferenceDef h
SdlinstanceUnicastRxPdu: +reference SdRxPduRef:
. EcucParamConfContainerDef EcucReferenceDef
+subContainer
lowerMultiplicity = 1
Multiplicity = 1 :
upperMultiplicity +parameter SdRxPduld:
EcucIntegerParamDef
min =0
max = 65535
SdServerService:

EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = *

SdClientService:
EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = *

>

EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 0

upperMultiplicity = * SdClientTimer:

+subContainer| EcucParamConfContainerDef

> lowerMultiplicity = 0
Multiplicity = *
+parameter SdInstanceHostname: U R
EcucStringParamDef
lowerMultiplicity = 0 SdInstancelLocal AdressCheckLength:
upperMultiplicity = 1 EcucIntegerParamDef
+parameter -
> min =0
max = 128
lowerMultiplicity = 0
upperMultiplicity = 1
SdinstanceDemEventParameterRefs:
EcucParamConfContainerDef SD_E_MALFORMED_MSG:
EcucReferenceDef
lowerMultiplicity = 0 +reference
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true
+subContainer SD E OUT OF RES:
+reference EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true
+reference SD_E_SUBSCR_NACK_RECV:
EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true
+destination\|/+destination‘@destination
DemEventid:
EcuclntegerParamDef DemEventParameter:
+parameter EcucParamConfContainerDef
max = 65535
min =1 upperMultiplicity = 65535
symbolicNameValue = true lowerMultiplicity = 1

Figure 10.1: Sd Container

AUTSSAR

10.2.2 SdGeneral

[ECUC_SD_00002] Definition of EcucParamConfContainerDef SdGeneral |

Container Name

SdGeneral

Parent Container

Sd

Description

This container lists the general configuration parameters for the Service Discovery

module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdDevErrorDetect 1 [ECUC_SD_00006]
SdEnableAclPolicyCheck 1 [ECUC_Sd_00146]
SdEnableSecurityEventReporting 1 [ECUC_Sd_00157]
SdMainFunctionCycleTime 1 [ECUC_SD_00008]
SdSetRemAddrOfClientRxMulticastSoCon 1 [ECUC_SD_00139]
SdSubscribeEventgroupRetryEnable 1 [ECUC_SD_00131]
SdVersionInfoApi 1 [ECUC_SD_00007]
Included Containers

Container Name Multiplicity Dependency

SdSecurityEventRefs

1

Container for the references to IdsMEvent elements representing
the security events that the SD module shall report to the IdsM in
case the coresponding security related event occurs (and if Sd
EnableSecurityEventReporting is set to "true"). The
standardized security events in this container can be extended
by vendor-specific security events.

[ECUC_SD_00006] Definition of EcucBooleanParamDef SdDevErrorDetect |

Parameter Name

SdDevErrorDetect

Parent Container

SdGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Sd_00146] Definition of EcucBooleanParamDef SdEnableAclPolicyCheck

Status: DRAFT

Parameter Name

SdEnableAclPolicyCheck

Parent Container

SdGeneral

Description Switches the Sd AclPolicy check:
« true: feature is enabled.
« false: feature is disabled.
Tags: atp.Status=draft
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Sd_00157] Definition of EcucBooleanParamDef SdEnableSecurityEvent

Reporting |

Parameter Name

SdEnableSecurityEventReporting

Parent Container

SdGeneral

Description Switches the reporting of security events to the IdsM:
« true: reporting is enabled.
« false: reporting is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_SD _00008] Definition of EcucFloatParamDef SdMainFunctionCycleTime

[

Parameter Name

SdMainFunctionCycleTime

Parent Container

SdGeneral

Description This parameter defines the cycle time in seconds of the periodic calling of Sd main
function.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[|

AUTSSAR

A
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_SD 00139] Definition of EcucBooleanParamDef SdSetRemAddrOfClient
RxMulticastSoCon |

Parameter Name SdSetRemAddrOfClientRxMulticastSoCon
Parent Container SdGeneral
Description If SdSetRemAddrOfClientRxMulticastSoCon is set to TRUE, the Service Discovery

module shall choose an multicast socket connection which match to the received
Endpoint option of the corresponding OfferService. If no particular socket connection
exist, then an unused socket connection with its remote address set to wildcard shall be
used and the remote address shall be updated accordingly. If SdASetRemAddrOfClient
RxMulticastSoCon is set to FALSE, the Service Discovery shall choose an unused
socket connection with its remote address set to wildcard and skip to update the
remote address, i.e. the wildcard for the remote address is kept.

Note: setting SdSetRemAddrOfClientRxMulticastSoCon to FALSE supports the re-use
of a multicast socket connection for multiple ClientServices which are located on the
same ECU and subscribed to ServerServices which are located on different ECUs.
The configuration of the ECU where the ClientServices are located, could be simplified
by only configuring one socket connection within the multicast socket connection group.

Multiplicity 1
Type EcucBooleanParamDef
Default value true
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency If SdSetRemAddrOfClientRxMulticastSoCon is set to FALSE, then all affected Socket

Connections shall set SoAdSocketMsgAcceptanceFilterEnabled to FALSE. Please
note, a socket connection with SoAdSocketMsgAcceptanceFilterEnabled set to FALSE,
accept all received events without checking the remote source address.

]

[ECUC_SD 00131] Definition of EcucBooleanParamDef SdSubscribeEventgroup
RetryEnable |

Parameter Name SdSubscribeEventgroupRetryEnable

Parent Container SdGeneral

Description Switch to enable or disable the retry functionality to subscribe to Eventgroups of Server
Services with TTL set to OXFFFFFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

J
[ECUC_SD_00007] Definition of EcucBooleanParamDef SdVersionIinfoApi |

Parameter Name

SdVersionInfoApi

Parent Container

SdGeneral

Description Enables and disables the version info API.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Sd_00150] Definition of EcucParamConfContainerDef SdSecurityEvent

Refs [
Container Name SdSecurityEventRefs
Parent Container SdGeneral

Description Container for the references to ldsMEvent elements representing the security events
that the SD module shall report to the IdsM in case the coresponding security related
event occurs (and if SdEnableSecurityEventReporting is set to "true"). The
standardized security events in this container can be extended by vendor-specific
security events.

Multiplicity 1

Post-Build Variant Multiplicity

false

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SEV_SOME_IP_ACL_CHECK_FAILED_EVENT_- 0..1 [ECUC_Sd_00152]
SUBSCRIPTION

SEV_SOME_IP_ACL_CHECK_FAILED_METHOD_- 0..1 [ECUC_Sd_00153]
REQUEST

SEV_SOME_IP_ACL_CHECK_FAILED_OFFER 0..1 [ECUC_Sd_00151]
SEV_SOME_IP_SD_DUPLICATE_OFFER 0..1 [ECUC_Sd_00156]

No Included Containers

AUTSSAR

[ECUC_Sd_00152]
CHECK_FAILED_EVENT_SUBSCRIPTION

Status: DRAFT

Definition of EcucReferenceDef SEV _SOME_IP_ACL

Parameter Name

SEV_SOME_IP_ACL_CHECK_FAILED_EVENT_SUBSCRIPTION

Parent Container SdSecurityEventRefs

Description ACL check for a subscribe event group request failed.
Tags: atp.Status=draft

Multiplicity 0..1

Type Symbolic name reference to IdsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[

ECUC_Sd_00153]

Definition of

CHECK_FAILED_ METHOD_ REQUEST

Status: DRAFT

EcucReferenceDef SEV_SOME_IP_ACL _

Parameter Name

SEV_SOME_IP_ACL_CHECK_FAILED_METHOD_REQUEST

Parent Container SdSecurityEventRefs

Description ACL check for a method request failed.
Tags: atp.Status=draft

Multiplicity 0..1

Type Symbolic name reference to [dsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Sd_00151] Definition of EcucReferenceDef SEV_SOME_IP_ACL _
CHECK_FAILED_OFFER

Status: DRAFT

Parameter Name SEV_SOME_IP_ACL_CHECK_FAILED_OFFER
Parent Container SdSecurityEventRefs
Description ACL check for a service offer failed.
Tags: atp.Status=draft
Multiplicity 0..1
Type Symbolic name reference to IdsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Sd_00156] Definition of EcucReferenceDef SEV_SOME_IP_SD DUPLI-
CATE_OFFER

Status: DRAFT

Parameter Name SEV_SOME_IP_SD_DUPLICATE_OFFER
Parent Container SdSecurityEventRefs
Description SD rejected Offer for a Servicelnstance which is already offered by a different endpoint

and TTL still valid.
Tags: atp.Status=draft

Multiplicity 0.1

Type Symbolic name reference to ldsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

AUTSSAR

SdGeneral: +parameter SdDevErrorDetect:

EcucParamConfContainerDef @ EcucBooleanParamDef

defaultValue = false

+parameter SdVersionInfoApi:
EcucBooleanparamDef

defaultValue = false

SdMainFunctionCycleTime:
+parameter EcucFloatParamDef

> -
min =0
max = INF

+parameter SdSubscribeEventgroupRetryEnable:
EcucBooleanParamDef

defaultValue = false

+parameter SdEnableSecurityEventReporting:
> EcucBooleanParamDef

defaultValue = false

SdSetRemAddrOfClientRxMulticastSoCon:

+parameter
EcucBooleanParamDef

defaultValue = true

+parameter SdEnableAclPolicyCheck:
EcucBooleanParamDef

defaultValue = false

+subContainer

- 5 IdsMEvent:
SdSecurityBventRefs: SEV_SOME_IP_AGL_CHECK_FAILED_OFFER: ~csrevent:
EcucParamConfContainerDef EcucParamConfContainerDef

‘ EcucReferenceDef

+destination

lowerMultiplicity = 1
upperMultiplicity = 65535

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_SOME_IP_ACL_CHECK_FAILED_EVENT_SUBSCRIPTION:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_SOME_IP_ACL_CHECK_FAILED_METHOD_REQUEST:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_SOME_IP_SD_DUPLICATE_OFFER: EcucReferenceDef

+reference lowerMultiplicity = 0 +destination

upperMultiplicity = 1
requiresSymbolicNameValue = true

Figure 10.2: SdGeneral Container

10.2.3 SdConfig

[ECUC_SD_00003] Definition of EcucParamConfContainerDef SdConfig |

AUTSSAR

Container Name

SdConfig

Parent Container

Sd

Description

This container contains the configuration parameters and sub containers of the
AUTOSAR Service Discovery module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdAcICheckBlockDescriptorRef 0..1 [ECUC_Sd_00154]

Included Containers

Container Name Multiplicity Dependency

SdCapabilityRecordMatchCallout 0..* Callout that is invoked by the Sd implementation to determine

whether the configuration options contained in the entries of a
received SD message match the capability record elements
configured in SdServerCapabilityRecord or SdClientCapability

Record.

SdlInstance 0.” This container represents an instance of the SD; i.e. the SD
configuration for a certain link.

SdServiceGroup 0..” This container represents a group of ClientServices and Server

Services, respectively.

]

[ECUC_Sd_00154] Definition of EcucReferenceDef SdAclCheckBlockDescriptor

Ref

Status: DRAFT

Parameter Name

SdAclCheckBlockDescriptorRef

Parent Container

SdConfig

Description Reference to the Nvm block description in the Nvm module configuration in which the
Acl will be stored.
Tags: atp.Status=draft

Multiplicity 0..1

Type Symbolic name reference to NvMBlockDescriptor

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

10.2.4 SdCapabilityRecordMatchCallout

[ECUC_SD 00124] Definition of EcucParamConfContainerDef SdCapability
RecordMatchCallout |

Container Name SdCapabilityRecordMatchCallout
Parent Container SdConfig
Description Callout that is invoked by the Sd implementation to determine whether the configuration

options contained in the entries of a received SD message match the capability record
elements configured in SdServerCapabilityRecord or SdClientCapabilityRecord.

Multiplicity 0..*

Post-Build Variant Multiplicity false

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

SdCapabilityRecordMatchCalloutName 1 [ECUC_SD_00125]

No Included Containers

]

[ECUC_SD 00125] Definition of EcucFunctionNameDef SdCapabilityRecord
MatchCalloutName |

Parameter Name SdCapabilityRecordMatchCalloutName

Parent Container SdCapabilityRecordMatchCallout

Description Function name (i.e., C-identifier) of the SdCapabilityRecordMatchCallout.
Multiplicity 1

Type EcucFunctionNameDef

Default value -
Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Dependency

AUTSSAR

SdConfig:
EcucParamConfContainerDef

+subContainer

SdCapabilityRecordMatchCallout:
EcucParamConfContainerDef

+parameter| SdCapabilityRecordMatchCalloutName:
EcucFunctionNameDef

>

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.3: SdCapabilityRecordMatchCallout Container

10.2.5 SdServiceGroup

[ECUC_SD_00134] Definition of EcucParamConfContainerDef SdServiceGroup |

Container Name

SdServiceGroup

Parent Container

SdConfig

Description gontains the configuration parameters of the AUTOSAR SD module’s SdServiceGroup
Multiplicity 0..”
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
SdServiceGroupHandleld 1 [ECUC_SD_00135]

No Included Containers

]

[ECUC_SD_00135] Definition of EcucintegerParamDef SdServiceGroupHandleld

[

Parameter Name

SdServiceGroupHandleld

Parent Container

SdServiceGroup

Description The numerical value used as the ID of this SdServiceGroup. The SdServiceHandleld is
required by the API calls to start and stop SdServiceGroupS.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0.. 65535 |

Default value

Post-Build Variant Value

false

AUTSSAR

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
SdServiceGroup: SdServiceGroupHandleld:
EcucParamConfContainerDef EcucintegerParamDef
lowerMultiplicity = 0 +parameter min =0
upperMultiplicity = * max = 65535

10.2.6 SdlInstance

lowerMultiplicity = 1
upperMultiplicity = 1
symbolicNameValue = true

Figure 10.4: SdServiceGroup Container

[ECUC_SD_00084] Definition of EcucParamConfContainerDef Sdinstance |

Container Name

Sdlinstance

Parent Container

SdConfig

Description This container represents an instance of the SD; i.e. the SD configuration for a certain
link.

Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdInstanceHostname 0..1 [ECUC_SD_00012]

SdinstancelLocalAdressCheckLength 0..1 [ECUC_SD_00128]

Included Containers

Container Name Multiplicity Dependency

SdClientService 0.* This container specifies all parameters used by Client services.

SdClientTimer 0.* This container specifies all timers used by the Service Discovery
module for Client Services.

SdInstanceDemEventParameter 0..1 Container for the references to DemEventParameter elements

Refs which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

SdInstanceMulticastRxPdu 1 This container specifies the received PDU.

SdinstanceTxPdu 1 This container specifies the transmitted PDU.

SdInstanceUnicastRxPdu 1 This container specifies the received PDU.

SdServerService 0..* This container specifies all parameters used by Server services.

SdServerTimer 0..* This container specifies all timers used by the Service Discovery
module for Server Services.

AUTSSAR

[ECUC_SD_00012] Definition of EcucStringParamDef SdinstanceHosthame |

Parameter Name SdlnstanceHostname

Parent Container Sdinstance

Description Configuration parameter to specify the Hostname.
Multiplicity 0..1

Type EcucStringParamDef

Default value -
Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00128] Definition of EcucintegerParamDef SdinstanceLocalAdress
CheckLength |

Parameter Name SdinstancelLocalAdressCheckLength
Parent Container Sdinstance
Description This item describes on how many bits of the addresses shall be compared to

determine, if a remote address is acceptable to be used. This shall support IPv4 (0..32)
and IPv6 (0..128). If this item is not present, the security checks use the configured
netmask instead. "0" meaning not to check at all. For example "8" means that the first 8
bits of a remote address must be equal to the local address to be considered

acceptable.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..128

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.7 SdClientService

[ECUC_SD_00005] Definition of EcucParamConfContainerDef SdClientService |

AUTSSAR

Container Name

SdClientService

Parent Container Sdinstance
Description This container specifies all parameters used by Client services.
Multiplicity 0.~

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdClientServiceAutoRequire 1 [ECUC_SD_00143]
SdClientServiceHandleld 1 [ECUC_SD_00079]
SdClientServiceld 1 [ECUC_SD_00020]
SdClientServicelnstanceld 1 [ECUC_SD_00022]

SdClientServiceMajorVersion

—_

[ECUC_SD_00070]

SdClientServiceMinorVersion

[ECUC_SD_00071]

]
SdMaxNumOflpAddressesinAcl 0..1 [ECUC_Sd_00158]
SdVersionDrivenFindBehavior 0..1 [ECUC_SD_00140]
SdClientCapabilityRecordMatchCalloutRef 0..1 [ECUC_SD_00127]
SdClientServiceMulticastRef 0..1 [ECUC_Sd_00145]
SdClientServiceTcpRef 0..1 [ECUC_SD_00100]
SdClientServiceTimerRef 1 [ECUC_SD_00103]
SdClientServiceUdpRef 0..1 [ECUC_SD_00101]
SdServiceGroupRef 0..” [ECUC_SD_00137]
Included Containers
Container Name Multiplicity Dependency
SdBlocklistedVersions 0..1 Collection of blocklisted versions.

Tags: atp.Status=draft
SdClientCapabilityRecord 0..* Sd uses capability records to store arbitrary name/value pairs

conveying additional information about the named service.

The following use cases are supported: 1) Key present, with no
value (e.g. "passreq" -- password required for this service)

2) Key present, with empty value (e.g. "Pluglns=" server
supports plugins, but none are presently installed)

3) Key present, with non-empty value (e.g. "Plug
Ins=JPEG,MPEG2,MPEG4")

SdClientServiceAllowedProvider 0..* The container defines the allowed providers for this Client
Service.
Tags: atp.Status=draft

SdConsumedEventGroup 0..* This container specifies all parameters for consumed event
groups.

SdConsumedMethods 0..1 Container element for representing the data path for accessing

the server methods.

AUTSSAR

[ECUC_SD 00143] Definition of EcucBooleanParamDef SdClientServiceAutoRe-

quire |

Parameter Name

SdClientServiceAutoRequire

Parent Container

SdClientService

Description If existing and set to true, this Service will be set to "required" on start.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

SdClientServiceAutoRequire could only be set to true, if the SdClientService is NOT
referencing a SdServiceGroup

]

[ECUC_SD _00079] Definition of EcucintegerParamDef SdClientServiceHandleld

[

Parameter Name

SdClientServiceHandleld

Parent Container

SdClientService

Description The Handleld by which the BswM can identify this Client Service Instance.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

withAuto = true

]

[ECUC_SD_00020] Definition of EcuclntegerParamDef SdClientServiceld |

Parameter Name

SdClientServiceld

Parent Container

SdClientService

Description Id to identify the service. This is unique for the service interface.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 65534

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD 00022] Definition of EcucintegerParamDef SdClientServicelnstance

Id [

Parameter Name

SdClientServicelnstanceld

Parent Container

SdClientService

Description Configuration parameter to specify Instance Id of the service as used in SD entries.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65534

Default value

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD _00070] Definition of EcuclntegerParamDef SdClientServiceMajorVer-

sion [

Parameter Name

SdClientServiceMajorVersion

Parent Container

SdClientService

Description Major version number of the Service as used in the SD entries.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..254

Default value

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD _00071] Definition of EcuclntegerParamDef SdClientServiceMinorVer-

sion |

Parameter Name

SdClientServiceMinorVersion

Parent Container

SdClientService

Description Minor version number of the Service as used in the SD Service Entries. If configured to
Oxffffffff (any), SD will accept all Minor Versions.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value

Value Configuration Class

true
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time

| X | VARIANT-POSTBUILD

Dependency

]

[ECUC_Sd_00158] Definition of EcuclntegerParamDef SdMaxNumOflpAddresses

InAcl |

Parameter Name

SdMaxNumOflpAddressesinAcl

Parent Container

SdClientService, SdServerService

Description The maximum number of IP addresses to be saved in the ACL.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1..255

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_SD 00140]
FindBehavior

Status: DRAFT

Definition of EcucEnumerationParamDef SdVersionDriven

Parameter Name

SdVersionDrivenFindBehavior

Parent Container

SdClientService

VERSION

Description Defined the possible acceptance kinds for required service instances.
Tags: atp.Status=draft
Multiplicity 0..1
Type EcucEnumerationParamDef
Range EXACT_OR_ANY_MINOR_ Search for ANY or specific minor version service

instance and select either ALL returned service
instances (in case of ANY) or exactly the specific
minor version service instances defined in Sd
ClientServiceMinorVersion.

MINIMUM_MINOR_VERSION

Search for ANY minor version service instance
and select only those service instances which
have an equal or greater minor version than
given in SdClientServiceMinorVersion.

Default value

EXACT_OR_ANY_MINOR_VERSION

Post-Build Variant Multiplicity

false

Y%

AUTSSAR

A

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00127] Definition of EcucReferenceDef SdClientCapabilityRecord
MatchCalloutRef |

Parameter Name

SdClientCapabilityRecordMatchCalloutRef

Parent Container

SdClientService

Description Reference to a SdCapabilityRecordMatchCallout, The referenced SdCapabilityRecord
MatchCallout is invoked to determine whether the configuration options contained in
the entries of a received SD message match the client’s configured SdClientCapability
Record elements.

Multiplicity 0..1

Type Reference to SdCapabilityRecordMatchCallout

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [XXX X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_Sd_00145] Definition of EcucReferenceDef SdClientServiceMulticastRef

[

Parameter Name

SdClientServiceMulticastRef

Parent Container

SdClientService

Description Reference to the SoAdSocketConnection representing the data path (UDP) for
communication with the server. This element is also used to set the remote address of
the server.

This is used, if a ClientService subscribes with a Consumed Eventgroup multicast
endpoint. This is an alternative to subscribe with a Consumed Eventgroup unicast
endpoint (see SdClientServiceUdpRef).

Please note: usage of this reference is mutually exclusive to SdClientServiceUdpRef.

Multiplicity 0..1

Type Reference to SoAdSocketConnectionGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

\Y%

AUTSSAR

A
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

This parameter is only valid if SdClientServiceUdpRef is NOT configured.

]

[ECUC_SD_00100] Definition of EcucReferenceDef SdClientServiceTcpRef |

Parameter Name

SdClientServiceTcpRef

Parent Container

SdClientService

Description Reference to the SoAdSocketConnection representing the data path (TCP) for
communication with methods.
This element is also used to set the remote address of the server and to open the TCP
connection.

Multiplicity 0..1

Type Reference to SoAdSocketConnectionGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

XX X[X|X|[X

VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00103] Definition of EcucReferenceDef SdClientServiceTimerRef |

Parameter Name

SdClientServiceTimerRef

Parent Container

SdClientService

Description The reference of the SdClientTimer container for this service.
Multiplicity 1
Type Reference to SdClientTimer

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD_00101] Definition of EcucReferenceDef SdClientServiceUdpRef |

Parameter Name

SdClientServiceUdpRef

Parent Container

SdClientService

Description

Reference to the SoAdSocketConnection representing the data path (UDP) for
communication with methods.

This element is also used to set the remote address of the server.

This is used, if a ClientService subscribes with a Consumed Eventgroup unicast
endpoint. This is an alternative to subscribe with a Consumed Eventgroup multicast
endpoint. (see SdClientServiceMulticastRef).

Please note: usage of this reference is mutually exclusive to SdClientServiceMulticast
Ref.

Multiplicity

0..1

Type

Reference to SoAdSocketConnectionGroup

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

This parameter is only valid if SdClientServiceMulticastRef is NOT configured.

]

[ECUC_SD_00137] Definition of EcucReferenceDef SdServiceGroupRef |

Parameter Name

SdServiceGroupRef

Parent Container

SdClientService

Description Reference to the SdServiceGroupS this SdClientService belongs to.
Multiplicity 0..*

Type Reference to SdServiceGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [X[X]|X|[X

Post-build time VARIANT-POST-BUILD

Dependency

AUTSSAR

SdClientService:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

EcucIntegerParamDef
+parameter
min =0
max = 65535
Wl = 11D SdClientServiceMajorVersion:
symbolicNameValue = true +parameter EcucintegerParamDef
min =0
SdClientServiceld: max = 254
+parameter EcucintegerParamDef
min =0
max = 65534 SdClientServiceMinorVersion:
+parameter EcuclntegerParamDef
min =0
SdClientServicelnstanceld: max = 4294967295
+parameter EcucintegerParamDef
min =0
max = 65534
SdClientServiceTcpRef:]
+reference EcucReferenceDef +destination SoAdSocI‘etConnecnor_lGroup:
EcucParam ConfContainerDef
lowerMultiplicity = 0 —
upperMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = *
SdClientServiceUdpRef:
+reference EcucReferenceDef +destination
lowerMultiplicity = 0
upperMultiplicity = 1
SdClientSeniceMulticastRef: +destination
+reference EcucReferenceDef
lowerMultiplicity = 0 (from SoAd)
upperMultiplicity = 1
SoAdRoutingGroupld: SoAdRoutingGroup:
EcucintegerParamDef EcucParamConfContainerDef
+parameter
min =0 lowerMultiplicity = 0
max = 65535 upperMultiplicity = *
withAuto = true
symbolicNameValue = true|
(from SoAd) +destination Ad)
SdConsumedMethods: SdClientServiceActivationRef:
+subContainer EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = 1
requiresSymbolicNameValue = true
SdClientServiceTimerRef: SdClientTimer:
EcucReferenceDef +destination EcucParamConfContainerDef
+reference —
lowerMultiplicity lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *
SdClientCapabilityRecord: +parameter| SdClientServiceCapabilityRecordKey:
EcucParamConfContainerDef EcucStringParamDef
lowerMultiplicity = 0
upperMultiplicity = *
SdClientServiceCapabilityRecordValue:
| +parameter EcucStringParamDef
+subContainer
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.5: SdClientService Container

AUTSSAR

SdClientService: | SdBlocKistedVersions: SdBlocKistedMinorVersions:
i +subContainer i
EcucParamConfContainerDef ® EcucParamConfContainerDef +parameter EcucintegerParamDef
lowerMultiplicity = 0 lowerMultiplicity = 0 min =0
upperMultiplicity = * upperMultiplicity = 1 max = 4294967295
lowerMultiplicity = 0
upperMultiplicity = *
SdConsumedEventGroup:
+subContainercucParamConfContainerDef
— lowerMultiplicity = 0
upperMultiplicity = *
+reference SdSernviceGroup:
SdServiceGroupRef: EcucReferenceDef EcucParamConfContainerDef
lowerMultiplicity = 0 +destination |owerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
SdClientServiceAutoRequire:
EcucBooleanParamDef
+parameter ——— SdMaxNumOfipAddressesinAcl:
defaultvalue = false EcuclintegerParamDef
lowerMultiplicity = 1 —
upperMultiplicity = 1 2:}(1 e
+parameter lowerMultiplicity = 0
o upperMultiplicity = 1
SdClientCapabilityRecordMatchCalloutRef: SdCapabilityRecordMatchCallout:
+reference EcucReferenceDef +destinationEcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *
SdVersionDrivenFindBehavior: +literal MINIMUM_MINOR_VERSION:
EcucEnumerationParamDef >— EcucEnumerationLiteral Def
‘+parameter defaultValue = EXACT_OR_ANY_MINOR_VERSION
lowerMultiplicity = 0
upperMultiplicity = 1 .
+literal [EXACT_OR_ANY_MINOR_VERSION:
EcucEnumerationLiteralDef
+subContainer
SdClientServiceAllowedProvider: +parameter SdlpAddress:

EcucParamConfContainerDef o— EcucStringParamDef|

lowerMultiplicity = 0
upperMultiplicity = *

SdipAddressType: . .
EcucEnumerationParamDef Hiteral w
EcucEnumerationLiteral Def

+parameter

+literal SD_AF_INET6:
EcucEnumerationLiteralDef

Figure 10.6: SdClientService Container

10.2.8 SdBlocklistedVersions

[ECUC_SD _00141] Definition of EcucParamConfContainerDef SdBlocklistedVer-
sions

Status: DRAFT

AUTSSAR

Container Name SdBlocklistedVersions

Parent Container SdClientService

Description Collection of blocklisted versions.
Tags: atp.Status=draft

Multiplicity 0..1

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdBlocklistedMinorVersions 0..” [ECUC_SD_00142]

No Included Containers

]

[ECUC_SD 00142] Definition of EcucintegerParamDef SdBlocklistedMinorVer-
sions

Status: DRAFT

Parameter Name SdBlocklistedMinorVersions

Parent Container SdBlocklistedVersions

Description Blocklisted MinorVersions.
Tags: atp.Status=draft

Multiplicity 0..”

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.9 SdClientCapabilityRecord

[ECUC_SD_00072] Definition of EcucParamConfContainerDef SdClientCapability
Record |

AUTSSAR

Container Name SdClientCapabilityRecord
Parent Container SdClientService
Description Sd uses capability records to store arbitrary name/value pairs conveying additional

information about the named service.

The following use cases are supported: 1) Key present, with no value (e.g. "passreq" --
password required for this service)

2) Key present, with empty value (e.g. "Pluglns=" server supports plugins, but none are
presently installed)

3) Key present, with non-empty value (e.g. "Plugins=JPEG,MPEG2,MPEG4")

Multiplicity 0..”
Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdClientServiceCapabilityRecordKey 1 [ECUC_SD_00073]
SdClientServiceCapabilityRecordValue 0..1 [ECUC_SD_00074]

No Included Containers

]

[ECUC_SD_00073] Definition of EcucStringParamDef SdClientServiceCapability
RecordKey |

Parameter Name SdClientServiceCapabilityRecordKey
Parent Container SdClientCapabilityRecord
Description Defines a CapabilityRecord key.
Multiplicity 1

Type EcucStringParamDef

Default value -
Regular Expression -

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_SD_00074] Definition of EcucStringParamDef SdClientServiceCapability
RecordValue |

Parameter Name SdClientServiceCapabilityRecordValue

Parent Container SdClientCapabilityRecord

Description Defines the corresponding CapabilityRecord value.
Multiplicity 0..1

Type EcucStringParamDef

Default value -

Regular Expression -

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

10.2.10 SdConsumedEventGroup

[ECUC_SD_00056] Definition of EcucParamConfContainerDef SdConsumed
EventGroup [

Container Name SdConsumedEventGroup
Parent Container SdClientService

Description A Service may have event groups which can be consumed. A service consumer has to
subscribe to the corresponding event-group. After the subscription the event consumer
takes the role of a server and the event provider that of a client.

Multiplicity 0..*
Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

[ECUC_SD_00144]
[ECUC_SD_00116]

SdConsumedEventGroupAutoRequire 1
SdConsumedEventGroupHandleld 1

SdConsumedEventGroupld

[ECUC_SD_00057]

SdConsumedEventGroupMulticastActivationRef 0..1 [ECUC_SD_00106]
SdConsumedEventGroupMulticastGroupRef 0.* [ECUC_SD_00119]
SdConsumedEventGroupTcpActivationRef 0..1 [ECUC_SD_00105]
SdConsumedEventGroupTimerRef 1 [ECUC_SD_00107]
SdConsumedEventGroupUdpActivationRef 0..1 [ECUC_SD_00104]

No Included Containers

AUTSSAR

[ECUC_SD 00144] Definition of EcucBooleanParamDef SdConsumedEvent
GroupAutoRequire |

Parameter Name SdConsumedEventGroupAutoRequire

Parent Container SdConsumedEventGroup

Description If existing and set to true, this EventGroup will be set to "required" on start.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00116] Definition of EcucintegerParambDef SdConsumedEventGroup
Handleld |

Parameter Name SdConsumedEventGroupHandleld
Parent Container SdConsumedEventGroup
Description The Handleld by which the BswM can identify this EventGroup.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency withAuto = true

]

[ECUC_SD_00057] Definition of EcucintegerParambDef SdConsumedEventGroup
id [

Parameter Name SdConsumedEventGroupld
Parent Container SdConsumedEventGroup
Description The Eventgroup Id of this eventGroup as a unique identifier of the eventgroup in this

service. This identifier is used for EventGroup entries as well. Please note, that the
Eventgroup ID 0x0000 is reserved.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65534

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD

Dependency

]

[ECUC_SD 00106] Definition of EcucReferenceDef SdConsumedEventGroup

MulticastActivationRef |

Parameter Name

SdConsumedEventGroupMulticastActivationRef

Parent Container

SdConsumedEventGroup

Description The reference of a Routing Group in order to activate and setup the Socket Connection
for Multicast Events of this EventGroup. The Multicast address from the received
Multicast Option is setup by SoAd_RequestlpAddrAssignment.
The local address is the same as for the unicast events; thus, it was sent in the UDP
Endpoint option of the Subscribe EventGroup entry.
This is usually equal to the SdConsumedEventGroupUdpActivationRef.

Multiplicity 0..1

Type Symbolic name reference to SoAdRoutingGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [XXX X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00119] Definition of EcucReferenceDef SdConsumedEventGroup
MulticastGroupRef |

Parameter Name

SdConsumedEventGroupMulticastGroupRef

Parent Container

SdConsumedEventGroup

Description Reference to the SoAdSocketConnectionGroup representing the multicast data path
(UDP).

Multiplicity 0..*

Type Reference to SoAdSocketConnectionGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X[X]|X]| X

Post-build time VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD_00105] Definition of EcucReferenceDef SdConsumedEventGroupTcp
ActivationRef |

Parameter Name SdConsumedEventGroupTcpActivationRef

Parent Container SdConsumedEventGroup

Description The reference of the Routing Group for activation of the data path for receiving TCP
events.

This element is also being used for getting the IP address and port number for building
the TCP endpoint option for the Subscribe EventGroup entry.

If no TCP methods are used in the service, this element is also being used for setting
the remote address (TCP Endpoint option referenced by the Offer Service entry) and
opening the TCP connection to the server before sending the Subscribe EventGroup
entry. If multiple EventGroups of the same Service Instance are subscribed the TCP
connection will be shared and must be opened only once.

Multiplicity 0..1
Type Symbolic name reference to SoAdRoutingGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00107] Definition of EcucReferenceDef SdConsumedEventGroup
TimerRef |

Parameter Name SdConsumedEventGroupTimerRef

Parent Container SdConsumedEventGroup

Description The reference of the SdClientTimer container for this eventGroup.

Multiplicity 1

Type Reference to SdClientTimer

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD 00104] Definition of EcucReferenceDef SdConsumedEventGroup
UdpActivationRef |

Parameter Name SdConsumedEventGroupUdpActivationRef

Parent Container SdConsumedEventGroup

Description The reference of the Routing Group for activation of the data path for receiving UDP
events.

This element is also being used for getting the IP address and port number for building
the UDP Endpoint option or Consumed Multicast option for the Subscribe EventGroup
entry.

If no UDP methods are used in the service, this element is also being used for setting
the remote address (UDP Endpoint option referenced by the Offer Service entry). If
multiple EventGroups of the same Service Instance are subscribed the UDP Socket
Connection will be shared and must be set only once.

Multiplicity 0..1
Type Symbolic name reference to SoAdRoutingGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

SdConsumedEventGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

SdConsumedEventGroupHandleld:
EcucintegerParamDef

+parameter

min =0

max = 65535

withAuto = true
symbolicNameValue = true

SdConsumedEventGroupld: EcucintegerParamDef

+parameter

min =0
max = 65534

SoAdRoutingGroupld:
EcucintegerParamDef

min =0

max = 65535

withAuto = true
symbolicNameValue = true

+parameter

+reference

SdConsumedEventGroupUdpActivationRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+reference

SdConsumedEventGroupTcpActivationRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+reference

SdConsumedEventGroupMulticastActivationRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination SoAdRoutingGroup:
EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
+destination
+destination

SdConsumedEventGroupMulticastGroupRef:

+reference

SoAdSocketConnectionGroup:

+reference

EcucReferenceDef +destination
lowerMultiplicity = 0
upperMultiplicity = *
SdConsumedEventGroupTimerRef:
+destination

EcucReferenceDef

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

SdClientTimer:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter

SdConsumedEventGroupAutoRequire:
EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.7: SdConsumedEventGroup Container

10.2.11 SdConsumedMethods

[ECUC_SD_00099]
Methods [

Definition of EcucParamConfContainerDef SdConsumed

Container Name

SdC

onsumedMethods

Parent Container

SdC

lientService

Description

Container element for representing the data path for accessing the server methods.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

SdClientServiceActivationRef

1

[ECUC_SD_00102]

AUTSSAR

| No Included Containers

]

[ECUC_SD _00102] Definition of EcucReferenceDef SdClientServiceActivation

Ref |

Parameter Name

SdClientServiceActivationRef

Parent Container

SdConsumedMethods

Description Reference to a SoAdRoutingGroupRef to activate/deactivate the data path for the
methods.

Multiplicity 1

Type Symbolic name reference to SoAdRoutingGroup

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.12 SdClientTimer

[ECUC_SD_00043] Definition of EcucParamConfContainerDef SdClientTimer |

Container Name

SdClientTimer

Parent Container

SdlInstance

Description This container specifies all timers used by the Service Discovery module for Client
Services.
Multiplicity 0.~

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdClientTimerlnitialFindDelayMax 0..1 [ECUC_SD_00063]
SdClientTimerlnitialFindDelayMin 0..1 [ECUC_SD_00044]
SdClientTimerlnitialFindRepetitionsBaseDelay 0..1 [ECUC_SD_00047]
SdClientTimerlnitialFindRepetitionsMax 0..1 [ECUC_SD_00046]
SdClientTimerRequestResponseMaxDelay 0..1 [ECUC_SD_00036]
SdClientTimerRequestResponseMinDelay 0..1 [ECUC_SD_00064]
SdClientTimerTTL 1 [ECUC_SD_00075]
SdSubscribeEventgroupRetryDelay 0..1 [ECUC_SD_00133]
SdSubscribeEventgroupRetryMax 0..1 [ECUC_SD_00132]

No Included Containers

AUTSSAR

[ECUC_SD 00063] Definition of EcucFloatParamDef SdClientTimerlnitialFindDe-

layMax |

Parameter Name

SdClientTimerInitialFindDelayMax

Parent Container

SdClientTimer

Description Max value in [s] to delay randomly the transmission of a find message. This parameter
is mandatory for ClientService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [X[X]|X|[X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00044] Definition of EcucFloatParamDef SdClientTimerlnitialFindDe-

layMin |

Parameter Name

SdClientTimerlnitialFindDelayMin

Parent Container

SdClientTimer

Description Min value in [s] to delay randomly the transmission of a find message. This parameter
is mandatory for ClientService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X|X[X] X

Post-build time VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD 00047] Definition of EcucFloatParamDef SdClientTimerlnitialFind
RepetitionsBaseDelay |

Parameter Name SdClientTimerlnitialFindRepetitionsBaseDelay
Parent Container SdClientTimer
Description The base delay in [s] for find repetitions. Successive finds have an exponential back off

delay (1x base delay, 2x base delay, 4x base delay, ...). This parameter is mandatory
for ClientService.

Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00046] Definition of EcucintegerParamDef SdClientTimerlnitialFind
RepetitionsMax |

Parameter Name SdClientTimerlnitialFindRepetitionsMax

Parent Container SdClientTimer

Description Configuration for the maximum number of find repetitions. This parameter is mandatory
for ClientService.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..10

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD 00036] Definition of EcucFloatParamDef SdClientTimerRequestRe-
sponseMaxDelay |

Parameter Name

SdClientTimerRequestResponseMaxDelay

Parent Container

SdClientTimer

Description Maximum allowable response delay to entries received by multicast in seconds. This
parameter is mandatory for ConsumedEventGroups.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

XX [XXX X

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_SD _00064] Definition of EcucFloatParamDef SdClientTimerRequestRe-

sponseMinDelay |

Parameter Name SdClientTimerRequestResponseMinDelay

Parent Container SdClientTimer

Description Minimum allowable response delay to the find message in seconds. This parameter is
mandatory for ConsumedEventGroups.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

XX X[X|X|X

Post-build time

VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD_00075] Definition of EcuclintegerParamDef SdClientTimerTTL |

Parameter Name

SdClientTimerTTL

Parent Container

SdClientTimer

Description Time to live for find and subscribe messages. Note! The TTL value for find messages
shall be ignored by the server service and the configuration is only kept for backward
compatibility

Multiplicity 1

Type EcuclntegerParamDef

Range 1..16777215

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00133]
RetryDelay |

Definition of EcucFloatParamDef SdSubscribeEventgroup

Parameter Name

SdSubscribeEventgroupRetryDelay

Parent Container

SdClientTimer

Description Time in seconds when a subscription to an event group shall be retriggered, if no
SubscribeEventGroupAck or SubscribeEventGroupNack was received.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 50]

Default value 0.01

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

SdSubscribeEventgroupRetryDelay is only applicable if SdSubscribeEventgroupRetry
Enable is set to TRUE and SdSubscribeEventgroupRetryMax > 0.

]

[ECUC_SD_00132] Definition of EcucintegerParamDef SdSubscribeEventgroup

RetryMax [

Parameter Name

SdSubscribeEventgroupRetryMax

Parent Container

SdClientTimer

Description

Maximum count of retry a subscription, if a subscription to an event group is not
acknowledged by SubscribeEventGroupAck or SubscribeEventGroupNack. 0x0=no
retry, OxFF=retry forever (as long as the event group is requested)

V

AUTSSAR

A

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..255

Default value 0

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

SdSubscribeEventgroupRetryMax is only applicable if SdSubscribeEventgroupRetry

Enable is set to TRUE

SdClientTimer:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+parameter

SdClientTimerlnitialFindDelayMin:
EcucFloatParamDef

min =0
lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

SdClientTimerlnitialFindDelayMax:
EcucFloatParamDef

+parameter

SdClientTimerlnitialFindRepetitionsBaseDelay:

EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

min =0
lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

SdClientTimerlnitialFindRepetitionsMax:
EcuclntegerParamDef

+parameter

SdClientTimerTTL: EcucintegerParamDef

min=1
max = 16777215

min =0

max = 10
lowerMultiplicity = 0
upperMultiplicity = 1

SdClientTimerRequestResponseMinDelay:

EcucFloatParamDef

+parameter

+parameter

+parameter

+parameter

SdClientTimerRequestResponseMaxDelay:
EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

SdSubscribeEventgroupRetryMax:
EcuclntegerParambDef

min =0

max = 255
defaultvalue = 0
lowerMultiplicity = 0
upperMultiplicity = 1

SdSubscribeEventgroupRetryDelay:
EcucFloatParamDef

min = 0.001
max = 50.0
defaultvalue = 0.010
lowerMultiplicity = 0
upperMultiplicity = 1

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.8: SdClientTimer Container

AUTSSAR

10.2.13 SdinstanceDemEventParameterRefs

[ECUC_SD 00120] Definition of EcucParamConfContainerDef SdinstanceDem
EventParameterRefs |

Container Name SdinstanceDemEventParameterRefs
Parent Container SdlInstance
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1
Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SD_E_MALFORMED_MSG 0..1 [ECUC_SD_00121]
SD_E_OUT_OF_RES 0..1 [ECUC_SD_00122]
SD_E_SUBSCR_NACK_RECV 0..1 [ECUC_SD_00123]

No Included Containers

|
[ECUC_SD_00121] Definition of EcucReferenceDef SD_E_MALFORMED_MSG |

Parameter Name SD_E_MALFORMED_MSG

Parent Container SdinstanceDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the SD Instance
received malformed messsage.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD_00122] Definition of EcucReferenceDef SD_E_OUT_OF_RES |

Parameter Name SD_E _OUT_OF_RES

Parent Container SdinstanceDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the SD Instance
does not have enough resources to handle client.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

J
[ECUC_SD 00123] Definition of EcucReferenceDef SD E SUBSCR_NACK _

RECV [
Parameter Name SD_E _SUBSCR_NACK_RECV
Parent Container SdinstanceDemEventParameterRefs
Description Reference to the DemEventParameter which shall be issued when receiving Subscribe
EventgroupNack entry.
Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.14 SdinstanceMulticastRxPdu

[ECUC_SD 00081] Definition of EcucParamConfContainerDef SdinstanceMulti-
castRxPdu |

AUTSSAR

Container Name

SdInstanceMulticastRxPdu

Parent Container

Sdinstance

Description

This container specifies the received PDU.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdRxPduld 1 [ECUC_SD_00028]
SdRxPduRef 1 [ECUC_SD_00029]

No Included Containers

]

[ECUC_SD_00028] Definition of EcucintegerParamDef SdRxPduld |

Parameter Name

SdRxPduld

Parent Container

SdInstanceMulticastRxPdu

Description ID of the PDU that will be received via the API Sd_SoAdIfRxIndication().

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00029] Definition of EcucReferenceDef SARxPduRef |

Parameter Name

SdRxPduRef

Parent Container

SdInstanceMulticastRxPdu

Description Reference to the "global" Pdu structure to allow harmonization of handle IDs in the
COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.2.15 SdinstanceTxPdu

[ECUC_SD _00030] Definition of EcucParamConfContainerDef SdinstanceTxPdu

[

Container Name

SdInstanceTxPdu

Parent Container

SdlInstance

Description

This container specifies the transmitted PDU.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

SdTxPduRef

1 [ECUC_SD_00109]

No Included Containers

]

[ECUC_SD_00109] Definition of EcucReferenceDef SdTxPduRef |

Parameter Name

SdTxPduRef

Parent Container

SdInstanceTxPdu

Description Reference to the "global" Pdu structure to allow harmonization of handle IDs in the
COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.16 SdinstanceUnicastRxPdu

[ECUC_SD 00027] Definition of EcucParamConfContainerDef SdinstanceUni-

castRxPdu |

Container Name

SdInstanceUnicastRxPdu

Parent Container

Sdinstance

Description

This container specifies the received PDU.

Multiplicity

1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
SdRxPduld 1 [ECUC_SD_00082]
SdRxPduRef 1 [ECUC_SD_00083]

| No Included Containers

J
[ECUC_SD_00082] Definition of EcuclntegerParamDef SdRxPduld |

Parameter Name SdRxPduld

Parent Container SdlnstanceUnicastRxPdu

Description ID of the PDU that will be received via the API Sd_SoAdIfRxIndication().

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

J
[ECUC_SD_00083] Definition of EcucReferenceDef SdRxPduRef |

Parameter Name SdRxPduRef

Parent Container SdlnstanceUnicastRxPdu

Description Reference to the "global" Pdu structure to allow harmonization of handle IDs in the
COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.17 SdServerService

[ECUC_SD_00004] Definition of EcucParamConfContainerDef SdServerService |

AUTSSAR

Container Name SdServerService

Parent Container Sdinstance

Description This container specifies all parameters used by Server services.
Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdMaxNumOflpAddressesInAcl 0..1 [ECUC_Sd_00158]
SdServerServiceAutoAvailable 1 [ECUC_SD_00138]
SdServerServiceHandleld 1 [ECUC_SD_00110]

SdServerServiceld

Y

[ECUC_SD_00009]

SdServerServicelnstanceld

—_

[ECUC_SD_00011]

SdServerServiceLoadBalancingPriority

A [ECUC_SD_00129]

SdServerServiceLoadBalancingWeight

1 [ECUC_SD_00130]

SdServerServiceMajorVersion

[ECUC_SD_00068]

SdServerServiceMinor\Version

[ECUC_SD_00069]

SdServerCapabilityRecordMatchCalloutRef

[ECUC_SD_00126]

olo|=|o|lo|=|~|o|e
a

SdServerServiceTcpRef N [ECUC_SD_00088]
SdServerServiceTimerRef [ECUC_SD_00086]
SdServerServiceUdpRef A1 [ECUC_SD_00089]
SdServiceGroupRef > [ECUC_SD_00136]

Included Containers

Container Name Multiplicity

Dependency

SdEventHandler 0.*

Container Element for representing an EventGroup as part of the
Service Instance.

SdProvidedMethods 0..1

Container element for representing the needed elements of the
data path for the methods provided by the service.

SdServerCapabilityRecord 0..*

Sd uses capability records to store arbitrary name/value pairs
conveying additional information about the named service.

The following use cases are supported: 1) Key present, with no
value (e.g. "passreq" -- password required for this service)

2) Key present, with empty value (e.g. "Pluglns="server
supports plugins, but none are presently installed)

3) Key present, with non-empty value (e.g. "Plug
Ins=JPEG,MPEG2,MPEG4")

SdServerServiceAllowed 0.*
Consumers

This container defines a list of consumers that are allowed to
access this SdServerService.
Tags: atp.Status=draft

]

For parameter table [ECUC_Sd_00158] SdMaxNumOflpAddressesinAcl, see definition

below container SdClientService.

AUTSSAR

[ECUC_SD_00138]
Available [

Definition of EcucBooleanParamDef SdServerServiceAuto

Parameter Name

SdServerServiceAutoAvailable

Parent Container

SdServerService

Description If existing and set to true, this Service will be set to "Available" on start.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

SdServerServiceAutoAvailable could only be set to true, if the SdServerService is NOT
referencing a SdServiceGroup

]

[ECUC_SD _00110] Definition of EcuclintegerParamDef SdServerServiceHandleld

[

Parameter Name

SdServerServiceHandleld

Parent Container

SdServerService

Description The Handleld by which the BswM can identify this Server Service Instance.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

withAuto = true

]

[ECUC_SD_00009] Definition of EcuclntegerParamDef SdServerServiceld |

Parameter Name

SdServerServiceld

Parent Container

SdServerService

Description Id to identify the service. This is unique for the service interface.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65534

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD _00011] Definition of EcucintegerParamDef SdServerServicelnstance

Id [

Parameter Name

SdServerServicelnstanceld

Parent Container

SdServerService

Description Configuration parameter to specify Instance Id of the Service implemented by the
Server Service.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65534

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD _00129] Definition of EcucintegerParamDef SdServerServiceLoadBal-

ancingPriority [

Parameter Name

SdServerServiceLoadBalancingPriority

Parent Container

SdServerService

Description Defines the value to be used for load balancing priority in the service offer. Lower value
means higher priority.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00130] Definition of EcucintegerParamDef SdServerServiceLoadBal-

ancingWeight |

Parameter Name

SdServerServicelLoadBalancingWeight

Parent Container

SdServerService

Description Defines the value to be used for load balancing weight in the service offer. Higher value
means higher probability to be chosen.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..65535 |

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time | X | VARIANT-PRE-COMPILE

V

AUTSSAR

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00068] Definition of EcuclntegerParamDef SdServerServiceMajor
Version |

Parameter Name SdServerServiceMajorVersion

Parent Container SdServerService

Description Major version number of the Service as used in SD Entries.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..254

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00069] Definition of EcuclntegerParamDef SdServerServiceMinor
Version |

Parameter Name SdServerServiceMinorVersion

Parent Container SdServerService

Description Minor version number of the Service as used e.g. in Offer Service entries.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967294

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD_00126] Definition of EcucReferenceDef SdServerCapabilityRecord

MatchCalloutRef |

Parameter Name

SdServerCapabilityRecordMatchCalloutRef

Parent Container SdServerService

Description Reference to a SdCapabilityRecordMatchCallout, The referenced SdCapabilityRecord
MatchCallout is invoked to determine whether the configuration options contained in
the entries of a received SD message match the server’s configured SdServer
CapabilityRecord elements.

Multiplicity 0..1

Type Reference to SdCapabilityRecordMatchCallout

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [XXX X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00088] Definition of EcucReferenceDef SdServerServiceTcpRef |

Parameter Name

SdServerServiceTcpRef

Parent Container

SdServerService

Description Reference to SoAdSocketConnectionGroup used for methods.
This is used to access the local IP address and port for building the endpoint option for
offers of this service.

Multiplicity 0..1

Type Reference to SoAdSocketConnectionGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X|X|X]| X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00086] Definition of EcucReferenceDef SdServerServiceTimerRef |

Parameter Name

SdServerServiceTimerRef

Parent Container

SdServerService

Description The reference of the SdServerTimer container for this service.
Multiplicity 1
Type Reference to SdServerTimer

V

AUTSSAR

Post-Build Variant Value

Value Configuration Class

A
true
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00089] Definition of EcucReferenceDef SdServerServiceUdpRef |

Parameter Name

SdServerServiceUdpRef

Parent Container

SdServerService

Description Reference to SoAdSocketConnectionGroup used for methods.
This is used to access the local IP address and port for building the endpoint option for
offers of this service.

Multiplicity 0..1

Type Reference to SoAdSocketConnectionGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

XX | X|X[X] X

VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00136] Definition of EcucReferenceDef SdServiceGroupRef |

Parameter Name

SdServiceGroupRef

Parent Container

SdServerService

Description Reference to the SdServiceGroupS this SdServerService belongs to.
Multiplicity 0.x

Type Reference to SdServiceGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

XX X|X|X]| X

VARIANT-POST-BUILD

Dependency

AUTSSAR

SdServerService:
EcucParamConfContainerDef

SdServiceGroup:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

SdServerCapabilityRecordMatchCalloutRef:

+reference

EcucReferenceDef

lowerMultiplicity = 0 SdServerServiceHandleld: lowerMultiplicity = 0
upperMultiplicity = * EcucIntegerParamDef upperMultiplicity = *
+parameter
min =0 +destination
max = 65535
withAuto = true SdServerServiceAutoAvailable:
symbolicNameValue = true EcucBooleanParamDef
+parameter defaultValue = false
‘ lowerMultiplicity = 1
i i i upperMultiplicity = 1
SdServerServiceMajorVersion:
EcucIntegerParamDef . . .
+parameter SdSernverServiceMinorVersion:
min =0 EcucintegerParamDef
max = 254 +parameter X
DS min =0
max = 4294967294
+parameter EcuclntegerParamDef X
o SdServerServicelnstanceld:
min =0 EcucIntegerParamDef
max = 65534 +parameter -
P min =0
max = 65534
SdServerServiceTimerRef:
+reference EcucReferenceDef destinati
o +destination SdSererTimer:
lowerMultiplicity = 1 EcucParamConfContainerDef
upperMultiplicity = 1
lowerMultiplicity = 0
Multiplicity = *
SdServerCapabilityRecord: upperMultiplicity
EcucParamConfContainerDef +parameter
+subContainer — SdServerCapabilityRecordKey:
|°WerM“|t'.p|'f:"‘y =0 EcucStringParamDef
upperMultiplicity = *
+parameter =
SdServerCapabilityRecordValue:
EcucStringParamDef
lowerMultiplicity = 0
SdServerServiceLoadBalancingPriority: upperMultiplicity = 1
EcuclntegerParamDef
+parameter
min =0
max = 65535 SdServiceGroupRef: EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = 1 +referencel lowerMultiplicity = 0
P upperMultiplicity = *
subContainer SdEventHandler:
+ i o f o
EcucParamConfContainerDef SdServerServiceLoadBalancingWeight:
lowerMultiplicity = 0 EcuclntegerParamDef
N . +parameter
‘— upperMultiplicity = min=0
max = 65535
lowerMultiplicity = 0
upperMultiplicity = 1
SdServerServiceTcpRef: EcucReferenceDef .
. e o SoAdSocketConnectionGroup:
\@—— lowerMultiplicity = 0 +destination | "EccParam ConfContainerDef
upperMultiplicity = 1 —
lowerMultiplicity = 1
+destination upperMultiplicity = *
i . SoAdRoutingGroup:
. o SdServerServiceUdpRef: EcucReferenceDef EcucParamConiContainerDef
] Loweem‘ﬂft'ipll'icc'i‘ty i(i lowerMultiplicity = 0
PP plicity = upperMultiplicity = *
+destination
SdProvidedMethods: SdServerServiceActivationRef:
. EcucParamConfContainerDef EcucReferenceDef
+subContainer +reference —_—

lowerMultiplicity = 1
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

SdCapabilityRecordMatchCallout:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.9: SdServerService Container

AUTSSAR

SdSLrSavwg: SdMaxNumOflpAddressesinAcl:
EcucParamConfContainerDef
+parameter EcucintegerParamDef
lowerMultiplicity = 0 -
upperMultiplicity = * M=
max = 255
lowerMultiplicity = 0
upperMultiplicity = 1
+subContaineI
SdServerServiceAllowedConsumers:
EcucParamConfContainerDef +parameter SdlpAddress:

EcucStringParamDef|

lowerMultiplicity = 0
upperMultiplicity = *

SdlpAddressType:

EcucEnumerationParamDef +literal ISDRAERINFIH

EcucEnumerationLiteralDef

+parameter

+literal SD_AF_INET6:
EcucEnumerationLiteralDef

Figure 10.10: SdServerService Container2

10.2.18 SdEventHandler

[ECUC_SD_00055] Definition of EcucParamConfContainerDef SdEventHandler |

Container Name SdEventHandler

Parent Container SdServerService

Description Container Element for representing an EventGroup as part of the Service Instance.
Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdEventHandlerEventGroupld 1 [ECUC_SD_00061]
SdEventHandlerHandleld 1 [ECUC_SD_00112]
SdEventHandlerMulticastThreshold 1 [ECUC_SD_00097]
SdEventHandlerTimerRef 0..1 [ECUC_SD_00113]

Included Containers
Container Name Multiplicity Dependency

SdEventHandlerMulticast 0..1 The subcontainer including the Routing Group for Activation of
Events sent over Multicast.

The activation ref is also being used for identification of the
related Socket Connection in order to find the Multicast Address
used in the Multicast Option referenced by the Subscribe Event
Group Ack entry.

\Y

AUTSSAR

A

Included Containers

Container Name

Multiplicity Dependency

SdEventHandlerTcp

0..1 The subcontainer including the Routing Groups for Activation
and Trigger Transmit for Events sent over TCP.

The activation ref (or triggering ref if no activation ref exists) is
also being used for identification of the related socket
connections in order to find the related client by iterating the Sd
EventHandlerTcp elements (remote address statically configured
or automatically set by opening TCP connection before
subscription).

SdEventHandlerUdp

0..1 The subcontainer including the Routing Groups for Activation
and Trigger Transmit for Events sent over UDP.

The activation ref (or triggering ref if no activation ref exists) is
also being used for identification of the related socket
connections in order to set the remote address (either unicast
address or multicast address) of the client or find the related
client by iterating the SdEventHandlerUdp elements (remote
address statically configured or automatically set by method call
before subscription).

]

[ECUC_SD_00061]
Groupld |

Definition of EcuclntegerParamDef SdEventHandlerEvent

Parameter Name

SdEventHandlerEventGroupld

Parent Container

SdEventHandler

Description The EventGroup Id of this EventGroup as a unique identifier of the EventGroup in this
service. This identifier is used for EventGroup entries as well. Please note, that the
Eventgroup ID 0x0000 is reserved.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65534

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD _00112] Definition of EcuclntegerParamDef SdEventHandlerHandleld

[

Parameter Name

SdEventHandlerHandleld

Parent Container

SdEventHandler

Description The Handleld by which the BswM can identify this EventGroup.
Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..65535 |

Default value

Y%

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_SD _00097] Definition of EcucintegerParamDef SdEventHandlerMulticast

Threshold |

Parameter Name

SdEventHandlerMulticastThreshold

Parent Container

SdEventHandler

Description Specifies the number of subscribed clients with different endpoint information (see
SWS_SD_00754) that triggers the Server to change the transmission of events via the
Eventhandler Multicast connection.
If configured to 0 only Consumed Evengroup unicast connections and Consumed
Eventgroup multicast connections will be used.
If configured to 1 the first client and all further subscribed clients will be served via the
Eventhandler Multicast connection as configured in SdMulticastEventSoConRef.
If configured to n up to n-1 clients with different endpoint information will be served via
Consumed Evengroup unicast connections and Consumed Eventgroup multicast
connections. As soon as the number of subscribed clients with different endpoint
information reaches n, then all subscribed clients are served via the Eventhandler
Multicast connection as configured in SdMulticastEventSoConRef.
This does not influence the handling of initial events.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00113] Definition of EcucReferenceDef SdEventHandlerTimerRef |

Parameter Name

SdEventHandlerTimerRef

Parent Container

SdEventHandler

Description The reference of the SdServerTimer container for this EventGroup.
Multiplicity 0..1

Type Reference to SdServerTimer

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

X | X|X|X]| X

Link time VARIANT-LINK-TIME

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD
Dependency
f
SdEventHandler: SdEventHandlerUdp: > +reterence SdEventTriggeringRef:
EcucParamConfContainerDef +subContainer EcucParamConfContainerDef EcucReferenceDef
lowerMultiplicity = 0 lowerMultiplicity = 0 | lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = 1 +reference upperMultiplicity = 1
N requiresSymbolicNameValue = true
+destination
SoAdRoutingGroupld:
EcuclntegerParamDef SoAdRoutingGroup:
min=0 +parameter EcucParamConfContainerDef
= I) W—

max = 65535
withAuto = true
symbolicNameValue = true

lowerMultiplicity = 0
upperMultiplicity = *

+destination
SdEventHandlerTcp:
. EcucParamConfContainerDef
+subContainer +reference SdEventActivationRef:
lowerMultiplicity = 0 EcucReferenceDef

upperMultiplicity = 1 1ce

o lowerMultiplicity = 0

upperMultiplicity = 1
ference

requiresSymbolicNameValue = true
EcucParamConfContainerDef

SdMulticastEventSoConRef:
lowerMultiplicity = 0 EcucReferenceDef
upperMultiplicity = 1

+subContainer

+reference lowerMultiplicity = 1
upperMultiplicity = 1
requiresSymbolicNameValue = true

SdEventHandlerMulticastThreshold: +destination
+parameter EcuclntegerParamDef
min =0 SoAdSocketConnection:
max = 65535 EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

SdEventHandlerHandleld:
EcucIntegerParamDef

+parameter
min =0 +parameter
max = 65535
withAuto = true SoAdSocketld:
symbolicNameValue = true EcucintegerParamDef
min =0
SdEventHandlerEventGroupld: max = 65535
+parameter EcucintegerParamDef withAuto = true
symbolicNameValue = true|
min =0
max = 65534
SdEventHandlerTimerRef: SdServerTimer:
EcucReferenceDef inati e T El
+reference _— +destination EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

Figure 10.11: SdEventHandler Container

10.2.19 SdEventHandlerMulticast

[ECUC_SD 00094] Definition of EcucParamConfContainerDef SdEventHandler
Multicast |

AUTSSAR

Container Name

SdEventHandlerMulticast

Parent Container

SdEventHandler

Description

The subcontainer including the Routing Group for Activation of Events sent over
Multicast.

The activation ref is also being used for identification of the related Socket Connection
in order to find the Multicast Address used in the Multicast Option referenced by the
Subscribe EventGroup Ack entry.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdEventActivationRef 0..1 [ECUC_SD_00096]
SdMulticastEventSoConRef 1 [ECUC_SD_00118]

No Included Containers

]

[ECUC_SD_00096] Definition of EcucReferenceDef SdEventActivationRef |

Parameter Name

SdEventActivationRef

Parent Container

SdEventHandlerMulticast, SdEventHandlerTcp, SdEventHandlerUdp

Description Reference to a SoAdRoutingGroup for activation of the data path for a subscribed
client (start sending events after subscribe). This is usually equal to the SdEvent
ActivationRef referenced by SdEventHandlerUdp

Multiplicity 0..1

Type Symbolic name reference to SoAdRoutingGroup

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [X[X]|X| X

Post-build time VARIANT-POST-BUILD

Dependency

]

[

[ECUC_SD 00118] Definition of EcucReferenceDef SdMulticastEventSoConRef

Parameter Name

SdMulticastEventSoConRef

Parent Container

SdEventHandlerMulticast

Description Reference to the SoAdSocketConnection representing the Eventhandler Multicast data
path (UDP).

Multiplicity 1

Type Symbolic name reference to SoAdSocketConnection

Post-Build Variant Multiplicity

true

\Y%

AUTSSAR

A

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.20 SdEventHandlerTcp

[ECUC_SD 00093] Definition of EcucParamConfContainerDef SdEventHandler
Tep [

Container Name SdEventHandlerTcp
Parent Container SdEventHandler
Description The subcontainer including the Routing Groups for Activation and Trigger Transmit for

Events sent over TCP.

The activation ref (or triggering ref if no activation ref exists) is also being used for
identification of the related socket connections in order to find the related client by
iterating the SdEventHandlerTcp elements (remote address statically configured or
automatically set by opening TCP connection before subscription).

Multiplicity 0..1
Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdEventActivationRef 0..1 [ECUC_SD_00096]
SdEventTriggeringRef 0..1 [ECUC_SD_00095]

| No Included Containers

]

For parameter table [ECUC_SD_00096] SdEventActivationRef, see definition below
container SdEventHandlerMulticast.

[ECUC_SD_00095] Definition of EcucReferenceDef SdEventTriggeringRef |

Parameter Name SdEventTriggeringRef

Parent Container SdEventHandlerTcp, SdEventHandlerUdp

Description Reference to a SoAdRoutingGroup that is used for triggered transmit. Triggering is
needed to sent out initial events on the server side after a client got subscribed.

Multiplicity 0..1

Type Symbolic name reference to SoAdRoutingGroup

V

AUTSSAR

A

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.21 SdEventHandlerUdp

[ECUC_SD _00092] Definition of EcucParamConfContainerDef SdEventHandler
Udp [

Container Name SdEventHandlerUdp
Parent Container SdEventHandler
Description The subcontainer including the Routing Groups for Activation and Trigger Transmit for

Events sent over UDP.

The activation ref (or triggering ref if no activation ref exists) is also being used for
identification of the related socket connections in order to set the remote address
(either unicast address or multicast address) of the client or find the related client by
iterating the SdEventHandlerUdp elements (remote address statically configured or
automatically set by method call before subscription).

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdEventActivationRef 0..1 [ECUC_SD_00096]
SdEventTriggeringRef 0..1 [ECUC_SD_00095]

| No Included Containers

]

For parameter table [ECUC_SD_00096] SdEventActivationRef, see definition below
container SdEventHandlerMulticast.

For parameter table [ECUC_SD_00095] SdEventTriggeringRef, see definition below
container SdEventHandlerTcp.

AUTSSAR

10.2.22 SdProvidedMethods

[ECUC_SD 00087] Definition of EcucParamConfContainerDef SdProvidedMeth-

ods |

Container Name

SdProvidedMethods

Parent Container

SdServerService

Description Container element for representing the needed elements of the data path for the
methods provided by the service.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

SdServerServiceActivationRef

1 [ECUC_SD_00090]

No Included Containers

]

[ECUC_SD 00090] Definition of EcucReferenceDef SdServerServiceActivation

Ref |

Parameter Name

SdServerServiceActivationRef

Parent Container

SdProvidedMethods

Description Reference to a SoAdRoutingGroup to activated and deactivate the data path for
methods of the service.

Multiplicity 1

Type Symbolic name reference to SoAdRoutingGroup

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.23 SdServerCapabilityRecord

[ECUC_SD _00032] Definition of EcucParamConfContainerDef SdServerCapabil-
ityRecord |

AUTSSAR

Container Name

SdServerCapabilityRecord

Parent Container

SdServerService

Description Sd uses capability records to store arbitrary name/value pairs conveying additional
information about the named service.
The following use cases are supported: 1) Key present, with no value (e.g. "passreq" --
password required for this service)
2) Key present, with empty value (e.g. "Pluglns=" server supports plugins, but none are
presently installed)
3) Key present, with non-empty value (e.g. "Plugins=JPEG,MPEG2,MPEG4")
Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SdServerCapabilityRecordKey 1 [ECUC_SD_00033]
SdServerCapabilityRecordValue 0..1 [ECUC_SD_00034]

No Included Containers

]

[ECUC_SD_00033] Definition of EcucStringParamDef SdServerCapabilityRecord

Key |

Parameter Name

SdServerCapabilityRecordKey

Parent Container

SdServerCapabilityRecord

Description Defines a CapabilityRecord key.
Multiplicity 1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_SD_00034] Definition of EcucStringParamDef SdServerCapabilityRecord

Value |

Parameter Name

SdServerCapabilityRecordValue

Parent Container

SdServerCapabilityRecord

Description Defines the corresponding CapabilityRecord value.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.24 SdServerTimer

[ECUC_SD_00035] Definition of EcucParamConfContainerDef SdServerTimer |

Container Name

SdServerTimer

Parent Container

SdlInstance

Description This container specifies all timers used by the Service Discovery module for Server
Services.
Multiplicity 0.~

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdServerTimerlnitialOfferDelayMax 0..1 [ECUC_SD_00039]
SdServerTimerlnitialOfferDelayMin 0..1 [ECUC_SD_00038]
SdServerTimerlnitialOfferRepetitionBaseDelay 0..1 [ECUC_SD_00041]
SdServerTimerlnitialOfferRepetitionsMax 0..1 [ECUC_SD_00040]
SdServerTimerOfferCyclicDelay 0..1 [ECUC_SD_00076]
SdServerTimerRequestResponseMaxDelay 1 [ECUC_SD_00114]
SdServerTimerRequestResponseMinDelay 1 [ECUC_SD_00115]
SdServerTimerTTL 1 [ECUC_SD_00037]

No Included Containers

]

[ECUC_SD 00039] Definition of EcucFloatParamDef SdServerTimerlnitialOffer

DelayMax |

Parameter Name

SdServerTimerlnitialOfferDelayMax

Parent Container

SdServerTimer

Description Max value in [s] to delay randomly the first offer. This parameter is mandatory for
ServerService.
Multiplicity 0..1

\Y%

AUTSSAR

A
Type EcucFloatParamDef
Range [0 .. INF] |
Default value -
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X|X|X]| X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00038] Definition of EcucFloatParamDef SdServerTimerlnitialOffer

DelayMin |

Parameter Name

SdServerTimerlnitialOfferDelayMin

Parent Container

SdServerTimer

Description Min value in [s] to delay randomly the first offer. This parameter is mandatory for Server
Service.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X|X[X] X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00041] Definition of EcucFloatParamDef SdServerTimerlnitialOffer

RepetitionBaseDelay |

Parameter Name

SdServerTimerlnitialOfferRepetitionBaseDelay

Parent Container

SdServerTimer

Description The base delay in [s] for offer repetitions. Successive offers have an exponential back
off delay (1x base delay, 2x base delay, 4x base delay, ...). This parameter is
mandatory for ServerService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF] |

AUTSSAR

A
Default value -
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Value Configuration Class Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

XX [X[X]|X|[X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD_00040] Definition of EcucintegerParamDef SdServerTimerlnitialOffer

RepetitionsMax |

Parameter Name

SdServerTimerlnitialOfferRepetitionsMax

Parent Container

SdServerTimer

Description Configure the maximum amount of offer repetition. This parameter is mandatory for
ServerService.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..10

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X|X|X]| X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00076] Definition of EcucFloatParamDef SdServerTimerOfferCyclic

Delay |

Parameter Name

SdServerTimerOfferCyclicDelay

Parent Container

SdServerTimer

Description Interval between cyclic offers in the main phase. This parameter is mandatory for
ServerService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

AUTSSAR

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

SdServerTimerTTL > SdServerTimerOfferCyclicDelay

]

[ECUC_SD 00114] Definition of EcucFloatParamDef SdServerTimerRequestRe-

sponseMaxDelay |

Parameter Name

SdServerTimerRequestResponseMaxDelay

Parent Container

SdServerTimer

Description Maximum allowable response delay to entries received by multicast in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SD 00115] Definition of EcucFloatParamDef SdServerTimerRequestRe-

sponseMinDelay |

Parameter Name

SdServerTimerRequestResponseMinDelay

Parent Container

SdServerTimer

Description Minimum allowable response delay to entries received by multicast in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_SD_00037] Definition of EcuclntegerParamDef SdServerTimerTTL |

Parameter Name

SdServerTimerTTL

Parent Container

SdServerTimer

Description Time to live for offer service.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..16777215

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

SdServerTimerTTL > SdServerTimerOfferCyclic

10.2.25 SdServerServiceAllowedConsumers

[ECUC_Sd_00155] Definition of EcucParamConfContainerDef SdServerService

AllowedConsumers
Status: DRAFT

Container Name

SdServerServiceAllowedConsumers

Parent Container

SdServerService

Description This container defines a list of consumers that are allowed to access this SdServer
Service.
Tags: atp.Status=draft

Multiplicity 0..”

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdlpAddress 1 [ECUC_Sd_00148]

SdlpAddressType 1 [ECUC_Sd_00149]

No Included Containers

]

For parameter table [ECUC_Sd_00148] SdlpAddress, see definition below container
SdClientServiceAllowedProvider.

AUTSSAR

For parameter table [ECUC_Sd_00149] SdIpAddressType, see definition below con-
tainer SdClientServiceAllowedProvider.

10.2.26 SdClientServiceAllowedProvider

[ECUC_Sd_00147] Definition of EcucParamConfContainerDef SdClientServiceAl-

lowedProvider
Status: DRAFT

Container Name

SdClientServiceAllowedProvider

Parent Container

SdClientService

Description The container defines the allowed providers for this ClientService.
Tags: atp.Status=draft

Multiplicity 0.x

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SdlpAddress 1 [ECUC_Sd_00148]

SdlpAddressType 1 [ECUC_Sd_00149]

No Included Containers

]

[ECUC_Sd_00148] Definition of EcucStringParamDef SdipAddress

Status: DRAFT

Parameter Name

SdlpAddress

Parent Container

SdClientServiceAllowedProvider, SdServerServiceAllowedConsumers

Description This parameter defines the IP Address of the remote communication partner.
Tags: atp.Status=draft

Multiplicity 1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

AUTSSAR

| Dependency

]

[ECUC_Sd_00149] Definition of EcucEnumerationParamDef SdipAddressType
Status: DRAFT

Parameter Name SdlpAddressType
Parent Container SdClientServiceAllowedProvider, SdServerServiceAllowedConsumers
Description This parameter defines the IP version that is used for communication with the remote

communication partner.
Tags: atp.Status=draft

Multiplicity 1
Type EcucEnumerationParamDef
Range SD_AF_INET IPv4 address
Tags: atp.Status=draft
SD_AF_INET6 IPv6 address
Tags: atp.Status=draft
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

SdServerTimer: SdServerTimerlnitialOfferDelayMin:
EcucParamConfContainerDef EcucFloatParamDef
+parameter ———
lowerMultiplicity = 0 min =0
upperMultiplicity = * lowerMultiplicity = 0
upperMultiplicity = 1 SdServerTimerlnitialOfferDelayMax:
EcucFloatParamDef
+parameter _—
> min =0
lowerMultiplicity = 0
SdServerTimerlnitial OfferRepetitionBaseDelay: upperMultiplicity = 1
EcucFloatParamDef
+parameter
min =0
max = INF
lowerMultiplicity = 0 X " .
upperMultiplicity = 1 SdServerTimerlnitial OfferRepetitionsMax:
EcucintegerParamDef
+parameter
> min =0
max =10
SdSenerTimerOfferCyclicDelay: TR AIEi = ©
EcucFloatParamDef Rl MR EIEy =1
+parameter
min =0
max = INF
lowerMultiplicity = 0
upperMultiplicity = 1
SdServerTimerTTL: EcuclntegerParamDef
+parameter
> min =1
max = 16777215
SdServerTimerRequestResponseMinDelay:
EcucFloatParamDef
+parameter
min =0
max = INF
IowerMuIn.le.m.ty =1 SdServerTimerRequestResponseMaxDelay:
Lpperiiulipliciey EcucFloatParamDef
+parameter pre—
* max = INF
lowerMultiplicity = 1

upperMultiplicity = 1

Figure 10.12: SdServerTimer Container

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Specification Items in R25-11
[SWS_Sd_00002] [SWS_Sd_00006] [SWS_Sd_00008]

A.1.2 Changed Specification Iltems in R25-11

[ECUC_SD_00057] [ECUC_SD_00061] [SWS_Sd_00107] [SWS_Sd _00117] [SWS_
Sd_00118] [SWS_Sd_00119] [SWS_Sd_00124] [SWS_Sd_00129] [SWS_Sd_00130]
[SWS_Sd_00133] [SWS_Sd 00134] [SWS_Sd_00405] [SWS_Sd_00409] [SWS._-
Sd_00412] [SWS_Sd_00496] [SWS_Sd_00550] [SWS_Sd_00551] [SWS_Sd_00552]
[SWS_Sd_00553] [SWS_Sd _00560] [SWS_Sd_00690] [SWS_Sd_00742] [SWS._-
Sd_00761] [SWS_Sd_00785] [SWS_Sd_91001] [SWS_Sd_91002] [SWS_Sd_91003]
[SWS_Sd_91006] [SWS_Sd_91007] [SWS_Sd_91008]

A.1.3 Deleted Specification ltems in R25-11
[SWS_Sd_00786] [SWS_Sd_00787] [SWS_Sd_00788]

A.2 Traceable item history of this document according to
AUTOSAR Release R24-11

A.2.1 Added Specification ltems in R24-11

[ECUC_Sd_00158] [SWS_Sd_00801] [SWS_Sd_00802] [SWS_Sd_00803] [SWS_ -
Sd_00804] [SWS_Sd_00805] [SWS_Sd_00806] [SWS_Sd_91012]

A.2.2 Changed Specification Items in R24-11

[ECUC_SD_00004] [ECUC_SD_00005] [ECUC_SD 00032] [ECUC_SD _00037]
[ECUC_SD _00072] [ECUC_SD_00076] [ECUC_Sd_00146] [ECUC_Sd_00147]
[ECUC_Sd_00150] [ECUC_Sd_00156] [SWS_Sd_00001] [SWS_Sd_00003] [SWS_

AUTSSAR

Sd_00004] [SWS_Sd_00005] [SWS_Sd_00007] [SWS_Sd_00011] [SWS_Sd_00013]
[SWS_Sd_00017] [SWS_Sd_00019] [SWS_Sd 00020] [SWS Sd 00021] [SWS_
Sd_00024] [SWS_Sd_00026] [SWS_Sd_00029] [SWS_Sd_00034] [SWS_Sd_00039]
[SWS_Sd_00040] [SWS_Sd_00108] [SWS_Sd 00109] [SWS Sd 00110] [SWS_
Sd_00114] [SWS_Sd_00117] [SWS_Sd_00120] [SWS_Sd_00121] [SWS_Sd_00122]
[SWS_Sd_00125] [SWS_Sd_00126] [SWS_Sd 00131] [SWS_Sd 00133] [SWS_
Sd_00134] [SWS_Sd_00135] [SWS_Sd_00136] [SWS_Sd_00173] [SWS_Sd_00175]
[SWS_Sd_00178] [SWS_Sd_00180] [SWS_Sd 00182] [SWS Sd 00193] [SWS_
Sd_00195] [SWS_Sd 00198] [SWS_Sd_00200] [SWS_Sd_00204] [SWS_Sd_00267]
[SWS_Sd_00289] [SWS_Sd_00291] [SWS_Sd 00292] [SWS_Sd 00295] [SWS_
Sd_00296] [SWS_Sd_00297] [SWS_Sd_00298] [SWS_Sd_00299] [SWS_Sd_00301]
[SWS_Sd_00304] [SWS_Sd 00307] [SWS_Sd 00317] [SWS_Sd_00318] [SWS_
Sd_00320] [SWS_Sd 00321] [SWS_Sd_00323] [SWS_Sd_00325] [SWS_Sd_00329]
[SWS_Sd_00330] [SWS_Sd_00331] [SWS_Sd 00333] [SWS Sd 00334] [SWS_
Sd_00336] [SWS_Sd_00338] [SWS_Sd_00340] [SWS_Sd_00341] [SWS_Sd_00342]
[SWS_Sd_00343] [SWS_Sd_00344] [SWS_Sd 00345] [SWS_Sd 00347] [SWS_
Sd_00348] [SWS_Sd_00349] [SWS_Sd_00350] [SWS_Sd_00351] [SWS_Sd_00352]
[SWS_Sd_00353] [SWS_Sd_00354] [SWS_Sd 00355] [SWS_Sd 00357] [SWS_
Sd_00358] [SWS_Sd_00363] [SWS_Sd_00365] [SWS_Sd_00367] [SWS_Sd_00369]
[SWS_Sd_00371] [SWS_Sd_00373] [SWS_Sd 00375] [SWS_Sd 00377] [SWS_
Sd_00380] [SWS_Sd_00381] [SWS_Sd_00382] [SWS_Sd_00400] [SWS_Sd_00402]
[SWS_Sd_00403] [SWS_Sd_00407] [SWS_Sd 00408] [SWS_Sd 00410] [SWS_
Sd_00411] [SWS_Sd_00437] [SWS_Sd_00438] [SWS_Sd_00439] [SWS_Sd_00440]
[SWS_Sd_00442] [SWS_Sd_00443] [SWS_Sd 00448] [SWS Sd 00449] [SWS_
Sd_00450] [SWS_Sd_00451] [SWS_Sd_00452] [SWS_Sd_00453] [SWS_Sd_00454]
[SWS_Sd_00455] [SWS_Sd_00456] [SWS_Sd 00457] [SWS_Sd 00458] [SWS_
Sd_00459] [SWS_Sd_00460] [SWS_Sd_00461] [SWS_Sd_00462] [SWS_Sd_00463]
[SWS_Sd_00464] [SWS_Sd_00465] [SWS_Sd 00466] [SWS_Sd 00467] [SWS_
Sd_00468] [SWS_Sd_00469] [SWS_Sd_00470] [SWS_Sd_00471] [SWS_Sd_00472]
[SWS_Sd_00473] [SWS_Sd_00474] [SWS_Sd 00475] [SWS_Sd 00476] [SWS_
Sd_00478] [SWS_Sd_00479] [SWS_Sd_00480] [SWS_Sd_00481] [SWS_Sd_00482]
[SWS_Sd_00488] [SWS_Sd_00489] [SWS_Sd 00491] [SWS_Sd 00492] [SWS_
Sd_00493] [SWS_Sd_00494] [SWS_Sd_00495] [SWS_Sd_00497] [SWS_Sd_00503]
[SWS_Sd_00504] [SWS_Sd_00600] [SWS_Sd 00601] [SWS_Sd 00605] [SWS_
Sd_00606] [SWS_Sd _00607] [SWS_Sd_00608] [SWS_Sd_00609] [SWS_Sd_00610]
[SWS_Sd_00611] [SWS_Sd_00612] [SWS_Sd 00651] [SWS_Sd 00663] [SWS_
Sd_00693] [SWS_Sd_00695] [SWS_Sd_00696] [SWS_Sd_00697] [SWS_Sd_00698]
[SWS_Sd_00699] [SWS_Sd_00700] [SWS_Sd 00701] [SWS_Sd_00702] [SWS_
Sd_00703] [SWS_Sd_00704] [SWS_Sd_00706] [SWS_Sd_00708] [SWS_Sd_00709]
[SWS_Sd_00711] [SWS_Sd_00712] [SWS_Sd 00713] [SWS_Sd 00716] [SWS_
Sd_00717] [SWS_Sd_00718] [SWS_Sd_00719] [SWS_Sd_00720] [SWS_Sd_00721]
[SWS_Sd_00722] [SWS_Sd_00723] [SWS_Sd 00724] [SWS_Sd 00725] [SWS_
Sd_00730] [SWS_Sd_00731] [SWS_Sd_00732] [SWS_Sd_00733] [SWS_Sd_00734]
[SWS_Sd_00735] [SWS_Sd_00736] [SWS_Sd 00737] [SWS_Sd 00738] [SWS_
Sd_00739] [SWS_Sd 00740] [SWS_Sd_00741] [SWS_Sd_00743] [SWS_Sd_00744]

AUTSSAR

[SWS_Sd_00745] [SWS_Sd_00746] [SWS_Sd 00747] [SWS_Sd 00748] [SWS_
Sd_00749] [SWS_Sd_00750] [SWS_Sd_00751] [SWS_Sd_00752] [SWS_Sd_00753]
[SWS_Sd_00754] [SWS_Sd_00755] [SWS_Sd 00756] [SWS_Sd 00757] [SWS_
Sd_00758] [SWS_Sd_00759] [SWS_Sd_00760] [SWS_Sd_00761] [SWS_Sd_00762]
[SWS_Sd_00764] [SWS_Sd_00765] [SWS_Sd 00766] [SWS _Sd 00767] [SWS_
Sd_00784] [SWS_Sd 00785] [SWS_Sd_00786] [SWS_Sd_00787] [SWS_Sd_00788]
[SWS_Sd_00793] [SWS_Sd_00795] [SWS_Sd 00796] [SWS_Sd 00798] [SWS_
Sd_00799] [SWS_Sd_00800] [SWS_Sd_01503] [SWS_Sd_04089] [SWS_Sd_07016]
[SWS_Sd_10503] [SWS_Sd_91011]

A.2.3 Deleted Specification ltems in R24-11
[SWS_Sd_00792]

	1 Introduction and functional overview
	2 Acronyms, Abbreviations and Definitions
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Limitations for communication with Adaptive Platform
	4.3 Applicability to car domains

	5 Dependencies to other modules
	5.1 AUTOSAR BSW Scheduler
	5.2 AUTOSAR BSW Mode Manager
	5.3 AUTOSAR Socket Adaptor
	5.4 AUTOSAR Default Error Tracer
	5.5 AUTOSAR Diagnostic Event Manager
	5.6 AUTOSAR Non Volatile Memory
	5.7 File structure
	5.7.1 Code file structure
	5.7.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Background & Rationale
	7.2 Requirements
	7.2.1 General requirements
	7.2.2 Ethernet Communication
	7.2.3 State Handling
	7.2.4 Interaction with Socket Adaptor
	7.2.5 Subscribe Eventgroup retry handling

	7.3 Message format
	7.3.1 Request ID
	7.3.2 Protocol Version field
	7.3.3 Interface Version field
	7.3.4 Message Type field
	7.3.5 Return Code field
	7.3.6 Flags field
	7.3.7 Reserved field
	7.3.8 Entries Array
	7.3.8.1 Entry Format Type 1
	7.3.8.2 Entry Format Type 2

	7.3.9 Options Array
	7.3.9.1 Configuration Option
	7.3.9.2 IPv4 Endpoint Option
	7.3.9.3 IPv6 Endpoint Option
	7.3.9.4 IPv4 Multicast Option
	7.3.9.5 IPv6 Multicast Option
	7.3.9.6 IPv4 SD Endpoint Option
	7.3.9.7 IPv6 SD Endpoint Option
	7.3.9.8 Handling missing, redundant, and conflicting Options
	7.3.9.9 Security considerations for Options

	7.3.10 Entries referencing Options

	7.4 Service Discovery Entry Types
	7.4.1 Entries for Services (common requirements)
	7.4.2 FindService entry
	7.4.3 OfferService entry
	7.4.4 Building OfferService entries
	7.4.5 StopOfferService entry
	7.4.6 Eventgroup Entries (Common requirements)
	7.4.7 SubscribeEventgroup entry
	7.4.8 StopSubscribeEventgroup entry
	7.4.9 SubscribeEventgroupAck entry
	7.4.10 SubscribeEventgroupNack entry
	7.4.11 Building SubscribeEventgroup entries

	7.5 Sending and Receiving of Messages
	7.5.1 Sequence for message transmission
	7.5.2 Sequence for message reception
	7.5.3 Receiving Entries
	7.5.3.1 Answering behaviour, if receiving Service Discovery Entries via Multicast address

	7.6 Timings and repetitions for Server Service and Event Handlers
	7.6.1 Initial Wait Phase for Server Services
	7.6.2 Repetition Phase for Server Services
	7.6.3 Main Phase for Server Services
	7.6.4 Fan out control
	7.6.5 Sharing of SdServerTimer

	7.7 Timings and repetitions for Client Service and Consumed Eventgroups
	7.7.1 Down Phase for Client Services
	7.7.2 Initial Wait Phase for Client Services
	7.7.3 Repetition Phase for Client Services
	7.7.4 Main Phase for Client Services
	7.7.5 Fan in control
	7.7.6 Sharing of SdClientTimer

	7.8 Handling of SdServiceGroupS
	7.8.1 SdServiceGroup definitions
	7.8.1.1 Initialization of SdServiceGroupS
	7.8.1.2 Starting of SdServiceGroupS
	7.8.1.3 Stopping of SdServiceGroupS

	7.9 SOME/IP-ACL
	7.9.1 ACL Configuration
	7.9.1.1 ACL update

	7.9.2 ACL Policy Check
	7.9.2.1 Client ACL
	7.9.2.2 Server ACL

	7.10 Security Events
	7.11 Error Classification
	7.11.1 Development Errors
	7.11.2 Runtime Errors
	7.11.3 Production Errors
	7.11.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Sd_ConfigType
	8.2.2 Sd_ServerServiceSetStateType
	8.2.3 Sd_ClientServiceSetStateType
	8.2.4 Sd_ConsumedEventGroupSetStateType
	8.2.5 Sd_ClientServiceCurrentStateType
	8.2.6 Sd_ConsumedEventGroupCurrentStateType
	8.2.7 Sd_EventHandlerCurrentStateType
	8.2.8 Sd_ConfigOptionStringType
	8.2.9 Sd_ServiceGroupIdType
	8.2.10 Sd_ServiceAclUpdateType

	8.3 Function definitions
	8.3.1 Sd_Init
	8.3.2 Sd_GetVersionInfo
	8.3.3 Sd_ServerServiceSetState
	8.3.4 Sd_ClientServiceSetState
	8.3.5 Sd_ConsumedEventGroupSetState
	8.3.6 Sd_LocalIpAddrAssignmentChg
	8.3.7 Sd_SoConModeChg
	8.3.8 Sd_ServiceGroupStart
	8.3.9 Sd_ServiceGroupStop
	8.3.10 Sd_AclUpdate
	8.3.11 Sd_RequestRoutingGroupEnable
	8.3.12 Sd_AclCheckEnable

	8.4 Callback notifications
	8.4.1 Sd_RxIndication

	8.5 Scheduled functions
	8.5.1 Sd_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces
	8.6.3.1 Sd_CapabilityRecordMatchCallout

	9 Sequence diagrams
	9.1 CLIENT / SERVER: Sd_RxIndication
	9.2 SERVER: Response Behavior
	9.3 CLIENT: Response Behavior
	9.4 SERVER: buildOfferServiceEntry
	9.5 CLIENT: buildSubscribeEventgroupEntry
	9.6 SERVER: buildSubscribeEventgroupAckEntry
	9.7 CLIENT / SERVER: TransmitSdMessage
	9.8 SERVER: AddClientToFanOut
	9.9 SERVER: Start
	9.10 CLIENT: Start
	9.11 ACL: Service Offer
	9.12 ACL: SubscribeEventgroup
	9.13 ACL: Method call request

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Sd
	10.2.2 SdGeneral
	10.2.3 SdConfig
	10.2.4 SdCapabilityRecordMatchCallout
	10.2.5 SdServiceGroup
	10.2.6 SdInstance
	10.2.7 SdClientService
	10.2.8 SdBlocklistedVersions
	10.2.9 SdClientCapabilityRecord
	10.2.10 SdConsumedEventGroup
	10.2.11 SdConsumedMethods
	10.2.12 SdClientTimer
	10.2.13 SdInstanceDemEventParameterRefs
	10.2.14 SdInstanceMulticastRxPdu
	10.2.15 SdInstanceTxPdu
	10.2.16 SdInstanceUnicastRxPdu
	10.2.17 SdServerService
	10.2.18 SdEventHandler
	10.2.19 SdEventHandlerMulticast
	10.2.20 SdEventHandlerTcp
	10.2.21 SdEventHandlerUdp
	10.2.22 SdProvidedMethods
	10.2.23 SdServerCapabilityRecord
	10.2.24 SdServerTimer
	10.2.25 SdServerServiceAllowedConsumers
	10.2.26 SdClientServiceAllowedProvider

	10.3 Published Information

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

