AUTSSAR

Document Title Specification of RAM Test
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 76

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
2029-11-24 R22-1 1 gg;gS:R » Changed [SWS_RamTst_00999] to
i Management [SWS_RamTst_NA_00999]
wrosar | " Gerfemonn A7l defned =
2021-11-25 | R21-11 Il\qllzlr?zsgment chronous(RamTst_ErrorNotification,
g RamTst_TestCompletedNotification)
AUTOSAR » Updated the structure and tables of the
2020-11-30 | R20-11 | Release error sections
Management - Editorial changes
» MCALMulticoreDistribution(CONC_639)
AUTOSAR » Production errors updated
2019-11-28 R19-11 Release « Editorial ChangeS
Management

» Changed Document Status from Final to
published

AUTSSAR

» MCALMulticoreDistribution(CONC_639)
as DRAFT

AUTOSAR
2018-10-31 4.4.0 Release * Header File Cleanup
Management)))
» Minor corrections; For details please
refer to the ChangeDocumentation
» Updated traceability
AUTOSAR
2017-12-08 4.3.1 Release * minor corrections / clarifications /
Management editorial changes; For details please
refer to the ChangeDocumentation
* Removed subsection 7.5 Debugging
» Renamed "RamTstGetVersionInfoApi to
"RamTstVersionInfoApi"
* Removed [SWS_RamTst_00167] and
[SWS_RamTst_00168]
» Added line "Supported Config Variants"
AUTOSAR to the table of the module definition in
10.2.1
2016-11-30 | 4.3.0 Release
Management » Added sections Runtime Errors and
Transient Faults
* Renamed "[RS_SPAL_12448]" to
"[SRS_SPAL_12448]"
» Removed BSW00434, BSW00443,
BSW00444, [SRS_BSW_00370],
[SRS_BSW_00435], [SRS_BSW_
00436]
» Updated Pass/Fail Criterias for Extended
Production Errors
AUTOSAR _
2015-07-31 409 Release » Debugging support marked as obsolete
Management « Diverse corrections
« Editorial changes
AUTOSAR oA
5014-10-31 | 4.2.1 Release . é(rjd(;ad Far?sél;alerrlterlas for Extended
Management oductio ors
AUTOSAR « Editorial changes
2014-03-31 4.1.3 Release

Management

» Updated traceability

AUTSSAR

» Removed timing attribute of requirement
[SWS_RamTst_00110]

AUTOSAR
2013-10-31 | 4.1.2 Release - Editorial changes
Management
* Removed chapter(s) on change
documentation
* Alignment to the new
SWS_BSWGeneral document
» Updated the document for Extended
AUTOSAR Production Errors
2013-03-15 | 4.1.1 Administration « Alignment to official naming in other
Autosar documents
* Adjustment to ISO 26262: major
* Clarification of some requirements
» Clarification of some requirements.
2011-12-22 | 4.0.3 ﬁg;(i?ﬂss,?rlzﬁon * Typos correction.
» Added a new requirement for DET error
reporting
* Clarification on some configuration
AUTOSAR parameters
2010-09-30 | 3.1.5 Administration « Clarification of some types used in API
 Improvement of error reporting
* Foreground tests added
* Allow more than one configuration per
2010-02-02 | 3.1.4 AUTOSAR test algorithm
Administration
* Further maintenance for R4.0
* Legal disclaimer revised
2009-02-04 | 3.1.2 AUTOSAR CM » Updated document to new SWS macros
2008-08-13 | 3.1.1 AUTOSAR - Legal disclaimer revised
Administration
. i f fi in Ch 1
5008-02-01 3.0.0 AUTOSAR Correction of figures in Chapter 1 and

Administration

Chapter 9.

Y%

AUTSSAR

* RAM test concept documented and
included;

* Requirements tables updated;

» Wording/grammar changes;

AUTOSAR
2007-12-21 | 3.0.1 Administration « Sequence diagram changes;
» Generated content corrected/modified.
* Document meta information extended
» Small layout adaptations made
* Fixed bug 18934 (changes only in
2007-12-21 3.0.1 ?U-LO.SAIROﬁ. chapter 8, no changes in chapter 9 and
echnical Office chapter 10)
* Tables generated from UML-models,
UML-diagrams linked to UML-model,
AUTOSAR general improvements of requirements
2007-07-24 | 2.1.16 Technical Office in preparation of CT-development. No
changes in the technical contents of the
specification.
* "Advice for users" revised
2007-01-24 | 2.1.15 QUTQ.SAR ,
dministration « "Revision Information” added
* File include structure updated
* "Modified Hamming code" test removed
» RamTst_Stop() and RamTst_Continue()
AUTOSAR changed to "asynchronous”
2006-11-28 | 2.1.1 Administration * Dem API updated
» Configuration description corrected
* descriptions optimized
* Legal disclaimer revised
2006-05-16 | 2.0 AUTOSAR * Initial release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 9
2 Acronyms and Abbreviations 18
3 Related documentation 19
3.1 Input documents & related standardsandnorms 19
3.2 Related specification 19

4 Constraints and assumptions 20
4.1 Limitations 20
42 FullRAM Test e 20
4.3 Partial RAM Test 21
4.4 Applicability to cardomains o 21

5 Dependencies to other modules 22
6 Requirements Tracing 23
7 Functional specification 26
7.1 Requirements 26
7.2 Error Classification 27
7.2.1 DevelopmentErrors 28
7.22 RuntimeErrors 28
7.2.3 ProductionErrors o 28
7.2.4 Extended Production Errors oL 29

7.3 General Test Behavior 30

8 API specification 33
8.1 Importedtypes 33
8.2 Type definitions 33
8.2.1 RamTst_ConfigType 33
8.2.2 RamTst_ExecutionStatusType 33
8.2.3 RamTst_TestResultType. 34
8.2.4 RamTst_AlgParamsldType 35
8.2.5 RamTst_AlgorithmType 35
8.2.6 RamTst_NumberOfTestedCellsType 36
8.2.7 RamTst_NumberOfBlocksType, 36

8.3 Function definitions L 36
8.3.1 RamTst Init. 37
8.3.2 RamTst Delnit 38
8.3.3 RamTst Stop. 38
8.3.4 RamTst Allow 39
8.3.5 RamTst Suspend 40
8.3.6 RamTst Resume 41

AUTSSAR

8.3.7 RamTst_GetExecutionStatus 41
8.3.8 RamTst _GetTestResult 42
8.3.9 RamTst GetTestResultPerBlock 43
8.3.10 RamTst_GetVersioninfo 44
8.3.11 RamTst_GetAlgParams 44
8.3.12 RamTst_GetTestAlgorithm 45
8.3.13 RamTst_GetNumberOfTestedCells 46
8.3.14 RamTst _SelectAlgParams 46
8.3.15 RamTst_ChangeNumberOfTestedCells 48
8.3.16 RamTst_ RunFullTest 49
8.3.17 RamTst_RunPartialTest 50
8.4 Callback notifications 52
8.5 Scheduled functions 52
8.5.1 RamTst MainFunction. 52
8.6 Expectedinterfaces 54
8.6.1 Mandatoryinterfaces, 54
8.6.2 Optionalinterfaces 55
8.6.3 Configurable interfaces 55
8.6.3.1 RamTst_TestCompletedNotification 56
8.6.3.2 RamTst_ErrorNotification 56

9 Sequence diagrams 58
9.1 RamTst_MainFunction (Examples) 58
9.2 RamTst_ChangeNumberOfTestedCells 61
9.3 RamTst_SelectAlgParams 61
9.4 RamTst_GetAlgParams 62
9.5 RamTst_GetExecutionStatus 62
9.6 RamTst GetTestResult 62
9.7 RamTst_GetTestResultPerBlock 63
9.8 RamTst_GetTestAlgorithm 63
9.9 RamTst _GetNumberOfTestedCells 63
10 Configuration specification 64
10.1How toread thischapter 64
10.2Containers and configuration parameters 64
10.2.1Variants e e e 65
10.2.2RamTst e 65
10.2.3 RamTstDemEventParameterRefs 66
10.2.4 RamTstCommon 68
10.2.5 RamTstAlgorithms 77
10.2.6 RamTstConfigParams, 80
10.2.7 RamTstAlgParams 83
10.2.8 RamTstBlockParams 88
10.3Published Information 92

10.3.1 RamTstPublishedInformation 92

AUTSSAR

10.4Implementation Specific Information and Parameters 93

A Not applicable requirements 94

B Change history of AUTOSAR traceable items 95
B.1 Traceable item history of this document according to AUTOSAR Release

R25-11 . . . e 95

B.1.1 Added Specification ltemsin R25-11 95

B.1.2 Changed Specification ltemsin R25-11 95

B.1.3 Deleted Specification Itemsin R25-11 95

B.1.4 Added Constraintsin R25-11 95

B.1.5 Changed Constraintsin R25-11 95

B.1.6 Deleted Constraints in R25-11

AUTSSAR

1 Introduction and functional overview

This document specifies the functionality, APl and configuration of the AUTOSAR Basic
Software module "RAM Test".

The RAM Test is a test of the physical health of the RAM cells. It is not intended to test
the contents of the RAM. RAM used for registers is also tested.

Within this document, a RAM cell is understood as the unit of memory, which can be
individually addressed by the processor. Thus the cell size in bits is for example 16 for
a 16-bit processor.

Different algorithms exist to test RAM. They target different sets of fault models,
achieve different coverages, result in different runtimes and are either destructive or
non-destructive. Coverage also depends on the underlying physical RAM architec-
ture. 1SO 26262 only establishes a distinction between three basic coverage levels
Low (60%), Medium (90%) and High (99%) [1]. This basic distinction is also used in
the AUTOSAR specification.

An ECU safety analysis must be performed to determine which RAM Test diagnostic
coverage rate (Low, Medium or High) is required. Appropriate RAM Test algorithms
and further configuration parameters are then selected at compile time. At run time,
the application software may choose between the compiled algorithms (and between
further parameters).

A RAM Test may be called synchronously by the test environment (hereafter called
"foreground test") or may be called in a cyclic manner by an OS task or other cyclic
calling method (hereafter called "background test"). The test environment may select
test parameters, start and stop the test, and get status reports. Development errors
are reported to the Default Error Tracer (DET) and production errors are reported to
the Diagnostic Event Manager (DEM).

The RamTst module consists of a RamTst_MainFunction for background testing,
the APIs for foreground testing, several configuration and status APls (Application Pro-
gramming Interface), and several configuration containers.

TEST FUNCTION APIs DEFINITION

RamTst_Init Prepare resources for testing as necessary. Initialize the test execution state as necessary.
Proceed to "test stopped" state after initialization is complete.

RamTst_DeInit Reset all used registers to reset values, and release all used resources.

RamTst_Allow Permit the RamTst_MainFunction to perform testing at its next scheduled call.

RamTst_Stop Prohibit the RamTst_MainFunction from performing tests at its next scheduled call. When

RamTst_Stop is called, testing stops after the current atomic sequence. Test status is retained,
but test parameters (block number, loop count, etc.) are discarded.

RamTst_Suspend Temporarily prohibit the RamTst_MainFunction from performing tests at its next scheduled
call. When RamTst_Suspend is called, testing stops after the current atomic sequence. Test
status and test parameters are retained.

RamTst_Resume Permits the RamTst_MainFunction to continue testing at the point where it was suspended, at
its next scheduled call. Testing continues according to the saved test parameters.

\Y

AUTSSAR

A
TEST FUNCTION APIs DEFINITION
RamTst_ Test the entire RAM space without interruption. RamTst_Stop must be called prior to calling this
RunFullTest API.
RamTst_ Test the portion of the RAM defined by the API. RamTst_Stop or RamTst_Suspend must be
RunPartialTest called prior to calling this API.

TEST PARAMETER AND FEEDBACK APIs

RamTst_GetVersionInfo

RamTst_GetExecutionStatus

RamTst_GetTestResult

RamTst_GetTestResultPerBlock

RamTst_GetAlgParams

RamTst_GetTestAlgorithm

RamTst_GetNumberOfTestedCells

RamTst_SelectAlgParams

RamTst_ChangeNumberOfTestedCells

RamTst_MainFunction is the scheduled function for background testing.

» For background testing, RamTst_MainFunction is called periodically by a
scheduler, and is interruptible. One complete test consists of testing with one
algorithm over the memory space defined by the currently selected configuration.
This complete test is split up over many scheduled calls.

» For foreground testing, RamTst_RunFullTest() or RamTst_RunPartial-
Test() is called once, and is not interruptible by routines which access the tested
memory area (this has to be controlled by the test environment). It tests with one
algorithm over the memory space (or a subset in case of partial test) defined by
the selected configuration.

The state chart below shows the various states of the test execution.

AUTSSAR

De-initialized Test stopped

Test
suspended

Figure 1.1: Phases of RAM Test module

Event Event Trigger
T API:

T2 APIl: RamTst_RunFullTest
APl: RamTst_RunPartialTest
APIl: RamTst_Allow

RamTst_Init

T3 APIl: RamTst_Stop
(or end of RamTst_RunFullTest)
(or end of RamTst_RunPartialTest)

T4 APl: RamTst_Suspend
(or end of RamTst_RunPartialTest)
T5 APl: RamTst_Resume
APl: RamTst_RunPartialTest
T6 APl: RamTst_Delnit
T7 APIl: RamTst_Stop
T8 APIl: RamTst_DeInit
T9 APl: RamTst_DelInit
T10 APl: RamTst_Init

Note: The state "test running" does not necessarily mean that testing is continuously
being performed. For foreground testing, it does mean that the test is directly per-
formed by an API call and RamTst_MainFunction is not scheduled. For background
testing, it only means that RamTst_MainFunction is permitted to test a small portion
of the RAM when it is called periodically by the scheduler.

AUTSSAR

In the actual specification, this state is further divided into "test allowed" and "test
running". The state "test allowed" is only used in the initial phase of a background test;
for the big picture given in this overview this difference has been neglected.

All APIs and configuration variables are fully defined elsewhere within this document.

The following table shows, which APIs are allowed to be called in each state. For any
cell in the table where there is an "N", there should be a corresponding DET error
assigned.

API: Application Programming Interface

API allowable in this State?
APIs which cause a change of state in the state chart kS o __ - -
3 £
& 28 .2 g
g 3 52 5=
a ke s 23
RamTst_Init N N N Y
RamTst_RunFullTest Y N N N
RamTst_RunPartialTest Y N Y N
RamTst_Suspend 1 N Y N N
RamTst_Resume N N Y N
RamTst_Stop N Y Y N
RamTst_Allow 2 Y N N N
RamTst_DelInit Y Y Y N
RamTst_GetVersionInfo Y Y Y Y
RamTst_GetExecutionStatus Y Y Y N
RamTst_GetTestResult Y Y Y N
RamTst_GetTestResultPerBlock Y Y Y N
RamTst_GetAlgParams Y Y Y N
RamTst_GetTestAlgorithm Y Y Y N
RamTst_GetNumberOfTestedCells Y Y Y N
RamTst_SelectAlgParams 3 Y N N N
RamTst_ChangeNumberOfTestedCells 4 Y N N N

The following figure shows how blocks are configured for an algorithm, and how
RamTst_MainFunction then tests the memory cells for each block in a background
test.

'"RamTst_Suspend causes a state change to "test suspended" at the end of the current RamTst_
MainFunction atomic sequence if RamTst_MainFunction is actively testing.

2RamTst_Allow is called to permit the RamTst_MainFunction to test when called, it does not
initiate any test itself.

SramTst_Stop must first be called before selecting another configuration parameter set by
RamTst_SelectAlgParams.

4RamTst_ChangeNumberOfTestedCellsoperates at the end of the current RamTst_MainFunc—
tion atomic sequence if RamTst_MainFunction is actively testing. For a foreground test, RamTst_
ChangeNumberOfTestedCells is not relevant.

AUTSSAR

RAMTST_ALG_PARAMS [D 1
PAIRN
N
| START_ADDRESS, END_ADDRESS, |
| BLOCK_ID A BLOCK_ID A | i
RAM
BLOCK Al I
[[
| START_ADDRESS, END_ADDRESS, I
| BLOCK_IDB BLOCK_IDB I
RAM
BLOCK B! '
[|
| START_ADDRESS, END_ADDRESS, |
|ELOCKJDI\ BLOCK_IDn |
RAM
BLOCK n ‘
[|
n=NUMBER_OF_BLOCKS
AN AN
N AN

The scheduler calls MalnFunctlon penndlcally testlng the RasttNumberOﬂesledCelIds at each scheduled call.

After completing a RAM test RamTst_MainFunction() begins a new test at the next scheduled time, starting at the START ADDRESS of the first RAM block.
In the example below, the test is performed using RAMTST_ALG_PARAMS_ID1 over its preconflgured memory block definitions (BLOCK_ID's A through n),

in z calls to MainFunction().

YVVY

END_ADDRESS, START_ADDRESS, END_ADDRESS, I START_ADDRESS, END_ADDRESS,

START_ADDRESS,
BLOCK_IDA | I BLOCK_IDA BLOCK_ID n-1 BLOCK_ID n-1 I BLOCK_IDn BLOCK_IDn
J— }
I I [}
ST S T U N IR I - PR U U T O R z |1
L 1 |
i
| | ' ' /¢|
J Test is finished
RamTstNumberOfTestedCells MainFunction() will repeat

in one scheduled call to MainFunction testing at the first block.

Figure 1.2: Configured memory blocks for background memory test

The following figure shows how RamTst_MainFunction is called by the scheduler,
and how it can be interrupted between atomic pieces by higher priority tasks.

Scheduled task: Scheduled task: Scheduled task:
Ramtst_MainFunction() Ramtst_MainFunction() RamTst_MainFunction()
[E— [— {—
Time needed to test [T R R e oD O O
RamTstNumberOfTestedCells with W [
the selected algorithm, (if not 11 [
interrupted by a higher-priority task) +| l¢ +I I¢ * . . s Ramist MainFunction()
. .
Time needed to Example of time Rammtﬂm) Is 4
entered. and is in returns, but stays in
complete one needed to complete . s “test running” state
atomic test unit a higher priority task test running” state p

until complete test is
finished

Figure 1.3: Main Function Schedule

RamTstNumberOfTestedCells

The RamTstNumberOfTestedCells default is set by configuration (pre-compile or
link) in the RamTstAlgParams container and applies to every block defined within
an algorithm, but can be different for each RamTstAlgParams, thus can be different

AUTSSAR

for different algorithms or for different parameter sets for the same algorithm. RamT-
stNumberOfTestedCells can be changed during runtime using the APl RamTst__
ChangeNumberOfTestedCells. This capability, for example, could be used to re-
duce the duration of the RAM test task before running some other high-bandwidth task
in order to prevent task overruns. Such a situation could occur when unusual conditions
in a vehicle cause a normally dormant special algorithm to become active.

RamTstNumberOfTestedCells is only applicable to background testing.

RamTstNumberOfTestedCells may not exceed RamTstMaxNumberOfTested-
Cells.

The absolute maximum size of RamTstNumberOfTestedCells for a given RamT-
stAlgParams container is defined and documented by the implementer. This maxi-
mum should be equal to the sum of the block sizes as defined by the block descriptions.
The integrator sets RamTstExtNumberOfTestedCells to this absolute maximum
value (pre-compile or link) in the RamTstAlgParams container. RamTstExtNum-—
berOfTestedCells is not changeable during run time.

The integrator also configures (pre-compile or link) the RamTstMaxNumberOfTest -
edCells for each RamTstAlgParams container. The integrator must carefully select
RamTstMaxNumberOfTestedCells such that it puts an upper limit on the run time
of RamTst_MainFunction in a background task according to the system needs for
throughput. In no case should RamTstMaxNumberOfTestedCells be set to a value
greater than RamTstExtNumberOfTestedCells. RamTstMaxNumberOfTested-
Cells is not changeable during run time.

The minimum value of RamTstNumberOfTestedCells is defined and documented
by the implementer. The minimum should be defined as one cell unless there is some
physical reason for a larger minimum. The integrator configures (pre-compile or link)
the RamTstMinNumberOfTestedCells to be greater than or equal to the minimum
defined by the implementer. RamTstMinNumberOfTestedCells applies to the entire
RAM test module, and not to individual algorithms or parameter sets. It is configured
in the RamTstConfigParams container. RamTstMinNumberOfTestedCells is not
changeable during run time.

The cell size (in terms of bits) is also defined by the implementer and cannot be
changed at integration time, as it should be a fixed value for a given processor. There-
fore the corresponding parameter is specified as a published parameter (see chapter
10.3).

No matter how many blocks or partial blocks are tested in one RamTst_MainFunc—
tion scheduled call, test status information must be maintained for each block sepa-
rately.

AUTSSAR

RamTst_MainFunction

A background test is performed by the scheduler periodically calling the RamTst_
MainFunction to test a RamTstNumberOfTestedCells of memory using the se-
lected algorithm, until the entire defined area of RAM is tested. This RamTst_Main-
Function can be interrupted at the end of each atomic sequence during a scheduled
call.

RamTst_MainFunction:

* Is made up of one or more atomic (i.e. uninterruptable) pieces of code. The num-
ber of cells that can be tested in one atomic sequence is considered as imple-
mentation specific, thus it is not determined by any (standardized) configuration
parameter. However, it is expected that at least RamTstMinNumberOfTested—
Cells are completely tested during one atomic sequence. It should be noted,
that in general the detection of coupling faults between cells is limited to those
cells which are tested together in the same atomic sequence.

At the end of each atomic piece, internal flags are checked to see if an OS task
has changed any parameter of the state chart, and to respond to question-type
APls.

» Knows inherently:

— which algorithm it is using;

which memory blocks must be tested for this algorithm,

start and end addresses of each block;

number of cells to test at each call

further parameters for the test (see chapter 7.3)
* Remembers:
— which block it is in;

which address to start at in the next call;

status of the test;

overall test results;

test results for each block.

* When RamTstNumberOfTestedCells is reached, RamTst_MainFunction
ends testing for that scheduled call, and starts testing in the next scheduled call
at the next (saved) address.

* When the end of a block is reached during a scheduled call, RamTst_Main-
Function continues testing at the beginning of the next block, and continues
until RamTstNumberOfTestedCells is reached. (Note: The atomic test se-

AUTSSAR

quence should be careful to take into account any issues regarding crossing into
the next block.)

* When all blocks are fully tested, RamTst_MainFunction issues a notification
and repeats testing at the first block.

« If there is an error during testing, RamTst_MainFunction issues a notification
(if configured) and continues testing.

RamTst_RunFullTest, RamTst_RunPartialTest

"Full" and "Partial" refers to full or partial memory, and not the full or partial set of algo-
rithms over the memory space. The test is performed over the specified memory area
using only one algorithm. The desired parameter set (which includes the algorithm) is
selected by calling the APl RamTst_SelectAlgParams before calling the foreground
test API.

Note that due to the possibility of testing larger memory areas without interruption the
fault coverage of foreground tests is in general better than of background test for the
same algorithm.

RamTst_RunFullTest API:

The user calls RamTst_RunFullTest with no arguments (the test parameter set is
selected before). This test is normally used for a full RAM check at system startup or
shutdown.

Sequence:
* RamTst_Stop
* RamTst_SelectAlgParams to chose the desired parameter set

* RamTst_RunFullTest

RamTst_RunPartialTest API:

The user calls RamTst_RunPartialTest with one argument specifying the desired
block to be tested. This test is used for example to check a specified memory section
immediately before using that memory. This capability is to enable a system safety
concept.

Sequence:
* RamTst_Stop

* RamTst_SelectAlgParams to chose the desired parameter set

AUTSSAR

* RamTst_RunPartialTest (ChosenBlock)
or if background test shall continue afterwards:
* RamTst_Suspend

* RamTst_RunPartialTest (ChosenBlock)

AUTSSAR

2 Acronyms and Abbreviations

Abbreviation / Acronym: Description:

API Application Programming Interface
CRC Cyclic Redundancy Check

DEM Diagnostic Event Manager

DET Default Error Tracer

DMA Direct Memory Access

ECC Error Correction Code

NMI Non Maskable Interrupt

RAM Random Access Memory

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Definitions

Note: These definition are copied from the AUTOSAR_FO_TR_Glossary.pdf [2]

Synchronous: A communication is synchronous when the calling software entity is
blocked until the called operation is evaluated. The calling software entity continues
its operation by getting the result. Synchronous communication between distributed
functional units has to be implemented as remote procedure call.

Asynchronous: Asynchronous communication does not block the sending software
entity. The sending software entity continues its operation without getting a response
from the communication partner(s). There could be an acknowledgement by the com-
munication system about the sending of the information. A later response to the send-
ing software entity is possible.

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] 1ISO 26262-5:2018 Part 5: Product development at the hardware level
https://www.iso.org

[2] Glossary
AUTOSAR_FO_TR_Glossary

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] Requirements on RAM Test
AUTOSAR_CP_RS_RAMTest

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[6] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for RAM Test.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for RAM Test.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions

Note: To achieve ISO 26262 compliance, the software implementation must be ac-
cording to the requirements of ISO 26262 for the required safety integrity level (ASIL
A, ASIL B, ASIL C or ASIL D) of the safety goals of the system.

4.1 Limitations

[SWS_RamTst_00002] [During the execution of a RAM test algorithm, no other soft-
ware shall be allowed to modify the RAM area under test. |

In case of background test, the testing code shall be implemented in small atomic
pieces in order to accomplish this.

In case of foreground test, it is assumed that the test environment provides the condi-
tions for exclusive access to the tested RAM area.

The rationale behind this requirement is the incapability of the RAM test module to
ensure data consistency (e.g. during an NMI, or during a DMA transfer).

[SWS_RamTst_00082] [The implementer shall provide integration hints for each al-
gorithm, e.g. "do not use in parallel with a DMA". |

When testing shared memory in a multi-core system it might not be possible to
get exclusive access to more than one memory cell via interrupt locking. In this
case, the usage of a test configuration for shared memory blocks must be restricted
to foreground tests and to specific ECU states, see 3 Related Documentation and
[SWS_RamTst_00203] for additional information.

In a multi-core system, disabling the interrupts does not guarantee atomicity for more
than a single memory access. Since a RAM test operation consists of more than a
single memory access, a more sophisticated mechanism is needed to realize atomicity.
Therefore, different solutions for shared and non-shared RAM are required.

4.2 Full RAM Test

A full test shall be executed when only a single core is running. In a Master-Slave
system, this is possible during the initial boot phase while only the master core is
active. Additionally full tests can be performed during ECU sleep mode. This allows
the EcuM to delay the sleep state of one of the cores to perform a RAM tests on that
core.

Full RAM tests shall be allowed whenever atomicity across cores can be guaranteed,
known moments are,

1. Before the master core has activated any other core.

AUTSSAR
2. When all cores except one have entered sleep mode.

4.3 Partial RAM Test

During normal operation, the memory is split into non-shared and shared parts. The
integrator has to specify for each ALGORITHM_ID the memory areas on which the
algorithm works. A non-shared area is owned by a specific core and can be tested
by the code running on that core as in the single core case. Lack of atomicity in MC
causes problems for shared memory.

4.4 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

An actual selected parameter set for a RAM test basically consists of a set of RAM
bocks and a test algorithm.

The available parameter sets for the RAM blocks and test algorithms must be con-
figured at pre-compile time. The software responsible for monitoring the RAM state
of health must then select an appropriate parameter set, (it can also switch between
several ones at runtime), according to the results of the ECU safety analysis.

Within each parameter set, the detailed definition of the blocks to be tested, e.g. their
start/end address, must be configured at pre-compile or link time. Further parameters
controlling the details of the test are explained later in the document (see 7.3).

If the test environment calls a RAM Test API to test all or part of the RAM immediately
(in the foreground), then the test environment is responsible to mask interrupts as
desired or to call the test in a particular situation, where the tested blocks are not
accessed by other modules.

For background testing, the ECU State Manager or the BSW Scheduler must schedule
the RAM Test main function. The number of cells tested in one cycle is set as a default
at pre-compile or link time based upon the needs of the scheduler. This size may be
changed during runtime to accommodate a change in the schedule. In addition, the
parameter set used for the background test may be switched during runtime, so that
e.g. certain critical blocks can be tested in certain ECU states with higher coverage
than in other ECU states or uncritical blocks can be excluded from tests in certain ECU
states.

In development mode the error-hook function of module DET will be called.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4], [5], [6] and links to the
fulfillment of these.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_RamTst_00007] [SWS_RamTst_00099]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_RamTst_00221]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_RamTst_00033] [SWS_RamTst_00037]
[SWS_RamTst_00039] [SWS_RamTst_00040]
[SWS_RamTst_00095] [SWS_RamTst_00097]
[SWS_RamTst_00170] [SWS_RamTst_00172]
[SWS_RamTst_00210] [SWS_RamTst_00214]

[SRS_BSW_00325]

The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

[SWS_RamTst_00221]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_RamTst_00102] [SWS_RamTst_00103]

[SRS_BSW_00337]

Classification of development errors

[SWS_RamTst_00067]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_RamTst_00011] [SWS_RamTst_00067]
[SWS_RamTst_00071] [SWS_RamTst_00111]
[SWS_RamTst_00213] [SWS_RamTst_00216]
[SWS_RamTst_01002] [SWS_RamTst_01005]
[SWS_RamTst_01008]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_RamTst_00026] [SWS_RamTst_00027]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_RamTst_00058]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_RamTst_00099]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_RamTst_00110]

[SRS_BSW_00385]

List possible error notifications

[SWS_RamTst_00067] [SWS_RamTst_01002]
[SWS_RamTst_01005] [SWS_RamTst_01008]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_RamTst_00081]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_RamTst_00006]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_RamTst_00109]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_RamTst_00093] [SWS_RamTst_01011]
[SWS_RamTst_01012]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00427]

ISR functions shall be defined and
documented in the BSW module
description template

[SWS_RamTst_00221]

[SRS_BSW_00439]

Enable BSW modules to handle
interrupts

[SWS_RamTst_00221]

[SRS_BSW_00450]

A Main function of a un-initialized
module shall return immediately

[SWS_RamTst_00175]

[SRS_RamTst_13800]

The number of tested cells shall be
changeable at runtime

[SWS_RamTst_00036] [SWS_RamTst_00107]

[SRS_RamTst_13802]

Multiple RAM areas shall be
configurable at post build/ link time

[SWS_RamTst_00026]

[SRS_RamTst_13803]

A subset of available RAM Test
algorithms shall be selectable at
pre-compile time

[SWS_RamTst_00026] [SWS_RamTst_00027]
[SWS_RamTst_00063] [SWS_RamTst_00224]
[SWS_RamTst_00225] [SWS_RamTst_00226]

[SRS_RamTst_13804]

A subset of the pre-compile time
selected RAM Check test algorithms
shall be selectable at runtime

[SWS_RamTst_00083] [SWS_RamTst_00105]

[SRS_RamTst_13809]

It shall be possible to divide the RAM
test execution into smaller pieces

[SWS_RamTst_00008] [SWS_RamTst_00026]
[SWS_RamTst_00059] [SWS_RamTst_00107]
[SWS_RamTst_00108]

[SRS_RamTst_13810]

Current status of RAM test execution
per block shall be available through a
get status interface

[SWS_RamTst_00010] [SWS_RamTst_00011]
[SWS_RamTst_00019] [SWS_RamTst_00024]
[SWS_RamTst_00038] [SWS_RamTst_00104]

[SRS_RamTst_13811]

The RAM test module shall be able to
perform its tests in a non-destructive
manner

[SWS_RamTst_00060] [SWS_RamTst_00061]
[SWS_RamTst_00200]

[SRS_RamTst_13812]

The RAM test module shall be able to
perform its tests in a destructive
manner

[SWS_RamTst_00061] [SWS_RamTst_00201]

[SRS_RamTst_13816]

Effects of Instruction / Data queue
shall be taken into account

[SWS_RamTst_00062]

[SRS_RamTst_13820]

RAM test execution status shall be
provided by a notification mechanism

[SWS_RamTst_00043] [SWS_RamTst_00044]
[SWS_RamTst_00045] [SWS_RamTst_00046]
[SWS_RamTst_00113] [SWS_RamTst_00114]

[SRS_RamTst_13822]

A safety mechanism with low
coverage shall be available

[SWS_RamTst_00224]

[SRS_RamTst_13823]

A Test algorithm with medium
coverage shall be available

[SWS_RamTst_00225]

[SRS_RamTst_13824]

A Test algorithm with high coverage
shall be available

[SWS_RamTst_00226]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_RamTst_00043] [SWS_RamTst_00044]
[SWS_RamTst_00045] [SWS_RamTst_00046]

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_RamTst_00043] [SWS_RamTst_00044]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_RamTst_00007] [SWS_RamTst_00026]
[SWS_RamTst_00027]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_RamTst_00221]

[SRS_SPAL_12163]

All driver modules shall implement an

[SWS_RamTst_00146]

interface for de-initialization
Vv

AUTSSAR

A

Requirement Description Satisfied by

[SRS_SPAL_12263] The implementation of all driver [SWS_RamTst_00026] [SWS_RamTst_00027]
modules shall allow the configuration
of specific module parameter types at

link time

[SRS_SPAL_12448] All driver modules shall have a [SWS_RamTst_00033] [SWS_RamTst_00037]
specific behavior after a development | [SWS_RamTst_00039] [SWS_RamTst_00040]
error detection [SWS_RamTst_00084] [SWS_RamTst_00095]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Requirements

[SWS_RamTst_00005] [The RAM Test module shall provide the background RAM
test as an asynchronous service. |

[SWS_RamTst_00206] [The RAM Test module shall provide the foreground RAM test
as an synchronous service. |

[SWS_RamTst_00063]
Upstream requirements: SRS_RamTst_13803

[The configuration process for the RAM Test module shall allow the selection of a
subset of different RAM Test algorithms during pre-compile time. |

This subset is to be chosen from the different RAM Test algorithms as
specified in [SWS_RamTst_00224], [SWS_RamTst_00225], [SWS_RamTst_00226],
[SWS_RamTst_00204].

[SWS_RamTst_00060]
Upstream requirements: SRS_RamTst_13811

[If non-destructive RAM Test is chosen, the RAM Test module shall save the RAM
area to be tested before the module modifies it. The RAM Test module shall execute
the complete procedure (saving, changing, restoring) without interruption. |

Note: "Saving" and "restoring" does not necessarily mean explicit copying actions. If
the test algorithm is "transparent" it restores the original content in the tested cells after
the test without needing additional memory for saving.

[SWS_RamTst_00061]

Upstream requirements: SRS_RamTst_13811, SRS_RamTst_13812
[For both the destructive and non-destructive options, the RAM Test module shall en-
sure that the test algorithm does not overwrite the RAM Test internal variables. |

[SWS_RamTst_00062]

Upstream requirements: SRS_RamTst_13816
[After writing to a cell and before reading back, the RAM Test module shall provide the
possibility to inject instruction(s) forcing the controller to clear its CPU internal cache. |

[SWS_RamTst_00224]
Upstream requirements: SRS _RamTst_ 13803, SRS _RamTst_13822

[Unless covered by some hardware mechanism the RAM Test module shall provide a
test algorithm with low coverage as stated in [1], Table D.1.]

AUTSSAR

[SWS_RamTst_00225]
Upstream requirements: SRS_RamTst_13803, SRS_RamTst_13823

[Unless covered by some hardware mechanism the RAM Test module shall provide a
test algorithm with medium coverage as stated in [1], Table D.1. |

[SWS_RamTst_00226]
Upstream requirements: SRS_RamTst_13803, SRS_RamTst_13824

[Unless covered by some hardware mechanism the RAM Test module shall provide a
test algorithm with high coverage as stated in [1], Table D.1.]

[SWS_RamTst_00204] [Unless covered by some hardware mechanism the RAM
Test module shall provide a test algorithm, the RAM Test module may provide ad-
ditional vendor or hardware specific test algorithms or different variants of the algo-
rithms listed above. These algorithms must be clearly documented by the imple-
menter, especially their fault coverage (for vendor specific configuration parameters
see [SWS_RamTst_00205]. |

[SWS RamTst _00221]

Upstream requirements: SRS_BSW_00427, SRS_BSW_00314, SRS_BSW_00325, SRS_BSW_
00439, SRS_SPAL_12129

[A processor specific test algorithm is allowed to make use of hardware macros and/or
interrupts supporting the detection of data loss (like CRC, ECC) if appropriate. The im-
plementer must describe any interrupt routine in the Basic Software Module Description
and the implementation must follow the general requirements for interrupt handling. |

7.2 Error Classification

Chapter [3, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

AUTSSAR

7.2.1 Development Errors

[SWS_RamTst_00067] Definition of development errors in module RamTst
Upstream requirements: SRS_BSW_00337, SRS_BSW_00339, SRS _BSW_00385

Type of error Related error code Error value

A particular APl is called in an unexpected state RAMTST_E_STATUS_FAILURE 0x01
(see also: [SWS_RAMTST_00033], [SWS_
RAMTST_00037], [SWS_RAMTST_00095],
[SWS_RAMTST_00097], [SWS_RamTst_00170],
[SWS_RamTst_00172], [SWS_RamTst_00210],
[SWS_RamTst_00214])

API| parameter out of specified range (see also: RAMTST_E_OUT_OF_RANGE 0x02
[SWS_RAMTST_00039], [SWS_RAMTST_
00040], [SWS_RAMTST_00084], [SWS_
RamTst_00223])

API service used without module initialization (see | RAMTST_E_UNINIT 0x03
also: [SWS_RAMTST_00089])
API service called with a NULL pointer (see also: RAMTST_E_PARAM_POINTER 0x04

[SWS_RamTst_00222])

]

[SWS_RamTst_00089] [The function RamTst_Init shall be called first before call-
ing any other RAM test functions. If this sequence is not respected, the error code
RAMTST_E_UNINIT shall be reported to the Default Error Tracer (if development error
detection is enabled). |

[SWS_RamTst_00069] [Additional errors that are detected because of specific im-
plementation and/or specific hardware properties shall be added in the RAM Test de-
vice specific implementation specification. The classification and enumeration shall be
compatible to the errors listed above in [SWS_RamTst_00067]. |

7.2.2 Runtime Errors

There are no runtime errors.

7.2.3 Production Errors

There are no production errors.

AUTSSAR

7.2.4 Extended Production Errors

[SWS_RamTst_00071]
Upstream requirements: SRS_BSW_00339

[Production errors shall be reported to Diagnostic Event Manager (DEM) via the Dem_
SetEventStatus API.]

[SWS_RamTst_01002] RAM failure during test.
Upstream requirements: SRS_BSW_00339, SRS_BSW_00385

[

Diagnostic Event (Error Name) RAMTST_MAIN_RAM_FAILURE

Description The function RamTst_MainFunction shall update the overall test result status and

error is updated based on the current status of RamTstAlgParams.See: [SWS_
RamTst_00011].

Failed condition If test result of at least one block is RAMTST_RESULT_NOT_OK. See [SWS_
RamTst_01003].
Passed condition If test result of all the blocks is RAMTST_RESULT_OK. See [SWS_RamTst_01004].

]

[SWS_RamTst_01003] [RAM test for RamTst_MainFunction function shall Fail if
test result of at least one block is RAMTST_RESULT_NOT_OK. |

[SWS_RamTst_01004] [RAM test for RamTst_MainFunction function shall Pass if
test result of all the blocks is RAMTST_RESULT_OX. |

[SWS_RamTst_01005] RAM failure during test.
Upstream requirements: SRS_BSW_00339, SRS _BSW_00385

[

Diagnostic Event (Error Name) RAMTST_RUNFL_RAM_FAILURE

Description The function RamTst_RunFullTest shall update the overall test result status and error
is updated based on the current status of RamTstAlgParams. See: [SWS_RamTst_
00213].

Failed condition If test result of at least one block is RAMTST_RESULT_NOT_OK. See [SWS_
RamTst_010086].

Passed condition If test result of all the blocks is RAMTST_RESULT_OK. See [SWS_RamTst_01007].

]

[SWS_RamTst_01006] [RAM Test for RamTst_RunFullTest function shall Fail if
test result of at least one block is RAMTST_RESULT_NOT_OK. |

[SWS_RamTst_01007] [RAM Test for RamTst_RunFullTest function shall Pass If
test result of all the blocks is RAMTST_RESULT_OX. |

AUTSSAR

[SWS_RamTst_01008] RAM failure during test.
Upstream requirements: SRS_BSW_00339, SRS_BSW_00385

Diagnostic Event (Error Name) RAMTST_PART_RAM_FAILURE

Description The function RamTst_RunPartialTest shall update the test result status of the tested
block and error is updated based on the current status of RamTstAlgParams. See:
[SWS_RamTst_00216].

Failed condition If test result of at least one block is RAMTST_RESULT_NOT_OK. See [SWS_
RamTst_01009].

Passed condition If test result of all the blocks is RAMTST_RESULT_OK. See [SWS_RamTst_01010].

[SWS_RamTst_01009] [RAM Test for RamTst_RunPartialTest function function
shall Fail if test result of at least one block is RAMTST_RESULT_NOT_OK. |

[SWS_RamTst_01010] [RAM Test for RamTst_RunPartialTest function function
shall Pass If test result of all the blocks is RAMTST_RESULT_OK. |

7.3 General Test Behavior

This sections contains detailed specifications items which hold for the foreground test
and the background test as well.

Both foreground of background tests are controlled by the currently selected parameter
set RamTstAlgParams Which defines the test algorithm, the set of memory blocks to
be tested and several attributes controlling the behavior of the test.

Note that the same test algorithm can be used as part of several different RamTstAl-
gParams, that none of the RamTstAlgParams must necessarily contain all memory
blocks and that (in general) for foreground and background tests different RamTstAl-
gParams can be selected. This allows for a flexible approach of usings the tests dif-
ferently in specific ECU modes or for different types of memory.

[SWS_RamTst_00200]
Upstream requirements: SRS _RamTst_13811

[If the configuration parameter RamTstTestPolicy for a block is set to RAMTEST_
NON_DESTRUCTIVE, the test algorithm shall restore the original memory content of the
tested cells of this block after the test (given that no error is detected). |

Hint: For a transparent test algorithm, this behavior is automatically fulfilled without
additional overhead. For a non-transparent test algorithm, this option means overhead
in runtime/memory in order to save and restore the content.

AUTSSAR

[SWS_RamTst_00201]
Upstream requirements: SRS_RamTst_13812

[If the configuration parameter RamTstTestPolicy for a block is set to RAMTEST_
DESTRUCTIVE, the test algorithm shall fill the tested cells after the test with the bit
pattern defined for this block by parameter RamTstFillPattern (given that no error
is detected). |

This requirement shall ensure reproducible behavior.

Hint: For a transparent test algorithm, specifying this option would mean runtime over-
head. For a non-transparent algorithm, the runtime overhead can be minimized, if the
fill pattern corresponds to a constant value left behind by the algorithm anyhow.

[SWS_RamTst_00202] [The overall test result - for the set of blocks in the current
RamTstAlgParams - shall be

* RAMTST_RESULT_NOT_TESTED if no test was started yet (after reset or de-init).

* RAMTST_RESULT_UNDEFINED if a test was started, not all blocks have yet been
tested and no block result is RAMTST_RESULT_NOT_OK.

e RAMTST_RESULT_OK if all blocks have been tested with result status RAMTST
RESULT_OK.

* RAMTST_RESULT_NOT_OK if at least one block test result is RAMTST_RESULT_
NOT_OK regardless whether all blocks have been already tested or not.

]

[SWS_RamTst_00207] [The test result for a specific block (identified in the given
RamTstAlgParams) - shall be

* RAMTST_RESULT_NOT_TESTED if this block is considered as not yet tested.
* RAMTST_RESULT_UNDEFINED if a test on this block is running.

* RAMTST_RESULT_OK if all memory cells in this block have been tested sucess-
fully.

* RAMTST_RESULT_NOT_OK if a failure has been detected for at least one memory
cell in this block.

]

For a given processor type, memory layout and fault model, not all possible combi-
nations of test algorithms, block configurations and their attributes make sense. For
example:

« The implementer might want to exclude a certain combination of test algorithm
and RamTstTestPolicy.

AUTSSAR

* A certain test algorithm might have to be excluded from background tests due to
performance reason.

« Some memory blocks might have to be excluded from background tests due to
performance reasons or because an exclusive access cannot be guaranteed un-
der normal operation (e.g. for shared memory).

This leads to the following requirement:

[SWS_RamTst_00203] [The implementer shall document possible restrictions for the
combination of configuration parameters and for their usage in background/foreground
tests. Where applicable, he shall support this by the definition of predefined or recom-
mended configuration parameter values attached to the BSW Module Description. |

AUTSSAR

8 API specification

8.1 Imported types

This chapter lists data type definitions for the included variables and constants.

[SWS_RamTst_00098] Definition of imported datatypes of module RamTst |

Module Header File Imported Type
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

8.2 Type definitions

8.2.1 RamTst_ConfigType

[SWS_RamTst_01011] Definition of datatype RamTst_ConfigType
Upstream requirements: SRS_BSW_00414

[
Name RamTst_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the RamTst module.

Available via

RamTst.h

8.2.2 RamTst_ExecutionStatusType

[SWS_RamTst_00189] Definition of datatype RamTst_ExecutionStatusType |

UNINIT

Name RamTst_ExecutionStatusType
Kind Enumeration
Range RAMTST_EXECUTION_ 0x00 The RAM Test is not initialized or not usable.

AUTSSAR

A
RAMTST_EXECUTION_ 0x01 The RAM Test is stopped and ready to be
STOPPED started in foreground or to be allowed in
background.
RAMTST_EXECUTION_ 0x02 The RAM Test is currently running.
RUNNING
RAMTST_EXECUTION_ 0x03 The background RAM Test is waiting to be

SUSPENDED

resumed.

Description

This is a status value returned by the API service RamTst_GetExecutionStatus().

Available via

RamTst.h

]

[SWS_RamTst_00006]

Upstream requirements: SRS_BSW_00406

[For the type RamTst_ExecutionStatusType, the enumeration value RAMTST_ -
EXECUTION_UNINIT shall be the default value after a reset. |

8.2.3 RamTst_TestResultType

[SWS_RamTst_00190] Definition of datatype RamTst_TestResultType |

Name RamTst_TestResultType

Kind Enumeration

Range RAMTST_RESULT_NOT_ 0x00 The RAM Test is not executed.
TESTED
RAMTST_RESULT_OK 0x01 The RAM Test has been tested with OK result
RAMTST_RESULT_NOT_ 0x02 The RAM Test has been tested with NOT-OK
OK result.
RAMTST_RESULT _ 0x03 The RAM Test is currently running.
UNDEFINED

Description This is a status value returned by the API service RamTst_GetTestResult().

Available via

RamTst.h

]

[SWS_RamTst_00012] [For the type RamTst_TestResultType (of the overall test
result), the enumeration value RAMTST_RESULT_NOT_TESTED shall be the default
value after a reset. |

For more details on the usage of this status see chapter 7.3.

AUTSSAR

8.2.4 RamTst_AlgParamsidType

[SWS_RamTst_00191] Definition of datatype RamTst_AlgParamsidType |

Name RamTst_AlgParamsldType

Kind Type

Derived from uint8

Range 0...255 - -

Description Data type used to identify a set of configuration parameters for a test algorithm.
Available via RamTst.h

]

[SWS_RamTst_00188] [For the type RamTst_AlgParamsIdType, the value 0 shall
indicate, that no test parameters (and thus no test algorithm) is selected. This shall be
the default value of the corresponding variable after reset. |

8.2.5 RamTst_AlgorithmType

[SWS_RamTst_00227] Definition of datatype RamTst_AlgorithmType |

Name RamTst_AlgorithmType

Kind Enumeration

Range RAMTST_ALGORITHM_ 0x00 Undefined algorithm (uninitialized value)
UNDEFINED
RAMTST _ 0x01 Checkerboard test algorithm
CHECKERBOARD_TEST
RAMTST_MARCH_TEST 0x02 March test algorithm
RAMTST_WALK_PATH_ 0x03 Walk path test algorithm
TEST
RAMTST_GALPAT_TEST 0x04 Galpat test algorithm
RAMTST_TRANSP_ 0x05 Transparent Galpat test algorithm
GALPAT_TEST
RAMTST_ABRAHAM_ 0x06 Abraham test algorithm
TEST

Description This is a value returned by the API service RamTst_GetTestAlgorithm().

Available via RamTst.h

]

[SWS_RamTst_00013] [For the type RamTst_AlgorithmType, the enumeration
value RAMTST_ALGORITHM_UNDEF INED shall be the default value after reset. |

[SWS_RamTst_00058]
Upstream requirements: SRS_BSW_00345

[The type RamTst_AlgorithmType shall contain only the enumerations of the algo-
rithms selected at pre-compile time. |

AUTSSAR

Note that if vendor specific algorithms were defined (see [SWS_RamTst_00205]), the
enumeration fields of RamTst_AlgorithmType should be extended accordingly by
the implementer (or by a code generator).

8.2.6 RamTst_NumberOfTestedCellsType

[SWS_RamTst_00173] Definition of datatype RamTst_NumberOfTestedCellsType

[
Name RamTst_NumberOfTestedCellsType
Kind Type
Derived from uint32
Range 1..(2°32-1) - -
Description Data type of number of tested RAM cells
Available via RamTst.h
]

8.2.7 RamTst_NumberOfBlocksType

[SWS_RamTst_00174] Definition of datatype RamTst_NumberOfBlocksType |

Name RamTst_NumberOfBlocksType
Kind Type
Derived from uint16
Range 1...65535 - -
Description Data type used to identify or count RAM blocks given in the test configuration parameters.
Available via RamTst.h
|

8.3 Function definitions

This is a list of functions provided for upper layer modules.

AUTSSAR

8.3.1 RamTst_Init

[SWS_RamTst_00099] Definition of API function RamTst_Init
Upstream requirements: SRS_BSW_00101, SRS_BSW_00358

[

Service Name

RamTst_Init

Syntax void RamTst_Init (
const RamTst_ConfigType* ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for RAM Test initialization.
Available via RamTst.h
]

[SWS_RamTst_01012]
Upstream requirements: SRS_BSW_00414

[The Configuration pointer ConfigPtr shall always have a NULL_PTR value. |

The Configuration pointer ConfigPtr is currently not used and shall therefore be set
NULL_PTR value.

Note: See also [SWS_RamTst 00093]in 10.2.1.

[SWS_RamTst_00007]
Upstream requirements: SRS_BSW_00101, SRS_SPAL_12057

[The function RamTst_Init shall initialize all RAM Test relevant registers and global
variables and change the execution status to RAMTST_EXECUTION_STOPPED. The
test is initialized to use the default test parameter set (RamTstDefaultAlgParam-
sId) as configured by its RamTstAlgParams container. |

[SWS_RamTst_00096] [If the DET is enabled and the execution status of the RAM
Test is not RAMTST_EXECUTION_UNINIT, the function RamTst_Init shall reportthe
error value RAMTST_E_STATUS_FAILURE to the DET, and then immediately return. |

AUTSSAR

8.3.2 RamTst_Delnit

[SWS_RamTst_00146] Definition of API function RamTst_Delnit
Upstream requirements: SRS_SPAL_12163

[
Service Name RamTst_Delnit
Syntax void RamTst_DelInit (
void
)
Service ID [hex] 0x0c
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for RAM Test deinitialization.
Available via RamTst.h
|

[SWS_RamTst_00147] [The function RamTst_DeInit shall deinitialize all RAM Test
relevant registers and global variables that were initialized by RamTst_Init and
change the execution status to RAMTST_ EXECUTION_UNINIT.|

If the RAM Test is in the RAMTST EXECUTION_UNINIT state after a RamTst_DeInit
call, a call to any RamTst Module function (except RamTst_Init) may result in un-
known software behavior.

8.3.3 RamTst_Stop

[SWS_RamTst_00100] Definition of API function RamTst_Stop |

Service Name RamTst_Stop
Syntax void RamTst_Stop (
void
)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for stopping the RAM Test.
Available via RamTst.h

AUTSSAR

[SWS_RamTst_00014] [When the RamTst_Stop function is called, RamTst_Main-
Funct ion shall still finish the current atomic sequence (if it is executing), and afterward
the status shall be set to RAMTST_EXECUTION_STOPPED. The test result is retained,
but test parameters and loop data are not. |

[SWS_RamTst_00148] [After a RamTst_Stop call, RamTst_MainFunction shall
not begin testing again when called by the scheduler until after a RamTst_aAllow call.]

[SWS_RamTst_00033]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12448

[If the DET is enabled and the execution status of the RAM Test is not RAMTST_ -
EXECUTION_RUNNING Of RAMTST_EXECUTION_SUSPENDED, the function RamTst_
Stop shall report the error value RAMTST_E_STATUS_FAILURE to the DET, and then
immediately return. |

The rRamTst_Stop API can be enabled or disabled by the configuration parameter
RamTstStopApi within the container RamT st Common.

8.3.4 RamTst_Allow

[SWS_RamTst_00149] Definition of APl function RamTst_Allow |

Service Name RamTst_Allow
Syntax void RamTst_Allow (
void
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for continuing the RAM Test after calling 'RamTst_Stop.
Available via RamTst.h
]

[SWS_RamTst_00169] [The function RamTst_Allow shall permit the RamTst_-—
MainFunction to perform testing at its next scheduled call, if it had been stopped.
Therefore, it shall change the execution status to RAMTST_EXECUTION_RUNNING, if it
has been RAMTST_EXECUTION_STOPPED. The test shall be continued with the default
test parameter set (RamTstDefaultAlgParamsId) as configured by its RamTstAl-
gParams container. |

AUTSSAR

[SWS_RamTst_00170]
Upstream requirements: SRS_BSW_00323

[If DET is enabled and the execution status is not RAMTST_EXECUTION_STOPPED, the
function RamTst_Allow shall report the error value RAMTST_E_STATUS_FAILURE to
the DET, and then immediately return. |

The rRamTst_Allow API can be enabled or disabled by the configuration parameter
RamTstAllowApi within the container RamTstCommon.

8.3.5 RamTst_Suspend

[SWS_RamTst_00150] Definition of APl function RamTst_Suspend |

Service Name RamTst_Suspend
Syntax void RamTst_Suspend (
void
)
Service ID [hex] 0x0d
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for suspending current operation of background RAM Test, until RESUME is called.
Available via RamTst.h
|

[SWS_RamTst_00171] [The function RamTst_Suspend shall temporarily prohibit the
RamTst_MainFunction from performing tests at its next scheduled call. When
RamTst_Suspend is called and the execution status is RAMTST_EXECUTION_RUN-
NING, testing stops after the current atomic sequence, test result and current test
states are retained and the execution status is changed to RAMTST_ EXECUTION_-
SUSPENDED. |

[SWS_RamTst_00172]
Upstream requirements: SRS_BSW_00323
[If DET is enabled and the execution status is not RAMTST_EXECUTION_RUNNING, the

function RamTst_Suspend shall report the error value RAMTST_E_STATUS_FAILURE
to the DET, and then immediately return. |

The RamTst_Suspend API can be enabled or disabled by the configuration parameter
RamTst SuspendApi within the container RamTst Common.

AUTSSAR

8.3.6 RamTst_Resume

[SWS_RamTst_00101] Definition of APl function RamTst_Resume |

Service Name

RamTst_Resume

Syntax void RamTst_Resume (
void
)

Service ID [hex] 0x0e

Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description

Service for allowing to continue the background RAM Test at the point is was suspended.

Available via

RamTst.h

]

[SWS_RamTst_00018] [The function RamTst_Resume shall permit the RamTst_—
MainFunction to continue testing at the point where it was suspended, at its next
scheduled call. Testing continues according to the saved test states. The function
RamTst_Resume shall change the execution status to RAMTST_EXECUTION_RUN-
NING if it has been RAMTST_EXECUTION_SUSPENDED. |

[SWS_RamTst_00037]
Upstream requirements: SRS_BSW_00323, SRS _SPAL_12448

[If DET is enabled and the execution status of the RAM Test module is not RAMTST__
EXECUTION_SUSPENDED, the function RamTst_Resume shall report the error value
RAMTST_E_STATUS_FAILURE to the DET, and then immediately return. |

The rRamTst_Resume APl can be enabled or disabled by the configuration parameter
RamTstResumeApi within the container RamTst Common.

8.3.7 RamTst_GetExecutionStatus

[SWS_RamTst_00102] Definition of API function RamTst_GetExecutionStatus
Upstream requirements: SRS_BSW_00331

[

Service Name RamTst_GetExecutionStatus
SUﬂnaX RamTst_ExecutionStatusType RamTst_GetExecutionStatus (
void
)
Service ID [hex] 0x04

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

RamTst_ExecutionStatus
Type

See type definition

Description

Service returns the current RAM Test execution status.

Available via

RamTst.h

]

[SWS_RamTst_00019]
Upstream requirements: SRS _RamTst_13810

[The function RamTst_GetExecutionStatus shall return the current RAM Test ex-

ecution status. |

The RamTst_GetExecutionStatus APl can be enabled or disabled by the config-
uration parameter RamTstGetExecutionStatusApi within the container RamTst -

Common.

8.3.8 RamTst_GetTestResult

[SWS_RamTst_00103] Definition of APl function RamTst_GetTestResult
Upstream requirements: SRS_BSW_00331

[

Service Name

RamTst_GetTestResult

Syntax RamTst_TestResultType RamTst_GetTestResult (
void
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

RamTst_TestResultType See type definition

Description

Service returns the current RAM Test result.

Available via

RamTst.h

]

[SWS_RamTst_00024]
Upstream requirements: SRS_RamTst_13810

[The function RamTst_GetTestResult shall return the current RAM test result. |

AUTSSAR

The test result is determined according to [SWS_RamTst_00202].

The RamTst_GetTestResult API can be enabled or disabled by the configuration
parameter RamTstGetTestResultApi within the container RamTstCommon.

8.3.9 RamTst_GetTestResultPerBlock

[SWS_RamTst_00104] Definition of APl function RamTst_GetTestResultPerBlock
Upstream requirements: SRS_RamTst_13810

[
Service Name RamTst_GetTestResultPerBlock
Syntax RamTst_TestResultType RamTst_GetTestResultPerBlock (
RamTst_NumberOfBlocksType BlockID
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BlockiD | Identifies the block
Parameters (inout) None
Parameters (out) None
Return value RamTst_TestResultType | See type definition
Description Service returns the current RAM Test result for the specified block.
Available via RamTst.h
]

[SWS_RamTst_00038]
Upstream requirements: SRS_RamTst_13810

[The function RamTst_GetTestResultPerBlock shall return the current RAM test
result for the specified block. |

The test result per block is determined according to [SWS_RamTst_00207].

[SWS_RamTst_00039]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12448

[If DET is enabled and the BlockID is out of range, the function RamTst_-
GetTestResultPerBlock shall report the error value RAMTST_E_OUT_OF_RANGE
to the DET and return the test result value RAMTST_RESULT_UNDEF INED. |

Hint: "Out of range" means here, that the B1ockID does not match to one of the val-
ues configured for the currently selected RamTstAlgParams/ RamTstBlockParams/
RamTstBlockId, see [ECUC_RamTst _00143].

The RamTst_GetTestResultPerBlock APl can be enabled or disabled by the
configuration parameter RamTstGet TestResultPerBlockApi within the container
RamTstCommon.

AUTSSAR

8.3.10 RamTst_GetVersioninfo

[SWS_RamTst_00109] Definition of API function RamTst_GetVersioninfo
Upstream requirements: SRS_BSW_00407

[

Service Name

RamTst_GetVersionInfo

Syntax void RamTst_GetVersionInfo (
Std_VersionInfoType* versioninfo
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to the location / address where to store the version
information of this module.
Return value None
Description Service returns the version information of this module.
Available via RamTst.h

]

[SWS_RamTst_00222] [If the function RamTst_GetVersionInfo is called with a
NULL pointer as parameter, it shall return immediately without any further action, and If
DET is enabled, this function shall report the error value RAMTST_E_PARAM_POINTER
to the DET module. |

The RamTst_GetVersionInfo APl can be enabled or disabled by the configuration

parameter RamTstVersionInfoApi within the container RamTstCommon.

8.3.11 RamTst_GetAlgParams

[SWS_RamTst_00193] Definition of API function RamTst_GetAlgParams |

Service Name

RamTst_GetAlgParams

Syntax RamTst_AlgParamsIdType RamTst_GetAlgParams (
void
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

RamTst_AlgParamsld
Type

See type definition.

Description

Service returns the ID of the current RAM Test algorithm parameter set.

Y%

AUTSSAR

| Available via RamTsth

]

[SWS_RamTst_00194] [The function RamTst_GetAlgParams shall return the ID of
the currently selected test algorithm parameter set (i.e. the ID of the currently selected
RamTstAlgParams in the container RamTstConfigParams).|

The RamTst_GetAlgParams API can be enabled or disabled by the configuration
parameter RamTstGetAlgParamsApi within the container RamTst Common.

8.3.12 RamTst_GetTestAlgorithm

[SWS_RamTst_00106] Definition of API function RamTst_GetTestAlgorithm |

Service Name RamTst_GetTestAlgorithm
Syntax RamTst_AlgorithmType RamTst_GetTestAlgorithm (
void
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value RamTst_AlgorithmType See type definition
Description Service returns the current RAM Test algorithm.
Available via RamTst.h
|

[SWS_RamTst_00021] [The function RamTst_GetTestAlgorithm shall return the
current RAM Test algorithm. |

The RamTst_GetTestAlgorithm API can be enabled or disabled by the configu-
ration parameter RamTstGetTestAlgorithmApi within the container RamTstCom—
mon.

AUTSSAR

8.3.13 RamTst_GetNumberOfTestedCells

[SWS_RamTst_00108] Definition of API function RamTst_GetNumberOfTested

Cells

Upstream requirements: SRS_RamTst_13809

[

Service Name

RamTst_GetNumberOfTestedCells

Syntax RamTst_NumberOfTestedCellsType RamTst_GetNumberOfTestedCells (
void
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

RamTst_NumberOf
TestedCellsType

Number of currently tested cells per cycle.

Description

Service returns the current number of tested cells per main-function cycle.

Available via

RamTst.h

]

[SWS_RamTst_00034] [The function RamTst_GetNumberOfTestedCells shall

read the current number of tested cells per cycle. |

The RamTst_GetNumberOfTestedCells APl can be enabled or disabled by the
configuration parameter RamTstGetNumberOfTestedCellsApi within the con-

tainer RamTst Common.

8.3.14 RamTst _SelectAlgParams

[SWS_RamTst_00105] Definition of API function RamTst_SelectAlgParams

Upstream requirements: SRS_RamTst_13804

[

Service Name

RamTst_SelectAlgParams

Syntax void RamTst_SelectAlgParams (
RamTst_AlgParamsIdType NewAlgParamsId
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) NewAlgParamsid | Identifies the parameter set to be used.
Parameters (inout) None

\Y

AUTSSAR

A
Parameters (out) None
Return value None
Description Service used to set the test algorithm and its parameter set.
Available via RamTst.h
]

[SWS_RamTst_00083]
Upstream requirements: SRS_RamTst_13804

[The function RamTst_SelectAlgParams shall select the test parameter set (i.e.
one of the RamTstAlgParams in the container RamTstConfigParams) to be used
by the RAM Test module. |

Note: Depending on the configured content of RamTstAlgParams, this function may
be used to select a different test algorithm. But the function may also be used to select
a different set of blocks (e.g. for foreground testing) for the same test algorithm.

[SWS_RamTst_00085] [The function RamTst_SelectAlgParams shall re-initialize
all RAM Test relevant registers and global variables with the values for the "NewAlg
Paramsld". |

[SWS_RamTst_00084]
Upstream requirements: SRS_SPAL_12448

[If DET is enabled and the parameter "NewAlgParamsld" is out of range, the function
RamTst_SelectAlgParams shall report the error value RAMTST_E_OUT_OF_RANGE
to the DET, leaving the current RamTstAlgParams unchanged. |

Hint: "Out of range" means, that the "NewAlgParamsld" does not match to
one of the configured values for RamTstAlgParams/ RamTstAlgParamsId, See
[ECUC_RamTst_00179].

[SWS RamTst_00097]
Upstream requirements: SRS_BSW_00323

[If DET is enabled and the execution status of the RAM Test module is not RAMTST__
EXECUTION_STOPPED, the function RamTst_SelectAlgParams shall report the er-
ror value RAMTST_E_STATUS_FAILURE to the DET, then immediately return from the
function. |

[SWS_RamTst_00094] [The function RamTst_SelectAlgParams shall initialize the
test result status (according to [SWS_RamTst_00207] and [SWS_RamTst_00202]). |

Hint: It makes no sense to keep the previous test results at this point (as it was specified
in former version of this document), since the block structure might change due to
the selected parameter set, so the previous result could no longer be interpreted. If
the test environment wants to save the previous results, it can easily retrieve them

AUTSSAR

via RamTst_GetTestResult Or RamTst_GetTestResultPerBlock before calling
RamTst_SelectAlgParams.

The RamTst_SelectAlgParams APl can be enabled or disabled by the configuration
parameter RamTstSelectAlgParamsApi within the container RamT st Common.

8.3.15 RamTst_ChangeNumberOfTestedCells
[SWS_RamTst_00107] Definition of API function RamTst_ChangeNumberOf

TestedCells
Upstream requirements: SRS_RamTst_13800, SRS _RamTst_ 13809

[
Service Name RamTst_ChangeNumberOfTestedCells
Syntax void RamTst_ChangeNumberOfTestedCells (
RamTst_NumberOfTestedCellsType NewNumberOfTestedCells
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) NewNumberOfTested See type definition
Cells
Parameters (inout) None
Parameters (out) None
Return value None
Description Service changes the current number of tested cells.
Available via RamTst.h
]

[SWS_RamTst_00036]
Upstream requirements: SRS_RamTst_13800

[The function RamTst_ChangeNumberOfTestedCells shall change the current
number of tested cells (for background tests). |

[SWS RamTst_00040]
Upstream requirements: SRS_BSW_00323, SRS _SPAL_12448

[If DET is enabled and the parameter NewNumberOfTestedCells is out of range
(min= MinNumberOfTestedCells / max = MaxNumberOfTestedCells), the function
RamTst_ChangeNumberOfTestedCells shall report the error value RAMTST_E_
OUT_OF_RANGE to the DET. The function shall leave the number of tested cells un-
changed. |

[SWS_RamTst_00095]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12448

[If the execution status of the RAM Test module is not in the status RAMTST_-
EXECUTION_STOPPED, the function RamTst_ChangeNumberOfTestedCells shall

AUTSSAR

not change the current number of tested cells and (if DET is enabled) shall report the
error value RAMTST_E_STATUS_FAILURE to the DET. |

The RamTst_ChangeNumberOfTestedCells API can be enabled or disabled by
the configuration parameter RamTstChangeNumOfTestedCellsApi within the con-
tainer RamTst Common.

8.3.16 RamTst_RunFullTest

[SWS_RamTst_00195] Definition of API function RamTst_RunFullTest |

Service Name

RamTst_RunFullTest

Syntax void RamTst_RunFullTest (
void
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

None

Parameters (inout)

None

Parameters (out)

None

Return value

None

Description

Service for executing the full RAM Test in the foreground.

Available via

RamTst.h

]

[SWS_RamTst_00196] [If the RAM Test execution status is RAMTST_EXECUTION_-—
STOPPED, the function RamTst_RunFullTest shall test all RAM blocks defined in the
selected RamTstAlgParams. |

[SWS_RamTst_00210]
Upstream requirements: SRS_BSW_00323

[If DET is enabled and the execution status of the RAM Test module is not RAMTST__
EXECUTION_STOPPED, the function RamTst_RunFullTest shall report the error
value RAMTST_E_STATUS_FAILURE to the DET, and then immediately return. |

[SWS_RamTst_00211] [If the RAM Test execution status is RAMTST_EXECUTION_
STOPPED, the function RamTst_RunFullTest shall set the execution status to

RAMTST_EXECUTION_RUNNING during the test and set it back to RAMTST_ -
EXECUTION_STOPPED before returning. |

[SWS_RamTst_00212] [The function RamTst_RunFullTest shall update the test
result status of single blocks according to [SWS_RamTst_00207]. |

AUTSSAR

[SWS_RamTst_00213]
Upstream requirements: SRS_BSW_00339

[The function RamTst_RunFullTest shall update the overall test result status ac-
cording to [SWS_RamTst_00202]. If at least one block test result is RAMTST_-
RESULT_NOT_OK, then the function shall report the production error RAMTST_-—
RUNFL_RAM FAILURE to the DEM. |

The RamTst_RunFullTest API can be enabled or disabled by the configuration pa-
rameter RamTstRunFullTestApi within the container RamTst Common.

Destruction or restoration of the memory content are handled according to the require-
ments [SWS_RamTst_00200] and [SWS_RamTst_00201].

For pre-conditions on the function RamTst_RunFullTest, See requirement
[SWS_RamTst_00002].

Implementation Hints:

For reasons of effiency and optimum fault coverage, the implementation of RamTst__
RunFullTest shall assume, that it has exclusive access to all memory blocks con-
tained in its RamTstAlgParams during the call. This allows to apply the test algorithm
on a wider range of memory than in background test, which increases the fault cover-
age especially for coupling faults.

Thus it is the responsibility of the test environment, to either provide appropriate re-
source locking, or to call the function in an ECU mode, where the memory blocks of
the selected RamTstAlgParams are not in use. The test environment must also en-
sure, that RamTst_MainFunction is hot scheduled during the foreground test.

A test algorithm usually requires various write and read cycles over a given range of
memory. Some algorithms also require multiple walks through this range. It is up to the
implementation, whether such a tested range corresponds to one block (which means,
that the full test is split into several ranges) or even includes several or all blocks. This
depends on performance issues and the assumed fault model. In any case, the test
behavior must be clearly documented.

8.3.17 RamTst_RunPartialTest

[SWS_RamTst_00197] Definition of API function RamTst_RunPartialTest |

Service Name RamTst_RunPartialTest

Syntax void RamTst_RunPartialTest (
RamTst_NumberOfBlocksType BlockId
)

Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTSSAR

A
Parameters (in) Blockld Identifies the single RAM block to be tested in the selected set of
RamTstAlgParams.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for testing one RAM block in the foreground.
Available via RamTst.h
]

[SWS_RamTst_00198] [If the RAM Test execution status is RAMTST_EXECUTION_
STOPPED Oor RAMTST EXECUTION_ SUSPENDED, the function RamTst_RunPartial-
Test shall test the specified RAM block. |

[SWS_RamTst_00214]
Upstream requirements: SRS_BSW_00323

[If DET is enabled and the RAM test execution status is neither RAMTST_-
EXECUTION_STOPPED nor RAMTST_EXECUTION_SUSPENDED, the function
RamTst_RunPartialTest shall report the error value RAMTST_E_STATUS_
FAILURE to the DET, and then immediately return. |

[SWS_RamTst_00215] [If the RAM Test execution status is RAMTST_EXECUTION_
STOPPED Or RAMTST_EXECUTION_SUSPENDED, the function RamTst_RunPartial-
Test shall set the execution status to RAMTST_EXECUTION_RUNNING during the test,
and after the test shall set it back to the previous state (the state when the function was
called). |

[SWS_RamTst_00216]
Upstream requirements: SRS_BSW_00339

[The function RamTst_RunPartialTest shall update the test result status of the
tested block according to [SWS_RamTst_00207]. If this block test result is RAMTST_
RESULT_NOT_OK, then the function shall report the production error RAMTST_PART__
RAM_FAILURE to the DEM. |

[SWS_RamTst_00217] [A successful partial foreground test shall set the block spe-
cific result to RAMTST_RESULT_OKX. It shall not modify the overall test result. A failing
partial foreground test shall set both, the block specific as well as the overall test result
to RAMTST_RESULT_NOT_OK. |

[SWS_RamTst_00223] [If DET is enabled and the B1ockId is out of range, the func-
tion RamTst_RunPartialTest shall report the error value RAMTST_E_OUT_OF_ -
RANGE to the DET and then immediately return. |

Notes:

AUTSSAR

'Out of range’ in [SWS_RamTst_00223] means that the B1ockId does not match to
one of the configured values for the currently selected Block Identifier (RamTstAl-
gParams/ RamTstBlockParams/ RamTstBlockId).

Updating the test results will overwrite the result from a previous test of this block
and the overall test result in case of failure, including the result from a suspended
background test.

The RamTst_RunPartialTest APl can be enabled or disabled by the configuration
parameter RamTstRunPartialTestApi within the container RamT st Common.

Destruction or restoration of the memory content is handled according to the require-
ments [SWS_RamTst_00200] and [SWS_RamTst_00201].

For pre-conditions on the function RamTst_RunPartialTest, see requirement
[SWS_RamTst_00002].

Implementation Hints:

The implementation hints given for RamTst_RunFullTest also apply here, as far as
applicable to one single block.

8.4 Callback notifications

Since the RAM Test is a driver module, it does not implement any callback functions
from lower layer modules.

8.5 Scheduled functions

For details refer to [3] Chapter 8.5 “Scheduled functions”.

8.5.1 RamTst_MainFunction

[SWS_RamTst_00110] Definition of scheduled function RamTst_MainFunction
Upstream requirements: SRS_BSW_00373

Service Name RamTst_MainFunction
Syntax void RamTst_MainFunction (
void
)
Service ID [hex] 0x01
Description Scheduled function for executing the RAM Test in the background.
Available via SchM_RamTst.h

AUTSSAR

[SWS_RamTst_00008]
Upstream requirements: SRS_RamTst_13809

[If the RAM Test execution status is RAMTST_EXECUTION_RUNNING, the function
RamTst_MainFunction shall continue to test the RAM blocks defined in the selected
RamTstAlgParams. |

[SWS_RamTst_00009] [If the RAM Test execution status is RAMTST_EXECUTION_
RUNNING and if no blocks have yet been tested (first call of the function), then the func-
tion RamTst_MainFunction shall start testing with the first configured RAM block in
the selected RamTstAlgParams. |

[SWS RamTst_00175]
Upstream requirements: SRS_BSW_00450

[If the RAM Test execution status is not RAMTST_EXECUTION_RUNNING when this
APl is called, the function RamTst_MainFunction shall return immediately without
any actions. |

[SWS_RamTst_00010]
Upstream requirements: SRS_RamTst_13810

[The function RamTst_MainFunction shall update the test result status of single
blocks according to [SWS_RamTst_00207]. |

[SWS_RamTst_00011]
Upstream requirements: SRS_BSW_00339, SRS_RamTst_13810

[The function RamTst_MainFunction shall update the overall test result status
according to [SWS_RamTst_00202]. If at least one block test result is RAMTST_ -
RESULT_NOT_OKX, then the function shall report the production error RAMTST_MAIN_
RAM_FAILURE to the DEM. |

[SWS_RamTst_00047] [After the function RamTst_MainFunction has completed
testing all RAM blocks configured in the selected RamTstAlgParams, the next call of
the function RamTst_MainFunction shall restart the test from the beginning. |

[SWS_RamTst_00059]
Upstream requirements: SRS_RamTst_13809
[The function RamTst_MainFunction shall test the defined number of RAM cells

within one call. The defined number is specified by the function RamTst_ChangeNum-
berOfTestedCells or by initialization. |

Notes:

Updating the test results will overwrite the result from a previous test of the current block
and the overall test result, including the case that the background test was resumed
after a partial foreground test of the current block.

AUTSSAR

Destruction or restoration of the memory content are handled according to the require-
ments [SWS_RamTst_00200] and [SWS_RamTst_00201].

For pre-conditions on the function RamTst_MainFunction, see requirement
[SWS_RamTst_00002].

Implementation Hints:

In general, the actual test algorithm within one call of RamTst_MainFunction must
be performed within one or more atomic sequences. Only within one atomic sequence,
the memory written by the algorithm is allowed to be corrupted during the test. This
means, that the algorithm can be applied only to those cells accessed within one atomic
sequence, so that the detection of coupling faults between cells (by background test)
is restricted to those cells which are included in one atomic sequence.

An atomic sequence can either be declared as exclusive area via the BSW module
description (see [5, RS BSW General], [SRS_BSW_00426]), leaving the actual locking
method to the BSW Scheduler, or be directly implemented via interrupt locking (see [5,
RS BSW General], [SRS_BSW_00429]). The latter is allowed, because the RAM test
module belongs to the MCAL layer.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_RamTst_00111] Definition of mandatory interfaces required by module
RamTst

Upstream requirements: SRS_BSW_00339

[

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

AUTSSAR

8.6.2 Optional interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_RamTst_00112] Definition of optional interfaces requested by module Ram
Tst |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this chapter, all interfaces are listed where the target function could be configured.
The target function is usually a callback function.

Terms and definitions:
Reentrant: interface is expected to be reentrant

Don’t care: reentrancy of interface not relevant for this module (in general, it is in this
case not reentrant).

[SWS_RamTst_00043]

Upstream requirements: SRS_SPAL_00157, SRS_SPAL_ 12056, SRS_RamTst_ 13820
[The callback notifications shall have no parameters and no return value. |
[SWS_RamTst_00044]

Upstream requirements: SRS_SPAL_00157, SRS_SPAL_12056, SRS_RamTst_13820

[If a callback natification is configured as null pointer, the RAM Test module shall not
execute the callback. |

AUTSSAR

8.6.3.1 RamTst_TestCompletedNotification

[SWS_RamTst_00113] Definition of configurable interface RamTst_TestCom-
pletedNotification
Upstream requirements: SRS_RamTst_13820

[
Service Name RamTst_TestCompletedNotification
Syntax void RamTst_TestCompletedNotification (
void
)
Sync/Async Synchronous
Reentrancy Don'’t care
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description The function RamTst_TestCompleted shall be called every time when all RAM blocks of the
current test configuration have been tested in the background.
Available via RamTst.h
]

[SWS RamTst _00045]
Upstream requirements: SRS_SPAL_00157, SRS_RamTst_13820
[The RAM Test module shall call the callback RamTst_TestCompletedNotifica-

tion every time when it has tested all RAM blocks of the selected parameter set in a
background test. |

The callback notification RamTst_TestCompletedNotification requires configu-
ration of the parameter RamTstTestCompletedNotification within the container
RamTstConfigParams.

8.6.3.2 RamTst_ErrorNotification

[SWS_RamTst_00114] Definition of configurable interface RamTst_ErrorNotifi-
cation
Upstream requirements: SRS_RamTst_13820

Service Name RamTst_ErrorNotification
Syntax void RamTst_ErrorNotification (
void
)
Sync/Async Synchronous
Reentrancy Don'’t care

AUTSSAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

The function RamTst_Error shall be called every time when a RAM failure has been detected
by the selected test algorithm in the background.

Available via

RamTst.h

]

[SWS_RamTst_00046]
Upstream requirements: SRS_SPAL_00157, SRS_RamTst_13820

[The RAM test module shall call the callback RamTst_ErrorNotification every
time when the test algorithm of the selected parameter set has detected a RAM failure

in a background test. |

The callback notification RamTst_ErrorNotification requires configuration of the
parameter RamTstTestErrorNotification within the container RamTstConfig-

Params.

AUTSSAR

9 Sequence diagrams

9.1 RamTst_MainFunction (Examples)

The first example sequence shows the initialization of the RAM Test module, a fore-
ground Run Full Test request, error notification, and the cyclic call background testing.

A cyclic background task called by a scheduler consists of several small atomic se-
qguences in succession. At the end of each atomic sequence, the command variables
are checked to see if any command has been received, and corresponding actions are
taken.

The stop request is handled following the currently running atomic sequence of the
main routine, or at the next cyclic call of the main routine if it is not currently running.
The allow request is handled at the next cyclic call of the main routine.

The second example shows the Suspend and Resume commands, a foreground Run
Partial Test request, a Test Completed notification, and the Delnit command.

AUTSSAR

RamTst User «module»
RamTst

T T BSW Task (OS task
| | or cyclic call)
| RamTst_Init() | |

|

RamTst_Init() |
_________________________ j‘ |
|

| |
: STATE: test stopped :
| |
|

RamTst_MainFunction() [no testing]

RamTst_MainFunction() >‘_‘
STATE: test allowed

RamTst_MainFunction() [testing]

RamTst_Allow()

|
|
|
|
|
|
|
|
|
|
H< _________ RamTs Alow) tﬂ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e
STATE: test running
RamTst_MainFunction()
_______________________ >
T T
|))) |
| RamTst_MainFunction() [testing] |
RamTst_Stop() rT
-
RamTst_Stop- - — = — — — = = — — = — = — — — — — —
[stop immediately after current atomic, save status only]() RamTst_MainFunction() =

-
|
STATE: test stopped |
|
|
|

RamTst_MainFunction() [no testing]

RamTst_MainFunction()

|
STATE: test running

RamTst_RunFullTest()

RamTst_RunFullTest()

STATE: test stopped

RamTst_MainFunction() [no testing]

|

|

|

|

|

|

|

| |
| |
| |
| |
L g 1

RamTst_MainFunction() >‘—‘

1 |
|

|

|

|

|

|

|

|

RamTst_Allow()
. el
RamTst_Allow()
L
| |
| | STATE: test allowed
| |
| | RamTst_MainFunction() [testing]
| rT
|
: STATE: test running
! RamTst_MainFunction
| F————————— = —————= 0 ____- >
| L L]
| | |
| | < RamTst_MainFunction() [testing] |
I RamTst_ErrorNotification()
RamTst_ErrorNotification() . .
————————————————————————— > RamTst_MainFunction()
_______________________ >

| L L

Figure 9.1: Initialization and foreground Run Full Test of the RAM Test module

AUTSSAR

RamTst User «module»
RamTst

T
|
|
: STATE: test running
|
A1

BSW Task (OS task
or cyclic call)
|

|
|
RamTst_MainFunction() [testing] :

¢
RamTst_MainFunction() >‘_‘

RamTst_MainFunction() [testing]

T
|
RamTst_Suspend() »J-d

RamTst_Suspend() [stop immediately after current . .
- - L ® 0 [sop y ~ 7 RamTst_MainFunction()
atomic, save status, parameters and results] T >[::|

b |

STATE: test suspended :
|

|

1

RamTst_MainFunction() [no testing]

RamTst_MainFunction() >‘_‘

|
RamTst_RunPartial Test(RamTst_NumberOfBlocksType) |

|
|
|
RamTst_RunPartial Test() STATE: test running :
|
|
|
|
|
|
|

|
|
: STATE: test suspended
|

RamTst_MainFunction() [no testing]

RamTst_MainFunction()

RamTst_Resume()

RamTst_Resume()

|
|
| | STATE: test running
|
1

RamTst_MainFunction() [testing
restarted where it was suspended]

RamTst_MainFunction()
Rl >

- RamTst_MainFunction()
RamTst_TestCompletedNotification() [testing finishesg]

RamTst_TestCompletedNotification() | RamTs MainF ion()
————————————————————————— amTst_MainFunction
" >

RamTst_MainFunction() [testing |
restarted at beginning]

-

RamTst_MainFunction()
e —— e e e e e e >

RamTst_MainFunction() [testing]

RamTst_Delnit()

RamTst_Deinit()

L
|
|
1

STATE: test uninitialized Iﬁ

Figure 9.2: Deinitialization and foreground Run Partial Test of the RAM Test module

AUT<

SAR

9.2 RamTst_ChangeNumberOfTestedCells

RamTst User «module»
RamTst
I I
| |
| |
| |
| RamTst_Stop() L
RamTst_Stop()
<_ ___________________________________

T
|
RamTst_ChangeNumberOfTestedCells(RamTst_NumberOfTestedCellsType) > |

RamTst_ChangeNumberOfTestedCells()

<_ ___________________________________
L
|
s o -
e ______F amTs Allow)_______ _______]
T T
Figure 9.3: Change Number of Tested Cells
9.3 RamTst_SelectAlgParams
RamTst User «module»
RamTst
T T
| |
| |
: RamTst_Stop() »JI_
e RamTsStop0_ |
T
|
RamTst_SelectAlgParams |
(RamTst_AlgParamsldType) P
RamTst_SelectAlgParams()
<_ _________________________________
T
RamTst_Allow() >JI_
e ____RamTsAlow______________

Figure 9.4: Set and Select Algorithm Parameters

AUTSSAR

9.4 RamTst_GetAlgParams

RamTst User «module»
RamTst

T T
| RamTst_GetAlgParams(return): |

| RamTst_AlgParamsldType |

H< RamTst_GetAlgParams()

Figure 9.5: Get Algorithm Parameters

9.5 RamTst_GetExecutionStatus

RamTst User «module»
RamTst

| RamTst_GetExecutionStatus |
| (return): |
RamTst_ExecutionStatusType

RamTst_GetExecutionStatus()

Figure 9.6: Get test execution status

9.6 RamTst GetTestResult

RamTst User «module»
RamTst

| RamTst_GetTestResult |
| (return): |

RamTst_ResultType
RamTst_GetTestResult()
<_ —_—— e e e e e e e ——
L

Figure 9.7: Get Test Result

AUTSSAR

9.7 RamTst_GetTestResultPerBlock

RamTst User «module»
RamTst

RamTst_GetTestResultPerBlock(return,
RamTst_NumberOfBlocksType):
RamTst_TestResultType

L\< RamTst_GetTestResultPerBlock()

Figure 9.8: Get Test Result per Block

9.8 RamTst_GetTestAlgorithm

RamTst User «module»
RamTst

: RamTst_GetTestAlgorithm(return): :

| RamTst_AlgorithmType |

H< RamTst_GetTestAlgorithm()

Figure 9.9: Get Test Algorithm

9.9 RamTst _GetNumberOfTestedCells

RamTst User «module»
RamTst

| RamTst_GetNumberOfTestedCells |
| (return):

RamTst_NumberOfTestedCellsType
RamTst_GetNumberOfT estedCells()

Figure 9.10: Get Number of Tested Cells

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
RAM Test.

Chapter 10.3 specifies published information of the module RAM Test.

Chapter 10.4 contains additional information for the module RAM Test.

10.1 How to read this chapter
For details refer to [3] Chapter 10.1 “Introduction to configuration specification”.

[SWS_RamTst_01013] [The RAM Test module shall reject configurations with parti-
tion mappings which are not supported by the implementation. |

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_RamTst_00026]

Upstream requirements: SRS_BSW_00344, SRS _SPAL 12057, SRS_SPAL 12263, SRS -
RamTst_13802, SRS_RamTst_ 13803, SRS _RamTst_13809

[Within the configuration data for the RAM Test module, there shall be a set of con-
figuration containers named RamTstAlgParams. Each one defines a possible test
parameter set to be selected at runtime, which includes an algorithm. The algorithms
included in RamTstAlgParams are restricted to those that were pre-compile selected
to be available to the user via the container RamTstAlgorithms. |

[SWS_RamTst_00027]

Upstream requirements: SRS_BSW_00344, SRS_SPAL_12057, SRS_SPAL_12263, SRS_-
RamTst_13803

[Within the configuration data for the RAM Test module, each parameter set of type
RamTstAlgParams (as required in [SWS_RamTst 00026]) shall also have memory
block configuration containers. The memory block configuration container is defined
in RamTstBlockParams. The number of memory block configuration containers is
defined by the integrator according to the RAM test strategy. |

AUTSSAR

10.2.1 Variants

[SWS_RamTst_00093]
Upstream requirements: SRS_BSW_00414

[Init functions shall have a pointer to a configuration structure as single parameter.
This means that, in accordance with [SRS_BSW_00414] only one interface for ini-
tialization shall be implemented and it shall not depend on the modules configuration
which interface the calling software module shall use. |

10.2.2 RamTst

[ECUC_RamTst_00150] Definition of EcucModuleDef RamTst |

Module Name

RamTst

Description

Configuration of the RamTst module.

Post-Build Variant Support

false

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

RamTstCommon 1 This container holds a list of all available functions in the RamTst
module. Each function is turned ON or OFF before compiling so
that only the desired functions and test algorithms are in the
compiled code.

RamTstDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements

which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

RamTstPublishedInformation

Container holding all RamTst specific published information
parameter.

AUTSSAR

RamTst: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RamTstCommon:
EcucParamConfContainerDef

+container

upperMultiplicity = 1
lowerMultiplicity = 1

+subContainer

RamT stAlgorithms:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

RamTstBlockParams:
EcucParamConfContainerDef

+subContainer

+subContainer

RamTstConfigParams:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+s_1bContaine$

upperMultiplicity = 65535
lowerMultiplicity = 1

+container

RamTstPublishedInformation:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

RamTstDemEventParameterRefs:

EcucParamConfContainerDef

+container

lowerMultiplicity = 0
upperMultiplicity = 1

+reference

RAMTST_MAIN_RAM_FAILURE:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

RamTstAlgParams:
EcucParamConfContainerDef

upperMultiplicity = 255
lowerMultiplicity = 1

+reference

RAMTST_RUNFL_RAM_FAILURE:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

RAMTST_PART_RAM_FAILURE:

+reference

EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

+destination +destination

DemEventParameter:
EcucParamConfContainerDef

upperMultiplicity = 65535
lowerMultiplicity = 1

Figure 10.1: RAM Test Configuration Overview

10.2.3 RamTstDemEventParameterRefs

[ECUC_RamTst_00188] Definition of EcucParamConfContainerDef RamTstDem

EventParameterRefs |

AUTSSAR

Container Name

RamTstDemEventParameterRefs

Parent Container

RamTst

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

RAMTST_MAIN_RAM_FAILURE 0..1 [ECUC_RamTst_00194]
RAMTST_PART_RAM_FAILURE 0..1 [ECUC_RamTst_00193]
RAMTST_RUNFL_RAM_FAILURE 0..1 [ECUC_RamTst_00192]

No Included Containers

]

[ECUC_RamTst_00194]
FAILURE |

Definition of EcucReferenceDef RAMTST_MAIN_RAM _

Parameter Name

RAMTST_MAIN_RAM_FAILURE

Parent Container

RamTstDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "RAM
main test failure" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_RamTst_00193]
FAILURE |

Definition of EcucReferenceDef RAMTST_PART_RAM _

Parameter Name

RAMTST_PART_RAM_FAILURE

Parent Container

RamTstDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "RAM
partial test failure" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

V

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_RamTst_00192] Definition of EcucReferenceDef RAMTST _RUNFL_RAM _
FAILURE |

Parameter Name RAMTST_RUNFL_RAM_FAILURE

Parent Container RamTstDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "RAM full
test failure" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.4 RamTstCommon

[ECUC_RamTst_00070] Definition of EcucParamConfContainerDef RamTstCom-
mon |

Container Name RamTstCommon
Parent Container RamTst
Description This container holds a list of all available functions in the RamTst module. Each

function is turned ON or OFF before compiling so that only the desired functions and
test algorithms are in the compiled code.

Multiplicity 1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
RamTstAllowApi 1 [ECUC_RamTst_00120]
RamTstChangeNumOfTestedCellsApi 1 [ECUC_RamTst_00118]
RamTstDevErrorDetect 1 [ECUC_RamTst_00121]
RamTstGetAlgParamsApi 1 [ECUC_RamTst_00183]
RamTstGetExecutionStatusApi 1 [ECUC_RamTst_00122]
RamTstGetNumberOfTestedCellsApi 1 [ECUC_RamTst_00123]
RamTstGetTestAlgorithmApi 1 [ECUC_RamTst_00124]
RamTstGetTestResultApi 1 [ECUC_RamTst_00125]
RamTstGetTestResultPerBlockApi 1 [ECUC_RamTst_00126]
RamTstResumeApi 1 [ECUC_RamTst_00155]
RamTstRunFullTestApi 1 [ECUC_RamTst_00184]
RamTstRunPartial TestApi 1 [ECUC_RamTst_00185]
RamTstSelectAlgParamsApi 1 [ECUC_RamTst_00182]
RamTstStopApi 1 [ECUC_RamTst_00127]
RamTstSuspendApi 1 [ECUC_RamTst_00156]
RamTstVersionInfoApi 1 [ECUC_RamTst_00128]
RamTstEcucPartitionRef 0..* [ECUC_RamTst_00190]
Included Containers
Container Name Multiplicity Dependency
RamTstAlgorithms 1 This container holds all of the available test algorithms for the
specific microcontroller. Each test algorithm is selected ON or
OFF before compiling so that only the desired test algorithms are
in the compiled code.
RamTstConfigParams 1 This container specifies configuration parameters which are set
at pre-compile or link time.

]

[ECUC_RamTst_00120] Definition of EcucBooleanParamDef RamTstAllowApi |

Parameter Name RamTstAllowApi

Parent Container RamTstCommon
Description Preprocessor switch to disable / enable the function "RamTst_Allow".
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

AUTSSAR

[ECUC_RamTst_00118] Definition of EcucBooleanParamDef RamTstChangeNum

OfTestedCellsApi |

Parameter Name

RamTstChangeNumOfTestedCellsApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_ChangeNumberOfTested
Cells".

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_RamTst_00121] Definition of EcucBooleanParamDef RamTstDevErrorDe-

tect |
Parameter Name RamTstDevErrorDetect
Parent Container RamTstCommon

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Dependency

]

[ECUC_RamTst_00183]
ParamsApi |

Definition of EcucBooleanParamDef RamTstGetAlg

Parameter Name

RamTstGetAlgParamsApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_GetAlgParams".
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

[ECUC_RamTst_00122]
tionStatusApi |

Definition of EcucBooleanParamDef RamTstGetExecu-

Parameter Name

RamTstGetExecutionStatusApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_GetExecutionStatus”
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00123] Definition of EcucBooleanParamDef RamTstGetNumber

OfTestedCellsApi |

Parameter Name

RamTstGetNumberOfTestedCellsApi

Parent Container

RamTstCommon

Description gre”processor switch to disable / enable the function "RamTst_GetNumberOfTested
ells".
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00124]
gorithmApi [

Definition of EcucBooleanParamDef RamTstGetTestAl-

Parameter Name

RamTstGetTestAlgorithmApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_GetTestAlgorithm"
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

V

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00125]
sultApi [

Definition of EcucBooleanParamDef RamTstGetTestRe-

Parameter Name RamTstGetTestResultApi
Parent Container RamTstCommon
Description Preprocessor switch to disable / enable the function "RamTst_GetTestResult"
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_RamTst_00126]
sultPerBlockApi |

Definition of EcucBooleanParamDef RamTstGetTestRe-

Parameter Name

RamTstGetTestResultPerBlockApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_GetTestResultPerBlock"
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_RamTst_00155] Definition of EcucBooleanParamDef RamTstResumeApi

[

Parameter Name RamTstResumeApi

Parent Container RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_Resume".
Multiplicity 1

Type EcucBooleanParamDef

\Y%

AUTSSAR

A
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00184] Definition of EcucBooleanParamDef RamTstRunFullTest

Api |

Parameter Name

RamTstRunFullTestApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_RunFullTest"
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00185]
TestApi |

Definition of EcucBooleanParamDef RamTstRunPartial

Parameter Name

RamTstRunPartialTestApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_RunPartialTest"
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00182]
ParamsApi [

Definition of EcucBooleanParamDef RamTstSelectAlg

Parameter Name

RamTstSelectAlgParamsApi

Parent Container

RamTstCommon

Description

Preprocessor switch to disable / enable the function "RamTst_SelectAlgParams".

V

AUTSSAR

A

Multiplicity

1

Type

EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_RamTst_00127] Definition of EcucBooleanParamDef RamTstStopApi |

Parameter Name

RamTstStopApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_Stop"
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_RamTst_00156] Definition of EcucBooleanParamDef RamTstSuspendApi

[

Parameter Name

RamTstSuspendApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_Suspend".
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_RamTst_00128] Definition of EcucBooleanParamDef RamTstVersioninfo

Api |

Parameter Name

RamTstVersionInfoApi

Parent Container

RamTstCommon

Description Preprocessor switch to disable / enable the function "RamTst_GetVersioninfo"
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_RamTst_00190] Definition of EcucReferenceDef RamTstEcucPartitionRef

[

Parameter Name

RamTstEcucPartitionRef

Parent Container

RamTstCommon

Value Configuration Class

Description Maps the RAM test to zero or multiple ECUC partitions to make the modules API
available in this partition. The RAM test will operate as an independent instance in
each of the partitions.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Pre-compile time All Variants

Link time

Post-build time

Dependency

AUTSSAR

RamTst: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

RamTstCommon:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

RamTstDevErrorDetect:
+parameter EcucBooleanParamDef
defaultValue = false
RamTstVersionInfoApi:
+parameter EcucBooleanParamDef
defaultValue = false
+parameter RamTstStopApi: EcucBooleanParamDef
+parameter| RamTstAllowApi: EcucBooleanParamDef
+parameter RamTstGetExecutionStatusApi:
EcucBooleanParamDef
+parameter RamTstGetTestResultApi:
EcucBooleanParamDef
+parameter RamT stGetT estResultPerBlockApi:
EcucBooleanParamDef
+parameter RamTstSelectAlgParamsApi:
EcucBooleanParambef
+parameter RamT stGetAlgParamsApi:
EcucBooleanParamDef
+parameter RamTstGetTestAlgorithmApi:
EcucBooleanParamDef
rameter
rPaRMeler] b T siGetNumberOfTestedCellsApi:
EcucBooleanParambef
+parameter RamTstChangeNumOfT estedCellsApi:
EcucBooleanParamDef
+parameter RamTstSuspendApi:
EcucBooleanParamDef
+parameter

RamTstResumeApi: EcucBooleanParamDef

Figure 10.2: RamTstCommon

+parameter RamTstRunFull TestApi:
EcucBooleanParamDef

+parameter RamTstRunPartial TestApi:
EcucBooleanParamDef
RamT stEcucPartitionRef:

+reference SR CRaTarar A naT

EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

+destination\|/

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

AUTSSAR

10.2.5 RamTstAlgorithms

[ECUC_RamTst_00065] Definition of EcucParamConfContainerDef RamTstAlgo-
rithms |

Container Name RamTstAlgorithms
Parent Container RamTstCommon
Description This container holds all of the available test algorithms for the specific microcontroller.

Each test algorithm is selected ON or OFF before compiling so that only the desired
test algorithms are in the compiled code.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

RamTstAbrahamTestSelected 1 [ECUC_RamTst_00129]
RamTstCheckerboardTestSelected 1 [ECUC_RamTst_00130]
RamTstGalpatTestSelected 1 [ECUC_RamTst_00132]
RamTstMarchTestSelected 1 [ECUC_RamTst_00133]
RamTstTranspGalpatTestSelected 1 [ECUC_RamTst_00134]
RamTstWalkPathTestSelected 1 [ECUC_RamTst_00135]

No Included Containers

]

[ECUC_RamTst_00129] Definition of EcucBooleanParamDef RamTstAbraham
TestSelected [

Parameter Name RamTstAbrahamTestSelected

Parent Container RamTstAlgorithms

Description Preprocessor switch to select the Abraham Test ON or OFF

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_RamTst_00130] Definition of EcucBooleanParamDef RamTstChecker-
boardTestSelected |

Parameter Name RamTstCheckerboardTestSelected
Parent Container RamTstAlgorithms
Description Preprocessor switch to select the Checkerboard Test ON or OFF

Y%

AUTSSAR

A

Multiplicity

1

Type

EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_RamTst_00132]
Selected |

Definition of EcucBooleanParamDef RamTstGalpatTest

Parameter Name

RamTstGalpatTestSelected

Parent Container

RamTstAlgorithms

Description Preprocessor switch to select the Galpat Test ON or OFF
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_RamTst_00133]
Selected |

Definition of EcucBooleanParamDef RamTstMarchTest

Parameter Name

RamTstMarchTestSelected

Parent Container

RamTstAlgorithms

Description Preprocessor switch to select the March Test ON or OFF
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_RamTst_00134]
patTestSelected |

Definition of EcucBooleanParamDef RamTstTranspGal-

Parameter Name

RamTstTranspGalpatTestSelected

Parent Container

RamTstAlgorithms

Description Preprocessor switch to select the Transparent Galpat Test ON or OFF
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_RamTst_00135]
TestSelected |

Definition of EcucBooleanParamDef RamTstWalkPath

Parameter Name

RamTstWalkPathTestSelected

Parent Container

RamTstAlgorithms

Description Preprocessor switch to select the Walking Path Test ON or OFF

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

RamTst: +container RamTstCommon:
EcucModuleDef EcucParamConfContainerDef

upperMultiplicity = 1 upperMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 1

+subContaine$

RamTstAlgorithms:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

¢ ¢¢ parameter

RamTstCheckerboardTestSelected:
EcucBooleanParamDef

+parameter

RamTstGalpatTestSelected:
EcucBooleanParamDef

+parameter
+parameter P

RamTstMarchTestSelected:
EcucBooleanParamDef

RamTstTranspGalpatTestSelected:
EcucBooleanParamDef

+parameter +parameter

RamTstAbrahamTestSelected: RamTstWalkPathTestSelected:
EcucBooleanParamDef EcucBooleanParamDef

Figure 10.3: RamTstAlgorithms

10.2.6 RamTstConfigParams

[ECUC_RamTst_00066] Definition of EcucParamConfContainerDef RamTstCon-
figParams |

Container Name RamTstConfigParams

Parent Container RamTstCommon

Description This container specifies configuration parameters which are set at pre-compile or link
time.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

RamTstDefaultAlgParamsid 1 [ECUC_RamTst_00181]
RamTstMinNumberOfTestedCells 1 [ECUC_RamTst_00154]
RamTstNumberOfAlgParamSets 1 [ECUC_RamTst_00180]
RamTstTestCompletedNotification 1 [ECUC_RamTst_00138]
RamTstTestErrorNotification 1 [ECUC_RamTst_00139]

AUTSSAR

Included Containers

Container Name

Multiplicity Dependency

RamTstAlgParams

1..255 This container holds parameters for configuring an algorithm.
For each algorithm selected in the RamTst_Algorithms container
there can be one or more RamTstAlgParams containers. The
multiplicity of the included container RamTstBlockParams
depends on the number of separate blocks of RAM which are

defined for the particular test configuration.

]

[ECUC_RamTst_00181]
Paramsld |

Definition of EcucintegerParamDef RamTstDefaultAlg

Parameter Name

RamTstDefaultAlgParamsid

Parent Container RamTstConfigParams

Description This is the identifier for the default "RamTstAlgParams" valid after the "RamTst_lInit(..)"
function. It is the initial value for a RAM variable which could be changed by the
function "RamTst_SelectAlgParams".

Multiplicity 1

Type EcuclntegerParamDef

Range 1..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_RamTst_00154]
OfTestedCells |

Definition of EcucintegerParamDef RamTstMinNumber

Parameter Name

RamTstMinNumberOfTestedCells

Parent Container

RamTstConfigParams

Description Minimum number of tested cells for one cycle of a background test, as defined by
implementer.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

AUTSSAR

[ECUC_RamTst_00180] Definition of EcuclntegerParamDef RamTstNumberOfAlg

ParamSets |

Parameter Name

RamTstNumberOfAlgParamSets

Parent Container

RamTstConfigParams

Description Number of configured parameter sets for the available test algorithms. calculation
Formula = count of the container RamTst_AlgParams

Multiplicity 1

Type EcuclntegerParamDef

Range 1..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

"RamTstNumberOfAlgParamSets" is derived by the count of "RamTstAlgParams"
which is part of the same subContainer and has a multiplicity of 1 to 255.

]

[ECUC_RamTst_00138]
pletedNotification |

Definition of EcucFunctionNameDef RamTstTestCom-

Parameter Name

RamTstTestCompletedNotification

Parent Container

RamTstConfigParams

Description This function will be called from a background test after finishing the RAM test without
an error.

Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_RamTst_00139]
Notification [

Definition of EcucFunctionNameDef RamTstTestError

Parameter Name

RamTstTestErrorNotification

Parent Container

RamTstConfigParams

Description This function will be called from a background test if an error occurs during the RAM
test.

Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

AUTSSAR

upperMultiplicity = 1
lowerMultiplicity = 0

EcucModuleDef o—— EcucParamConfContainerDef

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Dependency
]
RamTst: +container RamTstCommon:

upperMultiplicity = 1

lowerMultiplicity = 1 RamTstMinNumberOfT estedCells:
. EcucintegerParamDef
+subContainer
+parameter min =1

RamTstConfigParams: o max = 4294967295

EcucParamConfContainerDef

IowerMuIti'pIi'ci'ty =1 +parameter RamTstTestErrorNotification:
upperMultiplicity = 1 o EcucFunctionNameDef
+parameter RamTstTestCompletedNotification:

EcucFunctionNameDef

+parameter
RamTstNumberOfAlgParamSets:
EcuclntegerParamDef
min =1
. max = 255
+subContainer +parameter
RamTstAlgParams: RamT stDefaultAlgParamsld:
EcucParamConfContainerDef EcucintegerParamDef
EcucintegerFarambet
upperMultiplicity = 255 —

lowerMultiplicity = 1 max = 255

Figure 10.4: RamTstConfigParams

10.2.7 RamTstAlgParams

[ECUC_RamTst_00090]

Definition of EcucParamConfContainerDef RamTstAlg

Params |
Container Name RamTstAlgParams
Parent Container RamTstConfigParams

Description

This container holds parameters for configuring an algorithm. For each algorithm
selected in the RamTst_Algorithms container there can be one or more RamTstAlg
Params containers. The multiplicity of the included container RamTstBlockParams
depends on the number of separate blocks of RAM which are defined for the particular
test configuration.

Multiplicity

1..255

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
RamTstAlgorithm 1 [ECUC_RamTst_00178]
RamTstAlgParamsld 1 [ECUC_RamTst_00179]
RamTstExtNumberOfTestedCells 1 [ECUC_RamTst_00152]
RamTstMaxNumberOfTestedCells 1 [ECUC_RamTst_00153]
RamTstNumberOfBlocks 1 [ECUC_RamTst_00141]
RamTstNumberOfTestedCells 1 [ECUC_RamTst_00142]
RamTstBlockParamsEcucPartitionRef 0..1 [ECUC_RamTst_00191]
Included Containers

Container Name Multiplicity Dependency

RamTstBlockParams 1..65535 This container holds the description for one block of RAM. For

each RAM block to be tested by a given algorithm, there is one
container which describes the block. Multiple instances of this
container are included in each container RamTst_AlgParams.

]

[ECUC_RamTst_00178] Definition of EcucEnumerationParamDef RamTstAlgo-
rithm [

Parameter Name RamTstAlgorithm
Parent Container RamTstAlgParams
Description This is the algorithm for which this RamTstAlgParams set is defined. Note that the

same algorithm can be used in more than one RamTstAlgParams.
Constraint: Only the algorithms selected by RamTstCommon/ RamTstAlgorithms can

be used.

Multiplicity 1

Type EcucEnumerationParamDef

Range RAMTST_ABRAHAM_TEST -
RAMTST_CHECKERBOARD_ -
TEST

RAMTST GALPAT TEST -
RAMTST_MARCH_TEST -
RAMTST TRANSP_GALPAT -

TEST
RAMTST_WALK_PATH_TEST -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

AUTSSAR

[ECUC_RamTst_00179] Definition of EcuclntegerParamDef RamTstAlgParamsid

[

Parameter Name

RamTstAlgParamsld

Parent Container

RamTstAlgParams

Description This is the identifier by which this RamTstAlgParams set can be selected.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_RamTst_00152] Definition of EcucintegerParamDef RamTstExtNumberOf

TestedCells |

Parameter Name

RamTstExtNumberOfTestedCells

Parent Container

RamTstAlgParams

Description This is the absolute maximum value for the number of cells that NUMBER_OF _
TESTED_CELLS and MAX_NUMBER_OF_TESTED_CELLS can be.

Multiplicity 1

Type EcuclintegerParamDef

Range 1 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_RamTst_00153]
OfTestedCells |

Definition of EcuclntegerParamDef RamTstMaxNumber

Parameter Name

RamTstMaxNumberOfTestedCells

Parent Container RamTstAlgParams

Description This is the maximum value for the number of cells that can be tested in one cycle of a
background test.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295 |

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

| X | VARIANT-PRE-COMPILE

Y%

AUTSSAR

Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_RamTst_00141]
Blocks |

Definition of EcuclntegerParamDef RamTstNumberOf

Parameter Name

RamTstNumberOfBlocks

Parent Container

RamTstAlgParams

Description Number of RAM blocks configured using the container "RamTst_BlockParams"
calculationFormula = Count of RamTstBlockParams contained in this RamTstAlg
Params.

Multiplicity 1

Type EcucintegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

"RamTstNumberOfBlocks" is derived by the count of the number of "RamTstBlock
Params" containers which are part of the same subcontainer and have a multiplicity of
0..65535.

]

[ECUC_RamTst_00142]
TestedCells |

Definition of EcuclntegerParamDef RamTstNumberOf

Parameter Name

RamTstNumberOfTestedCells

Parent Container

RamTstAlgParams

Description This is the initial value for a RAM variable, which can be changed by the function "Ram
Tst_ChangeNumberOfTestedCells"

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

AUTSSAR

[ECUC_RamTst_00191] Definition of EcucReferenceDef RamTstBlockParams
EcucPartitionRef |

Parameter Name RamTstBlockParamsEcucPartitionRef
Parent Container RamTstAlgParams
Description Maps the RAM test block parameter configuration of an individual RAM block to zero or

one ECUC partitions. The ECUC partition referenced is a subset of the ECUC
partitions where the RamTst driver is mapped to. The according test shall run in the
referenced ECUC partition.

Multiplicity 0..1
Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

RamTst: EcucModuleDef +container RamTstCommon: . RamTstConfigParams:
— EcucParamConfContainerDef +subContainer EcucParamConfContainerDef
upperMultiplicity = 1 —
lowerMultiplicity = 0 upperMultiplicity = 1 lowerMultiplicity = 1
lowerMultiplicity = 1 upperMultiplicity = 1
+subContainer RamTstNumberOfT estedCells:
+parameter EcucintegerParamDef
RamTstAlgParams: o
RamTstAlgParamsld: EcucParamConfContainerDef min = 1
EcuclntegerParamDef +parameter max = 4294967295
: upperMultiplicity = 255
min =1 lowe Melliplicivag) RamTstMaxNumberOfTestedCells:
max = 255 +parameter
EcuclntegerParamDef
) min =1
RamTstBlockParams: max = 4294967295

EcucParamConfContainerDef |+subContainer

RamTstExtNumberOfTestedCells:
EcuclntegerParamDef

upperMultiplicity = 65535 +parameter
lowerMultiplicity = 1

min = 1
max = 4294967295

+parameter
RamTstNumberOfBlocks:

® EcuclntegerParamDef

. +parameter ? min = 1
+literal

max = 65535
RamTstAlgorithm:

EcucEnumerationParamDef

RAMTST_ABRAHAM_TEST:
EcucEnumerationLiteral Def

RAMTST CHECKERBOARD TEST: |*™ Py

EcucEnumerationLiteral Def

literal
RAMTST_GALPAT_TEST: +
5 - <

EcucEnumerationLiteralDef

literal
RAMTST_MARCH_TEST: +
HANE <

EcucEnumerationLiteralDef

RAMTST TRANSP GALPAT TEST:|*teral ®

EcucEnumerationLiteralDef

literal
RAMTST_WALK_PATH_TEST: +
AR PR <

EcucEnumerationLiteralDef

Figure 10.5: RamTstAlgParams

[SWS_RamTst_CONSTR_01016] [The ECUC partitions referenced by RamTst-—
BlockParamsEcucPartitionRef shall be a subset of the ECUC partitions refer-

enced by RamTstEcucPartitionRef.]

10.2.8 RamTstBlockParams

[ECUC_RamTst_00091] Definition of EcucParamConfContainerDef RamTstBlock
Params |

AUTSSAR

Container Name

RamTstBlockParams

Parent Container RamTstAlgParams

Description This container holds the description for one block of RAM. For each RAM block to be
tested by a given algorithm, there is one container which describes the block. Multiple
instances of this container are included in each container RamTst_AlgParams.

Multiplicity 1..65535

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

RamTstBlockld 1 [ECUC_RamTst_00143]
RamTstEndAddress 1 [ECUC_RamTst_00144]
RamTstFillPattern 1 [ECUC_RamTst_00176]
RamTstStartAddress 1 [ECUC_RamTst_00145]

RamTstTestPolicy

1 [ECUC_RamTst_00177]

No Included Containers

]

[ECUC_RamTst_00143] Definition of EcucintegerParamDef RamTstBlockld |

Parameter Name

RamTstBlockld

Parent Container

RamTstBlockParams

Description ID of the RAM block

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_RamTst_00144] Definition of EcucintegerParamDef RamTstEndAddress

[

Parameter Name

RamTstEndAddress

Parent Container

RamTstBlockParams

Description End Address of the RAM block.
Constraint: It must be larger than the RamTstStartAddress.
Multiplicity 1
Type EcuclntegerParamDef
Range 1.. 4294967295 |

Default value

Post-Build Variant Value

false

AUTSSAR

Value Configuration Class

Pre-compile time

X VARIANT-PRE-COMPILE

Link time

X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_RamTst_00176] Definition of EcuclntegerParamDef RamTstFillPattern |

Parameter Name

RamTstFillPattern

Parent Container

RamTstBlockParams

Description Pattern to be filled into each memory cell after destructive test of this block.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value

Value Configuration Class

false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_RamTst_00145] Definition of EcucintegerParamDef RamTstStartAddress

[

Parameter Name

RamTstStartAddress

Parent Container

RamTstBlockParams

Description Start Address of the RAM block.
Constraint: It must be smaller than the RamTstEndAddress.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295

Default value

Post-Build Variant Value

Value Configuration Class

false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_RamTst_00177] Definition of EcucEnumerationParamDef RamTstTest

Policy |

Parameter Name

RamTstTestPolicy

Parent Container

RamTstBlockParams

Description

Policy regarding destruction or non-destruction of memory content.

\Y%

AUTSSAR

A

Multiplicity 1
Type EcucEnumerationParamDef
Range RAMTEST_DESTRUCTIVE RAM test does not restore memory content.
RAMTEST_NON_DESTRUCTIVE | RAM test restores memory content.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Dependency
RamTst: EcucModuleDef
upperMultiplicity = 1
lowerMultiplicity = 0
RamT stEcucPartitionRef:
+container EcucReferenceDef +destination EcucPartition:
EcucParamConfContainerDef
. o +reference lowerMultiplicity = 0
m upperMultiplicity = * lowerMultiplicity = 0
EcucParamConfContainerDef upperMultiplicity = *
upperMultiplicity = 1
lowerMultiplicity = 1 R
RamT stBlockParamsEcucPartitionRef: +destination
EcucReferenceDef
+waontainer’
lowerMultiplicity = 0
RamTstConfigParams: upperMultiplicity = 1
EcucParamConfContainerDef +reference
lowerMultiplicity = 1
upperMultiplicity = 1 +subContainer
RamTstAlgParams:
EcucParamConfContainerDef
RAMTEST DESTRUCTIVE: l"ppeyulltt.")ll.'c.'ttyflzss
EcucEnumerationLiteral Def owerMultipficity =
eral RamTstStartAddress.
+itera +subContainer EcuclntegerParamDef
+parameter min =0
RamTstBlockParams: =
+parameter REU IO MENMARS, B
RamTsTestPolicy: P EcucParamConfContainerDef max = 4294967295
EcucEnumerationParamDef upperMultiplicity = 65535 RamT<EndAddress:
lowerMultiplicity = 1 *tparameter| £, integerParamDef
>
min=1
+literal max = 4294967295
RAMTEST_NON_DESTRUCTIVE +parameter| RamTstFillPattern:
EcucEnumerationLiteralDef EcucintegerParamDef
max = 4294967295
+parameter RamTstBlockid:
EcucIntegerParamDef
min=1
max = 65535

Figure 10.6: RamTstBlockParams

[SWS_RamTst_CONSTR_01017] [If RamTstEcucPartitionRef references one or
more ECUC partitions, RamTstBlockParamsEcucPartitionRef shall have a mul-
tiplicity of one and reference one of these ECUC partitions as well. |

AUTSSAR

10.3 Published Information

For details refer to [3] Chapter 10.3 “Published Information”.

10.3.1 RamTstPublishedinformation

[ECUC_RamTst_00186] Definition of EcucParamConfContainerDef RamTstPub-

lishedIinformation |

Container Name

RamTstPublishedInformation

Parent Container

RamTst

Description

Container holding all RamTst specific published information parameter.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

RamTstCellSize

1 [ECUC_RamTst_00187]

No Included Containers

]

[ECUC_RamTst_00187] Definition of EcuclntegerParamDef RamTstCellSize |

Parameter Name

RamTstCellSize

Parent Container

RamTstPublishedInformation

Description Size of RAM cells (in bits) which can be tested individually by the given implementation.
Multiplicity 1

Type EcuclntegerParamDef

Range 1..64 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants

Dependency

RamTst: EcucModuleDef

RamTstPublishedInformation:

+container

upperMultiplicity = 1 o
lowerMultiplicity = 0

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter

RamTstCellSize: EcuclntegerParamDef

min=1
max = 64

Figure 10.7: RamTstPublishedIinformation

AUTSSAR

10.4

[SWS_RamTst_00081]

Upstream requirements: SRS_BSW_00402

Implementation Specific Information and Parameters

[The implementer shall provide measured or calculated runtime information in the doc-
umentation of the module for each algorithm implementation. The information is to be
presented as shown in the following table, specifying whether the parameters are mea-
sured or calculated. |

Microcontroller

Frequency

RamCellSize
[bit]:

No of cells/
cycle

Average
Runtime

Interrupt lock
time

Internal used
RAM

[SWS_RamTst_00205] [If an implementation of the RAM Test module supports ven-

dor specific test algorithms or other additional configuration parameters, the imple-
menter shall provide a formal vendor-specific definition of these parameters including
their documentation (as part of the BSW Module Description). |

AUTSSAR

A Not applicable requirements

[SWS_RamTst_NA_00999] Requirements non-applicable to this Specification

Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00336, SRS_BSW _
00375, SRS_BSW_00383, SRS_BSW_00386, SRS_BSW_00399,
SRS_BSW_00400, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW _
00416, SRS_BSW_00417, SRS_BSW_00422, SRS_BSW_00423,
SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_
00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00437,
SRS_BSW_00438, SRS_SPAL_12063, SRS_SPAL_12064, SRS_
SPAL_12067, SRS_SPAL_12068, SRS_SPAL_12069, SRS_SPAL_
12075, SRS_SPAL_12125, SRS_SPAL_12267, SRS_SPAL_12461,
SRS_SPAL_12462, SRS_SPAL_12463, SRS _SPAL_12078, SRS_
SPAL_12092, SRS _SPAL_12265

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

Number Heading

Es1\(/)v082_]Rastt_ RAM failure during test.
E)S1\8V()85—]RamTSt— RAM failure during test.
%ﬁ\gv(;—]RamTSt— RAM failure during test.

Table B.1: Changed Specification Items in R25-11

B.1.3 Deleted Specification Iltems in R25-11

none

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Full RAM Test
	4.3 Partial RAM Test
	4.4 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Requirements
	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors

	7.3 General Test Behavior

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 RamTst_ConfigType
	8.2.2 RamTst_ExecutionStatusType
	8.2.3 RamTst_TestResultType
	8.2.4 RamTst_AlgParamsIdType
	8.2.5 RamTst_AlgorithmType
	8.2.6 RamTst_NumberOfTestedCellsType
	8.2.7 RamTst_NumberOfBlocksType

	8.3 Function definitions
	8.3.1 RamTst_Init
	8.3.2 RamTst_DeInit
	8.3.3 RamTst_Stop
	8.3.4 RamTst_Allow
	8.3.5 RamTst_Suspend
	8.3.6 RamTst_Resume
	8.3.7 RamTst_GetExecutionStatus
	8.3.8 RamTst_GetTestResult
	8.3.9 RamTst_GetTestResultPerBlock
	8.3.10 RamTst_GetVersionInfo
	8.3.11 RamTst_GetAlgParams
	8.3.12 RamTst_GetTestAlgorithm
	8.3.13 RamTst_GetNumberOfTestedCells
	8.3.14 RamTst _SelectAlgParams
	8.3.15 RamTst_ChangeNumberOfTestedCells
	8.3.16 RamTst_RunFullTest
	8.3.17 RamTst_RunPartialTest

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 RamTst_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 RamTst_TestCompletedNotification
	8.6.3.2 RamTst_ErrorNotification

	9 Sequence diagrams
	9.1 RamTst_MainFunction (Examples)
	9.2 RamTst_ChangeNumberOfTestedCells
	9.3 RamTst_SelectAlgParams
	9.4 RamTst_GetAlgParams
	9.5 RamTst_GetExecutionStatus
	9.6 RamTst_GetTestResult
	9.7 RamTst_GetTestResultPerBlock
	9.8 RamTst_GetTestAlgorithm
	9.9 RamTst_GetNumberOfTestedCells

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 RamTst
	10.2.3 RamTstDemEventParameterRefs
	10.2.4 RamTstCommon
	10.2.5 RamTstAlgorithms
	10.2.6 RamTstConfigParams
	10.2.7 RamTstAlgParams
	10.2.8 RamTstBlockParams

	10.3 Published Information
	10.3.1 RamTstPublishedInformation

	10.4 Implementation Specific Information and Parameters

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

