AUTSSAR

Document Title Specification on SOME/IP
Transport Protocol

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 809

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR * Refined parallel processing of
2025-11-27 | R25-11 | Release SOME/IP-TP segments
Management « Editorial changes and bug fixes
* Several minor bugfixes
AUTOSAR :
» Updated Sequence diagrams for
2024-11-27 | R24-11 Release Transmission of SOME/IP segments
Management
« Editorial changes
* Several minor bugfixes
AUTOSAR
2023-11-13 | R23-11 | Release * Specified behavior of
Management PduR_SomeIpTpTransmit in case of
E_NOT_OK
AUTOSAR » Updated Sequence for Transmission of
2022-11-24 | R22-11 Release SOME/IP segments
Management « Editorial changes
* Optional parameters to define a
BurstSize to specify the number of
segments that shall be transmitted in a
AUTOSAR burst and a SeparationTime between
2021-11-25 | R21-11 Release these bursts were added
Management
» Several minor bugfixes
« Editorial changes
AUTOSAR « Several minor bugfixes
2020-11-30 | R20-11 Release

Management

« Editorial changes

AUTSSAR

AUTOSAR « Editorial changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR « Minor corrections
2018-10-31 | 4.4.0 Release o
Management « Editorial ChangeS
AUTOSAR * Clarification of timeout to monitor
2017-12-08 | 4.3.1 Release successful reception
Management « Editorial changes
AUTOSAR
2016-11-30 | 4.3.0 Release * Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

5 Dependencies to other modules

5.1 AUTOSAR PDURouter s,
5.2 AUTOSAR Default Error Tracer

6 Requirements Tracing

7 Functional specification

7.1 Overview of the SOME/IP header
7.1.1 Message Type Field
712 OffsetField
713 ReservedField
714 MoreSegmentsFlag.
715 Example

7.2 ModuleHandling
7.2.1 Initialization

7.3 State handlingof N-SDUs

7.4 Parallel processing of SOME/IP messages

7.5 Segmentation of SOME/IP messages (TXPath)
7.5.1 Size of SOME/IPsegments
7.5.2 Header of SOME/IPsegments
7.5.3 Sending of SOME/IPsegments
7.5.4 Interruption of the disassembly process

7.6 Assembly of received SOME/IP messages (RX path)
7.6.1 SOME/IP segment received with Offset0
7.6.2 SOME/IP segment received with Offset>0
7.6.3 Interruption of the assembly process

7.7 Error Classification
7.7.1 DevelopmentErrors
7.7.2 Runtime Errors e
7.7.3 Production Errors
7.7.4 Extended ProductionErrorso

AUTSSAR

8 API specification

8.1 Importedtypes e
8.2 Type definitions
8.3 Functiondefinitions
8.3.1 SomelpTp_GetVersioninfo
8.3.2 SomelpTp_Init
8.3.3 SomelpTp_Delnit
8.3.4 SomelpTp_Transmit
8.4 Callback notifications
8.4.1 SomelpTp_TriggerTransmit
8.4.2 SomelpTp_RxIndication
8.4.3 SomelpTp_TxConfirmation
8.5 Scheduled functions
8.5.1 SomelpTp_MainFunctionTx
8.5.2 SomelpTp_MainFunctionRx.
8.6 Expectedinterfaces
8.6.1 Mandatory Interfaces L.
8.6.2 Optional Interfaces
8.6.3 Configurable interfaces

9 Sequence diagrams

9.1 Reception
9.2 TransmIsSSION L e e

10 Configuration specification

10.1How toread thischapter
10.2Containers and configuration parameters
10.2.1 SomelpTp o o e
10.2.2SomelpTpGeneral
10.2.3 SomelpTpChannel
10.2.3.1 SomelpTpTxChannel
10.2.3.2 SomelpTpRxChannel
10.2.4 SomelpTpRxNSdu
10.2.5 SomelpTpRxNPdu
10.2.6 SomelpTpTxNSdu
10.2.7 SomelpTpTxNPdu
10.3Published Information

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e

A.1.1 Added Specification ltemsin R25-11
A.1.2 Changed Specification Itemsin R25-11
A.1.3 Deleted Specification Itemsin R25-11

41

41
41
42
42
42
43
44
45
45
46
46
47
47
47
48
48
49
49

50

50
50

52

52
52
52
53
55
55
57
59
60
61
62
64

65

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module SOME/IP TP.

The task of the SOME/IP TP module is to segment SOME/IP packets, which do not
fit into one single UDP packet. On the reception side, it re-assembles the received

SOME/IP segments.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
Transport Protocol module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
SOME/IP Scalable service-Oriented MiddlewarE over IP

Table 2.1: Acronyms and Abbreviations

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[38] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[5] Requirements on SOME/IP Protocol
AUTOSAR_FO_RS_SOMEIPProtocol

[6] SOME/IP Protocol Specification
AUTOSAR_FO_ PRS_SOMEIPProtocol

[7] Specification of PDU Router
AUTOSAR _CP_SWS PDURouter

[8] System Template
AUTOSAR_CP_TPS_SystemTemplate

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for SOME/IP Transport Protocol.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for SOME/IP Transport Protocol.

[1, AUTOSAR glossary] [2, SWS BSW General] [3, SRS General] [4, EXP Layered
Software Architecture] [5, RS SOME/IP Protocol] [6, PRS SOME/IP Protocol] [7, SWS
PDU Router]

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The SOME/IP TP is a simple protocol to segment SOME/IP messages. It does not
implement retry mechanism nor does it reordering of received SOME/IP segments.

These limitations are intended to spare runtime and memory resources on receiver
side. Nonetheless, this is a deviation from the AUTOSAR SOME/IP Protocol Specifi-
cation (PRS_SOMEIP_00747 to PRS_SOMEIP_00754).

The rational for these limitations is the typical use-case which is "streaming" of large
SOME/IP messages.

4.2 Applicability to car domains

This module is applicable for SOME/IP communication.

AUTSSAR

5 Dependencies to other modules

5.1 AUTOSAR PDU Router

The SOME/IP TP module uses the PduR for both directions, the transmission path,
and the reception path.

5.2 AUTOSAR Default Error Tracer

In order to be able to report development errors, the SOME/IP TP module has to have
access to the error hook of the Default Error Tracer.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [5] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_SOMEIP_00010] SOME/IP protocol shall support [SWS_SomelpTp_00001] [SWS_SomelpTp_00002]
different transport protocols [SWS_SomelpTp_00004] [SWS_SomelpTp_00005]
underneath [SWS_SomelpTp_00006] [SWS_SomelpTp_00007]

[SWS_SomelpTp_00008] [SWS_SomelpTp_00010]
[SWS_SomelpTp_00011] [SWS_SomelpTp_00012]
[SWS_SomelpTp_00013] [SWS_SomelpTp_00014]
[SWS_SomelpTp_00015] [SWS_SomelpTp_00016]
[SWS_SomelpTp_00017] [SWS_SomelpTp_00018]
[SWS_SomelpTp_00019] [SWS_SomelpTp_00020]
[SWS_SomelpTp_00021] [SWS_SomelpTp_00022]
[SWS_SomelpTp_00023] [SWS_SomelpTp_00024]
[SWS_SomelpTp_00025] [SWS_SomelpTp_00026]
[SWS_SomelpTp_00027] [SWS_SomelpTp_00028]
[SWS_SomelpTp_00029] [SWS_SomelpTp_00030]
[SWS_SomelpTp_00031] [SWS_SomelpTp_00032]
[SWS_SomelpTp_00033] [SWS_SomelpTp_00034]
[SWS_SomelpTp_00035] [SWS_SomelpTp_00036]
[SWS_SomelpTp_00037] [SWS_SomelpTp_00038]
[SWS_SomelpTp_00039] [SWS_SomelpTp_00040]
[SWS_SomelpTp_00041] [SWS_SomelpTp_00042]
[SWS_SomelpTp_00045] [SWS_SomelpTp_00048]
[SWS_SomelpTp_00049] [SWS_SomelpTp_00050]
[SWS_SomelpTp_00051] [SWS_SomelpTp_00054]
[SWS_SomelpTp_00062] [SWS_SomelpTp_00063]
[SWS_SomelpTp_00064] [SWS_SomelpTp_00071]
[SWS_SomelpTp_00078] [SWS_SomelpTp_00079]
[SWS_SomelpTp_00080] [SWS_SomelpTp_00082]
[SWS_SomelpTp_00094] [SWS_SomelpTp_00095]
[SWS_SomelpTp_00096] [SWS_SomelpTp_00097]

[RS_SOMEIP_00011] SOME/IP protocol shall support [SWS_SomelpTp_00001] [SWS_SomelpTp_00002]
messages of different lengths [SWS_SomelpTp_00003] [SWS_SomelpTp_00004]

[SWS_SomelpTp_00005] [SWS_SomelpTp_00006]

[RS_SOMEIP_00027] SOME/IP protocol shall define the [SWS_SomelpTp_00006] [SWS_SomelpTp_00009]
header layout of messages [SWS_SomelpTp_00010] [SWS_SomelpTp_00011]

[SWS_SomelpTp_00012] [SWS_SomelpTp_00013]
[SWS_SomelpTp_00014] [SWS_SomelpTp_00015]
[SWS_SomelpTp_00026] [SWS_SomelpTp_00095]
[SWS_SomelpTp_00096]

[RS_SOMEIP_00040] SOME/IP protocol shall support [SWS_SomelpTp_00055]
providing the length of a serialized
data element in the payload

[RS_SOMEIP_00051] SOME/IP protocol shall provide [SWS_SomelpTp_00002] [SWS_SomelpTp_00004]
support for segmented transmission [SWS_SomelpTp_00005] [SWS_SomelpTp_00009]
of large data [SWS_SomelpTp_00012] [SWS_SomelpTp_00019]

[SWS_SomelpTp_00023] [SWS_SomelpTp_00024]
[SWS_SomelpTp_00025] [SWS_SomelpTp_00030]
[SWS_SomelpTp_00031] [SWS_SomelpTp_00035]
[SWS_SomelpTp_00041] [SWS_SomelpTp_00042]
[SWS_SomelpTp_00048] [SWS_SomelpTp_00050]
[SWS_SomelpTp_00051] [SWS_SomelpTp_00063]
[SWS_SomelpTp_00064] [SWS_SomelpTp_00071]
[SWS_SomelpTp_00078]

AUTSSAR

Requirement

Description

Satisfied by

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_SomelpTp_00043]

[SRS_BSW_00310]

APl naming convention

[SWS_SomelpTp_00047]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_SomelpTp_00091]

[SRS_BSW_00337]

Classification of development errors

[SWS_SomelpTp_00066] [SWS_SomelpTp_00074]
[SWS_SomelpTp_00075]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_SomelpTp_00092] [SWS_SomelpTp_00093]

[SRS_BSW_00357]

For success/failure of an API call a
standard return type shall be defined

[SWS_SomelpTp_00055]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_SomelpTp_00053] [SWS_SomelpTp_00056]
[SWS_SomelpTp_91001]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_SomelpTp_00074]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_SomelpTp_00058] [SWS_SomelpTp_00069]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_SomelpTp_00060] [SWS_SomelpTp_00061]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_SomelpTp_00092] [SWS_SomelpTp_00093]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_SomelpTp_91002]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_SomelpTp_00076] [SWS_SomelpTp_00090]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_SomelpTp_00044] [SWS_SomelpTp_00046]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_SomelpTp_00044] [SWS_SomelpTp_00046]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_SomelpTp_00058] [SWS_SomelpTp_00059]
[SWS_SomelpTp_00069] [SWS_SomelpTp_00070]

[SRS_BSW_00450]

A Main function of a un-initialized
module shall return immediately

[SWS_SomelpTp_00092]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_SomelpTp_00065]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_SomelpTp_00066] [SWS_SomelpTp_00075]

[SRS_BSW_00481]

Invalid configuration set selection
errors shall follow a naming rule

[SWS_SomelpTp_00052]

Table 6.1: Requirements Tracing

a =), a Specification on SOME/IP Transport Protocol
UTSSAR AUTOSAR CP R25-11

7 Functional specification

The task of the SOME/IP TP module is to segment SOME/IP packets, which do not fit
into one single UDP packet. On the reception side, it assembles the received SOME/
IP segments.

The SOME/IP TP module interacts with the PDU Router for both directions, the trans-
mission and the reception path.

PDU Router SOME/IP TP

Socket Adaptor

Figure 7.1: Location of the SOME/IP TP module

7.1 Overview of the SOME/IP header

This chapter describe the relevant parts of the SOME/IP header for the segmentation
of SOME/IP messages.

The Message Type field of the SOME/IP header contains a bit, which marks the SOME/
IP PDU as a segment of an original SOME/IP message. Every segmented SOME/IP
message adds SOME/IP TP specific fields to the SOME/IP header.

These fields contain control information for the segmentation and the reassembly of
original, large SOME/IP messages. How they are used is described in the following
chapters.

13 of 65 Document ID 809: AUTOSAR_CP_SWS SOMEIPTransportProtocol

AUTSSAR

ol1|2]s]4|s|6]|7]s]5]w]|11]12]13]14|15[16]17|18| 15 20]21| 22|23 24] 25| 26| 27] 28] 25| 30| 31] bit offset

Request ID [Client ID / Session D) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]
RES M
Offset [28 bit]
000 0

Payload [variable size]

Figure 7.2: SOME/IP TP header

Note: The Offset Field, the Reserved bits and the More Segment Flag are only present
if the TP-Flag is set to ’1°.

7.1.1 Message Type Field

The Message Type Field contains the TP-Flag, which marks this SOME/IP message
as a SOME/IP segment of an original SOME/IP message.

Message Type [8 bit]
bit offset 16 17 18 19 20 21 22 23
Value X X 0/1 X X X X X
Name ignore ignore TP-Flag ignore ignore ignore ignore ignore

Table 7.1: Location of the TP-Flag

7.1.2 Offset Field

The Offset Field [28 bits] is located right after the Return Code field. It starts at bit offset
0, and ends at bit offset 27. The contained value increases after every transmitted/
received segment according to the payload length of the previous transmitted/received
SOME/IP segment.

The Offset Field contains the Offset Value in units of 16 bytes. (E.g.: If the Offset Field
is set to 92, 1472 Payload bytes have been transmitted so far.) These two different
terms are used in the remainder of this document.

Note: The payload length provided in the Offset Field does not include the bytes which
are needed for the SOME/IP header.

AUTSSAR

7.1.3 Reserved Field

The Reserved Field [3 bits] follows the Offset Field. It starts at bit offset 28 and ends
at bit offset 30. These three bits are reserved and set to 0.

7.1.4 More Segments Flag

The More Segments Flag [1 bit] indicates whether another segmented SOME/IP PDU
will follow.

7.1.5 Example

An original SOME/IP message of 5880 bytes payload has to be transmitted.
The Length field of this original SOME/IP message is set to 8 + 5880 bytes.

o[T2TeTa]s [e]7 [e e [o]u]rzfiz]rans]ie]ir rera]2u 21 o2 [oa Joa [os [os Jor e [oa a0 1] it ottset
Message |D (Service ID { Method 1D) [32 bif]
0x0101 0009
Length [32 bit]
=8 + 5850
Request |0 (Client ID/ Session ID) [32 bit]
0x0001 0005

Protocol Version [8 bif] | Interface Version [8 bil] | Message Type [8 bit] Return Code [8 bil]
0x01 001 bO0000000 [Dx00] Ox00

ad by Lengih

Payload [5880 Byles]
0x00 0x00 0x30 000
0x00 0x01 0x02 0x03

Coaven

Figure 7.3: Example: Header of Original SOME/IP message

This original SOME/IP message will now be segmented into 5 consecutive SOME/

IP segments. Every payload of these segments carries at most 1392 bytes in this
example.

For these segments, the SOME/IP TP module adds additional TP fields (marked red).
The Length field of the SOME/IP carries the overall length of the SOME/IP segment
including 8 bytes for the Request ID, Protocol Version, Interface Version, Message Type
and Return Code. Because of the added TP fields (4 bytes), this Length information is
extended by 4 additional SOME/IP TP bytes.

The following table provides an overview of the relevant SOME/IP header settings for
every SOME/IP segment:

Length (Bytes) Message Type Offset Value More Segment Flag
[TP-Flag]
1st segment 8 +4 + 1392 = 1404 TP-Flag =1’ 0 1
2nd segment 8+4+1392=1404 | TP-Flag="1’ 87 1
3rd segment 8 +4 + 1392 = 1404 TP-Flag =1’ 174 1

\Y

AUTSSAR

A
4th segment 8 +4 + 1392 = 1404 TP-Flag =1’ 261 1
5th segment 8+4+312=324 TP-Flag =1’ 348 0

Table 7.2: Example: Overview of relevant SOME/IP TP headers

Note:Please be aware that the value provided within the Offset Field is given in units
of 16 bytes, i.e.: The Offset Value of 87 correspond to 1392 bytes Payload.
The complete SOME/IP headers of the SOME/IP segments message will look like this
in detail:

» The first 4 segments contain 1392 Payload bytes each with "More Segments

Flag" setto "1’
ol1lz2]3]4]s|e]7]e]3|10[11]12]13]14]15]16] 17| 18] 15| 20] 21| 22] 23| 24| 25| 26] 27| 28] 28| 30[31| bit offset
Message ID (Service ID f Method ID}) [32 bit]
0x0101 0009
Length [32 bit]
= §+4+1392 (1404)
Request ID [Client ID / Session D) [32 bit]
0x001 0005
Protocol Version [8 bit] | Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]
0x01 0x01 b0010000 [0x20] 0x00
RES
Offset [28 bit]
000 1
Payload [1392 bytes]
0x00 0x17 0x28 0x33
0x28 0x03 0x18 0x32

Figure 7.4: Example: Header of the SOME/IP segments

» The last segment (i.e. #5) contains the remaining 312 Payload bytes of the origi-
nal 5880 bytes payload. This last segment is marked with "More Segments Flag"

setio 0.

AUTSSAR

ol1|2]s]4|s|6]|7]s]5|w]|1a]12]13]14|15]16]17|18|13]20] 21| 22| 23| 24| 25| 26| 27] 28] 23] 30| 31

Message ID (Service ID f Method ID}) [32 bit]
0x0101 0009

Length [32 bit]
= 8+4+312 (324)

Request ID [Client ID / Session D) [32 bit]

0x001 0005
Protocol Version [8 bit] | Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]
0x01 0x01 b0010000 [0x20] 0x00
RES
Offset [28 bit]
000

Payload [312 bytes]

0x4d 0x65 0x67 0x61
Ox6e 0x46 0x6f 0x78

Figure 7.5: Example: Header of the last SOME/IP segment

7.2 Module Handling

bit offset

This section contains description of auxiliary functionality of the SomelpTp module.

7.2.1 |Initialization

The SomelpTp module is initialized via SomeIpTp_Init, and de-initialized via

Except for SomeIpTp_GetVersionInfo and SomelIpTp_-—
Init, the API functions of the SomelpTp module may only be called after the module
has been properly initialized.

SomeIpTp_DelInit.

[SWS_SomelpTp_00090] Call of SomeIpTp_Init
Upstream requirements: SRS_BSW_00406

[A call to SomeIpTp_Init shall perform the following actions:

* |nitializes all internal variables.

+ Flush all internal mappings and memory sections.

» Set all configured SomeIpTpRxNSdu of each SomeIpTpRxChannel and
SomeIpTpTxNSdu of each SomeIpTpTxChannel to state NSDU_AVAILABLE.

» Set the SomelpTp module to initialized state.

AUTSSAR

[SWS_SomelpTp_00091] Call of SomeIpTp_DeInit
Upstream requirements: SRS_BSW_00336

[A call to SomeIpTp_DelInit sets the SomelpTp module back to the uninitialized
state. |

[SWS_SomelpTp_00092] Handling if development error reporting is enabled and
APIs called in uninitialized state

Upstream requirements: SRS_BSW_00350, SRS_BSW_00386, SRS_BSW_00450

[If development error reporting is enabled via SomeIpTpDevErrorDetect, the
SomelpTp module shall call bet_ReportError with the error code SOMEIPTP_E_
UNINIT when any APl other than SomeIpTp_Init Or SomeIpTp_GetVersionInfo
is called in uninitialized state. |

[SWS_SomelpTp_00093] Handling if SomeIpTp_Init is called in initialized state
Upstream requirements: SRS_BSW_00350, SRS_BSW_00386

[When someIpTp_Init is called in initialized state, the SomelpTp module shall not
re-initialize its internal variables, flush internal mappings and memory sections or
change the state of the configured N-PDUs. It shall instead call Det_ReportError
with the error code SomeIpTp_E_REINIT if development error reporting is enabled
(see SomeIpTpDevErrorDetect). |

7.3 State handling of N-SDUs

The SomelpTp module has to maintain the usage-state of each SomeIpTpRxNSdu
and SomeIpTpTxNSdu which could be configured per SomeIpTpRxChannel Of
SomeIpTpTxChannel. Therefore each N-SDU has two states NSDU_IN_USE or
NSDU_AVAILABLE.

Note: The definition of NSDU_IN_USE or NSDU_AVAILABLE represents only the func-
tional behavior, but not the implementation, since the state of a N-SDU is kept locally
and is not propagated to other modules. Therefore, no type definition for the N-SDU
state is specified.

[SWS_SomelpTp_00094] Each N-SDU shall have a N-SDU state
Upstream requirements: RS_SOMEIP_00010
[The SomelpTp module shall maintain for each N-SDU of all configured SomeIpT-

pRxNSdu and SomeIpTpTxNSdu at each SomeIpTpRxChannel and SomeIpTpTx-
Channel two states: state NSDU_AVAILABLE and state NSDU_IN_USEJ

AUTSSAR

7.4 Parallel processing of SOME/IP messages

The SomelpTp module configuration represents the reception and transmission of
SOME/IP messages as SomeIpTpRxChannel and SomeIpTpTxChannel. Each
SOME/IP TP channel has exactly one N-PDU which is used for the interaction with
the lower layer modules. Each SOME/IP channel need to have a least one N-SDU
which is used for the interaction with the upper layer, but could also have multiple N-
SDUs to support parallel processing of SOME/IP messages. The following parallel
processing approaches are supported:

+ parallel processing of SOME/IP messages that belong to different Some IpTpRx—
Channelsor SomeIpTpTxChannelS

» parallel processing of SOME/IP messages that belong to the same SomeIpT-
pRxChannel or SomeIpTpTxChannel but have multiple upper layer N-SDUs
configured (see SomeIpTpRxNSdu Of SomeIpTpTxNSdu

A SOME/IP message is identified with the Message ID that is encoded in the first four
bytes of the SOME/IP header. On reception of a SOME/IP message at the SoAd, the
Message ID is extracted by the SoAd as Header ID (see SoAdRxPduHeaderId) to
identify the corresponding SoAdSocketRouteDest. This SoAdSocketRouteDest
has a PDU ID configured (see soAdRxPdulId) that is used to forward the remaining
part of the SOME/IP message and , if configured, the SOCKET_CONNECTION_ID_-
16 as meta data to the SomelpTp module. The SomelpTp module uses the given
PDU ID to identify the someIpTpRxNPdu where the given PDU ID and the config-
ured Some IpTpRxNPduHandleId match. The matching Some IpTpRxNPdu is config-
ured in a SomeIpTpRxChannel. This SomeIpTpRxChannel configures one or more
Some IpTpRxNSdu to address the destination module (e.g. Com) where the SOME/IP
message or its segments are forwarded by the SomelpTp module:

 For parallel processing at reception side of SOME/IP messages that belong to
different someIpTpRxChannels, the SomelpTp module could distinguish the
parallel processing by considering different PDU IDs (SomeIpTpRxNPduHan—
dleId). One someIpTpRxNPdu belongs to one SomeIpTpRxNSdu (1:1 map-

ping).

+ For parallel processing at reception side of SOME/IP messages that belong to the
same SomeIpTpRxChannel, the SOME/IP module need to select arbitrarily one
of the configured and available upper layer N-SDUs (see SomeIpTpRxNSdu).
Additionally, it needs to consider the transmission source of the SOME/IP mes-
sage, by creating a mapping of the allocated N-SDU with the Client ID given in
SOME/IP header and, if configured, by considering the SOCKET_CONNECTION_
ID_16 provided via meta data. The SomelpTp module need to maintain the
usage-state of the upper layer N-SDUs (see Chapter 7.3). One Some IpTpRxN—
Pdu belongs to multiple Some IpTpRxNSdus (1:n mapping).

On transmission for a SOME/IP message requested by the upper layer of the
SomelpTp module, the upper layer module provide the configured PDU ID. The
SomelpTp module uses the given PDU ID to identify the SomeIpTpTxNSdu

AUTSSAR

where the given PDU ID and the configured SomeIpTpTxNSduHandleId match.
The SomeIpTpTxNSdu belongs t0 a SomeIpTpTxChannel where exactly one
SomeIpTpTxNPdu is configured that is used to forward SOME/IP message segments
to the lower layer:

» For parallel processing of SOME/IP messages that belong to different
SomeIpTpTxChannels, the SomelpTp module need to maintain the usage-state
of the corresponding the upper layer N-SDU (see Chapter 7.3). One SomeIpTp-
TxNPdu belongs to one Some IpTpTxNSdu (1:1 mapping).

» For parallel processing of SOME/IP messages that belong to the same
SomeIpTpTxChannel, the SOME/IP module need to maintain the usage-state
of the corresponding upper layer N-SDUs (see Chapter 7.3). Additionally, it needs
to forward SOCKET_CONNECTION_ID_16 via meta data to the lower layer, if
SOCKET_CONNECTION_ID_16 is configured. One SomeIpTpTxNPdu belongs
to multiple SomeIpTpTxNsSdus (1:n mapping)

On transmission side the upper layer and a proper configuration of the transmission
path is responsible to support parallel processing. The upper layer is in charge to
choose a N-SDU that belongs to the correct SomeIpTpTxChannel.

A system design needs to respect modelling constraints of the [8, System Template]
(see [constr_9395],[TPS_SYST_02442], [constr_9396], [constr_9397])

The someIpTpRxChannel configure transport protocol behaviour (e.g. timing) on re-
ception. The configuration is considered for the according Some IpTpRxNPdu. The
SomeIpTpTxChannel configure transport protocol behaviour (e.g. timing) on trans-
mission. The configuration is considered for the according Some IpTpTxNPdu.

7.5 Segmentation of SOME/IP messages (TX Path)

The following chapter describe the necessary activities of the SOME/IP TP module to
segment SOME/IP messages.

7.5.1 Size of SOME/IP segments

[SWS_SomelpTp_00001]

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00011
[The SOME/IP TP module shall remember the PDU length separately for every PDU
ID which is passed by the PdulnfoPtr parameter of the SomelpTp_Transmit() call. |

Note:

The SOME/IP TP module needs this information to calculate the payload size, the
Offset Value, and the More Segments Flag for the SOME/IP segments which are going
to be transmitted.

AUTSSAR

[SWS_SomelpTp_00002]
Upstream requirements: RS_SOMEIP_00011, RS_SOMEIP_00010, RS_SOMEIP_00051

[The amount of generated SOME/IP segments shall be as little as possible. |

Note: This means that the SOME/IP TP module shall try to always use the maximum
allowed segmentation size.

[SWS_SomelpTp_00003]
Upstream requirements: RS_SOMEIP_00011

[The size of every segmented SOME/IP message shall consist of the sum of 12 bytes
of SOME/IP header, and the Payload bytes itself. |

[SWS_SomelpTp_00004]
Upstream requirements: RS_SOMEIP_00011, RS_SOMEIP_00010, RS_SOMEIP_00051

[The SOME/IP TP module shall derive the maximum possible size of the segmented
SOME/IP PDUs using the parameter SomelpTpTxNPduRef. |

[SWS_SomelpTp_00005]
Upstream requirements: RS_SOMEIP_00011, RS_SOMEIP_00010, RS_SOMEIP_00051

[The SOME/IP TP module shall generate segmented SOME/IP PDUs not larger than
the size derived from the parameter SomelpTpTxNPduRef. |

[SWS_SomelpTp_00006]
Upstream requirements: RS_SOMEIP_00011, RS_SOMEIP_00010, RS_SOMEIP_00027

[Every payload of a segmented SOME/IP message except the last one has to be a
multiple of 16 bytes. |

Note:

The last segment may consist of an odd payload or a payload which is not dividable by
16. The amount of the contained payload bytes are written into the Length field of the
SOME/IP header.

[SWS_SomelpTp_00007]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall buffer the pointer to the Meta-data for every PDU
ID separately which is passed by the PdulnfoPtr parameter of the APl SomelpTp_
Transmit(), and forward this information when PduR_SomelpTpTransmit() is called for
each segment. |

AUTSSAR

7.5.2 Header of SOME/IP segments

Every generated SOME/IP header for each SOME/IP segment is set to the following
values:

The following fields are based on the received PDU of the upper layer:
» Request ID [32 bit] -direct copy, see SWS_SomelpTp_00007
* Protocol Version [8 bit] - direct copy, see SWS_SomelpTp_00007
« Interface Version [8 bit] - direct copy, see SWS_SomelpTp_00007
» Message Type [8 bit] - calculated value, see SWS_SomelpTp_00008
» Return Code [8 bit] - direct copy, see SWS_SomelpTp_00007
The following fields are added by the SOME/IP TP module:
» Offset [28 bit] - calculated value, see SWS_SomelpTp_00011
» Reserved bits [3 bit] - statically set to '000’, see SWS_SomelpTp_00012
» More Segment Flag [1 bit] - calculated value, see SWS_SomelpTp_00013

[SWS_SomelpTp_00008]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall store the Request ID, Protocol Version, Interface Ver-
sion, Message Type, and the Return Code of the SOME/IP header for every PDU ID
separately which is returned by the first call of PAduR_SomelpTpCopyTxData() trig-
gered by the API call SomelpTp_Transmit(). |

Note:

The SOME/IP header is contained in the first 8 bytes of the total length of the original
SOME/IP PDU. The total length is provided via the API call SomelpTp_Transmit().

[SWS_SomelpTp_00009]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00051

[If the provided SDU fits into one single PDU, the provided SOME/IP header shall be
used with no modification.

If the provided SDU does not fit into one single SOME/IP PDU, the SOME/IP TP module
shall set the TP-Flag of the Message Type to ’1’ for every SOME/IP segment which is
going to be sent on the bus via the PduR.

All the other bits contained in the Message Type field shall stay untouched. |

AUTSSAR

[SWS_SomelpTp_00010]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The SOME/IP TP module shall create and attach the Offset Field, the Reserved bits,
and the More Segment Flag to every SOME/IP segment which is going to be sent on
the bus. |

[SWS_SomelpTp_00011]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The Offset Field of the first SOME/IP segment shall be set to '0’. |

[SWS_SomelpTp_00012]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027, RS_SOMEIP_00051

[The SOME/IP TP module shall increase the value of the Offset Field for every suc-
cessfully transmitted SOME/IP segment by the amount of bytes which have been trans-
mitted by the previous SOME/IP segment divided by 16. |

[SWS_SomelpTp_00013]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The SOME/IP TP module shall set the Reserved bits statically to '000’ by the sender
and shall be ignored by the receiver. |

[SWS_SomelpTp_00014]

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027
[The SOME/IP TP module shall set the More Segment Flag to ’1’ except for the last
SOME/IP segment. |

[SWS_SomelpTp_00015]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The SOME/IP TP module shall set the More Segment Flag to '0’ for the last SOME/
IP segment. |

7.5.3 Sending of SOME/IP segments

[SWS_SomelpTp_00095] Forward meta data if configured for transmission
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027
[If the APl SomeIpTp_Transmit is called and the indicated PDU given via TxPdulId

refer to a SomeIpTpTxNPdu that has meta data configured, then the SOME/IP TP
module shall forward the meta data. |

AUTSSAR

[SWS_SomelpTp_00016]
Upstream requirements: RS_SOMEIP_00010

[If the APl SomelpTp_Transmit() is called, the SOME/IP TP module shall check for an
ongoing segmentation for the provided PDU ID. |

[SWS_SomelpTp_00017] Call of SomeIpTp_Transmit while no segmentation is
ongoing

Upstream requirements: RS_SOMEIP_00010
[If the APl someIpTp_Transmit is called while no segmentation is ongoing for this

PDU ID, the SOME/IP TP module shall perform the following steps in the following
order:

* Remember the provided PDU length (provided PdulnfoPtr).

 Derive the PDU ID which shall be used for every segmented SOME/IP PDU (see
SomelpTpTxNPduRef).

« Calculate the size of the SOME/IP for the first segment (considering header and
payload).

» Set the corresponding Some IpTpTxNSdu to state NSDU_IN_USE.

 Call the API PduR_SomelpTpTransmit() from SomelpTp_MainFunctionTx() us-

ing the derived PDU ID and the calculated PDU size and set the SduDataPtr to
NULL_PTR.

]
Note:

No subsequent call to PduR_SomelpTpTxConfirmation() shall take place since the
transmission request is rejected before segmentation process started.

[SWS_SomelpTp_00018]
Upstream requirements: RS_SOMEIP_00010
[When the APl SomelpTp_TriggerTransmit() is called, create the header for the SOME/

IP segment and call the APl PduR_SomelpTpCopyTxData()using the calculated pay-
load for this segment, and set the parameter retry to NULL_PTR. |

[SWS_SomelpTp_00019]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The size for consecutive SOME/IP TP segments all but not the last, shall be derived

by the maximum possible size of the segmented SOME/IP PDUs using the parameter
SomelpTpTxNPduRef. |

AUTSSAR

[SWS_SomelpTp_00078]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The SOME/IP TP module shall verify that the available buffer returned by PduR_

SomelpTpCopyTxData() via availableDataPtr is larger (for all but the last segment) or
equal (for the last segment) size of SOME/IP TP segments. |

[SWS_SomelpTp_00020]
Upstream requirements: RS_SOMEIP_00010

[

The SOME/IP TP module shall debounce subsequent calls of the APl PduR_
SomelpTpTransmit() for the same PDU ID,using the parameter SomelpTpNPduSep-
arationTime.

It defines the time span between the call of SomelpTp_TxConfirmation(), and the sub-
sequent call of the APl PduR_SomelpTpTransmit(). If SomelpTpTxBurstSize is config-
ured to a value > 1 the SOME/IP TP module shall debounce for the same PDU ID only
every SomelpTpTxBurstSize segments.

]

[SWS_SomelpTp_00021] Successful transmission of the last segment of a dis-
assembled SOME/IP message

Upstream requirements: RS_SOMEIP_00010

[If the last SOME/IP segment of the original SOME/IP PDU has been transmitted suc-
cessfully (i.e. the call of SomelpTp_TxConfirmation()with parameter success equals
TRUE occurred for the last call of PduR_SomelpTpCopyTxData()), the SOME/IP TP
module shall

+ Call the APl PduR_SomelpTpTxConfirmation().

» Set the corresponding SomeIpTpTxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpTxConfirmation() returns

]

Note:

With the call of PduR_SomelpTpTxConfirmation(), the segmentation process is fin-
ished.

AUTSSAR

7.5.4 Interruption of the disassembly process

[SWS_SomelpTp_00022] Handling if SomeIpTp_ Transmit is called with a PDU-
ID for an ongoing segmentation

Upstream requirements: RS_SOMEIP_00010

[If the API SomelpTp_Transmit() is called with a PDU ID which is currently used for an
ongoing segmentation,

« E_NOT_OK shall be returned.
» The ongoing disassembly process for this PDU ID shall be canceled.

The API PduR_SomelpTpTxConfirmation()with result set to E_NOT_OK shall be
called.

Set the corresponding SomeIpTpTxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpTxConfirmation() returns

The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_DISASSEMBLY_INTERRUPT.

]

[SWS_SomelpTp_00082] Handling if PAduR_SomelpTpTransmit() return some-
thing different than E_oOK for a PDU-ID during the process of an ongoing seg-
mentation

Upstream requirements: RS_SOMEIP_00010

[If PAduR_SomelpTpTransmit() returns something different than E_OK during the pro-
cess of ongoing segmentation.

» The ongoing disassembly process for this PDU ID shall be canceled.

» The APl PduR_SomelpTpTxConfirmation() with result set to E_NOT_OK shall be
called.

» Set the corresponding SomeIpTpTxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpTxConfirmation() returns

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E DISASSEMBLY INTERRUPT.

]

[SWS_SomelpTp_00023] Handling if SomeIpTp_ TxConfirmation is called with
parameter success set to FALSE

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[If the APl SomelpTp_TxConfirmation() is called with parameter success set to FALSE,

» The disassembly process for this PDU ID shall be canceled.

AUTSSAR

» The APl PduR_SomelpTpTxConfirmation()with result set to E_NOT_OK shall be
called.

» Set the corresponding SomeIpTpTxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpTxConfirmation() returns

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_DISASSEMBLY_INTERRUPT.

]

[SWS_SomelpTp_00024] Handling if PAduR_SomelpTpCopyTxData() return less
available buffer

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[

In case the available buffer returned by PduR_SomelpTpCopyTxData() via available-
DataPtr does not satisfied the following conditions

* larger or equal to 16 bytes,

« larger (for all but the last segment) or equal (for the last segment) size of SOME/
IP TP segments,

SomelpTp module shall:
» Cancel the disassembly process for this PDU ID .
+ Call the APl PduR_SomelpTpTxConfirmation() with result set to E_NOT_OK.

» Set the corresponding SomeIpTpTxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpTxConfirmation() returns

» Call the API Det_ReportRuntimeError() with the runtime error code SOMEIPTP_
E DISASSEMBLY INTERRUPT.

]

[SWS_SomelpTp_00025] Handling if PduR_SomelpTpCopyTxData() return some-
thing else than BUFREQ_OK

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[If an APl PduR_SomelpTpCopyTxData()returns something else than BUFREQ_OK,
» The disassembly process for this PDU ID shall be canceled.

» The API PduR_SomelpTpTxConfirmation()with result set to E_NOT_OK shall be
called.

» Set the corresponding SomeIpTpTxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpTxConfirmation() returns.

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_DISASSEMBLY_INTERRUPT.

AUTSSAR

7.6 Assembly of received SOME/IP messages (RX path)

[SWS_SomelpTp_00031] Processing of SOME/IP messages with TP flag set to ’0’
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[If SomeIpTp_RxIndication is called, the indicated PDU has TP Flag set to
'0’ and at least one SomeIpTpRxNSdu oOf the affected SomeIpTpRxChannel is in
state NSDU_AVAILABLE, then the SomelpTp module shall perform the following ac-
tions in the given order. Otherwise, if all configured SomeIpTpRxNSdu of the af-
fected SomeIpTpRxChannel are in state NSDU_IN_USE, report a runtime error
SOMEIPTP_E_ALL_RX_NSDUS_IN_USE and return:

* set the corresponding Some IpTpRxNSdu to state NSDU_IN_USE

+ call PduR_SomelpTpStartOfReception(), PduR_SomelpTpCopyRxData(), and
PduR_SomelpTpRxIndication(), directly after each other providing the received
indication

» set the corresponding SomeIpTpRxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpRxIndication() returns

* return without processing any further reception handling (e.g. time out handling).

]

[SWS_SomelpTp_00026] Derivation of header information for SOME/IP mes-
sages with TP flag set to ’1’

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[If the APl SsomeIpTp_RxIndication is called and the indicated PDU has TP Flag
set to ’1’, then the SOME/IP TP module shall derive the following SOME/IP header
information from the first 12 bytes of the received PDU:

* Request ID [32 bit]

Protocol Version [8 bit]

Interface Version [8 bit]

Message Type [8 bit]
Return Code [8 bit]
Offset [28 bit]
Reserved bits [3 bit]

More Segment Flag [1 bit]

AUTSSAR

[SWS_SomelpTp_00071] Processing of SOME/IP messages with TP flag set to °’1’
and size of exactly one segment, and least one SsomeIpTpRxNSdu of the affected
SomeIpTpRxChannel is in state NSDU_AVAILABLE

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[

If SomeIpTp_RxIndication is called and the indicated PDU carries a SOME/IP
messages Where the following header fields are set with the following specific values:

* TP Flag setto '1’,
 Offset Field set to '0’, and
* More Segment Flag set to ’'0’,

and at least one SomeIpTpRxNSdu of the affected SomeIpTpRxChannel is in state
NSDU_AVAILABLE, then SomelpTp module shall perform the following actions in the
given order. Otherwise, if all configured Some IpTpRxNSdus of the affected SomeIpT-
pRxChannel are in state NSDU_IN_USE, report a runtime error SOMEIPTP_E_ALIL_
RX_NSDUS_IN_USE and return:

* set the corresponding Some IpTpRxNSdu to state NSDU_IN_USE

+ call PduR_SomelpTpStartOfReception(), PduR_SomelpTpCopyRxData(), and
PduR_SomelpTpRxIndication(), directly after each other providing the received
indication

» set the corresponding SomeIpTpRxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpRxIndication() returns

« return without processing any further reception handling (e.g. time out handling).

]

[SWS_SomelpTp_00096] Support parallel processing of the same PDU ID based
on the identified transmission sources

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[If the APl SomeIpTp_RxIndication is called, the SOME/IP messages has TP flag
set to ’1" and at least one SomeIpTpRxNSdu of the affected SomeIpTpRxChannel
is in state NSDU_AVAILABLE, then the SomelpTp module shall support parallel pro-
cessing of SOME/IP messages for the same PDU ID (i.e. Message ID) based on the
following rules to identify the transmission source:

* If the indicated PDU given via RxPduId has SOCKET_CONNECTION_ID_16 con-
figured, then the SomelpTp module shall consider SOCKET_CONNECTION_ID_
16 and the Client ID to identify the transmission source.

+ If the indicated PDU given via RxPduId has no SOCKET_CONNECTION_ID_16
configured, then the SomelpTp module shall consider the Client ID to identify the
transmission source.

AUTSSAR

]

Note:
» An indicated PDU given with the PDU ID corresponds to a Message ID.

* A call of the same Message ID (e.g. method call) at the same ECU from different
clients are queued by the RTE on the transmitting ECU, since the PDU is blocked
until the call of the first client is finalized. Thus, only one outstanding call from one
client with the same transmission source need to be considered at the receiving
ECU.

* A call of the same Message ID (e.g. method call) from different ECUs could over-
lap at the receiving ECU, therefore a parallel processing within the reception path
at the SomelpTp module is needed, which require to consider the information of
the transmission source.

[SWS_SomelpTp_00027]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall be able to store the value of the Offset Field for every
PDU ID per identified transmission source ([SWS_SomelpTp_00096]) separately. |

[SWS_SomelpTp_00028]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall be able to store the number of Payload bytes for
every PDU ID per identified transmission source ((SWS_SomelpTp_00096]) separately
which has been passed by a call of SomelpTp_RxIndication(). |

[SWS_SomelpTp_00029]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall store the status of the More Segment Flag for ev-
ery PDU ID per identified transmission source ([SWS_SomelpTp_00096]) separately
which is passed by a call of SomelpTP_RxIndication(). |

[SWS_SomelpTp_00030]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The SOME/IP TP module shall buffer the pointer to the Meta-data for every PDU
ID per identified transmission source ([SWS_SomelpTp_00096]) separately which is
passed by the PdulnfoPtr parameter of the APl SomelpTp_RxIndication(), and forward
this information when PduR_SomelpTpStartOfReception is called. |

AUTSSAR

7.6.1 SOME/IP segment received with Offset 0

[SWS_SomelpTp_00032]
Upstream requirements: RS_SOMEIP_00010

[If a SOME/IP segment is successfully received with Offset Field set to 0, the SOME/
IP TP module shall store the values of the received SOME/IP header for each PDU ID
per identified transmission source ([SWS_SomelpTp_00096]) separately.These values
shall be used as reference values for the (expected) following consecutive receiving
SOME/IP segments (i.e. with Offset Field set to > 0). |

[SWS_SomelpTp_00033] First segment handling and at least one SomeIpT-
pRxNSdu of the affected SomeIpTpRxChannel is in state NSDU_AVAILABLE

Upstream requirements: RS_SOMEIP_00010

[If a SOME/IP segment is successfully received with Offset Field set to 0 via a config-
ured someIpTpRxNPdu and at least one someIpTpRxNSdu of the affected SomeIpT-
pRxChannel is in state NSDU_AVAILABLE, then the SOME/IP TP module shall per-
form the following actions. Otherwise, if all configured SomeIpTpRxNSdus of the
affected SomeIpTpRxChannel are in state NSDU_IN_USE, report a runtime error
SOMEIPTP_E_ALL_RX_NSDUS_IN_USE and return:

« Start the Rx timeout time defined by SomelpTpRxTimeoutTime.
» Set the corresponding Some IpTpRxNSdu to state NSDU_IN_USE.

 Call the APl PduR_SomelpTpStartOfReception() with the PDU ID derived from
the parameter SomelpTpRxSduRef and the TpSdulLength set to ’'0’.

]

Note:

TpSduLength set to ’0’ indicates "unknown message length" to the upper layers.

[SWS_SomelpTp_00097] First segment handling where the transmission source
match to an ongoing assembly process of the same PDU ID

Upstream requirements: RS_SOMEIP_00010

[If a SOME/IP segment is successfully received with Offset Field set to 0 via a config-
ured someIpTpRxNPdu and the following conditions are fulfilled:

* the corresponding SomeIpTpRxNSdu of the affected SomeIpTpRxChannel is
in use for a pending finalization of an ongoing assembly process

 the identified transmission source of the received PDU ID matches to the trans-
mission source that refers to the ongoing assembly process

then the SOME/IP TP module shall perform the following actions:

» Cancel the ongoing assembly process by calling PduR_SomelpTpRxIndication()
for this PDU ID with result set to E_NOT_0K

AUTSSAR

» Re-start the Rx timeout time defined by Some IpTpRxTimeout Time of the af-
fected SomeIpTpRxChannel.

 Start a new assembly process by calling PduR_SomelpStartOfReception() for
this PDU ID.

]

[SWS_SomelpTp_00034]
Upstream requirements: RS_SOMEIP_00010

[

If a SOME/IP segment is successfully received with Offset Field set to 0 and after
the SOME/IP TP module has called the APl PduR_SomelpTpStartOfReception(), the
SOME/IP TP module shall check the size returned via bufferSizePtr.

If the returned size is greater or equal to the sum of the received payload and the
added SOME/IP header, the SOME/IP TP module shall call the APl PduR_SomelpT-
pCopyRxData() to pass the SOME/IP header (excluding the SOME/IP TP header) of
the assembled SOME/IP message to the SOME/IP TP’s upper layer. This shall include
the following content:

* Request ID [32 bit]

Protocol Version [8 bit]

Interface Version [8 bit]

Message Type [8 bit] - see [SWS_SomelpTp_00028]
Return Code [8 bit]

]

[SWS_SomelpTp_00079]
Upstream requirements: RS_SOMEIP_00010

[

After calling PduR_SomelpTpCopyRxData() to pass the SOME/IP header (excluding
the SOME/IP TP header) of the assembled SOME/IP message to the SOME/IP TP’s
upper layer (see [SWS_SomelpTp_00034]), the SOME/IP TP module shall call the API
PduR_SomelpTpCopyRxData() again, to provide the payload of the assembled SOME/
IP message.

]

Note: Sequential calls of PAduR_SomelpTpCopyRxData() avoid storing of the SOME/
IP TP segment in the SOME/IP TP module and support a proper handling to strip off
the SOME/IP TP header by skipping 4 bytes that include the Offset field, Reserved
Field and the more Segment flag.

AUTSSAR

[SWS_SomelpTp_00035]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The SOME/IP TP module shall set the TP-Flag contained in the Message Type back
to 0’ before the assembled SOME/IP header is passed to the upper layer. |

[SWS_SomelpTp_00036]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall store the number of Payload bytes for every PDU
ID per identified transmission source ([SWS_SomelpTp_00096]) separately which has
been passed to the upper layer. |

Note:

This information will be used to verify the Offset Value of the consecutive SOME/IP
segments.

7.6.2 SOME/IP segment received with Offset> 0

[SWS_SomelpTp_00037]

Upstream requirements: RS_SOMEIP_00010
[If a SOME/IP segment is successfully received with Offset Field> 0, the SOME/
IP TP module shall compare the received SOME/IP header fields with the values
of the stored SOME/IP header fields which has been received with the first seg-

ment (i.e. Offset was set to 0) for each PDU ID per identified transmission source
([SWS_SomelpTp_00096]):

* Request ID [32 bit]

 Protocol Version [8 bit]

Interface Version [8 bit]

Message Type [8 bit]
Return Code [8 bit]

If these values match restart the SomelpTpRxTimeoutTime and continue with the as-
sembly process. |

[SWS_SomelpTp_00038]
Upstream requirements: RS_SOMEIP_00010
[The SOME/IP TP module shall store the number of Payload bytes for every PDU

ID per identified transmission source ([SWS_SomelpTp_00096]) separately which has
been passed to the upper layer. |

AUTSSAR

[SWS_SomelpTp_00039]
Upstream requirements: RS_SOMEIP_00010

[The SOME/IP TP module shall compare the value of the Offset Field with the sum
divided by 16 of copied Payload bytes since the first received SOME/IP segment (i.e.
with Offset Field set to ’0’).

If this sum divided by 16 matches with the current Offset Value and if the bufferSize
Ptr provided by the previous call of the APl PduR_SomelpTpCopyRxData()is greater
or equal to the received payload, call the APl PduR_SomelpTpCopyRxData()with Sdu
Length set to the received Payload bytes. |

Note:

In case of Offset Field value > 0, only the Payload bytes are provided to the upper layer
(without any SOME/IP header fields).

[SWS_SomelpTp_00040] Handling of last SOME/IP TP segment that corresponds
to an ongoing assembly process

Upstream requirements: RS_SOMEIP_00010

[If a SOME/IP segment is successfully received with the More Segment Flag set to '0’
via a configured some IpTpRxNPdu and the indicated PDU ID in combination with its
identified transmission source (see [SWS_SomelpTp_00096]) matches to an ongoing
assembly process where the corresponding Some IpTpRxNSdu is in state NSDU_IN_
USE, then the SOME/IP TP module shall perform the following actions:

» Cancel the Rx timeout time defined by SomelpTpRxTimeoutTime.

 Call the API PduR_SomelpTpRxIndication() after it has copied the remaining re-
ceived Payload bytes to the upper layer(as defined in SWS_SomelpTp_00033).

» Set the corresponding SomeIpTpRxNSdu to state NSDU_AVAILALBE, after
PduR_SomelpTpRxIndication() returns.

7.6.3 Interruption of the assembly process

[SWS_SomelpTp_00041] Handling if Some IpTpRxTimeoutTime expires
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[If the Rx timeout time defined by SomeIpTpRxTimeoutTime Of a SomeIpTpRx-
Channel expires,

» The current assembly process shall be interrupted as defined by SWS_Somelp
Tp_00054.

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_ASSEMBLY_INTERRUPT.

AUTSSAR

]

[SWS_SomelpTp_00042] Handling if SOME/IP TP segment is received with Offset
Value > 0, but no session for this PDU ID and its identified transmission source
is running

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[If the API SomelpTp_RxIndication() is called with the Offset Value is > 0 but

no session for the given PDU ID and its identified transmission source (see
[SWS_SomelpTp_00096]) is currently running,

» The received PDU shall be ignored

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_INCONSISTENT_SEQUENCE.

]

Note: This check identifies that at least the first segment has not been received.

[SWS_SomelpTp_00054] Handling if an assembly process is interrupted
Upstream requirements: RS_SOMEIP_00010

[If the SOME/IP TP module interrupts the assembly process because of a detected
error, the SOME/IP TP module shall consider the following points:

+ call PduR_SomelpTpRxIndication() with result set to £_NoT_0K for the PDU ID
that refers to the used Some IpTpRxNSdu of the affected SomeIpTpRxChannel.

» Set the corresponding SomeIpTpRxNSdu to state NSDU_AVAILABLE, after
PduR_SomelpTpRxIndication() returns.

» The Rx timeout time defined by SomelpTpRxTimeoutTime shall be canceled (if
still running) for this assembly process that corresponds to the PDU ID and its
identified transmission source (see [SWS_SomelpTp_00096]).

]

Note: The possible reasons for interruptions are listed below.

[SWS_SomelpTp_00062] Handling if inconsistency of received SOME/IP TP
headers is detected

Upstream requirements: RS_SOMEIP_00010

[If the SOME/IP TP module detects an inconsistency of the received SOME/IP TP
headers (i.e.: Request ID, Protocol Version, Interface Version, Message Type or Re-
turn Code are not equal for all received segments) per identified transmission source
([SWS_SomelpTp_00096]),

» The current assembly process for the affected PDU of the corresponding identi-
fied transmission source ([SWS_SomelpTp_00096]) shall be interrupted as de-
fined by [SWS_SomelpTp_00054].

AUTSSAR

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_INCONSISTENT_HEADER.

]

[SWS_SomelpTp_00045] Handling if received SOME/IP TP header has set TP-
Flag to °0’ for an currently active session

Upstream requirements: RS_SOMEIP_00010

[If the API SomelpTp_RxIndication() is called and a session for the affected PDU of
the identified transmission source ([SWS_SomelpTp_00096]) is currently active, the
SOME/IP TP module shall check if the TP-Flag of the Message Type is set to 1. If the
TP-Flag is not set to ’1’,

» The current assembly process for the affected PDU of the corresponding identi-
fied transmission source ([SWS_SomelpTp_00096]) shall be interrupted as de-
fined by [SWS_SomelpTp_00054].

* The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_MESSAGE_TYPE.

]

[SWS_SomelpTp_00080] Header Inconsistency check before TP-Flag check
Upstream requirements: RS_SOMEIP_00010

[

Before checking the TP-Flag of the Message, as a condition to interrupt the as-
sembly process, (see [SWS_SomelpTp_00045]), the SOME/IP TP module shall
check for inconsistencies of the received SOME/IP TP headers according to
[SWS_SomelpTp_00062]. |

[SWS_SomelpTp_00063] The SomelpTp module, shall check received SOME/IP
TP segments with More Segment Flag set "1’, whether the length of the received
payload is divisible by 16

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[1f the APl SomelpTp_RxIndication() is called, the SOME/IP TP module shall check the
affected PDU per identified transmission source ([SWS_SomelpTp_00096]) whether
the length of received payload is divisible by 16 in case the More Segment Flag is set
to’1’.

If the received payload bytes are not divisible by 16 in this case,

» The current assembly process for the affected PDU of the corresponding identi-
fied transmission source ([SWS_SomelpTp_00096]) shall be interrupted as de-
fined by SWS_SomelpTp_00054.

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_ASSEMBLY_INTERRUPT.

AUTSSAR

]

[SWS_SomelpTp_00064] Handling if value of the received Offset Value in units of
16 bytes do not match to the sum of the received Payload bytes of the previous
SOME/IP TP segments

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[If the APl SomelpTp_RxIndication() is called, the SOME/IP TP module shall check the
value of the Offset Field at the corresponding PDU per identified transmission source
([SWS_SomelpTp_00096]. If the Offset Value in units of 16 bytes does not match to
the sum of the received Payload bytes of the previous SOME/IP segments,

» The current assembly process for the affected PDU of the corresponding identi-
fied transmission source ([SWS_SomelpTp_00096]) shall be interrupted as de-
fined by SWS_SomelpTp_00054.

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_INCONSISTENT_SEQUENCE.

]

[SWS_SomelpTp_00048] Handling if value of the received Offset Value equals ’0’
while the received Payload bytes of the previous SOME/IP segments is greater
than 0’

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[If the APl SomelpTp_RxIndication() is called, the SOME/IP TP module shall check
the value of the Offset Field at corresponding PDU per identified transmission source
([SWS_SomelpTp_00096]). If the received Offset Value equals ‘0’ while the received
Payload bytes of the previous SOME/IP segments is greater than ’'0’, the SOME/IP TP
module shall perform the following steps in the following order:

» The current assembly process for the affected PDU of the corresponding identi-
fied transmission source ([SWS_SomelpTp_00096]) shall be interrupted as de-
fined by SWS_SomelpTp_00054.

* The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_INCONSISTENT_SEQUENCE.

 Start the assembly process according to chapter 7.3.1 SOME/IP segment re-
ceived with Offset 0

]

[SWS_SomelpTp_00049] Handling if provided Rx buffer size is smaller than the
required size

Upstream requirements: RS_SOMEIP_00010

[1f the bufferSizePtr provided by the APl PduR_SomelpTpStartOfReception()or PduR_
SomelpTpCopyRxData()is smaller than the sum of the received and the added SOME/

AUTSSAR

IP header (in case of the first segment) or the received payload (in case of any subse-
quent segment),

» The current assembly process for the affected PDU of the corresponding identi-
fied transmission source ([SWS_SomelpTp_00096]) shall be interrupted as de-
fined by SWS_SomelpTp_00054.

» The API Det_ReportRuntimeError()shall be called with the runtime error code
SOMEIPTP_E_ASSEMBLY_INTERRUPT.

]

[SWS_SomelpTp_00050] Handling if PduR_SomelpTpCopyRxData() returns
something different than BUFREQ_OK

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[If the APl PduR_SomelpTpCopyRxData()returns something else than BUFREQ_OK,

» The assembly process for this PDU of the corresponding identified transmission
source shall be interrupted as defined by SWS_SomelpTp_00054.

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_ASSEMBLY_INTERRUPT.

]

[SWS_SomelpTp_00051] Handling if PAduR_SomelpTpStartOfReception() returns
something different than BUFREQ_OK

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[If the APl PduR_SomelpTpStartOfReception() returns something else than
BUFREQ_OK,

» The assembly process for this PDU of the corresponding identified transmission
source shall be stopped.

» The Rx timeout time defined by SsomeIpTpRxTimeout Time shall be canceled
(if still running) for this assembly process that corresponds to the PDU ID and its
identified transmission source (see [SWS_SomelpTp_00096]).

» Set the corresponding Some IpTpRxNSdu to state NSDU_AVAILABLE.

» The API Det_ReportRuntimeError() shall be called with the runtime error code
SOMEIPTP_E_ASSEMBLY_INTERRUPT.

AUTSSAR

7.7 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.7.1 Development Errors

[SWS_SomelpTp_00052] Definition of development errors in module SomelpTp
Upstream requirements: SRS_BSW_00481

[
Type of error Related error code Error value
SOME/IP TP module not initialized SOMEIPTP_E_UNINIT 0x01
Null pointer has been passed as an argument SOMEIPTP_E_PARAM_POINTER 0x02
Unknown parameter has been passed SOMEIPTP_E_PARAM 0x03
Invalid configuration set selection SOMEIPTP_E_INIT_FAILED 0x04

]

7.7.2 Runtime Errors

[SWS_SomelpTp_00065] Definition of runtime errors in module SomelpTp
Upstream requirements: SRS_BSW_00452

[
Type of error Related error code Error value
The TP-Flag (of Message Type) was set to ’0’ SOMEIPTP_E_MESSAGE_TYPE 0x04
Inconsistent subsequent segment received SOMEIPTP_E_INCONSISTENT_SEQUENCE 0x05
Inconsistent header received SOMEIPTP_E_INCONSISTENT_HEADER 0x06
Disassembly Interrupt due to the upper layer SOMEIPTP_E_DISASSEMBLY_INTERRUPT 0x07
Assembly Interrupt due to the upper layer SOMEIPTP_E_ASSEMBLY_INTERRUPT 0x08
All configured SomelpTpRxNSdu of the affected SOMEIPTP_E_ALL_RX_NSDUS_IN_USE 0x09
SomelpTpRxChannel are in state NSDU_IN_USE,
while a further request is received.

]

Note: In reference to run-time error "SOMEIPTP_E_MESSAGE_TYPE" no DET will be
reported for unsegmented message and is passed to the upper layer without further
handling.

AUTSSAR

7.7.3 Production Errors

There are no production errors.

7.7.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter all types included from the following modules are listed:

[SWS_SomelpTp_00043] Definition of imported datatypes of module SomelpTp
Upstream requirements: SRS_BSW_00301

[

Module Header File Imported Type

Comtype ComStack_Types.h BufReq_ReturnType
ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType
ComStack_Types.h RetryInfoType
ComStack_Types.h TpDataStateType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

[SWS_SomelpTp_91002] Definition of datatype SomelpTp_ConfigType
Upstream requirements: SRS_BSW_00404

[
Name SomelpTp_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description This type shall contain at least all parameters that are post-build able according to chapter 10.
Available via SomelpTp.h

AUTSSAR

8.3 Function definitions

8.3.1 SomelpTp_GetVersioninfo

[SWS_SomelpTp_00044] Definition of API function SomelpTp_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[
Service Name SomelpTp_GetVersioninfo
Syntax void SomeIpTp_GetVersionInfo (
Std_VersionInfoType* VersionInfo
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) VersionInfo Pointer to where to store the version information of this module.
Return value None
Description Returns the version information of this module.
Available via SomelpTp.h
]

[SWS_SomelpTp_00066]

Upstream requirements: SRS_BSW_00337, SRS_BSW_00480
[If the parameter SomelpTp_VersionInfoPtr of the APl SomelpTp_GetVersioninfo()
equals NULL_PTR and if development error detection is enabled (i.e. SomelpTpDev
ErrorDetect is set to TRUE), the function SomelpTp_GetVersioninfo, the API Det_Re-

portError()shall be called with the development error code SOMEIPTP_E PARAM _
POINTER. |

8.3.2 SomelpTp_Init

[SWS_SomelpTp_00046] Definition of API function SomelpTp_Init
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[
Service Name SomelpTp_Init
Syntax void SomeIpTp_Init (
const SomeIpTp_ConfigTypex config
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTSSAR

JAN
Parameters (in) config Base pointer to the configuration structure of the SOME/IP TP
module.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the SOME/IP TP module.
Available via SomelpTp.h

]

Note:
The AUTOSAR ECU StateManager calls this SOME/IP TP API service with the ad-

dress of the static configuration structure of the module in parameter SomelpTp_Config
Ptr.
8.3.3 SomelpTp_Delnit

[SWS_SomelpTp_91003] Definition of API function SomelpTp_Delnit |

Service Name SomelpTp_Delnit
Syntax void SomeIpTp_DelInit (
void
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This function resets the SomelpTp module to the uninitialized state.
Available via SomelpTp.h

AUTSSAR

8.3.4 SomelpTp_Transmit

[SWS_SomelpTp_00047] Definition of API function SomelpTp_Transmit

Upstream requirements: SRS_BSW_00310

[
Service Name SomelpTp_Transmit
Syntax Std_ReturnType SomelIpTp_Transmit (
PduldType TxPduld,
const PdulInfoTypex PdulnfoPtr
)
Service ID [hex] 0x49
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identifier of the PDU to be transmitted
PdulnfoPtr Length of and pointer to the PDU data and pointer to MetaData.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Transmit request has been accepted.
E_NOT_OK: Transmit request has not been accepted.
Description Requests transmission of a PDU.
Available via SomelpTp.h

]

[SWS_SomelpTp_00076]
Upstream requirements: SRS_BSW_00406

[If SomelpTp_Transmit()is called before the SOME/IP TP module has been initialized
with a call of SomelpTp_Init(), the AP shall return with E_NOT_OK and stop the new
session. |

[SWS_SomelpTp_00074]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00369

[If parameter TxPduld of SomelpTp_Transmit() has an invalid value and if development
error detection is enabled (i.e. SomelpTpDevErrorDetect is set to TRUE), the API Det_
ReportError() shall be called with the development error code SOMEIPTP_E_PARAM. |

[SWS_SomelpTp_00075]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00480

[If parameter PdulnfoPtr of SomelpTp_Transmit() equals NULL_PTR and if develop-
ment error detection is enabled (i.e. SomelpTpDevErrorDetect is set to TRUE), the
API Det_ReportError() shall be called with the development error code SOMEIPTP_
E_PARAM_POINTER. |

AUTSSAR

8.4 Callback notifications

8.4.1 SomelpTp_TriggerTransmit

[SWS_SomelpTp_00053] Definition of callback function SomelpTp_TriggerTrans-
mit

Upstream requirements: SRS_BSW_00360

Service Name SomelpTp_TriggerTransmit
Syntax Std_ReturnType SomelIpTp_TriggerTransmit (
PdulIdType TxPduld,
PduInfoTypex PdulnfoPtr
)

Service ID [hex] 0x41

Sync/Async Synchronous

Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in) TxPduld ID of the SDU that is requested to be transmitted.

Parameters (inout) PdulnfoPtr Contains a pointer to a buffer (SduDataPtr) to where the SDU

data shall be copied, and the available buffer size in SduLengh.
On return, the service will indicate the length of the copied SDU
data in SduLength.

Parameters (out) None

Return value Std_ReturnType E_OK: SDU has been copied and SduLength indicates the

number of copied bytes.

E_NOT_OK: No SDU data has been copied. PdulnfoPtr must not
be used since it may contain a NULL pointer or point to invalid
data.

Description Within this API, the upper layer module (called module) shall check whether the available data
fits into the buffer size reported by PdulnfoPtr->SdulLength. If it fits, it shall copy its data into the
buffer provided by PdulnfoPtr->SduDataPtr and update the length of the actual copied data in
PdulnfoPtr->SduLength. If not, it returns E_NOT_OK without changing PdulnfoPtr.

Available via SomelpTp.h

]

[SWS_SomelpTp_00055]
Upstream requirements: SRS_BSW_00357, RS_SOMEIP_00040
[In case the given PdulnfoPtr->SdulLength is smaller than the computed size of the

SOME/IP-TP segment (considering header and payload), SomelpTp_TriggerTransmit()
shall not copy any data and return E_NOT_OK. |

AUTSSAR

8.4.2 SomelpTp_RxIndication

[SWS_SomelpTp_00056] Definition of callback function SomelpTp_RxIndication
Upstream requirements: SRS_BSW_00360

[

Service Name

SomelpTp_RxIndication

Syntax void SomelIpTp_RxIndication (
PduldType RxPduld,
const PdulInfoTypex PdulnfoPtr
)

Service ID [hex] 0x42

Sync/Async Synchronous

Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) RxPduld ID of the received PDU.

PdulnfoPtr Contains the length (SduLength) of the received PDU, a pointer
to a buffer (SduDataPtr) containing the PDU, and the MetaData
related to this PDU.

Parameters (inout) None
Parameters (out) None
Return value None
Description Indication of a received PDU from a lower layer communication interface module.

Available via SomelpTp.h

8.4.3 SomelpTp_TxConfirmation

[SWS_SomelpTp_91001] Definition of callback function SomelpTp_TxConfirma-
tion
Upstream requirements: SRS _BSW_00360

[

Service Name

SomelpTp_TxConfirmation

Syntax void SomeIpTp_TxConfirmation (
PduldType TxPduld,
Std_ReturnType result

)

Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld ID of the PDU that has been transmitted.
result E_OK: The PDU was transmitted. E_NOT_OK: Transmission of
the PDU failed.
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A
Description The lower layer communication interface module confirms the transmission of a PDU, or the
failure to transmit a PDU.
Available via SomelpTp.h

8.5 Scheduled functions

8.5.1 SomelpTp_MainFunctionTx

[SWS_SomelpTp_00058] Definition of scheduled function SomelpTp_MainFunc-
tionTx

Upstream requirements: SRS_BSW_00373, SRS_BSW_00425

Service Name SomelpTp_MainFunctionTx
Syntax void SomeIpTp_MainFunctionTx (
void
)
Service ID [hex] 0x03
Description This function performs the processing of the AUTOSAR SOME/IP TP module’s transmission
activities.
Available via SchM_SomelpTp.h

[SWS_SomelpTp_00059]
Upstream requirements: SRS_BSW_00425

[A call to SomelpTp_MainFunctionTx() shall simply return if the AUTOSAR SOME/IP
TP module was not previously initialized with a call to SomelpTp_Init(). |

8.5.2 SomelpTp_MainFunctionRx

[SWS_SomelpTp_00069] Definition of scheduled function SomelpTp_MainFunc-
tionRx

Upstream requirements: SRS_BSW_00373, SRS_BSW_00425

Service Name SomelpTp_MainFunctionRx
Syntax void SomeIpTp_MainFunctionRx (
void
)
Service ID [hex] 0x04

AUTSSAR

JAN
Description This function performs the processing of the AUTOSAR SOME/IP TP module’s reception
activities.
Available via SchM_SomelpTp.h

]

[SWS_SomelpTp_00070]
Upstream requirements: SRS_BSW_00425

[A call to SomelpTp_MainFunctionRx() shall simply return if the AUTOSAR SOME/IP
TP module was not previously initialized with a call to SomelpTp_Init(). |

8.6 Expected interfaces

In this chapter all external interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all external interfaces which are required to fulfill the core func-
tionality of the module.

[SWS_SomelpTp_00060] Definition of mandatory interfaces required by module
SomelpTp
Upstream requirements: SRS _BSW_00384

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

PduR_SomelpTpCopyRxData PduR_SomelpTp.h This function is called to provide the received data of
an I-PDU segment (N-PDU) to the upper layer. Each
call to this function provides the next part of the
|-PDU data. The size of the remaining buffer is
written to the position indicated by bufferSizePtr.

PduR_SomelpTpCopyTxData PduR_SomelpTp.h This function is called to acquire the transmit data of
an I-PDU segment (N-PDU). Each call to this
function provides the next part of the I-PDU data
unless retry->TpDataState is TP_DATARETRY. In
this case the function restarts to copy the data
beginning at the offset from the current position
indicated by retry->TxTpDataCnt. The size of the
remaining data is written to the position indicated by
availableDataPtr.

PduR_SomelpTpRxIndication PduR_SomelpTp.h Called after an I-PDU has been received via the TP
API, the result indicates whether the transmission
was successful or not.

\Y

AUTSSAR

A

API Function Header File Description

PduR_SomelpTpStartOfReception PduR_SomelpTp.h This function is called at the start of receiving an
N-SDU. The N-SDU might be fragmented into
multiple N-PDUs (FF with one or more following
CFs) or might consist of a single N-PDU (SF). The
service shall provide the currently available
maximum buffer size when invoked with TpSdu
Length equal to 0.

PduR_SomelpTpTransmit PduR_SomelpTp.h Requests transmission of a PDU.

PduR_SomelpTpTxConfirmation PduR_SomelpTp.h This function is called after the I-PDU has been
transmitted on its network, the result indicates
whether the transmission was successful or not.

8.6.2 Optional Interfaces

This chapter defines all external interfaces which are required to fulfill an optional func-
tionality of the module.

[SWS_SomelpTp_00061] Definition of optional interfaces requested by module
SomelpTp
Upstream requirements: SRS_BSW_00384

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

N/A

AUTSSAR

9 Sequence diagrams

9.1 Reception

SwWC RTE Transformer Com PduR SomelpTp SoAd
T T T T T
} } | _PduR_SoAdIfRindi !
! ! 1 Complete sequence is
! ! SomelpTp_RxIndication() looped
! | L
! !
! !
|
|

alt receive chunk / |

T
|
|
|
!
!
!
!
!
|
|
| [unexpected chunkreceived or errors in API calls]
! !
!
!
!
|
|
|
!
!
!
!
!
|

'duR_SomelpTpR: ication(E_NOT_OK)

T
|
|
|
!
!
!
!
1
|
|
!
!
!

Com_RxIndication
(E_NOT_OK)

!]
Rte_ComCbKTpRxIndication_<sn>(E_NOT_OK)

L
PduR_SomelpTpStartOfReception()
' Cbm,stanomecepuon() <
| &

PduR_SomelpTpCopyRxData()
<

b e —

First call of
PduR_SomelpTp
CopyRxData to
pass the
SOME/IP header

PduR_SomelpTpCopyRxData() |

T
!
|
‘ComiccpnyDala()

Second call of
PduR_SomelpTpCopyRx
Data to provide the
playload of the
fffffffff > assembled SOME/IP
fffffff > message

|
| |
! ! nn
! ! !
! ! !
1 1 L
! ! !
! ! !
| | |
seq last chunkreceived /T ! ! .
! | | PduR_SomelpTpF ()
! ! ! !
} } } }Cominlnd\caﬂon()
} | Rte_ComCbKT pRxIndication_<sn>() d
|
I ity
I T N e it >
! ! L S =
! ! ! !
! ! ! ! <-------
| Rte_Read() | I | L
| | [T~ ~"~"~"~"71- "~~~ 77~ >
| | na | na
| | | |
! ! ! !
! ! ! !
! ! ! !
| | | | |
[l [l [l [l
1 1

Figure 9.1: Reception of SOME/IP segments

9.2 Transmission

Sequence 9.2 depicts a sequence where the call to PduR_SomelpTpTransmit() for
the first segment according to SWS_SomelpTp_00017 is deferred to the SomelpTp_
MainFunction().

AUTSSAR

SW-C RTE Transformer Com PduR SomelpTp SoAd
T T T T T T T
| | | | | | |
L Rte_Send() L \ \ \ \ \

transform() | | | | |
| | | |
- ————— I I I I
| | | t
Com_T'ransrnit() : ! ! !
| | | Call PduR_SomelpTpCopyTxData()

| PduR_ComTransmit() | | | as per SWS_SomelpTp_00008
| SomelpTp_Transmit() | |
| L T
I | I
| PduR_SomelpTpCopyTxData(|
: Com_CopyTxData() :
! my !
__ Rte_ComCbkCopyTxData() |
™ | I
R I —N |
| I > I
I I
| |
| |
1 s ———————] 1
_______ A] L] | 1
_< |] I I
I | | | |
| | | | |
loop for each segment (in SOME/IP TP Main F ction)/ : : :
| |
|
|
-

R &-4) B,

PduRﬁSomeIprTranlsmit()

1
SoAd_IfTransmit()

[T
PduR_SoAdIfTriggerTransmit()

e

SomelprfTriggerLra?smit()

[

Create Header()

Pdu RﬁSomeIprCopYTlxData()
1

Rte_ComCbkCopyTxData()
T

CﬁLCo pyTxData()
—_——— e —— > | _
L
<<
<_
T
1
<

Call PduR_SomelpTpCopyTxData()
as per SWS_SomelpTp_00018

PduFLSoAdIfoC(;nfi rmation()

SomelpTp_TxConfi rma'tion()
ran

P;duFLSomeIprTxConfirmati;on()

<
<

Com_TpTxConfirmation()

B |

Figure 9.2: Transmission of SOME/IP segments

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
SOME/IP TP.

Chapter 10.3 specifies published information of the module SOME/IP TP.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.1 SomelpTp

[ECUC_SomelpTp_00001] Definition of EcucModuleDef SomelpTp |

Module Name SomelpTp

Description Configuration of the SomelpTp module.

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

SomelpTpGeneral 1 This container contains the general configuration parameters of
the SomelpTp module.

SomelpTpRxChannel 0.” This container contains the configuration parameters of the
SomelpTp reception channel.

SomelpTpTxChannel 0..* This container contains the configuration parameters of the
SomelpTp transmission channel.

AUTSSAR

AUTOSARParameterDefinition:
EcucDefinitionCollection

+module

SomelpTp: ‘
EcucModuleDef +container SomelpTpGeneral:
= | @————————— EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

SomelpTpRxChannel:

+container| EcucParam ConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

. SomelpTpTxChannel:
+container | EcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.1

10.2.2 SomelpTpGeneral

[ECUC_SomelpTp_00002] Definition of EcucParamConfContainerDef SomelpTp
General |

Container Name SomelpTpGeneral

Parent Container SomelpTp

Description This container contains the general configuration parameters of the SomelpTp module.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SomelpTpDevErrorDetect 1 [ECUC_SomelpTp_00004]
SomelpTpRxMainFunctionPeriod 1 [ECUC_SomelpTp_00021]
SomelpTpTxMainFunctionPeriod 1 [ECUC_SomelpTp_00005]
SomelpTpVersionInfoApi 1 [ECUC_SomelpTp_00019]

| No Included Containers

]

[ECUC_SomelpTp_00004] Definition of EcucBooleanParamDef SomelpTpDeVEr-
rorDetect |

Parameter Name SomelpTpDevErrorDetect

Parent Container SomelpTpGeneral

Description Switches the Development Error Detection and Notification ON or OFF.
Multiplicity 1

V

AUTSSAR

A
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

]

[ECUC_SomelpTp_00021] Definition of EcucFloatParamDef SomelpTpRxMain

FunctionPeriod |

Parameter Name

SomelpTpRxMainFunctionPeriod

Parent Container SomelpTpGeneral

Description This parameter defines the cycle time in seconds of the periodic call of the SomelpTp_
MainFunctionRx.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

]

[ECUC_SomelpTp_00005] Definition of EcucFloatParamDef SomelpTpTxMain

FunctionPeriod |

Parameter Name

SomelpTpTxMainFunctionPeriod

Parent Container

SomelpTpGeneral

Description This parameter defines the cycle time in seconds of the periodic call of the SomelpTp_
MainFunctionTx.

Multiplicity 1

Type EcucFloatParamDef

Range 10.. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_SomelpTp_00019] Definition of EcucBooleanParamDef SomelpTpVer-
sioninfoApi |

Parameter Name SomelpTpVersionInfoApi
Parent Container SomelpTpGeneral
Description Activates the SomelpTp_GetVersioninfo() APIl. TRUE: Enables the SomelpTp_Get
VersionInfo() API. FALSE: SomelpTp_GetVersioninfo() APl is not included.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

SomelpTpGeneral: .
EcucParamConfContainerDef +parameter| SomelpTpDevErorDetect:

EcucBooleanParamDef

SomelpTpTxMainFunctionPeriod:
+parameter EcucFloatParamDef

min =0
max = INF

SomelpTpRxMainFunctionPeriod:
+parameter EcucFloatParamDef

min =0
max = INF

+parameter SomelpTpVersionInfoApi:
EcucBooleanParamDef

defaultValue = false

Figure 10.2

10.2.3 SomelpTpChannel
10.2.3.1 SomelpTpTxChannel

[ECUC_SomelpTp_00025] Definition of EcucParamConfContainerDef SomelpTp
TxChannel |

Container Name SomelpTpTxChannel

Parent Container SomelpTp

Description This container contains the configuration parameters of the SomelpTp transmission
channel.

Multiplicity 0..*

V

AUTSSAR

A
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
SomelpTpNPduSeparationTime 1 [ECUC_SomelpTp_00006]
SomelpTpTxBurstSize 0..1 [ECUC_SomelpTp_00024]
Included Containers
Container Name Multiplicity Dependency
SomelpTpTxNPdu 1 This container contains the configuration parameters of the
segmented Tx NPdus that are transmitted to a lower layer.
SomelpTpTxNSdu 1.7 This container defines the upper layer Sdus to be transmitted in
the context of the SomelpTpTxChannel. This PDU can forward
meta data items of type SOCKET_CONNECTION_ID_16.

]

[ECUC_SomelpTp_00006] Definition of EcucFloatParamDef SomelpTpNPduSep-
arationTime |

Parameter Name SomelpTpNPduSeparationTime

Parent Container SomelpTpTxChannel

Description Sets the duration of the minimum time in seconds the SomelpTp module shall wait
between the transmissions of N-PDUs.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_SomelpTp_00024] Definition of EcucintegerParamDef SomelpTpTxBurst
Size |

Parameter Name SomelpTpTxBurstSize

Parent Container SomelpTpTxChannel

Description Specifies the number of segments SomelpTp shall transmit without applying the Some
IpTpNPduSeparationTime.

Multiplicity 0..1

Type EcuclntegerParamDef

V

AUTSSAR

A

Range 1 .. 18446744073709551615 |

Default value 1

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

x

Dependency

SomelpTpNPduSeparationTime:

SomelpTpTxChannel: EcucFloatParamDef
EcucParamConfContainerDef +p t :
o min =0
lowerMultiplicity = 0 max = INF
upperMultiplicity = * lowerMultiplicity = 1
upperMultiplicity = 1

SomelpTpTxBurstSize:
EcucintegerParamDef

+p

o min =1

defaultValue = 1

lowerMultiplicity = 0

upperMultiplicity = 1

SomelpTpTxNPduHandleld:
EcucintegerParamDef
SomelpTpTxNPdu:

EcucParamConfContainerDef min =0

— +parameter max = 65535
Uppel’MUH.lp!\Clly =1l lowerMultiplicity = 1
lowerMultiplicity = 1 upperMultiplicity = 1
withAuto = true
symbolicNameValue = true

+subContainer

. SomelpTpTxNPduRef:
'ce EcucReferenceDef
>
upperMultiplicity = 1
lowerMultiplicity = 1
SomelpTpTxNSdu: SomelpTpTxNSduRef:
EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 1 upperMultiplicity = 1
upperMultiplicity = * lowerMultiplicity = 1
+subContainer
SomelpTpTxNSduHandleld:
EcucIntegerParamDef
+parameter min =0
IR +destination +destination
lowerMultiplicity = 1
upperMultiplicity = 1 Pdu:
withAuto = true EcucParamConfContainerDef
symbolicNameValue = true
lowerMultiplicity = 0

upperMultiplicity = *

(from EcucPdu)

Figure 10.3

10.2.3.2 SomelpTpRxChannel

[ECUC_SomelpTp_00026] Definition of EcucParamConfContainerDef SomelpTp
RxChannel |

AUTSSAR

Container Name SomelpTpRxChannel

Parent Container SomelpTp

Description This container contains the configuration parameters of the SomelpTp reception
channel.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

SomelpTpRxTimeoutTime 1 [ECUC_SomelpTp_00023]

Included Containers
Container Name Multiplicity Dependency

SomelpTpRxNPdu 1 This container contains the configuration parameters of the
NPdu that is received from a lower layer

SomelpTpRxNSdu 1.7 This container defines the upper layer Sdus assembled in the
context of the SomelpTpRxChannel. This PDU can forward meta
data items of type SOCKET_CONNECTION_ID_16.

]

[ECUC_SomelpTp_00023] Definition of EcucFloatParamDef SomelpTpRxTime-
outTime |

Parameter Name SomelpTpRxTimeoutTime
Parent Container SomelpTpRxChannel
Description Timer to monitor the successful reception (see FO_PRS_SOMEIP_00378). It is started

when the first NPdu is received, restarted after reception of intermediate NPdus, and is
stopped when the last NPdu has been received. The value shall be calculated as
follows: (SomelpTpRxTimeoutTime = SomelpTpNPduSeparationTime + budget),
where the time budget compensates intermediary hops and jitters within the ECU
implementation.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

+subContainer

. Cuig:rzlmgoﬁfg:ﬁg?ibe ; SomelpTpRxNPdu: SomelpTpRxNPduHandleld:
EcucParamConfContainerDef EcuclntegerParamDef
ol ter
lowerMultiplicity = 0 o +parame N
i upperMultiplicity = 1 o min =0
Multipl =
upperMultiplicity lowerMultiplicity = 1 max = 65535

withAuto = true
symbolicNameValue = true

+reference SomelpTpRxNPduRef:
Pdu:

EcucRef Def
cucReference Def +destination | EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

lowerMultiplicity = 1 upperMultiplicity = *

+subContainer | EcycParam ConfContainerDef +reference

SomelpTpRxSduRef:

S0mepIphxivodu:
SomelpTpRxNSdu EcucReferenceDef

+destination

upperMultiplicity = 1

| Multiplicity = 1
b] lowerMultiplicity = 1

upperMultiplicity = *

+parameter

SomelpTpRxTimeoutTime:
EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.4

10.2.4 SomelpTpRxNSdu

[ECUC_SomelpTp_00008] Definition of EcucParamConfContainerDef SomelpTp
RxNSdu |

Container Name

SomelpTpRxNSdu

Parent Container

SomelpTpRxChannel

Description This container defines the upper layer Sdus assembled in the context of the SomelpTp
::Bx(ikéannel. This PDU can forward meta data items of type SOCKET_CONNECTION_
Multiplicity 1.*
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
SomelpTpRxSduRef 1 [ECUC_SomelpTp_00010]

No Included Containers

AUTSSAR

[ECUC_SomelpTp_00010] Definition of EcucReferenceDef SomelpTpRxSduRef |

Parameter Name SomelpTpRxSduRef

Parent Container SomelpTpRxNSdu

Description Reference to a Pdu in the COM-Stack that represents the assembled RxPdu which is
passed via the PduR to the upper layer.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.5 SomelpTpRxNPdu

[ECUC_SomelpTp_00011] Definition of EcucParamConfContainerDef SomelpTp
RxNPdu |

Container Name SomelpTpRxNPdu

Parent Container SomelpTpRxChannel

Description This container contains the configuration parameters of the NPdu that is received from
a lower layer

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
SomelpTpRxNPduHandleld 1 [ECUC_SomelpTp_00013]
SomelpTpRxNPduRef 1 [ECUC_SomelpTp_00012]

| No Included Containers

]

[ECUC_SomelpTp_00013] Definition of EcucintegerParamDef SomelpTpRxNPdu
Handleld |

Parameter Name SomelpTpRxNPduHandleld

Parent Container SomelpTpRxNPdu

Description This parameter defines the handle ID that is used by the PduR when calling Somelp
Tp_RxIndication.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..65535 |

V

AUTSSAR

A
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

withAuto = true

]

[ECUC_SomelpTp_00012] Definition of EcucReferenceDef SomelpTpRxNPduRef

[

Parameter Name

SomelpTpRxNPduRef

Parent Container

SomelpTpRxNPdu

Description Reference to a global Pdu that is used to harmonize HandlelDs in the COM-Stack.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.6 SomelpTpTxNSdu

[ECUC_SomelpTp_00009] Definition of EcucParamConfContainerDef SomelpTp

TxNSdu |

Container Name

SomelpTpTxNSdu

Parent Container

SomelpTpTxChannel

Description This container defines the upper layer Sdus to be transmitted in the context of the
SomelpTpTxChannel. This PDU can forward meta data items of type SOCKET_
CONNECTION_ID_16.
Multiplicity 1.*
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
SomelpTpTxNSduHandleld 1 [ECUC_SomelpTp_00020]
SomelpTpTxNSduRef 1 [ECUC_SomelpTp_00015]

No Included Containers

AUTSSAR

]

[ECUC_SomelpTp_00020] Definition of EcucintegerParamDef SomelpTpTxNSdu

Handleld |
Parameter Name SomelpTpTxNSduHandleld
Parent Container SomelpTpTxNSdu

Description This parameter defines the handle ID of the NSdu that represents the original TxSdu
which is segmented and passed via the PduR to the lower layer. This handle ID is used
by PduR when calling SomelpTp_Transmit.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_SomelpTp_00015] Definition of EcucReferenceDef SomelpTpTxNSduRef

[

Parameter Name

SomelpTpTxNSduRef

Parent Container

SomelpTpTxNSdu

Description Reference to a global Pdu in the COM-Stack that represents the original TxSdu which
is segmented and passed via the PduR to the lower layer.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.7 SomelpTpTxNPdu

[ECUC_SomelpTp_00016] Definition of EcucParamConfContainerDef SomelpTp

TxNPdu [

Container Name

SomelpTpTxNPdu

Parent Container

SomelpTpTxChannel

Description

This container contains the configuration parameters of the segmented Tx NPdus that
are transmitted to a lower layer.

V

AUTSSAR

A
Multiplicity 1
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
SomelpTpTxNPduHandleld 1 [ECUC_SomelpTp_00017]
SomelpTpTxNPduRef 1 [ECUC_SomelpTp_00018]

| No Included Containers

]

[ECUC_SomelpTp_00017] Definition of EcuclntegerParambDef SomelpTpTxNPdu

Handleld |
Parameter Name SomelpTpTxNPduHandleld
Parent Container SomelpTpTxNPdu

Description This parameter defines the handle ID that is used by PduR when calling SomelpTp_
TriggerTransmit.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_SomelpTp_00018] Definition of EcucReferenceDef SomelpTpTxNPduRef

[

Parameter Name

SomelpTpTxNPduRef

Parent Container

SomelpTpTxNPdu

Description Reference to a global Pdu that is used to harmonize HandlelDs in the COM-Stack.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

[ECUC_SomelpTp_00025]
[SWS_SomelpTp_00091] [SWS_SomelpTp_00092]
[SWS_SomelpTp_00094] [SWS_SomelpTp_00095]
[SWS_SomelpTp_00097] [SWS_SomelpTp_91003]

[ECUC_SomelpTp_00026] [SWS_SomelpTp_00090]
[SWS_SomelpTp_00093]

[SWS_SomelpTp_00096]

A.1.2 Changed Specification Iltems in R25-11

[ECUC_SomelpTp_00001]
[ECUC_SomelpTp_00005]
[ECUC_SomelpTp_00009]
[ECUC_SomelpTp_00012]
[ECUC_SomelpTp_00016]
[ECUC_SomelpTp_00019]
00021]

00017] [SWS_SomelpTp_00021]
00023] [SWS_SomelpTp_00024]
00026] [SWS_SomelpTp_00027]
00029] [SWS_SomelpTp_00030]
00032] [SWS_SomelpTp_00033]
00037] [SWS_SomelpTp_00038]
00041] [SWS_SomelpTp_00042]
00047] [SWS_SomelpTp_00048]
00050] [SWS_SomelpTp_00051]
00054] [SWS_SomelpTp_00056]

[ECUC_SomelpTp_00023]

[ECUC_SomelpTp_00002]
[ECUC_SomelpTp_00006]
[ECUC_SomelpTp_00010]
[ECUC_SomelpTp_00013]
[ECUC_SomelpTp_00017]

[ECUC_SomelpTp_00020]
[ECUC_SomelpTp_00024]
[SWS_SomelpTp_00022]
[SWS_SomelpTp_00025]
[SWS_SomelpTp_00028]
[SWS_SomelpTp_00031]
[SWS_SomelpTp_00036]
[SWS_SomelpTp_00040]
[SWS_SomelpTp_00045]
[SWS_SomelpTp_00049]
[SWS_SomelpTp_00053]
[SWS_SomelpTp_00062]

[ECUC_SomelpTp_00004]
[ECUC_SomelpTp_00008]
[ECUC_SomelpTp_00011]
[ECUC_SomelpTp_00015]
[ECUC_SomelpTp_00018]
[ECUC_SomelpTp_-
[SWS_SomelpTp_
[SWS_SomelpTp._-
[SWS_SomelpTp_
[SWS_SomelpTp._-
[SWS_SomelpTp_
[SWS_SomelpTp_-
[SWS_SomelpTp_
[SWS_SomelpTp._-
[SWS_SomelpTp_
[SWS_SomelpTp._-
[SWS_SomelpTp_

00063] [SWS_SomelpTp_00064] [SWS_SomelpTp_00065] [SWS_SomelpTp_00071]
[SWS_SomelpTp_00082] [SWS_SomelpTp_91001] [SWS_SomelpTp_91002]

A.1.3 Deleted Specification ltems in R25-11

[ECUC_SomelpTp_00003]

[SWS_SomelpTp_00057]

[SWS_SomelpTp_00067]

[SWS_SomelpTp_00072] [SWS_SomelpTp_00073] [SWS_SomelpTp_00077]

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 AUTOSAR PDU Router
	5.2 AUTOSAR Default Error Tracer

	6 Requirements Tracing
	7 Functional specification
	7.1 Overview of the SOME/IP header
	7.1.1 Message Type Field
	7.1.2 Offset Field
	7.1.3 Reserved Field
	7.1.4 More Segments Flag
	7.1.5 Example

	7.2 Module Handling
	7.2.1 Initialization

	7.3 State handling of N-SDUs
	7.4 Parallel processing of SOME/IP messages
	7.5 Segmentation of SOME/IP messages (TX Path)
	7.5.1 Size of SOME/IP segments
	7.5.2 Header of SOME/IP segments
	7.5.3 Sending of SOME/IP segments
	7.5.4 Interruption of the disassembly process

	7.6 Assembly of received SOME/IP messages (RX path)
	7.6.1 SOME/IP segment received with Offset 0
	7.6.2 SOME/IP segment received with Offset> 0
	7.6.3 Interruption of the assembly process

	7.7 Error Classification
	7.7.1 Development Errors
	7.7.2 Runtime Errors
	7.7.3 Production Errors
	7.7.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 SomeIpTp_GetVersionInfo
	8.3.2 SomeIpTp_Init
	8.3.3 SomeIpTp_DeInit
	8.3.4 SomeIpTp_Transmit

	8.4 Callback notifications
	8.4.1 SomeIpTp_TriggerTransmit
	8.4.2 SomeIpTp_RxIndication
	8.4.3 SomeIpTp_TxConfirmation

	8.5 Scheduled functions
	8.5.1 SomeIpTp_MainFunctionTx
	8.5.2 SomeIpTp_MainFunctionRx

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Reception
	9.2 Transmission

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 SomeIpTp
	10.2.2 SomeIpTpGeneral
	10.2.3 SomeIpTpChannel
	10.2.3.1 SomeIpTpTxChannel
	10.2.3.2 SomeIpTpRxChannel

	10.2.4 SomeIpTpRxNSdu
	10.2.5 SomeIpTpRxNPdu
	10.2.6 SomeIpTpTxNSdu
	10.2.7 SomeIpTpTxNPdu

	10.3 Published Information

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

