AUTSSAR

Document Title Specification of PWM Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 37

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR
» Changed ID from [SWS_Pwm_00153] to
2022-11-24 | R22-11 EZ'szsgmem [SWS_Pwm_NA_00153]
* [SWS_Pwm_00061] removed as
<Module>_ConfigTypes are introduced
AUTOSAR as implementation specific and therefore
2021-11-25 | R21-11 Release additional requirements did not make
Management sense anymore
* Runtime error added on [SWS_Pwm_
00200]
AUTOSAR . Mi i . tion E
2020-11-30 | R20-11 Release inor corrections in section Error
Management Classification
AUTOSAR * Introduced MCAL Multicore Distribution
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management

published

AUTSSAR

* Incporporated concept MCAL Multicore
Distribution (Draft)

AUTOSAR « Removal of obsolete elements
2018-10-31 4.4.0 Release
Management » Header File Cleanup
» Fixed document structure for automated
document processing
AUTOSAR » Added classification for Runtime error
2017-12-08 | 4.3.1 Release - Removed [SWS_Pwm_20069], [SWS_
Management Pwm_10120] and [SWS_Pwm_20120]

» Updated Pwm_GetOutputState return
value requirement [SWS_Pwm_30051]
and its references

» Updated Configuration Class for

AUTOSAR PwmChannelId
2016-11-30 | 4.3.0 Klﬂelease + Removed definition of Configuration
anagement :
variants

» Removed Unresolved References of
BSW requirements

» Updated Header file structure diagram

AUTOSAR * Removed requirements with respect to
2015-07-31 | 4.2.2 Release NULL_PTR check

Management * DET has been renamed

AUTOSAR » Updated trace reference for code file
2014-10-31 | 4.21 Release :

structure requirement

Management

AUTOSAR « Introduction of McuClockReferencePoint
2014-03-31 | 4.1.3 Release

Management « Editorial changes

» Updated requirements related to Pwm—

PowerStateAsynchTransitionMode
AUTOSAR * Updated Scheduled Functions chapter
2013-10-31 4.1.2 Release
Management » Editorial changes

* Removed chapter(s) on change
documentation

AUTSSAR

» Added ECU degradation concept

2013-03-15 | 414 | AUTOSAR + Adapted to new SWS BSW General
Administration
* Split memory map header
2011-12-22 | 403 | AUTOSAR Re-formulated [SWS_Pwm_00045]
Administration
* New Error symbol: PWM_E_PARAM__
POINTER, shall be reported if APl Pwm__
GetVersionInfo service is called with
2010-09-30 | 3.1.5 AUTOSAR a NULL parameter
o Administration
» Updated the chapter Version Check
» Maintenance in phrasing and explaining
* The behavior of the function Pwm__
SetPeriodAndDuty is explained in
case of an input value of zero period.
2010-02-02 | 3.1.4 AUTOSAR « Added the chapter Debug Support
Administration _ _
* Splitted some requirements so each ID
is unique.
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTOSAR + Legal disclaimer revised
Administration
» Tables generated from UML-models and
UML-diagrams linked to UML-model
» General improvements of requirements
in preparation of CT-development
+ Reactivation concept for IDLE PWM
AUTOSAR
2007-12-21 3.0.1 channels adapted

Administration

* Development error in case of already
initialized module added

» Document meta information extended

» Small layout adaptations made

AUTSSAR

» Updated file include structure

» Added configuration macros ON/OFF for
PWM APls

* Renamed configuration parameter
PWM_PERIOD_UPDATED_ENDPERIOD

2007-01-24 21.15 AUTQ.SAR i to PwmPeriodUpdatedEndperiod
Administration
» Updated PWM signal description figure
* Legal disclaimer revised
* "Advice for users" revised
* "Revision Information" added
» Document structure adapted to common
Release 2.0 SWS Template.
2006-05-16 | 2.0 AUTQSAR ' * Modify abstraction level of PWM channel
Administration
* Notifications are configurable
 Update the configuration of the module
2005-05-31 1.0 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

5 Dependencies to other modules

5.1 Filestructure
5.1.1 Codefile structure
5.1.2 Headerfile structure

6 Requirements Tracing

7 Functional specification

7.1 Generalbehavior e
7.2 Time UnitTicks e
7.2.1 Background & Rationale
7.2.2 Requirements
7.3 Support and management of HW low power states
7.3.1 Background
7.3.2 Requirements
7.4 Duty Cycle Resolutionandscaling
7.5 Versioncheck e
7.6 Error Classification,
7.6.1 DevelopmentErrors
7.6.2 Runtime Errors e
7.6.3 ProductionErrors
7.6.4 Extended ProductionErrors
7.7 Security Events

8 API specification

8.1 Importedtypes e
8.2 Typedefinitions
8.2.1 Pwm_ChannelType
8.2.2 Pwm_PeriodType
8.2.3 Pwm_OutputStateType
8.2.4 Pwm_EdgeNotificationType L.
8.2.5 Pwm_ChannelClassType

AUTSSAR

10

8.2.6 Pwm_ConfigType 24
8.2.7 Pwm_PowerStateRequestResultType 24
8.2.8 Pwm_PowerStateType 25
8.3 Function definitions 26
8.3.1 Pwm_Init 26
832 Pwm Delnit.o 27
8.3.3 Pwm_SetDutyCycle 28
8.3.4 Pwm_SetPeriodAndDuty L. 30
8.3.5 Pwm _SetOutputToldle 31
8.3.6 Pwm_GetOutputState L 32
8.3.7 Pwm_DisableNotification 34
8.3.8 Pwm_EnableNotification. 35
8.3.9 Pwm SetPowerState, 36
8.3.10 Pwm_GetCurrentPowerState 37
8.3.11 Pwm_GetTargetPowerState 38
8.3.12 Pwm_PreparePowerState 39
8.3.13Pwm_GetVersioninfo 40
8.4 Callback notifications 40
8.5 Scheduled functions 40
8.5.1 Pwm_Main_PowerTransitionManager 41
8.6 Expectedinterfaceso 41
8.6.1 Mandatory interfaces, 41
8.6.2 Optionalinterfaces 42
8.6.3 Configurable interfaces 42
8.7 Servicelnterfaces 44
8.8 APl parameterchecking 44
Sequence diagrams 45
9.1 Initialization 45
9.2 De-initialization 45
9.3 Settingthedutycycle 46
9.4 Setting the periodandtheduty 46
9.5 Settingthe PWM outputtoidle 47
9.6 Gettingthe PWM Qutputstate 47
9.7 Using the PWM notifications 48
Configuration specification 49
10.1How toread thischapter 49
10.2Containers and configuration parameters 49
10.21PwWmM . . . L e 49
10.2.2PwmGeneral 50
10.2.3 PwmPowerStateConfig 54
10.24PwmChannel 55
10.2.5 PwmChannelConfigSet L. 60

10.2.6 PwmConfigurationOfOptApiServices 60

AUTSSAR

10.3Published Information. 63

A Not applicable requirements 64

B Change history of AUTOSAR traceable items 65
B.1 Traceable item history of this document according to AUTOSAR Release

R25-11 . . . e 65

B.1.1 Added Specification ltemsin R25-11 65

B.1.2 Changed Specification ltemsin R25-11 65

B.1.3 Deleted Specification Itemsin R25-11 65

B.1.4 Added Constraintsin R25-11 65

B.1.5 Changed Constraintsin R25-11 65

B.1.6 Deleted Constraintsin R25-11 65

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module PWM driver.

Each PWM channel is linked to a hardware PWM which belongs to the microcontroller.
The type of the PWM signal (for example center Align, left Align, Etc..) is not defined
within this specification and is left up to the implementation.

The driver provides functions for initialization and control of the microcontroller internal
PWM stage (pulse width modulation). The PWM module generates pulses with variable
pulse width. It allows the selection of the duty cycle and the signal period time.

POLARITY = PWM_HIGH

i Period [P efod—————————————]

a—Duty Cycle—m- ~a—Duty Cycle—-

POLARITY = PWM_LOW

- Perod o P erod

Y

gDty Cyele—pe] LDty Cytle—m

Figure 1.1: PWM Signal Description

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the PWM Driver
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
PWM Channel Numeric identifier linked to a hardware PWM.
PWM Output State Defines the output state for a PWM signal. It could be:
* High.
 Low.
PWM Idle State The idle state represents the output state of the PWM channel after the call of
Pwm_SetOutputToIdle Of Pwm_DelInit.
PWM Polarity Defines the starting output state of each PWM channel.
PWM Duty cycle Defines a percentage of the starting level (could be high or low) related to the
period.
PWM period Defines the period of the PWM signal.
PWM Pulse Width Modulation.
DEM Diagnostic Event Manager.
DET Default Error Tracer.
MCU Microcontroller Unit.
PLL Phase Locked Loop.
ISR Interrupt Service Routine.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of Port Driver
AUTOSAR_CP_SWS PortDriver

[4] Specification of MCU Driver
AUTOSAR_CP_SWS_ MCUDriver

[5] Specification of Default Error Tracer
AUTOSAR_CP_SWS_DefaultErrorTracer

[6] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[7] Requirements on PWM Driver
AUTOSAR_CP_RS_PWMDriver

[8] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[9] General Requirements on SPAL
AUTOSAR_CP_RS SPALGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for PWM Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for PWM Driver.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

[SWS_Pwm_00001]
Upstream requirements: SRS_Pwm_12386

[The Pwm SWS does not cover PWM emulation on general purpose 1/O. |

» Power State Control APIs are implementable only if the MCAL driver owns the
complete underlying HW peripheral i.e. the HW peripheral is not accessed by
other MCAL modules.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

The PWM depends on the system clock. Thus, changes of the system clock (e.g. PLL
on to PLL off) also affect the clock settings of the PWM hardware.

The PWM Driver depends on the following modules:
» PORT Driver [3]: To set the port pin functionality. PWM141
« MCU Driver [4]: To set prescaler, system clock and PLL. PWM142
» DET [5]: Default Error Tracer in Development mode. PWM143

See also document [6] Chapter 3.9 “Clock Tree Configuration”, which details the mech-
anism to deliver reference clock signals to peripherals.

5.1 File structure

5.1.1 Code file structure

[SWS_Pwm_00065]
Upstream requirements: SRS_BSW_00346, SRS_BSW_00314

[The Pwm SWS shall not define the code file structure. |

5.1.2 Header file structure

[SWS_Pwm_50075] [Pwm.c shall include Pwm.h, Det.h and . |

[SWS_Pwm_70075] [Pwm_lIrg.c shall include Pwm.h.]

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [7], [8], and [9], and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Pwm_00007]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Pwm_10080] [SWS_Pwm_10082]
[SWS_Pwm_10083] [SWS_Pwm_10084]
[SWS_Pwm_10085] [SWS_Pwm_20080]
[SWS_Pwm_20082] [SWS_Pwm_20083]
[SWS_Pwm_20084] [SWS_Pwm_20085]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_Pwm_00065]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

SWS_Pwm_00045] [SWS_Pwm_00047]
SWS_Pwm_00117] [SWS_Pwm_10051]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[
[
[SWS_Pwm_20051] [SWS_Pwm_30051]
[SWS_Pwm_00010]

[SRS_BSW_00337]

Classification of development errors

[SWS_Pwm_20002] [SWS_Pwm_30002]
[SWS_Pwm_40002] [SWS_Pwm_50002]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

[SWS_Pwm_00070]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a basic
set of module files

[SWS_Pwm_00065]

[SRS_BSW_00385]

List possible error notifications

[SWS_Pwm_20002] [SWS_Pwm_30002]
[SWS_Pwm_40002] [SWS_Pwm_50002]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Pwm_00045] [SWS_Pwm_00047]
[SWS_Pwm_00117] [SWS_Pwm_10051]
[SWS_Pwm_20002] [SWS_Pwm_20051]
[SWS_Pwm_30002] [SWS_Pwm_30051]
[SWS_Pwm_40002] [SWS_Pwm_50002]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Pwm_00117]

[SRS_Pwm_12293]

The PWM driver shall allow the static
configuration of PWM channel
properties

[SWS_Pwm_00197]

[SRS_Pwm_12295]

The PWM driver shall provide a
service for setting the duty cycle of a
selected channel

[SWS_Pwm_00013]

[SRS_Pwm_12297]

The PWM driver shall provide a
service for setting the period of a
selected channel

[SWS_Pwm_00019]

[SRS_Pwm_12299]

The PWM driver shall allow to enable/
disable the PWM edges notification
during runtime

[SWS_Pwm_00023] [SWS_Pwm_00024]

[SRS_Pwm_12358]

The PWM driver shall be capable to
set the output of selected channel to
a given state immediately

[SWS_Pwm_00021]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Pwm_12378]

The PWM driver shall be able to
assign notification to each edges of
the PWM-signal

[SWS_Pwm_00023] [SWS_Pwm_00024]
[SWS_Pwm_00197]

[SRS_Pwm_12381]

By de-initializing the PWM driver, all
PWM-channels shall be stop

[SWS_Pwm_00010]

[SRS_Pwm_12382]

The PWM Driver shall wait to the end
of the signal period to update the duty
cycle of a PWM signal

[SWS_Pwm_00017]

[SRS_Pwm_12383]

The PWM driver shall provide a 16 bit
interface to set the duty cycle

[SWS_Pwm_00058]

[SRS_Pwm_12385]

The PWM driver shall provide a
service to get the state of a PWM
channel output

[SWS_Pwm_00022]

[SRS_Pwm_12386]

The PWM driver shall not cover a
PWM emulation on general purpose
/0

[SWS_Pwm_00001]

[SRS_Pwm_12389]

The PWM driver shall allow only
static configuration of the frequency
for some PWM channels

[SWS_Pwm_00041]

[SRS_Pwm_12459]

The PWM Driver shall provide a
scaling scheme for duty cycle

[SWS_Pwm_00059]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Pwm_00025]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Pwm_00007] [SWS_Pwm_00052]
[SWS_Pwm_00062] [SWS_Pwm_10009]
[SWS_Pwm_20009] [SWS_Pwm_30009]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Pwm_00062]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_Pwm_00026]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Pwm_00010] [SWS_Pwm_00011]
[SWS_Pwm_00012]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General behavior

[SWS_Pwm_00088] [All functions from the PWM module except Pwm_Init, Pwm_
DeInit and Pwm_GetVersionInfo shall be re-entrant for different PWM channel
numbers.

In order to keep a simple module implementation, no check of [SWS_Pwm_00088]
must be performed by the module. |

[SWS_Pwm_00089] [The Pwm module’s user shall ensure the integrity if several func-
tion calls are made during run time in different tasks or ISRs for the same PWM chan-
nel. |

7.2 Time Unit Ticks

7.2.1 Background & Rationale

To get times out of register values it is necessary to know the oscillator frequency,
prescalers and so on. Since these settings are made in MCU and/or in other modules
it is not possible to calculate such times.

Hence the conversions between time and ticks shall be part of an upper layer.

7.2.2 Requirements

[SWS_Pwm_00070]
Upstream requirements: SRS_BSW_00343

[All time units used within the API services of the PWM module shall be of the unit
ticks. |

7.3 Support and management of HW low power states

Some PWM HW Module allow to be set in some operation modes which reduce the
power consumption, eventually at the cost of a slower reaction time, a lower perfor-
mance or eventually complete unavailability. Each PWM module could support one or
more low power operation modes, considering the Full Power Mode as always present
and set per default at startup.

AUTSSAR

7.3.1 Background

The PWM Diriver offers power state control APIs and a background elaboration mecha-
nism to handle asynchronous power state change processes (i.e. power state changes
which are not immediately complete as the they are requested, but need some longer
operations).

It is assumed that all constraints deriving from ECU and SW architecture are already
satisfied by the upper layers (Application, Mode Management in the service layer, lo-
HwADbstraction components dealing with peripheral control), thus the scope of control
is limited to the PWM HW peripheral.

A check on the operation sequence is executed by the PWM Driver in order to avoid
requesting a different power state before the previous request is still being processed
or activating a power state when no preparation for the same has been requested.

The PWM module shall support power control capabilities as an optional function. This
module neither mandates to use only power control enabled MCUs nor to configure
the same. Rather it proposes a way to handle power states if this is supported by the
suppliers.

7.3.2 Requirements

[SWS_Pwm_00154] [The PwmDriver shall support power state changes and its APIs
when the corresponding configuration parameter PwmLowPowerStatesSupport is
set to TRUE. |

[SWS_Pwm_00155] [If the parameter PwmLowPowerStatesSupport is enabled
then the APIs Pwm_PreparePowerState, Pwm_SetPowerState, Pwm_GetCur-
rentPowerState, Pwm_GetTargetPowerState shall be generated and shall be
used to manage and get informations on power state transitions. |

[SWS_Pwm_00156] [The APIs Pwm_GetTargetPowerState and Pwm_GetCur-—
rentPowerState shall be respectively used to gather information on the requested
and the target Pwm power states. |

[SWS_Pwm_00157] [The APl pwm_PreparePowerState shall be used to start a
power state transition. |

[SWS_Pwm_00158] [After preparation for a power state is achieved by
([SWS_Pwm_00157]) then the APl Ppwm_SetPowerState shall be used to achieve
the requested power state of the Pwm module.

In order to avoid incoherent power state conditions, some APIs (Pwm_SetPower-
State, Pwm_PreparePowerState) have to be called in a given sequence, otherwise
an error (if DET tracing is enabled) is stored and the action is interrupted. The Pwm
Driver keeps track of the call sequence. |

AUTSSAR

[SWS_Pwm_00159] [The Pwm Driver shall keep track of the call order of the APls
Pwm_SetPowerState and Pwm_PreparePowerState. In case the first one is called
before the second one is called, a DET entry shall be stored and the action shall not
be executed. |

[SWS_Pwm_00160] [The Pwm Module shall keep track of the current and of the target
powerstate if the parameter PwmLowPowerStatesSupport is set to TRUE. |

[SWS_Pwm_00161] [After the Initiliazation the power state of the module shall be
always FULL POWER if the PwmLowPowerStatesSupport is set to TRUE. |

[SWS_Pwm_00162] [The Pwm Driver shall support synchronuous and asynchronous
power state transitions, depending on the value of the configuration parameter Pwm-
PowerStateAsynchTransitionMode. |

[SWS_Pwm_00163] [In case the configuration parameter PwmPowerStateAsynch-
TransitionMode is set to FALSE, the preparation process and the setting process
shall be considered concluded as soon as the respective APIs return. |

[SWS_Pwm_00164] [In case the configuration parameter PwmPowerStateAsynch-
TransitionMode is set to TRUE, the preparation process shall continue in back-
ground after the relative API returns and its completion shall be notified by means
of the configured callback. |

7.4 Duty Cycle Resolution and scaling

[SWS_Pwm_00058]
Upstream requirements: SRS_Pwm_12383

[The width of the duty cycle parameter is 16 Bits. |
[SWS Pwm_00059]
Upstream requirements: SRS_Pwm_12459
[The Pwm module shall comply with the following scaling scheme for the duty cycle:
* 0x0000 means 0%.

* 0x8000 means 100%. 0x8000 gives the highest resolution while allowing 100%
duty cycle to be represented with a 16 bit value.

As an implementation guide, the following source code example is given:

AbsoluteDutyCycle = ((uint32)AbsolutePeriodTime » RelativeDutyCycle) >> 15;

]

AUTSSAR

7.5 Version check

For details refer to [2] Chapter 5.1.8 “Version check”.

7.6 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.6.1 Development Errors

[SWS_Pwm_00201] Definition of development errors in module Pwm |

Type of error Related error code Error value
API Pwm_Init service called with wrong parameter | PWM_E_INIT_FAILED 0x10
API service used without module initialization PWM_E_UNINIT 0x11
API service used with an invalid channel Identifier PWM_E_PARAM_CHANNEL 0x12
Usage of unauthorized PWM service on PWM PWM_E_PERIOD_UNCHANGEABLE 0x13
channel configured a fixed period

APl Pwm_Init service called while the PWM driver PWM_E_ALREADY_INITIALIZED 0x14
has already been initialised

AP| Pwm_GetVersionlInfo is called with a NULL PWM_E_PARAM_POINTER 0x15
parameter.

The requested power state is not supported by the | PWM_E_POWER_STATE_NOT_SUPPORTED 0x17
PWM module.

The requested power state is not reachable from PWM_E_TRANSITION_NOT_POSSIBLE 0x18
the current one

API Pwm_SetPowerState has been called without PWM_E_PERIPHERAL_NOT_PREPARED 0x19
having called the APl Pwm_PreparePowerState

before.

J
[SWS_Pwm_20002]
Upstream requirements: SRS _BSW_00337, SRS_BSW_00385, SRS BSW_00386

[The PWM Driver module shall report the development error PwM_E_UNINIT, when
API service is used without module initialization. |

[SWS_Pwm_30002]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386

[The PWM Driver module shall report the development error PWM_E_PARAM_CHAN-
NEL, when API service is used with an invalid channel Identifier. |

AUTSSAR

[SWS_Pwm_40002]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386

[The PWM Driver module shall report the development error PWwM_E_PERIOD_UN-
CHANGEABLE, on usage of unauthorized PWM service on PWM channel configured a
fixed period. |

[SWS_Pwm_50002]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386

[The PWM Driver module shall report the development error PWM_E_ALREADY_ INI-
TIALIZED, when APl Pwm_1Init service is called while the PWM driver has already
been initialized. |

[SWS_Pwm_00174] [The API shall report the development error PWM_E_POWER_—
STATE_NOT_SUPPORTED in case this APl is called with an unsupported power state
or the peripheral does not support low power states at all. |

[SWS_Pwm_00175] [The API shall report the development error PWM_E_-—
TRANSITION_NOT_POSSIBLE in case the requested power state cannot be directly
reached from the current power state. |

[SWS_Pwm_00176] [The API shall report the development error PWM_E_-
PERIPHERAIL_NOT_PREPARED in case the HW unit has not been previously prepared
for the target power state by use of the APl Pwm_PreparePowerState. |

To get more details concerning error detection, refer to Chapter 8.8 “API parameter
checking”.

7.6.2 Runtime Errors

[SWS_Pwm_00202] Definition of runtime errors in module Pwm |

Type of error Related error code Error value

AP| Pwm_SetPowerState is called while the PWM PWM_E_NOT_DISENGAGED 0x16
module is still in use.

]

[SWS_Pwm_00200] [The API shall report the runtime error PWM_E_NOT_DISEN-
GAGED in case this APl is called when one or more HW channels (where applicable)
are in a state different than IDLE (or similar non-operational states) and/or there are
still notification registered for the HW module channels. |

7.6.3 Production Errors

There are no production errors.

AUTSSAR

7.6.4 Extended Production Errors

There are no extended production errors.

7.7 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Pwm_00094] Definition of imported datatypes of module Pwm |

Module Header File Imported Type
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Pwm_ChannelType

[SWS_Pwm_00106] Definition of datatype Pwm_ChannelType |

Name Pwm_ChannelType

Kind Type

Derived from uint

Range 8..32 bit - This is implementation specific but
not all values may be valid within
the type. This type shall be
chosen in order to have the most
efficient implementation on a
specific microcontroller platform.

Description Numeric identifier of a PWM channel.

Available via

Pwm.h

8.2.2 Pwm_PeriodType

[SWS_Pwm_00107] Definition of datatype Pwm_PeriodType [

Name Pwm_PeriodType

Kind Type

Derived from uint

Range 8..32 bit - Implementation specific. This type
shall be chosen in order to have
the most efficient implementation
on a specific microcontroller
platform.

Description Definition of the period of a PWM channel.

Y%

AUTSSAR

| Available via

Pwm.h

]

8.2.3 Pwm_OutputStateType

[SWS_Pwm_00108] Definition of datatype Pwm_OutputStateType |

Name Pwm_OutputStateType

Kind Enumeration

Range PWM_HIGH 0x00 The PWM channel is in high state.
PWM_LOW 0x01 The PWM channel is in low state.

Description Output state of a PWM channel.

Available via Pwm.h

8.2.4 Pwm_EdgeNotificationType

[SWS_Pwm_00109] Definition of datatype Pwm_EdgeNotificationType [

Name Pwm_EdgeNotificationType
Kind Enumeration
Range PWM_RISING_EDGE 0x00 Notification will be called when a rising edge
occurs on the PWM output signal.
PWM_FALLING_EDGE 0x01 Notification will be called when a falling edge
occurs on the PWM output signal.
PWM_BOTH_EDGES 0x02 Notification will be called when either a rising
edge or falling edge occur on the PWM
output signal.
Description Definition of the type of edge notification of a PWM channel.
Available via Pwm.h

8.2.5 Pwm_ChannelClassType

[SWS_Pwm_00110] Definition of datatype Pwm_ChannelClassType |

Name Pwm_ChannelClassType

Kind Enumeration

Range PWM_VARIABLE_PERIOD 0x00 The PWM channel has a variable period. The
duty cycle and the period can be changed.

AUT<

SAR

A
PWM_FIXED_PERIOD 0x01 The PWM channel has a fixed period. Only
the duty cycle can be changed.
PWM_FIXED_PERIOD 0x02 The PWM channel has a fixed shifted period.

SHIFTED

Impossible to change it (only if supported by
hardware)

Description

Defines the class of a PWM channel

Available via

Pwm.h

8.2.6 Pwm_ConfigType

[SWS_Pwm_00111] Definition of datatype Pwm_ConfigType |

Name Pwm_ConfigType
Kind Structure
Elements Hardware dependent structure.
Type -
Comment The contents of the initialization data structure are hardware specific.
Description This is the type of data structure containing the initialization data for the PWM driver.

Available via

Pwm.h

8.2.7 Pwm_PowerStateRequestResuliType

[SWS_Pwm_00165] Definition of datatype Pwm_PowerStateRequestResultType

[

Name Pwm_PowerStateRequestResultType
Kind Enumeration
Range PWM_SERVICE_ 0x00 Power state change executed.
ACCEPTED
PWM_NOT_INIT 0x01 PWM Module not initialized.
PWM_SEQUENCE_ 0x02 Wrong API call sequence.
ERROR
PWM_HW_FAILURE 0x03 The HW module has a failure which prevents
it to enter the required power state.
PWM_POWER_STATE_ 0x04 PWM Module does not support the requested
NOT_SUPP power state.
PWM_TRANS_NOT_ 0x05 PWM Module cannot transition directly from
POSSIBLE the current power state to the requested
power state or the HW peripheral is still busy.
Description Result of the requests related to power state transitions.
Available via Pwm.h

AUTSSAR

8.2.8 Pwm_PowerStateType

[SWS_Pwm_00197] Definition of datatype Pwm_PowerStateType
Upstream requirements: SRS _Pwm_12293, SRS_Pwm_12378

[
Name Pwm_PowerStateType
Kind Type
Derived from uint8
Range PWM_FULL_POWER 0x00 Full Power
1..255 0x01..0xFF power modes with decreasing
power consumptions.
Description Power state currently active or set as target power state.

Available via

Pwm.h

Mandatory parameters:

 Assigned HW channel

Default value for period
Default value for duty cycle
Polarity (high or low)

Idle state high or low

Channel class:

— Fixed period

— Fixed period, shifted (if supported by hardware)

— Variable period

Optional parameters (if supported by hardware):

» Channel phase shift

» Reference channel for phase shift

» Microcontroller specific channel properties

AUTSSAR

8.3 Function definitions

8.3.1 Pwm_lInit

[SWS_Pwm_00095] Definition of API function Pwm_lInit |

Service Name Pwm_Init
Syntax void Pwm_Init (
const Pwm_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to configuration set
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for PWM initialization.
Available via Pwm.h

]
[SWS_Pwm_00007]

Upstream requirements: SRS_BSW_00101, SRS_SPAL_12057
[The function Pwm_1Init shallinitialize all internals variables and the used PWM struc-
ture of the microcontroller according to the parameters specified in ConfigpPtr. |
[SWS_Pwm_00062]

Upstream requirements: SRS_SPAL_12057, SRS_SPAL_12125
[The function Pwm_Init shall only initialize the configured resources and shall not
touch resources that are not configured in the configuration file. |
[SWS_Pwm_10009]

Upstream requirements: SRS_SPAL_12057
[The function Pwm_TInit shall start all PWM channels with the configured default val-
ues. |
If the duty cycle parameter equals:

* [SWS_Pwm_20009]
Upstream requirements: SRS_SPAL_12057

[0% or 100% : Then the PWM output signal shall be in the state according to the
configured polarity parameter |

AUTSSAR

* [SWS_Pwm_30009]
Upstream requirements: SRS_SPAL_12057

[>0% and <100%: Then the PWM output signal shall be modulated according to
parameters period, duty cycle and configured polarity. |

[SWS_Pwm_00052]
Upstream requirements: SRS_SPAL_12057

[The function Pwm_1Init shall disable all notifications. |

The reason is that the users of these notifications may not be ready. They can call
Pwm_EnableNotification to start notifications.

[SWS_Pwm_00093] [The users of the Pwm module shall not call the function Pwm__
Init during a running operation. |

[SWS_Pwm_00116] [The Pwm module’s environment shall not call any function of the
Pwm module before having called Pwm_1Init.]

[SWS_Pwm_00118] [If development error detection is enabled, calling the routine
Pwm_Init while the PWM driver and hardware are already initialized will cause a
development error PWM_E_ALREADY_INITIALIZED. The desired functionality shall
be left without any action. |

[SWS_Pwm_00121] [A re-initialization of the Pwm driver by executing the Pwm_1Init
function requires a de-initialization before by executing @ Pwm_DeInit. |

Regarding error detection, the requirement [SWS Pwm_10051] and
[SWS_Pwm_20051] are applicable to the function Pwm_TInit.

8.3.2 Pwm_Delnit

[SWS_Pwm_00096] Definition of API function Pwm_Delnit |

Service Name Pwm_Delnit
Syntax void Pwm_DelInit (
void

)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A

Description Service for PWM De-Initialization.

Available via Pwm.h

]
[SWS_Pwm_00010]
Upstream requirements: SRS_BSW_ 00336, SRS _SPAL_ 12163, SRS _Pwm_12381
[The function Pwm_DeInit shall de-initialize the PWM module. |
[SWS_Pwm_00011]
Upstream requirements: SRS_SPAL_12163
[The function Pwm_DeInit shall set the state of the PWM output signals to the idle
state. |
[SWS_Pwm_00012]
Upstream requirements: SRS_SPAL_12163
[The function Pwm_DeInit shall disable PWM interrupts and PWM signal edge notifi-
cations. |
[SWS_Pwm_10080]
Upstream requirements: SRS_BSW_00171
[The function Pwm_DeInit shall be pre compile time configurable On/Off by the con-
figuration parameter: PwmbDeInitApi. |
[SWS_Pwm_20080]
Upstream requirements: SRS_BSW_00171

[The function Pwm_DeInit shall be configurable On/Off by the configuration parame-
ter PwmDeInitApi {PWM_DE_INIT_APTI}.

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_10051], and [SWS_Pwm_20051] are applicable to the function
Pwm_DeInit.]

8.3.3 Pwm_SetDutyCycle

[SWS_Pwm_91000] Definition of API function Pwm_SetDutyCycle |

Service Name Pwm_SetDutyCycle

Syntax void Pwm_SetDutyCycle (
Pwm_ChannelType ChannelNumber,
uintl6é DutyCycle

)

Service ID [hex] 0x02

AUTSSAR

A
Sync/Async Asynchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber Numeric identifier of the PWM
DutyCycle Min=0x0000 Max=0x8000
Parameters (inout) None
Parameters (out) None
Return value None
Description Service sets the duty cycle of the PWM channel.
Available via Pwm.h
]

[SWS_Pwm_00013]
Upstream requirements: SRS_Pwm_12295

[The function Pwm_SetDutyCycle shall set the duty cycle of the PWM channel. |

[SWS_Pwm_00014] [When the requested duty cycle is either 0% or 100%, the func-
tion

Pwm_SetDutyCycle shall set the PWM output state to either PWM_HIGH or PWM_LOW,
with regard to both the configured polarity parameter and the requested duty cycle.

Thus for 0% requested Duty Cycle the output will be the inverse of the configured
polarity parameter, and for 100% Duty Cycle the output will be equal to the configured
polarity parameter. |

[SWS_Pwm_00016] [The function Pwm_SetDutyCycle shall modulate the PWM out-
put signal according to parameters period, duty cycle and configured polarity, when the
duty cycle > 0 % and < 100%. |

[SWS_Pwm_00017]
Upstream requirements: SRS_Pwm_12382

[The function Pwm_SetDutyCycle shall update the duty cycle always at the end of
the period if supported by the implementation and configured with PwmbDutycycleUp—
datedEndperiod.]

Regarding format definition of duty cycle parameter, the requirement
[SWS_Pwm_00058] is applicable to the function Pwm_SetDutyCycle.

Regarding scaling definition of duty cycle parameter, the requirement
[SWS_Pwm_00059] is applicable to the function Pwm_SetDutyCycle.

[SWS_Pwm_00018] [The driver shall forbid the spike on the PWM output signal. |

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_00047], [SWS_Pwm_10051] and [SWS_Pwm_20051] are applica-
ble to the function Pwm_SetDutyCycle.

AUTSSAR

[SWS_Pwm_10082]
Upstream requirements: SRS_BSW_00171

[The function Pwm_SetDutyCycle shall be pre compile time configurable On/Off by
the configuration parameter: PwmSetDutyCycle.]

[SWS_Pwm_20082]
Upstream requirements: SRS_BSW_00171

[The function Pwm_SetDutyCycle shall be configurable On/Off by the configuration
parameter: PwmSetDutyCycle {PWM_SET_DUTY_CYCLE_APT}.|

8.3.4 Pwm_SetPeriodAndDuty

[SWS_Pwm_91001] Definition of API function Pwm_SetPeriodAndDuty |

Service Name Pwm_SetPeriodAndDuty
Syntax void Pwm_SetPeriodAndDuty (
Pwm_ChannelType ChannelNumber,
Pwm_PeriodType Period,
uintl6é DutyCycle
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber Numeric identifier of the PWM
Period Period of the PWM signal
DutyCycle Min=0x0000 Max=0x8000
Parameters (inout) None
Parameters (out) None
Return value None
Description Service sets the period and the duty cycle of a PWM channel
Available via Pwm.h
|

[SWS_Pwm_00019]
Upstream requirements: SRS_Pwm_12297

[The function Pwm_SetPeriodAndDuty shall set the period and the duty cycle of a
PWM channel. |

[SWS_Pwm_00076] [The function Pwm_SetPeriodAndDuty shall update the period
always at the end of the current period if supported by the implementation and config-
ured with PwmPeriodUpdatedEndperiod. |

[SWS_Pwm_00020] [When updating the PWM period and duty, the driver shall re-
press any spikes on the PWM output signal. |

AUTSSAR

The PWM duty cycle parameter is necessary to maintain the consistency between
frequency and duty cycle. Refer to [SWS_Pwm_00058] and [SWS_Pwm_00059] to
know the scaling and format definition of duty cycle parameter

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_00045], [SWS_Pwm_00047], [SWS_Pwm_10051] and
[SWS_Pwm_20051] are applicable to the function Pwm_SetPeriodAndDuty.

[SWS_Pwm_00041]

Upstream requirements: SRS_Pwm_12389
[The function Pwm_SetPeriodAndDuty shall allow changing the period only for the
PWM channel declared as variable pPeriod type. |
[SWS_Pwm_10083]

Upstream requirements: SRS_BSW_00171
[The function Pwm_SetPeriodAndDuty shall be pre compile time configurable
On/Off by the configuration parameter: PwmSetPeriodAndDuty. |
[SWS_Pwm_20083]

Upstream requirements: SRS_BSW_00171
[The function Pwm_SetPeriodAndDuty shall be configurable On/Off by the configu-
ration parameter: PwmSetPeriodAndDuty {PWM_SET_PERIOD_AND_DUTY_API}.|

[SWS_Pwm_00150] [If the period is set to zero the setting of the duty-cycle is not
relevant. In this case the output shall be zero (zero percent duty-cycle). |

8.3.5 Pwm_SetOutputToldle

[SWS_Pwm_91002] Definition of API function Pwm_SetOutputToldle |

Service Name Pwm_SetOutputToldle
Syntax void Pwm_SetOutputToIdle (
Pwm_ChannelType ChannelNumber

)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber Numeric identifier of the PWM
Parameters (inout) None
Parameters (out) None
Return value None
Description Service sets the PWM output to the configured Idle state.
Available via Pwm.h

AUTSSAR

[SWS_Pwm_00021]
Upstream requirements: SRS_Pwm_12358

[The function Pwm_SetOutputToIdle shall set immediately the PWM output to the
configured Idle state. |

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_00047], [SWS_Pwm_10051] and [SWS_Pwm_20051] are applica-
ble to the function Pwm_SetOutputToIdle.

[SWS_Pwm_10084]
Upstream requirements: SRS_BSW_00171

[The function Pwm_SetOutputToIdle shall be pre compile time configurable On/Off
by the configuration parameter: PwmSetOutputToIdle. |

[SWS_Pwm_20084]
Upstream requirements: SRS_BSW_00171

[The function Pwm_SetOutputToIdle shall be configurable On/Off by the configura-
tion parameter: PwmSetOutputToIdle {PWM_SET_OUTPUT_TO_IDLE_API}.|

[SWS_Pwm_10086] [After the call of the function Pwm_SetOutputToIdle, variable
period type channels shall be reactivated using the Api Pwm_SetPeriodAndDuty to
activate the PWM channel with the new passed period. |

[SWS_Pwm_20086] [After the call of the function Pwm_SetOutputToIdle, channels
shall be reactivated using the Api Pwm_SetDutyCycle to activate the PWM channel
with the old period. |

[SWS_Pwm_00119] [After the call of the function Pwm_SetOutputToIdle, fixed pe-
riod type channels shall be reactivated using only the APl Pwm_SetDutyCycle to
activate the PWM channel with the old period. |

8.3.6 Pwm_GetOutputState

[SWS_Pwm_00100] Definition of API function Pwm_GetOutputState |

Service Name Pwm_GetOutputState

Syntax Pwm_OutputStateType Pwm_GetOutputState (
Pwm_ChannelType ChannelNumber
)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant for different channel numbers

Parameters (in) ChannelNumber | Numeric identifier of the PWM

Y%

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value Pwm_OQutputStateType PWM_HIGH The PWM output state is high
PwM_LoW The PWM output state is low
Description Service to read the internal state of the PWM output signal.
Available via Pwm.h
]

[SWS Pwm_00022]
Upstream requirements: SRS_Pwm_12385

[The function Pwm_GetOutputState shall read the internal state of the PWM output
signal and return it as defined in the diagram below.

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_00047], [SWS_Pwm_10051] and [SWS_Pwm_20051] are applica-
ble to the function Pwm_GetOutputsState.]

value to read PWM Fort pin

PVWWM Unit Port Logic b

Microcontroller

[SWS_Pwm_10085]
Upstream requirements: SRS_BSW_00171

[The function Pwm_GetOutputState shall be pre compile time configurable On/Off
using the configuration parameter: PwmGetOutputsState. |

[SWS_Pwm_20085]
Upstream requirements: SRS_BSW_00171

[The function Pwm_GetOutputState shall be configurable On/Off by the configura-
tion parameter: PwmGetOutputState {PWM_GET_OUTPUT_STATE_APTI}.

Due to real time constraint and setting of the PWM channel (project dependant), the
output state can be modified just after the call of the service Pwm_GetOutputsState. |

AUTSSAR

[SWS_Pwm_30051]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386

[If Pwm_GetOutputState is called before module initialization, or with an invalid
channel, it shall return pPwM_LOW. |

8.3.7 Pwm_DisableNotification

[SWS_Pwm_91003] Definition of API function Pwm_DisableNotification |

Service Name Pwm_DisableNotification
Syntax void Pwm_DisableNotification (
Pwm_ChannelType ChannelNumber
)
Service ID [hex] 0x06
Sync/Async Asynchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber Numeric identifier of the PWM
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to disable the PWM signal edge notification.
Available via Pwm.h
]

[SWS_Pwm_00023]
Upstream requirements: SRS_Pwm_12378, SRS_Pwm_12299

[The function Pwm_DisableNotification shall disable the PWM signal edge noti-
fication. |

[SWS_Pwm_10112] [The function Pwm_DisableNotification shall be pre com-
pile time configurable On/Off using the configuration parameter: PwmNotification-
Supported. |

[SWS_Pwm_20112] [The function Pwm_DisableNotification shall be con-
figurable On/Off by the configuration parameter: PwmNotificationSupported
{PWM_NOTIFICATION_SUPPORTED]}.

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_00047], [SWS_Pwm_10051] and [SWS_Pwm_20051] are applica-
ble to the function Pwm_DisableNotification.|

AUTSSAR

8.3.8 Pwm_EnableNotification

[SWS_Pwm_91004] Definition of API function Pwm_EnableNotification |

Service Name Pwm_EnableNotification
Syntax void Pwm_EnableNotification (
Pwm_ChannelType ChannelNumber,
Pwm_EdgeNotificationType Notification
)
Service ID [hex] 0x07
Sync/Async Asynchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber Numeric identifier of the PWM
Notification Type of notification PWM_RISING_EDGE or PWM_FALLING_
EDGE or PWM_BOTH_EDGES
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to enable the PWM signal edge notification according to notification parameter.
Available via Pwm.h
J

[SWS_Pwm_00024]
Upstream requirements: SRS_Pwm_12378, SRS_Pwm_12299

[The function Pwm_EnableNotification shall enable the PWM signal edge notifi-
cation according to notification parameter. |

[SWS_Pwm_00081] [The function Pwm_EnableNotification shall cancel pending
interrupts. |

[SWS_Pwm_10113] [The function Pwm_EnableNotification shall be pre compile
time configurable On/Off using the configuration parameter: PwmNotificationSup-
ported.]

[SWS_Pwm_20113] [The function Pwm_EnableNotification shall be config-
urable On/Off by the configuration parameter: PwmNotificationSupported
{PWM_NOTIFICATION_SUPPORTED}.

Regarding error detection, the requirements [SWS_Pwm_00117],
[SWS_Pwm_00047], [SWS_Pwm_10051] and [SWS_Pwm_20051] are applica-
ble to the function Pwm_EnableNotification.|

AUTSSAR

8.3.9 Pwm_SetPowerState

[SWS_Pwm_00166] Definition of API function Pwm_SetPowerState |

Service Name Pwm_SetPowerState
Syntax Std_ReturnType Pwm_SetPowerState (
Pwm_PowerStateRequestResultTypex Result
)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) Result If the API returns E_OK: PWM_SERVICE_ACCEPTED:Power
state change executed.
If the API returns E_NOT_OK: PWM_NOT _INIT: PWM Module
not initialized. PWM_SEQUENCE_ERROR: wrong API call
sequence. PWM_HW_FAILURE: the HW module has a failure
which prevents it to enter the required power state.

Return value Std_ReturnType E_OK: Power Mode changed
E_NOT_OK: request rejected

Description This API configures the Pwm module so that it enters the already prepared power state, chosen

between a predefined set of configured ones.
Available via Pwm.h

]

[SWS_Pwm_00167] [The API configures the HW in order to enter the given Power
State. All preliminary actions to enable this transition (e.g. setting all channels in IDLE
status, de-registering of all notifications and so on) must already have been taken by
the responsible SWCs (e.g. loHwWAbs).

The API shall not execute preliminary, implicit power state changes (i.e. if a requested
power state is not reachable starting from the current one, no intermediate power state
change shall be executed and the request shall be rejected). |

[SWS_Pwm_00168] [In case the target power state is the same as the current one,
no action is executed and the API returns immediately with an E_OK resullt. |

[SWS_Pwm_00169] [In case the normal Power State is requested, the API shall refer
to the necessary parameters contained in the same containers used by Pwm_TInit.

No separate container or hard coded data shall be used for the normal (i.e. full) power
mode, in order to avoid misalignments between initialization parameters used during
the init phase and during a power state change. |

[SWS_Pwm_00170] [For the other power states, only power state transition specific
reconfigurations shall be executed in the context of this API (i.e. the API cannot be
used to apply a completely new configuration to the Pwm module). Any other re-
configuration not strictly related to the power state transition shall not take place. |

AUTSSAR

[SWS_Pwm_00171] [The API shall refer to the configuration container related to the
required Power State in order to derive some specific features of the state (e.g support
of Power States). |

In case development error reporting is activated:

[SWS_Pwm_00172] [The API shall report the development error PWM_E_UNINIT in
case this APl is called before having initialized the HW unit. |

[SWS_Pwm_00173] [The API shall report the runtime error PWM_E_NOT_DISEN-
GAGED in case this APl is called when one or more HW channels (where applicable)
are in a state different than IDLE (or similar non-operational states) and/or there are
still notification registered for the HW module channels. |

[SWS_Pwm_00194] [The API shall report the development error PWM_E_POWER_—
STATE_NOT_SUPPORTED in case this APl is called with an unsupported power state
or the peripheral does not support low power states at all. |

[SWS_Pwm_00195] [The API shall report the development error PWM_E_-—
TRANSITION_NOT_POSSIBLE in case the requested power state cannot be directly
reached from the current power state. |

[SWS_Pwm_00196] [The API shall report the development error PwM_E_-—
PERIPHERAL_NOT_PREPARED in case the HW unit has not been previously prepared
for the target power state by use of the APl Pwm_PreparePowersState. |

8.3.10 Pwm_GetCurrentPowerState

[SWS_Pwm_00177] Definition of API function Pwm_GetCurrentPowerState |

Service Name Pwm_GetCurrentPowerState

Syntax Std_ReturnType Pwm_GetCurrentPowerState (
Pwm_PowerStateTypex CurrentPowerState,
Pwm_PowerStateRequestResultTypex Result

)

Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) CurrentPowerState The current power mode of the PWM HW Unit is returned in this
parameter
Result If the API returns E_OK: PWM_SERVICE_ACCEPTED: Current

power mode was returned.
If the APl returns E_NOT_OK: PWM_NOT_INIT: PWM Module
not initialized.

Y%

AUTSSAR

A
Return value Std_ReturnType E_OK: Mode could be read
E_NOT_OK: Service is rejected
Description This API returns the current power state of the PWM HW unit.
Available via Pwm.h

]
[SWS_Pwm_00178] [The API returns the power state of the HW unit. |

In case development error reporting is activated:

[SWS_Pwm_00179] [The API shall report the development error PWM_E_UNINIT in
case this APl is called before having initialized the HW unit. |

8.3.11 Pwm_GetTargetPowerState

[SWS_Pwm_00180] Definition of API function Pwm_GetTargetPowerState |

Service Name Pwm_GetTargetPowerState
Syntax Std_ReturnType Pwm_GetTargetPowerState (
Pwm_PowerStateType*x TargetPowerState,
Pwm_PowerStateRequestResultType* Result
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) TargetPowerState The Target power mode of the PWM HW Unit is returned in this
parameter
Result If the API returns E_OK: PWM_SERVICE_ACCEPTED:Target
power mode was returned.
If the API returns E_NOT_OK: PWM_NOT_INIT: PWM Module
not initialized.
Return value Std_ReturnType E_OK: Mode could be read
E_NOT_OK: Service is rejected
Description This API returns the Target power state of the PWM HW unit.
Available via Pwm.h

]

[SWS_Pwm_00181] [The API returns the requested power state of the HW unit. This
shall coincide with the current power state if no transition is ongoing.

The APl is considered to always succeed except in case of HW failures. |
In case development error reporting is activated:

[SWS_Pwm_00182] [The API shall report the development error PwM_E_UNINIT in
case this APl is called before having initialized the HW unit. |

AUTSSAR

8.3.12 Pwm_PreparePowerState

[SWS_Pwm_00183] Definition of API function Pwm_PreparePowerState |

Service Name Pwm_PreparePowerState
Syntax Std_ReturnType Pwm_PreparePowerState (
Pwm_PowerStateType PowerState,
Pwm_PowerStateRequestResultTypex Result
)

Service ID [hex] 0x0c

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) PowerState The target power state intended to be attained

Parameters (inout) None

Parameters (out) Result If the API returns E_OK: PWM_SERVICE_ACCEPTED: PWM
Module power state preparation was started.
If the API returns E_NOT_OK: PWM_NOT_INIT: PWM Module
not initialized. PWM_SEQUENCE_ERROR: wrong API call
sequence (Current Power State = Target Power State). PWM_
POWER_STATE_NOT_SUPP: PWM Module does not support
the requested power state. PWM_TRANS_NOT_POSSIBLE:
PWM Module cannot transition directly from the current power
state to the requested power state or the HW peripheral is still
busy.

Return value Std_ReturnType E_OK: Preparation process started
E_NOT_OK: Service is rejected

Description This API starts the needed process to allow the PWM HW module to enter the requested power

state.
Available via Pwm.h

]

[SWS_Pwm_00184] [This APl initiates all actions needed to enable a HW module to
enter the target power state.

The possibility to operate the periphery depends on the power state and the HW fea-
tures. These properties should be known to the integrator and the decision whether to
use the periphery or not is in his responsibility. |

[SWS_Pwm_00185] [In case the target power state is the same as the current one,
no action is executed and the API returns immediately with an E_OK result.

The responsibility of the preconditions is left to the environment. |
In case development error reporting is activated:

[SWS_Pwm_00186] [The API shall report the development error PWM_E_UNINIT in
case this APl is called before having initialized the HW unit. |

[SWS_Pwm_00187] [The API shall report the development error PWiM_E_POWER_—
STATE_NOT_SUPPORTED in case this APl is called with an unsupported power state is
requested or the peripheral does not support low power states at all. |

AUTSSAR

[SWS_Pwm_00188] [The API shall report the development error pwM_E_-
TRANSITION_NOT_POSSIBLE in case the requested power state cannot be directly
reached from the current power state.

All asynchronous operation needed to reach the target power state can be executed in
background in the context of Pwm_Main_ PowerTransitionManager. |

8.3.13 Pwm_GetVersioninfo

[SWS_Pwm_00103] Definition of API function Pwm_GetVersioninfo [

Service Name

Pwm_GetVersionInfo

Syntax void Pwm_GetVersionInfo (
Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None

Description

Service returns the version information of this module.

Available via

Pwm.h

8.4 Callback notifications

Since the PWM Driver is a module on the lowest architectural layer it doesn’t provide
any call-back functions for lower layer modules.

8.5 Scheduled functions

All services offered by the PWM Driver are of synchronous nature, with the exception
of the asynchronous power transition management, if so configured.

In case the synchronous power transition management is configured, no scheduled
APl is generated.

AUTSSAR

8.5.1 Pwm_Main_PowerTransitionManager

[SWS Pwm_00189] Definition of scheduled function Pwm_Main_PowerTransi-
tionManager |

Service Name Pwm_Main_PowerTransitionManager
Syntax void Pwm_Main_PowerTransitionManager (
void

)

Service ID [hex] 0x0d

Description This APl is cyclically called and supervises the power state transitions, checking for the
readiness of the module and issuing the callbacks loHwAb_Pwm_NotifyReadyForPower
State<Mode> (see PwmPowerStateReadyCbkRef configuration parameter).

Available via SchM_Pwm.h

[SWS_Pwm_00190] [This API executes any non-immediate action needed to finalize
a power state transition requested by Pwm_PreparePowerState. |

[SWS_Pwm_00191] [The rate of scheduling shall be defined by Pwm MainSched-
ulePeriod and shall be variable, as the function only needs to be called if a transition
has been requested. |

[SWS_Pwm_00192] [This API shall also issue callback notifications to the eventually
registered users (loHwWADs) as configured, only in case the asynch mode is chosen. |

[SWS_Pwm_00193] [In case the PWM module is not initialized, this function shall
simply return without any further elaboration. This is needed to avoid to elaborate
uninitialized variables. No development error shall be entered, because this condition
can easily be verified during the startup phase (tasks started before the initialization is
complete).

Rationale: during the startup phase it can happen that the OS already schedules tasks,
which call main functions, while some modules are not initialised yet. This is no real
error condition, although need handling, i.e. returning without execution.

Although the transition state monitoring functionality is mandatory, the implementation
of this APl is optional, meaning that if the HW allows for other ways to deliver notifica-
tion and watch the transition state the implementation of this function can be skipped. |

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

AUTSSAR

As this module is part of the MCAL layer, it access directly to the microcontroller regis-
ters and therefore doesn’t need any lower interfaces.

[SWS_Pwm_91006] Definition of mandatory interfaces required by module Pwm

API Function Header File Description
Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Pwm_00104] Definition of optional interfaces requested by module Pwm |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

[SWS_Pwm_00105] Definition of configurable interface Pwm_Notifica-
tion_<#Channel> |

Service Name Pwm_ Notification_<#Channel>
Syntax void Pwm_Notification_<#Channel> (
void
)
Sync/Async Synchronous
Reentrancy PWM user implementation dependant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description The Pwm module shall call the function Pwm_Notification_<#Channel> accordingly to the last
call of Pwm_EnableNotification for channel <#Channel>.
Available via Pwm_Externals.h

AUTSSAR

[SWS_Pwm_00025]
Upstream requirements: SRS_SPAL_00157

[The Pwm module shall call the function Pwm_Notification_<#Channel> accord-
ingly to the last call of Pwm_EnableNotification and Pwm_DisableNotifica-—
tion for channel <#Channel>. |

[SWS_Pwm_00026]
Upstream requirements: SRS_SPAL_12129

[The Pwm module shall reset the interrupt flag associated to the notification Pwm_-
Notification_<#Channel> |

[SWS_Pwm_10115] [The Pwm module shall provide the functionality of Pwm_En-
ableNotification only when the configuration parameter PwmNotification-—
Supported is ON. |

[SWS_Pwm_20115] [The Pwm module shall provide the functionality of Pwm_Dis-
ableNotification only when the configuration parameter PwmNotification—
Supported is ON. |

[SWS_Pwm_30115] [The Pwm module shall reset the interrupt flag associated to the
notification only when the configuration parameter PwmNotificationSupported is
ON.]

[SWS_Pwm_91005] Definition of configurable interface loHwAb_Pwm_Notify
ReadyForPowerState<#Mode> |

Service Name loHwAb_Pwm_NotifyReadyForPowerState<#Mode>
Syntax void IoHwAb_Pwm_NotifyReadyForPowerState<#Mode> (
void

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The API shall be invoked by the PWM Driver when the requested power state preparation for
mode <#Mode> is completed.

Available via loHwWAb_Pwm.h

]

[SWS_Pwm_00199] [In case the PWM Driver is configured to support power state
management with asynchronous transitions, this API shall be called to signal comple-
tion of the power transition preparation phase to the loHwAbs module.

This is a callback, this APl is to be implemented in the loHwAbs component. |

AUTSSAR

8.7 Service Interfaces

This module does not provide any service interfaces.

8.8 API parameter checking

[SWS_Pwm_10051]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386

[If development error detection for the Pwm module is enabled, and a development
error occurs, then the corresponding PWM function shall report the error to the Default
Error Tracer. |

[SWS_Pwm_20051]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386

[If development error detection for the Pwm module is enabled, and a development
error occurs, then the corresponding PWM function shall skip the desired functionality
in order to avoid any corruptions of data or hardware registers leaving the function
without any actions. |

[SWS Pwm_00117]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00323, SRS _BSW_00386

[If development error detection for the Pwm module is enabled: if any function (except
Pwm_TInit) is called before Pwm_Init has been called, the called function shall raise
development error PWM_E_UNINIT. |

[SWS_Pwm_00045]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386

[If development error detection for the Pwm module is enabled: The APl Pwm_-
SetPeriodAndDuty shall check if the given PWM channel is of the channel class
type PWM_VARIABLE_PERIOD. If this is not the case the development error PWM_E_
PERIOD_UNCHANGEABLE shall be called. |

[SWS_Pwm_00047]
Upstream requirements: SRS_BSW_00323, SRS BSW_00386
[If development error detection for the Pwm module is enabled: the PWM functions

shall check the parameter ChannelNumber and raise development error PWM_E_ -
PARAM_CHANNEL if the parameter ChannelNumber is invalid. |

AUTSSAR

9 Sequence diagrams

Initialization

Pwm User «module»
Pwm

| Pwm_Init(const |
Pwm_ConfigType*)

Pwm_Init()

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

PWM Driver Initialization

The PWM output signals are either in low state, in high state or in modulation state depending on the
configuration parameters.

If configured, no notification occurs until the first call of Pwm_EnableNotification

Comments:

Figure 9.1: PWM initialization

9.2 De-initialization

Pwm User «module»
Pwm

| Pwm_Delnit() |

Pwm_Delnit()

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

PWM Driver De-Initialization

The PWM output channels are in the state defined by configuration.

Comments:

Figure 9.2: PWM de-initialization

AUTSSAR

9.3 Setting the duty cycle

Pwm User «module»
Pwm

| Pwm_SetDutyCycle(Pwm_ChannelType, uint16) |

Pwm_SetDutyCycle()

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM Driver Set Duty Cycle

The PWM duty cycle will be changed either at the end of the current period if supported
ordirectly if not supported by the implementation.

Comments:

Figure 9.3: Setting the duty cycle

9.4 Setting the period and the duty

Pwm User «module»
Pwm

T T
| |
I Pwm_SetPeriodAndDuty(Pwm_ChannelType, Pwm_PeriodType, uint16)_ !

Pwm_SetPeriodAndDuty()

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM signal period

The PWM period is changed at the end of the current period if configured.

Comments:

Figure 9.4: Setting the period and duty cycle

AUTSSAR

9.5 Setting the PWM output to idle

Pwm User

T
|
Pwm_SetOutputToldle(Pwm_ChannelType) |

«module»
Pwm

Pwm_SetPeriodAndDuty(Pwm_ChannelType, Pwm_PeriodType, uint16)

Description:
The PWM output signal state
is settled according to the

Pwm_SetOutputToldle() given parameter

K- T e TS - o Description:

R If the PWM signal needs to be
activated again, then the user of the
PWM Driver can call
Pwm_SetPeriodAndDuty if necessary to
have a defined period

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:
Set PWM signal

Comments:

AN

Figure 9.5: Setting Pwm output to idle

9.6 Getting the PWM Output state

Pwm User «module»

Pwm

Pwm_GetOutputState (Pwm_OutputStateType,
Pwm_ChannelType)

= Pwm_GetOutputState=PWM_HIGH or PWM_LOW/()

Status: proposed by DB as per SWS Pwm Driver 1.0.9
Description:

Getting the PWM Output State

The PWM channel state is read.

Comments:

Figure 9.6: Getting Pwm output state

AUTSSAR

9.7 Using the PWM notifications

Pwm User «module»
Pwm
I I
| |
| Pwm_Init(const |
Pwm_ConfigType*) an
Pwm_Init()
< __
T T
| |
! Pwm_EnableNotification(Pwm_ChannelType, Pwm_EdgeNotificationType) »_L
Pwm_EnableNotification()
< __
T T
| |
Falling Ed tificati : Pwm_Notification_<#Channel>() :
alling Edge notification o=
|
- e | Pwm_Notification_<#Channel>()
Rising Edge notification o=
| T
| |
| |
| Pwm_DisableNotification(Pwm_ChannelType) »L
R] Pwm_DisableNotification()
No notifications will occur = | K—-—————————————— — — — — — — — — — — — — ——— — — — — — ——— — — —
L
| |
AN

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Using PWM Enable/Disable notification

The PWM channel is autostarted (Modulation starts during the call of Pwm_Init()).

configured callback function for a channel.

Comments:

No notifications occur until the first call of Pwm_EnableNotification(...). Pwm_Notification <#Channel> represents the

Figure 9.7: Using Pwm notifications

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
PWM Driver.

Chapter 10.3 specifies published information of the module PWM Diriver.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Pwm_00203] [The PWM module shall reject configurations with partition map-
pings which are not supported by the implementation. |

10.2.1 Pwm

[ECUC_Pwm_00148] Definition of EcucModuleDef Pwm |

Module Name Pwm

Description Configuration of Pwm (Pulse Width Modulation) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

PwmChannelConfigSet 1 This container contains the configuration parameters and sub
containers of the AUTOSAR Pwm module.

PwmConfigurationOfOptApi 1 -

Services

PwmGeneral 1 -

AUTSSAR

10.2.2 PwmGeneral

[ECUC_Pwm_00004] Definition of EcucParamConfContainerDef PwmGeneral |

Container Name PwmGeneral
Parent Container Pwm
Description -
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PwmDevErrorDetect 1 [ECUC_Pwm_00131]

PwmDutycycleUpdatedEndperiod [ECUC_Pwm_00132]

PwmlIndex [ECUC_Pwm_00139]

PwmLowPowerStatesSupport [ECUC_Pwm_00142]

alo|l 2 =
N

PwmNotificationSupported [ECUC_Pwm_00133]

PwmPeriodUpdatedEndperiod 1 [ECUC_Pwm_00134]

PwmPowerStateAsynchTransitionMode 0..1 [ECUC_Pwm_00143]

PwmEcucPartitionRef 0.* [ECUC_Pwm_00149]

PwmKernelEcucPartitionRef 0..1 [ECUC_Pwm_00150]

Included Containers

Container Name Multiplicity Dependency

PwmPowerStateConfig 0..” Each instance of this parameter defines a power state and the
callback to be called when this power state is reached.

]
[ECUC_Pwm_00131] Definition of EcucBooleanParamDef PwmDevErrorDetect |

Parameter Name PwmDevErrorDetect
Parent Container PwmGeneral
Description Switches the development error detection and notification on or off.

« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

AUTSSAR

[ECUC_Pwm_00132]
datedEndperiod |

Definition of EcucBooleanParamDef PwmDutycycleUp-

Parameter Name

PwmDutycycleUpdatedEndperiod

Parent Container

PwmGeneral

Description Switch for enabling the update of the duty cycle parameter at the end of the current
period. TRUE: update of duty cycle is done at the end of period of currently generated
waveform (current waveform is finished). FALSE: update of duty cycle is done
immediately (just after service call, current waveform is cut).

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Pwm_00139] Definition of EcuclntegerParamDef Pwmindex [

Parameter Name

Pwmindex

Parent Container

PwmGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Pwm_00142] Definition of EcucBooleanParamDef PwmLowPowerStates

Support |

Parameter Name

PwmLowPowerStatesSupport

Parent Container

PwmGeneral

Description Adds / removes all power state management related APIs (PWM_SetPowerState,
PWM_GetCurrentPowerState, PWM_GetTargetPowerState, PWM_PreparePowerState,
PWM_Main_PowerTransitionManager), indicating if the HW offers low power state
management.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

AUTSSAR

A
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Pwm_00133] Definition of EcucBooleanParamDef PwmNotificationSup-
ported |

Parameter Name PwmNotificationSupported

Parent Container PwmGeneral

Description Switch to indicate that the notifications are supported
Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Pwm_00134] Definition of EcucBooleanParamDef PwmPeriodUpdated
Endperiod |

Parameter Name PwmPeriodUpdatedEndperiod
Parent Container PwmGeneral
Description Switch for enabling the update of the period parameter at the end of the current period.

TRUE: update of period/duty cycle is done at the end of period of currently generated
waveform (current waveform is finished). FALSE: update of period/duty cycle is done
immediately (just after service call, current waveform is cut).

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Pwm_00143]

Definition of EcucBooleanParamDef PwmPowerState

AsynchTransitionMode |

Parameter Name

PwmPowerStateAsynchTransitionMode

Parent Container

PwmGeneral

Description Enables / disables support of the PWM Driver to the asynchronous power state
transition.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

This parameter shall only be configured if the parameter PwmLowPowerStatesSupport
is set to true.

]

[ECUC_Pwm_00149] Definition of EcucReferenceDef PwmEcucPartitionRef |

Parameter Name

PwmEcucPartitionRef

Parent Container

PwmGeneral

Description Maps the PWM driver to zero or multiple ECUC partitions to make the driver API
available in the according partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Pwm_00150] Definition of EcucReferenceDef PwmKernelEcucPartition

Ref |

Parameter Name

PwmKernelEcucPartitionRef

Parent Container

PwmGeneral

Description Maps the PWM kernel to zero or one ECUC partitions to assign the driver kernel to a
certain core. The ECUC partition referenced is a subset of the ECUC partitions where
the PWM driver is mapped to.

Multiplicity 0..1

V

AUTSSAR

A

Type

Reference to EcucPartition

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[SWS_Pwm_CONSTR_00001] [The ECUC partitions referenced by PwmKernelE-
cucPartitionRef shall be a subset of the ECUC partitions referenced by PwmE-

cucPartitionRef.]

[SWS_Pwm_CONSTR_00002] [If PwmEcucPartitionRef references one or more
ECUC partitions, PwmkKernelEcucPartitionRef shall have a multiplicity of one and

reference one of these ECUC partitions as well. |

10.2.3 PwmPowerStateConfig

[ECUC_Pwm_00144] Definition of EcucParamConfContainerDef PwmPowerState

Config [
Container Name PwmPowerStateConfig
Parent Container PwmGeneral
Description Each instance of this parameter defines a power state and the callback to be called
when this power state is reached.
Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

PwmPowerState

1

[ECUC_Pwm_00146]

PwmPowerStateReadyCbkRef

1

[ECUC_Pwm_00145]

| No Included Containers

AUTSSAR

[ECUC_Pwm_00146] Definition of EcuclintegerParamDef PwmPowerState |

Parameter Name

PwmPowerState

Parent Container

PwmPowerStateConfig

Description Each instance of this parameter describes a different power state supported by the
PWM HW. It should be defined by the HW supplier and used by the PWMDriver to
reference specific HW configurations which set the PWM HW module in the referenced
power state.

At least the power mode corresponding to full power state shall be always configured.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

This parameter shall only be configured if the parameter PwmLowPowerStatesSupport
is set to true.

]

[ECUC_Pwm_00145] Definition of EcucFunctionNameDef PwmPowerStateReady

CbkRef [

Parameter Name

PwmPowerStateReadyCbkRef

Parent Container

PwmPowerStateConfig

Description Each instance of this parameter contains a reference to a power mode callback defined
in a CDD or loHwAbs component.

Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

This parameter shall only be configured if the parameter PwmLowPowerStatesSupport
is set to true.

10.2.4 PwmChannel

[ECUC_Pwm_00027] Definition of EcucParamConfContainerDef PwmChannel |

Container Name

PwmChannel

Parent Container

PwmChannelConfigSet

Description

Configuration of an individual PWM channel.

V

AUTSSAR

A
Multiplicity 1.*
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
PwmChannelClass 0..1 [ECUC_Pwm_00136]
PwmChannelld 1 [ECUC_Pwm_00137]
PwmDutycycleDefault 1 [ECUC_Pwm_00138]
PwmldleState 1 [ECUC_Pwm_00122]
PwmNotification 0..1 [ECUC_Pwm_00123]
PwmPeriodDefault 1 [ECUC_Pwm_00124]
PwmPolarity 1 [ECUC_Pwm_00125]
PwmChannelEcucPartitionRef 0.* [ECUC_Pwm_00151]
PwmMcuClockReferencePoint 1 [ECUC_Pwm_00147]

No Included Containers

]

[ECUC_Pwm_00136] Definition of EcucEnumerationParamDef PwmChannel
Class |

Parameter Name PwmChannelClass
Parent Container PwmChannel
Description Class of PWM Channel.
ImplementationType: Pwm_ChannelClassType
Multiplicity 0..1
Type EcucEnumerationParamDef
Range PWM_FIXED_ PERIOD Only the duty cycle can be changed.
PWM_FIXED_PERIOD_ Only the duty cycle can be changed. The period
SHIFTED is shifted (only if supported by hardware)
PWM_VARIABLE_PERIOD Duty Cycle and period can be changed.
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

AUTSSAR

[ECUC_Pwm_00137] Definition of EcuclntegerParamDef PwmChannelld |

Parameter Name

PwmChannelld

Parent Container

PwmChannel

Description Channel Id of the PWM channel. This value will be assigned to the symbolic name
derived of the PwmChannel container short name.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Dependency

]

[ECUC_Pwm_00138] Definition of EcuclntegerParamDef PwmDutycycleDefault |

Parameter Name

PwmDutycycleDefault

Parent Container

PwmChannel

Description Value of duty cycle used for Initialization 0, represents 0% 0x8000 represents 100%
Multiplicity 1
Type EcuclntegerParamDef
Range 0..32768
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Pwm_00122] Definition of EcucEnumerationParamDef PwmidleState |

Parameter Name

PwmldleState

Parent Container

PwmChannel

Description The parameter PWM_IDLE_STATE represents the output state of the PWM after the
signal is stopped (e.g. call of Pwm_SetOutputToldle).
Multiplicity 1
Type EcucEnumerationParamDef
Range PWM_HIGH The PWM channel output will be set to high (3 or
5V)inidle state.
PWM_LOW The PWM channel output will be set to low (0 V')
in idle state.
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

| Dependency

]

[ECUC_Pwm_00123] Definition of EcucFunctionNameDef PwmNotification |

Parameter Name PwmNotification

Parent Container PwmChannel

Description Definition of the Callback function.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value "NULL"

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Pwm_00124] Definition of EcucFloatParamDef PwmPeriodDefault |

Parameter Name

PwmPeriodDefault

Parent Container

PwmChannel

Description Value of period used for Initialization.(in seconds).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Pwm_00125] Definition of EcucEnumerationParamDef PwmPolarity |

Parameter Name

PwmPolarity

Parent Container

PwmChannel

Description Defines the starting polarity of each PWM channel.
Multiplicity 1
Type EcucEnumerationParamDef

\Y%

AUTSSAR

A
Range PWM_HIGH The PWM channel output is high at the beginning
of the cycle and then goes low when the duty
count is reached.

PWM_LOW The PWM channel output is low at the beginning
of the cycle and then goes high when the duty
count is reached.

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Pwm_00151] Definition of EcucReferenceDef PwmChannelEcucPartition

Ref |

Parameter Name

PwmChannelEcucPartitionRef

Parent Container

PwmChannel

Description Maps a PWM channel to zero or multiple ECUC partitions to limit the access to this
channe. The ECUC partitions referenced are a subset of the ECUC partitions where
the PWM driver is mapped to.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Pwm_00147] Definition of EcucReferenceDef PwmMcuClockReference

Point |

Parameter Name

PwmMocuClockReferencePoint

Parent Container

PwmChannel

Description This parameter contains reference to the McuClockReferencePoint
Multiplicity 1
Type Reference to McuClockReferencePoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[SWS_Pwm_CONSTR_00003] [If PwmEcucPartitionRef references one or more
ECUC partitions, PwmChannelEcucPartitionRef shall have a multiplicity of greater
than zero and reference one or several of these ECUC partitions as well. |

10.2.5 PwmChannelConfigSet

[ECUC_Pwm_00140] Definition of EcucParamConfContainerDef PwmChannel
ConfigSet |

Container Name PwmChannelConfigSet

Parent Container Pwm

Description This container contains the configuration parameters and sub containers of the
AUTOSAR Pwm module.

Multiplicity 1

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

PwmChannel 1.* Configuration of an individual PWM channel.

10.2.6 PwmConfigurationOfOptApiServices

[ECUC_Pwm_00126] Definition of EcucParamConfContainerDef PwmConfigura-
tionOfOptApiServices |

Container Name PwmConfigurationOfOptApiServices
Parent Container Pwm

Description -

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PwmDelnitApi 1 [ECUC_Pwm_00141]
PwmGetOutputState 1 [ECUC_Pwm_00127]
PwmSetDutyCycle 1 [ECUC_Pwm_00128]
PwmSetOutputToldle 1 [ECUC_Pwm_00129]
PwmSetPeriodAndDuty 1 [ECUC_Pwm_00130]
PwmVersionInfoApi 1 [ECUC_Pwm_00135]

No Included Containers

AUTSSAR

J
[ECUC_Pwm_00141] Definition of EcucBooleanParamDef PwmDelnitApi |

Parameter Name PwmDelnitApi

Parent Container PwmConfigurationOfOptApiServices

Description Adds / removes the service Pwm_Delnit() from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_Pwm_00127] Definition of EcucBooleanParamDef PwmGetOutputState [

Parameter Name PwmGetOutputState

Parent Container PwmConfigurationOfOptApiServices

Description -

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

J
[ECUC_Pwm_00128] Definition of EcucBooleanParamDef PwmSetDutyCycle |

Parameter Name PwmSetDutyCycle

Parent Container PwmConfigurationOfOptApiServices

Description -

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Pwm_00129] Definition of EcucBooleanParamDef PwmSetOutputToldle
[

Parameter Name PwmSetOutputToldle

Parent Container PwmConfigurationOfOptApiServices
Description -

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Pwm_00130] Definition of EcucBooleanParamDef PwmSetPeriodAnd
Duty [

Parameter Name PwmSetPeriodAndDuty

Parent Container PwmConfigurationOfOptApiServices

Description -

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
[ECUC_Pwm_00135] Definition of EcucBooleanParamDef PwmVersioninfoApi |

Parameter Name PwmVersionInfoApi

Parent Container PwmConfigurationOfOptApiServices

Description Switch to indicate that the Pwm_ GetVersionlInfo is supported

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_Pwm_NA_00153]

Upstream requirements: SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00170, SRS_BSW _
00419, SRS_BSW_00383, SRS _BSW_00375, SRS _BSW_00416,
SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_
00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428,
SRS_BSW_00429, SRS _BSW_00432, SRS_BSW_00433, SRS_BSW_
00417, SRS _BSW_00161, SRS BSW_00162, SRS _BSW_00005,
SRS _BSW_00415, SRS _BSW_00164, SRS_BSW_00325, SRS_BSW _
00342, SRS_BSW_00160, SRS_BSW_00007, SRS_BSW_00300,
SRS_BSW_00413, SRS_BSW_00347, SRS_BSW_00305, SRS_BSW_
00307, SRS_BSW_00310, SRS _BSW_00373, SRS_BSW_00327,
SRS BSW_00335, SRS BSW_00350, SRS BSW 00408, SRS _BSW _
00410, SRS_BSW _ 00348, SRS _BSW_ 00353, SRS _BSW_00301,
SRS_BSW_00302, SRS_BSW_00328, SRS_BSW_00312, SRS_BSW_
00006, SRS_BSW_00357, SRS_BSW_00377, SRS_BSW_00304,
SRS_BSW_00378, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_
00309, SRS_BSW_00358, SRS _BSW_00414, SRS_BSW_00359,
SRS BSW_00360, SRS BSW_00330, SRS _BSW 00331, SRS_BSW _
00009, SRS_BSW_00401, SRS _BSW_00172, SRS _BSW_00010,
SRS_BSW_00333, SRS_BSW_00003, SRS_BSW_00341, SRS_SPAL _
12267, SRS SPAL 12461, SRS SPAL 12462, SRS _SPAL 12463,
SRS_SPAL 12068, SRS_SPAL 12069, SRS _SPAL 12169, SRS
SPAL_12075, SRS_SPAL 12064, SRS SPAL 12067, SRS_SPAL
12077, SRS _SPAL 12078, SRS SPAL 12092, SRS _SPAL 12265,
SRS _Pwm_12379

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

Number Heading

[SWS_Pwm_00197] Definition of datatype Pwm_PowerStateType

Table B.1: Changed Specification Items in R25-11

B.1.3 Deleted Specification Iltems in R25-11

none

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.2 Time Unit Ticks
	7.2.1 Background & Rationale
	7.2.2 Requirements

	7.3 Support and management of HW low power states
	7.3.1 Background
	7.3.2 Requirements

	7.4 Duty Cycle Resolution and scaling
	7.5 Version check
	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Production Errors
	7.6.4 Extended Production Errors

	7.7 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Pwm_ChannelType
	8.2.2 Pwm_PeriodType
	8.2.3 Pwm_OutputStateType
	8.2.4 Pwm_EdgeNotificationType
	8.2.5 Pwm_ChannelClassType
	8.2.6 Pwm_ConfigType
	8.2.7 Pwm_PowerStateRequestResultType
	8.2.8 Pwm_PowerStateType

	8.3 Function definitions
	8.3.1 Pwm_Init
	8.3.2 Pwm_DeInit
	8.3.3 Pwm_SetDutyCycle
	8.3.4 Pwm_SetPeriodAndDuty
	8.3.5 Pwm_SetOutputToIdle
	8.3.6 Pwm_GetOutputState
	8.3.7 Pwm_DisableNotification
	8.3.8 Pwm_EnableNotification
	8.3.9 Pwm_SetPowerState
	8.3.10 Pwm_GetCurrentPowerState
	8.3.11 Pwm_GetTargetPowerState
	8.3.12 Pwm_PreparePowerState
	8.3.13 Pwm_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Pwm_Main_PowerTransitionManager

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	8.7 Service Interfaces
	8.8 API parameter checking

	9 Sequence diagrams
	9.1 Initialization
	9.2 De-initialization
	9.3 Setting the duty cycle
	9.4 Setting the period and the duty
	9.5 Setting the PWM output to idle
	9.6 Getting the PWM Output state
	9.7 Using the PWM notifications

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Pwm
	10.2.2 PwmGeneral
	10.2.3 PwmPowerStateConfig
	10.2.4 PwmChannel
	10.2.5 PwmChannelConfigSet
	10.2.6 PwmConfigurationOfOptApiServices

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

