
Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Document Title Specification of SOME/IP
Transformer

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 660

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Reverted the handling of receiving less
data than expected and substitution of
missing elements with default values
during deserialization

• Marked SOMEIPXF_E_NOT_READY ,
SOMEIPXF_E_NOT_REACHABLE,
SOMEIPXF_E_TIMEOUT as deprecated

• Updated the default behavior/values for
(de-)serialization parameters

• Added a reference to new error code
E_SER_PAYLOAD_LENGTH_
EXCEEDED that is issued when array
length is greater than expected

• Clarified the deserialization for duplicate
members and invalid wire type

• Updated the length field requirements
for fixed length string

• Added requirements for evaluating
return code in case of autonomous error
response of a Client-Server operation

• Editorial Changes and bug fixes
▽

1 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△

2024-11-27 R24-11
AUTOSAR
Release
Management

• Clarified handling of Message Types
RESPONSE(0x80) and ERROR(0x81)

• Clarified handling of UTF-8 and UTF-16

• New section ’De-serialization of
Parameters and Data Structures’

• Fix of Uptraces and Editorial Changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Restrict SOME/IP session handling

• Added information about use of
maximum number of array elements

• Removed chapter "Header file structure"

• Clarification on byte order for SOME/IP
Header fields, additional fields in the
payload and parameters in payload

2022-11-24 R22-11
AUTOSAR
Release
Management

• implementsSOMEIPStringHandling
SWS_SomeIpXf_00239 set to
OBSOLETE)

• Reworked [SWS_SomeIpXf_00054] with
regards to UTF-8

• Clarified byte order of length fields within
SOME/IP payload

• Extended [SWS_SomeIpXf_00300] to
support uint64

• Distinguished in
[SWS_SomeIpXf_00200] use of error
messages with Message ID ERROR not
clearly distinguished from use of
autonomous error responses

• Bugs resolved within
[SWS_SomeIpXf_00244] and
[SWS_SomeIpXf_00303]

• Resolved mismatch in the size of
Method-ID on
SWS_SOMEIPTransformer and
PRS_SOMEIPProtocol. Removed
chapters 7.2.3.1 "Message ID [32 bit]",
7.2.3.2 "Length [32 bit], 7.1 "Definition of
Identifiers" and 7.4 "Reserved and

▽
▽

2 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
△

special identifiers for SOME/IP and
SOME/IP-SD"

• Editorial Changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• Clarification on network representation

• SOME/IP Header encoded in network
byte order

• Clarification on
SOMEIPLegacyStringSerialization

• Optional method arguments not
supported

• Clarification on Interface Version

• Clarification on processing order of
header fields in AUTOSAR CP

• Removed
SOMEIPXF_E_UNKNOWN_SERVICE
and
SOMEIPXF_E_UNKNOWN_METHOD

• Introduction on External Trigger Events

• Clarification on ISignal length of external
trigger event

• Editorial Changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• Added call/response context to Client
Server requirements

• Constraint added for data type of length
field of variable Strings

• Added E_E2E Error to Table 7.11:
Return Codes

• Requirement added in case
unavailability of optional member in the
received serialized byte stream

• Reworked E2E communication
protection for methods

• sizeOfStringLengthField introduced for
the size of the length field for dynamic
length strings

▽
▽

3 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
△

• sizeOfArrayLengthField introduced for
the size of the length field for variable
size arrays

• Fixed design issues with E2E
communication protection for methods

• Editorial Changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Extended Serialization for Data
Structures in SOME/IP with
tag/length/value encoding set to valid

• Removed *_ACK message types

• replaced
implementsSOMEIPStringHandling (in
class
SOMEIPTransformationSignalProps)
with
implementsLegacyStringSerialization

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Checking for length of received dynamic
length strings

• Extended Serialization for Data
Structures in SOME/IP with
tag/length/value encoding

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Bugfixes in serialization of strings and
data with variable size

• Signatures improved

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

▽

4 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Sizes of length fields can be configured
independently from each other

• Support of union data types

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Size of length fields is configurable

• External trigger events are
communicated as fire-and-forget
methods

• Autonomous error reactions of SOME/IP
transformer

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Initial Release

5 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

6 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 10

2 Acronyms and Abbreviations 11

3 Related documentation 12
3.1 Input documents . 12
3.2 Related standards and norms . 13
3.3 Related specification . 13

4 Constraints and assumptions 14
4.1 Limitations . 14
4.2 Applicability to car domains . 14

5 Dependencies to other modules 15
5.1 File structure . 15

5.1.1 Code file structure . 15

6 Requirements Tracing 16

7 Functional specification 22
7.1 Specification of the SOME/IP on-wire format 25

7.1.1 Message Length Limitations . 25
7.1.2 Endianness . 25
7.1.3 Message format . 26

7.1.3.1 Request ID [32 bit] . 27
7.1.3.2 Protocol Version [8 bit] . 28
7.1.3.3 Interface Version [8 bit] . 29
7.1.3.4 Message Type [8 bit] . 29
7.1.3.5 Return Code [8 bit] . 30
7.1.3.6 Payload [variable size] . 30

7.1.4 Serialization of Parameters and Data Structures 31
7.1.4.1 Basic Datatypes . 33
7.1.4.2 Structured Datatypes (structs) 33
7.1.4.3 Structured Datatypes and Arguments with Identifier and op-

tional Members . 36
7.1.4.4 Strings . 42
7.1.4.5 Arrays (fixed length) . 48
7.1.4.6 Optional Parameters / Optional Elements 51
7.1.4.7 Dynamic Length Arrays / Variable Size Arrays 51
7.1.4.8 Bitfield . 55
7.1.4.9 Union / Variant . 55

7.1.5 De-serialization of Parameters and Data Structures 58
7.1.5.1 Structured Datatypes (structs) 60

7 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.5.2 Structured Datatypes and Arguments with Identifier and op-
tional Members . 60

7.1.5.3 Strings . 60
7.1.5.4 Arrays (fixed length) . 62
7.1.5.5 Dynamic Length Arrays / Variable Size Arrays 62
7.1.5.6 Bitfield . 62
7.1.5.7 Union / Variant . 62

7.2 Protocol specification . 63
7.2.1 Client/Server Communication . 63
7.2.2 Sender/Receiver Communication . 66
7.2.3 External Trigger Events . 68
7.2.4 Error Handling . 68

7.2.4.1 Return Code . 69
7.2.4.2 Communication Errors and Handling of Communication Errors . 71

7.3 Error Classification . 72
7.3.1 Development Errors . 73
7.3.2 Runtime Errors . 73
7.3.3 Production Errors . 73
7.3.4 Extended Production Errors . 73

8 API specification 74
8.1 Imported types . 74
8.2 Type definitions . 74
8.3 Function definitions . 75

8.3.1 SomeIpXf_ExtractProtocolHeaderFields 75
8.3.2 SomeIpXf_<transformerId> . 78
8.3.3 SomeIpXf_Inv_<transformerId> . 83
8.3.4 SomeIpXf_Init . 89
8.3.5 SomeIpXf_DeInit . 89
8.3.6 SomeIpXf_GetVersionInfo . 90

8.4 Callback notifications . 90
8.5 Scheduled functions . 90
8.6 Expected interfaces . 90

8.6.1 Mandatory Interfaces . 91
8.6.2 Optional Interfaces . 91

9 Sequence diagrams 92

10 Configuration specification 93

A Change History 94
A.1 Change History R25-11 . 94

A.1.1 Added Specification Items in R25-11 94
A.1.2 Changed Specification Items in R25-11 94
A.1.3 Deleted Specification Items in R25-11 94

8 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

A.1.4 Added Constraints in R25-11 . 94
A.1.5 Changed Constraints in R25-11 . 94
A.1.6 Deleted Constraints in R25-11 . 94

A.2 Change History R24-11 . 95
A.2.1 Added Specification Items in R24-11 95
A.2.2 Changed Specification Items in R24-11 95
A.2.3 Deleted Specification Items in R24-11 95
A.2.4 Added Constraints in R24-11 . 95
A.2.5 Changed Constraints in R24-11 . 95
A.2.6 Deleted Constraints in R24-11 . 95

A.3 Change History R23-11 . 95
A.3.1 Added Specification Items in R23-11 95
A.3.2 Changed Specification Items in R23-11 95
A.3.3 Deleted Specification Items in R23-11 96
A.3.4 Added Constraints in R23-11 . 96
A.3.5 Changed Constraints in R23-11 . 96
A.3.6 Deleted Constraints in R23-11 . 96

A.4 Change History R22-11 . 96
A.4.1 Added Specification Items in R22-11 96
A.4.2 Changed Specification Items in R22-11 96
A.4.3 Deleted Specification Items in R22-11 97

B Referenced Meta Classes 98

C Features of SOME/IP not supported by AUTOSAR SOME/IP transformer 120

D Examples 121
D.1 Serialization of a Client/Server Operation 121

D.1.1 Client . 122
D.1.2 Server . 123

9 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

1 Introduction and functional overview

This document specifies the Scalable service-Oriented MiddlewarE over IP
(SOME/IP) Transformer. This is a transformer which linearizes data with the SOME/IP
on-the-wire format and specifies an automotive/embedded mechanism for Clien-
t/Server communication.

The only valid abbreviation is SOME/IP. Other abbreviations (e.g. Some/IP) are wrong
and shall not be used.

The basic motivation to specify "yet another Client/Server and Sender/Receiver mech-
anism" instead of using an existing infrastructure/technology is the goal to have a tech-
nology that:

• Fulfills the hard requirements regarding resource consumption in an embedded
world

• Is compatible through as many use-cases and communication partners as possi-
ble

• Provides the features required by automotive use-cases

• Is scalable from tiny to large platforms

• Can be implemented on different operating system (i.e. AUTOSAR, GENIVI, and
OSEK) and even embedded devices without operating system

10 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
Transformer that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Client-Service-Instance-Entry The configuration and required data of a service instance another ECU offers
shall be called Client-Service-Instance-Entry at the ECU using this service
(Client).

Field a field represents a status and thus has a valid value at all times on which getter,
setter and notifier act upon.

Finding a service instance to send a SOME/IP-SD message in order to find a needed service instance.

Getter a Request/Response call that allows read access to a field.

Method a method, procedure, function, or subroutine that is called/invoked.

Notifier sends out event message with a new value on change of the value of the field.

Request a message of the client to the server invoking a method.

Response a message of the server to the client transporting results of a method invocation.

SD Service Discovery(see[2])

Service a logical combination of zero or more methods, zero or more events, and zero or
more fields.

Service Instance software implementation of the service interface, which can exist more than
once in the vehicle and more than once on an ECU.

Service Interface the formal specification of the service including its methods, events, and fields.

Setter a Request/Response call that allows write access to a field.

SOME/IP Scalable service-Oriented MiddlewarE over IP

Table 2.1: Acronyms and Abbreviations

11 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Service Discovery
AUTOSAR_CP_SWS_ServiceDiscovery

[3] General Specification of Transformers
AUTOSAR_CP_ASWS_TransformerGeneral

[4] Specification of Socket Adaptor
AUTOSAR_CP_SWS_SocketAdaptor

[5] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[6] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[7] Requirements on Transformer
AUTOSAR_CP_RS_Transformer

[8] System Template
AUTOSAR_CP_TPS_SystemTemplate

[9] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

[10] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[11] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[12] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

[13] SOME/IP Protocol Specification
AUTOSAR_FO_PRS_SOMEIPProtocol

[14] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

12 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Transformers [3, ASWS Transformer
General], which is also valid for SOME/IP Transformer.

Thus, the specification SWS Transformer General shall be considered as additional
and required specification for SOME/IP Transformer.

13 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

For the SOME/IP Transformer all general transformer limitations (see [3, ASWS Trans-
former General]) apply.

The SOME/IP transformer doesn’t implement the whole SOME/IP protocol:

• a part is implemented by [2, SWS Service Discovery]

• a part is implemented by [4, SWS Socket Adaptor]

• a part is currently not implemented in AUTOSAR. This is documented in Ap-
pendix C

• The processing order of header fields in AUTOSAR CP deviates from the pro-
cessing order defined in [PRS_SOMEIP_00195] (also Figure 4.21: Message Val-
idation and Error Handling in SOME/IP). This deviation is caused by the layered
architecture of AUTOSAR CP.

[CP_SWS_SomeIpXf_CONSTR_00001] Value of length field ⌈In accordance with
[SWS_SomeIpXf_00245], 2(̂8*sizeof(data type of length field)) shall be larger than the
number of elements given by the size indicator multiplied by the size in bytes of each
element (i.e., 1 for UTF-8 and 2 for UTF-16) and increased by the size in bytes required
by the BOM.⌋

[CP_SWS_SomeIpXf_CONSTR_00002] Serialization based on the network rep-
resentation ⌈Serialization based on the network representation according to [TPS_
SYST_02136] is currently not supported in combination with structured datatypes and
arguments with identifier and optional members, strings, dynamic length arrays / vari-
able size arrays, and unions / variants and shall therefore not be used in those combi-
nations.⌋

Note:
Optional members according to section 7.1.4.3, Strings according to section 7.1.4.4.1
and 7.1.4.4.2, Dynamic Length Arrays / Variable Size Arrays according to section
7.1.4.7 and Unions / Variants according to section 7.1.4.9.

4.2 Applicability to car domains

The SOME/IP Transformer can be used for all domain applications when SOME/IP
Sender/Receiver or Client/Server communication is used.

14 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

5 Dependencies to other modules

The AUTOSAR RTE [5, SWS RTE] has to exist to execute the transformer.

5.1 File structure

5.1.1 Code file structure

The source code file structure is defined in the [3, ASWS Transformer General].

15 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

6 Requirements Tracing

The following table references the features specified in [6] and [7] and links to the
fulfillments of these.

Requirement Description Satisfied by

[SRS_BSW_00005] Modules of the µC Abstraction Layer
(MCAL) may not have hard coded
horizontal interfaces

[SWS_SomeIpXf_00181]

[SRS_BSW_00159] All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_SomeIpXf_00185]

[SRS_BSW_00161] The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

[SWS_SomeIpXf_00181]

[SRS_BSW_00162] The AUTOSAR Basic Software shall
provide a hardware abstraction layer

[SWS_SomeIpXf_00181]

[SRS_BSW_00170] The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

[SWS_SomeIpXf_00115] [SWS_SomeIpXf_91003]

[SRS_BSW_00310] API naming convention [SWS_SomeIpXf_00115]

[SRS_BSW_00331] All Basic Software Modules shall
strictly separate error and status
information

[SWS_SomeIpXf_00111]

[SRS_BSW_00336] Basic SW module shall be able to
shutdown

[SWS_SomeIpXf_00182]

[SRS_BSW_00337] Classification of development errors [SWS_SomeIPxf_00184]

[SRS_BSW_00345] BSW Modules shall support
pre-compile configuration

[SWS_SomeIpXf_00182]

[SRS_BSW_00350] All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_SomeIpXf_00181] [SWS_SomeIpXf_91003]

[SRS_BSW_00351] Encapsulation of compiler specific
methods to map objects

[SWS_SomeIpXf_00181]

[SRS_BSW_00357] For success/failure of an API call a
standard return type shall be defined

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]

[SRS_BSW_00358] The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_SomeIpXf_00181]

[SRS_BSW_00369] All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]

[SRS_BSW_00383] The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

[SWS_SomeIpXf_00144]

[SRS_BSW_00385] List possible error notifications [SWS_SomeIpXf_00115]

[SRS_BSW_00386] The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_SomeIpXf_00115]

▽

16 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_BSW_00388] Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_SomeIpXf_00183]

[SRS_BSW_00389] Containers shall have names [SWS_SomeIpXf_00183]

[SRS_BSW_00390] Parameter content shall be unique
within the module

[SWS_SomeIpXf_00181]

[SRS_BSW_00392] Parameters shall have a type [SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]

[SRS_BSW_00395] The Basic Software Module
specifications shall list all
configuration parameter
dependencies

[SWS_SomeIpXf_00181]

[SRS_BSW_00396] The Basic Software Module
specifications shall specify the
supported configuration classes for
changing values and multiplicities for
each parameter/container

[SWS_SomeIpXf_00181]

[SRS_BSW_00398] The link-time configuration is
achieved on object code basis in the
stage after compiling and before
linking

[SWS_SomeIpXf_00181]

[SRS_BSW_00399] Parameter-sets shall be located in a
separate segment and shall be
loaded after the code

[SWS_SomeIpXf_00181]

[SRS_BSW_00401] Documentation of multiple instances
of configuration parameters shall be
available

[SWS_SomeIpXf_00181]

[SRS_BSW_00403] The Basic Software Module
specifications shall specify for each
parameter/container whether it
supports different values or
multiplicity in different configuration
sets

[SWS_SomeIpXf_00181]

[SRS_BSW_00404] BSW Modules shall support
post-build configuration

[SWS_SomeIpXf_00183]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_SomeIpXf_00180] [SWS_SomeIpXf_00181]
[SWS_SomeIpXf_00182]

[SRS_BSW_00411] All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_SomeIpXf_00180] [SWS_SomeIpXf_00181]
[SWS_SomeIpXf_00182]

[SRS_BSW_00413] An index-based accessing of the
instances of BSW modules shall be
done

[SWS_SomeIpXf_00181]

[SRS_BSW_00417] Software which is not part of the
SW-C shall report error events only
after the Dem is fully operational.

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]

[SRS_BSW_00419] If a pre-compile time configuration
parameter is implemented as const
it should be placed into a separate
c-file

[SWS_SomeIpXf_00181]

[SRS_BSW_00422] Pre-de-bouncing of error status
information is done within the Dem

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]

▽

17 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_BSW_00425] The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_SomeIpXf_00172]

[SRS_BSW_00432] Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]
[SWS_SomeIpXf_00181]

[SRS_BSW_00441] Naming convention for type, macro
and function

[SWS_SomeIpXf_00183]

[SRS_BSW_00448] Module SWS shall not contain
requirements from other modules

[SWS_SomeIpXf_00181]

[SRS_BSW_00452] Classification of runtime errors [SWS_SomeIpXf_00111]

[SRS_BSW_00453] BSW Modules shall be harmonized [SWS_SomeIpXf_00181]

[SRS_BSW_00454] An alternative interface without a
parameter of category DATA_
REFERENCE shall be available.

[SWS_SomeIpXf_00181]

[SRS_BSW_00456] A Header file shall be defined in order
to harmonize BSW Modules

[SWS_SomeIpXf_00181]

[SRS_BSW_00458] Classification of production errors [SWS_SomeIpXf_00111]

[SRS_BSW_00459] It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_SomeIpXf_00181]

[SRS_BSW_00461] Modules called by generic modules
shall satisfy all interfaces requested
by the generic module

[SWS_SomeIpXf_00181]

[SRS_BSW_00462] All Standardized Autosar Interfaces
shall have unique requirement Id /
number

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]
[SWS_SomeIpXf_00181]

[SRS_BSW_00466] Classification of extended production
errors

[SWS_SomeIpXf_00181]

[SRS_BSW_00469] Fault detection and healing of
production errors and extended
production errors

[SWS_SomeIpXf_00111]

[SRS_BSW_00470] Execution frequency of production
error detection

[SWS_SomeIpXf_00111]

[SRS_BSW_00471] Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_SomeIpXf_00111]

[SRS_BSW_00472] Avoid detection of two production
errors with the same root cause.

[SWS_SomeIpXf_00111]

[SRS_BSW_00478] Timing limits of main functions [SWS_SomeIpXf_00181]

[SRS_BSW_00479] Interfaces for handling request from
external devices

[SWS_SomeIpXf_00181]

[SRS_BSW_00480] Null pointer errors shall follow a
naming rule

[SWS_SomeIpXf_00181]

[SRS_BSW_00481] Invalid configuration set selection
errors shall follow a naming rule

[SWS_SomeIpXf_00111]

[SRS_BSW_00482] Get version information function shall
follow a naming rule

[SWS_SomeIpXf_00180]

[SRS_BSW_00483] BSW Modules shall handle buffer
alignments internally

[SWS_SomeIpXf_00181]

[SRS_BSW_00484] Input parameters of scalar and enum
types shall be passed as a value.

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]
[SWS_SomeIpXf_00181]

▽

18 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_BSW_00485] Input parameters of structure type
shall be passed as a reference to a
constant structure

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]
[SWS_SomeIpXf_00181]

[SRS_BSW_00486] Input parameters of array type shall
be passed as a reference to the
constant array base type

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00181]

[SRS_BSW_00494] ServiceInterface argument with a
pointer datatype

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]
[SWS_SomeIpXf_00181]

[SRS_Xfrm_00001] A transformer shall work on data
given by the Rte

[SWS_SomeIpXf_00264] [SWS_SomeIpXf_00265]
[SWS_SomeIpXf_00266]

[SRS_Xfrm_00002] A transformer shall provide fixed
interfaces

[SWS_SomeIpXf_00206] [SWS_SomeIpXf_00207]
[SWS_SomeIpXf_00208] [SWS_SomeIpXf_00209]
[SWS_SomeIpXf_00210] [SWS_SomeIpXf_00211]
[SWS_SomeIpXf_00214] [SWS_SomeIpXf_00296]
[SWS_SomeIpXf_00297] [SWS_SomeIpXf_00298]
[SWS_SomeIpXf_00299] [SWS_SomeIpXf_00301]
[SWS_SomeIpXf_00302] [SWS_SomeIpXf_00303]
[SWS_SomeIpXf_00304] [SWS_SomeIpXf_00305]
[SWS_SomeIpXf_91001] [SWS_SomeIpXf_91002]

[SRS_Xfrm_00004] A transformer shall support error
handling

[SWS_SomeIpXf_00264] [SWS_SomeIpXf_00265]
[SWS_SomeIpXf_00266]

[SRS_Xfrm_00005] A transformer shall be able to deal
with more data than expected

[SWS_SomeIpXf_00152]

[SRS_Xfrm_00006] A Transformer shall support
concurrent execution

[SWS_SomeIpXf_00181]

[SRS_Xfrm_00007] A deserializer transformer shall
support extraction of data

[SWS_SomeIpXf_00144]

[SRS_Xfrm_00008] A transformer shall specify its output
format

[SWS_SomeIpXf_00015] [SWS_SomeIpXf_00024]
[SWS_SomeIpXf_00025] [SWS_SomeIpXf_00026]
[SWS_SomeIpXf_00029] [SWS_SomeIpXf_00030]
[SWS_SomeIpXf_00031] [SWS_SomeIpXf_00033]
[SWS_SomeIpXf_00152] [SWS_SomeIpXf_00154]
[SWS_SomeIpXf_00155] [SWS_SomeIpXf_00156]
[SWS_SomeIpXf_00160] [SWS_SomeIpXf_00161]
[SWS_SomeIpXf_00163] [SWS_SomeIpXf_00164]
[SWS_SomeIpXf_00165] [SWS_SomeIpXf_00166]
[SWS_SomeIpXf_00168] [SWS_SomeIpXf_00172]
[SWS_SomeIpXf_00212] [SWS_SomeIpXf_00213]
[SWS_SomeIpXf_00234] [SWS_SomeIpXf_00235]
[SWS_SomeIpXf_00236] [SWS_SomeIpXf_00237]
[SWS_SomeIpXf_00238] [SWS_SomeIpXf_00309]

[SRS_Xfrm_00009] A fixed set of transformer classes
shall exist

[SWS_SomeIpXf_00138] [SWS_SomeIpXf_00144]

[SRS_Xfrm_00010] Each transformer class shall provide
a fixed set of abstract errors

[SWS_SomeIpXf_00181]

[SRS_Xfrm_00011] A transformer shall belong to a
specific transformer class

[SWS_SomeIpXf_00181]

▽

19 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_Xfrm_00101] The SOME/IP Transformer shall
define the serialization of atomic and
structured data elements into linear
arrays

[SWS_SomeIpXf_00016] [SWS_SomeIpXf_00017]
[SWS_SomeIpXf_00034] [SWS_SomeIpXf_00036]
[SWS_SomeIpXf_00037] [SWS_SomeIpXf_00042]
[SWS_SomeIpXf_00053] [SWS_SomeIpXf_00054]
[SWS_SomeIpXf_00055] [SWS_SomeIpXf_00056]
[SWS_SomeIpXf_00057] [SWS_SomeIpXf_00058]
[SWS_SomeIpXf_00059] [SWS_SomeIpXf_00060]
[SWS_SomeIpXf_00069] [SWS_SomeIpXf_00070]
[SWS_SomeIpXf_00072] [SWS_SomeIpXf_00076]
[SWS_SomeIpXf_00088] [SWS_SomeIpXf_00098]
[SWS_SomeIpXf_00099] [SWS_SomeIpXf_00138]
[SWS_SomeIpXf_00140] [SWS_SomeIpXf_00141]
[SWS_SomeIpXf_00143] [SWS_SomeIpXf_00148]
[SWS_SomeIpXf_00151] [SWS_SomeIpXf_00169]
[SWS_SomeIpXf_00215] [SWS_SomeIpXf_00216]
[SWS_SomeIpXf_00217] [SWS_SomeIpXf_00218]
[SWS_SomeIpXf_00219] [SWS_SomeIpXf_00220]
[SWS_SomeIpXf_00221] [SWS_SomeIpXf_00222]
[SWS_SomeIpXf_00223] [SWS_SomeIpXf_00224]
[SWS_SomeIpXf_00225] [SWS_SomeIpXf_00226]
[SWS_SomeIpXf_00227] [SWS_SomeIpXf_00229]
[SWS_SomeIpXf_00230] [SWS_SomeIpXf_00231]
[SWS_SomeIpXf_00232] [SWS_SomeIpXf_00233]
[SWS_SomeIpXf_00234] [SWS_SomeIpXf_00235]
[SWS_SomeIpXf_00236] [SWS_SomeIpXf_00237]
[SWS_SomeIpXf_00238] [SWS_SomeIpXf_00240]
[SWS_SomeIpXf_00241] [SWS_SomeIpXf_00242]
[SWS_SomeIpXf_00243] [SWS_SomeIpXf_00244]
[SWS_SomeIpXf_00245] [SWS_SomeIpXf_00246]
[SWS_SomeIpXf_00247] [SWS_SomeIpXf_00248]
[SWS_SomeIpXf_00249] [SWS_SomeIpXf_00250]
[SWS_SomeIpXf_00251] [SWS_SomeIpXf_00252]
[SWS_SomeIpXf_00253] [SWS_SomeIpXf_00254]
[SWS_SomeIpXf_00256] [SWS_SomeIpXf_00257]
[SWS_SomeIpXf_00258] [SWS_SomeIpXf_00259]
[SWS_SomeIpXf_00260] [SWS_SomeIpXf_00262]
[SWS_SomeIpXf_00263] [SWS_SomeIpXf_00300]
[SWS_SomeIpXf_00306] [SWS_SomeIpXf_00307]
[SWS_SomeIpXf_00309] [SWS_SomeIpXf_00311]
[SWS_SomeIpXf_00316] [SWS_SomeIpXf_00317]
[SWS_SomeIpXf_00319] [SWS_SomeIpXf_00320]

[SRS_Xfrm_00102] The SOME/IP Transformer shall
define a protocol for inter-ECU Client/
Server communication

[SWS_SomeIpXf_00106] [SWS_SomeIpXf_00107]
[SWS_SomeIpXf_00108] [SWS_SomeIpXf_00111]
[SWS_SomeIpXf_00112] [SWS_SomeIpXf_00113]
[SWS_SomeIpXf_00115] [SWS_SomeIpXf_00120]
[SWS_SomeIpXf_00121] [SWS_SomeIpXf_00139]
[SWS_SomeIpXf_00170] [SWS_SomeIpXf_00176]
[SWS_SomeIpXf_00200] [SWS_SomeIpXf_00201]
[SWS_SomeIpXf_00202] [SWS_SomeIpXf_00204]
[SWS_SomeIpXf_00205] [SWS_SomeIpXf_00228]
[SWS_SomeIpXf_00310] [SWS_SomeIpXf_00312]
[SWS_SomeIpXf_00313]

[SRS_Xfrm_00103] The SOME/IP Transformer shall
support exception notification of
applications

[SWS_SomeIpXf_00111] [SWS_SomeIpXf_00310]

[SRS_Xfrm_00105] The SOME/IP Transformer shall
support autonomous error reactions
on the server side for client/server
communication

[SWS_SomeIpXf_00203]

▽

20 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_Xfrm_00106] The SOME/IP Transformer shall
support serialization of extensible
data structs and methods

[SWS_SomeIpXf_00142] [SWS_SomeIpXf_00145]
[SWS_SomeIpXf_00146] [SWS_SomeIpXf_00147]
[SWS_SomeIpXf_00149] [SWS_SomeIpXf_00150]
[SWS_SomeIpXf_00267] [SWS_SomeIpXf_00268]
[SWS_SomeIpXf_00269] [SWS_SomeIpXf_00270]
[SWS_SomeIpXf_00271] [SWS_SomeIpXf_00272]
[SWS_SomeIpXf_00273] [SWS_SomeIpXf_00274]
[SWS_SomeIpXf_00275] [SWS_SomeIpXf_00276]
[SWS_SomeIpXf_00277] [SWS_SomeIpXf_00278]
[SWS_SomeIpXf_00279] [SWS_SomeIpXf_00280]
[SWS_SomeIpXf_00281] [SWS_SomeIpXf_00282]
[SWS_SomeIpXf_00283] [SWS_SomeIpXf_00284]
[SWS_SomeIpXf_00285] [SWS_SomeIpXf_00286]
[SWS_SomeIpXf_00287] [SWS_SomeIpXf_00288]
[SWS_SomeIpXf_00289] [SWS_SomeIpXf_00290]
[SWS_SomeIpXf_00291] [SWS_SomeIpXf_00292]
[SWS_SomeIpXf_00293] [SWS_SomeIpXf_00294]
[SWS_SomeIpXf_00295] [SWS_SomeIpXf_00314]
[SWS_SomeIpXf_00315] [SWS_SomeIpXf_00318]

[SRS_Xfrm_00201] The COM Based Transformer shall
define the serialization of atomic and
structured data elements into linear
arrays based on a fixed data mapping

[SWS_SomeIpXf_00036] [SWS_SomeIpXf_00181]

Table 6.1: Requirements Tracing

21 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7 Functional specification

ECU 2 ECU 1 Sending Application
SWC

RTE

Com

SOME/IP
Serializer

Receiving Application
SWC

RTE

Com

SOME/IP
Deserializer

Figure 7.1: Overview of SOME/IP Transformer

When a SWC initiates an inter-ECU communication which is configured to be trans-
formed, the SWC hands the data over to the RTE. The RTE executes the configured
transformer chain which contains the SOME/IP Transformer (A transformer chain may
contain also other transformers but this is omitted in this overview for simplicity).

The SOME/IP Transformer on the sender side serializes the data of the SWC and
brings them into an linear form. The serialized data are sent via the communication
stack over the bus to the receiver(s). The RTE of the receiver executes the transformer
chain in the reverse order. The SOME/IP transformer of the receiver deserializes the
linear data back into the original data structure. These are handed over to the receiving
SWC.

From the SWC’s point of view it is totally transparent whether data are transformed or
not.

The SOME/IP transformer is a transformer of the class Serializer. It serializes struc-
tured data into a linear form. Therefore it can only be used as the first transformer on
the sending side and the last transformer on the receiving side (in execution order).
Furthermore it provides the transformer errors specified for this transformer class and
supports only out-of-place buffer handling.

22 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

The SOME/IP Transformer has no module specific EcuC because its whole configu-
ration is based on the SOMEIPTransformationDescription and SOMEIPTrans-
formationISignalProps.

Describable

TransformationDescription

«enumeration»

ByteOrderEnum

l i terals

Attributes

+ mostSignificantByteFirst

+ mostSignificantByteLast

+ opaque

SOMEIPTransformationDescription

+ alignment: PositiveInteger [0..1]

+ byteOrder: ByteOrderEnum [0..1]

+ interfaceVersion: PositiveInteger [0..1]

Describable

«atpVariation»

TransformationISignalProps

+ csErrorReaction: CSTransformerErrorReactionEnum [0..1]

SOMEIPTransformationISignalProps

+ interfaceVersion: PositiveInteger [0..1]

+ isDynamicLengthFieldSize: Boolean [0..1]

+ messageType: SOMEIPMessageTypeEnum [0..1]

+ sizeOfArrayLengthFields: PositiveInteger [0..1]

+ sizeOfStringLengthFields: PositiveInteger [0..1]

+ sizeOfStructLengthFields: PositiveInteger [0..1]

+ sizeOfUnionLengthFields: PositiveInteger [0..1]

FibexElement

UploadableDesignElement

ISignal

+ dataTypePolicy: DataTypePolicyEnum [0..1]

+ iSignalType: ISignalTypeEnum [0..1]

+ length: UnlimitedInteger [0..1]

«enumeration»

CSTransformerErrorReactionEnum

li terals

 autonomous

 applicationOnly

Identifiable

TransformationTechnology

+ hasInternalState: Boolean [0..1]

+ needsOriginalData: Boolean [0..1]

+ protocol: String [0..1]

+ transformerClass: TransformerClassEnum [0..1]

+ version: String [0..1]

«enumeration»

SOMEIPMessageTypeEnum

l i terals

Attributes

+ request

+ requestNoReturn

+ notification

+ response

+transformer 0..1

+transformationDescription 0..1

«atpVariation,atpSplitable»

+transformationISignalProps 0..*

«atpSplitable»

Figure 7.2: SOME/IP specific configuration

Class SOMEIPTransformationDescription

Note The SOMEIPTransformationDescription is used to specify SOME/IP transformer specific attributes.

Base ARObject , Describable, TransformationDescription

Aggregated by TransformationTechnology.transformationDescription

Attribute Type Mult. Kind Note

alignment PositiveInteger 0..1 attr Defines the padding for alignment purposes that will be
added by the SOME/IP transformer after the serialized
data of the variable data length data element. The
alignment shall be specified in Bits.

byteOrder ByteOrderEnum 0..1 attr Defines which byte order shall be serialized by the
SOME/IP transformer

interfaceVersion PositiveInteger 0..1 attr The interface version the SOME/IP transformer shall use.

Table 7.1: SOMEIPTransformationDescription

23 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Class «atpVariation» SOMEIPTransformationISignalProps

Note The class SOMEIPTransformationISignalProps specifies ISignal specific configuration properties for
SOME/IP transformer attributes.

Base ARObject , Describable, TransformationISignalProps

Aggregated by ISignal.transformationISignalProps, ISignalGroup.transformationISignalProps

Attribute Type Mult. Kind Note

interfaceVersion PositiveInteger 0..1 attr The interface version the SOME/IP transformer shall use.

isDynamic
LengthFieldSize

Boolean 0..1 attr This attribute shall be used to determine the wire type in
the context of using the TLV encoding.

messageType SOMEIPMessageType
Enum

0..1 attr The Message Type which shall be placed into the SOME/
IP header.

sizeOfArray
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of fixed-size arrays
or dynamic size arrays in the SOME/IP message. This
attribute is valid for all available occurrences of fixed-size
arrays or dynamic size arrays in the SOME/IP message.

sizeOfString
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of dynamic length
strings in the SOME/IP message. This attribute is valid for
all available occurrences of strings in the SOME/IP
message.

sizeOfStruct
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of structs in the
SOME/IP message. This attribute is valid for all available
occurrences of structures in the SOME/IP message. For
a more fine granular modeling on the level of Data
Prototypes the DataPrototypeTransformationProps shall
be used.

sizeOfUnion
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of unions in the
SOME/IP message. This attribute is valid for all available
occurrences of Unions in the SOME/IP message. For a
more fine granular modeling on the level of Data
Prototypes the DataPrototypeTransformationProps shall
be used.

tlvDataId
Definition

TlvDataIdDefinitionSet * ref This reference identifies the TlvDataIdDefinitions relevant
for the enclosing SOMEIPTransformationISignalProps

Table 7.2: SOMEIPTransformationISignalProps

Enumeration ByteOrderEnum

Note When more than one byte is stored in the memory the order of those bytes may differ depending on
the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.
ByteOrder is very important in case of communication between different PUs or ECUs.

Aggregated by ApSomeipTransformationProps.byteOrder, BaseTypeDirectDefinition.byteOrder, DiagnosticCommon
Props.defaultEndianness, ISignalToIPduMapping.packingByteOrder, MultiplexedIPdu.selectorField
ByteOrder, PduToFrameMapping.packingByteOrder, SegmentPosition.segmentByteOrder,
SOMEIPTransformationDescription.byteOrder, System.containerIPduHeaderByteOrder

Literal Description

mostSignificantByte
First

Most significant byte shall come at the lowest address (also known as BigEndian or as
Motorola-Format)
Tags: atp.EnumerationLiteralIndex=0

mostSignificantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)
Tags: atp.EnumerationLiteralIndex=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.
Tags: atp.EnumerationLiteralIndex=2

Table 7.3: ByteOrderEnum

24 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Enumeration SOMEIPMessageTypeEnum

Note Depending on the style of the communication different message types shall be set in the header of a
SOME/IP message.

Aggregated by SOMEIPTransformationISignalProps.messageType

Literal Description

notification A request of a notification expecting no response.
Tags: atp.EnumerationLiteralIndex=1

request A request expecting a response.
Tags: atp.EnumerationLiteralIndex=2

requestNoReturn A fire&forget request.
Tags: atp.EnumerationLiteralIndex=3

response The response message.
Tags: atp.EnumerationLiteralIndex=4

Table 7.4: SOMEIPMessageTypeEnum

[SWS_SomeIpXf_00151]
Upstream requirements: SRS_Xfrm_00101

⌈The SOME/IP transformer defined in this document shall be used as a transformer if

• the attribute protocol of the TransformationTechnology is set to SOMEIP

• and the attribute version of the TransformationTechnology is set to 1

• and the attribute transformerClass of the TransformationTechnology is
set to serializer

⌋

7.1 Specification of the SOME/IP on-wire format

Serialization describes the way data is represented in protocol data units (PDUs) trans-
ported over an automotive in-vehicle network.

7.1.1 Message Length Limitations

The usage of TCP allows for larger streams of data to transport SOME/IP header and
payload. However, current transport protocols for CAN and FlexRay limit messages
to 4095 Bytes. When compatibility to those has to be achieved, SOME/IP messages
including the SOME/IP header shall not exceed 4095 Bytes.

7.1.2 Endianness

The byte order of the SOME/IP header fields is defined as network byte order by
[PRS_SOMEIP_00368].

25 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

The byte order of additional fields in the SOME/IP payload is defined as network byte
order by [PRS_SOMEIP_00759].

[SWS_SomeIpXf_00172]
Upstream requirements: SRS_Xfrm_00008, SRS_BSW_00425

⌈The byte order of the parameters inside the payload shall be defined by byteOrder
of SOMEIPTransformationDescription. If byteOrder of SOMEIPTransfor-
mationDescription is not configured explicitly, the default value defined for BYTE_
ORDER in [PRS_SOMEIP_00369] shall be used.⌋

7.1.3 Message format

[SWS_SomeIpXf_00152]
Upstream requirements: SRS_Xfrm_00008, SRS_Xfrm_00005

⌈For interoperability reasons the message format layout shall be identical for all imple-
mentations of SOME/IP and is described as follows:

1. Message ID (Service ID / Method ID) [32 bit]

2. Length [32 bit]

3. Additional information:

(a) Protocol Version [8 bit]

(b) Interface Version [8 bit]

(c) Message Type [8 bit]

(d) Return Code [8 bit]

4. Payload [variable size]

The fields are presented in transmission order; i.e. the fields on the top are transmitted
first. In the following sections the different message format fields and their usage is
being described.⌋

Note:
Layout is also shown in Figure 7.3.

26 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Protocol Version [8 bit] Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

Message ID (Service ID / Method ID) [32 bit]

Payload [variable size]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o

v
e

re
d

 b
y
 L

e
n

g
th

Figure 7.3: SOME/IP Message Format

Figure 7.3 shows the complete SOME/IP message format. The SOME/IP transformer
only implements the lower part (all except Message ID and Length).

[SWS_SomeIpXf_00015]
Upstream requirements: SRS_Xfrm_00008

⌈The SOME/IP transformer shall implement all fields of the header except Message ID
and Length.⌋

Rationale:
Message-ID and Length are not covered since this allows the AUTOSAR Socket Adap-
tor header mode to work.

These are added by other modules in the AUTOSAR BSW. Nonetheless they are con-
tained in Figure 7.3 to show the whole on-wire-format.

7.1.3.1 Request ID [32 bit]

[SWS_SomeIpXf_00154]
Upstream requirements: SRS_Xfrm_00008

⌈The Request ID field shall be 32 bit long.⌋

The Request ID shall be the unique identifier for the calling client inside the ECU. Its
values are chosen by the RTE and handed over to the SOME/IP transformer.

[SWS_SomeIpXf_00024] Request ID construction by Client ID and Session ID
Upstream requirements: SRS_Xfrm_00008

⌈

Client ID [16 bits] Session ID [16 bits]

27 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

⌋

Both are chosen by RTE and handed over to the transformer as
Rte_Cs_TransactionHandleType.

[SWS_SomeIpXf_00025]
Upstream requirements: SRS_Xfrm_00008

⌈The clientId inside the Rte_Cs_TransactionHandleType handed over from
RTE shall be used for the value of the Client ID.⌋

[SWS_SomeIpXf_00026]
Upstream requirements: SRS_Xfrm_00008

⌈The sequenceCounter inside the Rte_Cs_TransactionHandleType handed
over from RTE shall be used for the value of the Session ID.⌋

For details of Rte_Cs_TransactionHandleType see [SWS_Rte_08732].

The Request ID allows a client to differentiate multiple calls to the same method. There-
fore, the Request ID has to be unique for a single client and server combination only.
When generating a response message, the server has to copy the Request ID from
the request to the response message. This allows the client to map a response to the
issued request even with more than one request outstanding.

Request IDs may be reused as soon as the response arrived or is not expected to
arrive anymore (timeout).

7.1.3.2 Protocol Version [8 bit]

[SWS_SomeIpXf_00155]
Upstream requirements: SRS_Xfrm_00008

⌈The Protocol Version field shall be 8 bit long.⌋

[SWS_SomeIpXf_00156]
Upstream requirements: SRS_Xfrm_00008

⌈The Protocol Version field shall contain the SOME/IP protocol version.⌋

[SWS_SomeIpXf_00029]
Upstream requirements: SRS_Xfrm_00008

⌈The Protocol Version shall be set to 0x01.⌋

28 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.3.3 Interface Version [8 bit]

[SWS_SomeIpXf_00030]
Upstream requirements: SRS_Xfrm_00008

⌈The Interface Version field shall be 8 bit long.⌋

[SWS_SomeIpXf_00160]
Upstream requirements: SRS_Xfrm_00008

⌈The Interface Version field shall contain the Version of the Service Interface.⌋

Rationale: This is required to catch mismatches in Service definitions and allows de-
bugging tools to identify the Service Interface used, if version is used.

Note:
The Version of the corresponding Service Discovery service has to match the
version of the Service Interface, i.e. SdServerServiceMajorVersion and/or
SdClientServiceMajorVersion has to match the used SOMEIPTransforma-
tionDescription.interfaceVersion and/or SOMEIPTransformationISig-
nalProps.interfaceVersion (see [TPS_SYST_02377]).

7.1.3.4 Message Type [8 bit]

[SWS_SomeIpXf_00161]
Upstream requirements: SRS_Xfrm_00008

⌈The Message Type field shall be 8 bit long.⌋

The Message Type field is used to differentiate different types of messages.

[SWS_SomeIpXf_00031] Message TYPE field values
Upstream requirements: SRS_Xfrm_00008

⌈

Number Value Description
0x00 REQUEST A request expecting a response (even

void)
0x01 REQUEST_NO_RETURN A fire&forget request
0x02 NOTIFICATION A request of a notification expecting no

response
0x80 RESPONSE The response message
0x81 ERROR The response containing an error

⌋

Refer to [PRS_SOMEIP_00701] with the note and text below it, that describes the use
or the need of each of the above mentioned message types.

29 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.3.5 Return Code [8 bit]

[SWS_SomeIpXf_00163]
Upstream requirements: SRS_Xfrm_00008

⌈The Return Code field shall be 8 bit long.⌋

[SWS_SomeIpXf_00164]
Upstream requirements: SRS_Xfrm_00008

⌈The Return Code field shall be used to signal whether a request has been successfully
processed.⌋

For simplification of the header layout, every message transports the field Return Code.

The Return Codes are specified in detail in [SWS_SomeIpXf_00115].

[SWS_SomeIpXf_00033]
Upstream requirements: SRS_Xfrm_00008

⌈Messages of Type REQUEST, REQUEST_NO_RETURN, and Notification have to set
the Return Code to 0x00 (E_OK).⌋

[SWS_SomeIpXf_00168] Allowed Return Codes for specific message types
Upstream requirements: SRS_Xfrm_00008

⌈

Message Type Allowed Return Codes
REQUEST N/A, set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A, set to 0x00 (E_OK)
NOTIFICATION N/A, set to 0x00 (E_OK)
RESPONSE See Return Codes in [SWS_SomeIpXf_00115].

⌋

7.1.3.6 Payload [variable size]

[SWS_SomeIpXf_00165]
Upstream requirements: SRS_Xfrm_00008

⌈The Payload field shall have variable size.⌋

[SWS_SomeIpXf_00166]
Upstream requirements: SRS_Xfrm_00008

⌈The Payload field shall contain the transported data.⌋

The serialization of the data will be specified in the following section.

30 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.4 Serialization of Parameters and Data Structures

[SWS_SomeIpXf_00034]
Upstream requirements: SRS_Xfrm_00101

⌈The serialization shall be based on the SenderReceiverInterface or
ClientServerInterface of the data.⌋

[SWS_SomeIpXf_00259]
Upstream requirements: SRS_Xfrm_00101

⌈After the serialized data of a variable data length DataPrototype a padding
for alignment purposes shall be added for the configured alignment (see
[SWS_SomeIpXf_00260] and [SWS_SomeIpXf_00262]) if the variable data length
DataPrototype is not the last element in the serialized data stream. This require-
ment does not apply for the serialization of extensible structs and methods.⌋

Note:
See also chapter 7.1.4.3.

[SWS_SomeIpXf_00260]
Upstream requirements: SRS_Xfrm_00101

⌈If SOMEIPTransformationProps.alignment is set for a variable data length data
element, the value of SOMEIPTransformationProps.alignment defines the align-
ment. This requirement does not apply for the serialization of extensible structs and
methods .⌋

Note:
See also chapter 7.1.4.3.

[SWS_SomeIpXf_00262]
Upstream requirements: SRS_Xfrm_00101

⌈If SOMEIPTransformationProps.alignment is not set for a variable data length
data element, the value of SOMEIPTransformationDescription.alignment de-
fines the alignment. This requirement does not apply for the serialization of extensible
structs and methods.⌋

Note:
See also chapter 7.1.4.3.

[SWS_SomeIpXf_00316] Default for alignment
Upstream requirements: SRS_Xfrm_00101

⌈If SOMEIPTransformationProps.alignment and SOMEIPTransformationDe-
scription.alignment are not configured explicitly, the default value for ALIGNMENT
defined in [PRS_SOMEIP_00613], converted to bits shall be used.⌋

31 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00263]
Upstream requirements: SRS_Xfrm_00101

⌈After serialized fixed data length data elements, the SOME/IP transformer shall never
add automatically a padding for alignment.⌋

Note:
If the following data element shall be aligned, a padding element of accord-
ing size needs to be explicitly inserted into the ImplementationDataType
(in case of serialization based on ImplementationDataTypes according to
[SWS_SomeIpXf_00307]) or into the AutosarDataType (in case of serialization
based on NetworkRepresentation according to [SWS_SomeIpXf_00306]).

[SWS_SomeIpXf_00037]
Upstream requirements: SRS_Xfrm_00101

⌈Alignment shall always be calculated from start of SOME/IP message.⌋

This attribute defines the memory alignment. The SOME/IP Transformer does not try
to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

In the following the serialization of different parameters is specified.

[SWS_SomeIpXf_00306] Serialization based on NetworkRepresentation
Upstream requirements: SRS_Xfrm_00101

⌈If a networkRepresentationProps is defined according to [TPS_SYST_02136]
on the ISignal, then the SOME/IP serialization shall be based on the networkRep-
resentationProps.⌋

Note:
For details refer to chapter Network Representation in [8].

[SWS_SomeIpXf_00307] Serialization based on ImplementationDataTypes
Upstream requirements: SRS_Xfrm_00101

⌈If no networkRepresentationProps is defined on the ISignal, then (according
to [TPS_SYST_02137]) the SOME/IP serialization shall be based on the Implemen-
tationDataTypes.⌋

32 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.4.1 Basic Datatypes

[SWS_SomeIpXf_00036] Supported SwBaseTypes for serialization
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00201

⌈

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8
uint16 unsigned Integer 16
uint32 unsigned Integer 32
uint64 unsigned Integer 64
sint8 signed Integer 8
sint16 signed Integer 16
sint32 signed Integer 32
sint64 signed Integer 64
float32 floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
float64 floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

⌋

Note: The SwBaseTypes are defined in [9] and according to [TPS_STDT_-
00067] placed in the package /AUTOSAR_Platform/BaseTypes (e.g., /AU-
TOSAR_Platform/BaseTypes/uint32).

The Byte Order is specified common for all parameters by byteOrder of SOMEIP-
TransformationDescription. See chapter 7.1.2.

7.1.4.2 Structured Datatypes (structs)

[SWS_SomeIpXf_00042]
Upstream requirements: SRS_Xfrm_00101

⌈A struct shall be serialized in order of depth-first traversal.⌋

The transformer doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP implementation shall not automatically add such padding.

So if for example a struct includes a uint8 and a uint32, they are just written sequentially
into the buffer. This means that there is no padding between the uint8 and the first byte
of the uint32; therefore, the uint32 might not be aligned. So the system designer has
to consider to add padding elements to the data type to achieve the required alignment
or set it globally.

33 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Warning about unaligned structs or similar shall not be done in the implementation but
only in the tool chain used to generate the implementation.

Messages of legacy busses like CAN and FlexRay are usually not aligned. Warnings
can be turned off or be ignored in such cases.

The SOME/IP transformer does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_SomeIpXf_00216]
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfStructLengthFields of SOMEIPTransformationISignal-
Props is set to a value greater 0, a length field shall be inserted in front of every
serialized struct.⌋

Note:
[SWS_SomeIpXf_00216] also applies to nested structs which means that additionally
every nested struct has its own length field. Furthermore, in an array of structs where
all structs have the same length, the length field is inserted in front of every struct inside
the array.

[SWS_SomeIpXf_00252]
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfStructLengthField of SOMEIPTransformationProps is set
to a value greater 0, a length field shall be inserted in front of the serialized struct for
which the SOMEIPTransformationProps is defined. (See [TPS_SYST_02121])⌋

Note:
[SWS_SomeIpXf_00252] applies if the length fields of the struct and all nested structs
contained within the root struct are configured to different values for the lengths of the
length fields via SOMEIPTransformationProps.

[SWS_SomeIpXf_00217]
Upstream requirements: SRS_Xfrm_00101

⌈The data type of the length field of the struct and all nested structs within the struct
shall be the same and shall be determined by the value of SOMEIPTransformation-
ISignalProps.sizeOfStructLengthFields of the serialized ISignal:

• uint8 if sizeOfStructLengthFields equals 1

• uint16 if sizeOfStructLengthFields equals 2

• uint32 if sizeOfStructLengthFields equals 4

⌋

34 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00253]
Upstream requirements: SRS_Xfrm_00101

⌈If SOMEIPTransformationProps.sizeOfStructLengthField is present for a
struct the data type for the length field of the struct shall be determined by the value of
SOMEIPTransformationProps.sizeOfStructLengthField:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

• Otherwise [SWS_SomeIpXf_00217] applies.

⌋

[SWS_SomeIpXf_00317] Default for sizeOfStructLengthFields
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfStructLengthFields of SOMEIPTransformationISignal-
Props is not configured explicitly, the default value for SIZE_OF_STRUCT_LENGTH_
FIELD defined in [PRS_SOMEIP_00079] shall be used.⌋

[SWS_SomeIpXf_00218]
Upstream requirements: SRS_Xfrm_00101

⌈The serializing SOME/IP transformer shall write the size (in bytes) of the serialized
struct (without the size of the length field) into the length field of the struct.⌋

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 7.4: Serialization of Structs without Length Fields (Example)

35 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint16 lf1

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

uint32 a

uint16 lf2

uint16 lf3

Figure 7.5: Serialization of Structs with Length Fields (Example)

7.1.4.3 Structured Datatypes and Arguments with Identifier and optional Mem-
bers

Please note that the content of this chapter has draft character

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Structs are modeled in the Software Component Template using an Implementa-
tionDataType of category STRUCTURE and members are represented by Imple-
mentationDataTypeElements. Method arguments are represented by Argument-
DataPrototypes. Refer to [10] for more details.

The assignment of Data IDs is modeled in the System Template in the context of
SOMEIPTransformationISignalProps. Refer to [8] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members. To
serialize data with optional members, the transformer has to know which optional mem-
bers are available or not. This is stored in a bitfield which is contained inside the Im-
plementationDataType. This availabilityBitfield is realized as array of uint8.

Whether an optional member is actually present in the struct or not, must be deter-
mined during runtime.

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

36 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00267]
Upstream requirements: SRS_Xfrm_00106

⌈The length of a tag shall be two bytes.⌋

[SWS_SomeIpXf_00268]
Upstream requirements: SRS_Xfrm_00106

⌈The tag shall consist of

• reserved (Bit 7 of the first byte)

• wire type (Bit 6-4 of the first byte)

• Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

Bit 7 is the highest significant bit of a byte, bit 0 is the lowest significant bit of a byte.⌋

Note:
Refer to Figure 7.6 for the layout of the tag.

Wire Type
Data ID (Higher

Sig. Part)
Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byte n Byte n + 1 Byte n + 2 ...

7 0 7 0 7/15/31 0

re
s
e
rv

e
d

Figure 7.6: SOME/IP Struct Tag Layout

[SWS_SomeIpXf_00269]
Upstream requirements: SRS_Xfrm_00106

⌈The lower significant part of the Data ID of the member shall be encoded in bits 7-0
of the second byte of the tag. The higher significant part of the Data ID of the member
shall be encoded in bits 3-0 of the first byte.⌋

Example: The Data ID of the member is 1266 (dec). Then bits 3-0 of the first byte are
set to 0x4. The second byte is set to 0xF2.

[SWS_SomeIpXf_00270] Wire type values determening types of data
Upstream requirements: SRS_Xfrm_00106

⌈

Wire Type Value
0 8 Bit Data Base data type
1 16 Bit Data Base data type
2 32 Bit Data Base data type
3 64 Bit Data Base data type
4 Complex Data Type: Array, Struct, String, Union with length

field of static size (configured in data definition)
5 Complex Data Type: Array, Struct, String, Union with length

field size 1 byte (ignore static definition)

37 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

6 Complex Data Type: Array, Struct, String, Union with length
field size 2 byte (ignore static definition)

7 Complex Data Type: Array, Struct, String, Union with length
field size 4 byte (ignore static definition)

⌋

Note:
Wire type 4 ensures the compatibility with the current approach where the size of length
fields is statically configured. This approach has the drawback that changing the size
of the length field during evolution of interfaces is always incompatible. Thus, wire
types 5, 6 and 7 allow to encode the size of the used length field in the transferred byte
stream.

[SWS_SomeIpXf_00271]
Upstream requirements: SRS_Xfrm_00106

⌈If SOMEIPTransformationISignalProps.isDynamicLengthFieldSize is set
to false, the transformer shall use wire type 4 for serializing complex types and
shall use the fixed size length fields. The size of the length fields is defined
in SOMEIPTransformationISignalProps.sizeOfArrayLengthFields, size-
OfStructLengthFields and sizeOfUnionLengthFields.⌋

[SWS_SomeIpXf_00272]
Upstream requirements: SRS_Xfrm_00106

⌈If SOMEIPTransformationISignalProps.isDynamicLengthFieldSize is set
to true, the transformer shall use wire types 5,6,7 for serializing complex types and
shall chose the size of the length field according to this wire type.⌋

[SWS_SomeIpXf_00318] Default for isDynamicLengthFieldSize
Upstream requirements: SRS_Xfrm_00106

⌈IfSOMEIPTransformationISignalProps.isDynamicLengthFieldSize is not
configured explicitly, the default value for IS_DYNAMIC_LENGTH_FIELD_SIZE de-
fined in [PRS_SOMEIP_00003] shall be used.⌋

[SWS_SomeIpXf_00273]
Upstream requirements: SRS_Xfrm_00106

⌈A deserializer shall always be able to deserialize known members/arguments and skip
unknown members/arguments with the wire types 4, 5, 6 and 7 independent of the set-
ting of SOMEIPTransformationISignalProps.isDynamicLengthFieldSize⌋

38 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00274]
Upstream requirements: SRS_Xfrm_00106

⌈If a Data ID is defined for an ArgumentDataPrototype or Implementation-
DataTypeElement by means of SOMEIPTransformationISignalProps.tlv-
DataIdDefinition.id, a tag shall be inserted in the serialized byte stream.⌋

Note:
regarding existence of Data IDs, refer to [8].

[SWS_SomeIpXf_00275]
Upstream requirements: SRS_Xfrm_00106

⌈If the datatype of the serialized member / argument is a basic datatype (wire types
0-3) and a Data ID is configured, the tag shall be inserted directly in front of the mem-
ber/argument. No length field shall be inserted into the serialized stream.⌋

[SWS_SomeIpXf_00276]
Upstream requirements: SRS_Xfrm_00106

⌈If the datatype of the serialized member/argument is not a basic datatype (wire type
4-7) and a Data ID is configured, the tag shall be inserted in front of the length field.⌋

[SWS_SomeIpXf_00277]
Upstream requirements: SRS_Xfrm_00106

⌈If the datatype of the serialized member/argument is not a basic datatype and a Data
ID is configured, a length field shall always be inserted in front of the member/argu-
ment.⌋

Rationale: The length field is required for the de-serialization of known members/argu-
ments and to skip unknown members/arguments during deserialization.

[SWS_SomeIpXf_00278]
Upstream requirements: SRS_Xfrm_00106

⌈The length field shall always contain the length up to the next tag of the struct, but
does not include the tag size and length field size itself.⌋

[SWS_SomeIpXf_00279]
Upstream requirements: SRS_Xfrm_00106

⌈If the member itself is of type struct, there shall be exactly one length field.⌋

[SWS_SomeIpXf_00280]
Upstream requirements: SRS_Xfrm_00106

⌈If the member itself is of type dynamic length string, there shall be exactly one length
field.⌋

39 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00281]
Upstream requirements: SRS_Xfrm_00106

⌈If the member itself is of type fixed length string, there shall be exactly one length field
corresponding to dynamic length strings.⌋

Note:
When serialized without tag, fixed length strings do not have a length field. For the
serialization with tag, a length field is also required for fixed length strings in the same
way as for dynamic length strings.

[SWS_SomeIpXf_00282]
Status: DRAFT
Upstream requirements: SRS_Xfrm_00106

⌈If the member itself is of type dynamic length array, there shall be exactly one length
field.⌋

[SWS_SomeIpXf_00283]
Upstream requirements: SRS_Xfrm_00106

⌈If the member itself is of type fixed length array, there shall be exactly one length
field.⌋

[SWS_SomeIpXf_00284]
Upstream requirements: SRS_Xfrm_00106

⌈If the member itself is of type union, there shall be exactly one length field.⌋

[SWS_SomeIpXf_00285]
Upstream requirements: SRS_Xfrm_00106

⌈For the serialization of extensible structs and methods the length field shall cover the
size of the type field, data and padding bytes if the member itself is of type union.⌋

Note:
For the serialization without tags, the length field of unions does not cover the type
field (see [SWS_SomeIpXf_00226]). For the serialization with tags, it is required that
the complete content of the serialized union is covered by the length field.

[SWS_SomeIpXf_00286]
Upstream requirements: SRS_Xfrm_00106

⌈A member of a non-extensible (standard) struct which is of type extensible struct, shall
be serialized according to the requirements for extensible structs.⌋

[SWS_SomeIpXf_00287]
Upstream requirements: SRS_Xfrm_00106

⌈A member of an extensible struct which is of type non-extensible (standard) struct,
shall be serialized according to the requirements for standard structs.⌋

40 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00288]
Upstream requirements: SRS_Xfrm_00106

⌈For the serialization of extensible structs and methods no alignment shall be applied.⌋

Rationale: When alignment greater 8 bits is used, the serializer may add padding bytes
after variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[SWS_SomeIpXf_00289]
Upstream requirements: SRS_Xfrm_00106

⌈If the attribute isStructWithOptionalElement of the Implementation-
DataType representing the extensible struct is set to true, the transformer shall ignore
the first ImplementationDataTypeElement and shall not serialize or deserialize it.⌋

Rationale: the first ImplementationDataTypeElement represents the availability
bitfield which is not transferred on the wire.

[SWS_SomeIpXf_00290]
Upstream requirements: SRS_Xfrm_00106

⌈The transformer shall only serialize an optional member of a struct if the correspond-
ing bit in the availability bitfield is set as follows:

(availabilityBitfield[(pos/8)] & (1<<(pos mod 8))) != 0

⌋

[SWS_SomeIpXf_00291]
Upstream requirements: SRS_Xfrm_00106

⌈If an optional member is available in the serialized byte stream, the transformer shall
set the corresponding bit in the availability bitfield as follows:

availabilityBitfield[(pos/8)] = availabilityBitfield[(pos/8)] | (1<<(pos mod 8))

⌋

[SWS_SomeIpXf_00292]
Upstream requirements: SRS_Xfrm_00106

⌈If an optional member is not available in the serialized byte stream, the transformer
shall clear the corresponding bit in the availability bitfield as follows:

availabilityBitfield[(pos/8)] = availabilityBitfield[(pos/8)] & ~(1<<(pos mod 8))

⌋

In the requirements [SWS_SomeIpXf_00288], [SWS_SomeIpXf_00289] and [SWS_
SomeIpXf_00290] pos is the position of the optional ImplementationDataType-

41 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Element among all optional ImplementationDataTypeElements within the Im-
plementationDataType starting with pos = 0.

Note:
Non-optional ImplementationDataTypeElements do not count since they do not
need a bit in the availabilityBitfield. So the bit position within the availabilityBitfield
is determined by the order of the optional ImplementationDataTypeElements.
Examples:

• 1st optional ImplementationDataTypeElement (pos=0):

(availabilityBitfield[0] & 0x01) != 0

• 8th optional ImplementationDataTypeElement (pos=7):

(availabilityBitfield[0] & 0x80) != 0

• 9th optional ImplementationDataTypeElement (pos=8):

(availabilityBitfield[1] & 0x01) != 0

[SWS_SomeIpXf_00295]
Upstream requirements: SRS_Xfrm_00106

⌈If an optional member is not available in the received serialized byte stream, the trans-
former shall keep the memory section occupied by this optional element without modi-
fication.⌋

[SWS_SomeIpXf_00293]
Upstream requirements: SRS_Xfrm_00106

⌈If the transformer reads an unknown Data ID (i.e. not contained in its data definition),
it shall skip the unknown member/argument by using the information of the wire type
and length field.⌋

7.1.4.4 Strings

[SWS_SomeIpXf_00053]
Upstream requirements: SRS_Xfrm_00101

⌈Strings shall be encoded using Unicode and terminated with a

"\textbackslash0"-character

for both fixed-length and dynamic-length strings. Unused space shall be filled using
"\0".⌋

42 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00319] Default for baseTypeEncoding
Upstream requirements: SRS_Xfrm_00101

⌈If baseTypeDefinition.baseTypeEncoding is not configured explicitly, then the
default value for STRING_ENCODING as defined in [PRS_SOMEIP_00372] shall be
used.⌋

[SWS_SomeIpXf_00054]
Upstream requirements: SRS_Xfrm_00101

⌈Different Unicode encoding shall be supported including UTF-8, UTF-16BE, and UTF-
16LE. Since these encoding have a dynamic length of bytes per character, the maxi-
mum length in bytes is up to four times the length of characters in UTF-8 plus 1 Byte
for the termination with a "\0" or up to four times the length of the characters in UTF-16
plus 2 Bytes for a "\0". UTF-8 character can be up to 4 bytes and an UTF-16 character
can be up to 4 bytes.⌋

In the following an example is provided in accordance with [SWS_SomeIpXf_00245]
and [SWS_SomeIpXf_00054] :

• Single UTF character encoded in UTF-8: 1..4 bytes

• Single UTF character encoded in UTF-16: 2 or 4 bytes

• UTF String with n chars encoded in UTF-8 = up to 3 byte BOM + n*4 UTF-8 Char
+ 1 bytes Zero Termination = up to 4 + 4*n bytes

• UTF String with n chars encoded in UTF-16 = up to 2 byte BOM + n*4 UTF-16
Char + 2 bytes Zero Termination = up to 4 + 4*n bytes

[SWS_SomeIpXf_00055]
Upstream requirements: SRS_Xfrm_00101

⌈UTF-16LE and UTF-16BE strings shall be zero terminated with a

"\textbackslash0"-character

. This means they shall end with (at least) two 0x00 Bytes.⌋

[SWS_SomeIpXf_00056]
Upstream requirements: SRS_Xfrm_00101

⌈UTF-16LE and UTF-16BE strings shall have an even length.⌋

[SWS_SomeIpXf_00057]
Upstream requirements: SRS_Xfrm_00101

⌈For UTF-16LE and UTF-16BE strings having an odd length the last byte shall be
silently removed by the receiving SOME/IP transformer.⌋

43 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00248]
Upstream requirements: SRS_Xfrm_00101

⌈In case of UTF-16LE and UTF-16BE strings having an odd length, after removal of
the last byte, the two bytes before shall be 0x00 bytes (termination) for a string to be
valid.⌋

[SWS_SomeIpXf_00058]
Upstream requirements: SRS_Xfrm_00101

⌈All strings shall always start with a Byte Order Mark (BOM). The BOM shall be in-
cluded in fixed-length-strings as well as dynamic-length strings.⌋

For the specification of BOM, see [11] and [12]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

For the details of the recognition and serialization of fixed- and dynamic-length strings
see chapter 7.1.4.4.1 and chapter 7.1.4.4.2.

[SWS_SomeIpXf_00059]
Upstream requirements: SRS_Xfrm_00101

⌈The receiving SOME/IP transformer implementation shall check the BOM and handle
a missing BOM or a malformed BOM as an error.⌋

[SWS_SomeIpXf_00060]
Upstream requirements: SRS_Xfrm_00101

⌈The BOM shall be added by the SOME/IP sending transformer implementation.⌋

7.1.4.4.1 Strings (fixed length)

The length of the string (this includes the "\0") in Bytes is specified in the data type
definition.

[SWS_SomeIpXf_00240] Recognition of UTF-8 Fixed Length Strings
Upstream requirements: SRS_Xfrm_00101

⌈An UTF-8 Fixed Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.swTextProps.
baseType refers to a BaseType with baseTypeDefinition.baseType-
Encoding equal to UTF-8

• ImplementationDataType

44 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

– with category ARRAY

– that contains exactly one ImplementationDataTypeElement that boils
down to a uint8 ImplementationDataType:

* ImplementationDataTypeElement.arraySize is set to a value

* ImplementationDataTypeElement.arraySizeSemantics is set
to fixedSize

⌋

[SWS_SomeIpXf_00241] Recognition of UTF-16 Fixed Length Strings
Upstream requirements: SRS_Xfrm_00101

⌈An UTF-16 Fixed Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.swTextProps.
baseType refers to a BaseType with baseTypeDefinition.baseType-
Encoding equal to UTF-16

• ImplementationDataType

– with category ARRAY

– that contains exactly one ImplementationDataTypeElement that boils
down to a uint16 ImplementationDataType:

* ImplementationDataTypeElement.arraySize is set to a value

* ImplementationDataTypeElement.arraySizeSemantics is set
to fixedSize

⌋

[SWS_SomeIpXf_00244] Serialization of fixed length strings
Upstream requirements: SRS_Xfrm_00101

⌈Serialization of fixed length strings shall consist of the following steps:

1. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a E_SER_GENERIC_ERROR error shall be issued.

2. Add the Length Field - The value of the length field shall be computed by con-
sidering the number of elements given by the size indicator and the size in bytes
of each element obtained during encoding of the Unicode codepoints into the
respective transformation format (e.g., 1 up to 4 bytes for UTF-8 and 2 or 4
bytes for UTF-16) increased by the size in bytes required by the BOM and Ter-
mination. The data type of the length field shall be determined from the size-

45 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

OfStringLengthFields. If the attribute sizeOfStringLengthFields is
not configured explicitly, then the default value for SIZE_OF_STRING_LENGTH_
FIELD as defined by [PRS_SOMEIP_00760] shall be used. The value of the
length field shall comply with [CP_SWS_SomeIpXf_CONSTR_00001].

3. Append BOM at the beginning of the output buffer in the first three (UTF-8) or two
(UTF-16) bytes of the to be serialized array containing the string.

4. Copying the string data (the number of bytes according to the string’s fixed length)
from the array into the output buffer, optionally performing a conversion between
UTF-16LE and UTF-16BE between ECU and network byte order if BaseTypeDi-
rectDefinition.byteOrder and SOMEIPTransformationDescription.
byteOrder have different values

⌋

7.1.4.4.2 Strings (dynamic length)

Strings with dynamic length can be realized in an AUTOSAR system as an array with
dynamic length that transports the single characters.

[SWS_SomeIpXf_00242] Recognition of UTF-8 Variable Length Strings
Upstream requirements: SRS_Xfrm_00101

⌈An UTF-8 Variable Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.swTextProps.
baseType refers to a BaseType with baseTypeDefinition.baseType-
Encoding equal to UTF-8

• ImplementationDataType
The ImplementationDataType shall be defined according to [TPS_SWCT_
01650] as a STRUCTURE that contains exactly two Implementation-
DataTypeElements and shall follow the rules defined by [constr_1318]:

– one ImplementationDataTypeElement represents the Size Indica-
tor and has the category equal to TYPE_REFERENCE which points to a
uint8, uint16 or uint32 ImplementationDataType

– one ImplementationDataTypeElement has the category equal to
ARRAY and contains exactly one ImplementationDataTypeElement
that boils down to a uint8 ImplementationDataType

⌋

46 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00243] Recognition of UTF-16 Variable Length Strings
Upstream requirements: SRS_Xfrm_00101

⌈An UTF-16 Fixed Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.swTextProps.
baseType refers to a BaseType with baseTypeDefinition.baseType-
Encoding equal to UTF-16

• ImplementationDataType
The ImplementationDataType shall be defined according to [TPS_SWCT_
01650] as a STRUCTURE that contains exactly two Implementation-
DataTypeElements and shall follow the rules defined by [constr_1318]:

– one ImplementationDataTypeElement represents the Size Indica-
tor and has the category equal to TYPE_REFERENCE which points to a
uint8, uint16 or uint32 ImplementationDataType

– one ImplementationDataTypeElement has the category equal to
ARRAY and contains exactly one ImplementationDataTypeElement
that boils down to a uint16 ImplementationDataType

⌋

[SWS_SomeIpXf_00245] Serialization of dynamic length strings
Upstream requirements: SRS_Xfrm_00101

⌈Serialization of dynamic length strings shall consist of the following steps:

1. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a E_SER_GENERIC_ERROR error shall be issued.

2. Add the Length Field - The value of the length field shall be computed by con-
sidering the number of elements given by the size indicator and the size in bytes
of each element obtained during encoding of the Unicode codepoints into the
respective transformation format (e.g., 1 up to 4 bytes for UTF-8 and 2 or 4
bytes for UTF-16) increased by the size in bytes required by the BOM and Ter-
mination. The data type of the length field shall be determined from the size-
OfStringLengthFields. If the attribute sizeOfStringLengthFields is
not configured explicitly, then the default value for SIZE_OF_STRING_LENGTH_
FIELD as defined by [PRS_SOMEIP_00002] shall be used.The value of the
length field shall comply with [CP_SWS_SomeIpXf_CONSTR_00001].

3. Appending BOM at the beginning, if BOM is not already available in the first 3
(UTF-8) or 2 (UTF-16) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer

47 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

4. Copying the string data (copy the the number of bytes according to the string’s
size indicator and the size of bytes of each element) from the array into the out-
put buffer, optionally performing a conversion between UTF-16LE and UTF-16BE
between ECU and network byte order BaseTypeDirectDefinition.byte-
Order and SOMEIPTransformationDescription.byteOrder have differ-
ent values

⌋

7.1.4.5 Arrays (fixed length)

[SWS_SomeIpXf_00069]
Upstream requirements: SRS_Xfrm_00101

⌈The length of fixed length arrays is defined by the datatype definition.⌋

They can be seen as repeated elements. In chapter 7.1.4.7 dynamic length arrays are
shown, which can be also used. Fixed length arrays are easier for use in very small
devices. Dynamic length arrays might need more resources on the ECU using them.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of arrays. The length field
of an array describes the number of bytes of the array. This allows extensible arrays
which allow better migration of interfaces.

[SWS_SomeIpXf_00220]
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfArrayLengthFields of SOMEIPTransformationISignal-
Props is set to a value greater 0, a length field shall be inserted in front of every
serialized array.⌋

Note:
[SWS_SomeIpXf_00220] also applies to nested arrays which means that additionally
every nested fixed-size array has its own length field.

[SWS_SomeIpXf_00256]
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfArrayLengthField of SOMEIPTransformationProps is set
to a value greater 0, a length field shall be inserted in front of the serialized array for
which the SOMEIPTransformationProps is defined. (See [TPS_SYST_02121])⌋

Note:
[SWS_SomeIpXf_00256] applies if the length fields of the array and all nested ar-
rays contained are configured to different values for the lengths of the length fields
via SOMEIPTransformationProps

48 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00257]
Upstream requirements: SRS_Xfrm_00101

⌈If SOMEIPTransformationProps.sizeOfArrayLengthField is present for a
static size array the data type for the length field of the array shall be determined by
the value of SOMEIPTransformationProps.sizeOfArrayLengthField:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

• Otherwise [SWS_SomeIpXf_00221] applies.

⌋

[SWS_SomeIpXf_00320] Default for sizeOfArrayLengthFields
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfArrayLengthFields of SOMEIPTransformationISignal-
Props is not configured explicitly, the default value for SIZE_OF_ARRAY_LENGTH_
FIELD defined in [PRS_SOMEIP_00944] shall be used.⌋

[SWS_SomeIpXf_00221]
Upstream requirements: SRS_Xfrm_00101

⌈The data type of the length field for an array shall be determined by the value of
SOMEIPTransformationISignalProps.sizeOfArrayLengthFields of the se-
rialized ISignal:

• uint8 if sizeOfArrayLengthFields equals 1

• uint16 if sizeOfArrayLengthFields equals 2

• uint32 if sizeOfArrayLengthFields equals 4

⌋

[SWS_SomeIpXf_00222]
Upstream requirements: SRS_Xfrm_00101

⌈The serializing SOME/IP transformer shall write the size (in bytes) of the serialized
array (without the size of the length field) into the length field of the array.⌋

7.1.4.5.1 One-dimensional

The one-dimensional arrays with fixed length n carry exactly n elements of the same
type. The layout is shown in Figure 7.7.

49 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00070]
Upstream requirements: SRS_Xfrm_00101

⌈A one-dimensional array with fixed length shall be serialized by concatenating the
array elements in order.⌋

Static Array a[n]

Element_1 Element_2 Element_3 Element_n

…
element size e [byte]

n * e

Figure 7.7: One-dimensional array (fixed length)

7.1.4.5.2 Multidimensional

[SWS_SomeIpXf_00072]
Upstream requirements: SRS_Xfrm_00101

⌈The serialization of multidimensional arrays shall happen in row-major order(in-
memory layout of multidimensional arrays in the C programming language)⌋

Static Array a[n][m]

Element_1 Element_2 Element_n

…
e

n * (m * e)

E1,1 E1,2 … E1,m

m * e

Figure 7.8: Multidimensional array (fixed length)

Consult [5] Chapter 5.3.4.4 “Array Implementation Data Type” for Arrays.

50 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.4.6 Optional Parameters / Optional Elements

Optional Elements can be encoded as array with 0 to 1 elements. For the serialization
of arrays with dynamic length see Chapter 7.1.4.7.

7.1.4.7 Dynamic Length Arrays / Variable Size Arrays

Variable size arrays are implemented in AUTOSAR as structs with two members

• a size indicator which is an integer and holds the number of valid elements in the
array

• the array with variable size

In SOME/IP variable size arrays are implemented in a similar manner. Only the size
indicator is replaced by a length indicator.

• a length indicator which is an integer and holds the length (in bytes) of the follow-
ing variable size array

• the array which contains the valid elements of the variable size array

In AUTOSAR also so called "old-world" variable-size array data types exist which don’t
have a size indicator. These are not supported by data transformation in general and
hence also not supported by the SOME/IP transformer. For details, refer to [constr_
1387] ([8, System Template]), [TPS_SWCT_01644], [TPS_SWCT_01645] and [TPS_
SWCT_01642].

[SWS_SomeIpXf_00076]
Upstream requirements: SRS_Xfrm_00101

⌈A variable size array embedded in a structure which also contains a size indicator
shall be serialized as the concatenation of the following elements:

• the length indicator which holds the length (in bytes) of the following variable size
array

• the array which contains the valid elements of the variable size array

where

• the data type of the length field shall be determined as specified in
[SWS_SomeIpXf_00234]

• the array shall be serialized like a static size array but does only contain the valid
elements. The number of elements to serializer shall be taken from the size
indicator.

⌋

51 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00234]
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00008

⌈A variable size array is represented in AUTOSAR by an ImplementationDataType
with the category STRUCTURE and two sub-elements (namely payload and size indi-
cator). The data type of the length fields for the SOME/IP message for an variable
size array shall be determined from the sizeOfArrayLengthFields. If the attribute
sizeOfArrayLengthFields is not configured then the default value for SIZE_OF_
ARRAY_LENGTH_FIELD as defined by [PRS_SOMEIP_00001] shall be used. In case
of nested variable size arrays, AUTOSAR allows to use profiles to specify size indica-
tors which apply to more than one variable size array nested within the same Imple-
mentationDataType. Depending on the specific profile (dynamicArraySizePro-
file), the data type of the of the length fields inside the SOME/IP message shall be
determined differently:

• VSA_LINEAR
The data type of the SOME/IP length field shall be determined from the single
sizeOfArrayLengthFields. If the attribute sizeOfArrayLengthFields is
not configured then the default value for SIZE_OF_ARRAY_LENGTH_FIELD as
defined by [PRS_SOMEIP_00001] shall be used.

• VSA_SQUARE
All data type of the SOME/IP length fields shall be determined from the single
sizeOfArrayLengthFields. If the attribute sizeOfArrayLengthFields is
not configured then the default value for SIZE_OF_ARRAY_LENGTH_FIELD as
defined by [PRS_SOMEIP_00001] shall be used.

• VSA_RECTANGULAR
The data type of all SOME/IP length fields for all dimensions (nesting level) shall
be determined from the single sizeOfArrayLengthFields. If the attribute
sizeOfArrayLengthFields is not configured then the default value for SIZE_
OF_ARRAY_LENGTH_FIELD as defined by [PRS_SOMEIP_00001] shall be used.

• VSA_FULLY_FLEXIBLE
The data type of all SOME/IP length fields for all variable size arrays shall be de-
termined from the single sizeOfArrayLengthFields. If the attribute size-
OfArrayLengthFields is not configured then the default value for SIZE_OF_
ARRAY_LENGTH_FIELD as defined by [PRS_SOMEIP_00001] shall be used.

⌋

This means only the first m elements of the variable size array are serialized where m is
the value of the size indicator.

The layout of dynamic arrays is shown in 7.9 and Figure 7.10 where L_1 and L_2
denote the length in bytes.

52 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Element_1

…

element size e

n [byte]

Length n

8,16 or 32 bit

Element_2 Element_3 Element_n

Figure 7.9: One-dimensional array (dynamic length) (Example)

In the one-dimensional array one length field is used, which carries the size in bytes of
the valid elements in the array.

[SWS_SomeIpXf_00235]
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00008

⌈If the value of dynamicArraySizeProfile equals VSA_LINEAR, the value of the
length field of the serialized variable size array shall be calculated based on the value
of the size indicator of the AUTOSAR data type.⌋

The number of static length elements can be easily calculated by dividing the array
length n by the Byte size of an element.

In the case of dynamical length elements the number of elements cannot be calculated
but the elements must be parsed sequentially.

Element_a[1][j…k_1]

L_1 [byte]

Length n

8,16 or 32 bit

E1,1 E1,2 E1,k_1 …
L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 …
L_2 …

L_2 [byte]

n [byte]

Figure 7.10: Multidimensional array (dynamic length) (Example)

In case of multidimensional variable size arrays, each variable size array needs to
have its own length field, independent of the way how the variable size array is de-
signed in the AUTOSAR data type (i.e. independent from the value of dynamicAr-
raySizeProfile) as specified in [SWS_SomeIpXf_00234]. Hence it is supported to
have different length columns and different length rows in the same dimension. See
k_1 and k_2 in Figure 7.10.

53 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00236]
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00008

⌈If the value of dynamicArraySizeProfile of a multi-dimensional variable size ar-
ray equals VSA_SQUARE, the value of all length fields of the nested serialized variable
size arrays that belong to this multi-dimensional variable size arrays shall be calculated
based on the value of the single size indicator of the AUTOSAR data type.⌋

In case of VSA_SQUARE, the AUTOSAR data type only has one size indicator. The
value of this size indicator will be used as base for the calculation for the value of all
length fields of such a multi-dimensional variable size array.

[SWS_SomeIpXf_00237]
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00008

⌈If the value of dynamicArraySizeProfile of a multi-dimensional variable size ar-
ray equals VSA_RECTANGULAR, the values of all length fields of the nested serialized
variable size arrays of the same nesting level (i.e. the same dimension) that belong to
this multi-dimensional variable size array shall be calculated based on the values of the
size indicators of the AUTOSAR data type for this respective nesting level.⌋

In case of VSA_RECTANGULAR, the AUTOSAR data type has exactly one size indicator
for each dimension of the the multi-dimensional variable size array. For all variable size
arrays in one dimension, the value of the according size indicator of this dimension will
be used as base for the calculation of the values of all length fields of this dimension.

[SWS_SomeIpXf_00238]
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00008

⌈If the value of dynamicArraySizeProfile of a multi-dimensional variable size ar-
ray equals VSA_FULLY_FLEXIBLE, the values of all length fields of the nested serial-
ized variable size arrays that belong to this multi-dimensional variable size arrays shall
be calculated based on the value of the size indicator of the corresponding variable
size array that is contained in the AUTOSAR data type.⌋

In case of VSA_FULLY_FLEXIBLE, in the AUTOSAR data type the outer variable size
array and each nested variable size arrays has its own size indicator. For the calculation
of the values of the length fields both of the outer and all nested variable size arrays
the according values of the size indicators of the AUTOSAR data type will be used as
base.

The RTE provides a buffer where serialization result will be written into by the SOME/IP
transformer which is large enough to keep the length field and a fully filled dynamic
array.

54 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00309] Maximum number of array elements
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00008

⌈The maximum number of variable size array elements shall be defined by the Im-
plementationDataTypeElement.arraySize attribute of the respective Imple-
mentationDataTypeElement depending on the ImplementationDataType.dy-
namicArraySizeProfile (see [constr_1318], [constr_1319], [constr_1320], and
[constr_1321]).⌋

7.1.4.8 Bitfield

[SWS_SomeIpXf_00300]
Upstream requirements: SRS_Xfrm_00101

⌈Bitfields shall be transported as-is based on the underlying SwBaseType
uint8/uint16/uint32/uint64 according to [SWS_SomeIpXf_00036]. No further modifi-
cation or interpretation shall be done by the SOME/IP transformer.⌋

7.1.4.9 Union / Variant

A union (also called variant) is a parameter that can contain different types of elements.
For example, if one defines a union of type uint8 and type uint16, the union shall carry
an element of uint8 or uint16.

The union serialization will only be triggered if the pattern defined in
[SWS_SomeIpXf_00249] applies.

[SWS_SomeIpXf_00249]
Upstream requirements: SRS_Xfrm_00101

⌈A union shall be detected if an ImplementationDataType with the following pat-
tern (named wrapped union data type) is used: ImplementationDataType with cat-
egory STRUCTURE that contains exactly two ImplementationDataTypeElements:

• memberSelector: ImplementationDataTypeElement which represents the
type field that boils down to a uint8, uint16 or uint32 Implementation-
DataType

• payload: ImplementationDataTypeElement of category UNION which rep-
resents the actual union

⌋

When using different types of elements the alignment of subsequent parameters may
be distorted. To resolve this, padding might be needed.

55 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00088] Default serialization layout of unions in SOME/IP
Upstream requirements: SRS_Xfrm_00101

⌈

Length field (optional)
Type field
Element including padding [sizeof(padding) = length - sizeof(element)]

⌋

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of unions. The length
field of a union describes the number of bytes in the union.

This allows the deserializer to quickly calculate the position where the data after the
union begin in the serialized data stream. This gets necessary if the union con-
tains data which are larger than expected, for example if a struct was extended with
appended new members and only the first "old" members are deserialized by the
SOME/IP transformer.

[SWS_SomeIpXf_00224]
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfUnionLengthFields of SOMEIPTransformationISignal-
Props is set to a value greater 0, a length field shall be inserted in front of every
serialized union.⌋

Note:
[SWS_SomeIpXf_00224] also applies to nested unions which means that additionally
every nested union has its own length field.

[SWS_SomeIpXf_00254]
Upstream requirements: SRS_Xfrm_00101

⌈If attribute sizeOfUnionLengthField of SOMEIPTransformationProps is set
to a value greater 0, a length field shall be inserted in front of the serialized union for
which the SOMEIPTransformationProps is defined. (See [TPS_SYST_02121]).⌋

Note:
[SWS_SomeIpXf_00254] applies if the length fields of the union and all nested unions
contained within the root union are configured to different values for the lengths of the
length fields via SOMEIPTransformationProps.

[SWS_SomeIpXf_00225]
Upstream requirements: SRS_Xfrm_00101

⌈The data type of the length field of the union and all nested unions within the union
shall be determined by the value of SOMEIPTransformationISignalProps.size-
OfUnionLengthFields of the serialized ISignal:

• uint8 if sizeOfUnionLengthFields equals 1

56 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

• uint16 if sizeOfUnionLengthFields equals 2

• uint32 if sizeOfUnionLengthFields equals 4

⌋

[SWS_SomeIpXf_00258]
Upstream requirements: SRS_Xfrm_00101

⌈If SOMEIPTransformationProps.sizeOfUnionLengthField is present for a
union the data type of the length field for the union shall be determined by the value of
SOMEIPTransformationProps.sizeOfUnionLengthField:

• uint8 if sizeOfUnionLengthFields equals 1

• uint16 if sizeOfUnionLengthFields equals 2

• uint32 if sizeOfUnionLengthFields equals 4

• If SOMEIPTransformationProps.sizeOfUnionLengthField is not config-
ured explicitly, the default value as defined for SIZE_OF_UNION_LENGTH_
FIELD in [PRS_SOMEIP_00121] shall be used.

• Otherwise [SWS_SomeIpXf_00225] applies.

⌋

[SWS_SomeIpXf_00226]
Upstream requirements: SRS_Xfrm_00101

⌈The serializing SOME/IP transformer shall write the size (in bytes) of the serialized
union (including padding bytes but without the size of the length field and type field)
into the length field of the union. This requirement does not apply for the serialization
of extensible structs and methods.⌋

Note:
See also chapter 7.1.4.3.

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

For length of the type field see [PRS_SOMEIP_00127].

The type field describes the type of the element.

[SWS_SomeIpXf_00250]
Upstream requirements: SRS_Xfrm_00101

⌈The data type of the type field of the union shall be determined from the Implemen-
tationDataType of the first ImplementationDataTypeElement (memberSelec-
tor) in the wrapped union data type defined in [SWS_SomeIpXf_00249].⌋

57 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00098]
Upstream requirements: SRS_Xfrm_00101

⌈Possible values of the type field are defined by the data type specification of the union.
The types are encoded as in the data type in ascending order starting with 1. The 0 is
reserved for the NULL type - i.e. an empty union.⌋

[SWS_SomeIpXf_00251]
Upstream requirements: SRS_Xfrm_00101

⌈The value of the type field shall be set to the value defined by the first Implementa-
tionDataTypeElement (memberSelector) in the wrapped union data type defined in
[SWS_SomeIpXf_00249].⌋

[SWS_SomeIpXf_00099]
Upstream requirements: SRS_Xfrm_00101

⌈The element is serialized depending on the type in the type field. This also defines
the length of the data. All bytes behind the data that are covered by the length, are
padding. The deserializer shall skip the padding bytes by calculating the required num-
ber according to the formula given in [SWS_SomeIpXf_00088].⌋

By using a struct in the data type definition, different padding layouts can be achieved.

7.1.4.9.1 Example: Union of uint8/uint16 both padded to 32 bit

In this example a length of the length field is specified as 32 bits. The union shall
support a uint8 and a uint16 as elements. Both are padded to the 32 bit boundary
(length=4 Bytes).

A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

A uint16 will be serialized like this:

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

7.1.5 De-serialization of Parameters and Data Structures

The de-serialization process need to inspect the payload (serialized byte stream) of the
received SOME/IP message. Thereby the de-serialization process need to identify the
elements within the received byte stream and compare the identified elements with the

58 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

configured data type(s) of the corresponding service interface (please note, the data
type is derived from the interface specification, which defines the exact position of all
data structures in a PDU). The possibility to identify elements in a dedicated SOME/IP
serialized byte stream depend on the interface specification and the serialization prop-
erties. The serialization properties define among others:

• if structured data types are serialized with a length field in front

• if tag-length-value are used for encoding, which include data ids and the possi-
bility specify optional data members

The de-serialization process of a SOME/IP messages need to consider the received
message length and deal with a message length which may be larger than expected
according the interface specification. This is needed to support backward compatible
communication, where ECUs of a heterogeneous in-vehicle network (re-used ECUs
and new developed ECUs) communicate via SOME/IP serialized byte streams. Note
that the feature of "complementary default value during reception of less data than
expected" is no longer supported by AUTOSAR. The subsequential chapters describe
the expected behavior of the de-serialization process.

[SWS_SomeIpXf_00311] De-serialization - SenderReceiverInterface or
ClientServerInterface

Upstream requirements: SRS_Xfrm_00101

⌈The de-serialization shall consider the SenderReceiverInterface or
ClientServerInterface of the data which is de-serialized.⌋

[SWS_SomeIpXf_00169]
Upstream requirements: SRS_Xfrm_00101

⌈To allow migration the deserialization shall ignore parameters attached to the end of
previously known parameter list.⌋

This means: Parameters that were not defined in the ClientServerInterface or
SenderReceiverInterface used to generate or parameterize the deserialization
code at the end of the serialized data will be ignored by the deserialization.

[SWS_SomeIpXf_00016]
Upstream requirements: SRS_Xfrm_00101

⌈If more data than expected are handed over to the SOME/IP transformer during de-
serialization of data, the unexpected data shall be discarded. The known fraction shall
be considered.⌋

[SWS_SomeIpXf_00017]
Upstream requirements: SRS_Xfrm_00101

⌈If less data than expected are handed over to the SOME/IP transformer during dese-
rialization of data, then abort deserialization with E_SER_MALFORMED_MESSAGE.⌋

59 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.1.5.1 Structured Datatypes (structs)

[SWS_SomeIpXf_00219]
Upstream requirements: SRS_Xfrm_00101

⌈If the length is greater than the expected length of a struct (as specified in the data
type definition) a deserializing SOME/IP transformer shall only interpret the expected
data and skip the unexpected.⌋

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

7.1.5.2 Structured Datatypes and Arguments with Identifier and optional Mem-
bers

[SWS_SomeIpXf_00294]
Upstream requirements: SRS_Xfrm_00106

⌈If the transformer cannot find a required (i.e. non-optional) member defined in its
data definition in the serialized byte stream, the deserialization shall be aborted with
E_SER_MALFORMED_MESSAGE. For examples, please refer to [7].⌋

[SWS_SomeIpXf_00314] Deserialization with invalid wire type
Upstream requirements: SRS_Xfrm_00106

⌈If the transformer finds a required (i.e. non-optional) member defined in its data def-
inition in the serialized byte stream with an invalid wire type, then the deserialization
shall be aborted with E_SER_MALFORMED_MESSAGE.⌋

[SWS_SomeIpXf_00315] Deserialization with duplicate members
Upstream requirements: SRS_Xfrm_00106

⌈If the transformer finds a member/argument defined in its data definition in the se-
rialized byte stream multiple times, then the de-serialization shall be aborted with
E_SER_MALFORMED_MESSAGE.⌋

7.1.5.3 Strings

7.1.5.3.1 Strings (fixed length)

[SWS_SomeIpXf_00246] Deserialization of fixed length strings
Upstream requirements: SRS_Xfrm_00101

⌈Deserialization of fixed length strings shall consist of the following steps:

1. Check whether the string starts with a BOM. If not, a MALFORMED_MESSAGE error
shall be issued

60 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

2. Check whether BOM has the same value as SOMEIPTransformationDe-
scription.byteOrder. If not, a MALFORMED_MESSAGE error shall be issued

3. Remove the BOM

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a MALFORMED_MESSAGE error shall be issued

6. Copy the string data (the number of bytes according to the string’s fixed length)
from the input buffer into the array, optionally performing a conversion between
UTF-16LE and UTF-16BE between network and ECU byte order if BaseTypeDi-
rectDefinition.byteOrder and SOMEIPTransformationDescription.
byteOrder have different values.

⌋

7.1.5.3.2 Strings (dynamic length)

[SWS_SomeIpXf_00247] Deserialization of dynamic length strings
Upstream requirements: SRS_Xfrm_00101

⌈Deserialization of dynamic length strings shall consist of the following steps:

1. Check whether the string starts with a BOM. If not, a MALFORMED_MESSAGE error
shall be issued

2. Check whether BOM has the same value as SOMEIPTransformationDe-
scription.byteOrder. If not, a MALFORMED_MESSAGE error shall be issued

3. Remove the BOM and reduce the value of the length field accordingly

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length (according to the reduced value of the length field)

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a MALFORMED_MESSAGE error shall be issued

6. Check whether the length of the received dynamic length string is less or
equal than the specified maximum length of the string (ApplicationPrimitive-
DataType.swTextProps.swMaxTextSize or arraySize of ImplementationDataType-
Element of category ARRAY). If not, a MALFORMED_MESSAGE error shall be
issued.

7. Copy the string data (copy the number of bytes according to the string’s reduced
value of the length field) from the input buffer into the array, optionally perform-
ing a conversion between (UTF-16LE) and (UTF-16BE) between ECU and bus

61 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

if BaseTypeDirectDefinition.byteOrder and SOMEIPTransformation-
Description.byteOrder have different values.

⌋

Instead of transferring application strings as SOME/IP strings with BOM and "\0" ter-
mination, strings can also be transported as plain dynamic length arrays without BOM
and "\0" termination (see chapter Dynamic Length Arrays of [13]).

7.1.5.4 Arrays (fixed length)

[SWS_SomeIpXf_00223]
Upstream requirements: SRS_Xfrm_00101

⌈If the length is greater than the expected length of an array (as specified
in the data type definition) a deserializing SOME/IP transformer shall only in-
terpret the expected data and skip the unexpected. Additionally, an error
E_SER_PAYLOAD_LENGTH_EXCEEDED (see also [SWS_Xfrm_00031]) shall be is-
sued.⌋

Note: This does not necessarily mean that the message needs to be dropped.

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

7.1.5.5 Dynamic Length Arrays / Variable Size Arrays

No further requirements considered for the deserialization.

7.1.5.6 Bitfield

No further requirements considered for the deserialization.

7.1.5.7 Union / Variant

[SWS_SomeIpXf_00227]
Upstream requirements: SRS_Xfrm_00101

⌈If the length is greater than the expected length of a union (as specified in the data
type definition) a deserializing SOME/IP transformer shall only interpret the expected
data and skip the unexpected.⌋

Please consider [SWS_SomeIpXf_00099] for skipping padding bytes of serialized
unions / variant within the de-serialization process.

62 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.2 Protocol specification

This chapter describes the protocol of SOME/IP for Client/Server and Sender/Receiver
communication.

7.2.1 Client/Server Communication

[SWS_SomeIpXf_00106]
Upstream requirements: SRS_Xfrm_00102

⌈For the SOME/IP request message, the SOME/IP transformer on the client-ECU has
to do the following for payload and header:

• Construct the payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [SWS_SomeIpXf_00029]

• Set the Interface Version. If interfaceVersion of SOMEIPTransforma-
tionISignalProps is set, this shall be used. Otherwise interfaceVersion
of SOMEIPTransformationDescription shall be used.

• Set the Message Type to Request (i.e. 0x00)

• Set the Return Code to 0x00

⌋

[SWS_SomeIpXf_00120]
Upstream requirements: SRS_Xfrm_00102

⌈To construct the payload of a request message all arguments of the
ClientServerOperation which have direction IN or INOUT shall be serialized
according to the order of the ArgumentDataPrototypes within the ClientServer-
Operation.⌋

This can be seen graphically in Figure 7.11.

SomeIpXf_<XfId> (

 *transactionHandle,

 *buffer,

 *bufferLength,

 IN/INOUT argument1,

 …,

 IN/INOUT argumentN

)

SOME/IP
Header

argument1

…

argumentN P
a
y
lo

a
d

Figure 7.11: Example for serialization of a Client/Server Request

63 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00200]
Upstream requirements: SRS_Xfrm_00102

⌈If csErrorReaction of TransformationISignalProps is set to autonomous
and the returnValue parameter handed over from RTE is greater or equal to 0x80,
the SOME/IP transformer for a response of a client/server communication shall gen-
erate an error message according to [SWS_SomeIpXf_00201]. If csErrorReaction
of TransformationISignalProps is set to autonomous and the returnValue pa-
rameter handed over from RTE is lesser than 0x80,the SOME/IP transformer shall
generate a normal response according to [SWS_SomeIpXf_00107].⌋

[SWS_SomeIpXf_00107]
Upstream requirements: SRS_Xfrm_00102

⌈The SOME/IP transformer on the server-ECU builds its header for the server re-
sponse based on the header of the client’s request and does in addition:

• Construct the payload

• Set the Message Type to RESPONSE (i.e. 0x80)

• If the ClientServerOperation has at least one possibleError defined,
place the return value of the executed ClientServerOperation into the Re-
turn Code field and add 0x1F to adapt the number ranges in case the original
return value was different from 0x00.

⌋

Note: See also chapter 7.1.3.5.

[SWS_SomeIpXf_00121]
Upstream requirements: SRS_Xfrm_00102

⌈To construct the payload of a response message all arguments of the
ClientServerOperation which have direction INOUT or OUT shall be serial-
ized in the following order:
The ArgumentDataPrototypes with a direction of INOUT or OUT shall be serialized
according to the order of the ArgumentDataPrototypes within the ClientServer-
Operation.⌋

This can be seen graphically in Figure 7.12.

64 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

SomeIpXf_<XfId> (

 *transactionHandle,

 *buffer,

 *bufferLength,

 returnValue,

 INOUT/OUT argument1,

 …,

 INOUT/OUT argumentN

)

SOME/IP
Header

argument1

…

argumentN P
a
y
lo

a
d

Figure 7.12: Example for serialization of a Client/Server Response

[SWS_SomeIpXf_00201]
Upstream requirements: SRS_Xfrm_00102

⌈The SOME/IP transformer on the server-ECU builds its header for an autonomous
error response based on the header of the client’s request and does in addition:

• Construct no payload (the payload shall be empty)

• Set the Message Type to RESPONSE (i.e. 0x80)

• Adapt the return value by subtracting 0x80 from the parameter returnValue
(calculation: adaptedReturnValue = returnValue - 0x80)

• Place the adaptedReturnValue into the Return Code field.

⌋

Note: See also chapter 7.1.3.5.

This leads to an output of the SOME/IP transformer which is exactly as long as the
SOME/IP header.

Note:
Error messages can only be sent as a response for client/server requests, not for
Sender/Receiver communication or error messages.

[SWS_SomeIpXf_00202]
Upstream requirements: SRS_Xfrm_00102

⌈A SOME/IP transformer on the server-ECU that builds an autonomous error response
shall return with a return value equal to E_OK (See [SWS_SomeIpXf_00141]).⌋

If the SOME/IP transformer would return with a return code different from E_OK this
would issue a hard error that prevents the RTE from sending the autonomous error
response.

65 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00312] Return Code in case of an autonomous error response
Upstream requirements: SRS_Xfrm_00102

⌈Upon reception of a SOME/IP RESPONSE message,the inverse SOME/IP trans-
former on the client-ECU shall additionally evaluate the Return Code field in case of an
autonomous error response and do the following:
If the received SOME/IP RESPONSE message is an autonomous error re-
sponse (i.e., the value of Return Code field is different from 0x00 (E_OK) and
smaller than 0x20), then the inverse SOME/IP transformer on the client-ECU
(SomeIpXf_Inv_<transformerId>()) shall not perform any de-serialization of the pay-
load and shall use the value of the Return Code field incremented by 0x80 as its own
return value (calculation: returnValue =valueOfReturnCodeField + 0x80).⌋

Note:This will lead to a hard error and proper signaling via the return value and (if
configured) via the transformer Error OUT argument of Rte_Call() or Rte_Result() to
the client application software component.

[SWS_SomeIpXf_00313] Return Code in case of a Client-Server operation re-
sponse

Upstream requirements: SRS_Xfrm_00102

⌈Upon reception of a SOME/IP RESPONSE message,the inverse SOME/IP trans-
former on the client-ECU shall additionally evaluate the Return Code field in case of a
Client-Server operation response and do the following:
If the received SOME/IP RESPONSE message is a response produced by the Client-
Server operation (i.e., the value of Return Code field is either 0x00 (E_OK) or
larger or equal to 0x20), then the inverse SOME/IP transformer on the client ECU
(SomeIpXf_Inv_<transformerId>()) shall perform the de-serialization of the payload
and shall hand over the value of the Return Code field (reduced by 0x1F in case its
value is different from 0x00.⌋

Note:0x1F gets added on the server-ECU according to [SWS_SomeIpXf_00107] via
the returnValue OUT argument.

7.2.2 Sender/Receiver Communication

Session Handling ID counter is used to set the correct Request ID in the SOME/IP
header in case of Sender/Receiver communication where session handling is acti-
vated.

[SWS_SomeIpXf_00212]
Upstream requirements: SRS_Xfrm_00008

⌈One Session Handling ID counter (16 Bit) has to be maintained per transformer func-
tion for Sender/Receiver communication if the transmission path includes SomeIpTp.⌋

66 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00213]
Upstream requirements: SRS_Xfrm_00008

⌈All Session Handling ID counters shall be initialized with 0x0001.⌋

[SWS_SomeIpXf_00108]
Upstream requirements: SRS_Xfrm_00102

⌈The SOME/IP transformer on the sender side of transformed Sender/Receiver com-
munication shall construct header and payload in the following way:

• Construct the payload

• Set the Request ID

– to 0x00 if the transmission path does not include SomeIpTp

– the current value of the Session Handling ID counter otherwise

• Set the Protocol Version according [SWS_SomeIpXf_00029]

• Set the Interface Version. If interfaceVersion of SOMEIPTransforma-
tionISignalProps is set, this shall be used. Otherwise interfaceVersion
of SOMEIPTransformationDescription shall be used.

• Set the Message Type according to messageType of SOMEIPTransforma-
tionISignalProps:

– NOTIFICATION (0x02) shall be used in the header if attribute mes-
sageType is set to notification

– REQUEST_NO_RETURN (0x01) shall be used in the header if attribute mes-
sageType is set to requestNoReturn

• Set the Return Code to 0x00

⌋

In [SWS_SomeIpXf_00108] it is specified when session handling is considered for
messages which are sent. The SOME/IP transformer never checks the session ID
on receiver side because the default behavior of SOME/IP is for sender/receiver com-
munication to ignore session IDs on receiver side.

[SWS_SomeIpXf_00176]
Upstream requirements: SRS_Xfrm_00102

⌈The payload of a message for Sender/Receiver communication shall consists of the
serialized data element that is transported.⌋

Error handling and return codes have to be implemented by the application when
needed.

67 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.2.3 External Trigger Events

External trigger events are used to trigger RPCs without any IN, INOUT or OUT ar-
guments or to represent a special kind of an event without any parameters that is
transmitted from a server to one or more client(s) and at which occurrence the Service
Consumer shall react in a particular manner. External trigger events are realized by
SOME/IP as fire-and-forget methods without arguments

[SWS_SomeIpXf_00204]
Upstream requirements: SRS_Xfrm_00102

⌈The SOME/IP transformer on the trigger source side of transformed external trigger
events shall construct header in the following way:

• Set the Request ID

– to 0x00 if the transmission path does not include SomeIpTp

– the current value of the Session Handling ID counter otherwise

• Set the Protocol Version according [SWS_SomeIpXf_00029]

• Set the Interface Version. If interfaceVersion of SOMEIPTransforma-
tionISignalProps is set, this shall be used. Otherwise interfaceVersion
of SOMEIPTransformationDescription shall be used.

• Set the Message Type to REQUEST_NO_RETURN (i.e. 0x01)

• Set the Return Code to 0x00

⌋

[SWS_SomeIpXf_00205]
Upstream requirements: SRS_Xfrm_00102

⌈The payload of a message for external trigger event communication shall be empty.⌋

Error handling and return codes have to be implemented by the application when
needed.

7.2.4 Error Handling

The error handling will be done solely in the application. SOME/IP only transports the
errors.

Two different mechanisms for error transportation are supported: Return Code and
Error Message

68 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00111]
Upstream requirements: SRS_Xfrm_00102, SRS_Xfrm_00103, SRS_BSW_00331, SRS_BSW_

00452, SRS_BSW_00458, SRS_BSW_00469, SRS_BSW_00470,
SRS_BSW_00471, SRS_BSW_00472, SRS_BSW_00481

⌈The SOME/IP transformer shall use the Return Code error handling, using Message
Type RESPONSE (0x80) according to [PRS_SOMEIP_00901] when creating error re-
sponses. See [SWS_SomeIpXf_00201]⌋

[SWS_SomeIpXf_00310] Handling of RESPONSE and ERROR Message Types
Upstream requirements: SRS_Xfrm_00102, SRS_Xfrm_00103

⌈The SOME/IP transformer shall use the Return Code error Handling for Message
Type RESPONSE(0x80) according to [PRS_SOMEIP_00901] when receiving error re-
sponses.

The SOME/IP transformer shall also handle responses of Message Type ER-
ROR(0x81) according to [PRS_SOMEIP_00902] and [PRS_SOMEIP_00903] but with-
out using the Payload of the Error Message, since this is not yet supported by this
version of the SOME/IP transformer. Only the Return Code value is used in this case.
See [SWS_SomeIpXf_00149].⌋

Note: The reason to handle Message Type ERROR(0x81) responses is to be able to
handle interoperability between AP and CP.

All messages have a return code field to carry the return code. However, only re-
sponses (Message Types 0x80 and 0x81) use this field to carry a return code to the
request (Message Type 0x00) they answer. All other messages set this field to 0x00
(see Chapter 7.1.3.4)

7.2.4.1 Return Code

[SWS_SomeIpXf_00112]
Upstream requirements: SRS_Xfrm_00102

⌈The Error Handling via Return Code shall be based on the Std_ReturnType.⌋

[SWS_SomeIpXf_00113]
Upstream requirements: SRS_Xfrm_00102

⌈The Return Codes shall only be used for Client/Server communication⌋

[SWS_SomeIpXf_00170]
Upstream requirements: SRS_Xfrm_00102

⌈In case of Client/Server communication the Return Code shall transport the Appli-
cationErrors of the executed ClientServerOperation if no SOME/IP error oc-
curred.⌋

69 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

This means: If a SOME/IP error occurred, this error is contained in the Return Code. If
no SOME/IP error occurred, the Return Code contains the error (or success) code of
the executed server runnable.

If an error occurs in case of client/server communication the server can be configured
to create an autonomous error reaction which will be sent back to the client. In that
response, the SOME/IP header fields RequestId and Interface Version shall
be equal to the values in the header of the request message.

This is realized by [SWS_SomeIpXf_00201] which fills the header fields accordingly:
RequestId is handed over from RTE and InterfaceVersion is consistent to the
request as the configuration of the SOME/IP transformer only allows the same inter-
faceVersion for request and response.

[SWS_SomeIpXf_00115] Return Codes
Upstream requirements: SRS_Xfrm_00102, SRS_BSW_00170, SRS_BSW_00385, SRS_BSW_-

00386, SRS_BSW_00310

⌈

ID Name Description
0x00 E_OK No error occurred
0x01 E_NOT_OK An unspecified error occurred
0x04 SOMEIPXF_E_NOT_READY deprecated.
0x05 SOMEIPXF_E_NOT_REACHABLE deprecated.
0x06 SOMEIPXF_E_TIMEOUT deprecated.
0x07 SOMEIPXF_E_WRONG_

PROTOCOL_VERSION
Version of SOME/IP protocol not supported

0x08 SOMEIPXF_E_WRONG_
INTERFACE_VERSION

Interface version mismatch

0x09 SOMEIPXF_E_
MALFORMED_MESSAGE

Deserialization error, so that payload cannot be de-
serialized.

0x0a SOMEIPXF_E_
WRONG_MESSAGE_TYPE

An unexpected message type was re-
ceived.(e.g.received REQUEST for a method
defined as REQUEST_NO_RETURN).

0x0b E_E2E Not further specified E2E error
0x0c -
0x1f

RESERVED Reserved for generic SOME/IP errors. These errors
will be specified in future versions of this document.

0x20 -
0x5e

- Specific ApplicationErrors of
ClientServerOperations. These errors are the
application errors specified by the ClientServer-
Interface.
As the range of ApplicationErrors of the
ClientServerInterface is 0x01-0x3F, the
value of an ApplicationError has to be adapted
for transport over SOME/IP by adding 0x1F.

⌋

70 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

7.2.4.2 Communication Errors and Handling of Communication Errors

When considering the transport of Client/Server messages different reliability seman-
tics exist:

• Maybe — the message might reach the communication partner

• At least once — the message reaches the communication partner at least once

• Exactly once — the message reaches the communication partner exactly once

When using these terms in regard to client/server communication the term applies to
both messages (i.e. call and response or error).

While different implementations may implement different approaches, SOME/IP trans-
former currently achieves "maybe" reliability when using the UDP binding and "exactly
once" reliability when using the TCP binding by a suitable configuration of the Ethernet
modules. Further error handling is left to the application.

For "maybe" reliability, only a single timeout is needed, when using client/server com-
munication in combination with UDP as transport protocol. Figure 7.13 shows the
state machines for "maybe" reliability. The client’s SOME/IP implementation has to
wait for the response for a specified timeout. If the timeout occurs SOME/IP shall
signal SOMEIPXF_E_TIMEOUT to the client application.

Client

Server

WaitingForResponse

processing

Error:

SOMEIPXF_E_TIMEOUT

/Send Response

Response Timeout

/Send

Request

Response

Received

Request Received

Figure 7.13: State Machines for Reliability "Maybe"

For "exactly once" reliability the TCP binding may be used, since TCP was defined to
allow for reliable communication.

Additional mechanisms to reach higher reliability may be implemented in the applica-
tion or in a SOME/IP implementation. Keep in mind that the communication does not

71 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

have to implement these features. Chapter 7.2.4.2.1 describes such optional reliability
mechanisms.

7.2.4.2.1 Application based Error Handling

The application can easily implement "at least once" reliability by using idempotent
operations (i.e. operation that can be executed multiple times without side effects)
and using a simple timeout mechanism. Figure 7.14 shows the state machines for
"at least once" reliability using implicit acknowledgements. When the client sends out
the request it starts a timer with the timeout specified for the specific method. If no
response is received before the timer expires (round transition at the top), the client
will retry the operation. A Typical number of retries would be 2, so that 3 requests are
sent.

The number of retries, the timeout values, and the timeout behavior (constant or expo-
nential back off) are outside of the SOME/IP specification.

Client

Server

WaitingForResponse

processing

Error:

SOMEIPXF_E_TIMEOUT

No Response Received

/TimeoutCounter++

TimeoutCounter == n,

(No Response received)

/Send Response

Response

Received

Request Received

/Send Request,

set TimeoutCounter = 0

Figure 7.14: State Machines for Reliability "At least once" (idempotent operations)

7.3 Error Classification

Chapter [14, General Specification of Basic Software Modules] 7.2 “Error Handling”
describes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in [14, SWS BSW
General] modules.

72 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.3.1 Development Errors

[SWS_SomeIPxf_00184] Definition of development errors in module SomeIpXf
Upstream requirements: SRS_BSW_00337

⌈
Type of error Related error code Error value

Error code if any other API service, except Get
VersionInfo is called before the transformer
module was initialized with Init or after a call to De
Init

SOMEIPXF_E_UNINIT 0x01

Error code if an invalid configuration set was
selected

SOMEIPXF_E_INIT_FAILED 0x02

API service called with wrong parameter SOMEIPXF_E_PARAM 0x03

API service called with invalid pointer SOMEIPXF_E_PARAM_POINTER 0x04

⌋

7.3.2 Runtime Errors

There are no runtime errors.

7.3.3 Production Errors

There are no production errors.

7.3.4 Extended Production Errors

All Extended Production Errors valid for SOME/IP Transformer are specified in [3,
ASWS Transformer General].

73 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

8 API specification

8.1 Imported types

There are no imported types from other modules beyond those specified in [3, ASWS
Transformer General].

In the Module Interlink Headers file which is imported by the SOME/IP Transformer, all
ImplementationDataTypes known to the RTE are included. Using this mechanism,
the SOME/IP Transformer knows all data types of data which shall be transformed.

[SWS_SomeIpXf_91002] Definition of imported datatypes of module SomeIpXf
Upstream requirements: SRS_Xfrm_00002

⌈
Module Header File Imported Type

Rte_Dem_Type.h Dem_EventIdTypeDem

Rte_Dem_Type.h Dem_EventStatusType

Rte Rte.h Rte_Cs_TransactionHandleType

Std_Types.h Std_MessageResultType

Std_Types.h Std_MessageTypeType

Std_Types.h Std_ReturnType

Std

Std_Types.h Std_VersionInfoType

⌋

8.2 Type definitions

[SWS_SomeIpXf_00183] Definition of datatype SomeIpXf_ConfigType
Upstream requirements: SRS_BSW_00404, SRS_BSW_00441, SRS_BSW_00389, SRS_BSW_

00388

⌈
Name SomeIpXf_ConfigType

Kind Structure

implementation specific

Type –

Elements

Comment –

Description This is the type of the data structure containing the initialization data for the transformer.

Available via SomeIpXf.h

⌋

74 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

8.3 Function definitions

The SOME/IP transformer provides the specific interfaces generally required by [3,
ASWS Transformer General].

[SWS_SomeIpXf_00150]
Upstream requirements: SRS_Xfrm_00106

⌈The SOME/IP Transformer shall only provide functions for transformers where the
TransformationTechnology is referenced as the first reference in the list of or-
dered references transformerChain from a DataTransformation to a Trans-
formationTechnology.⌋

That means, only the first transformer in a transformer chain can be a SOME/IP Trans-
former because serializer transformer are in general only allowed to be the first trans-
former in a chain.

8.3.1 SomeIpXf_ExtractProtocolHeaderFields

[SWS_SomeIpXf_91001] Definition of API function SomeIpXf_ExtractProtocol
HeaderFields

Upstream requirements: SRS_Xfrm_00002

⌈
Service Name SomeIpXf_ExtractProtocolHeaderFields

Syntax Std_ReturnType SomeIpXf_ExtractProtocolHeaderFields (
const uint8* buffer,
uint32 bufferLength,
Std_MessageTypeType* messageType,
Std_MessageResultType* messageResult

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer.

Parameters (in)

bufferLength Length of the buffer

Parameters (inout) None

messageType Canonical representation of the message type (extracted from the
transformers protocol header).

Parameters (out)

messageResult Canonical representation of the message result type (extracted
from the transformers protocol header).

Return value Std_ReturnType E_OK: Relevant protocol header fields have been extracted
successfully.
E_NOT_OK: An error occurred during parsing of the SOME/IP
protocol header (e.g., incorrect protocol version or insufficient
buffer length (bufferLength smaller than minimal SOME/IPheader
length))

▽

75 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Description Function to extract the relevant SOME/IP protocol header fields of the message and the type of

the message result. - At the time being, this is limited to the types used for C/S communication
(i.e., REQUEST and RESPONSE and OK and ERROR).

Available via SomeIpXf.h

⌋

[SWS_SomeIpXf_00296]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall extract the type of a message and the type of the
message result from the SOME/IP protocol header and provide this information in a
canonical representation via its output arguments.⌋

[SWS_SomeIpXf_00297]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall check whether the provided bufferLength is
larger or equal than the size of the protocol header processed by the SOME/IP
transformer (i.e., 8 bytes). – If this is not the case, E_NOT_OK shall be returned.
Neither messageType nor messageResult shall be modified in this case.⌋

[SWS_SomeIpXf_00298]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall check whether the value of the Protocol Version
field (see [PRS_SOMEIP_00052]) is equal to the value defined by [PRS_SOMEIP_
00051]. – If this is not the case, E_NOT_OK shall be returned. Neither messageType
nor messageResult shall be modified in this case.⌋

[SWS_SomeIpXf_00299]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall check whether the value of the Message Type
field (see [PRS_SOMEIP_00055]) is equal REQUEST, RESPONSE, or ERROR. – If
this is not the case, E_NOT_OK shall be returned. Neither messageType nor
messageResult shall be modified in this case.⌋

[SWS_SomeIpXf_00301]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall return E_OK in all other cases.⌋

76 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00302]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall set messageType to STD_MESSAGETYPE_REQUEST
in case the value of the Message Type field (see [PRS_SOMEIP_00055]) is equal
REQUEST.⌋

[SWS_SomeIpXf_00303]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall set messageType to STD_MESSAGETYPE_RESPONSE
in case the value of the Message Type field (see [PRS_SOMEIP_00055]) is equal
RESULT or ERROR.⌋

[SWS_SomeIpXf_00304]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields spec-
ified in [SWS_SomeIpXf_91001] shall set messageResult to
STD_MESSAGERESULT_ERROR in case the value of the Message Type field (see
[PRS_SOMEIP_00055]) is equal to ERROR or if the value of the Return Code field (see
[PRS_SOMEIP_00058]) is different from 0.⌋

[SWS_SomeIpXf_00305]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_ExtractProtocolHeaderFields specified in
[SWS_SomeIpXf_91001] shall set messageResult to STD_MESSAGERESULT_OK
otherwise (i.e., in case the value of the Message Type field (see [PRS_SOMEIP_
00055]) is different from ERROR and if the value of the Return Code field (see [PRS_
SOMEIP_00058]) is 0.⌋

77 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

8.3.2 SomeIpXf_<transformerId>

[SWS_SomeIpXf_00138] Definition of API function SomeIpXf_<transformerId>
Upstream requirements: SRS_Xfrm_00101, SRS_Xfrm_00009, SRS_BSW_00494, SRS_BSW_

00486, SRS_BSW_00485, SRS_BSW_00484, SRS_BSW_00462,
SRS_BSW_00432, SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_
00392, SRS_BSW_00369, SRS_BSW_00357

⌈
Service Name SomeIpXf_<transformerId>

Syntax uint8 SomeIpXf_<transformerId> (
uint8* buffer,
uint32* bufferLength,
<paramtype> dataElement

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) dataElement Data element which shall be transformed

Parameters (inout) None

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Serialization successful
0x81 (E_SER_GENERIC_ERROR): A generic error occurred

Description This function transforms a Sender/Receiver communication using the serialization of SOME/IP.
It takes the data element as input and outputs a uint8 array containing the serialized data.
The length of the serialized data shall be calculated by the transformer during runtime and
returned in the OUT-parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via SomeIpXf.h

⌋

[SWS_SomeIpXf_00228]
Upstream requirements: SRS_Xfrm_00102

⌈In function SomeIpXf_<transformerId> defined in [SWS_SomeIpXf_00138]

• paramtype is derived from type according to the parameter passing rules rules
defined by the [6, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_
00485], and [SRS_BSW_00486]) and [14, SWS BSW General] (see [SWS_-
BSW_00186]).

• type shall be the data type of the data element after all data conversion activities
of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General])

⌋

This function specified in [SWS_SomeIpXf_00138] exists for each transformed
Sender/Receiver communication which uses the SOME/IP serialization.

78 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00139]
Upstream requirements: SRS_Xfrm_00102

⌈The function SomeIpXf_<transformerId> specified in [SWS_SomeIpXf_00138]
shall exist for the first reference in the list of ordered references transformer-
Chain from a DataTransformation to a TransformationTechnology if the
DataTransformation is referenced by an ISignal in the role dataTransfor-
mation where the ISignal references a SystemSignal which is referenced by
SenderReceiverToSignalMapping.⌋

[SWS_SomeIpXf_00140]
Upstream requirements: SRS_Xfrm_00101

⌈The function SomeIpXf_<transformerId> specified in [SWS_SomeIpXf_00138]
shall serialize primitive or complex data elements of Sender/Receiver communication
into a linear byte array representation using the SOME/IP serialization.⌋

[SWS_SomeIpXf_00214]
Upstream requirements: SRS_Xfrm_00002

⌈After serialization of the data, the function SomeIpXf_<transformerId> specified
in [[SWS_SomeIpXf_00138] shall increment the Session Handling ID counter assigned
to <transformerId> if transmission path includes SomeIpTp.⌋

[SWS_SomeIpXf_00215]
Upstream requirements: SRS_Xfrm_00101

⌈When the Session Handling ID counter assigned to <transformerId> is 0xFFFF
and gets incremented, it shall roll-over to 0x0001 (instead of 0x0000) if transmission
path includes SomeIpTp.⌋

[SWS_SomeIpXf_00141] Definition of API function SomeIpXf_<transformerId>
Upstream requirements: SRS_Xfrm_00101

⌈
Service Name SomeIpXf_<transformerId>

Syntax uint8 SomeIpXf_<transformerId> (
const Rte_Cs_TransactionHandleType* TransactionHandle,
uint8* buffer,
uint32* bufferLength,
[Std_ReturnType returnValue],
<paramtype> data_1, ...
<paramtype> data_n

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

▽

79 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
TransactionHandle Transaction handle according to [SWS_Rte_08732] (clientId and

sequenceCounter) needed to differentiate between multiple
requests.

returnValue Return value from server side for transmission to the calling
client. This argument is only available for serializers of the
response of a Client/Server communication if
• the ClientServerOperation has at least one PossibleError

defined or

• autonomous error reaction is activated

data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

... ...

Parameters (in)

data_n Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

Parameters (inout) None

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Serialization successful
0x81 (E_SER_GENERIC_ERROR): A generic error occurred

Description This function transforms a Client/Server communication using the serialization of SOME/IP. It
takes the operation arguments and optionally the return value as input and outputs a uint8 array
containing the serialized data.
The length of the serialized data shall be calculated by the transformer during runtime and
returned in the OUT-parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via SomeIpXf.h

⌋

[SWS_SomeIpXf_00229]
Upstream requirements: SRS_Xfrm_00101

⌈In function SomeIpXf_<transformerId> defined in [SWS_SomeIpXf_00141]

• paramtype is derived from type according to the parameter passing rules rules
defined by the [6, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_
00485], and [SRS_BSW_00486]) and [14, SWS BSW General] (see [SWS_-
BSW_00186]).

• type shall be the data type of the data element after all data conversion activities
of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

⌋

This function specified in [SWS_SomeIpXf_00141] exists for the server and each client
of each transformed Client/Server communication which uses the SOME/IP serializa-
tion.

It exists on both the Client and the Server but the arguments are different.

80 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

On the client it serializes the request of the Client/Server call. There, the data_1, ...,
data_n arguments of the API correspond to the IN and INOUT arguments of the
ClientServerOperation. The argument returnValue doesn’t exist.

On the server it serializes the response of the Client/Server call. There, the data_1,
..., data_n arguments of the API correspond to the INOUT and OUT arguments of the
ClientServerOperation. The argument returnValue exists here if at least one
possibleError is defined for the ClientServerOperation because the return
code of the operation has to be transmitted.

[SWS_SomeIpXf_00142]
Upstream requirements: SRS_Xfrm_00106

⌈The function SomeIpXf_<transformerId> specified in [SWS_SomeIpXf_00141]
shall exist for the first reference in the list of ordered references transformer-
Chain from a DataTransformation to a TransformationTechnology if the
DataTransformation is referenced by an ISignal in the role dataTransfor-
mation where the ISignal references a SystemSignal which is referenced by
ClientServerToSignalMapping in the callSignal or returnSignal.⌋

Due to [SWS_SomeIpXf_00142], the API of [SWS_SomeIpXf_00141] exists both on
client and server.

[SWS_SomeIpXf_00143]
Upstream requirements: SRS_Xfrm_00101

⌈The function SomeIpXf_<transformerId>
[_<symbolSuffix>] specified in [SWS_SomeIpXf_00141] shall serialize all primi-
tive or complex operation arguments and the return value (if executed on server side) of
Client/Server communication into a linear byte array representation using the SOME/IP
serialization.⌋

[SWS_SomeIpXf_00203]
Upstream requirements: SRS_Xfrm_00105

⌈The function SomeIpXf_<transformerId>
[_<symbolSuffix>] specified in [SWS_SomeIpXf_00141] shall ignore all argu-
ments data_1, ..., data_n if the return code is greater or equal to 0x80 because
they are not filled with meaningful values.⌋

81 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00206] Definition of API function SomeIpXf_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name SomeIpXf_<transformerId>

Syntax uint8 SomeIpXf_<transformerId> (
uint8* buffer,
uint32* bufferLength

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Serialization successful
0x81 (E_SER_GENERIC_ERROR): A generic error occurred

Description This function transforms an external trigger event using the serialization of SOME/IP. It takes
trigger as input and outputs a uint8 array.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via SomeIpXf.h

⌋

[SWS_SomeIpXf_00230]
Upstream requirements: SRS_Xfrm_00101

⌈In function SomeIpXf_<transformerId> defined in [SWS_SomeIpXf_00206]

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

⌋

This function specified in [SWS_SomeIpXf_00206] exists on the trigger source side for
each transformed external trigger event which uses SOME/IP transformation.

[SWS_SomeIpXf_00207]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_<transformerId> specified in [SWS_SomeIpXf_00206]
shall exist for the first referenced TransformationTechnology in the ordered
transformerChain of a DataTransformation if the DataTransformation is
referenced by an ISignal in the role dataTransformation where the ISignal
references a SystemSignal which is referenced by a TriggerToSignalMapping.⌋

82 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00208]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_<transformerId> specified in [SWS_SomeIpXf_00206]
shall serialize an external trigger event into a linear byte array representation using the
SOME/IP serialization.⌋

As an external trigger event consists of an ISignal with length equal to zero, the
serialized SOME/IP message only contains a header but no payload.

8.3.3 SomeIpXf_Inv_<transformerId>

[SWS_SomeIpXf_00144] Definition of API function SomeIpXf_Inv_<transformer
Id>

Upstream requirements: SRS_Xfrm_00009, SRS_Xfrm_00007, SRS_BSW_00494, SRS_BSW_
00485, SRS_BSW_00484, SRS_BSW_00462, SRS_BSW_00432,
SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00392, SRS_BSW_
00383, SRS_BSW_00369, SRS_BSW_00357

⌈
Service Name SomeIpXf_Inv_<transformerId>

Syntax uint8 SomeIpXf_Inv_<transformerId> (
const uint8* buffer,
uint32 bufferLength,
<type>* dataElement

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the still serialized data are
stored by the Rte

Parameters (in)

bufferLength Used length of the buffer

Parameters (inout) dataElement Data element which is the result of the transformation and
contains the deserialized data element

Parameters (out) None

Return value uint8 0x00 (E_OK): Deserialization successful
0x01 (E_NO_DATA): No data available which can be deserialized
0x81 (E_SER_GENERIC_ERROR): A generic error occurred
0x87 (E_SER_WRONG_PROTOCOL_VERSION): The version of the
receiving transformer didn’t match the sending transformer.
0x88 (E_SER_WRONG_INTERFACE_VERSION): Interface version
of serialized data is not supported.
0x89 (E_SER_MALFORMED_MESSAGE): The received message is
malformed. The transformer is not able to produce an output.
0x8a (E_SER_WRONG_MESSAGE_TYPE): The received message
type was not expected.

Description This function deserializes a Sender/Receiver communication using the deserialization of
SOME/IP. It takes the uint8 array containing the serialized data as input and outputs the original
data element which will be passed to the RTE.

Available via SomeIpXf.h

⌋

83 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Note: If variable size arrays with arrayImplPolicy set to payloadAsPointerToArray are
received as serialized data input, the transformer may need to update the outgoing
dataElement in response to the size and location of the payload once deserialised.

[SWS_SomeIpXf_00231]
Upstream requirements: SRS_Xfrm_00101

⌈In function SomeIpXf_Inv_<transformerId> defined in [SWS_SomeIpXf_00144]

• type shall be the data type of the data element before all data conversion activi-
ties of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

⌋

This function specified in [SWS_SomeIpXf_00144] exists for each transformed
Sender/Receiver communication which uses the SOME/IP serialization.

[SWS_SomeIpXf_00146]
Upstream requirements: SRS_Xfrm_00106

⌈The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00144] shall exist for the first reference in the list of ordered
references transformerChain from a DataTransformation to a Transforma-
tionTechnology if the DataTransformation is referenced by an ISignal in the
role dataTransformation where the ISignal references a SystemSignal which
is referenced by SenderReceiverToSignalMapping.⌋

[SWS_SomeIpXf_00147]
Upstream requirements: SRS_Xfrm_00106

⌈The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00144] shall deserialize a linear byte array to primitive or complex
data elements of Sender/Receiver communication using the SOME/IP deserialization.⌋

[SWS_SomeIpXf_00264]
Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00004

⌈If SomeIpXf_Inv_<transformerId> specified in [SWS_SomeIpXf_00144] is
called with buffer equal to NULL_PTR and bufferLength equal to 0, the output buffer
buffer shall not be changed and SomeIpXf_Inv_<transformerId> shall return with
E_NO_DATA.⌋

84 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00145] Definition of API function SomeIpXf_Inv_<transformer
Id>

Upstream requirements: SRS_Xfrm_00106

⌈
Service Name SomeIpXf_Inv_<transformerId>

Syntax uint8 SomeIpXf_Inv_<transformerId> (
Rte_Cs_TransactionHandleType* TransactionHandle,
const uint8* buffer,
uint32 bufferLength,
[Std_ReturnType* returnValue],
[<type>* data_1, ...
<type>* data_n]

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the still serialized data are
stored by the Rte

Parameters (in)

bufferLength Used length of the buffer

data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

... ...

Parameters (inout)

data_n Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

TransactionHandle Transaction handle according to [SWS_Rte_08732] (clientId and
sequenceCounter) needed to differentiate between multiple
requests.

Parameters (out)

returnValue Return value from server side for transmission to the calling
client. This argument is only available for serializers of the
response of a Client/Server communication if
• the ClientServerOperation has at least one PossibleError

defined or

• autonomous error reaction is activated
Return value uint8 0x00 (E_OK): Deserialization successful

0x01 (E_NO_DATA): No data available which can be deserialized
0x81 (E_SER_GENERIC_ERROR): A generic error occurred
0x87 (E_SER_WRONG_PROTOCOL_VERSION): The version of the
receiving transformer didn’t match the sending transformer.
0x88 (E_SER_WRONG_INTERFACE_VERSION): Interface version
of serialized data is not supported.
0x89 (E_SER_MALFORMED_MESSAGE): The received message is
malformed. The transformer is not able to produce an output.
0x8a (E_SER_WRONG_MESSAGE_TYPE): The received message
type was not expected.

Description This function deserializes a Client/Server communication using the deserialization of SOME/IP.
It takes the uint8 array containing the serialized data as input and outputs the return value of
the server runnable and the operation arguments which have to be passed from the server to
the client.

Available via SomeIpXf.h

⌋

Note: If variable size arrays with arrayImplPolicy set to payloadAsPointerToArray are
received as serialized data input, the transformer may need to update the outgoing
parameters data_1, ..., data_n in response to the size and location of the payload
once deserialised.

85 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00232]
Upstream requirements: SRS_Xfrm_00101

⌈In function SomeIpXf_Inv_<transformerId> defined in [SWS_SomeIpXf_00145]

• paramtype is derived from type according to the parameter passing rules rules
defined by the [6, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_
00485], and [SRS_BSW_00486]) and [14, SWS BSW General] (see [SWS_-
BSW_00186]).

• type shall be the data type of the data element before all data conversion activi-
ties of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

⌋

This function specified in [SWS_SomeIpXf_00145] exists for the server and each client
of each transformed Client/Server communication which uses the SOME/IP serializa-
tion.

It exists on both the Client and the Server but the arguments are different.

On the server it deserializes the request of the Client/Server call. There, the data_1,
..., data_n arguments of the API correspond to the IN and INOUT arguments of the
ClientServerOperation. The argument returnValue doesn’t exist.

On the client it deserializes the response of the Client/Server call. There, the data_1,
..., data_n arguments of the API correspond to the INOUT and OUT arguments of
the ClientServerOperation. If the ClientServerOperation has at least one pos-
sibleError defined, the returnValue shall be determined by subtracting 0x1F from the
Return Code value. Otherwise the return value shall be set to the actual value of the
Return Code.

[SWS_SomeIpXf_00148]
Upstream requirements: SRS_Xfrm_00101

⌈

The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00145] shall exist for the first reference in the list of ordered
references transformerChain from a DataTransformation to a Transfor-
mationTechnology if the DataTransformation is referenced by an ISignal in
the role dataTransformation where the ISignal references a SystemSignal
which is referenced by ClientServerToSignalMapping in the callSignal or
returnSignal.⌋

Due to [SWS_SomeIpXf_00148], the API of [SWS_SomeIpXf_00145] exists both on
client and server.

86 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00149]
Upstream requirements: SRS_Xfrm_00106

⌈The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00145] shall deserialize a linear byte array which contains primitive
or complex operation arguments and the return value (if executed on client side) of
Client/Server communication using the SOME/IP deserialization. If MessageType
is ERROR(0x81) the payload of the message shall not be deserialized, but the
returnCode shall be sett according to [SWS_SomeIpXf_00232].⌋

[SWS_SomeIpXf_00265]
Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00004

⌈If SomeIpXf_Inv_<transformerId> specified in [SWS_SomeIpXf_00145] is
called with buffer equal to NULL_PTR and bufferLength equal to 0, the output buffer
buffer shall not be changed and SomeIpXf_Inv_<transformerId> shall return with
E_NO_DATA.⌋

[SWS_SomeIpXf_00209] Definition of API function SomeIpXf_Inv_<transformer
Id>

Upstream requirements: SRS_Xfrm_00002

⌈
Service Name SomeIpXf_Inv_<transformerId>

Syntax uint8 SomeIpXf_Inv_<transformerId> (
const uint8* buffer,
uint32 bufferLength

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the still serialized data are
stored by the Rte

Parameters (in)

bufferLength Used length of the buffer

Parameters (inout) None

Parameters (out) None

Return value uint8 0x00 (E_OK): Deserialization successful
0x01 (E_NO_DATA): No data available which can be deserialized
0x81 (E_SER_GENERIC_ERROR): A generic error occurred
0x87 (E_SER_WRONG_PROTOCOL_VERSION): The version of the
receiving transformer didn’t match the sending transformer.
0x88 (E_SER_WRONG_INTERFACE_VERSION): Interface version
of serialized data is not supported.
0x89 (E_SER_MALFORMED_MESSAGE): deprecated.
0x8a (E_SER_WRONG_MESSAGE_TYPE): The received message
type was not expected.

Description This function deserializes an external trigger event using the deserialization of SOME/IP.

Available via SomeIpXf.h

⌋

87 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

[SWS_SomeIpXf_00233]
Upstream requirements: SRS_Xfrm_00101

⌈In function SomeIpXf_Inv_<transformerId> defined in [SWS_SomeIpXf_00209]

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

⌋

This function specified in [SWS_SomeIpXf_00209] exists on the trigger sink side for
each transformed external trigger event which uses SOME/IP transformation.

[SWS_SomeIpXf_00210]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00209] shall exist for the first referenced Transformation-
Technology in the ordered transformerChain of a DataTransformation if the
DataTransformation is referenced by an ISignal in the role dataTransfor-
mation where the ISignal references a SystemSignal which is referenced by a
TriggerToSignalMapping.⌋

[SWS_SomeIpXf_00211]
Upstream requirements: SRS_Xfrm_00002

⌈The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00209] shall deserialize a linear byte array to an external trig-
ger event using the SOME/IP deserialization.⌋

[SWS_SomeIpXf_00266]
Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00004

⌈If SomeIpXf_Inv_<transformerId> specified in [SWS_SomeIpXf_00209]
is called with buffer equal to NULL_PTR and bufferLength equal to
0,SomeIpXf_Inv_<transformerId> shall return with E_NO_DATA.⌋

As an external trigger event consists of an ISignal with length = 64 Bit, the serialized
SOME/IP message only contains a header but no payload.

88 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

8.3.4 SomeIpXf_Init

[SWS_SomeIpXf_00181] Definition of API function SomeIpXf_Init
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411, SRS_BSW_00453, SRS_BSW_

00454, SRS_BSW_00456, SRS_BSW_00459, SRS_BSW_00461,
SRS_BSW_00462, SRS_BSW_00466, SRS_BSW_00478, SRS_BSW_
00479, SRS_BSW_00480, SRS_BSW_00483, SRS_BSW_00484,
SRS_BSW_00485, SRS_BSW_00486, SRS_BSW_00494, SRS_Xfrm_
00201, SRS_Xfrm_00011, SRS_Xfrm_00010, SRS_Xfrm_00006, SRS_
BSW_00448, SRS_BSW_00432, SRS_BSW_00419, SRS_BSW_00413,
SRS_BSW_00403, SRS_BSW_00401, SRS_BSW_00399, SRS_BSW_
00398, SRS_BSW_00396, SRS_BSW_00395, SRS_BSW_00390,
SRS_BSW_00358, SRS_BSW_00351, SRS_BSW_00350, SRS_BSW_
00162, SRS_BSW_00161, SRS_BSW_00005

⌈
Service Name SomeIpXf_Init

Syntax void SomeIpXf_Init (
const SomeIpXf_ConfigType* config

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) config Pointer to the transformer’s configuration data.

Parameters (inout) None

Parameters (out) None

Return value None

Description This service initializes the transformer for the further processing.

Available via SomeIpXf.h

⌋

8.3.5 SomeIpXf_DeInit

[SWS_SomeIpXf_00182] Definition of API function SomeIpXf_DeInit
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411, SRS_BSW_00336, SRS_BSW_

00345

⌈
Service Name SomeIpXf_DeInit

Syntax void SomeIpXf_DeInit (
void

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

▽

89 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Parameters (out) None

Return value None

Description This service deinitializes the transformer.

Available via SomeIpXf.h

⌋

8.3.6 SomeIpXf_GetVersionInfo

[SWS_SomeIpXf_00180] Definition of API function SomeIpXf_GetVersionInfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411, SRS_BSW_00482

⌈
Service Name SomeIpXf_GetVersionInfo

Syntax void SomeIpXf_GetVersionInfo (
Std_VersionInfoType* VersionInfo

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfo Pointer to where to store the version information of this module.

Return value None

Description This service returns the version information of the called transformer module.

Available via SomeIpXf.h

⌋

8.4 Callback notifications

There are no callback notifications.

8.5 Scheduled functions

SOME/IP Transformer has no scheduled functions.

8.6 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

90 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

8.6.1 Mandatory Interfaces

There are no mandatory interfaces, which are required to fulfill the core functionality of
the module.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_SomeIpXf_91003] Definition of optional interfaces requested by module
SomeIpXf

Upstream requirements: SRS_BSW_00170, SRS_BSW_00350

⌈
API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

⌋

91 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

9 Sequence diagrams

There are no sequence diagrams applicable to SOME/IP Transformer.

92 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

10 Configuration specification

There is no module specific configuration available to the SOME/IP Transformer. The
EcuC defined in [3, ASWS Transformer General] shall be used.

[SWS_SomeIpXf_00185]
Upstream requirements: SRS_BSW_00159

⌈The apiServicePrefix of the SOME/IP transformer’s EcuC shall be set to
SomeIpXf.⌋

93 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

A Change History

Please note that the lists in this chapter also include requirements that have been
removed from the specification in a later version. These requirements do not appear
as hyperlinks in the document.

A.1 Change History R25-11

A.1.1 Added Specification Items in R25-11

[SWS_SomeIpXf_00312] [SWS_SomeIpXf_00313] [SWS_SomeIpXf_00314] [SWS_
SomeIpXf_00315] [SWS_SomeIpXf_00316] [SWS_SomeIpXf_00317] [SWS_-
SomeIpXf_00318] [SWS_SomeIpXf_00319] [SWS_SomeIpXf_00320] [SWS_
SomeIpXf_91003]

A.1.2 Changed Specification Items in R25-11

[SWS_SomeIpXf_00017] [SWS_SomeIpXf_00115] [SWS_SomeIpXf_00144] [SWS_
SomeIpXf_00145] [SWS_SomeIpXf_00172] [SWS_SomeIpXf_00209] [SWS_-
SomeIpXf_00223] [SWS_SomeIpXf_00234] [SWS_SomeIpXf_00244] [SWS_
SomeIpXf_00245] [SWS_SomeIpXf_00258] [SWS_SomeIpXf_00266] [SWS_-
SomeIpXf_00271] [SWS_SomeIpXf_91002]

A.1.3 Deleted Specification Items in R25-11

[SWS_SomeIpXf_00239]

A.1.4 Added Constraints in R25-11

none

A.1.5 Changed Constraints in R25-11

none

A.1.6 Deleted Constraints in R25-11

none

94 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

A.2 Change History R24-11

A.2.1 Added Specification Items in R24-11

[SWS_SomeIpXf_00310] [SWS_SomeIpXf_00311] [SWS_SomeIpXf_91002]

A.2.2 Changed Specification Items in R24-11

[SWS_SomeIpXf_00017] [SWS_SomeIpXf_00054] [SWS_SomeIpXf_00111] [SWS_
SomeIpXf_00149] [SWS_SomeIpXf_00181] [SWS_SomeIpXf_00182] [SWS_-
SomeIpXf_00201] [SWS_SomeIpXf_00242] [SWS_SomeIpXf_00245]

A.2.3 Deleted Specification Items in R24-11

none

A.2.4 Added Constraints in R24-11

[CP_SWS_SomeIpXf_CONSTR_00001] [CP_SWS_SomeIpXf_CONSTR_00002]

A.2.5 Changed Constraints in R24-11

none

A.2.6 Deleted Constraints in R24-11

[SWS_SomeIpXf_CONSTR_00001] [SWS_SomeIpXf_CONSTR_00002]

A.3 Change History R23-11

A.3.1 Added Specification Items in R23-11

[SWS_SomeIpXf_00309]

A.3.2 Changed Specification Items in R23-11

[SWS_SomeIpXf_00024] [SWS_SomeIpXf_00031] [SWS_SomeIpXf_00036] [SWS_
SomeIpXf_00088] [SWS_SomeIpXf_00108] [SWS_SomeIpXf_00115] [SWS_-
SomeIpXf_00168] [SWS_SomeIpXf_00172] [SWS_SomeIpXf_00183] [SWS_

95 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

SomeIpXf_00204] [SWS_SomeIpXf_00212] [SWS_SomeIpXf_00214] [SWS_-
SomeIpXf_00215] [SWS_SomeIpXf_00270]

A.3.3 Deleted Specification Items in R23-11

[SWS_SomeIpXf_00013] [SWS_SomeIpXf_00136]

A.3.4 Added Constraints in R23-11

[SWS_SomeIpXf_CONSTR_00001] [SWS_SomeIpXf_CONSTR_00002]

A.3.5 Changed Constraints in R23-11

none

A.3.6 Deleted Constraints in R23-11

[SWS_SomeIpXf_CONSTR_0001] [SWS_SomeIpXf_CONSTR_0002]

A.4 Change History R22-11

A.4.1 Added Specification Items in R22-11

none

A.4.2 Changed Specification Items in R22-11

[SWS_SomeIPxf_00184] [SWS_SomeIpXf_00054] [SWS_SomeIpXf_00138] [SWS_
SomeIpXf_00141] [SWS_SomeIpXf_00144] [SWS_SomeIpXf_00145] [SWS_-
SomeIpXf_00152] [SWS_SomeIpXf_00180] [SWS_SomeIpXf_00181] [SWS_
SomeIpXf_00182] [SWS_SomeIpXf_00183] [SWS_SomeIpXf_00200] [SWS_-
SomeIpXf_00206] [SWS_SomeIpXf_00209] [SWS_SomeIpXf_00228] [SWS_
SomeIpXf_00229] [SWS_SomeIpXf_00232] [SWS_SomeIpXf_00239] [SWS_
SomeIpXf_00244] [SWS_SomeIpXf_00300] [SWS_SomeIpXf_00303] [SWS_-
SomeIpXf_91001]

96 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

A.4.3 Deleted Specification Items in R22-11

[SWS_SomeIpXf_00001] [SWS_SomeIpXf_00002] [SWS_SomeIpXf_00005] [SWS_
SomeIpXf_00006] [SWS_SomeIpXf_00007] [SWS_SomeIpXf_00009] [SWS_-
SomeIpXf_00010] [SWS_SomeIpXf_00011] [SWS_SomeIpXf_00130] [SWS_
SomeIpXf_00131] [SWS_SomeIpXf_00132] [SWS_SomeIpXf_00133] [SWS_-
SomeIpXf_00134]

97 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

B Referenced Meta Classes

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ApplicationArrayDataType

Note An application data type which is an array, each element is of the same application data type.
Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

0..1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table B.1: ApplicationArrayDataType

Class ApplicationError

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by ClientServerInterface.possibleError

Attribute Type Mult. Kind Note

errorCode Integer 0..1 attr The RTE generator is forced to assign this value to the
corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table B.2: ApplicationError

Class ApplicationPrimitiveDataType

Note A primitive data type defines a set of allowed values.
Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table B.3: ApplicationPrimitiveDataType

98 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Class ArgumentDataPrototype

Note An argument of an operation, carries direction and implementation information.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by AtpClassifier .atpFeature, ClientServerOperation.argument

Attribute Type Mult. Kind Note

direction ArgumentDirection
Enum

0..1 attr This attribute specifies the direction of the argument.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.
If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType
for primitive arguments and structures.

Table B.4: ArgumentDataPrototype

Enumeration ArraySizeSemanticsEnum

Note This type controls how the information about the number of elements in an ApplicationArrayDataType
is to be interpreted.

Aggregated by ApplicationArrayElement.arraySizeSemantics, DiagnosticDataElement.arraySizeSemantics,
ImplementationDataTypeElement.arraySizeSemantics, SwTextProps.arraySizeSemantics

Literal Description

fixedSize This means that the ApplicationArrayDataType will always have a fixed number of elements.
Tags: atp.EnumerationLiteralIndex=0

variableSize This implies that the actual number of elements in the ApplicationArrayDataType might vary at
run-time. The value of arraySize represents the maximum number of elements in the array.
Tags: atp.EnumerationLiteralIndex=1

Table B.5: ArraySizeSemanticsEnum

Class AutosarDataType (abstract)

Note Abstract base class for user defined AUTOSAR data types for software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps

Table B.6: AutosarDataType

Class BaseType (abstract)

Note This abstract meta-class represents the ability to specify a platform dependent base type.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses SwBaseType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

▽

99 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class BaseType (abstract)

baseType
Definition

BaseTypeDefinition 1 aggr This is the actual definition of the base type.
Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table B.7: BaseType

Class BaseTypeDirectDefinition

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Aggregated by BaseType.baseTypeDefinition

Attribute Type Mult. Kind Note

baseType
Encoding

BaseTypeEncoding
String

0..1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.
Tags: xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.
Tags: xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.
Tags: xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".
Tags: xml.sequenceOffset=100

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example
BaseType with shortName: "MyUnsignedInt" native
Declaration: "unsigned short"
Results in
typedef unsigned short MyUnsignedInt;
If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.
If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.
This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.
Tags: xml.sequenceOffset=120

Table B.8: BaseTypeDirectDefinition

Class ClientServerInterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

▽

100 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class ClientServerInterface
Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

operation ClientServerOperation * aggr ClientServerOperation(s) of this
ClientServerInterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table B.9: ClientServerInterface

Class ClientServerOperation

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Aggregated by ApplicationInterface.command, AtpClassifier .atpFeature, ClientServerInterface.operation, Diagnostic
DataElementInterface.read, DiagnosticDataIdentifierInterface.read, DiagnosticDataIdentifierInterface.
write, DiagnosticExtendedDataRecordInterface.provide, DiagnosticRoutineInterface.requestResult,
DiagnosticRoutineInterface.start, DiagnosticRoutineInterface.stop, PhmRecoveryActionInterface.
recovery, ServiceInterface.method

Attribute Type Mult. Kind Note

argument
(ordered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime

diagArgIntegrity Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.
This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is
aware of the usage of a shared buffer and takes
precautions to avoid unintentional overwrite of input
arguments.
If the attribute does not exist or is set to false the
ClientServerOperation does not have to consider
the usage of a shared buffer.
This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table B.10: ClientServerOperation

101 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Class ClientServerToSignalMapping

Note This element maps the ClientServerOperation to call- and return-SystemSignals.

Base ARObject , DataMapping

Aggregated by SystemMapping.dataMapping

Attribute Type Mult. Kind Note

callSignal SystemSignal 0..1 ref Reference to the callSignal to which the IN and INOUT
ArgumentDataPrototypes are mapped.

clientServer
Operation

ClientServerOperation 0..1 iref Reference to a ClientServerOperation, which is mapped
to a call SystemSignal and a return SystemSignal.
InstanceRef implemented by: OperationInSystem
InstanceRef

returnSignal SystemSignal 0..1 ref Reference to the returnSignal to which the OUT and
INOUT ArgumentDataPrototypes are mapped.

Table B.11: ClientServerToSignalMapping

Class DataPrototype (abstract)

Note Base class for prototypical roles of any data type.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Aggregated by AtpClassifier .atpFeature

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This property allows to specify data definition properties
which apply on data prototype level.
Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps

Table B.12: DataPrototype

Class DataTransformation
Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by DataTransformationSet.dataTransformation

Attribute Type Mult. Kind Note

data
Transformation
Kind

DataTransformationKind
Enum

0..1 attr This attribute controls the kind of DataTransformation to
be applied.

executeDespite
Data
Unavailability

Boolean 0..1 attr Specifies whether the transformer chain is executed even
if no input data are available.

transformer
Chain (ordered)

Transformation
Technology

* ref This attribute represents the definition of a chain of
transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.

Table B.13: DataTransformation

Enumeration DataTransformationErrorHandlingEnum

Note This enumeration defines different ways how a RunnableEntity shall handle transformer errors.

Aggregated by PortAPIOption.errorHandling

Literal Description

▽

102 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Enumeration DataTransformationErrorHandlingEnum

noTransformerError
Handling

A runnable does not handle transformer errors.
Tags: atp.EnumerationLiteralIndex=0

transformerError
Handling

The runnable implements the handling of transformer errors.
Tags: atp.EnumerationLiteralIndex=1

Table B.14: DataTransformationErrorHandlingEnum

Class EcucModuleDef
Note Used as the top-level element for configuration definition for Software Modules, including BSW and RTE

as well as ECU Infrastructure.
Tags: atp.recommendedPackage=EcucDefs
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpDefinition, CollectableElement , Ecuc
DefinitionElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

apiServicePrefix CIdentifier 0..1 attr For modules where several instances of the VSMD can
be defined the apiServicePrefix defines the API
namespace of the derived instances, e.g. Cdd, Xfrm
(ComXf, SomeIpXf, E2EXf).

container EcucContainerDef * aggr Aggregates the top-level container definitions of this
specific module definition.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=container.shortName
xml.sequenceOffset=11

postBuildVariant
Support

Boolean 0..1 attr Indicates if a module supports different post-build variants
(previously known as post-build selectable configuration
sets). TRUE means yes, FALSE means no.

refinedModule
Def

EcucModuleDef 0..1 ref Optional reference from the Vendor Specific Module
Definition to the Standardized Module Definition it refines.
In case this EcucModuleDef has the category
STANDARDIZED_MODULE_DEFINITION this reference
shall not be provided. In case this EcucModuleDef has
the category VENDOR_SPECIFIC_MODULE_
DEFINITION this reference is mandatory.
Stereotypes: atpUriDef

supported
ConfigVariant

EcucConfiguration
VariantEnum

* attr Specifies which ConfigurationVariants are supported by
this software module. This attribute is optional if the Ecuc
ModuleDef has the category STANDARDIZED_
MODULE_DEFINITION. If the category attribute of the
EcucModuleDef is set to VENDOR_SPECIFIC_
MODULE_DEFINITION then this attribute is mandatory.

Table B.15: EcucModuleDef

Class ISignal

Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignalIPdus to multiple receivers.
To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same System Signal is to
be mapped into several SignalIPdus there is one ISignal needed for each ISignalToIPduMapping.
ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).
In case of the SystemSignalGroup an ISignal shall be created for each SystemSignal contained in the
SystemSignalGroup.
Tags: atp.recommendedPackage=ISignals

▽

103 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class ISignal

Base ARElement , ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, UploadableDesignElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

data
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignal.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataTransformation.dataTransformation,
dataTransformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

dataTypePolicy DataTypePolicyEnum 0..1 attr With the aggregation of SwDataDefProps an ISignal
specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be
used to support flexible development methodology as well
as subsequent integrity checks.
If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used. If
the "override" policy is chosen the requirements specified
in the PortInterface and in the ComSpec are not fulfilled
by the networkRepresentationProps. In case the System
Description doesn’t use a complete Software Component
Description (VFB View) the "legacy" policy can be
chosen.

initValue ValueSpecification 0..1 aggr Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.
This value can be used to configure the Signal’s "Init
Value".
If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec. In this case the
initvalues in SenderComSpec and/or ReceiverComSpec
override this optional value specification. Further
restrictions apply from the RTE specification.

iSignalProps ISignalProps 0..1 aggr Additional optional ISignal properties that may be stored
in different files.
Stereotypes: atpSplitable
Tags: atp.Splitkey=iSignalProps

iSignalType ISignalTypeEnum 0..1 attr This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

length UnlimitedInteger 0..1 attr Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE. Indicates maximum size for dynamic length
signals.
The ISignal length of zero bits is allowed.

▽

104 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class ISignal

network
Representation
Props

SwDataDefProps 0..1 aggr Specification of the actual network representation. The
usage of SwDataDefProps for this purpose is restricted to
the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.
The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.
If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the PortInterface and in the
network representation of the ComSpec.
In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDataInvalid
Value" and the Data Semantics.
Stereotypes: atpSplitable
Tags: atp.Splitkey=networkRepresentationProps

reception
DefaultValue
(ordered)

ValueSpecification * aggr Value used to fill data on the receiver side, if less then
expected data is received.
The value is expected to cover the entire expected ISignal
network payload.
Tags: atp.Status=obsolete

systemSignal SystemSignal 0..1 ref Reference to the System Signal that is supposed to be
transmitted in the ISignal.

timeout
Substitution
Value

ValueSpecification 0..1 aggr Defines and enables the ComTimeoutSubstituition for this
ISignal.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=transformationISignalProps

Table B.16: ISignal

Class Identifiable (abstract)

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

▽

105 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class Identifiable (abstract)

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AppliedStandard, AsynchronousServerCallResultPoint, AtpBlueprint , AtpBlueprintable, Atp
Classifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariableInstance, BinaryManifest
AddressableObject , BinaryManifestItemDefinition, BinaryManifestResource, BinaryManifestResource
Definition, BlockState, BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , Build
ActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClientIdDefinition, Client
ServerOperation, Code, CollectableElement , ComManagementMapping, CommConnectorPort ,
CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingElementAbstractDetails, CouplingPort, CouplingPortAbstractShaper , CouplingPort
StructuralElement , CpSoftwareClusterResource, CpSoftwareClusterResourceToApplicationPartition
Mapping, CpSoftwareClusterToApplicationPartitionMapping, CpSoftwareClusterToEcuInstanceMapping,
CpSoftwareClusterToResourceMapping, CryptoServiceMapping, CyclicHandlingComDataToOsTask
ProxyMapping, DataPrototypeGroup, DataPrototypeTransformationPropsIdent, DataTransformation, Dds
AbstractServiceInstanceElementCp, DdsCpDomain, DdsCpPartition, DdsCpQosProfile, DdsCpTopic,
DependencyOnArtifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmitCertificateEvaluation,
DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, Diagnostic
ExtendedDataRecordElement, DiagnosticFunctionInhibitSource, DiagnosticParameterElement,
DiagnosticRoutineSubfunction, DltApplication, DltArgument, DltArgumentProps, DltLogChannel, Dlt
Message, DoIpInterface, DoIpLogicAddress, DoIpRoutingActivation, ECUMapping, EOCExecutableEntity
RefAbstract , EcuPartition, EcuPartitionToCoreMapping, EcucContainerValue, EcucDefinitionElement ,
EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, Ethernet
WakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea, ExecutableEntity , ExecutionTime,
FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeature
Relation, FMFeatureRestriction, FMFeatureSelection, FlatInstanceDescriptor, FlexrayArTpNode, Flexray
TpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, FrameTriggering, GeneralParameter, Global
TimeGateway, GlobalTimeMaster , GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteral
Def, HwPin, HwPinGroup, IEEE1722TpAcfBus, IEEE1722TpAcfBusPart , IPSecRule, IPv6ExtHeader
FilterList, ISignalToIPduMapping, ISignalTriggering, IdentCaption, ImpositionTime, InternalTriggering
Point, J1939Node, J1939SharedAddressCluster, J1939TpNode, Keyword, LifeCycleState, LinSchedule
Table, LinTpNode, Linker, MacAddressVlanMembership, MacMulticastGroup, MacSecKayParticipant, Mc
DataInstance, MemorySection, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Mode
SwitchSenderComSpecProps, NetworkEndpoint, NmCluster , NmEcu, NmNode, NvBlockDescriptor,
PackageableElement , ParameterAccess, PduActivationRoutingGroup, PduToFrameMapping, Pdu
Triggering, PerInstanceMemory, PhysicalChannel , PortElementToCommunicationResourceMapping,
PortGroup, PortInterfaceMapping, QueuedReceiverComSpecProps, ResourceConsumption, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RteEventInCompositionSeparation, RteEventIn
CompositionToOsTaskProxyMapping, RteEventInSystemSeparation, RteEventInSystemToOsTaskProxy
Mapping, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobRequirement, SecureCommunication
AuthenticationProps, SecureCommunicationFreshnessProps, SecurityEventContextDataElement,
SecurityEventContextProps, ServerCallPoint , ServerComSpecProps, ServiceNeeds, SignalService
TranslationElementProps, SignalServiceTranslationEventProps, SignalServiceTranslationProps, Socket
Address, SomeipTpChannel, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxis
ParamType, SwServiceArg, SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcu
Mapping, SwcToImplMapping, SwitchAsynchronousTrafficShaperGroupEntry, SwitchAtsInstanceEntry,
SwitchFlowMeteringEntry, SwitchStreamFilterActionDestPortModification, SwitchStreamFilterEntry,
SwitchStreamFilterRule, SwitchStreamGateEntry, SwitchStreamIdentification, SystemMapping, System
SignalGroupToCommunicationResourceMapping, SystemSignalToCommunicationResourceMapping,
TDCpSoftwareClusterMapping, TDCpSoftwareClusterResourceMapping, TcpOptionFilterList, Timing
Clock , TimingClockSyncAccuracy, TimingCondition, TimingConstraint , TimingDescription, Timing
ExtensionResource, TimingModeInstance, TlsCryptoCipherSuite, TlsCryptoCipherSuiteProps, Topic1,
TpAddress, TraceableTable, TraceableText, TracedFailure, TransformationISignalPropsIdent,
TransformationProps, TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, View
Map, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

▽

106 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class Identifiable (abstract)

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.
Tags: xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.
Tags: xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.
More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".
Tags: xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.
Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.
Tags: xml.attribute=true

Table B.17: Identifiable

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

▽

107 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class ImplementationDataType

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.
If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table B.18: ImplementationDataType

Class ImplementationDataTypeElement

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.
This element either consists of further subElements or it is further defined via its swDataDefProps.
There are several use cases within the system of ImplementationDataTypes for such a local
declaration:
• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Aggregated by AtpClassifier .atpFeature, ImplementationDataType.subElement, ImplementationDataTypeElement.sub
Element

Attribute Type Mult. Kind Note

arrayImplPolicy ArrayImplPolicyEnum 0..1 attr This attribute controls the implementation of the payload
of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this
ImplementationDataTypeElement represents the
type of each single array element.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

▽

108 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class ImplementationDataTypeElement

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as
optional. This means that, at runtime, the
ImplementationDataTypeElement may or may not
have a valid value and shall therefore be ignored.
The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not
valid at the sending end of a communication and
determine its validity at the receiving end.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table B.19: ImplementationDataTypeElement

Class InternalBehavior (abstract)

Note Common base class (abstract) for the internal behavior of both software components and basic software
modules/clusters.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses BswInternalBehavior, SwcInternalBehavior

Aggregated by AtpClassifier .atpFeature

Attribute Type Mult. Kind Note

constant
Memory

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) implemented by this Internal
Behavior.
The shortName of ParameterDataPrototype has to be
equal to the ’’C’ identifier of the described constant.
The characteristic value(s) might be shared between Sw
ComponentPrototypes of the same SwComponentType.
The aggregation of constantMemory is subject to
variability with the purpose to support variability in the
software component or module implementations.
Typically different algorithms in the implementation are
requiring different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=constantMemory.shortName, constant
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for the particular InternalBehavior
Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

▽

109 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class InternalBehavior (abstract)

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular InternalBehavior
Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

exclusiveArea ExclusiveArea * aggr This specifies an ExclusiveArea for this InternalBehavior.
The exclusiveArea is local to the component resp.
module. The aggregation of ExclusiveAreas is subject to
variability. Note: the number of ExclusiveAreas might vary
due to the conditional existence of RunnableEntities or
BswModuleEntities.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveArea.shortName, exclusive
Area.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

exclusiveArea
NestingOrder

ExclusiveAreaNesting
Order

* aggr This represents the set of ExclusiveAreaNestingOrder
owned by the InternalBehavior.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaNestingOrder.shortName,
exclusiveAreaNestingOrder.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

staticMemory VariableDataPrototype * aggr Describes a read and writeable static memory object
representing measurerment variables implemented by
this software component. The term "static" is used in the
meaning of "non-temporary" and does not necessarily
specify a linker encapsulation. This kind of memory is
only supported if supportsMultipleInstantiation is FALSE.
The shortName of the VariableDataPrototype has to be
equal with the ’’C’ identifier of the described variable.
The aggregation of staticMemory is subject to variability
with the purpose to support variability in the software
component’s implementations.
Typically different algorithms in the implementation are
requiring different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=staticMemory.shortName, static
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table B.20: InternalBehavior

Class PortAPIOption

Note Options how to generate the signatures of calls for an AtomicSwComponentType in order to
communicate over a PortPrototype (for calls into a RunnableEntity as well as for calls from a Runnable
Entity to the PortPrototype).

Base ARObject

Aggregated by SwcInternalBehavior.portAPIOption

Attribute Type Mult. Kind Note

enableTake
Address

Boolean 0..1 attr If set to true, the software-component is able to use the
API reference for deriving a pointer to an object.

errorHandling DataTransformation
ErrorHandlingEnum

0..1 attr This specifies whether a RunnableEntity accessing a Port
Prototype that is referenced by this PortAPIOption shall
specifically handle transformer errors or not.

▽

110 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class PortAPIOption

indirectAPI Boolean 0..1 attr If set to true this attribute specifies an "indirect API" to be
generated for the associated port which means that the
software-component is able to access the actions on a
port via a pointer to an object representing a port. This
allows e.g. iterating over ports in a loop. This option has
no effect for PPortPrototypes of client/server interfaces.

port PortPrototype 0..1 ref The option is valid for generated functions related to
communication over this port
Stereotypes: atpIdentityContributor

portArgValue
(ordered)

PortDefinedArgument
Value

* aggr An argument value defined by this port.

supported
Feature

SwcSupportedFeature * aggr This collection specifies which features are supported by
the RunnableEntitys which access a PortPrototype that it
referenced by this PortAPIOption.

transformer
Status
Forwarding

DataTransformation
StatusForwardingEnum

0..1 attr This attribute specifies whether a RunnableEntity
accessing a PortPrototype that is referenced by this Port
APIOption shall be able to forward a status code to the
transformer chain.

Table B.21: PortAPIOption

Class PortDefinedArgumentValue

Note A PortDefinedArgumentValue is passed to a RunnableEntity dealing with the ClientServerOperations
provided by a given PortPrototype. Note that this is restricted to PPortPrototypes of a ClientServer
Interface.

Base ARObject

Aggregated by PortAPIOption.portArgValue

Attribute Type Mult. Kind Note

value ValueSpecification 0..1 aggr Specifies the actual value.

valueType ImplementationData
Type

0..1 tref The implementation type of this argument value. It should
not be composite type or a pointer.
Stereotypes: isOfType

Table B.22: PortDefinedArgumentValue

Class SOMEIPTransformationProps

Note The class SOMEIPTransformationProps specifies SOME/IP specific configuration properties.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TransformationProps

Aggregated by TransformationPropsSet.transformationProps

Attribute Type Mult. Kind Note

alignment PositiveInteger 0..1 attr Defines the padding for alignment purposes that will be
added by the SOME/IP transformer after the serialized
data of the variable data length data element. The
alignment shall be specified in Bits.

sizeOfArray
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of the referenced Array in
the SOME/IP message.

sizeOfString
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of the referenced String in
the SOME/IP message.

▽

111 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class SOMEIPTransformationProps

sizeOfStruct
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of a Structure in the SOME/
IP message.

sizeOfUnion
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of a Union in the SOME/IP
message.

Table B.23: SOMEIPTransformationProps

Class SenderReceiverInterface
Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype * aggr The data elements of this SenderReceiverInterface.

invalidation
Policy

InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

metaDataItem
Set

MetaDataItemSet * aggr This aggregation defines fixed sets of meta-data items
associated with dataElements of the enclosing
SenderReceiverInterface

Table B.24: SenderReceiverInterface

Class SenderReceiverToSignalMapping

Note Mapping of a sender receiver communication data element to a signal.

Base ARObject , DataMapping

Aggregated by SystemMapping.dataMapping

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype 0..1 iref Reference to the data element.
InstanceRef implemented by: VariableDataPrototypeIn
SystemInstanceRef

senderToSignal
TextTable
Mapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the sending DataPrototype that is defined in the Port
Prototype and the physicalProps defined for the System
Signal.

signalTo
ReceiverText
TableMapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the physicalProps defined for the SystemSignal and a
receiving DataPrototype that is defined in the Port
Prototype.

systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the data
element.

Table B.25: SenderReceiverToSignalMapping

112 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

Class SwBaseType

Note This meta-class represents a base type used within ECU software.
Tags: atp.recommendedPackage=BaseTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table B.26: SwBaseType

Class «atpVariation» SwDataDefProps

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.
Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.
SwDataDefProps covers various aspects:
• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but also

the recordLayouts which specify how such elements are mapped/converted to the DataTypes in the
programming language (or in AUTOSAR). This is mainly expressed by properties like swRecordLayout
and swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, swAddr
Method, swPointerTagetProps, baseType, implementationDataType and additionalNativeTypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr, invalid
Value

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime

Base ARObject

Aggregated by AutosarDataType.swDataDefProps, CompositeNetworkRepresentation.networkRepresentation, Cpp
ImplementationDataTypeElement.swDataDefProps, DataPrototype.swDataDefProps, DataPrototype
TransformationProps.networkRepresentationProps, DiagnosticDataElement.swDataDefProps, Diagnostic
EnvDataElementCondition.swDataDefProps, DiagnosticExtendedDataRecordElement.swDataDefProps,
DiagnosticSovdPrimitiveContentElement.swDataDefProps, DltArgumentProps.networkRepresentation,
FlatInstanceDescriptor.swDataDefProps, ImplementationDataTypeElement.swDataDefProps,
InstantiationDataDefProps.swDataDefProps, ISignal.networkRepresentationProps, McDataInstance.
resultingProperties, ParameterAccess.swDataDefProps, PerInstanceMemory.swDataDefProps, Receiver
ComSpec.networkRepresentation, SecurityEventContextDataElement.networkRepresentation, Sender
ComSpec.networkRepresentation, SomeipDataPrototypeTransformationProps.networkRepresentation,
SwPointerTargetProps.swDataDefProps, SwServiceArg.swDataDefProps, SwSystemconst.swDataDef
Props, SystemSignal.physicalProps

Attribute Type Mult. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.
Tags: xml.sequenceOffset=235

▽

113 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class «atpVariation» SwDataDefProps

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.
Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.
Tags: xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.
Tags: xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.
Tags: xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.
Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially
• redefinition of an ImplementationDataType via a

"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

• the data type of an array or record element within an
ImplementationDataType, if it does not refer to a base
type directly

• the data type of an SwServiceArg, if it does not refer to
a base type directly

Tags: xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.
Tags: xml.sequenceOffset=255

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.
Tags: xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended typical alignment of
the DataPrototype. If the attribute is not defined the
alignment is determined by the swBaseType size and the
memoryAllocationKeywordPolicy of the referenced Sw
AddrMethod.
Tags: xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.
Tags: xml.sequenceOffset=60

▽

114 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class «atpVariation» SwDataDefProps

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.
Tags: xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.
Tags: xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.
Tags:
xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).
Tags: xml.sequenceOffset=200

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.
Tags:
xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.
Tags: xml.sequenceOffset=230

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.
The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).
In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.
The resolution is specified in the physical domain
according to the property "unit".
Tags: xml.sequenceOffset=240

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.
Tags: xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .
Tags: xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.
Tags: xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.
Tags: xml.sequenceOffset=290

▽

115 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class «atpVariation» SwDataDefProps

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.
So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.
Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.
Tags: xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock
SizeMult
(ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.
The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.
For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.
Tags: xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.
Tags: xml.sequenceOffset=355

Table B.27: SwDataDefProps

Class SwTextProps

Note This meta-class expresses particular properties applicable to strings in variables or calibration
parameters.

Base ARObject

Aggregated by SwDataDefProps.swTextProps

Attribute Type Mult. Kind Note

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the semantics of the arraysize for
the array representing the string in an
ImplementationDataType.
It is there to support a safe conversion between
ApplicationDataType and
ImplementationDataType, even for variable length
strings as required e.g. for Support of SAE J1939.

▽

116 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class SwTextProps

baseType SwBaseType 0..1 ref This is the base type of one character in the string. In
particular this baseType denotes the intended encoding of
the characters in the string on level of
ApplicationDataType.
Tags: xml.sequenceOffset=30

swFillCharacter Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.
The value will be interpreted according to the encoding
specified in the associated base type of the data object,
e.g. 0x30 (hex) represents the ASCII character zero as
filler character and 0 (dec) represents an end of string as
filler character.
The usage of the fill character depends on the
arraySizeSemantics.
Tags: xml.sequenceOffset=40

swMaxTextSize Integer 0..1 attr Specifies the maximum text size in characters. Note the
size in bytes depends on the encoding in the
corresponding baseType.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table B.28: SwTextProps

Class SystemSignal

Note The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.
Tags: atp.recommendedPackage=SystemSignals

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dynamicLength Boolean 0..1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).

physicalProps SwDataDefProps 0..1 aggr Specification of the physical representation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=physicalProps

Table B.29: SystemSignal

Class «atpVariation» TransformationISignalProps (abstract)

Note TransformationISignalProps holds all the attributes for the different TransformationTechnologies that are
ISignal specific.
Tags: vh.latestBindingTime=postBuild

Base ARObject , Describable

Subclasses DdsTransformationISignalProps, EndToEndTransformationISignalProps, SOMEIPTransformationISignal
Props, UserDefinedTransformationISignalProps

Aggregated by ISignal.transformationISignalProps, ISignalGroup.transformationISignalProps

Attribute Type Mult. Kind Note

▽

117 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class «atpVariation» TransformationISignalProps (abstract)

csErrorReaction CSTransformerError
ReactionEnum

0..1 attr Defines whether the transformer chain of client/server
communication coordinates an autonomous error reaction
together with the RTE or whether any error reaction is the
responsibility of the application.

dataPrototype
Transformation
Props

DataPrototype
TransformationProps

* aggr Fine granular modeling of TransfromationProps on the
level of DataPrototypes.
Note: This atpSplitable property has no atp.Splitkey due
to atpVariation (PropertySetPattern).
Stereotypes: atpSplitable

ident TransformationISignal
PropsIdent

0..1 aggr This adds the ability to add a shortName to
TransformationISignalProps. Please note that the
short-name needs to be provided if the splitable
mechanism is used.
Stereotypes: atpIdentityContributor

transformer Transformation
Technology

0..1 ref Reference to the TransformationTechnology description
that contains transformer specific and ISignal
independent configuration properties.

Table B.30: TransformationISignalProps

Class TransformationTechnology

Note A TransformationTechnology is a transformer inside a transformer chain.
Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by DataTransformationSet.transformationTechnology

Attribute Type Mult. Kind Note

bufferProperties BufferProperties 0..1 aggr Aggregation of the mandatory BufferProperties.

hasInternal
State

Boolean 0..1 attr This attribute defines whether the Transformer has an
internal state or not.

needsOriginal
Data

Boolean 0..1 attr Specifies whether this transformer gets access to the
SWC’s original data.

protocol String 0..1 attr Specifies the protocol that is implemented by this
transformer.

transformation
Description

Transformation
Description

0..1 aggr A transformer can be configured with transformer specific
parameters which are represented by the Transformer
Description.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=transformationDescription, transformation
Description.variationPoint.shortLabel
vh.latestBindingTime=postBuild

transformer
Class

TransformerClassEnum 0..1 attr Specifies to which transformer class this transformer
belongs.

version String 0..1 attr Version of the implemented protocol.

Table B.31: TransformationTechnology

Class TriggerToSignalMapping

Note This meta-class represents the ability to map a trigger to a SystemSignal of size 0. The Trigger does not
transport any other information than its existence, therefore the limitation in terms of signal length.

Base ARObject , DataMapping

Aggregated by SystemMapping.dataMapping

▽

118 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Class TriggerToSignalMapping

Attribute Type Mult. Kind Note

systemSignal SystemSignal 0..1 ref This is the SystemSignal taken to transport the Trigger
over the network.
Tags: xml.sequenceOffset=20

trigger Trigger 0..1 iref This represents the Trigger that shall be used to trigger
RunnableEntities deployed to a remote ECU.
InstanceRef implemented by: TriggerInSystemInstance
Ref

Table B.32: TriggerToSignalMapping

119 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

C Features of SOME/IP not supported by AUTOSAR
SOME/IP transformer

The following features of SOME/IP are currently not supported by the SOME/IP trans-
former:

• Exceptions and exception-specific error data structures

• Tunneling of SOME/IP messages through CAN and Flexray leads to SOME/IP
messages without parts of the header inserted by [4, SWS Socket Adaptor]

• Queued Fire&Forget methods without parameters are not supported by
AUTOSAR at all. (Unqueued Fire&Forget methods without parameters and
queued Fire&Forget methods with parameters are supported)

• The SOME/IP transformer doesn’t check whether variable size arrays contain a
minimal number of elements (reason: this is supported by SOME/IP protocol but
not by AUTOSAR)

• Optional method arguments: AUTOSAR Classic platform does not support the
existence of optional method arguments.

120 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

D Examples

This appendix contains examples which are suitable to help understanding details of
the SOME/IP Transformer.

D.1 Serialization of a Client/Server Operation

As the serialization of inter-ECU Client/Server communication is the most complex
scenario, this example will show the resulting APIs which exist in RTE and Transformer
both on the Client and the Server as well an overview of the resulting serialized data
on the network.

The example deals with two SWCs which are distributed to two ECUs which are con-
nected over some kind of network. The SOME/IP Transformer shall be used to se-
rialize the inter-ECU communication. The client calls a ClientServerOperation
which is provided by the server. For the server, there are two PortDefinedAr-
gumentValues defined which are applied to the runnable which implements the
ClientServerOperation. These PortDefinedArgumentValues are only visible
within the InternalBehavior of the server. They are not visible to the outside world
(ClientServerInterface) - neither to the client nor in the data on the network.

The following tables define the example ClientServerInterface used here.

Name SomeCSInterface

Comment A ClientServerInterface which contains anything needed to show serialization of
ClientServerOperations by SOME/IP Transformer.

IsService false

Variation –

0 E_OK Operation successful

1 E_NOT_OK Operation failed

Possible Errors

2 E_UNKNOWN_ERROR An unknown error occurred

Table D.1: ClientServerInterface SomeCSInterface

Operation SomeCSOperation

Comment The ClientServerOperation which is used to demonstrate how the SOME/IP serialization for
Client/Sever communication works

Mapped to API –

Variation –

inputParam1

Type uint8

Direction IN

Comment Refines how source Time Base is cloned to destination

Variation –

inputParam2

Parameters

Type uint16

▽

121 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

△
Direction IN

Comment A parameter which is handed over from the Client to the Server

Variation –

biDirectionalParam

Type someStruct

Direction INOUT

Comment A parameter which is handed over from the Client to the Server, modified by
the Server and handed back to the Client

Variation –

outputParam1

Type uint16

Direction OUT

Comment A parameter which is handed over from the Server to the Client

Variation –

outputParam2

Type uint32

Direction OUT

Comment A parameter which is handed over from the Server to the Client

Variation –

Possible Errors E_OK
E_DATA_INCONSISTENT
E_UNKNOWN_ERROR

Table D.2: Operation SomeCSOperation

D.1.1 Client

On the client side, the following RTE-API is generated according to [SWS_Rte_01102]
based on the ClientServerInterface which is specified above and the attribute
errorHandling of PortAPIOption:

Std_ReturnType Rte_Call_ClientPort_SomeCSOperation
(uint8 inputParam1,
uint16 inputParam2,
someStruct *biDirectionalParam,
uint16 *outputParam1,
uint32 *outputParam2,
Rte_TransformerError *transformerError)

For this signature the attribute errorHandling of PortAPIOption is set to trans-
formerErrorHandling. If it would be set to noTransformerErrorHandling, the
parameter Rte_TransformerError *transformerError would not be included
in the signature above.

The signature above reflects an synchronous server call. For an asynchronous server
call all OUT parameters would be missing for Rte_Call but an Rte_Result would
be necessary instead. The examples for signatures and parameters shown here can
be transferred analogously to Rte_Result.

122 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

This is the API used in the runnable of the client to call the remote server operation.

The RTE executes for the serialization of the request the SOME/IP Transformer with
the following API which is specified in [SWS_SomeIpXf_00141]:

uint8 SomeIpXf_CSOpSerializer
(const Rte_Cs_TransactionHandleType *TransactionHandle,
uint8 *buffer,
uint16 *bufferLength,
uint8 inputParam1,
uint16 inputParam2,
someStruct biDirectionalParam)

This function will serialize the TransactionHandle and all IN/INOUT parameters for
the request into the following format:

SOME/IP Header
input
Param1

inputParam2 biDirectionalParam

Figure D.1: Example for serialized data of the Client/Server Request

The SOME/IP Header contains the TransactionHandle (see [SWS_SomeIpXf_00025]
and [SWS_SomeIpXf_00026]).

To deserialize the response that is received by the client after execu-
tion of the ClientServerOperation on the server the API (according to
[SWS_SomeIpXf_00145]) is used:

uint8 SomeIpXf_Inv_CSOpSerializer
(Rte_Cs_TransactionHandleType *TransactionHandle,
const uint8 *buffer,
uint16 bufferLength,
Std_ReturnType *returnValue,
someStruct *biDirectionalParam,
uint16 *outputParam1,
uint32 *outputParam2)

D.1.2 Server

On the server side the ClientServerOperation is implemented by a runnable with
the following signature which now contains the PortDefinedArgumentValues (see
[SWS_Rte_01166]):

Std_ReturnType SomeCSOperation
(uint8 portDefArg1,
uint8 portDefArg2,
uint8 inputParam1,
uint16 inputParam2,
someStruct *biDirectionalParam,

123 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP R25-11

uint16 *outputParam1,
uint32 *outputParam2)

For the deserialization of the received request, the SOME/IP Transformer on the server
side, provides according to [SWS_SomeIpXf_00141] this C-API:

uint8 SomeIpXf_Inv_CSOpSerializer
(Rte_Cs_TransactionHandleType *TransactionHandle,
const uint8 *buffer,
uint16 bufferLength,
uint8 *inputParam1,
uint16 *inputParam2,
someStruct *biDirectionalParam)

The function for serialization of the response is specified by [SWS_SomeIpXf_00145]:

uint8 SomeIpXf_CSOpSerializer
(const Rte_Cs_TransactionHandleType *TransactionHandle,
uint8 *buffer,
uint16 *bufferLength,
Std_ReturnType returnValue,
someStruct biDirectionalParam,
uint16 outputParam1,
uint32 outputParam2)

This function will serialize the TransactionHandle, the returnValue and all IN-
OUT/OUT parameters for the response into the following format:

SOME/IP Header biDirectionalParam outputParam1 outputParam2

Figure D.2: Example for serialized data of the Client/Server Response

The SOME/IP Header contains the TransactionHandle and returnValue (see
[SWS_SomeIpXf_00025], [SWS_SomeIpXf_00026] and [SWS_SomeIpXf_00115]).

124 of 124 Document ID 660: AUTOSAR_CP_SWS_SOMEIPTransformer

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Specification of the SOME/IP on-wire format
	7.1.1 Message Length Limitations
	7.1.2 Endianness
	7.1.3 Message format
	7.1.3.1 Request ID [32 bit]
	7.1.3.2 Protocol Version [8 bit]
	7.1.3.3 Interface Version [8 bit]
	7.1.3.4 Message Type [8 bit]
	7.1.3.5 Return Code [8 bit]
	7.1.3.6 Payload [variable size]

	7.1.4 Serialization of Parameters and Data Structures
	7.1.4.1 Basic Datatypes
	7.1.4.2 Structured Datatypes (structs)
	7.1.4.3 Structured Datatypes and Arguments with Identifier and optional Members
	7.1.4.4 Strings
	7.1.4.5 Arrays (fixed length)
	7.1.4.6 Optional Parameters / Optional Elements
	7.1.4.7 Dynamic Length Arrays / Variable Size Arrays
	7.1.4.8 Bitfield
	7.1.4.9 Union / Variant

	7.1.5 De-serialization of Parameters and Data Structures
	7.1.5.1 Structured Datatypes (structs)
	7.1.5.2 Structured Datatypes and Arguments with Identifier and optional Members
	7.1.5.3 Strings
	7.1.5.4 Arrays (fixed length)
	7.1.5.5 Dynamic Length Arrays / Variable Size Arrays
	7.1.5.6 Bitfield
	7.1.5.7 Union / Variant

	7.2 Protocol specification
	7.2.1 Client/Server Communication
	7.2.2 Sender/Receiver Communication
	7.2.3 External Trigger Events
	7.2.4 Error Handling
	7.2.4.1 Return Code
	7.2.4.2 Communication Errors and Handling of Communication Errors

	7.3 Error Classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Production Errors
	7.3.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 SomeIpXf_ExtractProtocolHeaderFields
	8.3.2 SomeIpXf_<transformerId>
	8.3.3 SomeIpXf_Inv_<transformerId>
	8.3.4 SomeIpXf_Init
	8.3.5 SomeIpXf_DeInit
	8.3.6 SomeIpXf_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces

	9 Sequence diagrams
	10 Configuration specification
	A Change History
	A.1 Change History R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11
	A.1.4 Added Constraints in R25-11
	A.1.5 Changed Constraints in R25-11
	A.1.6 Deleted Constraints in R25-11

	A.2 Change History R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11
	A.2.4 Added Constraints in R24-11
	A.2.5 Changed Constraints in R24-11
	A.2.6 Deleted Constraints in R24-11

	A.3 Change History R23-11
	A.3.1 Added Specification Items in R23-11
	A.3.2 Changed Specification Items in R23-11
	A.3.3 Deleted Specification Items in R23-11
	A.3.4 Added Constraints in R23-11
	A.3.5 Changed Constraints in R23-11
	A.3.6 Deleted Constraints in R23-11

	A.4 Change History R22-11
	A.4.1 Added Specification Items in R22-11
	A.4.2 Changed Specification Items in R22-11
	A.4.3 Deleted Specification Items in R22-11

	B Referenced Meta Classes
	C Features of SOME/IP not supported by AUTOSAR SOME/IP transformer
	D Examples
	D.1 Serialization of a Client/Server Operation
	D.1.1 Client
	D.1.2 Server

