AUTSSAR

Document Title Specification of PDU Router
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 35

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Clarification for flushing queues
2025-11-27 R25-1 1 QELSS:R * Clarification on buffer behavior for
M multi-frame TP gatewaying
anagement
« Editorial changes
 Added support for Linklayer SDU Router
AUTOSAR o :
» Clarification for buffering in case of
2024-11-27 | R24-11 'I\?Aelease fan-in and multicast routings
anagement
« Editorial changes
AUTOSAR . Sequencg diagram chapters for TP
2023-11-23 | R23-11 Release Gatewaying have been improved
Management « Editorial changes
* Introduced production error for buffer
overflow handling
AUTOSAR « Added support for Data Distribution
2022-11-24 | R22-11 Release Service (DDS)
Management
* Clarification for fan-in support
« Editorial changes

AUTSSAR

AUTOSAR

2021-11-25 R21-11 Release
Management

» Added multicast (1:n) support from a
transport protocol module to local upper
layer modules

» Added fan-in (n:1) support for multiple
communication interface modules to a
local upper layer module

* Cleaned up chapter 7 and clarified
buffering concept

* Same PduRRout ingPath may be
assigned to multiple
PduRRoutingPathGroups

* Inter-Partition Gateway Routing
Relations are described in more detail

* Clarification and clean up of Multicast
TP Tx PDU Forwarding

« Editorial changes

AUTOSAR

2020-11-30 R20-11 Release
Management

* Description of and requirements related
to PduRRoutingPathGroup has been
updated

* CancelTransmit for gateways has
been clarified

* Error classification has been harmonized

« Structure of “Error Section” has been
improved

* “Draft” tags have been removed from
Multicore Distribution spec. items

AUTOSAR

2019-11-28 R19-11 Release
Management

» Add Multicore Distribution

» Change [SWS_PduR_00783] to process
overlength PDUs

* Add additional parameters in the
PduRBswModules container

» Changed Document Status from Final to
published

AUTSSAR

AUTOSAR

2018-10-31 44.0 Relase
Management

* Removal of obsolete elements

* Remove dummy implementations for
CancelTransmit APls

» Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

AUTOSAR

2017-12-08 | 4.3.1 Relase
Management

* APl parameter RetryInfoTypex*
retry has become pointer to const in
PduR_<User:LoTp>CopyTxData

* The ChangeParameter APl has been
rendered obsolete

* DET Runtime Errors PDUR_E_TP_TX__
REQ REJECTED and PDUR_E_PDU__
INSTANCES_LOST introduced

* Det_ReportRuntimeError has
become a Mandatory Interface and
inclusion of DET is not optional anymore

« Clarification of the disabled APIs and
their behavior if Pdur_
DisableRouting called

» Corrections in description of
PduRDestTxBufferRef and
PduRTxBuffer

« Editorial changes

AUTOSAR

2016-11-30 | 4.3.0 Release
Management

* Reliable TxConfirmation

» Addressing in Upper Layers using
MetaData

» Clarification on unknown message
length handling for the TP gateway

» Added support for n:1 routing

» Added support for FIFO for TP
messages

» Removed module specific dependencies
when calling DET

AUTSSAR

AUTOSAR
422 Release
Management

2015-07-31

» Added support of TriggerTransmit
for dynamic length PDUs

» Clarification on output parameter
‘availableDataPtr’ of PduR
<User:LoTp>CopyTxData

« Clarification for releasing of buffer on
return of E_NOT_OK from <DstLoTp_
Transmit> API

« Clarified behavior for disabled TxPduId
of upper layer

« Clarified Routing PDUs between local
modules

» Cleanup of references to former SoAd
API

* DET Renaming and Extension
Incorporation

* LdCom as upper module

* Clarification for releasing of buffer on
return of E_NOT_OK from <DstLoTp_
Transmit> API

AUTOSAR

2014-10-31 | 4.21 Release
Management

* Support multi-frame TP fanout

* CAN-FD and SecOC Concept
incorporation

* Improved Cancel Transmission handling
in case of gatewaying

« Editorial changes

AUTOSAR

2014-03-31 41.3 Release
Management

« Clarified handling of routing
on-the-fly for unreached TP
threshold

* Clarify behaviour for
TriggerTransmit data provision
depending on used buffering strategy

* Introduced DET when <DstLo>__
Transmit fails

» Harmonize descriptions of identical API
functions

AUTSSAR

2013-10-31

41.2

AUTOSAR
Release
Management

* Revised list of optional interfaces

* Deleted handling of misconfigured PDUs
during run-time.

* Deleted NotifyResultType

» Added error handling after destination
abort in case of gatewaying.

« Editorial changes

* Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

» Added support for extended PDUs as
part of the heavy duty vehicle support

* Removed minimum routing feature
* Improved multicast behavior

* Post-build loadable support

2011-12-22

4.0.3

AUTOSAR
Administration

* Clarifications regarding non-TP PDU
routing

* New feature: non-TP PDU routing
idependent of the Pdu lengh

* FIFO handling for non-TP PDU routing
clarified / improved

» Service ID’s for generic serivices
introduced

« Clarification regarding multicast routing
of TP-PDU’s

* DEM error reporting removed

2010-09-30

AUTOSAR
Administration

* Introduced new version check

* Added std_ReturnType {0 PduR_
<Lo>TriggerTransmit

» Added functionality of PduR_
<LoTp>CopyTxData when
TsSduLength is zero

AUTSSAR

2010-02-02

3.1.4

AUTOSAR
Administration

* The PDU Router module is made
generic to allow any combination of
busses, TPs and upper modules. The
upper and lower modules are modeled
generic and handled by the
configuration.

The Transport Protocol APl has been
redesgined. Compatibility between TP in
AR3.x and AR4.0 is described.

Cancel transmission of communication
interface I-PDUs has been added.

Cancel reception of Transport Protocol
I-PDUs has been added.

Change parameter of Transport Protocol
parameters has been extended.

Legal disclaimer revised

2009-07-24

AUTOSAR
Administration

Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

Correction figure 3

2007-08-10

2.1.17

AUTOSAR
Technical Office

Tables generated from UML-models,
UML-diagrams linked to UML-model,
general improvements of requirements
in preparation of CT-development. No
changes in the technical contents of the
specification.

2007-07-24

2.1.16

AUTOSAR
Administration

Variants have been renamed.

New Callbacks PduR_LinT-
pChangeParameterConfirmation,
PduR_FrTpChangeParameterCon-—
firmation

* PduR_CanTpChangeParameterCon-—
firmation has been added.

New API's PduR_
ChangeParameterRequest, PAuR__
CancelTransmitRequest has been
added

New type defines PduR__
ParameterValueType, PduR_

CancelReasonType has been added
v

AUTSSAR

A
« Document meta information extended

» Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

» Clarifications added (FIFO,
TxConf,...)

» Unnecessary development errors
removed

* SchM_PduR.h and MemMap . h added

« Corrections of configuration parameters
* More details in Chapter 13

* Legal disclaimer revised

* Release Notes added

* “Advice for users” revised

» “Revision Information” added

2006-05-16

2.0

AUTOSAR
Administration

» Document structure adapted to common
Release 2.0 SWS Template.

» Major changes in chapter 10
» Structure of document changed partly

« Other changes see chapter

2005-05-31

1.0

AUTOSAR
Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

1.1 AUTOSAR architecture
1.2 PDU Router module function overview
1.3 I-PDUhandling

2 Acronyms and abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms.
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.1.1 Limitations on supported functionality
4.2 Applicabilitytocardomainso o Lo

5 Dependencies to other modules

5.1 Filestructure e
5.1.1 Codefile structure
5.1.2 Headerfilestructure

5.2 Versioncheck e

6 Requirements Tracing

7 Functional Specification

71 I-PDUhandling
7.1.1 Bufferingconcept
7111 Typeofbuffers L.
7.1.1.2 Bufferingstrategies o L.
7.1.1.3 Buffersharing oo
7.1.1.4 Buffering in case of fan-in and multicast routings
7.1.2 |-PDU Reception to upper layer module(s)
7.1.21 Communication Interface
7.1.2.2 Transport Protocol

7.1.3 |-PDU Transmission from upper layer module(s)
7.1.3.1 Mullicast
7.1.3.2 Communication Interface

7.1.3.3 Transport Protocol
7.1.4 |-PDU Gatewaying
7.1.41 Communicationinterface
7.1.4.2 Transport Protocol
7.1.4.3 Forwardingtoupperlayers

14

14
15
16

19

AUTSSAR

8

7.1.4.4 Errorhandling 60
7.2 Canceltransmission 62
7.3 Cancelreception 64
7.4 Zero Copy Operation 64
7.5 Zero CostOperation 65
7.6 State Management 66
7.7 Routingpathgroups 68
7.7.1 PduRRoutingPathGroup definitions 68
7.7.2 Initialization of PAduRRoutingPathGroups 68
7.7.3 Switching of PAduRRoutingPathGroups 69
7.8 Complex Driver Interaction 70
7.9 Errorclassification. 71
7.9.1 DevelopmentErrors 72
7.9.2 RuntimeErrors 72
7.9.3 ProductionErrors 72
7.9.4 Extended ProductionErrors oL 73
7.10API parameterchecking 73
7.11Multicore Distribution o o 73
7.11.1 Intra-partition RoutingPath 74
7.11.2 Inter-partition Routing Path 74
7.11.2.1 Upper layer module interaction 75
7.11.2.2 Lower layer Communication Interface module interaction 76
7.11.2.3 Lower layer Transport Protocol module interaction 76
7.11.2.4 Communication Interface Gatewaying. 78
7.11.2.5 Transport Protocol Gatewaying 79
API specification 80
8.1 Importedtypes 80
8.2 Type definitions 80
8.2.1 PduR_PBConfigType 80
8.2.2 PduR_PBConfigldType 81
8.2.3 PduR_RoutingPathGroupldType 81
8.2.4 PduR_StateType 82
8.3 Function definitions L 82
8.3.1 General functions provided by the PDU Router 82
8.3.1.1 PduR_Init 82
8.3.1.2 PduR_GetVersioninfo 83
8.3.1.3 PduR_GetConfigurationld 84
8.3.1.4 PduR_EnableRouting. L. 84
8.3.1.5 PduR_DisableRouting 85
8.3.2 Configurable interfaces definitions for interaction with upper layer
module 86
8.3.2.1 PduR_<User:Up>Transmit 86

8.3.2.2 PduR_<User:Up>CancelTransmit 87

AUTSSAR

8.3.2.3 PduR_<User:Up>CancelReceive 87
8.3.2.4 PduR_<User:Up>ReleaseRxBuffer 88
8.3.3 Configurable interfaces definitions for lower layer communication
interface module interaction o oL 88
8.3.3.1 PduR_<User:Lo>RxIndication 89
8.3.3.2 PduR_<User:Lo>TxConfirmation 89
8.3.3.3 PduR_<User:Lo>TriggerTransmit 90
8.3.4 Configurable interfaces definitions for lower layer transport protocol
module interaction 90
8.3.4.1 PduR_<User:LoTp>CopyRxData 91
8.3.4.2 PduR_<User:LoTp>RxIndication 91
8.3.4.3 PduR_<User:LoTp>StartOfReception 92
8.3.4.4 PduR_<User:LoTp>CopyTxData 93
8.3.4.5 PduR_<User:LoTp>TxConfirmation 94
8.4 Scheduled functions 94
8.5 ExpectedInterfaces 95
8.5.1 Mandatory Interfaces L 95
8.5.2 OptionalInterfaces 95
9 Sequence diagrams 97
9.1 I-PDU Reception 97
9.1.1 Canlf module I-PDU reception 97
9.1.2 Frlf module I-PDU reception 98
9.1.3 Linlf module I-PDU reception, 98
9.1.4 CanTp module I-PDUreception. 98
9.2 [-PDU transmission e 100
9.2.1 Canlf module I-PDU transmission 100
9.2.2 Frlf module I-PDU transmission. 101
9.2.3 Linlf module I-PDU transmission 102
9.2.4 CanTp module I-PDU transmission 104
9.2.5 Multicast I-PDU transmission on Transport Protocol modules 105
9.3 Gatewayof I-PDU e 106
9.3.1 Gateway betweentwo Canlfs 106
9.3.2 Gateway from CANtoFlexRay 107
9.3.3 Gateway from CANtoLIN. 108
9.3.4 Gateway from CAN to CAN and received by the COM module . .. 109
9.3.5 Singlecast Gateway TPI-PDU 110
9.3.6 Multicast Gateway TP I-PDU with Forwarding to Upper Layer 111
9.3.7 Gateway Single Frame TP |-PDU with Forwarding to Upper Layer . 112
9.3.8 Gateway Broadcast Announce Message of J1939Tp 113
10 Configuration specification 114
10.1How toread thischapter 114

101 Variants 114

AUTSSAR

10.2Containers and configuration parameters
10.21 PduR e
10.2.2 PduRDemEventParameterRefs
10.2.3PduRBswModules
10.2.4PduRGeneral
10.2.5 PduRRoutingPathGroup L.
10.2.6 PduRRoutingPaths o oL
10.2.7 PduRRoutingPatho
10.2.8 PduRDestPdu
10.29PduRSrcPdu
10.2.10 PduRDefaultValue
10.2.11 PduRDefaultValueElement
10.2.12 PduRBuffer
10.3Published Information.

11 PDU Router module design notes

11.1Configuration parameter considerations
11.2Generic interfacesconcept Lo Lo
11.3Example structure of Routingtables
11.3.1 Single and Multicast transmission via communication interface mod-
ules . .. e

11.3.2 Reception and gatewaying via communication interface modules . .
11.4Configuration generator.o
11.4.1 Canlf and Com routing path example
11.5Post-build considerations L L.

A Not applicable requirements

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e

B.1.1 Added Specification Itemsin R22-11
B.1.2 Changed Specification ltemsinR22-11
B.1.3 Deleted Specification ltemsin R22-11
B.1.4 Added Constraintsin R22-11
B.1.5 Changed Constraintsin R22-11
B.1.6 Deleted Constraintsin R22-11
B.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e
B.2.1 Added Specification ltemsin R23-11
B.2.2 Changed Specification ltemsin R23-11
B.2.3 Deleted Specification Itemsin R23-11
B.2.4 Added Constraintsin R23-11
B.2.5 Changed Constraints in R23-11
B.2.6 Deleted Constraints in R23-11

149
150
150
151
152

153

154

AUTSSAR

B.3 Traceable item history of this document according to AUTOSAR Release

R24-11 . . . e 157
B.3.1 Added Constraintsin R24-11 157
B.3.2 Changed Constraintsin R24-11 157
B.3.3 Deleted Constraintsin R24-11 157
B.3.4 Added Specification ltemsinR24-11 157
B.3.5 Changed Specification ltemsin R24-11 158
B.3.6 Deleted Specification Itemsin R24-11 158

B.4 Traceable item history of this document according to AUTOSAR Release

R25-11 . . . e 158
B.4.1 Added Constraints in R25-11 158
B.4.2 Changed Constraints in R25-11 158
B.4.3 Deleted Constraints in R25-11 158
B.4.4 Added Specification ltemsin R25-11 159
B.4.5 Changed Specification ltemsin R25-11 159
B.4.6 Deleted Specification ltemsin R25-11 159

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality and APIs of the AUTOSAR PDU Router
(PduR) module.

The PDU Router module provides services for routing I-PDUs (Interaction Layer Pro-
tocol Data Units) using the following module types:

« Communication interface modules, that use the <Provider:Up> or
<Provider:Lo> APls, e.g. Com, IPduM, CanNm, FrNm, LSduR;

 Transport Protocol modules, that use the <Provider:UpTp> Or <Provider:Lo
Tp> APls, e.g. J1939Tp, CanTp, FrTp, LinTp (part of Linlf connected via LSduR),
Com, Dcm.

The routing of I-PDUs is performed based on statically defined I-PDU identifiers. No
[-PDU is routed dynamically during run-time, e.g. dependent on its payload.

The location of related modules can be "upper" (e.g. DIt, Dcm, Com, IpduM) and/or
"lower" (Canlf, Frlf, LinTp, lpduM, CanNm, FrNm). Note that the IpduM is listed as
an upper and a lower module because it has two different roles (lower: communica-
tion between Com module and IpduM module, upper: communication between IpduM
module and lower layer communication interface module).

The PDU Router module is based on a generic approach of interfaced modules. The
module that is interfaced is configured in the PDU Router module configuration. The
listed modules in parenthesis in the previous paragraph are just examples, and not an
exhaustive list. The PDU Router can be easily configured to support other upper and
lower layer modules. This approach also allows to integrate Complex Device Drivers
(CDDs) as upper or lower layer modules of the PDU Router.

The list of users of the PDU Router module is not fixed. The most common combination
of upper and lower layer pairs is listed below:

+ Diagnostic Communication Manager (Dcm) and Transport Protocol modules,

« Com and Communication Interface modules, Transport Protocol modules or |-
PDU Multiplexer,

+ |-PDU Multiplexer and Communication Interface modules.

1.1 AUTOSAR architecture

The PDU Router module is a central module in the AUTOSAR communication struc-
ture [1]. Figure 1.1 gives an overview of the AUTOSAR communication structure.

= Specification of PDU Router
AUTSSAR AUTOSAR CP R25-11

—=-

PDU Router

Figure 1.1: CommunicationStructure

1.2 PDU Router module function overview

The PDU Router module is part of the AUTOSAR Basic SW, and is mandatory instan-
tiated in every AUTOSAR ECU.

The detailed PDU Router module structure is shown in Figure 1.2.

15 of 159 Document ID 35: AUTOSAR_CP_SWS_PDURouter

AUTSSAR

PDU Router PDU Router Engine
-— routing tables

Linklayer Sdu Router l
[Lpeou TLeou] LeoU
FlexRay Interface CAN Interface LIN Interface
(incl. LIN TP)

Figure 1.2: Detailed PDU Router Structure showing FlexRAy, CAN and LIN

The PDU Router module mainly consists of two parts:

« The PDU Router routing paths: static routing paths describing the routing at-
tributes for each I-PDU to be routed. The routing paths can be (if supported)
updated post-build loadable in the programming state of the ECU or selected
when initializing the PDU Router by post-build selectable (see section 10.1.1).

» The PDU Router Engine: the actual code performing routing actions according
to the PDU Router routing paths. The PDU Router Engine has to deal with:

— Routing the I-PDU from source(s) to destination(s),

— Translating the source |I-PDU ID to the destination I-PDU ID (e.g. PduR_Com
Transmit t0 CanIf_Transmit, PduR_CanIfTxConfirmation to Com_
TxConfirmation).

1.3 I-PDU handling

I-PDUs are identified by static I-PDU IDs. The PDU Router module determines the
destination of an I-PDU by using the I-PDU ID in a static configuration table. 1-PDUs
are used for the data exchange of the modules directly above the PDU Router module,
e.g. the Com module and Dcm module. The routing operation of the PDU Router
module does not modify the [-PDU, it simply forwards the I-PDU to the destination
module. In case of TP gatewaying, forwarding the I-PDU to the destinaiton(s) may
start before the full I-PDU is received ("on-the-fly gatewaying").

AUTSSAR

The I-PDU ID is set in the configuration that also implements the API. This will allow an
efficient implementation of look-up tables in each module receiving an |I-PDU ID (e.g.
the PDU Router module’s configuration contains the |I-PDU ID for the PduR_CanIf
TxConfirmation, while Canlf module’s configuration contains the I-PDU ID for the
CanIf_Transmit).

The following list summarizes the routing capabilities of PduR:
1. I-PDU Forwarding
» Transmission from upper layer
— Communication Interface

= Singlecast (1:1) an |I-PDU from a local module to a communication
interface module.

= Multicast (1:n) an I-PDU from a local module to communication in-
terface modules.

— Transport Protocol

« Singlecast (1:1) an I-PDU (both Single Frame and Multi Frame) from
a local module to a transport protocol module.

= Multicast (1:n) an I-PDU (both Single Frame and Multi Frame) from
a local module to transport protocol modules.

* Reception to upper layer
— Communication Interface

« Singlecast (1:1) an I-PDU from a communication interface module
to a local module.

= Multicast (1:n) an |I-PDU from a communication interface module to
local modules.

= Fan-in (n:1) an I-PDU from communication interface modules to a
local module.

— Transport Protocol

« Singlecast (1:1) an I-PDU (both Single Frame and Multi Frame) from
a transport protocol module to a local module.

= Multicast (1:n) an I-PDU (both Single Frame and Multi Frame) from
a transport protocol module to local modules.

2. |-PDU Gatewaying

 Communication Interface

AUTSSAR

— Gateway (1:1) an I-PDU from a communication interface module to a
communication interface module using last-is-best buffer/ FIFO buffer/
no buffer.

— Gateway (1:n) an I-PDU from a communication interface module to mul-
tiple communication interface modules using last-is-best buffer/ FIFO
buffer/ no buffer.

— Gateway (n:1) an I-PDU from multiple communication interface mod-
ules to a communication interface module using last-is-best buffer/ FIFO
buffer/ no buffer.

» Transport Protocol

— Gateway (1:1) an I-PDU from a transport protocol module to a transport
protocol module using buffer.

— Gateway (1:n) an I-PDU from a transport protocol module to multiple
transport protocol modules using buffer.

— Gateway (n:1) an I-PDU from multiple transport protocol modules to a
transport protocol module using buffer.

3. Combined I-PDU gatewaying and forwarding
« Communication Interface

— An |-PDU may be received by one or more upper modules in the same
time as gatewayed to one or more communication interfaces using last-
is-best/FIFO/ no buffer.

» Transport Protocol

— An |-PDU (only Single Frame) may be received by one or more upper
modules in the same time as gatewayed to one or more lower layer
transport protocol modules using buffer.

AUTSSAR

2 Acronyms and abbreviations

The following acronyms and abbreviations have a local scope and are therefore not
contained in the AUTOSAR glossary|[2].

Acronym:

Description:

data provision

Provision of data to interface modules.

1. direct data provision: data to be transmitted are
provided directly at the transmit request. The destination
Communication Interface may behave in two ways, either
copy the data directly or defer the copy to a trigger trans-
mit.

2. trigger transmit data provision: data to be
transmitted are not provided at the transmit request, but
will be retrieved by the Communication Interface module
via a callback function.

FIFO buffering

Buffer concept, which uses first in first out strategy.

last-is-best buffering

Buffering strategy where the latest value overwrites the last value.

Lower Layer Modules (Lo)

Modules below the PDU Router. This layer may include CAN,
LIN, FlexRay, Ethernet Communication Interface modules and
the respective TP modules.

multicast operation (Lo)

Simultaneous transmission of PDUs to a group of receivers, i.e.
1:n routing.

on-the-fly gatewaying

Gateway capability; routing between two TP modules where for-
warding of data is started (when a specified threshold is reached)
before all data have been received. If larger amount of data is
transported between two interfaces it is desirable to be able to
start the transmission on the destination network before receiv-
ing all data from the source network. This saves memory and
time.

PDU Router

Module that transfers I-PDUs from one module to another mod-
ule. The PDU Router module can be utilized for gateway opera-
tions and for internal routing purposes.

Upper Layer Modules (Up)

Modules above the PDU Router. This layer usually includes Com
and Diagnostic Communication Manager (Dcm).

Table 2.1: Acronyms used in the scope of this Document

Abbreviation: Description:

CF Consecutive Frame, Transport Protocol term.

FF First Frame, Transport Protocol term.

[-PDU ID I-PDU Identifier.

SF Single Frame, Transport Protocol term.

<DstLo> Lower layer Communication Interface module acting as a desti-
nation of the I-PDU. The DstLo may by one to many.

<DstLoTp> Lower layer Transport Protocol module acting as a destination of
the I-PDU. The DstLoTp may by one to many.

<Lo> Lower layer communication interface module.

<LoTp> Lower layer Transport Protocol module.

<module> Any type of module <...>.

<SrcLos Lower layer Communicat_ion Interface module acting as a source
of the I-PDU. The SrcLo is always one.

AUTSSAR

Abbreviation:

Description:

Lower layer Transport Protocol module acting as a source of the

<SrcLoTp> [-PDU. The SrcLoTp is always one.
U Upper layer Communication Interface and/or Transport Protocol
<-p> module.

Table 2.2: Abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[2] Glossary
AUTOSAR_FO_TR_Glossary

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] Requirements on Gateway
AUTOSAR_CP_RS_Gateway

[5] Specification of I-PDU Multiplexer
AUTOSAR_CP_SWS_IPDUMultiplexer

[6] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[7] Specification of Communication Stack Types
AUTOSAR_CP_SWS_CommunicationStackTypes

[8] Guide to BSW Distribution
AUTOSAR_CP_EXP_BSWDistributionGuide

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3], which is
also valid for PDU Router.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for PDU Router.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The PDU Router module does not:
» have mechanisms for signal extraction or conversion,
» have mechanisms for data integrity checking (like checksums),
» change or modify the I-PDU,
» make any PDU payload dependent routing decisions,

* support routing between TP modules and Communication Interface modules or
vice versa,

* support routing of I-PDUs between Communication Interface modules with rate
conversion. (This functionality will be supported in cooperation with an upper
layer module, e.g. the Com module).

4.1.1 Limitations on supported functionality

The PDU Router module supports fan-out of I-PDUs transmitted from a local module
(e.g. Com module) to more than one destinations. There are some limitations if the
I-PDU shall be transmitted to more than one destination (fan-out 1:n; n>1), because
the upper layer module is not aware how many destinations there are:

» The PDU Router reports E_OK for a Transmit request from an upper layer if at
least one destination lower layer reports E_OK.

» The PDU Router gives a TxConfirmation to the upper layer when it receives
the last TxConfirmation from destination lower layer.

» The PDU Router returns E_OX for a CancelTransmit requested from the upper
layer only if all destination lower layers return E_OK.

If the I-PDU fan-out is performed by the PDU Router, this has further consequences
for the Com as upper layer module:

» Update bits will not work.

* The TxConfirmation of the Communication Interface APl will be handled in
the way that the local module (e.g. Com module) will be informed when the last
destination has confirmed the transmission. This means that deadline monitoring
is made with respect to the last TxConfirmation (i.e. there is no difference if
all the I-PDUs were transmitted successfully or not).

» Starting and stopping of I-PDU groups affects all destinations.

AUTSSAR

Note that above limitations are not set as requirements since they do not concern
functionality provided by the PduR module. But implication of the use of the PduR
module will affect these functionalities.

If the I-PDU fan-in is performed by the PDU Router, update bits and I-PDU sequence
counter will not work with Com module.

4.2 Applicability to car domains

The PDU Router is used in all ECUs where communication is necessary.

The PDU Router module has not been specified to work with MOST communication
network. Thus the applicability to multimedia and telematic car domains may be limited.

AUTSSAR

5 Dependencies to other modules

The PDU Router module depends on the APls and capabilities of the used communi-
cation hardware abstraction layer modules and the used communication service layer
modules. Basically the API functions required by the PDU Router module are:

Communication Interface modules:

. <Lo>_Transmit(eg.<3anIf_Transmit,FrIf_Transmit,LinIf_Trans—
mit)

* <Lo>_CancelTransmit (.. FrIf_CancelTransmit)
Transport Protocol Modules:

* <LoTp>_Transmit (€e.g. CanTp_Transmit, FrTp_Transmit, LinTp_
Transmit)

°<LoTp>_CancelTransmit(eg. CanTp_CancelTransmit, FrTp_Cancel
Transmit)

* <LoTp>_CancelReceive (€.g. CanTp_CancelReceive, FrTp_CancelRe-
ceive)

Upper layer modules which use Transport Protocol modules:
* <Up>_StartOfReception (€.g. Dcm_StartOfReception)
* <Up>_CopyRxData (e.g. Dcm_CopyRxData)
* <Up>_CopyTxData (€.g. Dcm_CopyTxData)
* <Up>_TpRxIndication (€.g. Dcm_TpRxIndication)
* <Up>_TpTxConfirmation (€.g. Dcm_TpTxConfirmation)

Upper layer modules which process I-PDUs originating from Communication Interface
modules:

* <Up>_RxIndication (€.9. Com_RxIndication),
* <Up>_TxConfirmation (€.9. Com_TxConfirmation),

* <Up>_TriggerTransmit (€.g. Com_TriggerTransmit)

5.1 File structure

5.1.1 Code file structure

For details refer to the Chapter 5.1.6 "Code file structure" in [3, SWS_BSWGeneral].

The code file structure is not defined within this specification completely. However to
allow integration to other modules the following structure is needed.

AUTSSAR

5.1.2 Header file structure

[SWS_PduR_00216]

Upstream requirements: SRS_BSW_00415
[The PDU Router module shall provide the functions used by the different modules in
separate header files. |

Example: If Canlf, CanTp and Frlf are used then the PDU Router module shall provide
PduR_CanIf.h, PduR_CanTp.h and PduR_FrIf.h.

[SWS_PduR_00802]
Upstream requirements: SRS_BSW_00350
[The PduR implementation shall include Det . h. |
[SWS_PduR_00762]
Upstream requirements: SRS_BSW_00003
[All PDU Router header files shall contain a software and specification version num-
ber. |

This structure allows the separation between platform, compiler and implementation
specific definitions and declarations from general definitions as well as the separation
of source code and configuration.

5.2 Version check

For details refer to [3] Chapter 5.1.8 “Version check”.

AUTSSAR

6 Requirements Tracing

The following table reference the requirements specified in [3] and [4] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_PduR_00762]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_PduR_00334]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_PduR_00333]

[SRS_BSW_00305]

Data types naming convention

[SWS_PduR_00654] [SWS_PduR_00742]
[SWS_PduR_00743] [SWS_PduR_00771]

[SRS_BSW_00310]

APl naming convention

[SWS_PduR_00334] [SWS_PduR_00338]
[SWS_PduR_00341] [SWS_PduR_00362]
[SWS_PduR_00365] [SWS_PduR_00369]
[SWS_PduR_00375] [SWS_PduR_00381]
[SWS_PduR_00406] [SWS_PduR_00504]
[SWS_PduR_00507] [SWS_PduR_00512]
[SWS_PduR_00518] [SWS_PduR_00615]
[SWS_PduR_00617] [SWS_PduR_00767]
[SWS_PduR_00769] [SWS_PduR_00800]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_PduR_00100] [SWS_PduR_00221]
[SWS_PduR_00647] [SWS_PduR_00648]
[SWS_PduR_00649] [SWS_PduR_00716]

[SRS_BSW_00335]

Status values naming convention

[SWS_PduR_00742]

[SRS_BSW_00337]

Classification of development errors

[SWS_PduR_00100]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_PduR_00802]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_PduR_00334]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_PduR_00119] [SWS_PduR_00221]
[SWS_PduR_00648] [SWS_PduR_00649]
[SWS_PduR_00663] [SWS_PduR_00670]
[SWS_PduR_00807] [SWS_PduR_00903]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_PduR_00424] [SWS_PduR_91001]

[SRS_BSW_00385]

List possible error notifications

[SWS_PDUR_00816]

[SRS_BSW_00400]

Parameter shall be selected from
multiple sets of parameters after code
has been loaded and started

[SWS_PduR_00743]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_PduR_00241] [SWS_PduR_00281]
[SWS_PduR_00295] [SWS_PduR_00296]
[SWS_PduR_00743]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_PduR_00771]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_PduR_00119] [SWS_PduR_00308]
[SWS_PduR_00324] [SWS_PduR_00325]
[SWS_PduR_00326] [SWS_PduR_00328]
[SWS_PduR_00330] [SWS_PduR_00644]
[SWS_PduR_00645] [SWS_PduR_00742]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_PduR_00338]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_PduR_00338]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_PduR_00334]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_PduR_00216]

[SRS_BSW_00438]

Configuration data shall be defined in
a structure

[SWS_PduR_00241] [SWS_PduR_00743]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_PDUR_00816] [SWS_PduR_00100]

[SRS_BSW_00458]

Classification of production errors

[SWS_PduR_00921]

[SRS_BSW_00459]

It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_PduR_00836] [SWS_PduR_00837]
[SWS_PduR_00838] [SWS_PduR_00839]
[SWS_PduR_00840] [SWS_PduR_00841]
[SWS_PduR_00843] [SWS_PduR_00844]
[SWS_PduR_00845] [SWS_PduR_00846]
[SWS_PduR_00847] [SWS_PduR_00848]
[SWS_PduR_00849] [SWS_PduR_00850]
[SWS_PduR_00851] [SWS_PduR_00852]
[SWS_PduR_00853] [SWS_PduR_00854]
[SWS_PduR_00855] [SWS_PduR_00856]
[SWS_PduR_00857] [SWS_PduR_00858]
[SWS_PduR_00859] [SWS_PduR_00860]
[SWS_PduR_00881] [SWS_PduR_00882]
[SWS_PduR_00883]

[SRS_BSW_00460]

Reentrancy Levels

[SWS_PduR_00836] [SWS_PduR_00837]
[SWS_PduR_00838] [SWS_PduR_00839]
[SWS_PduR_00840] [SWS_PduR_00841]
[SWS_PduR_00843] [SWS_PduR_00844]
[SWS_PduR_00845] [SWS_PduR_00846]
[SWS_PduR_00847] [SWS_PduR_00848]
[SWS_PduR_00849] [SWS_PduR_00850]
[SWS_PduR_00851] [SWS_PduR_00852]
[SWS_PduR_00853] [SWS_PduR_00854]
[SWS_PduR_00855] [SWS_PduR_00856]
[SWS_PduR_00857] [SWS_PduR_00858]
[SWS_PduR_00859] [SWS_PduR_00860]
[SWS_PduR_00881] [SWS_PduR_00882]
[SWS_PduR_00883]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_PduR_00921]

[SRS_BSW_00471]

Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_PduR_00921]

Y

AUTSSAR

A
Requirement Description Satisfied by
[SRS_BSW_00472] Avoid detection of two production [SWS_PduR_00921]
errors with the same root cause.
[SRS_GTW_06001] Gateway shall be only be [SWS_PduR_00296] [SWS_PduR_00308]

reconfigured while the configuration
table to be reconfigured is not in use

[SWS_PduR_00328] [SWS_PduR_00330]

[SRS_GTW_06002] The Routing Configuration [SWS_PduR_00295]
shall be updateable at post-build time

[SRS_GTW_06003] Static Routing Configuration [SWS_PduR_00161] [SWS_PduR_00162]
shall be defined for gateways [SWS_PduR_00766]

[SRS_GTW_06012] PDU router shall route non-TP PDUs [SWS_PduR_00164] [SWS_PduR_00255]

with transparency between layers

[SWS_PduR_00256] [SWS_PduR_00307]
[SWS_PduR_00362] [SWS_PduR_00365]
[SWS_PduR_00369] [SWS_PduR_00406]
[SWS_PduR_00430] [SWS_PduR_00436]
[SWS_PduR_00437] [SWS_PduR_00621]
[SWS_PduR_00626] [SWS_PduR_00627]
[SWS_PduR_00629] [SWS_PduR_00638]
[SWS_PduR_00640] [SWS_PduR_00665]
[SWS_PduR_00666] [SWS_PduR_00667]
[SWS_PduR_00669] [SWS_PduR_00670]
[SWS_PduR_00744] [SWS_PduR_00745]
[SWS_PduR_00746] [SWS_PduR_00783]
[SWS_PduR_00784] [SWS_PduR_00785]
[SWS_PduR_00786] [SWS_PduR_00787]
[SWS_PduR_00788] [SWS_PduR_00793]
[SWS_PduR_00807] [SWS_PduR_00808]

[SRS_GTW_06020] The PDU Router resource usage
shall be scalable to zero in case no
PDU gateway

[SWS_PduR_00287] [SWS_PduR_00619]
[SWS_PduR_00764]

[SRS_GTW_06026] Data buffers for TP shall be provided
on request

[SWS_PduR_00299] [SWS_PduR_00301]
[SWS_PduR_00317] [SWS_PduR_00375]
[SWS_PduR_00381] [SWS_PduR_00406]
[SWS_PduR_00428] [SWS_PduR_00429]
[SWS_PduR_00507] [SWS_PduR_00512]
[SWS_PduR_00518] [SWS_PduR_00549]
[SWS_PduR_00551] [SWS_PduR_00625]
[SWS_PduR_00629] [SWS_PduR_00634]
[SWS_PduR_00637] [SWS_PduR_00638]
[SWS_PduR_00673] [SWS_PduR_00687]
[SWS_PduR_00689] [SWS_PduR_00696]
[SWS_PduR_00697] [SWS_PduR_00705]
[SWS_PduR_00707] [SWS_PduR_00708]
[SWS_PduR_00727] [SWS_PduR_00740]
[SWS_PduR_00767] [SWS_PduR_00789]
[SWS_PduR_00790] [SWS_PduR_00791]
[SWS_PduR_00792] [SWS_PduR_00794]
[SWS_PduR_00797] [SWS_PduR_00798]
[SWS_PduR_00799] [SWS_PduR_00808]
[SWS_PduR_00813] [SWS_PduR_00814]
[SWS_PduR_00815] [SWS_PduR_00818]
[SWS_PduR_00821] [SWS_PduR_00823]
[SWS_PduR_00826] [SWS_PduR_00829]
[SWS_PduR_00830] [SWS_PduR_00831]
[SWS_PduR_00832] [SWS_PduR_00833]
[SWS_PduR_00835] [SWS_PduR_00911]
[SWS_PduR_00912] [SWS_PduR_00913]
[SWS_PduR_00914] [SWS_PduR_00915]
[SWS_PduR_00916] [SWS_PduR_00917]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_GTW_06029]

The PDU Router shall be able to
support routing of TP PDUs
independent from the source to more
than one destinations

[SWS_PduR_00551] [SWS_PduR_00631]
[SWS_PduR_00632] [SWS_PduR_00633]
[SWS_PduR_00701] [SWS_PduR_00724]
[SWS_PduR_00765] [SWS_PduR_00789]
[SWS_PduR_00790] [SWS_PduR_00791]
[SWS_PduR_00792] [SWS_PduR_00803]
[SWS_PduR_00804] [SWS_PduR_00805]
[SWS_PduR_00812] [SWS_PduR_00818]
[SWS_PduR_00821] [SWS_PduR_00822]
[SWS_PduR_00871] [SWS_PduR_00872]
[SWS_PduR_00911] [SWS_PduR_00912]
[SWS_PduR_00913] [SWS_PduR_00914]
[SWS_PduR_00915]

[SRS_GTW_06030]

Routing of non-TP PDUs to more
than one destination independent
from the source shall be supported by
the PDU Router

[SWS_PduR_00164] [SWS_PduR_00436]
[SWS_PduR_00633] [SWS_PduR_00701]
[SWS_PduR_00723] [SWS_PduR_00805]

[SRS_GTW_06032]

The non-TP transmit buffering
strategy shall be configured for each
PDU to be routed by the PDU Router

[SWS_PduR_00255] [SWS_PduR_00303]
[SWS_PduR_00306] [SWS_PduR_00307]
[SWS_PduR_00369] [SWS_PduR_00430]
[SWS_PduR_00640] [SWS_PduR_00662]
[SWS_PduR_00663] [SWS_PduR_00665]
[SWS_PduR_00666] [SWS_PduR_00667]
[SWS_PduR_00669] [SWS_PduR_00670]
[SWS_PduR_00746] [SWS_PduR_00783]
[SWS_PduR_00784] [SWS_PduR_00785]
[SWS_PduR_00786] [SWS_PduR_00787]
[SWS_PduR_00793] [SWS_PduR_00809]
[SWS_PduR_00810] [SWS_PduR_00819]

[SRS_GTW_06049]

PDU buffer content shall be
consistent during the time needed to
read this data

[SWS_PduR_00160]

[SRS_GTW_06097]

A Routing Configuration shall
be identified by an unique ID number

[SWS_PduR_00280] [SWS_PduR_00281]
[SWS_PduR_00341] [SWS_PduR_00771]

[SRS_GTW_06103]

PDU Router error shall be provided
for unknown PDU-ID

[SWS_PduR_00221] [SWS_PduR_00824]

[SRS_GTW_06104]

PDU Router error shall be provided
for local reception or transmission

[SWS_PduR_00207] [SWS_PduR_00432]
[SWS_PduR_00623] [SWS_PduR_00626]
[SWS_PduR_00661] [SWS_PduR_00676]
[SWS_PduR_00700] [SWS_PduR_00701]
[SWS_PduR_00824] [SWS_PduR_00828]

[SRS_GTW_06105]

PDU Router error shall be provided in
gateway case

[SWS_PduR_00256] [SWS_PduR_00640]
[SWS_PduR_00662] [SWS_PduR_00687]
[SWS_PduR_00689] [SWS_PduR_00705]
[SWS_PduR_00732] [SWS_PduR_00788]
[SWS_PduR_00790] [SWS_PduR_00791]
[SWS_PduR_00792] [SWS_PduR_00799]
[SWS_PduR_00807] [SWS_PduR_00815]
[SWS_PduR_00819] [SWS_PduR_00824]
[SWS_PduR_00828] [SWS_PduR_00912]
[SWS_PduR_00913] [SWS_PduR_00914]
[SWS_PduR_00915]

[SRS_GTW_06106]

PDU Router error shall be provided
for FIFO handling

[SWS_PduR_00670] [SWS_PduR_00824]

[SRS_GTW_06114]

The PDU Router provides an
interface (API) for usage by COM, to
use the PDU Router functionality

[SWS_PduR_00406] [SWS_PduR_00767]
[SWS_PduR_00769]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_GTW_06115]

The PDU Router provides an
interface (API) for usage by DCM, to
use the PDU Router functionality

[SWS_PduR_00406] [SWS_PduR_00767]
[SWS_PduR_00769]

[SRS_GTW_06116]

The PDU Router provides an
interface (API) for usage by IpduM, to
use the PDU Router functionality

[SWS_PduR_00362] [SWS_PduR_00365]
[SWS_PduR_00369] [SWS_PduR_00406]
[SWS_PduR_00767] [SWS_PduR_00769]

[SRS_GTW_06117]

The PDU Router provides an
interface (API) for usage by bus
interfaces, to use the PDU Router
functionality

[SWS_PduR_00362] [SWS_PduR_00365]
[SWS_PduR_00369] [SWS_PduR_00800]

[SRS_GTW_06119]

Confirmation in case of multicast

[SWS_PduR_00589]

[SRS_GTW_06120]

A predefined set of PDUs shall be
enabled and disabled if required

[SWS_PduR_00615] [SWS_PduR_00617]
[SWS_PduR_00647] [SWS_PduR_00648]
[SWS_PduR_00649] [SWS_PduR_00654]
[SWS_PduR_00663] [SWS_PduR_00709]
[SWS_PduR_00710] [SWS_PduR_00715]
[SWS_PduR_00716] [SWS_PduR_00726]
[SWS_PduR_00805] [SWS_PduR_00810]
[SWS_PduR_00891] [SWS_PduR_00892]
[SWS_PduR_00894] [SWS_PduR_00895]
[SWS_PduR_00896] [SWS_PduR_00897]
[SWS_PduR_00898] [SWS_PduR_00899]

[SRS_GTW_06121]

J1939 TP as an alternative to CAN
TP (ISO 15765-2) shall be supported

[SWS_PduR_00375] [SWS_PduR_00381]
[SWS_PduR_00507] [SWS_PduR_00512]
[SWS_PduR_00518] [SWS_PduR_00800]

[SRS_GTW_06122]

The PDU Router shall provide a
method that enables COM layer to
request cancellation of I-PDU
transmission

[SWS_PduR_00700] [SWS_PduR_00701]
[SWS_PduR_00710] [SWS_PduR_00721]
[SWS_PduR_00722] [SWS_PduR_00723]
[SWS_PduR_00724] [SWS_PduR_00726]
[SWS_PduR_00727] [SWS_PduR_00732]
[SWS_PduR_00736] [SWS_PduR_00769]

[SRS_GTW_06123]

The PDU Router shall provide an
interface (API) for usage by bus
network management, to use the
PDU Router functionality for partial
networking

[SWS_PduR_00362] [SWS_PduR_00365]
[SWS_PduR_00369]

[SRS_GTW_06124]

The TP transmit buffering strategy
shall be configured for each PDU to
be routed by the PDU Router

[SWS_PduR_00317] [SWS_PduR_00551]
[SWS_PduR_00637] [SWS_PduR_00663]
[SWS_PduR_00687] [SWS_PduR_00689]
[SWS_PduR_00696] [SWS_PduR_00697]
[SWS_PduR_00705] [SWS_PduR_00707]
[SWS_PduR_00708] [SWS_PduR_00740]
[SWS_PduR_00794] [SWS_PduR_00797]
[SWS_PduR_00798] [SWS_PduR_00799]
[SWS_PduR_00808] [SWS_PduR_00810]
[SWS_PduR_00811] [SWS_PduR_00813]
[SWS_PduR_00814] [SWS_PduR_00815]
[SWS_PduR_00818] [SWS_PduR_00826]
[SWS_PduR_00829] [SWS_PduR_00830]
[SWS_PduR_00831] [SWS_PduR_00832]
[SWS_PduR_00833] [SWS_PduR_00835]

[SRS_GTW_06125]

Multicast implementation in PAuR
shall behave such that the source
module does not need to know that
there is more than one destination
module configured

[SWS_PduR_00218] [SWS_PduR_00589]
[SWS_PduR_00701] [SWS_PduR_00765]
[SWS_PduR_00806] [SWS_PduR_00912]
[SWS_PduR_00913] [SWS_PduR_00914]
[SWS_PduR_00915]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_GTW_06126]

Routing of non-TP PDUs from more
than one source to one destination

using a FIFO shall be supported by
the PDU Router

[SWS_PduR_00825] [SWS_PduR_00901]
[SWS_PduR_00902] [SWS_PduR_00903]
[SWS_PduR_00904] [SWS_PduR_00905]

[SRS_GTW_06130]

The PDU Router provides an
interface (API) for usage by Dds, to
use the PDU Router functionality

[SWS_PduR_00362] [SWS_PduR_00365]
[SWS_PduR_00369] [SWS_PduR_00406]
[SWS_PduR_00767] [SWS_PduR_00769]

[SRS_GTW_06141]

L-SDU Router transparent routing

[SWS_PduR_91002]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional Specification

The PDU Router module is an I-PDU transfer unit placed above Communication Inter-
face and Transport Protocol modules (lower layer modules) and below Com and Dcm
(upper layer modules), see Figure 1.1.

Beside the PDU Router module there is the I-PDU Multiplexer (IlpduM) module [5] that
provides support for multiplexed I-PDUs. The IpduM has to be considered as an upper
layer module when it calls the PDU Router module to Transmit multiplexed |I-PDUs
or when it is called by the PDU Router module for the RxIndication or TxConfir-
mat ion of multiplexed I-PDUs or to provide data via TriggerTransmit. In case the
IpduM calls the PDU Router module to forward a TxConfirmation or an RxIndi-
cation to an upper layer (e.g. Com) or when it is called by the PDU Router module
to update an |I-PDU belonging to a multiplexed |I-PDU it has to be considered as lower
layer module.

From the ECU point of view, the PDU Router module can perform three different
classes of operations:

» PDU Reception to local module(s):

— receive |I-PDUs from one lower layer module and forward them to one or
more upper layer modules,

— receive |-PDUs from multiple lower layer modules and forward them to one
layer module (fan-in reception)

« PDU Transmission from local module(s): transmit I-PDUs to one or more lower
layer modules on request of one upper layer module,

+ PDU Gateway:

1. receive I-PDUs from a Communication Interface module and transmit the
I-PDUs immediately via the same or other Communication Interface mod-
ule(s)

2. receive |-PDUs from a Transport Protocol module and transmit the I-PDUs
via the same or other Transport Protocol module(s)

3. receive I-PDUs from multiple lower layer Communication Interface/Transport
Protocol modules and transmit the I-PDU to one lower layer communication
interface/transport protocol module (fan-in gatewaying).

The combination of PDU Reception and PDU Gateway is allowed. Example: The Com
module is receiving an |I-PDU in the same time that it is gatewayed to another lower
layer module. However the combination of PDU Reception and fan-in PDU Gatewaying
is not supported.

AUTSSAR

[SWS_PduR_00824]
Upstream requirements: SRS_GTW_06103, SRS_GTW 06104, SRS GTW_06105, SRS _GTW _
06106
[When the PduR reports a development, runtime, or transient error, it shall use the
moduleId of the caller module as instanceId when calling the Default Error Tracer
module. |

For example: When an error is detected during the PduR_FrIfRxIndication,
Det_ReportError(51 (Module id of PduR), 61 (Moduleld (used as Instanceld) of
Frif), Ox42, PDUR_E_PDU_INSTANCES_LOST) shall be called.

Note: The standardized module ID is found in the List of Basic Software Modules doc-
ument [3]. The parameter PduRBswModuleRef identifies the module used. With this
information the moduleId can be retrieved inthe BswModuleDescription.module
Id.

7.1 |-PDU handling

[SWS_PduR_00160]
Upstream requirements: SRS_GTW_06049

[The PDU Router module shall transfer an I-PDU without modification in a consistent
manner from the source module to the destination module(s). |

An |-PDU is identified by the I-PDU ID and/or the symbolic name (i.e. the Symbolic
NameValue of the container of the I-PDU [6, Specification of ECU Configuration]).
For post-build the I-PDU ID is required because the I-PDU must be identified after the
PDU Router module is compiled. If the PDU Router module is pre-compile (i.e. in
source code) the symbolic names may be used, see [6, Specification of ECU Configu-
ration].

Each BSW module that handles I-PDUs and provides an API for [-PDUs must contain
a list of I-PDU IDs [6]. This means that each called module will have a look-up table
identifying the I-PDU.

Example: The Com module calls PduR_ComTransmit (here the PDU Router module
configuration contains the I-PDU ID), the PDU Router module will call canIf_Trans-—
mit (here the Canlf module configuration contains the I-PDU ID), the Canlf will call
PduR_CanIfTxConfirmation (here the PDU Router module configuration contains
the I-PDU ID), and PDU Router module will call Com_TxConfirmation (herethe Com
module configuration contains the I-PDU ID). The example is illustrated in the following
Figure 7.1 (only I-PDU ID is shown as parameter):

AUTSSAR

COM
A
PduR_ComTransmit(11) Com_TxConfirmation(32)
A 4
PduR
y
Canlf_Transmit(22) PduR_CanlfTxConfirmation(42)
A 4
Canlf

Figure 7.1: I-PDU ID Example

[SWS_PduR_00161]
Upstream requirements: SRS_GTW_06003

[The PDU Router module shall identify a routing path uniquely by the combination of
source module I-PDU ID (located in the PDU Router configuration) and destination
I-PDU IDs (located in the called destination module configurations). |

[SWS_PduR_00766]
Upstream requirements: SRS_GTW_06003

[The PDU Router module shall convert the I-PDU ID to the destination module(s) for
both Transmit path and TxConfirmation/RxIndication path.]

Example: The Com module transmits an I-PDU to Canlf and Linlf. The PduR_Com
Transmit is called. The PDU Router module will convert the source I-PDU ID
(PDU Router module configuration) to one I-PDU ID for Linlf (Linlf module configu-
ration) and one I-PDU ID for Canlf (Canlf module configuration). The PduInfoType
value received from the Com module is copied to the Canlf and Linlf modules without
change.

Example: The Linlf will call PduR_LinIfTxConfirmation with an |I-PDU ID and,
dependent on the success of the transmission, with a result E_OK (successful trans-
mission) or E_NOT_OK (not successful transmission). Then the PDU Router module
will convert this I-PDU ID and forward the call to Com using Com_TxConfirmation
with the converted |I-PDU ID and the received result.

AUTSSAR

[SWS_PduR_00162]
Upstream requirements: SRS_GTW_06003

[The PDU Router module shall only route I-PDUs according to the routing paths given
in the configuration. |

[SWS_PduR_00828]
Upstream requirements: SRS_GTW_06104, SRS_GTW_06105

[PduR generator (validation) shall deny configurations where |I-PDUs with different
MetaDataTypes are connected by a routing path. |

[SWS PduR_CONSTR _00920]
Status: DRAFT

[The PDU Router shall reject the configuration if an I-PDU owned by the Dds module
is routed to/from a module that is not SoAd or Com (see PduRRoutingPath)]

7.1.1 Buffering concept

PduR shall be able to buffer I-PDUs. A routing path is expected to buffer I-PDUs when
its related PduRQueueDepth is set. As of today, |-PDU buffering is applicable only
for gatewayed |-PDUs and for fan-in reception from multiple comunication interface
modules to a local module. Buffering is mandatory in the following cases:

+ |IF gateway destinations having trigger transmit data provision,
» TP gateways.

In the following chapter the term "FIFO" or "FIFO queue" is used as a synomym for the
I-PDU buffer of the PduR. The following subsections explains the type of buffers, their
configuration possibilities and relation to routhing paths.

7.1.1.1 Type of buffers

Buffers can be defined by PduRBuffer container. There are two types of buffers
from routhing paths’ assingment point of view. PduRBuf fer which are not referred by
any PduRRoutingPath are called global buffers, while the ones which are referred
by at least one PduRRoutingPath are the dedicated buffers. Global buffers can be
occupied by any PduRRout ingPaths, while dedicated buffers can be occupied only
by the PduRRout ingPaths by which they are referred to via PduRDestBufferRef.

The main reason for having dedicated buffers is that functional diagnostic requests and
especially OBD request have a very high priority and must not be delayed by buffer
allocation strategies that occur because of the lack of memory.

AUTSSAR

[SWS_PduR_00797]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[When an |-PDU needs to get buffered, and the required size is not larger than the
configured PduRPduMaxLength of at least one of the free dedicated buffers (PdurR-
Buffer referenced by PduRDestBufferRef), the PduR shall use that dedicated
buffer with respect to PduRQueueDepth. |

[SWS_PduR_00798]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[When an I-PDU needs to get buffered, and the required size is larger than the config-
ured PduRPduMaxLength of all free dedicated buffers (PdurRBuf fer referenced by
PduRDestBufferRef), the PduR shall dynamically allocate a suitably sized global
buffer (PduRBuf fer not referenced by any PduRDestBuf ferRefs) with respect of
PduRQueueDepth. |

7.1.1.2 Buffering strategies

The type of buffering strategy is deteremined by the value of PduRQueueDepth con-
figuration parameter. This parameter specifies the maximum number of PAduRBuf fers
a routing path can occupy simoultanously: PduRBuf fers can be taken from the ded-
icated buffers and form the global buffers (for buffer types see 7.1.1.1 Section). Since
a PduRBuffer can hold zero or one I-PDU, PduRQueueDepth implicitly specifies the
number of I-PDUs a routing path can buffer.

If the value of PduRQueueDepth is greater than 1, FIFO queue buffering is available.
The FIFO has states, and these states may change when various PduR APIs are
being called from different contexes. E.g., a PduR_<SrcLo>RxIndication call could
be interrupted by a PduR_<DstLo>TxConfirmation call. Thus, there is a need to
protect those concurrent calls.

[SWS_PduR_00785]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[If PduRQueueDepth is configured to a value greater than 1, the I-PDU buffer shall
have a first in - first out (FIFO) behavior. |
[SWS_PduR_00787]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[In case of FIFO buffering, when a new |-PDU needs to get buffered, and the FIFO
queue is not empty then the new I-PDU shall be copied as latest entry. |

AUTSSAR

[SWS_PduR_00255]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[If the FIFO is full and a new PduR_<SrcLo>RxIndication is called, the FIFO shall
be flushed |

Note: That means in case of PduRQueueDepth is configured to 1 and the PduR-
DestPduDataProvision is configured to PDUR_TRIGGERTRANSMIT the new I-Pdu
will be always copied within the next PAduR_<SrcLo>TriggerTransmit call. Thatis
a "last-is-best buffering" behaviour.

[SWS_PduR_00307]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[In case of multicast routing the PduRQueueDepth and the PduRDestBufferRef

can be individually configured. This means buffers of multicast destinations are inde-
pendent from each other. |

[SWS_PduR_00746]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[In case the I-PDU is buffered in the PDU Router module: The PDU Router module
shall copy the data of the [-PDU up to smallest of the following values:

* the received data length (PduLength of received I-PDU)

« the configured length of the destination I-PDU. In this case the rest of the received
[-PDU shall be dropped.

]

Note: [SWS_PduR_00746] gives the possibility to avoid buffer over run when PduR__
<DstLo>TriggerTransmit is called. The dedicated buffer length can not be greater
than the length of the destination I-PDU.

7.1.1.3 Buffer sharing

On configuration level, it is possible for a PduRBuffer to be referred by multiple

PduRDestBufferRefs. Such PduRBuffer can be occupied by any of the referrer

PduRRoutingPaths as dedicated buffer, but during runtime, at a specific moment, it
can be occupied by only one PduRRout ingPath.

7.1.1.4 Buffering in case of fan-in and multicast routings

In case of N:1 (fan-in) and 1:N (multicast) routing, PduRQueueingStrategy parame-
ter determines whether Routing Paths referring to the same source or destination use
a shared common queue, or whether each source/destination has its own dedicated
queue with the following rules:

AUTSSAR

* Fan-in: all PduRRout ingPaths shall have their PduRQueueingStrategy set
to PDUR_COMMON_QUEUE.

* Multicast: PduRQueueingStrategy can either be PDUR_COMMON_QUEUE or
PDUR_DEDICATED_QUEUE.

[SWS_PduR_CONSTR_00871] PduRQueueingStrategy setting constraint for
fan-in/fan-out PduRRout ingPaths that share the same source or destination. [In
case of a fan-in or fan-out operation, all PduRRout ingPaths that refer to the same
source or destination shall have the same PduRQueueingStrategy setting. |

[SWS_PduR_CONSTR_00872] Constraint for setting PduRQueueingStrategy
for PduRRoutingPath destinations in a fan-in operation. [In case of a fan-in
operation, all PduRRoutingPaths that refer to the same destination shall have the
PduRQueueingStrategy set to PDUR_COMMON_QUEUE. |

[SWS_PduR_CONSTR_00873] PduRQueueingStrategy constraint for PduR-
DestBufferRef setting. [In case of fan-in or fan-out operation, where PduRQueue-
ingStrategy is set to PDUR_COMMON_QUEUE, all PduRRoutingPaths that refer to
the same source or destination shall have the same PduRQueueDepth and PduR-
DestBufferRef setting.]

7.1.2 |-PDU Reception to upper layer module(s)

The receive operation of the PDU Router module is always finalized by an RxIndica-
tion (PduR_<User:Lo>RxIndication Or PduR_<User:LoTp>RxIndication)
from a lower layer module (Communication Interface or Transport Protocol module).
The RxIndication function is originated from the lower layer either in the context of
a cyclic function after polling a communication driver or in the context of an interrupt.

7.1.2.1 Communication Interface

The source Communication Interface module indicates a received I-PDU by calling
PduR_<User:Lo>RxIndication. The [-PDU may have multiple local destination
modules configured by the routing path.

[SWS_PduR_00164]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06030

[The PDU Router module shall provide 1:n routing for an I-PDU received from a Com-
munication Interface module and routed to one or more upper layer module(s). |

Example: An I-PDU is received on Canlf and forwarded to Com.

Note: An |I-PDU may be received by one or more upper layer modules in the same time
as gatewayed to one or more Communication Interface destinations, see 7.1.4.

AUTSSAR

[SWS_PduR_00621]
Upstream requirements: SRS_GTW_06012

[When the PduR_<User:Lo>RxIndication is called the PDU Router module shall
call <Up>_RxIndication for each destination upper layer module. |

[SWS_PduR_00744]
Upstream requirements: SRS_GTW_06012

[If an I-PDU received by a local module is directly forwarded, the PDU Router shall not
check the length of the I-PDU. |

Since the PDU Router module will not buffer this I-PDU it does not have to reject I-PDU
that are longer/shorter than configured.

[SWS_PduR_00901]
Upstream requirements: SRS_GTW_06126

[The PDU Router module shall provide n:1 routing for I-PDUs received from multiple
communication interface modules to one upper layer module. |

[SWS_PduR_00902]
Upstream requirements: SRS_GTW_06126

[The PDU Router module shall optionally support a reception FIFO in case of n:1
routing from multiple communication interface modules to one upper layer module. |

Note: If the user cannot rule out the possibility of concurrent requests for an n:1 routing
point, a FIFO is required to serialize the concurrent reception requests.

[SWS_PduR_00903]
Upstream requirements: SRS_GTW_06126, SRS_BSW_00369

[If PAduR_<User:Lo>RxIndication is called for a n:1 routing point without a FIFO
configured and the <Up>_RxIndication call of the most recent request has not re-
turned, the PDU Router shall return immediately without calling <Up>_RxIndication
and report PDUR_E_PDU_INSTANCES_LOST to the DET module. |

[SWS_PduR_00904]
Upstream requirements: SRS_GTW_06126
[If PAuR_<User:Lo>RxIndication is called for a n:1 routing point with a FIFO con-

figured and the <Up>_RxIndication call of the most recent request has not returned,
the PDU Router shall buffer the I-PDU. |

[SWS_PduR_00905]
Upstream requirements: SRS_GTW_06126
[After <DstUp>_RxIndication, called with an I-PDU from the FIFO buffer returns,

the I-PDU shall be removed from the FIFO and the next FIFO entry shall be provided
to the upper layer, if available. |

AUTSSAR

7.1.2.2 Transport Protocol

The standard use case for reception of I-PDU through Transport Protocol is only one
upper layer module configured per routing path.

In case of multiple Software Clusters, this I-PDU may also be received by several upper
layer modules.

Example: A functional addressed request is received from the CanTp module (residing
in the Host Software Cluster) and routed to two Dcm module instances (residingin
different Application Software Clusters on the same partition as the Host Software
Cluster).

In case source and destination reside on different partitions the inter-partition routing
principles described in section 7.11 need to be taken in account.

7.1.2.2.1 1:1 routing for an I-PDU received from a source transport protocol
module

In case of a Transport Protocol module the PDU Router module is first notified with a
start of reception notification when receiving a first frame (FF) or Single Frame (SF).
This call is be forwarded to the related upper layer module by calling <Up>_StartOf
Reception. The payload of each segment (N-PDU) is to be copied in the upper layer
destination module within the subsequent <Up>_CopyRxData calls. After reception
of the last N-PDU the Transport Protocol module will indicate the PDU Router module
that the complete I-PDU has been received and the PDU Router module will forward
this indication to the related upper layer module by calling <Up>_TpRxIndication.

[SWS_PduR_00673]
Upstream requirements: SRS_GTW_06026

[The PDU Router module shall provide 1:1 routing for an I-PDU received from a source
Transport Protocol module and routed to one upper layer destination module. |

Example: A functional addressed request (in a SF) is received from the CanTp module
and routed to the Dcm module.

[SWS_PduR_00549]
Upstream requirements: SRS_GTW_06026

[When a source Transport Protocol module indicates the start of a reception of a
PDU that has only upper layer destination using PduR_<User:LoTp>StartOfRe—
ception, the PDU Router module shall forward the request to the upper layer desti-
nation module by calling <Up>_StartOfReception.]

AUTSSAR

[SWS_PduR_00623]
Upstream requirements: SRS_GTW_06104

[The PDU Router shall forward the return value of the <Up>_StartOfReception to
the source Transport Protocol module. |

[SWS_PduR_00428]
Upstream requirements: SRS_GTW_06026

[When a source Transport Protocol module requests the PDU Router module to copy
the received data using PduR_<User:LoTp>CopyRxData, the PDU Router module
shall forward the request to the upper layer destination module by calling <Up>_Copy
RxData.

[SWS_PduR_00429]
Upstream requirements: SRS_GTW_06026

[When a source Transport Protocol module calls PduR_<User:LoTp>RxIndica-
tion indicating reception of the complete |-PDU, the PDU Router module shall forward
the indication to the upper layer destination module by calling <Up>_TpRxIndica-
tion.|

[SWS_PduR_00207]
Upstream requirements: SRS_GTW_06104

[If the source Transport Protocol module reports an error using PduR_<User : LoTp>
RxIndication, the PDU Router module shall not perform any error handling other
than forwarding the RxIndication to the upper layer module. |

7.1.2.2.2 1:nforwarding for an I-PDU received from a source transport protocol
module

[SWS_PduR_00916]
Status: DRAFT
Upstream requirements: SRS_GTW_06026

[The PDU Router module shall provide 1:n forwarding for an IPDU received from a
source Transport Protocol module and routed to several upper layer destination mod-
ules. |

If the I-PDU is received by more than one local upper layer modules, the forwarding
to these upper layers is handled similar to direct Transport Protocol gatewaying. The
PduR buffers 1:n forwarding PDUs in dedicated buffers (PduRBuf fers) configured via
PduRDestBufferRef and informs the upper layers in the context of RxIndication.

AUTSSAR

[SWS_PduR_00917]
Status: DRAFT
Upstream requirements: SRS_GTW_06026

[When a successful RxIndication is received by PduR from the lower
layer, the module shall initiate a reception session for each configured up-
per layer destination: <UpTp>_StartOfReception, <UpTp>_CopyRxData, and
<UpTp>_RxIndication will be called in this order. |

[SWS_PduR_00912]

Status: DRAFT
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105, SRS_GTW_
06125

[In case of several local destinations, the PduR shall perform the error handling indi-
vidually for each destination. |

The other destinations should not be affected by the error of one destination upper
layer module.

[SWS_PduR_00913]

Status: DRAFT
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105, SRS_GTW_
06125

[When an error is returned by <Provider:UpTp>_StartOfReception for a mul-
ticast with several local destinations, the PduR shall stop the respective upper layer
reception without further interaction with the upper layer. |

[SWS_PduR_00914]

Status: DRAFT
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105, SRS_GTW_
06125

[When <Provider:UpTp>StartOfReception returns BUFREQ_OK, but the avail-
able buffer is too small to receive the whole message, the PduR shall call
<Provider:UpTp>_TpRxIndication with result = E_NOT_OK for the respec-
tive upper layer module. |

[SWS_PduR_00915]

Status: DRAFT
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105, SRS_GTW_
06125

[When <Provider:UpTp>_CopyRxData returns an error, the PduR shall call
<Provider:UpTp>_TpRxIndication with result = E_NOT_OK for the respec-
tive upper layer module. |

AUTSSAR

7.1.2.2.3 Handling I-PDUs with unknown length

The PduR is able to handle unknown length I-PDUs (i.e. streaming type of data) using
the TP API. The definition of unknown length is indicated by TpSdulLength=0.

[SWS_PduR_00821]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029

[In a local receive situation, when PduR_<User:LoTp>StartOfReception is called
with TpsduLength=0, PduR shall call <Up>_StartOfReception with TpSdu-
Length=0.]

7.1.3 |-PDU Transmission from upper layer module(s)

The transmit operations of the lower layer destination modules are always asyn-
chronous. This means that a transmission service request returns immediately after
the I-PDU has been passed by the PDU Router module to the lower layer destina-
tion(s). If the PDU Router module is notified by lower layer destination modules via
PduR_<User:Lo>TxConfirmation (Communication Interface) or PduR_<User:—
LoTp>TxConfirmation (Transport Protocol) after successful or failed transmission
of the I-PDU, the PDU Router module will forward this confirmation to the upper layer
module via <Up>_TxConfirmation (Communication Interface) or <Up>_TpTxCon-—
firmation (Transport Protocol).

The transmit operation of the PDU Router module is triggered by a PDU Transmit
request from an upper layer source module and the PDU Router forwards the request
to lower layer destination(s).

[SWS_PduR_00629]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06026

[The I-PDU shall not be buffered in the PDU Router module in case of PDU transmis-
sion from an upper layer source module. |

7.1.3.1 Multicast

The multicast feature is separated to an own section since there are issues using this
feature as described in Section 4.1.1.

Further requirements that are directly handled by the PDU Router module:

[SWS_PduR_00218]
Upstream requirements: SRS_GTW_06125
[If the provided I-PDU ID represents a group of PDUs (multicast transmit request)

and at least one of the forwarded transmit requests returns successfully, the function
PduR_<User:Up>Transmit shall return E_OK. |

AUTSSAR

Note that Communication Interfaces returning with £_ox will transmit their data either
directly or via trigger transmit.

The other Transport Protocol modules may return E_NOT_OK, and therefore these
modules will not call the PduR_<User:LoTp>CopyTxData. Since the upper layer
source module has been informed that at least one transmission was successful, at
least one Transport Protocol module will call PduR_<User:LoTp>CopyTxData.

[SWS_PduR_00633]
Upstream requirements: SRS_GTW_06029, SRS_GTW_06030

[If there are more than one lower layer destination modules in a transmission request
(1:n, n>1), all of these modules must either be Communication Interface modules or
Transport Protocol modules. Not a mix of them. |

Example: Above requirement means basically that the Com module cannot request a
transmission to CanTp and Canlf modules at the same time via PduR_ComTransmit.

[SWS_PduR_00589]
Upstream requirements: SRS_GTW_06125, SRS_GTW_06119

[In case of a multicast (1:n, n>1) Communication Interface transmission, the
PDU Router shall call the transmit confirmation API of the upper layer module when
the last transmit confirmation from a Communication Interface module which supports
transmit confirmation has been received. The result parameter shall be £E_ox if at least
one PduR_<User:Lo>TxConfirmation reported E_OK. Otherwise E_NOT_OX. |

Note: The above requirement even works if not all destinations provide TxConfirma—
tions.

Implementation note: When the source module requests a transmission and the PduR
will make a multicast (1:n, n>1), all the I-PDUs in the request and the multicast will
have different I-PDU IDs. Therefore the PduR must remember the I-PDU ID from the
transmission request so the transmission can be confirmed correctly.

7.1.3.2 Communication Interface

There are three ways that I-PDUs can be transmitted on Communication Interface:

1. Direct data provision - where the upper layer module is calling the PduR_-
<User:Up>Transmit function, the PDU Router module forwards the call to
<Lo>_Transmit and the data is copied by the lower Communication Interface
module in the call.

2. Direct data provision - where the lower Communication Interface module re-
quests transmission of an [-PDU by using the PduR_<User:Lo>Trigger—
Transmit, and PDU Router module forwards the call to <Up>_TriggerTrans—
mit and the data is copied to the destination’s buffer by the upper layer module.

AUTSSAR

3. Where the upper layer module calls the PduR_<User:Up>Transmit function,
the PDU Router module forwards the call to <Lo>_Transmit and the data is
not copied by the lower module (Communication Interface module). The data will
later be requested by the lower layer using PduR_<User:Lo>TriggerTrans—
mit.

The confirmation of the transmission of the I-PDU is the same for the direct and trigger
transmit data provision:

[SWS_PduR_00627]
Upstream requirements: SRS_GTW_06012

[When the Communication Interface module calls PduR_<User:Lo>TxConfirma-
tion the PDU Router shall call <Up>_TxConfirmation in the upper layer module
and forward the transmission result from the lower to the upper layer module. |

[SWS_PduR_00745]
Upstream requirements: SRS_GTW_06012
[If the I-PDU is transmitted by an upper layer module the PDU Router module shall not
check the length of the I-PDU. |
[SWS_PduR_00625]
Upstream requirements: SRS_GTW_06026

[When upper layer source module calls PduR_<User: Up>Transmit the PDU Router
shall call <Lo>_Transmit for each Communication Interface destination module. |
[SWS_PduR_00626]

Upstream requirements: SRS_GTW_06012, SRS_GTW_06104

[If singlecast (1:1) the return value of the <Lo>_Transmit call shall be forwarded to
the upper layer source module. |

7.1.3.2.1 Trigger transmit data provision
The upper layer module must be informed whether it has to reset the update-bits.
[SWS_PduR_00430]

Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[The PDU Router module shall forward a PduR_<User:Lo>TriggerTransmit re-
quest by the Communication Interface lower layer module to the upper layer module by
calling <Up>_TriggerTransmit.]

AUTSSAR

[SWS_PduR_00661]
Upstream requirements: SRS_GTW_06104

[The PDU Router module shall copy the return value from the <Up>_TriggerTrans-
mit to the lower layer module. |

7.1.3.2.2 Error handling

For errors occurred using singlecast or multicast over Communication Interface mod-
ules, no specific error handling is done. Errors in return values are forwarded to the
upper layer source module.

7.1.3.3 Transport Protocol

Transmitting I-PDU using Transport Protocol has two flavors, singlecast and multicast.
A singlecast (1:1) transmission consists of one upper layer source module and one
lower layer Transport Protocol destination module. A multicast (1:n, n>1) transmission
consists of more than one lower layer Transport Protocol destination module. The
PDU Router module will not check if the transmission request contains a single N-PDU
(SF) or multiple N-PDU (FF, CF, . ..).

Initiation of transmission of [-PDU is made by a PduR_<User:Up>Transmit request
by an upper layer source module. The PduR will forward the request to one or more
lower layer Transport Protocol destination modules using <Lo>_Transmit according
to the routing paths. Note that the <L.o>_Transmit may or may not contain data.

The destination module(s) will request data by calling the PduR_<User: LoTp>Copy-
TxData. Retransmission (if supported by the Transport Protocol) of data is made
by the RetryInfoType parameter. Finalizing the transmission the destination mod-
ule(s) calls the PduR_<User:LoTp>TxConfirmation, which is forwarded to the up-
per layer source module.

The multicast TP transmission is described in chapter 7.1.3.3.1.

[SWS_PduR_00634]
Upstream requirements: SRS_GTW_06026

[When an upper layer module calls the PduR_<User:Up>Transmit the PDU Router
module shall call <LoTp>_Transmit for each Transport Protocol destination module. |

[SWS_PduR_00299]
Upstream requirements: SRS_GTW_06026
[When a Transport Protocol destination module calls PduR_<User:LoTp>CopyTx-

Data the PDU Router module shall call <Up>_CopyTxData in the upper layer source
module. |

AUTSSAR

[SWS_PduR_00676]
Upstream requirements: SRS_GTW_06104

[The return value from the <Up>_CopyTxData shall be forwarded to the calling lower
layer Transport Protocol destination module. |

[SWS_PduR_00301]
Upstream requirements: SRS_GTW_06026

[In case of singlecast the PDU Router module shall forward the confirmation PduRr_
<User:LoTp>TxConfirmation from the lower layer Transport Protocol destination
module to upper layer source module using <Up>_TpTxConfirmation.|

[SWS_PduR_00432]
Upstream requirements: SRS_GTW_06104

[In case of singlecast and after calling <Lo>_Transmit then the PDU Router module
shall return with the same return value to the calling PduR_<User :Up>Transmit from
upper layer source module. |

7.1.3.3.1 Multicast transmission

This subsection contains specific requirements for the multicast transmission of I-PDU
using Transport Protocol modules.

Since the 1:n, n>1 routing is made in the PDU Router module the PDU Router module
must request the same data several times from the upper layer source module. Also
the confirmation of the multicast must be handled specifically.

As the upper layer shall copy the same data several times, the PDU Router will use the
RetryInfoPtr [7] in order to query the same data several times. The RetryInfo
Ptr contains a state type called TpDataState .

Therefore the transport protocol destinations do not set the TpbataState to TP_
DATARETRY.

[SWS_PduR_00871]
Upstream requirements: SRS_GTW_06029

[When PduR_<User:LoTp>CopyTxData is called with a TpDataState set to
TP_DATARETRY for a multicast TP transmission type routing path, PduR shall return
E_NOT_OKX.]

The multicast transmission of N-PDUs is performed in a lock-step mode, where the
slowest destination dictates the rate of transmission. The use-case behind the multi-
cast multiframe transmission is the broadcast of J1939Tp BAM messages (messages
like DM1 or CommandedAddress have more than 8 Bytes and need to be broadcast to
several destinations).

AUTSSAR

[SWS_PduR_00872]
Upstream requirements: SRS_GTW_06029

[When PduR_<User:LoTp>CopyTxDatais called for a multicast TP transmission
session for a destination which previously had already fetched more data than the up-
per layer buffer’s read index currently points to, PduR shall return BUFREQ_E_BUSY. |

Implementation hint: In this case for each destination PduR must remember how many
bytes have been transmitted so far and also shall keep tracking.

[SWS_PduR_00631]
Upstream requirements: SRS_GTW_06029

[For a new multicast TP transmission session, the request of PduR_<User:LoTp>
CopyTxData of the first destination shall be forwarded with TpDataState setto
TP_CONFPENDING.]

[SWS_PduR_00632]
Upstream requirements: SRS_GTW_06029

[For all subsequential calls of PduR_<User:LoTp>CopyTxData for the same mul-
ticast TP transmission session, PduR shall overwrite TpbDataState to TP_
DATARETRY and adjust Tx TpData Cnt to request data to be transmitted from the
upper layer source buffer from the previous transmission point related to that destina-
tion. |

Note: Tx TpData Cnt is an "Offset from the current position." see Specification of
Communication Stack Types [7].

[SWS_PduR_00812]
Upstream requirements: SRS_GTW_06029

[After all Transport Protocols have received their data the PDU Router module may
confirm the data to the upper layer module. |

[SWS_PduR_00765]
Upstream requirements: SRS_GTW_06029, SRS_GTW_06125

[In case of multicast transmission, the PDU Router module shall call the upper layer
module using <Up>_TpTxConfirmation after receiving the last PduR_<User: -
LoTp>TxConfirmation from the lower layer Transport Protocol modules. The re-
sult parameter shall be E_OX if at least one PduR_<User : LoTp>TxConfirmation
reported E_OK. |

AUTSSAR

7.1.3.3.2 Error handling

The PDU Router module will not take specific actions on errors occurred, the errors
will be forwarded to the upper layer source module via return value. Appropriate error
handling is in the responsibility of the upper layer module.

7.1.3.3.3 Handling I-PDUs with unknown length

The PduR is able to handlle unknown length I-PDUs (i.e. streaming type of data) using
the TP API. The definition of unknown length is indicated by TpSduLength=0.

[SWS_PduR_00822]
Upstream requirements: SRS_GTW_06029

[In a local transmit situation, when PduR_<User:Up>Transmit is called with Pdu
InfoType.SduLength=0 and I-PDU is routed to a TP-module, the PduR shall call
<LoTp>_Transmit with PduInfoType.SduLength=0 to all destination TP mod-
ules. |

7.1.4 |-PDU Gatewaying

The PDU Router module supports gatewaying of I-PDUs from source bus(es) to des-
tination bus(es), in the following manner: 1:1, 1:n, n:1, but not n:m. In addition, it
is possible to forward gatewayed I-PDUs to upper layer modules. Moreover, multiple
sources can be configured and enabled at the same time with one destination set, to
realize a fan-in gateway. The difference from a transmission and reception from/to a
local module is that the PDU Router module must be a receiver and transmitter at the
same time, and in some cases also provides buffering for the I-PDUs.

The gateway requirements are deliberately separated to allow an efficient implemen-
tation of the PDU Router module in case gatewaying is not needed. In case the
PDU Router module allows gatewaying of I-PDUs, these requirements are seen as
additional and not replacing previous requirements.

Following list gives an overview of the features of the I-PDU gateway:

» I-PDUs may be gatewayed from one or multiple sources of Communication In-
terface modules to one (1:1 or n:1) destination. Or from a single source of a
Communication Interface module to multiple destinations of Communication In-
terface module(s) (1:n I-PDU gateway).

— PDU Router module may set the type of buffering for each destination inde-
pendently (i.e., FIFO if more than one I-PDU).

— An |-PDU may be received by destinations of upper layer module(s) at the
same time as gatewayed to n destinations of Communication Interface.

AUTSSAR

+ |-PDUs transported using TP may be gatewayed from a single or multiple sources
to one destination of TP module, or from a single source to more destinations of
TP module(s), with the following scope:

— Both Single Frames and Multi Frames can be gatewayed to more than one
destination of TP module(s) and in the meantime forwarded to one or more
destinations of local module(s) (e.g., Dcm).

— Multi Frames may be gatewayed "on-the-fly gatewaying" to one destina-
tion, meaning that complete |I-PDU does not need to be received before
starting transmission on the destination TP module

— TP gateway I-PDUs must be buffered, and the buffer depth must be fonfig-
urable. Last is best behaviour of Single Frames are not appicable.

This means the PDU Router module shall forward an I-PDU received from one lower
layer module (source network) to lower layer modules (destination networks) identified
by the provided I-PDU ID.

Note that in this section "src" and "Dst" are used for the configurable APls. This is
just to be clear which call belongs to the source module and destination module.
[SWS_PduR_00638]

Upstream requirements: SRS_GTW_06012, SRS_GTW_06026
[An |-PDU may only be gatewayed either between Communication Interface modules
or between Transport Protocol modules, not a mix of them. |
Example: An I-PDU received from Frlf may not be gatewayed to CanTp.
[SWS_PduR_00825]

Upstream requirements: SRS_GTW_06126
[It shall be possible in a gatewaying situation, to gateway I-PDUs in a n:1 fashion. |
[SWS_PduR_00826]

Upstream requirements: SRS_GTW_06026, SRS_GTW_06124
[If using n:1 gatewaying the PduR shall ensure that the sequence of incoming |I-PDUs
is preserved on the destination. |
Note: Combined forwarding and gatewaying in n:1 fashion is not supported.
[SWS_PduR_00829]

Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[In a gateway situation, Meta Data is contained and buffering is needed, the PduR
shall in addition to the I-PDU also buffer the Meta Data. |

AUTSSAR

7.1.4.1 Communication interface

An |-PDU can be configured to be received on one Communication Interface module
and gatewayed to n destinations of Communication Interface modules including local
module(s), i.e. 1:n gatewaying; or received on one or more communication interface
modules, and be gatewayed to one lower layer communication interface module (i.e
n:1 gatewaying). Parallel source requests shall be serialized using a FIFO: all I-PDUs
shall be put into the same common FIFO in an ordered way. For gatewaying it is also
possible to configure a buffer for each lower layer Communication Interface destination
of module (not local module however).

General requirements applicable for Communication Interface type gateways are listed
below:

[SWS_PduR_00436]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06030

[The PDU Router module shall support routing of I-PDUs between a source Commu-
nication Interface module and one or more destinations of Communication Interface
destination module(s) (1:n gatewaying). |

[SWS_PduR_00437]
Upstream requirements: SRS_GTW_06012

[The PDU Router module shall support routing of I-PDUs between Communica-
tion Interface modules with immediate transmission (without rate generation by
PDU Router). |

Routing of I-PDUs between Communication Interface modules with different period or
rate (rate conversion) is not supported, this can be done via the Com module using
signal gateway. In this case the I-PDU has to be routed to the Com module.

There are two flavors of gatewaying an I-PDU depending on the the Communication
Interface destination module. The used flavor is controlled by the configuration:

* [SWS_PduR_00303]
Upstream requirements: SRS_GTW_06032

[Direct data provision: The PduRDestPduDataProvision of the destination
[-PDU is configured to PDUR_DIRECT. When <DstLo>_Transmit is called the
<DstLo> module copies the data and the PDU Router does not buffer the trans-
mitted I-PDU any longer. |

* [SWS_PduR_00306]
Upstream requirements: SRS_GTW_06032
[Trigger transmit data provision: The PduRDestPduDataProvision of

the destination I-PDU is configured to PDUR_TRIGGERTRANSMIT. When <Dst
Lo>_Transmit is called the <DstLo> module does not copy the data and

AUTSSAR

the PDU Router module shall buffer the I-PDU and wait for the PduR_<Dst
Lo>TriggerTransmit call from the <DstLo> module. |

7.1.4.1.1 Buffered gatewaying

Please note that, for Communication Interface gateway destinations having PDUR_ -
DIRECT type PduRDestPduDataProvision, buffering is not mandatory. See 7.1.1.2
Section.

It is possible that an I-PDU that will be gatewayed will have different lengths. Therefore:

[SWS_PduR_00784]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[If direct data provision is used with a FIFO: when the I-PDU is transmitted from the

PduR buffer to the destination module, the PduR shall pass the number of bytes which
was copied to the buffer as sduLength. |

[SWS_PduR_00793]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[If direct data provision is used with a FIFO: the PduR shall enqueue new data in the

FIFO when PduR_<SrclLo>RxIndication is called and the last transmission of the
same PDU has not yet been confirmed via PduR_<DstLo>TxConfirmation.]

[SWS_PduR_00665]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[If direct data provision is used with a FIFO: when PduR_<SrcLo>RxIndication

is called and the FIFO queue is empty and no confirmation is outstanding for the same
PDU, <DstLo>_Transmit shall be called directly. The FIFO stays empty. |

[SWS_PduR_00667]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[If direct data provision is used with a FIFO: when PduR_<DstLo>TxConfirma-

tion is called and the FIFO queue is not empty <DstLo>_Transmit shall be called
with the oldest I-PDU of the FIFO. The transmitted I-PDU shall be removed afterwards. |

Note: If PDUR_COMMON_QUEUE is used, the <DstLo>_Transmit cannot be called till
all the active destinations fetched the current PDU instance from the FIFO.

[SWS_PduR_00786]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032
[If trigger transmit data provision is used with a FIFO: when PduR_<SrcLo>Rx

Indication is called and the FIFO queue is empty the received I-PDU shall be en-
queued into the FIFO and <DstLo>_Transmit shall be called.

AUTSSAR

[SWS_PduR_00662]
Upstream requirements: SRS_GTW_06032, SRS_GTW_06105

[If trigger transmit data provision is used with a FIFO: when the destination comuni-
cation interface module is requesting the I-PDU buffer using PduR_<DstLo>Trigger
Transmit and the FIFO is empty the return value E_NOT_OK shall be used. |

Note that for a gateway of an I-PDU the PduR_<DstLo>TxConfirmation is not in-
teresting (except for FIFO of a direct data provision |-PDU).

[SWS_PduR_00640]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032, SRS_GTW_06105

[If the Communication Interface destination module confirms the transmission of the
[-PDU (successful or failed) using PduR_<DstLo>TxConfirmation and destination
is not a direct data provision PDU with FIFO buffer, the PDU Router module shall not
do anything. |

[SWS_PduR_00819]
Upstream requirements: SRS_GTW_06032, SRS_GTW_06105

[If trigger transmit data provision is used with a FIFO: when PduR_<DstLo>Trig-
gerTransmit is called to copy an |I-PDU from the PduR buffer to the destination
module, the PduR shall check the lower layer’s buffer size provided as SduLength. In
case the buffer is too small for the stored PDU data, the PduR shall return E_NOT_0K
and not process the TriggerTransmit call any further. |

Note: Not processing the TriggerTransmit call as defined in [SWS_PduR_00819]
does mean that the PDU shall not be removed from the PduR buffer.

[SWS_PduR_00666]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[If trigger transmit data provision is used with a FIFO: when PduR_<DstLo>Trig-
gerTransmit is called and will return E_OK according to [SWS_PduR_00819], the
oldest FIFO entry shall be copied and then removed. If afterwards the FIFO queue is
not empty <DstLo>_Transmit shall be called with the oldest I-PDU of the FIFO. |

Note: In case of the destination module is Frlf the FrlfCounterLimit of the PDU needs
to be configured > 1 because the new transmit will be called before the counter is
decremented. For Linlf there is no such a constraint, however FIFO queue routing to
sporadic frames is not supported.

Note: If PDUR_COMMON_QUEUE is used, the oldest FIFO element cannot be re-
moved till all the active destinations fetched that PDU instance. In addition the
<DstLo>_Transmit call as well shall be postponed.

AUTSSAR

[SWS_PduR_00809]
Upstream requirements: SRS_GTW_06032

[If trigger transmit data provision is used with last-is-best buffering (
PduRQueueDepth set to 1): the PDU Router shall buffer the latest I-PDU. |

The reason why it must be stored for trigger transmit data provision is that the Com-
munication Interface destination may transmit the I-PDU according to a schedule. Then
the Communication Interface will call the PduR_<DstLo>TriggerTransmit without
a preceding <DstLo>_Transmit call.

7.1.4.1.2 Immediate gatewaying

Immediate gatewaying means that an I-PDU must be gatewayed without any buffering
mechanism of PduR. This can be realized only by Communication Interface gateways
having destination direct data provision type.

It is possible that an I-PDU that will be gatewayed will have different lengths. Therefore:

[SWS_PduR_00783]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[In case the I-PDU is gatewayed without buffering in the PDU Router, the PDU Router
shall forward the length of the I-PDU up to the smallest of the following values:

* either the received data length (PduLength of received |-PDU)

* or the configured data length of the destination I-PDU (PduLength of PduR-
DestPdu

7.1.4.2 Transport Protocol

An |-PDU can be configured to be received on one transport protocol module and
gatewayed to n lower layer transport protocol modules, i.e. 1:n gatewaying; or received
on one or n transport protocol module, and gatewayed to one lower layer transport
protocol module fan-in (i.e n:1) gatewaying. Parallel source requests shall be serialized
using a FIFO: all I-PDUs shall be put into the same common FIFO in an ordered way.

Gatewaying transport protocol I-PDUs can be performed either in a direct way as a
complete I-PDU (complete set of N-PDUs building up the I-PDU is received before
transmitted) or in a routing on-the-fly way as fragmented I-PDUs where a configured
number of bytes (PduRTpThreshold) are received before transmission.

On-the-fly routing will only work for the first SDU if n:1 gatewaying is configured. How-
ever, if routing on-the-fly is combined with fan-in gatewaying and there are parallel
gatewaying requests from multiple sources on run-time, then only the first one can be

AUTSSAR

on-the-fly gatewayed, while the other ones will be direct gatewayed after the gateway-
ing of the previous source is finished.

In general the PDU Router will gateway the payload only, and will not be aware of
Transport Protocol details such as SF, FF, CF, PCI etc. But the PduR shall also sup-
port gatewaying of I-PDUs with MetaData, configured using the MetaDataType of the
global PDU. This type of I-PDUs requires no special treatment during interface routing
or forwarding, but for TP routing, the additional information has to be forwarded sepa-
rately. The following requirement is relevant both for direct gatewaying and on-the-fly
gatewaying:

[SWS_PduR_00794]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[The MetaData of I-PDUs provided by PduR_<SrcLoTp>StartOfReception shall
be stored and provided with the I-PDU to <DstLoTp>_Transmit. |

On a Transport Protocol module an I-PDU can be transported in multiple N-PDUs (FF
and CFs) or in a single N-PDU (SF). One use-case is that an I-PDU transported in
multiple N-PDUs is not multicast (i.e., physical addressing) and in single N-PDU may
be multicast (i.e. functional addressing). Another use-case is multicast of a Multi Frame
message to a local receiver and to multiple gateway destinations.

For example: A SF received on CAN and shall be transmitted on two LIN busses. The
received SF can carry up to data 6 bytes but a SF on LIN only up to data 5 bytes.
Therefore the SF on CAN is limited to data 5 bytes if gatewayed to the two LIN busses.

Note that an [-PDU transported over Transport Protocol modules may also be gate-
wayed frame by frame directly through the Communication Interfaces (i.e. by gateway-
ing the N-PDUs directly). This requires no special treatment here of the PDU Router
module and can be handled by gatewaying through Communication Interface modules,
see Section 7.1.4.1. However, this requires that the source and destination busses
have exactly same packing of N-PDUs (e.g. from CAN to CAN).

[SWS_PduR_00830]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124
[When PduR_<SrcLoTp>StartOfReception the PduR shall allocate enough

buffers ((SWS_PduR_00797], [SWS_PduR_00798]) from pduRBuf fer (for each des-
tination). |

[SWS_PduR_00831]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124
[The PduR shall start transmission on destination Transport Protocol when either

PduRTpThreshold or complete (PduR_<SrcLoTp>RxIndication is called) I-PDU
is received. |

AUTSSAR

[SWS_PduR_00832]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[If another PAuR_<SrcLoTp>StartOfReception for same routing path(s) is called,
then PduR shall enqueue the I-PDU instance into the FIFO. |

[SWS_PduR_00833]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[When PduR_<DstLoTp>TxConfirmation is received from Transport Protocol des-
tination module, the PduR shall start transmission of next I-PDU if FIFO is not empty. |

[SWS_PduR_00835]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124
[If FIFO queue is already containing at least one entry the received message shall be

stored in the FIFO, and <DstLoTp>_Transmit shall be called as soon as this FIFO
queue entry is due for transmission (i.e. when this message is first on the FIFO). |

Note: The effect of on-the-fly gatewaying using FIFO is that it will be a faster way to
gateway the TP messages. Obviously if the FIFO is not empty then the message must
be stored and not to be forwarded to the desintation TP.

[SWS_PduR_00696]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[If PAduR_<DstLoTp>CopyTxData is called and state is TP_DATACONF then the
PDU Router may free the already copied data. |

[SWS_PduR_00637]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[When the PDU Router module receives the PduR_<DstLoTp>TxConfirmation,
the PDU Router shall free the I-PDU buffer for this destination. |

[SWS_PduR_00740]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[If the Transport Protocol module calls PduR_<DstLoTp>CopyTxData Of PduR_
<SrcLoTp>CopyRxData with zero length (PduInfoType.SduLength = 0) the
PDU Router module shall return the size of the currently available buffer or the cur-
rently available data respectively. |

[SWS_PduR_00818]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS GTW_06124
[For TP gateway scenario, the availableDataPtr of the PduR_<DstLoTp>Copy-

TxData shall indicate the remaining number of bytes that are available in the PduR’s
(gateway) TP buffer. |

AUTSSAR

7.1.4.2.1 Direct gatewaying

[SWS_PduR_00551]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS GTW_06124

[The <DstLoTp>_Transmit shall be called on each destination of transport protocol
module(s) within the PduR_<SrcLoTp>RxIndication, if result is E_OK. |

[SWS_PduR_00697]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[For Single Frame transmission, if PduR_<DstLoTp>CopyTxData is called with Tp
DataState TP_CONFPENDING Or TP_DATACONF or when the RetryInfoType
pointer is NULL, the PDU Router shall copy sduLength bytes of data. If not enough
data is avilalble, the PDU Router shall return BUFREQ_E_BUSY without copying any
data. |

[SWS_PduR_00705]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124, SRS_GTW_06105

[For Single Frame transmission, if PduR_<DstLoTp>CopyTxData is called with Tp
DataState TP_DATARETRY, the PDU Router shall set back the current position by
Tx TpData Cnt bytes and copy sduLength bytes of data. If the PDU Router cannot
set back the position as requested, it shall return BUFREQ_E_NOT_OK without changing
the current position or copying any data. If, after resetting the current position, not
enough data is available for copying, the PDU Router shall return BUFREQ_E_BUSY
without copying any data. |

[SWS_PduR_00813]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[For Multi Frame transmission, if PduR_<DstLoTp>CopyTxData is called with Tp-
DataState TP_CONFPENDING Or TP_DATACONE or when the RetryInfoType
pointer is NULL, the PDU Router shall copy sduLength bytes of data. In case of
PDUR_COMMON_QUEUE is used for fan-out gatewaying, the PduR buffer processing
shall follow the same lock-step logic as defined for the upper layer buffer specified in
[SWS_PduR_00872].|

Implementation hint: PduR must keep track of active destinations for read index evalu-
ations.

[SWS_PduR_00814]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[If PAuR_<DstLoTp>CopyTxData is called and not enough data is available, the PDU
Router shall return with BUFREQ_E_BUSY without copying any data. |

AUTSSAR

[SWS_PduR_00815]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124, SRS_GTW_06105

[In case PDUR_COMMON_QUEUE is used for Multi Frame transmission, if PduR_<Dst -
LoTp>CopyTxData is called with TpDataState TP_DATARETRY, the PDU Router
shall return BUFREQ_E_NOT_OK without copying any data. |

7.1.4.2.2 On-the-fly gatewaying

In on-the-fly gatewaying the PDU Router module will start transmission to the
Transport Protocol destination module when a specific threshold (configured by
PduRTpThreshold) is reached.

[SWS_PduR_00708]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124

[Using on-the-fly gatewaying only one destination of transport protocol module is
allowed. |

[SWS_PduR_00317]
Upstream requirements: SRS_GTW_06026, SRS GTW_06124
[The PDU Router module shall start the TP transmission on the destination by calling

<DstLoTp>_Transmit as soon as the PAduRTpThreshold has been reached for the
specific destination. |

[SWS_PduR_00811]
Upstream requirements: SRS_GTW_06124
[If a TP transmission is started via PduR_<SrcLoTp>StartOfReception, the

PDU Router module shall directly call <DstLoTp>_Transmit if PAduRTpThreshold
=0.]

[SWS_PduR_00808]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06026, SRS GTW_06124
[The PDU Router module shall start the TP transmission on the destination by calling

<DstLoTp>_Transmit if result value is E_OK in the PduR_<SrcLoTp>RxIndi—
cation even if the PduRTpThreshold was not reached. |

If on-the-fly gatewaying is used the PDU Router shall not support retransmission of
already transmitted data:

[SWS_PduR_00707]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124
[If PAuR_<DstLoTp>CopyTxData is called with TpDataState TP_DATACONF or if

the RetryInfoType pointeris NULL, the PDU Router shall copy SduL.ength bytes of
data. |

AUTSSAR

[SWS_PduR_00823]
Upstream requirements: SRS_GTW_06026

[In a gateway situation and PduR_<SrcLo>StartOfReception is called with TpsS-
duLength=0 only on-the-fly gatewaying is supported. |

7.1.4.3 Forwarding to upper layers

If the |I-PDU is gatewayed (direct Transport Protocol gateway) to one or more desti-
nations of transport protocol module(s), this I-PDU may be also received by a local
upper layer module. However combined forwarding and gatewaying in n:1 fashion is
not supported.

In case of multiple Software Clusters, this [-PDU may also be received by several upper
layer modules. As the relevance of such scenario is limited to functional addressing of
multiple Dcm instances in a clusters software architecture, the constraint to support it
for direct gatewaying only, does not pose a problem because only I-PDUs of limited
size can be expected.

Implementations may choose to report (via DET) whenever the upper layer reception
was not successful. The gatewaying to lower layers should not be aborted in this case.

The reception to the upper layers of direct gatewaying is specified below:

[SWS_PduR_00789]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029

[In case of gatewaying, when a successful RxIndication is received by PduR from
the lower layer, the module shall initiate a reception session for a configured upper layer
destination: <UpTp>_StartOfReception, <UpTp>_CopyRxData, and <UpTp>_Rx
Indication will be called in this order. |

[SWS_PduR _00911]
Status: DRAFT
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029

[In case of forwarding to multiple upper layers, the module shall initiate a reception
session for each configured upper layer destination. |

[SWS_PduR_00790]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105
[When an error is returned by <UpTp>_StartOfReception for a multicast TP gate-

waying with configured local destination, the PduR shall stop the upper layer reception
without further interaction with the upper layer. |

AUTSSAR

[SWS_PduR_00791]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105

[When <UpTp>_StartOfReception returns BUFREQ_OX, but the available buffer is
too small to receive the whole message, the PduR shall call <UpTp>_RxIndication
with result = E_NOT_OK. |

[SWS_PduR_00792]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06029, SRS_GTW_06105

[When <UpTp>_CopyRxData returns an error, the PduR shall call <UpTp>_RxIndi-
cation with result = E_NOT_OKX.|

7.1.4.4 Error handling

[SWS_PduR_00788]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06105

[If <DstLo/DstLoTp>_Transmit (), called with an I-PDU from the FIFO buffer, re-
turns E_NOT_OK the I-PDU shall be removed from the FIFO and the next FIFO entry
shall be transmitted, if available. |

[SWS_PduR_00807]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06105, SRS_BSW_00369

[When <DstLo/DstLoTp>_Transmit () returns E_NOT_OK for a routing path using
a FIFO, the PDU Router shall report PDUR_E_PDU_INSTANCES_LOST to the DET
module. |

7.1.4.4.1 Communication interface

The PDU Router module shall not perform any error handling for an I-PDU instance if
an interface module rejects a transmit request which belongs to a gateway operation.

[SWS_PduR_00256]

Upstream requirements: SRS_GTW_06012, SRS_GTW_06105
[The PDU Router module shall not retry transmission if the Communication Interface
destination module returns E_NOT_OK after calling <DstLo>_Transmit.]

Here the destination returned E_NOT_OK for some reason, will also report this error.
The PDU Router module cannot do anything else than discarding the I-PDU.

AUTSSAR

[SWS_PduR_00669]
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032

[If the FIFO is flushed the new I-PDU delivered by the PduR_<SrcLo>RxIndication
shall be handled as if the FIFO is empty. |

The new I-PDU that causes the FIFO flush will be served and not discarded.

[SWS_PduR_00670]

Upstream requirements: SRS_GTW_06012, SRS_GTW_06032, SRS_GTW _06106, SRS_BSW _
00369

[If the FIFO is flushed the PDU Router shall report PDUR_E_PDU_INSTANCES_LOST
to the DET module. |

[SWS_PduR_00806]
Upstream requirements: SRS_GTW_06125

[In case of gatewaying between IFs, when one destination fails (Transmit returns E_
NOT_OK), the other destinations shall continue. |

7.1.4.4.2 Transport protocol

Error handling for I-PDUs gatewayed using Transport Protocol modules is simple: the
PDU Router module will not do anything and rely on that the Transport Protocol mod-
ules handles the communication errors properly.

[SWS_PduR_00799]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124, SRS_GTW_06105

[If no buffer could be allocated during the call of PduR_<SrcLoTp>StartOfRecep-
t ion for the reception of a gatewayed TP PDU, the PduR shall immediately stop further
processing of this I-PDU and return BUFREQ_E_OVFL. |

[SWS_PduR_00687]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124, SRS_GTW_06105

[If PAuR_<SrcLoTp>CopyRxData is called and the provided data cannot be stored in
the buffer, then BUFREQ_E_NOT_OK shall be returned and the execution of the |I-PDU
gateway shall be stopped. |

[SWS_PduR_00689]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06124, SRS_GTW_06105

[If the result value is not E_OK in the PduR_<SrcLoTp>RxIndication, the
PDU Router shall immediately stop further processing of the I-PDU. |

AUTSSAR

Note: The PDU Router shall not expect a PduR_<SrcLoTp>RxIndication after
PduR_<SrcLo>StartOfReception failed. The PDU Router shall not expect a
PduR_<DstLoTp>TxConfirmation after <LoTp>_Transmit failed.

[SWS_PduR_00803]
Upstream requirements: SRS_GTW_06029

[In case of gatewaying between TPs, when one destination fails (Transmit returns E_
NOT_OK or TpTxConfirmation is called with an error), the other destinations shall
continue. |

[SWS_PduR_00804]
Upstream requirements: SRS_GTW_06029

[In case of gatewaying between TPs, when all destinations fail, the reception side
shall be stopped by returning BUFREQ_E_NOT_OK for the current call of CopyRxData
or StartOfReception. |

7.2 Cancel transmission

An upper layer module may request cancellation of an I-PDU (transported by Commu-
nication Interface module or Transport Protocol module). The PDU Router module will
forward the request to either one destination module (singlecast) or multiple destination
modules (multicast).

The PduR_<Up>CancelTransmit is used to cancel Communication Interface I-PDU
and to cancel Transport Protocol I-PDUs in the case of forwarding.

The cancel transmission is optional and enabled in the configuration per module, see
PduRCancelTransmit configuration parameter.

In case of forwarding, an upper layer module requests cancellation of an |-PDU, and
the PDU Router will forward the request to one or more destination modules according
to the routing path.

In case of gatewaying, PDU Router can optionally cancel the transmission when a
connection is stopped based on e.g. after a negative return value or a negative
PduR_<SrcLoTp>RxIndication from the source side of the routing path.

Note: This may happen e.g. during TP on-the-fly gatewaying or disabling a routing
path group.

[SWS_PduR_00710]
Upstream requirements: SRS_GTW_06122, SRS_GTW_06120

[If the routing path for the requested I-PDU is disabled, then PduR_<Up>Cancel
Transmit shall return E_NOT_OK directly without any further action. |

AUTSSAR

Following requirements describes the behavior in the PDU Router module when the
PduR_<Up>CancelTransmit is called:

[SWS_PduR_00721]
Upstream requirements: SRS_GTW_06122

[Communication Interface module

PduR_<Up>CancelTransmit and single destination: The PDU Router module shall
call the <Lo>_CancelTransmit for the destination module of the I-PDU. |

[SWS_PduR_00723]
Upstream requirements: SRS_GTW_06122, SRS_GTW_06030

[Communication Interface module

PduR_<Up>CancelTransmit and multiple destinations: The PDU Router module
shall call the <Lo>_CancelTransmit for each destination module of the I-PDU. |

[SWS_PduR_00722]
Upstream requirements: SRS_GTW_06122

[Transport Protocol module

PduR_<Up>CancelTransmit and single destination: The PDU Router module shall
call the <LoTp>_CancelTransmit for the destination module of the I-PDU. |

[SWS_PduR_00724]
Upstream requirements: SRS_GTW_06122, SRS_GTW_06029

[Transport Protocol module

PduR_<Up>CancelTransmit and multiple destinations: The PDU Router module
shall call the <LoTp>_CancelTransmit for each destination module of the I-PDU. |

Following requirements describes the behavior in the PDU Router module when the
return value of <Lo>_CancelTransmit Or <LoTp>_CancelTransmit iS received:

[SWS_PduR_00700]
Upstream requirements: SRS_GTW_06122, SRS_GTW_06104

[For a single destination, the PDU Router module shall return the same return value
to the calling upper layer module. |

[SWS_PduR_00701]
Upstream requirements: SRS_GTW_06029, SRS_GTW 06030, SRS GTW_06125, SRS _GTW _
06122, SRS_GTW_06104
[For multiple destinations, £_0OK shall be returned to the calling upper layer if all desti-
nation modules return E_0OK. Otherwise, E_NOT_OK shall be returned. |

AUTSSAR

7.3 Cancel reception

An upper layer module may request cancellation of an |I-PDU transported on Trans-
port Protocol module(s). The PDU Router module will get a request through the
PduR_<Up>CancelReceive. The confirmation of the cancellation request is made
through the return value of <LoTp>_CancelReceive that is forwarded to the upper
layer module as return value of PduR_<Up>CancelReceive.

[SWS_PduR_00726]
Upstream requirements: SRS_GTW_06122, SRS_GTW_06120

[If the routing path for the requested I-PDUs is disabled, then PduR_<Up>Cancel
Receive shall return E_NOT_OK directly without any further action. |

The flow of the I-PDU id on the receiving side is from lower to upper layer modules.
Here the flow is from upper to lower modules, since the id belongs to an already (par-
tially) received |I-PDU for which the reception shall be canceled.

[SWS_PduR_00736]
Upstream requirements: SRS_GTW_06122

[The I-PDU id provided in the call is Rx I-PDU ID and therefore the PDU Router module
shall be able to identify this I-PDU correctly. |

[SWS_PduR_00727]
Upstream requirements: SRS_GTW_06026, SRS_GTW_06122

[When the PduR_<Up>CancelReceive is called the PDU Router module shall call
the <LoTp>_CancelReceive for the Transport Protocol destination module of the
I-PDU. |

[SWS_PduR_00732]

Upstream requirements: SRS_GTW_06122, SRS_GTW_06105
[The return value of the <LoTp>_CancelReceive shall be forwarded to the upper
layer module. |

In case of gatewaying, PDU Router can optionally cancel the reception when a connec-
tion is stopped, e.g. after a negative return value or a negative PduR_<DstLoTp>Tx
Confirmation from the destination of the routing path.

Note: This may happen e.g. during TP on-the-fly gatewaying or disabling a routing
path group.

7.4 Zero Copy Operation

An upper layer module may request to release the temporary local buffer managed by
a lower layer module. See ECUC_EcuC_00087 for reference.

AUTSSAR

This functionality, Release Rx Buffer on reception side is used to explicitly free
a buffer provided with (IF)RxIndication, so that the buffer can be handled asyn-
chronously in the upper layer, especially for hardware accelerated copying (zero-
copy approach). The PDU Router module will get the request through PduR_-
<User:Up>ReleaseRxBuffer and forward it to the lower layer module by calling
<Provider:Lo>_ReleaseRxBuffer.

Release Rx Buffer is optional and enabled in the configuration per module, see PduR-
ReleaseRxBuf fer configuration parameter.

On transmission side, said temporary local buffer is kept by the upper layer module
until (IF)TxConfirmation.

[SWS_PduR_CONSTR_00931] Constraint regarding EcuC/Pdu configuration for
PduRDestPduRef and PduRSrcPduRef in the same PduRRoutingPath.

Status: DRAFT

[In a PduRRoutingPath, EcucPdus referred by PduRDestPduRef and PduRSrcP-
duRef shall be configured with the same settings for EcuC/Pdu/KeepLocalBuffer
and EcuC/Pdu/PduBufferAlignment. |

Note: PDUs configured in the communication stack and linked across BSW modules
need to have the same configuration. Please refer to constr_3793 and constr_3794
of [6, Specification of ECU Configuration])

7.5 Zero Cost Operation

Zero cost operation is an optimization that may be done where source and destination
modules are single and in source code (one of the modules must be in source code
otherwise the PDU Router must create glue-code for the function call). For example an
ECU with a Com module and a single CAN bus, the PduR_ComTransmit may directly
callthe canIf_Transmit without any logic inside the PduR Module. The PDU Router
becomes a macro layer.

This optimization is only possible where routing paths are of configuration class Pre-
Compile.

[SWS_PduR_00287]
Upstream requirements: SRS_GTW_06020
[If PduRZeroCostOperation is set to true and all routing paths are of configuration

class Pre—-Compile; modules directly above or below the PDU Router may directly
call each other without using PduR module functions. |

AUTSSAR

[SWS_PduR_00619]
Upstream requirements: SRS_GTW_06020

[If PduRZeroCostOperation is set to true and at least one routing path is not of
configuration class Pre—-Compile; the PDU Router module configuration generator
shall report an error. |

7.6 State Management
The state machine of the PDU Router module is depicted in Figure 7.2.
[SWS_PduR_00644]

Upstream requirements: SRS_BSW_00406
[Only one instance of the state machine shall exist in the PDU Router module. |
[SWS_PduR_00324]

Upstream requirements: SRS _BSW_00406

[The PDU Router module shall consist of two states, PDUR_UNINIT and PDUR_ON-
LINE as defined in PduR_StateType|

[SWS_PduR_00325]
Upstream requirements: SRS_BSW_00406

[The PDU Router module shall be in the state PDUR_UNINIT after power up the
PDU Router module (i.e. before calling the PdurR_1Init function). |
[SWS_PduR_00326]

Upstream requirements: SRS_BSW_00406

[The PDU Router module shall change to the state PDUR_ONLINE when the
PDU Router has successfully been initialized via the function PduR_TInit |

AUTSSAR

stm PduR State Machine/

PDUR_ONLINE

!

PduR_Init{ConfigPtr) without emor

PDUR_UNINIT

. immediate \(
_--—"K

Powerup

Figure 7.2: PDU Router states

[SWS_PduR_00328]

Upstream requirements: SRS_BSW_00406, SRS_GTW_06001
[The PDU Router module shall perform routing of PDUs according to the PDU Router
routing tables only when it is in the online state PDUR_ONLINE |

[SWS_PduR_00330]

Upstream requirements: SRS_BSW_00406, SRS_GTW_06001
[The PDU Router module shall perform no routing when it is in the uninitialized state
PDUR_UNINIT |

[SWS_PduR_00645]
Upstream requirements: SRS _BSW_00406

[The PDU Router module shall release all buffers in the PduR_Init function. |

[SWS_PduR_00308]
Upstream requirements: SRS_BSW_00406, SRS_GTW_06001

[The function PduR_Init shall initialize all configured default value to the PDU trans-
mit buffers. |

[SWS_PduR_00119]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00369
[If the PDU Router module has not been initialized (state PDUR_UNINIT all functions

except PduR_Init and PduR_GetVersionInfo shall report the error PDUR_E_-
UNINIT via the DET when called, when PduRDevErrorDetect is enabled. |

AUTSSAR

7.7 Routing path groups

A routing path group is a group of routing paths that can be disabled and enabled
during runtime. This allows for enabling/disabling a set of routing paths related to a
certain network or a certain kind of PDUs.

Enabling and disabling of routing path groups is typically used by the BswM module.

7.7.1 PduRRoutingPathGroup definitions

For a PduRRout ingPathGroup the following rules apply:
1. A PduRRoutingPath can belong to any PduRRout ingPathGroup.

2. A PduRRoutingPath shall be enabled, if it belong to a enabled PduRRout -
ingPathGroup (see [SWS_PduR _00891]). If a PduRRoutingPath, does not
belong to any PduRRout ingPath, the PduRRout ingPath is always enabled.

[SWS_PduR _00891]
Upstream requirements: SRS_GTW_06120
[A PduRRout ingPath shall be enabled under either of the following conditions:
« if at least one PduRRout ingPathGroup is enabled it refers to

* if the PduRRout ingPath does not reference any PduRRout ingPathGroup at
all

7.7.2 Initialization of PduRRoutingPathGroups

[SWS_PduR_00892]

Upstream requirements: SRS_GTW_06120
[A PduRRoutingPath shall be disabled, if all PduRRoutingPathGroups it refer-
ences are disabled. |

[SWS_PduR_00894]
Upstream requirements: SRS_GTW_06120

[All PduRRoutingPathGroups wWhere PduRIsEnabledAtInit is setto TRUE shall
be enabled after initialization of the PDU Router module. |
[SWS_PduR_00895]

Upstream requirements: SRS_GTW_06120

[All PAduRRoutingPathGroups where PduRIsEnabledAtInit is set to FALSE
shall be disabled. |

AUTSSAR

7.7.3 Switching of PduRRoutingPathGroups

[SWS_PduR_00897]
Upstream requirements: SRS_GTW_06120

[If @ PAduRRoutingPathGroup is disabled by PduR_DisableRouting, the PDU
Router module shall re-evaluate all PduRRout ingPaths which are referencing the
affected PduRRout ingPathGroup according to [SWS_PduR_00892]. |

[SWS_PduR_00898]
Upstream requirements: SRS_GTW_06120

[If a PduRRoutingPathGroup is enabled by PduR_EnableRouting, the PDU
Router module shall re-evaluate all PduRRout ingPaths which are referencing the
affected PduRRout ingPathGroup according to [SWS_PduR_00891]. |

[SWS_PduR_00715]
Upstream requirements: SRS_GTW_06120

[Enabling of I-PDU routing path groups shall be immediate |
Example: A subsequent call to PduR_<Up>Transmit shall serve this [-PDU directly.

[SWS_PduR_00805]
Upstream requirements: SRS_GTW_06120, SRS_GTW_06029, SRS_GTW_06030

[If a routing path is disabled (aligning to [SWS_PduR_00892] by the call PduR_Dis-
ableRouting) the PduR shall directly return for the following functions for this routing
path:

* PduR_<User:Up>Transmit,

* PduR_<User:Lo>RxIndication,

* PduR_<User:Lo>TriggerTransmit,

* PduR_<User:LoTp>StartOfReception,
* PduR_<User:LoTp>CopyRxData,

* PduR_<User:LoTp>CopyTxData.

If the function has a Std_ReturnType, it shall return E_NOT_OK. If function has a Buf
Req_ReturnType, it shall return BUFREQ_E_NOT_OK. |

Note: This does not affect PduR_<User:LoTp>RxIndication and PduR_<User:-—
LoTp>TxConfirmation.

AUTSSAR

[SWS_PduR_00810]
Upstream requirements: SRS_GTW_06120, SRS_GTW_06032, SRS_GTW_06124

[When a routing path associated with a single buffer PduRQueueDepth == 1) is
stopped, the according buffer shall be set to the default value if PduR_DisableR-
outing is called with initialize set to true, otherwise the current value shall be
retained. |

[SWS_PduR_00663]
Upstream requirements: SRS_GTW_06120, SRS_GTW_06032, SRS_GTW_06124, SRS_BSW_
00369

[When a routing path is stopped, and either:

* it is associated with a dedicated queue (PduRQueueingStrategy = PDUR_—
DEDICATED_QUEUE),

» all routing paths associated to its shared common queue (PduRQueue-
ingStrategy = PDUR_COMMON_QUEUE) are stopped

* PduRQueueingStrategy isn’t configured due to a 1:1 routing

the according queue shall be flushed, and the PduR shall report PDUR_E_PDU_ -
INSTANCES_LOST to the DET if development error reporting is enabled. |

Example: If a gateway operation is made and the PDU Router module has buffered an
I-PDU and is waiting for the destination communication module to call trigger transmit,
the buffer is cleared and the buffer not available is returned to the destination Commu-
nication Interface.

7.8 Complex Driver Interaction

Besides the AUTOSAR Com and Dcm modules, Complex Drivers (CDD) are also pos-
sible as upper or lower layer modules for the PduR.

Whether a CDD is an upper layer or a lower layer module for the PduR is configurable
via the PduRUpperModule Or PduRLowerModule configuration parameters of the
PduRBswModules configuration.

A CDD can require both a Communication Interface APl or a Transport Protocol
API, depending on the configuration parameters PduRCommunicationInterface
and PduRTransportProtocol of the PduRBswModules configuration. The API
functions provided by the PduR for the CDD interaction contain the CDD’s ser-
vice prefix as specified by the apiservicePrefix configuration parameter, see
[SWS_PduR_00504].

The PduR provides the unique transmit function PduR_<Cdd>Transmit for each up-
per layer CDD. When a callout function of the PduR is invoked from a lower layer
module for a PDU that is transmitted or received by an upper layer CDD, the PduR
invokes the corresponding target function of the CDD.

AUTSSAR

For a lower layer CDD that requires a Communication Interface API, the PduR pro-
vides a unique set of Communication Interface API functions PduR_<Cdd>RxIndica-
tion and - if configured - PAduR_<Cdd>TxConfirmation and PduR_<Cdd>Trigger
Transmit, see Section 8.3.3.

For a lower layer CDD that requires a Transport Protocol API, the PduR pro-
vides a unique set of Transport Protocol API functions PduR_<Cdd>CopyRxData,
PduR_<Cdd>CopyTxData, PduR_<Cdd>RxIndication, PduR_<Cdd>StartOf
Reception and PduR_<Cdd>TxConfirmation, see Section 8.3.4.

When an API function of the PduR is invoked from an upper layer module for a PDU that
is transmitted or received by a lower layer CDD, the PduR invokes the corresponding
target function of the CDD.

To determine if a PDU is transmitted or received by a CDD, the PduR has to examine
the origin of the references to the PDU list in the EcuC module:

« If the source PDU of a routing path references a PDU in the PDU list that is also
referenced by an upper layer CDD, the PDU is transmitted by the CDD.

« If the destination PDU of a routing path references a PDU in the PDU list that is
also referenced by an upper layer CDD, the PDU is received by the CDD.

« If the source PDU of a routing path references a PDU in the PDU list that is also
referenced by a lower layer CDD, the PDU is received from the CDD.

« If the destination PDU of a routing path references a PDU in the PDU list that is
also referenced by a lower layer CDD, the PDU is transmitted via the CDD.

[SWS_PduR_00504]
Upstream requirements: SRS_BSW_00310

[The PduR shall use the apiservicePrefix attribute of the CDD’s vendor specific
module definition (EcucModuleDef element) to replace the <L.o>, <Up>, and <LoTp>
tags of the GenericComServices APIs. The CDD’s vendor specific module defini-
tion can be indirectly accessed via the configuration parameter PduRBswModuleRef
which references the top-level element of the concrete configuration of the CDD (i.e.,
EcucModuleConfigurationValues element) which references the CDD’s vendor
specific module definition (EcucModuleDef element).]

7.9 Error classification

For details refer to the Chapter [3, General Specification of Basic Software Mod-
ules] 7.2 “Error Handling”.

Note that the PduR does not report production errors.

AUTSSAR

7.9.1 Development Errors

[SWS_PduR_00100] Definition of development errors in module PduR

Upstream requirements: SRS_BSW_00337, SRS_BSW_00323, SRS _BSW_00452

[

Type of error

Related error code

Error value

Invalid configuration pointer

PDUR_E_INIT_FAILED

0x00

API service (except PduR_GetVersioninfo) used PDUR_E_UNINIT 0x01
without module initialization or PduR_Init called in

any state other than PDUR_UNINIT

Invalid PDU identifier PDUR_E_PDU_ID_INVALID 0x02
If the routing table is invalid that is given to the PDUR_E_ROUTING_PATH_GROUP_ID_INVALID | 0x08
PduR_EnableRouting or PduR_DisableRouting

functions

Null pointer has been passed as an argument PDUR_E_PARAM_POINTER 0x09

7.9.2 Runtime Errors

[SWS_PDUR_00816] Definition of runtime errors in module PduR
Upstream requirements: SRS_BSW_00385, SRS _BSW_00452

Type of error

Related error code

Error value

TP module rejected a transmit request for a valid
PDU identifier in case of gateway operation

PDUR_E_TP_GW_TX_REQ_REJECTED

0x03

Loss of a PDU instance (buffer overrun in gateway
operation)

PDUR_E_PDU_INSTANCES_LOST

0x0a

7.9.3 Production Errors

[SWS_PduR_00921]
BUFFER_OVERFLOW.

Upstream requirements: SRS_BSW_00458, SRS_BSW_00469, SRS_BSW 00471, SRS_BSW _

00472

[

PDU Router shall report a PDUR_ROUTING_PATH_

Diagnostic Event (Error Name)

PDUR_ROUTING_PATH_BUFFER_OVERFLOW

Description PDU Router shall report a PDUR_ROUTING_PATH_BUFFER_OVERFLOW
Production Error to Dem when there is a change in the overall PduRBuffer occupancy.
Failed condition Every PduRTxBuffer becomes occupied.

V

AUTSSAR

JAN

| Passed condition At least one PduRTxBuffer available.

]

7.9.4 Extended Production Errors

There are no extended production errors.

7.10 API parameter checking

[SWS_PduR_00221]

Upstream requirements: SRS_GTW_06103, SRS_BSW_00323, SRS_BSW_00369
[If development error detection is enabled, a PDU identifier is not within the specified
range, and the PDU identifier is configured to be used by the PDU Router module,

the PDU Router module shall report the error PDUR_E_PDU_ID_INVALID to the DET
module, when PduRDevErrorDetect is enabled. |

7.11 Multicore Distribution

The PduR module is distributed over all partitions and acts as a central inter-partition
dispatcher for any inter-partition (inter-core) routing path(s), mainly for gateway and
multicast use cases.

For further explanations about the distribution principles, please see chapter "Com-
Stack Distribution" within the [8, Guide to BSW Distribution].

[SWS_PduR_00836]

Upstream requirements: SRS_BSW_00459, SRS_BSW_00460
[The PDU Router module configuration generator shall examine the partition assign-
ment of each source/destination |I-PDU of all routing path instances. |

[SWS_PduR_00837]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460
[The PDU Router module configuration generator shall take over the dedicated par-

tition reference if an EcucPduDedicatedPartition container is available for the
respective module, referred by EcucPduDedicatedPartitionBswModuleRef. |

AUTSSAR

[SWS_PduR_00838]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460
[In case no module individual dedicated partition reference (EcucPduDedicated

Partition) is available for the respective module, the PDU Router module config-
uration generator shall take over the default partition reference of the I-PDU. |

[SWS_PduR_00839]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460
[The PDU Router module configuration generator shall process a routing path as intra-

partition communication, if both connected |-PDUs (source and target) are assigned to
the same partition. |

[SWS_PduR_00840]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[The PDU Router module configuration generator shall process a routing path as inter-
partition communication, if the connected source and target I-PDU are assigned to
different partitions. |

[SWS_PduR_00841]

Upstream requirements: SRS_BSW_00459, SRS_BSW_00460
[In configurations, in which upper and/or lower layers reside in different partitions,
PduR may provide one init function per ECUC partition. |

[SWS_PduR_CONSTR_00861] [The PDU Router shall only accept PduRRoutingPath
Groups, which contain PduRRout ingPaths having all destination I-PDUs assigned to
the same partition. |

7.11.1 Intra-partition Routing Path

The intra-partition communication behavior should not be altered, even though there
are upper and/or lower layers, which reside in different partitions.

[SWS_PduR_CONSTR_00842] [For routing paths with TriggerTransmit Transmission
from an upper layer module the PDU Router shall accept intra-partition routings only. |

7.11.2 Inter-partition Routing Path

This chapter describes, how the PduR shall handle inter-partition routing paths. This
means a destination PDU is mapped to a different ECUC partition than the correspond-
ing source Pdu.

PduR shall perform the actual cross-partition communication with respect to data and
call context.

AUTSSAR

Note: The [8, Guide to BSW Distribution] describes the ways how to solve a context
switch in a multicore environment within its chapter "BSW Distribution in Multi-Core
Systems".

7.11.2.1 Upper layer module interaction

[SWS_PduR_00843]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the return value of the function PduR_<User:Up>
Transmit shall reflect if the PduR itself has accepted the transmit request or not. |

[SWS_PduR_00844]
Upstream requirements: SRS_BSW_00459, SRS _BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:Up>Transmit
shall only execute code that is assigned to the same ECUC partition. PduR shall not
call the <Provider:Lo>_Transmit inthe call context of PduR_<User:Up>Trans—
mit. PduR shall call <Provider:Lo>_Transmit in the ECUC partition context of
the <Provider:Lo> module (in fact of the ECUC partition defined via the EcucPdu
DefaultPartitionRef or the EcucPduDedicatedPartitionRef of the PduR-
DestPduRef). |

[SWS_PduR_00845]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the return value of the function PduR_<User:Up>
CancelTransmit shall reflectif the PduR itself has accepted the transmit cancellation
or not. |

[SWS_PduR_00846]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User :Up>Cancel-
Transmit shall only execute code that is assigned to the same ECUC partition. PduR
shall not call the <Provider:Lo/LoTp>_CancelTransmit in the call context of
PduR_<User:Up>CancelTransmit. PduR shall call <Provider:Lo/LoTp>_Can-
celTransmit in the ECUC partition context of the <Provider:Lo/LoTp> module
(in fact of the ECUC partition context defined via the EcucPdubDefaultPartition
Ref or the EcucPduDedicatedPartitionRef of the PduRDestPduRef). |

[SWS_PduR_00847]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460
[For inter-partition routing paths, the return value of the function PduR_<User:Up>

CancelReceive shall reflect if the PduR itself has accepted the reception cancellation
or not. |

AUTSSAR

[SWS_PduR_00848]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:Up>Cancel-
Receive shall only execute code that is assigned to the same ECUC partition. PduR
shall not call the <Provider:LoTp>_CancelReceive in the call context of PduR_
<User:Up>CancelReceive. PduR shall callkProvider:LoTp>_CancelReceive
in the ECUC partition context of the <Provider:LoTp> module (in fact of the ECUC
partition context defined via the EcucPdubDefaultPartitionRef or the EcucPdu
DedicatedPartitionRef of the PAduRSrcPduRef). |

7.11.2.2 Lower layer Communication Interface module interaction

[SWS_PduR_00849]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:Lo>RxIndi-
cation shall only execute code that is assigned to the same ECUC partition. PduR
shall not call the <Provider:Up>_RxIndication in the call context of PdurR_-
<User:Lo>RxIndication. PduR shall call <Provider:Up>_RxIndication in
the ECUC partition context of the <Provider: Up> module (in fact of the ECUC parti-
tion context defined via the EcucPduDefaultPartitionRef or the EcucPdubDedi-
catedPartitionRef of the PduRSrcPduRef). |

[SWS_PduR_00850]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:Lo>TxCon-
firmation shall only execute code that is assigned to the same ECUC partition.
PduR shall not call the <Provider:Up>_TxConfirmation in the call context of
PduR_<User:Lo>TxConfirmation. PduR shall call <Provider:Up>_TxConfir-
mation in the ECUC partition context of the <Provider:Up> module (in fact of the
ECUC partition context defined via the EcucPduDefaultPartitionRef orthe Ecuc
PduDedicatedPartitionRef of the PAduRSrcPduRef). |

7.11.2.3 Lower layer Transport Protocol module interaction

[SWS_PduR _00851]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User :LoTp>Copy-
RxData shall only execute code that is assigned to the same ECUC partition. PduR
shall not call the <Provider:UpTp>_CopyRxData in the call context of PduR_-
<User:LoTp>CopyRxData. PduR shall call <Provider:UpTp>_CopyRxData in
the ECUC partition context of the <Provider:UpTp> module (in fact of the ECUC

AUTSSAR

partition context defined via the EcucPdubefaultPartitionRef or the EcucPdu
DedicatedPartitionRef of the PduRDestPduRef). |

[SWS_PduR_00852]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the return value of the function PduR_<User :LoTp>
CopyRxData shall reflect the status of the PduR but not of Provider: UpTp.]

[SWS_PduR_00853]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:LoTp>
RxIndication shall only execute code that is assigned to the same ECUC parti-
tion. PduR shall not call the <Provider:UpTp>_RxIndication in the call context
of PAuR_<User:LoTp>RxIndication. PduR shall call <Provider:UpTp>_RxIn-
dication in the ECUC partition context of the <Provider: UpTp> module (in fact of
the ECUC partition context defined via the EcucPdubDefaultPartitionRef or the
EcucPduDedicatedPartitionRef of the PduRDestPduRef). |

[SWS_PduR_00854]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:LoTp>
StartOfReception shall only execute code that is assigned to the same ECUC parti-
tion. PduR shall not call the <Provider:UpTp>_StartOfReception inthe call con-
text of PduR_<User:LoTp>StartOfReception. PduR shall call <Provider:Up
Tp>_StartOfReception in the ECUC partition context of the <Provider:UpTp>
module (in fact of the ECUC partition context defined via the EcucPduDefaultPar—
titionRef or the EcucPduDedicatedPartitionRef of the PduRDestPduRef). |

[SWS_PduR_00855]
Upstream requirements: SRS_BSW_00459, SRS _BSW_00460

[For inter-partition routing paths, the return value of the function PduR_<User:Lo
Tp>StartOfReception shall reflect the status of the PduR but not of Provider:Up

Tp. |

[SWS_PduR_00856]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:LoTp>Copy-
TxData shall only execute code that is assigned to the same ECUC partition. PduR
shall not call the <Provider:UpTp>_CopyTxData in the call context of PduR_-
<User:LoTp>CopyTxData. PduR shall call <Provider:UpTp>_CopyTxData in
the ECUC partition context of the <Provider:UpTp> module (in fact of the ECUC
partition context defined via the EcucPdubDefaultPartitionRef or the EcucPdu
DedicatedPartitionRef of the PAduRSrcPduRef). |

AUTSSAR

[SWS_PduR_00857]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the return value of the function PduR_<User :LoTp>
CopyTxData shall reflect the status of the PduR but not of Provider: UpTp.]

[SWS_PduR_00858]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the function PduR_<User:LoTp>TxCon-
firmation shall only execute code that is assigned to the same ECUC partition.
PduR shall not call the <Provider:UpTp>_TxConfirmation in the call context
of PAuR_<User:LoTp>TxConfirmation. PduR shall call <Provider:UpTp>_Tx
Confirmation in the ECUC partition context of the <Provider : UpTp> module (in
fact of the ECUC partition context defined via the EcucPduDefaultPartitionRef
or the EcucPduDedicatedPartitionRef of the PAduRSrcPduRef).

[SWS_PduR_00859]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition Transport Protocol module interactions, PduR shall be the relay
between <User:Lo/UpTp> and <Provider:Lo/UpTp> routing paths and decouple
the call context by intermediate buffering. |

Note: The reception behavior on the source bus depends on the PduR’s configuration
(PduRTpThreshold/PduRSourcePduBlockSize).

[SWS_PduR_00860]

Upstream requirements: SRS_BSW_ 00459, SRS BSW_00460
[PduR shall treat inter-partition Transport Protocol module interactions as gateway
routings. |

Note: Configurations, in which upper and/or lower Transport Protocol layers reside in
different partitions will have an effect on the timing (latency) and potentially the behavior
on the bus (late abort of Rx transmission in case the <User: Lo/UpTp> was not ready
to receive). If this cannot be tolerated, all participating modules have to be mapped to
the same partition.

7.11.2.4 Communication Interface Gatewaying

[SWS_PduR_00881]
Upstream requirements: SRS_BSW_00459, SRS_BSW_00460

[For inter-partition routing paths, the call to the following functions shall only execute
code that is assigned to the same ECUC partition:

e PduR_<SrcLo>RxIndication,

AUTSSAR

* PduR_<DstLo>TriggerTransmit,
* PduR_<DstLo>TxConfirmation.

PduR shall not call the <DstLo>_Transmit in the call context of PduR_<SrcLo>
RxIndication. PduR shall call <DstLo>_Transmit in the ECUC partition context
of the <DstLo> module (in fact of the ECUC partition context defined via the EcucPdu
DefaultPartitionRef or the EcucPduDedicatedPartitionRef of the PduR-
DestPduRef). |

7.11.2.5 Transport Protocol Gatewaying

[SWS_PduR_00882]
Upstream requirements: SRS_BSW_00459, SRS _BSW_00460

[For inter-partition routing paths, the call to the following functions shall only execute
code that is assigned to the same ECUC partition:

* PduR_<SrcLoTp>StartOfReception,
* PduR_<SrcLoTp>CopyRxData,

* PduR_<DstLoTp>CopyTxData,

* PduR_<SrcLoTp>RxIndication,

* PduR_<DstLoTp>TxConfirmation.

PduR shall not call the <DstLoTp>_Transmit in the call context of PduR_<Sr-—
cLoTp>CopyRxData, PduR_<DstLoTp>TxConfirmation. PduR shall call <Dst
LoTp>_Transmit in the ECUC partition context of the <DstLoTp> module (in fact of
the ECUC partition context defined via the EcucPduDefaultPartitionRef or the
EcucPduDedicatedPartitionRef of the PduRDestPduRef). |

[SWS_PduR_00883]
Upstream requirements: SRS_BSW_00459, SRS _BSW_00460

[For inter-partition routing paths, PduR shall allow concurrent invocations of the follow-
ing API-pairs from different ECUC partitions

* PduR_<SrcLoTp>CopyRxData and PduR_<DstLoTp>CopyTxData,
* PduR_<SrcLoTp>RxIndication and PduR_<DstLoTp>CopyTxData,
* PduR_<SrcLoTp>CopyRxData and PduR_<DstLoTp>TxConfirmation,

* PduR_<SrcLoTp>RxIndication and PduR_<DstLoTp>TxConfirmation.

AUTSSAR

8 API specification

The following paragraphs specify the API of the PDU Router module.

8.1 Imported types
In this chapter all types included from the following modules are listed:

[SWS_PduR_00333] Definition of imported datatypes of module PduR
Upstream requirements: SRS_BSW_00301

[
Module Header File Imported Type
Comtype ComStack_Types.h BufReq_ReturnType
ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType
ComStack_Types.h RetryInfoType
ComStack_Types.h TpDataStateType
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
|

8.2 Type definitions

8.2.1 PduR_PBConfigType

The post-build-time configuration fulfills two functionalities:

 Post-build selectable, where more than one configuration is located in the ECU,

and one is selected at init of the PDU Router module

 Post-build loadable, where one configuration is located in the ECU. This configu-

ration may be reprogrammed after compile-time

Basically there is no restriction to mix both selectable and loadable. Typically the post-
build loadable is located in its own flash sector where it can be reprogrammed without

affecting other modules/applications.

AUTSSAR

[SWS_PduR_00743] Definition of datatype PduR_PBConfigType
Upstream requirements: SRS_BSW_00400, SRS_BSW_00438, SRS_BSW_00404, SRS_BSW _

00305
[
Name PduR_PBConfigType
Kind Structure
Elements -
Type -
Comment implementation specific
Description Data structure containing post-build-time configuration data of the PDU Router.
Available via PduR.h
|

[SWS_PduR_00241]
Upstream requirements: SRS_BSW_00438, SRS _BSW_00404

[The type PduR_PBConfigType is an external data structure containing post-build-
time configuration data of the PDU Router module which shall be implemented in Pdu
R_PBcfg.c.]

(see Chapter Chapter 5.1.1 and Chapter 10.2).

8.2.2 PduR_PBConfigldType
This type is returned by the PduR_GetConfigurationId API.

[SWS_PduR_00771] Definition of datatype PduR_PBConfigldType
Upstream requirements: SRS_BSW_00405, SRS BSW_ 00305, SRS _GTW_06097

[
Name PduR_PBConfigldType
Kind Type
Derived from uint16
Description Identification of the post-build configuration currently used for routing I-PDUs. An ECU may contain
several configurations (post-build selectable), each have unique Id.
Available via PduR.h
|

8.2.3 PduR_RoutingPathGroupldType

The routing path group ID is used for identifying a specific group of routing paths. Since
a PduRRout ingPath links one source |I-PDU and one destination I-PDU, it is possible
to enable/disable routing per network or per PDU kind.

AUTSSAR

[SWS_PduR_00654] Definition of datatype PduR_RoutingPathGroupldType
Upstream requirements: SRS_BSW_00305, SRS_GTW_06120

[
Name PduR_RoutingPathGroupldType
Kind Type
Derived from uint16
Description Identification of a Routing Table
Available via PduR.h

|

8.2.4 PduR_StateType

[SWS_PduR_00742] Definition of datatype PduR_StateType
Upstream requirements: SRS_BSW_00305, SRS_BSW_00335, SRS_BSW_00406

[
Name PduR_StateType
Kind Enumeration
Range PDUR_UNINIT - PDU Router not initialised
PDUR_ONLINE — PDU Router initialized successfully
Description States of the PDU Router
Available via PduR.h
]

8.3 Function definitions

8.3.1 General functions provided by the PDU Router
8.3.1.1 PduR_Init

[SWS_PduR_00334] Definition of API function PduR_Init
Upstream requirements: SRS_BSW_00101, SRS_BSW_00358, SRS_BSW_00414, SRS _BSW __

00310
Service Name PduR_Init
Syntax void PduR_Init (
const PduR_PBConfigType* ConfigPtr
)
Service ID [hex] 0xf0
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Non Reentrant
Parameters (in) ConfigPtr ‘ Pointer to post build configuration
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the PDU Router
Available via PduR.h

]

Integration note: To avoid problems calling the PDU Router module uninitialized it is
important that the PDU Router module is initialized before interfaced modules.

[SWS_PduR_00709]
Upstream requirements: SRS_GTW_06120

[After initialization all I-PDU routing groups shall be enabled according enable at start
configuration parameter. |

Note: NULL pointer checking is specified within document [3, SWS BSW General].

8.3.1.2 PduR_GetVersioninfo

[SWS_ PduR_00338] Definition of API function PduR_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS _BSW_00411, SRS BSW_ 00310

[

Service Name PduR_GetVersioninfo

Syntax void PduR_GetVersionInfo (
Std_VersionInfoType* versionInfo

)

Service ID [hex] 0xf1

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via PduR.h

AUTSSAR

8.3.1.3 PduR_GetConfigurationld

[SWS_PduR_00341] Definition of API function PduR_GetConfigurationld
Upstream requirements: SRS_GTW_06097, SRS_BSW_00310

[

Service Name

PduR_GetConfigurationld

Syntax PduR_PBConfigIdType PduR_GetConfigurationId (
void
)
Service ID [hex] 0xf2
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

PduR_PBConfigldType Identifier of the post-build time configuration

Description

Returns the unique identifier of the post-build time configuration of the PDU Router

Available via

PduR.h

]

[SWS_PduR_00280]
Upstream requirements: SRS_GTW_06097

[The function PduR_GetConfigurationId shall return the unique identifier of the
post-build time configuration of the PDU Router module. |

8.3.1.4 PduR_EnableRouting

[SWS_PduR_00615] Definition of API function PduR_EnableRouting
Upstream requirements: SRS_GTW_06120, SRS_BSW_00310

[

Service Name

PduR_EnableRouting

Syntax void PduR_EnableRouting (
PduR_RoutingPathGroupIdType id
)
Service ID [hex] 0xf3
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id Identification of the routing path group. Routing path groups are
defined in the PDU router configuration.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Enables a routing path group.

V

AUTSSAR

| Available via

PduR.h

]

[SWS_PduR_00647]
Upstream requirements: SRS_GTW_06120, SRS_BSW_00323

[1f the routing path group id does not exist, then the PDU Router module shall return
with no action. |

[SWS_PduR_00648]
Upstream requirements: SRS_GTW_06120, SRS_BSW_ 00323, SRS_BSW_00369

[If the routing path group id does not exist and the PduRDevErrorDetect iS en-
abled, the PDU Router module shall report PDUR_E_ROUTING_PATH_GROUP_ID_-

INVALID.]

[SWS_PduR_00899]
Upstream requirements: SRS_GTW_06120

[If the routing path group exists and the routing path group is already enabled, then

the PDU Router module shall return with no action. |

8.3.1.5 PduR_DisableRouting

[SWS_PduR_00617] Definition of API function PduR_DisableRouting
Upstream requirements: SRS_GTW_06120, SRS_BSW_00310

[

Service Name

PduR_DisableRouting

Syntax void PduR_DisableRouting (
PduR_RoutingPathGroupIdType id,
boolean initialize
)
Service ID [hex] 0xf4
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id Identification of the routing path group. Routing path groups are
defined in the PDU router configuration.
initialize true: initialize single buffers to the default value false: retain
current value of single buffers
Parameters (inout) None
Parameters (out) None
Return value None
Description Disables a routing path group.
Available via PduR.h

AUTSSAR

[SWS_PduR_00716]
Upstream requirements: SRS_GTW_06120, SRS_BSW_00323

[If the routing path group id does not exist, then the PDU Router module shall return
with no action. |

[SWS_PduR_00649]
Upstream requirements: SRS_GTW_06120, SRS_BSW_00323, SRS_BSW_00369

[If the routing path table id does not exist and the PduRDevErrorDetect is en-
abled, the PDU Router module shall report PDUR_E_ROUTING_PATH_GROUP_ID_-
INVALID.]

[SWS_PduR_00896]
Upstream requirements: SRS_GTW_06120

[If the routing path group exists and the routing path group is already disabled, then
the PDU Router module shall return with no action. |

8.3.2 Configurable interfaces definitions for interaction with upper layer mod-
ule

Since the API description now has a generic approach, the serviceIds of the upper
layer API functions are generic as well. To differentiate between several upper lay-
ers, the PduR uses the moduleIds of the upper layer modules as the instanceId
argument in the Det call originated from APIs listed in this section.

8.3.2.1 PduR_<User:Up>Transmit

[SWS_PduR_00406] Definition of API function PduR_<User:Up>Transmit

Upstream requirements: SRS_GTW_06012, SRS_GTW_06026, SRS_GTW_06114, SRS_GTW_
06115, SRS_GTW_06116, SRS_GTW_06130, SRS_BSW _00310

[
Service Name PduR_<User:Up>Transmit
Syntax Std_ReturnType PduR_<User:Up>Transmit (
PduIdType TxPduld,
const PdulnfoType* PdulnfoPtr
)
Service ID [hex] 0x49
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identifier of the PDU to be transmitted
PdulnfoPtr Length of and pointer to the PDU data and pointer to MetaData.
Parameters (inout) None

\Y

AUTSSAR

A

Parameters (out)

None

Return value

Std_ReturnType E_OK: Transmit request has been accepted.

E_NOT_OK: Transmit request has not been accepted.

Description

Requests transmission of a PDU.

Available via

PduR_<module>.h

8.3.2.2 PduR_<User:Up>CancelTransmit

[SWS_PduR_00769] Definition of API function PduR_<User:Up>CancelTransmit
Upstream requirements: SRS_GTW_06122, SRS_GTW 06114, SRS _ GTW_06115, SRS_GTW _

[

06116, SRS_GTW_06130, SRS_BSW_00310

Service Name

PduR_<User:Up>CancelTransmit

Syntax Std_ReturnType PduR_<User:Up>CancelTransmit (
PduIdType TxPduld
)
Service ID [hex] Ox4a
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identification of the PDU to be cancelled.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: Cancellation was executed successfully by the destination
module.

E_NOT_OK: Cancellation was rejected by the destination module.

Description

Requests cancellation of an ongoing transmission of a PDU in a lower layer communication
module.

Available via

PduR_<module>.h

8.3.2.3 PduR_<User:Up>CancelReceive

[SWS_PduR_00767] Definition of API function PduR_<User:Up>CancelReceive
Upstream requirements: SRS_GTW_06026, SRS_GTW_06114, SRS_GTW_06115, SRS_GTW_

[

06116, SRS_GTW_06130, SRS_BSW_00310

Service Name

PduR_<User:Up>CancelReceive

Syntax

Std_ReturnType PduR_<User:Up>CancelReceive (
PduldType RxPduld
)

\Y

AUTSSAR

A
Service ID [hex] Ox4c
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) RxPduld Identification of the PDU to be cancelled.
Parameters (inout) None
Parameters (out) None

Return value

E_OK: Cancellation was executed successfully by the destination
module.
E_NOT_OK: Cancellation was rejected by the destination module.

Std_ReturnType

Description

Requests cancellation of an ongoing reception of a PDU in a lower layer transport protocol
module.

Available via

PduR_<module>.h

8.3.2.4 PduR_<User:Up>ReleaseRxBuffer

[SWS_PduR_91002] Definition of API function PduR_<User:Up>ReleaseRxBuffer

Status:

DRAFT

Upstream requirements: SRS_GTW_06141

[

Service Name

PduR_<User:Up>ReleaseRxBuffer (draft)

Syntax void PduR_<User:Up>ReleaseRxBuffer (
PduldType RxPduld

)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld
Parameters (in) RxPduld Identifier of the received PDU.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Indication from the upper layer to release the lower layer reception buffer.
Tags: atp.Status=draft

Available via

PduR_<module>.h

8.3.3 Configurable interfaces definitions for lower layer communication inter-
face module interaction

Since the API description now has a generic approach, the serviceIds of the lower
layer API functions are generic as well. To differentiate between several lower lay-
ers, the PduR uses the module1ds of the lower layer modules as the instanceId
argument in the Det call originated from APIs listed in this section.

AUTSSAR

8.3.3.1 PduR_<User:Lo>RxIndication

[SWS_PduR_00362] Definition of callback function PduR_<User:Lo>RxIndica-
tion
Upstream requirements: SRS_GTW_06012, SRS_GTW _06116, SRS _GTW_06117, SRS_GTW _

[

06123, SRS_GTW_06130, SRS_BSW_00310

Service Name

PduR_<User:Lo>RxIndication

Syntax void PduR_<User:Lo>RxIndication (

PduIdType RxPduld,

const PdulnfoTypex PdulnfoPtr

)

Service ID [hex] 0x42
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) RxPduld ID of the received PDU.

PdulnfoPtr Contains the length (SdulLength) of the received PDU, a pointer
to a buffer (SduDataPtr) containing the PDU, and the MetaData
related to this PDU.

Parameters (inout) None
Parameters (out) None
Return value None

Description

Indication of a received PDU from a lower layer communication interface module.

Available via

PduR_<module>.h

8.3.3.2 PduR_<User:Lo>TxConfirmation

[SWS_PduR_00365] Definition of callback function PduR_<User:Lo>TxConfirma-
tion
Upstream requirements: SRS_GTW_06012, SRS_GTW_06116, SRS_GTW_06117, SRS_GTW_

[

06123, SRS_GTW_06130, SRS_BSW_00310

Service Name

PduR_<User:Lo>TxConfirmation

Syntax void PduR_<User:Lo>TxConfirmation (
PduIdType TxPduld,
Std_ReturnType result
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld ID of the PDU that has been transmitted.
result E_OK: The PDU was transmitted. E_NOT_OK: Transmission of
the PDU failed.
Parameters (inout) None
Parameters (out) None

\Y

AUTSSAR

A
Return value None
Description The lower layer communication interface module confirms the transmission of a PDU, or the
failure to transmit a PDU.
Available via PduR_<module>.h

8.3.3.3 PduR_<User:Lo>TriggerTransmit

[SWS_PduR_00369] Definition of callback function PduR_<User:Lo>Trigger
Transmit
Upstream requirements: SRS_GTW_06012, SRS_GTW_06032, SRS_GTW_06116, SRS_GTW_
06117, SRS_GTW_06123, SRS_GTW_06130, SRS_BSW_00310

[

Service Name PduR_<User:Lo>TriggerTransmit
Syntax Std_ReturnType PduR_<User:Lo>TriggerTransmit (
PduIdType TxPduld,
PduInfoTypex PdulnfoPtr
)

Service ID [hex] 0x41

Sync/Async Synchronous

Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in) TxPduld ID of the SDU that is requested to be transmitted.

Parameters (inout) PdulnfoPtr Contains a pointer to a buffer (SduDataPtr) to where the SDU

data shall be copied, and the available buffer size in SduLengh.
On return, the service will indicate the length of the copied SDU
data in SduLength.

Parameters (out) None

Return value Std_ReturnType E_OK: SDU has been copied and SduLength indicates the

number of copied bytes.

E_NOT_OK: No SDU data has been copied. PdulnfoPtr must not
be used since it may contain a NULL pointer or point to invalid
data.

Description Within this API, the upper layer module (called module) shall check whether the available data
fits into the buffer size reported by PdulnfoPtr->SduLength. If it fits, it shall copy its data into the
buffer provided by PdulnfoPtr->SduDataPtr and update the length of the actual copied data in
PdulnfoPtr->SduLength. If not, it returns E_NOT_OK without changing PdulnfoPtr.

Available via PduR_<module>.h

8.3.4 Configurable interfaces definitions for lower layer transport protocol mod-
ule interaction

Since the API description now has a generic approach, the serviceIds of the lower
layer transport protocol API functions are generic as well. To differentiate between
several lower layers, the PduR uses the moduleIds of the lower layer modules as the
instanceId argument in the Det call originated from APIs listed in this section.

AUTSSAR

8.3.4.1 PduR_<User:LoTp>CopyRxData

[SWS_PduR_00512] Definition of callback function PduR_<User:LoTp>CopyRx

Data

Upstream requirements: SRS_GTW_06026, SRS_GTW_06121, SRS _BSW 00310

[

Service Name

PduR_<User:LoTp>CopyRxData

SynMM' BufReqg_ReturnType PduR_<User:LoTp>CopyRxData (
PduldType id,
const PdulnfoTypex info,
PduLengthTypex bufferSizePtr
)
Service ID [hex] 0x44
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id Identification of the received I-PDU.
info Provides the source buffer (SduDataPtr) and the number of bytes
to be copied (SduLength). An SduLength of 0 can be used to
query the current amount of available buffer in the upper layer
module. In this case, the SduDataPtr may be a NULL_PTR.
Parameters (inout) None
Parameters (out) bufferSizePtr Available receive buffer after data has been copied.
Return value BufReq_ReturnType BUFREQ_OK: Data copied successfully
BUFREQ_E_NOT_OK: Data was not copied because an error
occurred.

Description

This function is called to provide the received data of an I-PDU segment (N-PDU) to the upper
layer. Each call to this function provides the next part of the I-PDU data. The size of the
remaining buffer is written to the position indicated by bufferSizePtr.

Available via

PduR_<module>.h

8.3.4.2 PduR_<User:LoTp>RxIndication

[SWS_PduR_00375] Definition of callback function PduR_<User:LoTp>RxIndica-

tion

Upstream requirements: SRS_GTW_06026, SRS_GTW_06121, SRS _BSW 00310

[

Service Name PduR_<User:LoTp>RxIndication
Syntax void PduR_<User:LoTp>RxIndication (

PduIdType id,

Std_ReturnType result

)

Service ID [hex] 0x45
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id | Identification of the received I-PDU.

\Y%

AUTSSAR

A
result E_OK: The PDU was received. E_NOT_OK: Reception of the
PDU failed.
Parameters (inout) None
Parameters (out) None
Return value None
Description Called after an I-PDU has been received via the TP API, the result indicates whether the
transmission was successful or not.
Available via PduR_<module>.h

8.3.4.3 PduR_<User:LoTp>StartOfReception

[SWS_PduR_00507] Definition of callback function PduR_<User:LoTp>StartOf
Reception

Upstream requirements: SRS_GTW_06026, SRS_GTW_06121, SRS_BSW_00310

Service Name PduR_<User:LoTp>StartOfReception
Syntax BufReq_ReturnType PduR_<User:LoTp>StartOfReception (
PduldType id,
const PdulnfoTypex info,
PduLengthType TpSdulength,
PdulLengthTypex bufferSizePtr
)
Service ID [hex] 0x46
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id Identification of the I-PDU.
info Pointer to a PdulnfoType structure containing the payload data
(without protocol information) and payload length of the first
frame or single frame of a transport protocol I-PDU reception, and
the MetaData related to this PDU. If neither first/single frame data
nor MetaData are available, this parameter is set to NULL_PTR.
TpSduLength Total length of the N-SDU to be received.
Parameters (inout) None
Parameters (out) bufferSizePtr Available receive buffer in the receiving module. This parameter
will be used to compute the Block Size (BS) in the transport
protocol module.
Return value BufReq_ReturnType BUFREQ_OK: Connection has been accepted. bufferSizePtr
indicates the available receive buffer; reception is continued. If no
buffer of the requested size is available, a receive buffer size of 0
shall be indicated by bufferSizePtr.
BUFREQ_E_NOT_OK: Connection has been rejected; reception is
aborted. bufferSizePtr remains unchanged.
BUFREQ_E_OVFL: No buffer of the required length can be
provided; reception is aborted. bufferSizePtr remains unchanged.
Description This function is called at the start of receiving an N-SDU. The N-SDU might be fragmented into
multiple N-PDUs (FF with one or more following CFs) or might consist of a single N-PDU (SF).
The service shall provide the currently available maximum buffer size when invoked with TpSdu
Length equal to 0.

V

AUTSSAR

| Available via

PduR_<module>.h

]

8.3.4.4 PduR_<User:LoTp>CopyTxData

[SWS_PduR_00518] Definition of callback function PduR_<User:LoTp>CopyTx

Data

Upstream requirements: SRS_GTW_06026, SRS_GTW_06121, SRS_BSW_00310

Service Name

PduR_<User:LoTp>CopyTxData

Syntax

BufReq_ReturnType PduR_<User:LoTp>CopyTxData (

PduldType id,

const PdulnfoTypex info,
const RetryInfoType* retry,
PduLengthTypex availableDataPtr

)

Service ID [hex]

0x43

Sync/Async

Synchronous

Reentrancy

Reentrant

Parameters (in)

id

Identification of the transmitted I-PDU.

info

Provides the destination buffer (SduDataPtr) and the number of
bytes to be copied (SdulLength). If not enough transmit data is
available, no data is copied by the upper layer module and
BUFREQ_E_BUSY is returned. The lower layer module may
retry the call. An SduLength of 0 can be used to indicate state
changes in the retry parameter or to query the current amount of
available data in the upper layer module. In this case, the Sdu
DataPtr may be a NULL_PTR.

retry

This parameter is used to acknowledge transmitted data or to
retransmit data after transmission problems.

If the retry parameter is a NULL_PTR, it indicates that the
transmit data can be removed from the buffer immediately after it
has been copied. Otherwise, the retry parameter must point to a
valid RetryInfoType element.

If TpDataState indicates TP_CONFPENDING, the previously
copied data must remain in the TP buffer to be available for error
recovery. TP_DATACONF indicates that all data that has been
copied before this call is confirmed and can be removed from the
TP buffer. Data copied by this API call is excluded and will be
confirmed later. TP_DATARETRY indicates that this API call shall
copy previously copied data in order to recover from an error. In
this case TxTpDataCnt specifies the offset in bytes from the
current data copy position.

Parameters (inout)

None

Parameters (out)

availableDataPtr

Indicates the remaining number of bytes that are available in the
upper layer module’s Tx buffer. availableDataPtr can be used by
TP modules that support dynamic payload lengths (e.g. FrisoTp)
to determine the size of the following CFs.

\Y

AUTSSAR

A

Return value BufReq_ReturnType BUFREQ_OK: Data has been copied to the transmit buffer
completely as requested.

BUFREQ_E_BUSY: Request could not be fulfilled, because the
required amount of Tx data is not available. The lower layer
module may retry this call later on. No data has been copied.
BUFREQ_E_NOT_OK: Data has not been copied. Request failed.

Description This function is called to acquire the transmit data of an I-PDU segment (N-PDU). Each call to
this function provides the next part of the I-PDU data unless retry->TpDataState is TP_
DATARETRY. In this case the function restarts to copy the data beginning at the offset from the
current position indicated by retry->TxTpDataCnt. The size of the remaining data is written to
the position indicated by availableDataPtr.

Available via PduR_<module>.h

8.3.4.5 PduR_<User:LoTp>TxConfirmation

[SWS_PduR_00381] Definition of callback function PduR_<User:LoTp>TxConfir-
mation
Upstream requirements: SRS_GTW_06026, SRS_GTW_06121, SRS _BSW 00310

[

Service Name PduR_<User:LoTp>TxConfirmation
Syntax void PduR_<User:LoTp>TxConfirmation (
PduldType id,
Std_ReturnType result
)
Service ID [hex] 0x48
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id Identification of the transmitted I-PDU.
result E_OK: The PDU was transmitted. E_NOT_OK: Transmission of
the PDU failed.
Parameters (inout) None
Parameters (out) None
Return value None
Description This function is called after the I-PDU has been transmitted on its network, the result indicates
whether the transmission was successful or not.
Available via PduR_<module>.h

8.4 Scheduled functions

As any PDU Router operation is triggered by an adjacent communication module the
PDU Router does not require scheduled functions.

AUTSSAR

8.5 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

The PDU router module is modeled as a generic module that can interface to different
upper and lower modules. The approach taken to model this generic approach is to
have a virtual module called GenericComServices. This virtual module contains a
set of APls that the PDU router will call in upper layer or lower layer modules. These
APIs are generic in the way that they contain a tag <Lo>, <Up> and <LoTp> that
is replaced with the interfaced module. The tag is set by the configuration in the
PduRBswModules container using the PduRBswModuleRef reference parameter.

8.5.1 Mandatory Interfaces

The PDU Router does not require mandatory interfaces. The required API functions
depend on the configuration.

[SWS_PduR_91001] Definition of mandatory interfaces required by module Pdu
R

Upstream requirements: SRS_BSW_00384

API Function Header File Description
Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

8.5.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_PduR_00424] Definition of optional interfaces requested by module PduR
Upstream requirements: SRS_BSW_00384

API Function Header File Description

<Provider:Lo>_CancelTransmit - Requests cancellation of an ongoing transmission of
a PDU in a lower layer communication module.

<Provider:Lo>_ReleaseRxBuffer LSduR_<module>.h Indication from the upper layer to release the lower
layer reception buffer.

<Provider:Lo>_Transmit - Requests transmission of a PDU.

<Provider:LoTp>_CancelReceive - Requests cancellation of an ongoing reception of a
PDU in a lower layer transport protocol module.

AUTSSAR

API Function

Header File

Description

<Provider:LoTp>_CancelTransmit

Requests cancellation of an ongoing transmission of
a PDU in a lower layer communication module.

<Provider:LoTp>_Transmit

Requests transmission of a PDU.

<Provider:Up>_RxIndication

Indication of a received PDU from a lower layer
communication interface module.

<Provider:Up>_TriggerTransmit

Within this API, the upper layer module (called
module) shall check whether the available data fits
into the buffer size reported by PdulnfoPtr->Sdu
Length. If it fits, it shall copy its data into the buffer
provided by PdulnfoPtr->SduDataPtr and update the
length of the actual copied data in PdulnfoPtr->Sdu
Length. If not, it returns E_NOT_OK without
changing PdulnfoPtr.

<Provider:Up>_TxConfirmation

The lower layer communication interface module
confirms the transmission of a PDU, or the failure to
transmit a PDU.

<Provider:UpTp>_CopyRxData

This function is called to provide the received data of
an I-PDU segment (N-PDU) to the upper layer. Each
call to this function provides the next part of the
|-PDU data. The size of the remaining buffer is
written to the position indicated by bufferSizePtr.

<Provider:UpTp>_CopyTxData

This function is called to acquire the transmit data of
an |-PDU segment (N-PDU). Each call to this
function provides the next part of the I-PDU data
unless retry->TpDataState is TP_DATARETRY. In
this case the function restarts to copy the data
beginning at the offset from the current position
indicated by retry->TxTpDataCnt. The size of the
remaining data is written to the position indicated by
availableDataPtr.

<Provider:UpTp>_StartOfReception

This function is called at the start of receiving an
N-SDU. The N-SDU might be fragmented into
multiple N-PDUs (FF with one or more following
CFs) or might consist of a single N-PDU (SF). The
service shall provide the currently available
maximum buffer size when invoked with TpSdu
Length equal to 0.

<Provider:UpTp>_TpRxIndication

Called after an I-PDU has been received via the TP
API, the result indicates whether the transmission
was successful or not.

<Provider:UpTp>_TpTxConfirmation

This function is called after the I-PDU has been
transmitted on its network, the result indicates
whether the transmission was successful or not.

Dem_SetEventStatus

Dem.h

Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError

Det.h

Service to report development errors.

AUTSSAR

9 Sequence diagrams

The goal of this chapter is to make the understanding of the PDU Router easier. For this
purpose sequence diagrams which show different communication scenarios are used.
Please consider that the sequence diagrams are not exhaustive and are only used to
support the functional specification (Chapter 7) and API specification (Chapter 8).

Focus of the sequence diagrams is the PDU Router and therefore interactions between
other modules (e.g. between an interface and its driver) are not shown.

Note: The sequence diagrams of the I-PDU Multiplexer are shown in [5]. Depending
on the interaction scenario the IpduM has to be considered as an upper layer or a lower
layer module of the PDU Router.

Note: The diagrams in this chapter are to show specific use-cases. They are not
requirements for an implementation of the PDU Router module.

9.1 |-PDU Reception

The reception of an I-PDU received from a Communication Interface module or from
Transport Protocol module and forwarded to the COM module.

Note that the PDU Router is not the only customer for the Communication Interface
modules and |-PDUs. Other modules such as NM and TP modules receive PDUs
directly from the Communication Interface modules.

9.1.1 Canlf module I-PDU reception

Following Figure 9.1 shows reception of I-PDU from the Canlf module to the COM
module.

«module» «module» «module»
Com PduR Canlf
oo

T T
: PduR_<User:Lo>RxIndication(PduldType, :
| const PdulnfoType*) L

Com_RxIndication(PduldType,
const PdulnfoType*)

copy buffer()

e e

__________________________>.
T T
1 1

1

Reception of IPDU going directly to
CcoMm.
No buffering in PduR is needed

Figure 9.1: Canlf to COM I-PDU reception

AUTSSAR

9.1.2 Frif module I-PDU reception

Following Figure 9.2 shows reception of I-PDU from the Frlf module to the COM mod-
ule.

«module» «module» «module»

Com PduR Frif
oSO

T
: PduR_<User:Lo>RxIndication(PduldType,
| const PdulnfoType*)

Com_RxIndication(PduldType,
const PdulnfoType*)

copy buffer()

_____________________>

________________________ >

Reception of IPDU going directly to
com.

No buffering in PduR is needed

Figure 9.2: Frif to COM I-PDU reception

9.1.3 Linlf module I-PDU reception

Following Figure 9.3 shows reception of I-PDU from the Linlf module to the COM mod-
ule.

«module» «module» «module»
Com PduR LinIf

PduR_<User:Lo>RxIndication(PduldType,
const PdulnfoType*)

Com_RxIndication(PduldType,
const PdulnfoType*)

copy buffer()
C

________________________ >

Reception of IPDU going directly to COM.

No buffering in PduR is needed

Figure 9.3: Linlf to COM I-PDU reception

9.1.4 CanTp module I-PDU reception

Following Figure 9.4 shows reception of I-PDU from the CanTp module to the DCM
module. The reception is made using the Transport Protocol APls.

AUTSSAR

«module»

Dcm_StartOfReception(BufReq_ReturnType, PduldType,
const PdulnfoType*, PduLengthType, PduLengthType*)

Dcm_CopyRxData(BufReq_RetumType, PduldType,
const PdulnfoType*, PduLengthType*)

copy data()

Dcm_CopyRxData(BufReq_RetumType, PduldType,
const PdulnfoType*, PduLengthType*)

copy data()

Dcm_CopyRxData(BufReq_ReturnType, PduldType,
const PduinfoType*, PduLengthType*)

copy data()

Dcm_TpRxIndication(PduldType, Std_ReturnType)

«module» «module»
PduR CanTp
T T
| PduR_CanTpStartOfReception(BufReq_ReturnType, |
| PduldType, const PdulnfoType*, PduLengthType, |
PduLengthType*)
Ry ——S
T PduR_CanTpCopyRxData(BufReq_RetumType, T
L PduldType, const PdulnfoType*, PduLengthType*) L
=
Ry ——S
T PduR_CanTpCopyRxData(BufReq_ReturnType, T
PduldType, const PdulnfoType*, PduLengthType*)
=
Ry ——S
T PduR_CanTpCopyRxData(BufReq_ReturnType, T
PduldType, const PdulnfoType*, PduLengthType*)
=
Ry ——S
T
I
: PduR_CanTpRxIndication(PduldType, Std_ReturnType)
____________________________>

Figure 9.4: CanTp to Dcm TP PDU reception

AUTSSAR

9.2 I-PDU transmission

The transmission of an I-PDU transmitted from the COM module to a Communication
Interface module or a Transport Protocol module.

9.2.1 Canlf module I-PDU transmission

Following Figure 9.5 shows transmission of I-PDU from the COM module to the Canlf
module.

«module» «module» «module»
Com PduR Canlf
O

T T
: PduR_ComTransmit(Std_RetunnType, :
| PduldType, const PdulnfoType*) |

Canlf_Transmit(Std_ReturnType, PduldType, const PdulnfoType*)

copy data()
[; «

PduR_<User:lo>TxConfirmation(PduldType, Std_ReturnType)

Transmit IPDU on CAN

PduR will not buffer IPDU

Figure 9.5: Com to Canlf I-PDU transmission

AUTSSAR

9.2.2 Frif module I-PDU transmission

Following Figure 9.6 shows transmission of I-PDU from the COM module to the Frlf
module using trigger transmit.

«module» «module» «module»

Com PduR Frif
(e o)

T T
: PduR_ComTransmit(Std_ReturnType, :
| PduldType, const PdulnfoType*) |

Frif_Transmit(Std_ReturnType,
PduldType, const PdulnfoType *)

set flag()
[; «

Will not copy
S —m T s PDU buffer

PduR_<User:Lo>Triggertransmit(PduldType, PdulnfoType*)

Com_TriggerTransmit(Std_ReturnType, PduldType,
PdulnfoType*)

copy buffer()

e e

PduR_<User:Lo>T xConfirmation(PduldType, Std_ReturnType)

Com_TxConfirmation(PduldType, Std_ReturnType)

Hu—————————————————————————————>

Transmit of an IPDU on FlexRay using Frif_Transmit. j

No buffeering is made in PduR

- -
|
|
|

Figure 9.6: Com to Frif I-PDU transmission

AUTSSAR

9.2.3 Linlf module I-PDU transmission

Following Figure 9.7 shows transmission of I-PDU from the COM module to the Linlf
module using transmit and later trigger transmit functions. In this case the |I-PDU is a
LIN sporadic frame.

«module» «module» «module»

Com PduR Linlf
O

T T
| PduR_ComTransmit(Std_ReturnType, |
: PduldType, const PdulnfoType*) :

Linlf_Transmit(Std_RetumnType,

T
|
|
I
|
|
PduldType, const PdulnfoType*) !

setflag() | Will not copy
L PDU buffer

T T PduR_<User:.Lo>TriggerTransmit(Std_ReturnType,
| | PduldType, PdulnfoType*)
| H
|
|

Com_TriggerTransmit(Std_ReturnType,
| PduldType, PduinfoType*)

copy buffer()

T T
I
I

|

I

| X . I
PduR_<User:Lo>TxConfirmation(PduldType, Std_RetumType)

<

Transmit of an IPDU on LIN using Linlf_Transmit. Note
that this is only applicable for LIN sporadic frames

No buffeering is made in PduR

Figure 9.7: Com to Linlf I-PDU transmission (LIN sporadic frame)

AUTSSAR

Following Figure 9.8 shows transmission of I-PDU from the COM module to the Linlf
module using trigger transmit. In this case the |-PDU is all other types except LIN
sporadic frame.

«module» «module» «module»

Com PduR LinIf
(o o)

T T
: PduR_<User:Lo>TriggerTransmit(PduldType, :
I PdulnfoType*) |

Com_TriggerTransmit(Std_RetunnType,
PduldType, PdulnfoType*)

The TriggerTransmit
will be called based
copy buffer() on the LIN schedule
table

__________________________ >

_________________________ >

| |
| |
| |
{PduR_<User:Lo>TxConfi mation(PduldType, Std_ReturnType)

Com_TxConfirmation(PduldType, Std_ReturnType)

|
|
|
|
|
|
|
|
|
|
H __________________________ >
]
|
|
|
|
|

Transmit of an IPDU on LIN using LinIf_TriggerTransmit.
Note that this is applicable for all LIN frames except
Sporadic frames

-

No buffeering is made in PduR

Figure 9.8: Com to Linlf I-PDU transmission (LIN sporadic non-frame)

AUTSSAR

9.2.4 CanTp module I-PDU transmission

Following Figure 9.9 shows transmission of I-PDU from the DCM module to the CanTp
module using the Transport Protocol API.

«module» «module» «module»
Dcm PduR CanTp

T
| PduR_<User:.Up>Transmit(Std_ReturnType, | |
| PduldType, const PdulnfoType*) | :

|

CanTp_Transmit(Std_RetunType,

PduldType, const PdulnfoType*)
< ___________________________
________________________________ L
|

T PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const
: PdulnfoType*, RetrylnfoType*, PduLengthType*) !

Dcm_CopyTxData(BufReq_ReturnType, PduldType,
const PdulnfoType*, RetryInfoType*, PduLengthType*)

|
I
I
|
|
| @
copy data()
N
>

]

|

| PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const
| | PdulnfoType*, RetrylnfoType*, PduLengthType*)
|

|

|

Dcm_CopyT xData(BufReq_ReturnType, PduldType,
const PdulnfoType*, RetrylnfoType*, PduLengthType*)

copy data()
_______________________________>

Dcm_TpTxConfirmation(PduldType, Std_ReturnType)

PduR_CanTpTxConfirmation(PduldType, Std_ReturnType)

e =

___|:‘

Figure 9.9: Dcm to CanTp PDU transmission

AUTSSAR

9.2.5 Multicast I-PDU transmission on Transport Protocol modules

Following Figure 9.10 shows transmission of I-PDU from the DCM module to the
CanTp, FrTp and LinTp (Linlf includes the Transport Protocol module) module using
the Transport Protocol API.

«module» «module» «module» «module» «module»
Dcm PduR CanTp FrTp LinIf

T T T
| | |
PduR_<User:Up>Transmit(Std_RetumType, :

F:duIdType, const PdulnfoType*) |

|
CanTp_Transmit(Std_RetumType, PduldType,
const PdulnfoType*) o |

T

I

I

|

|

|

> l
|

S— | |
!

)

FrTp_Transmit(Std_ReturnType, lf’duldType, const PdulnfoTy&e*
P

oo 1

1 1
T PduR_<User:LoTp>CopyTxData(BufReq_ReturnType, PduldType,
| const PdulnfoType*, RetrylnfoType*, PduLengthType*) |

d

L
|
|
|

T
| |
Dem_CopyTxData(BufReq_ReturnType, PduldType, I
const PdulnfoType*, RetryInfoType*, PduLePgthType*) |
L |

|

I

[const PdulnfoType*, RetrylnfoType*, PduLengthType*) I

d

|

|

| I 1 1

| | PduR_<User:LoTp>CopyTxData(BufReq_ReturnType, PduldType,
I

|

|

Dem_CopyTxData(BufReq_RetumnType, PduldType,
const PdulnfoType*, RetryInfoType*, PduLeIn thType*)
L

I<:onst PdulnfoType*, RetrylnfoType*, PduLengthType*)

d

I
|
|
: 'PduR_<User:LoTp>CopyTxData_(BufReq_RetumType, PduldType,
I
|

A
|
! |
Dcm__CopyTxData(BufReq_RetumType, Pd_ul_dType, 1
const PdulnfoType*, RetryInfoType*, PduLeIngthType*) I
<

|

|

|

|

I
: PduR_<User: LoTp>TxConfirr:nation(PduIdType, StdiReturn‘I:'ype)

N

When the PDU Router
module receives the
last TxConfirmation, it
will call the
TxConfirmation of the
DCM module. The
result reported to the
DCM will be E_OK if at
least one
TxConfirmation
reported E_OK.

H PduR_<User:.LoTp>TxConfi rmation(PduIdType. Std_ReturnTyp
Dem_TpTxConfirmation(PduldType, |
Std_ReturnType)

A

——————Re—————

|
| n |
| | |

Figure 9.10: Local PDU transmission on Transport Protocol from Dcm to CAN, FlexRay
and LIN

AUTSSAR

9.3 Gateway of I-PDU

Following use-cases shows how the PDU Router modules will gateway I-PDUs.

9.3.1 Gateway between two Canlfs

Following Figure 9.11 shows how an I-PDU is gatewayed between two CAN networks
(CAN1 and CAN2) using Canlf.

«module» «module»

PduR Canlf
Received IPDU on
CAN bus 1
copy data() Transmition of IPDU
on CAN bus 2

PduR_<User:Lo>RxIndication(PduldType,

T
|
I
: const PdulnfoType*)

Canlf_Transmit(Std_ReturnType, PduldType, const PdulnfoType*)

g
______________________________ >
T T
I I
I PduR_<User:Lo>TxConfirmation(PduldType, Std_ReturnType) |
Confirmation of
______________________________ > transmission on
CAN bus 2
T T
| |

Gateway of IPDU from CAN
bus 1 to CAN bus 2 without
buffering

Calling Canlf_Transmit
without buffering the IPDU is
possible since Canlf will
always copy the frame

Figure 9.11: Gateway of I-PDU from CAN1 to CAN2

AUTSSAR

9.3.2 Gateway from CAN to FlexRay

Following Figure 9.12 shows how an |-PDU is gatewayed between CAN and FlexRay,
using trigger transmit (with buffering and without buffering).

«module» «module» «module»
PduR Frif Canlf

T T T

| | |

| | |

I PduR_<User:Lo>RxIndication(PduldType, const PdulnfoType*) I
T

alt

[NOT ImmediateBufferAccess] [; copy buffer()

[ImmediateBufferAccess]

Frif_Transmit(Std_ReturnType, PduldType, const PdulnfoTypi*
L g

A 1

PduR_<User:Lo>Triggertransmit(PduldType, PdulnfoType *)

alt
copy buffer()
[NOT ImmediateBufferAccess] C

___________________________ >

-
-

PduR_<User:Lo>TxConfirmation(PduldType, Std_ReturnType)

___________________________ >

copy buffer()

Gateway from CAN to FlexRay in two flavors. In
ImmediateBufferAccess the PduR will not have to buffer
the IPDU, in case not ImmediateBufferAccess then the
PduR will have to buffer since triggerTransmit will be used.

Figure 9.12: Gateway of I-PDU from CAN to FlexRay

AUTSSAR

9.3.3 Gateway from CAN to LIN

Following Figure 9.13 shows how an |I-PDU is gatewayed from CAN to LIN, using trigger
transmit (LIN sporadic frame and all other LIN frame types).

«module» «module» «module»
PduR Canlf Linif

T T
| |
1 PduR_<User:Lo>RxIndication(PduldType, |
| const PdulnfoType*) |

The PduR may
buffer more than
one IPDU to be
gatewayed (ie. a
FIFO)

buffer IPDU()
C

alt

[if LIN sporadic frame] Linlf_Transmit(Std_RetumType, PduldType, const PdulnfoType*)

A |

flag frame for transmission()

[otherwise]

L L
| |
| |
|

PduR_<User:Lo>Triggertransmit(PduldType, PdulnfoType *)

Get the oldest
IPDU

I

I

|

|

]‘__l copy data() :
L I
|

I

- ——
F———

Gatewaying of IPDU to an Interface
that does not copy IPDU in the
Transmit function. The use-case is
shown on LIN and it’s also valid for
FlexRay

Figure 9.13: Gateway of I-PDU from CAN to LIN

AUTSSAR

9.3.4 Gateway from CAN to CAN and received by the COM module

Following Figure 9.14 shows how an I-PDU is gatewayed from CAN1 to CAN2 and also
received locally by the COM module.

«module» «module» «module»

Com PduR Canlf
O

T
|
|
| PduR_<User:Lo>RxIndication(PduldType,
| const PdulnfoType*) Received on
CAN1

Com_RxIndication(PduldType,
const PdulnfoType*)
<

The PDU Router
module routes to
COM first because
of the lower
routing path ID

const PdulnfoType*)

Transmisison
copy data() request on CAN2

< _________________________
| S
L PduR_<User:Lo>TxConfirmation(PduldType,
| Std_ReturnType) I
L L
Transmission is
confimed on
CAN2
| S

e
u Canlf_Transmit(Std_ReturnType, PduldType,
|
|
I
I
|
|
|
I
I
|
|
|
I
|
|
|
I
I
|
|
|

Figure 9.14: Gateway of I-PDU from CAN to CAN and Com

AUTSSAR

9.3.5 Singlecast Gateway TP I-PDU

Following Figure 9.15 shows how a Transport Protocol (multi N-PDU) I-PDU is On-The-
Fly Gatewayed between two CAN networks.

«module»
PduR

«module»
CanTp

PduR_<User:LoT p>StartOfReception(BufReq_ReturnType, PduldType,
const PdulnfoType*, PduLengthType, PduLengthType*)

N

Data is received
from CAN1

__ >

PduR_<User:LoTp>CopyRxData(BufReq_ReturnType, PduldType, const PdulnfoType*, PduLengthType*)

N

The data

received from

CANT has ; copy data(

reached the C ;

threshold for CanTp_Transmit(Std_RetumType, PduldType, const PdulnfoType*)
gateway

Start e —
transmission on
CAN2

e —
| S

N

Data is requested
for transmission
on CAN2

-———1

PduR_<User:LoTp>CopyTxData(BufReq_ReturnType, PduldType, const PdulnfoType*, RetrylnfoType*, PduLengthType*)

!

PduR_<User:LoTp>CopyRxData(BufReq_ReturnType, PduldType, const PdulnfoType*, PduLengthType*)

copy data()
E; ;

__ >

complete data is
received from
CAN1

And reception is
confirmed

- - -1

PduR_<User:.LoTp>RxIndication(PduldType, Std_ReturnType)

__ >

N

Last data is
requested for
transmission on
[2 1 =1

PduR_<User:LoTp>CopyTxData(BufReq_ReturnType, PduldType, const PdulnfoType*, RetrylnfoType*, PduLengthType*)

PduR_<User:LoTp>TxConfirmation(PduldType, Std_ReturnType)

N

Transmission is
confirmed on
CAN2

__ >

-

Figure 9.15: TP PDU On-The-Fly Gatewaying

AUTSSAR

9.3.6 Multicast Gateway TP I-PDU with Forwarding to Upper Layer

The following Figure 9.16 shows a Transport Protocol (multi N-PDU) I-PDU Direct Mul-
ticast Gatewaying from J1939Tp to CAN and LIN with forwarding to DCM.

«module» «module» «module» «module» «module»
Dcm PduR J1939Tp CanTp LinTp

1 1
PduR_J1939TpStartOfReception(BufReq_RetumType, PduldType,
const PdulnfoType*, PduLengthType, PduLengthType*)

L

U------------------>

PduR;J1939TpCopnyData(BufReqiReturnType,
Pduld'll'ype, const PdulnfoType*, PduLengthType*)

<
d

copy data()

__________________>

PduRﬁJlQ:39Tprlndicalion(PduIdType, StdiReturnType:)

<
d

Complete data
received from
11939Tp

Dcm;StanOfRecep!ion(BufReqiReturnType, PduldType,
const PdulnfoType*, PduLengthType, PduLengthType*)

[>

]
Dcm_CopyRxData(BufReq_RetumType, PduldType,
const PduinfoType*, PduLengthType*)
L @

d

copy data()

:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)

CanTp_Transmit(Std_RetumnType, PduldT}/ple, const PdulnfoTyE*.
B _I _} ________ iu Transmit on CAN

LinTp_Transmit(Std_ReturnType, PduldType, const PdulnfoType*) |

Ll Transmit
e ————————m———————— 1 T bommmm - ~L| on LIN
> |

L I
| PduR_CanTpCopyTxData(BufReq_ RetumType PduldType, constl
| PdulnfoType*, RetrylnfoType*, PduLengthType*)

1

[|
copy data() :
I
___________________ ———————==
PduR_LinTpCopyTxData(BufReq_ RelurnType PduldType, const’

PdulnfoType*, RetrylnfoType*, PduLengtthype*)
<
<
I

copy data() Data is

requested

_________ on LIN
PduR_CanTpCopyTxData(BufReq_RetumType, PduldType, const

| PdulnfoType*, RetrylnfoType*, PduLenglthType')

I

| < |
<

| |

copy data() | |

I I

___________________ e = I

| |

| |

1 PduR_LinTpCopyTxData(BufReq_ReturnType, PduldType, const 1

[PdulnfoType*, RetrylnfoType*, PduLengthType*) | |
d

I
copy data() :
I
I

1
PduR_LinTpTxConfirmation(PduldType, Std_RetumType)

R .

Figure 9.16: TP PDU Direct Multicast Gatewaying with Forwarding to Upper Layer

AUTSSAR

9.3.7 Gateway Single Frame TP I-PDU with Forwarding to Upper Layer

The following Figure 9.17 shows a Transport Protocol I-PDU (contained in a SF) Direct
Gatewaying from CAN1 to CAN2 with forwarding to DCM.

«module» «module» «module»
Dcm PduR CanTp

T

|

: PduR_CanTpStartOfReception(BufReq_ReturnType, PduldType, const

|, PdulnfoType* PduLengthType, PduLengthType*)
d

(- >

PduR_CanTpRxIndication(PduldType, Std_ReturnType)

Dcm_StartOfReception(BufReq_RetumType, PduldType,

const PdulnfoType*, PduLengthType, PduLengthType*) Complete
¢ data
received
_______________________ = from CAN1

I Dcm_CopyRxData(BufReq_ReturnType, PduldType,
| const PdulnfoType*, PduLengthType*)
1

I __ Dcm_TpRxIndication(PduldType, Std_RetumType)
<
_______________________ >

CanTp_Transmit(Std_ReturnType, PduldType, const PdulnfoType*) —B

e ———— - -I_J Transmit on
CAN2

T PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const
! _, PdulnfoType*, RetrylnfoType*, PduLengthType*)

N

copy data() Data is
requested
_______________________________ > on CAN2

o
=
c
‘;U
Q
©
5
=
kS
=
x
Q
o
3
3
2
=
A
o
S
=
>
5
<
3
o
@
g
pe)
@
£
3
=
<
]
A

L

Figure 9.17: TP PDU Direct Gatewaying with Forwarding to Upper Layer

The I-PDU must be buffered in the PDU Router since the DCM module is not aware of
that it will be Gatewayed to CAN2. Such gatewaying is controlled by the configuration
and cannot be processed by the DCM.

AUTSSAR

9.3.8 Gateway Broadcast Announce Message of J1939Tp

The following Figure 9.18 shows how routing of a broadcast TP protocol (e.g. BAM of
J1939Tp) is performed in a Direct Gatewaying fashion.

Figure 9.18: Routing of Broadcast Tp protocol

«module» «module» «module»
PduR CanTp J1939Tp
T T T
| | |
I PduR_J1939TpStartOfReception(BufReq_ReturnType, PduldType, I I
B [const PdulnfoType*, PduLengthType, PduLengthType*) I I
Data is received i T
from J1939Tp 1
___ [S ———
I
! T
| | |
! . PduR_J1939TpCopyRxData(BufReq_ReturnType, PduldType, const PdulnfoType*, PduLengthType*) !
N [i
The data copy data() !
received from |
J1939Tphas | [Fe———— e e o S =
reached the !
threshold for | : T
gateway \ \ \
| | |
Start 1 1 1
transmission on | | |
CANT1 and CAN2 I I I
| | |
| | |
N : PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const : :
Data is requested | PdulnfoType*, RetryInfoType*, PduLengthType*) | |
for transmission |
on CAN1 |
——— > |
o |
I PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const I
| PdulnfoType*, RetrylnfoType*, PduLengthType*) I
Data is requested :
for transmission | | L - - - — - _ >
on CAN2 :
| | |
| PduR_J1939TpCopyRxData(BufReq_ReturnType, PduldType, const PduinfoType*, PduLengthType*) | |
L L L
|
complete data is !
received from copy data() :
11939Tp |
——— e
And reception is | L
confirmed l PduR_J1939TpRxindication(PduldType, const PdulnfoType*) l l
T
CanTp_Transmit(Std_RetumType, PduldType, const PdulnfoType*) - !
L
< __ ﬂ
CanTp_Transmit(Std_RetumType, PduldType, const PdulnfoType*) - |
L
< __ ﬂ
—— et
| m
PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const : :
PdulnfoType*, RetrylnfoType*, PduLengthType*) I |
Last data is !
requested for | | | _ _ _ _ - > :
transmission on
CANT and CAN2 PduR_CanTpCopyTxData(BufReq_ReturnType, PduldType, const |
PdulnfoType*, RetryInfoType*, PduLengthType*) :
|
I
——— > 1
L L |
! PduR_CanTpTxConfirmation(PduldType, Std_ReturnType) ! :
Transmission is |
confrmedon | | L _ _ _ _ _ _ o e > !
CANT and CAN2 !
= |
| PduR_CanTpTxConfirmation(PduldType, Std_ReturnType) :
|
|
——— > "
T T I
I

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
PDU Router.

Chapter 10.3 specifies published information of the module PDU Router.

10.1 How to read this chapter

For details refer to [3] Chapter 10.1 “Introduction to configuration specification”.

10.1.1 Variants

[SWS_PduR_00295]
Upstream requirements: SRS_GTW_06002, SRS_BSW_00404

[The PDU Router module shall support the update of the routing configuration (i.e. the
PDU Router routing tables) at post build-time if this variant is supported. |

Support of post-build update of the routing table is not always desired. Therefore post-
build update of the routing table is only supported in the variant post-build of the PDU
Router module, see further section 10.1.1.

The post-build comes in two flavors: Selectable and Loadable, there is no restriction
on using any of them in the PDU Router module or even a combination of them.

[SWS_PduR_00296]
Upstream requirements: SRS_GTW_06001, SRS_BSW_00404

[If the variant post-build is supported, the update of the routing tables shall only be
possible when the PDU Router module is uninitialized. |

Remark: The process how the update of the routing tables is performed is not re-
stricted. Most likely a reflashing of the memory segment that holds the table will be
done by the bootloader - a separate program which may be loaded after a reboot to
update the ECU.

[SWS_PduR_00281]
Upstream requirements: SRS_GTW_06097, SRS_BSW_00404

[The post-build time configuration of the PDU Router module shall be identifiable by
the unique configuration identifier: PduRConfigurationId]|

AUTSSAR

Remark: The unique configuration identifier is not used to select one of multiple post-
build configuration sets of the PDU Router module, but for unique identification of the
current PDU Router module post-build configuration, e.g. for Diagnostics or for check-
ing at runtime that the post-build configurations of related communication modules
match. The configuration identifier can be read via the APl PduR_GetConfigura-
tionId see section 8.3.1.3.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in chapter 7 and chapter 8. An overview of the top-
level PDU Router configuration container PduR is shown in Figure 10.1.

AUTSSAR

PduR: EcucModuleDef | +container PduRGeneral:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

DemEventParameter:
EcucParamConfContainerDef

PduRBswModules:
‘+container EcucParamConfContainerDef upperMultiplicity = 65535
lowerMultiplicity = 1

lowerMultiplicity = 0

upperMultiplicity = * +destination
. PduRDemEventParameterRefs: PDUR_ROUTING PATH BUFFER OVERFLOW:
+container EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = 1
requiresSymbolicNameValue = true
+container
g] " PduRDestPduRRef:
PduRRoutingPaths: . . EcucReferenceDef
EcucParamConfContainerDef PduRRoutingPath: +reference -
+subContainer EcucParamConfContainerDef >
T
I“"pe"\':'”l':.'pll.'c,':y_‘o treference PAuRScPduRRef:
owerMultiplicity = EcucReferenceDef
+destination\|/
PduRSrcPdu:
f EcucParamConfContainerDef
+subContainer| ————————7——— +destination
t lowerMultiplicity = 0
upperMultiplicity = * PduRDestPdu:
EcucParamConfContainerDef
g N upperMultiplicity = *
+subContainer lowerMultiplicity = 0

PduRRoutingPathGroup:

+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

PduRBuffer: PduRPduMaxLength:
+subContainer| EcucParamConfContainerDef +parameter EcucIntegerParamDef
lowerMultiplicity = 0 min =1
upperMultiplicity = * max = 4294967295

PduRConfigurationld:

+p EcucIntegerParamDef

min =0
max = 65535

PduRMaxRoutingPathGroupCnt:
EcucIntegerParamDef

+p X

*o——— min =0

max = 65535

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter "
PduRMaxRoutingPathCnt:

EcuclntegerParamDef

min =0
max = 65535
lowerMultiplici
upperMultiplicity = 1

Figure 10.1: PDU Router Configuration Overview - PduR

AUTSSAR

10.2.1 PduR

[ECUC_PduR_00293] Definition of EcucModuleDef PduR [

Module Name

PduR

Description

Configuration of the PduR (PDU Router) module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Dependency

PduRBswModules

0.”

Each container describes a specific BSW module (upper/CDD/
lower/IpduM) that the PDU Router shall interface to.

The reason to have it as own configuration container instead of
implication of the routing path is to be able to configure CDDs
properly and to force module’s to be used in a post-build
situation even though no routing is made to/from this module
(future configurations may include these modules).

PduRDemEventParameterRefs

0..1

Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter’s DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

PduRGeneral 1 This container is a subcontainer of PduR and specifies the
general configuration parameters of the PDU Router.
PduRRoutingPaths 1 Represents one table of routing paths.

This routing table allows multiple configurations that can be used
to create several routing tables in the same configuration. This is
mainly used for post-build (e.g. post-build selectable) but can be
used by pre-compile and link-time for variant handling.

AUTSSAR

10.2.2 PduRDemEventParameterRefs

[ECUC_PduR_00365] Definition of EcucParamConfContainerDef PduRDemEvent
ParameterRefs |

Container Name PduRDemEventParameterRefs
Parent Container PduR
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1
Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

PDUR_ROUTING_PATH_BUFFER_OVERFLOW 0..1 [ECUC_PduR_00366]

No Included Containers

]

[ECUC_PduR_00366] Definition of EcucReferenceDef PDUR_ROUTING_PATH
BUFFER_OVERFLOW |

Parameter Name PDUR_ROUTING_PATH_BUFFER_OVERFLOW
Parent Container PduRDemEventParameterRefs
Description A Reference to DemEventParameter element which shall be invoked using the API

Dem_SetEventStatus in case PDUR_ROUTING_PATH_BUFFER_OVERFLOW error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventld
symbolic value.

Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

AUTSSAR

PduR: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

Ecu Configuration Description Template

EcucModuleConfigurationValues

ARElement

I

PduRTransmit: EcucBooleanParamDef

PduRRxIndication: EcucBooleanParamDef

PduRStartOfReception: EcucBooleanParamDef

PduRCopyRxData: EcucBooleanParamDef

PduRTpTransmit: EcucBooleanParamDef

PduRCopyTxData: EcucBooleanParamDef

PduRTpTxConfirmation: EcucBooleanParamDef

PduRTpRxIndication: EcucBooleanParamDef

+container
PduRBswModules: PduRBswModuleRef: EcucForeignReferenceDef
EcucParamConfContainerDef +reference — .
destinationType = ECUC-MODULE-CONFIGURATION-VALUES
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = 1
+parameter
PduRRetransmission: EcucBooleanParamDef
+parameter|
+parameter) l
P P PduRCancelReceive: EcucBooleanParamDef
+parameter
‘+parameter
PduRT xConfirmation: EcucBooleanParamDef
+parameter
+parameter
PduRCancelTransmit: EcucBooleanParamDef
+parameter
1
+parameter -
P P PduRCommunicationinterface:
EcucBooleanParamDef +parameter|
>
+parameter |
PduRTransportProtocol: EcucBooleanParamDef
+parameter|
+parameter |
PduRTriggertransmit: EcucBooleanParamDef
+parameter
+parameter
PduRUpperModule: EcucBooleanParamDef
+parameter
+parameter
PduRLowerModule: EcucBooleanParamDef
+parameter
>

PduRReleaseRxBuffer: EcucBooleanParamDef

Figure 10.2: PduRBswModules

AUTSSAR

10.2.3 PduRBswModules

[ECUC_PduR_00295] Definition of EcucParamConfContainerDef PduRBswMod-

ules |
Container Name PduRBswModules
Parent Container PduR

Description Each container describes a specific BSW module (upper/CDD/lower/lpduM) that the
PDU Router shall interface to.
The reason to have it as own configuration container instead of implication of the
routing path is to be able to configure CDDs properly and to force module’s to be used
in a post-build situation even though no routing is made to/from this module (future
configurations may include these modules).

Multiplicity 0..*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE,

VARIANT-POST-BUILD

Link time -
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PduRCancelReceive 1 [ECUC_PduR_00340]
PduRCancelTransmit 1 [ECUC_PduR_00297]
PduRCommunicationinterface 1 [ECUC_PduR_00298]
PduRCopyRxData 1 [ECUC_PduR_00360]
PduRCopyTxData [ECUC_PduR_00362]
PduRLowerModule [ECUC_PduR_00307]
PduRReleaseRxBuffer [ECUC_PduR_00368]

PduRRetransmission

[ECUC_PduR_00332]

PduRRxIndication

[ECUC_PduR_00358]

PduRStartOfReception [ECUC_PduR_00359]
PduRTpRxIndication 1 [ECUC_PduR_00364]
PduRTpTransmit 1 [ECUC_PduR_00361]
PduRTpTxConfirmation 1 [ECUC_PduR_00363]
PduRTransmit 1 [ECUC_PduR_00357]
PduRTransportProtocol 1 [ECUC_PduR_00312]
PduRTriggertransmit 1 [ECUC_PduR_00313]
PduRTxConfirmation 1 [ECUC_PduR_00314]
PduRUpperModule 1 [ECUC_PduR_00338]
PduRBswModuleRef 1 [ECUC_PduR_00294]

No Included Containers

AUTSSAR

[ECUC_PduR_00340] Definition of EcucBooleanParamDef PduRCancelReceive |

Parameter Name

PduRCancelReceive

Parent Container

PduRBswModules

Description Specifies if the Transport protocol module supports the CancelReceive API or not.
Value true the APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_PduR_00297] Definition of EcucBooleanParamDef PduRCancelTransmit

[

Parameter Name

PduRCancelTransmit

Parent Container

PduRBswModules

Description Specifies if the BSW module supports the CancelTransmit APl or not. Value true the
APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00298] Definition of EcucBooleanParamDef PduRCommunication

Interface |

Parameter Name

PduRCommunicationinterface

Parent Container

PduRBswModules

Description Specifies if the BSW module supports the Communication Interface APIs or not. Value
true the APIs are supported.
A module can have both Communication Interface APIs and Transport Protocol APls
(e.g. the COM module).

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

[ECUC_PduR_00360] Definition of EcucBooleanParamDef PduRCopyRxData |

Parameter Name

PduRCopyRxData

Parent Container

PduRBswModules

Description Specifies if the Transport protocol module supports the CopyRxData API or not. Value
true the APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00362] Definition of EcucBooleanParamDef PduRCopyTxData |

Parameter Name

PduRCopyTxData

Parent Container

PduRBswModules

Description Specifies if the Transport protocol module supports the CopyTxData API or not. Value
true the API is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00307] Definition of EcucBooleanParamDef PduRLowerModule |

Parameter Name PduRLowerModule

Parent Container PduRBswModules

Description The PduRLowerModule will decide who will call the APIs and who will implement the
APls.
For example, if the Canlf module is referenced then the PDU Router module will
implement the PduR_CanlfRxIndication API. And the PDUR module will call the Canlf_
Transmit API. Other APIs are of course also covered.
An upper module can also be an lower module (e.g. the lpduM module).

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Y%

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00368] Definition of EcucBooleanParamDef PduRReleaseRxBuffer

Status: DRAFT

Parameter Name

PduRReleaseRxBuffer

Parent Container

PduRBswModules

Description Specifies if BSW module supports the ReleaseRxBuffer APl or not. Value true the API
is supported.
Tags: atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_PduR_00332] Definition of EcucBooleanParamDef PduRRetransmission

[

Parameter Name

PduRRetransmission

Parent Container

PduRBswModules

Description If set to true this means that the destination transport protocol module will use the
retransmission feature. This parameter might be set to false if the retransmission
feature is not used, even though the destination transport protocol is supporting it.
This parameter is only valid for transport protocol modules and gateway operations. If
transmission from a local upper layer module this module will handle the
retransmission.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_PduR_00358] Definition of EcucBooleanParamDef PduRRxIndication [

Parameter Name

PduRRxIndication

Parent Container

PduRBswModules

Description Specifies if BSW module supports the RxIndication API or not. Value true the APl is
supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_PduR_00359] Definition of EcucBooleanParamDef PduRStartOfRecep-

tion [
Parameter Name PduRStartOfReception
Parent Container PduRBswModules

Description Specifies if the Transport protocol module supports the StartOfReception API or not.
Value true the APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_PduR_00364] Definition of EcucBooleanParamDef PduRTpRxIndication

[

Parameter Name

PduRTpRxIndication

Parent Container

PduRBswModules

Description Specifies if the Transport protocol module supports the TpRxIndication API or not.
Value true the APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_PduR_00361] Definition of EcucBooleanParamDef PduRTpTransmit |

Parameter Name

PduRTpTransmit

Parent Container

PduRBswModules

Description Specifies if BSW module supports the TP Transmit API or not. Value true the APl is
supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_PduR_00363] Definition of EcucBooleanParamDef PduRTpTxConfirma-

tion |
Parameter Name PduRTpTxConfirmation
Parent Container PduRBswModules

Description Specifies if the Transport protocol module supports the TpTxConfirmation API or not.
Value true the APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_PduR_00357] Definition of EcucBooleanParamDef PduRTransmit |

Parameter Name

PduRTransmit

Parent Container

PduRBswModules

Description Specifies if BSW module supports the (IF) Transmit API or not. Value true the APl is
supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_PduR_00312] Definition of EcucBooleanParamDef PduRTransportProto-

col |
Parameter Name PduRTransportProtocol
Parent Container PduRBswModules

Description The PDU Router module shall use the API parameters specified for transport protocol
interface.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00313] Definition of EcucBooleanParamDef PduRTriggertransmit

[

Parameter Name

PduRTriggertransmit

Parent Container

PduRBswModules

Description Specifies if the BSW module supports the TriggerTransmit API or not. Value true
means that the BSW module supports the TriggerTransmit interface which a lower layer
module can call and also that it can call the TriggerTransmit interface of an upper layer
module. Value false means that the BSW module does not support the TriggerTransmit
interface which a lower layer module can call and also that it shall not call the Trigger
Transmit interface of an upper layer module.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_PduR_00314] Definition of EcucBooleanParamDef PduRTxConfirmation

[

Parameter Name

PduRTxConfirmation

Parent Container

PduRBswModules

Description Specifies if the BSW module supports the TxConfirmation API or not. Value true the
APl is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_PduR_00338] Definition of EcucBooleanParamDef PduRUpperModule |

Parameter Name

PduRUpperModule

Parent Container

PduRBswModules

Description The PduRUpperModule will decide who will call the APIs and who will implement the
APls.
For example, if the COM module is referenced then the PDU Router module will
implement the PduR_Transmit API. And the PDUR module will call the Com_Rx
Indication API. Other APIs are of course also covered.
An upper module can also be an lower module (e.g. the lpduM module).
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_PduR_00294] Definition of EcucForeignReferenceDef PduRBswModule

Ref |
Parameter Name PduRBswModuleRef
Parent Container PduRBswModules

Description This is a reference to one BSW module’s configuration (i.e. not the ECUC parameter
definition template).
Example, there could be several configurations of Linlf and this reference selects one
of them.

Multiplicity 1

Type Foreign reference to ECUC-MODULE-CONFIGURATION-VALUES

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

AUTSSAR

PduR: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+containe$

PduRGeneral: arameter PduRDevErrorDetect:
EcucParamConfContainerDef P EcucBooleanParamDef

defaultValue = false

PduRVersionInfoApi:

rameter
+paramete EcucBooleanParamDef

defaultValue = false

+parameter PduRZeroCostOperation:

EcucBooleanParamDef

PduRMetaDataSupport:

EcucBooleanParamDef
+parameter -—

lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = false

Figure 10.3: PduRGeneral

10.2.4 PduRGeneral

[ECUC_PduR_00305] Definition of EcucParamConfContainerDef PduRGeneral |

Container Name PduRGeneral
Parent Container PduR
Description This container is a subcontainer of PduR and specifies the general configuration

parameters of the PDU Router.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PduRDevErrorDetect 1 [ECUC_PduR_00302]
PduRMetaDataSupport 0..1 [ECUC_PduR_00347]
PduRVersionInfoApi 1 [ECUC_PduR_00316]
PduRZeroCostOperation 1 [ECUC_PduR_00317]

No Included Containers

AUTSSAR

[ECUC_PduR_00302] Definition of EcucBooleanParamDef PduRDevErrorDetect
[

Parameter Name PduRDevErrorDetect
Parent Container PduRGeneral
Description Switches the development error detection and notification on or off.

« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00347] Definition of EcucBooleanParamDef PduRMetaDataSup-
port |

Parameter Name PduRMetaDataSupport
Parent Container PduRGeneral
Description Enable support for MetaData handling. The MetaData is defined by the referenced

MetaDataType of the global PDU definitions. This feature may be used for efficient
address based routing and generic CAN-CAN-routing, where the MetaData contains

the CAN ID.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

J
[ECUC_PduR_00316] Definition of EcucBooleanParamDef PduRVersionInfoApi |

Parameter Name PduRVersionInfoApi

Parent Container PduRGeneral

Description If true the PduR_GetVersioninfo APl is available.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

V

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

[ECUC_PduR_00317] Definition of EcucBooleanParamDef PduRZeroCostOpera-
tion [

Parameter Name PduRZeroCostOperation

Parent Container PduRGeneral

Description If set the PduR configuration generator will report an error if zero-cost-operation cannot
be fulfilled. This parameter shall be seen as an input requirement to the configuration
generator.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

PduRRoutingPaths: PduRRoutingPath: PduRRoutingPathGroupRef:
EcucParamConfContainerDef | +subContainer| EcucParamConfContainerDef +reference EcucReferenceDef
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = *

+dedtination

PduRRoutingPathGroup:
EcucParamConfContainerDef

lowerMultiplicity = 0 PduRRoutingPathGroupld:

upperMultiplicity = * EcuclntegerParamDef

+parameter min =0

max = 65535
lowerMultiplicity = 1
upperMultiplicity = 1
withAuto = true
symbolicNameValue = true

+subContainer

+parameter PduRIsEnabledAtinit:
EcucBooleanParamDef

Figure 10.4: PduRRout ingPathGroup

10.2.5 PduRRoutingPathGroup

[ECUC_PduR_00308] Definition of EcucParamConfContainerDef PduRRouting
PathGroup |

AUTSSAR

Container Name

PduRRoutingPathGroup

Parent Container

PduRRoutingPaths

Description This container groups routing paths. By this grouping, it is possible to switch all
routings related to one network, or to one kind of PDUs. PduRRoutingPaths link one
source with one destination. Enabling and disabling of routing path groups is done
using the PduR API.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time —

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUCID
PduRIsEnabledAtInit 1 [ECUC_PduR_00329]
PduRRoutingPathGroupld 1 [ECUC_PduR_00309]

No Included Containers

]

[ECUC_PduR_00329] Definition of EcucBooleanParamDef PduRIsEnabledAtinit

[

Parameter Name

PduRIsEnabledAtInit

Parent Container

PduRRoutingPathGroup

Description If set to true this routing path group will be enabled after initializing the PDU Router
module (i.e. enabled in the PduR_Init function).

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_PduR_00309]
Groupld |

Definition of EcuclntegerParamDef PduRRoutingPath

Parameter Name

PduRRoutingPathGroupld

Parent Container

PduRRoutingPathGroup

Description Identification of the routing group.

The identification will be used by the disable/enable API in the PDU Router module API.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Y%

AUTSSAR

Range 0 .. 65535
Default value -
Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

withAuto = true

AUTSSAR

PduRRoutingPaths: EcucParamConfContainerDef >
>
+subContainer +subContainer
PduRDestPdu: PduRSrcPdu:
EcucParamConfContainerDef EcucParamConfContainerDef
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = *
+destination +destination
PduRDestPduRRef: PduRSrcPduRRef:
EcucReferenceDef +reference | EcucReferenceDef
+reference
+subContainer
. . PduRQueueDepth:
PduRRoutingPath: EcucintegerParamDef
EcucParamConfContainerDef
— min=1
upperMultiplicity = * max = 255
lowerMultiplicity = 0 & +parameter lowerMultiplicity = 0

upperMultiplicity = 1

PduRTpThreshold:
EcucintegerParamDef

+parameter min =0
max = 65535
lowerMultiplicity = 0
upperMultiplicity = 1 +subContainer
PduRBuffer:
PduRDestBufferRef: o EcucParamConfContainerDef
+reference EcucReferenceDef +destination lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity =
upperMultiplicity = *
PduRRoutingPathGroupRef: PduRRoutingPathGroup:
+reference EcucReferenceDef +destination | ‘ESucParamConfContainerDef | +subContainer
IowerMuItiApIi.ciFy =0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *

PDUR_COMMON_QUEUE:

n . +iteral | ———— =
EduRQueusing Sirateqys @ | EcucEnumerationLiteral Def

EcucEnumerationParamDef

+parameter
lowerMultiplicity = 0
upperMultiplicity = 1 +literal |PDUR_DEDICATED_QUEUH:
EcucEnumerationLiteralDef
PduRDefaultValueElementBytePosition:
+subContainer EcucintegerParamDef
+ in=
PduRDefaultvalue: PduRDefaultValueElement: parameter min 1029 96729
EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef max = 4294967294
upperMultiplicity = 1 upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0 +parameter
PduRDefaultValueElement:
EcuclintegerParamDef

max = 255
min =0

Figure 10.5: PduRRoutingPath

AUTSSAR

10.2.6 PduRRoutingPaths

[ECUC_PduR_00310] Definition of EcucParamConfContainerDef PduRRouting

Paths |

Container Name PduRRoutingPaths

Parent Container PduR

Description Represents one table of routing paths.
This routing table allows multiple configurations that can be used to create several
routing tables in the same configuration. This is mainly used for post-build (e.g.
post-build selectable) but can be used by pre-compile and link-time for variant handling.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PduRConfigurationld 1 [ECUC_PduR_00327]

PduRMaxRoutingPathCnt 0..1 [ECUC_PduR_00350]

PduRMaxRoutingPathGroupCnt 0..1 [ECUC_PduR_00348]

Included Containers

Container Name Multiplicity Dependency

PduRBuffer 0..* Specifies a buffer used for gatewaying via communication
interfaces or transport protocols, transport protocol 1:n receiving,
or for fan-in reception routing for communication interface
modules.

PduRDestPdu 0.* This container is a subcontainer of PduRRoutingPath and
specifies one destination for the PDU to be routed.

PduRRoutingPath 0..” This container is a subcontainer of PduRRoutingTable and
specifies the routing path of a PDU.

PduRRoutingPathGroup 0..* This container groups routing paths. By this grouping, it is
possible to switch all routings related to one network, or to one
kind of PDUs. PduRRoutingPaths link one source with one
destination. Enabling and disabling of routing path groups is
done using the PduR API.

PduRSrcPdu 0..” This container is a subcontainer of PduRRoutingPath and
specifies the source of the PDU to be routed.

]

[ECUC_PduR_00327] Definition of EcuclntegerParamDef PduRConfigurationld |

Parameter Name

PduRConfigurationld

Parent Container

PduRRoutingPaths

Description Identification of the configuration of the PduR configuration. This identification can be
read using the PduR API.

Multiplicity 1

Type EcuclintegerParamDef

Range 0..65535 |

Default value -

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

‘ X ‘ VARIANT-PRE-COMPILE

V

AUTSSAR

Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_PduR_00350] Definition of EcucintegerParamDef PduRMaxRoutingPath

Cnt |
Parameter Name PduRMaxRoutingPathCnt
Parent Container PduRRoutingPaths
Description Maximum number of RoutingPaths in all RoutingTables. This parameter is needed only
in case of post-build loadable implementation using static memory allocation.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 65535
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_PduR_00348] Definition of EcucintegerParamDef PduRMaxRoutingPath
GroupCnt |

Parameter Name

PduRMaxRoutingPathGroupCnt

Parent Container

PduRRoutingPaths

Description Maximum number of RoutingPathGroups. This parameter is needed only in case of
post-build loadable implementation using static memory allocation.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 65535
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

10.2.7 PduRRoutingPath

[ECUC_PduR_00248] Definition of EcucParamConfContainerDef PduRRouting
Path |

Container Name PduRRoutingPath

Parent Container PduRRoutingPaths

Description This container is a subcontainer of PduRRoutingTable and specifies the routing path of
a PDU.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PduRQueueDepth 0..1 [ECUC_PduR_00356]
PduRQueueingStrategy 0..1 [ECUC_PduR_00367]
PduRTpThreshold 0..1 [ECUC_PduR_00320]
PduRDestBufferRef 0..* [ECUC_PduR_00304]
PduRDestPduRRef 1 [ECUC_PduR_00354]
PduRRoutingPathGroupRef 0..” [ECUC_PduR_00352]
PduRSrcPduRRef 1 [ECUC_PduR_00353]

Included Containers
Container Name Multiplicity Dependency

PduRDefaultValue 0..1 Specifies the default value of the I-PDU. Only required for
gateway operation and if at least one PDU specified by Pdu
RDestPdu uses TriggerTransmit Data provision.
Represented as an array of IntegerParamDef.

J
[ECUC_PduR_00356] Definition of EcuclntegerParamDef PduRQueueDepth |

Parameter Name PduRQueueDepth

Parent Container PduRRoutingPath

Description This parameter defines the queue depth for this routing path.
Multiplicity 0..1

Type EcucintegerParamDef

Y%

AUTSSAR

A
Range 1.. 255 |
Default value -
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_PduR_00367] Definition of EcucEnumerationParamDef PduRQueueing

Strategy |
Parameter Name PduRQueueingStrategy
Parent Container PduRRoutingPath

Description Specifies the buffering strategy in case of fan-in or multicast operations, relating to
queue usage.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range PDUR_COMMON_QUEUE Each source/destination shares the same

common queue.

Each source/destination has a dedicated
independent queue.

PDUR_DEDICATED_QUEUE

Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

PduRQueueingStrategy is only applicable for N:1 or 1:N type routings. (Not applicable
for 1:1 routing.)

]

[ECUC_PduR_00320] Definition of EcucintegerParamDef PduRTpThreshold |

Parameter Name PduRTpThreshold
Parent Container PduRRoutingPath
Description This parameter is only relevant for TP routings.
When configured, it enables on-the-fly routing and defines the number of bytes which
must have been received before transmission on the destination bus may start.
When omitted, direct TP routing is enforced. The PduRouter shall ensure that a buffer
is allocated for this routing path which is at least as large as the threshold.
Multiplicity 0..1

V

AUTSSAR

A
Type EcuclntegerParamDef
Range 0 .. 65535
Default value -
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

[ECUC_PduR_00304] Definition of EcucReferenceDef PduRDestBufferRef |

Parameter Name PduRDestBufferRef

Parent Container PduRRoutingPath

Description Reference to a buffer in the PduR. This buffer is required for communication interface
gatewaying, and for transport protocol gatewaying or for fan-in reception routing for
communication interface modules.

Multiplicity 0..”

Type Reference to PduRBuffer

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

[ECUC_PduR_00354] Definition of EcucReferenceDef PduRDestPduRRef |

Parameter Name PduRDestPduRRef

Parent Container PduRRoutingPath
Description -

Multiplicity 1

Type Reference to PduRDestPdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_PduR_00352] Definition of EcucReferenceDef PduRRoutingPathGroup

Ref |
Parameter Name PduRRoutingPathGroupRef
Parent Container PduRRoutingPath
Description Reference to routing paths.
Multiplicity 0.x
Type Reference to PduRRoutingPathGroup

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_PduR_00353] Definition of EcucReferenceDef PAduRSrcPduRRef |

Parameter Name PduRSrcPduRRef

Parent Container PduRRoutingPath

Description -

Multiplicity 1

Type Reference to PduRSrcPdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.2.8 PduRDestPdu

[ECUC_PduR_00249] Definition of EcucParamConfContainerDef PduRDestPdu |

Container Name PduRDestPdu

Parent Container PduRRoutingPaths

Description This container is a subcontainer of PduRRoutingPath and specifies one destination for
the PDU to be routed.

Multiplicity 0..”

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PduRDestPduDataProvision 0..1 [ECUC_PduR_00289]
PduRDestPduHandleld 0..1 [ECUC_PduR_00322]
PduRTransmissionConfirmation 1 [ECUC_PduR_00339]
PduRDestPduRef 1 [ECUC_PduR_00291]

No Included Containers

]

[ECUC_PduR_00289] Definition of EcucEnumerationParamDef PduRDestPdu
DataProvision |

Parameter Name PduRDestPduDataProvision
Parent Container PduRDestPdu
Description Specifies how data are provided: direct (as part of the Transmit call) or via the Trigger
Transmit callback function. Only required for non-TP gatewayed |-PDUs.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range PDUR_DIRECT The PDU Router module shall call the transmit
function in the destination module and not buffer
the I-PDU
PDUR_TRIGGERTRANSMIT The PDU Router module shall call the transmit

function in the destination module. The
destination module will request the I-PDU using
the triggerTransmit function. The I-PDU is shall

be buffered.
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

A

In case of PDUR_TRIGGERTRANSMIT the parameter PduRDestBufferRef is required.

‘ Dependency

]

[ECUC_PduR_00322] Definition of EcucintegerParamDef PduRDestPduHandleld
[

Parameter Name PduRDestPduHandleld

Parent Container PduRDestPdu

Description PDU identifier assigned by PDU Router. Used by communication interface and
transport protocol modules for confirmation (PduR_<Lo>TxConfirmation) and for
TriggerTransmit (PduR_<Lo>TriggerTransmit).

Multiplicity 0..1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

withAuto = true

]

[ECUC_PduR _00339] Definition of EcucBooleanParamDef PduRTransmission
Confirmation |

Parameter Name

PduRTransmissionConfirmation

Parent Container

PduRDestPdu

Description This parameter is only for communication interfaces. Transport protocol modules will
always call the TxConfirmation function.
If set the destination communication interface module will call the TxConfirmation.
However the TxConfirmation may be not called due to error. So the PduR shall not
block until the TxConfirmation is called.
One background for this parameter is for the PduR to know when all modules have
confirmed a multicast operation.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

AUTSSAR

| Dependency

]
[ECUC_PduR_00291] Definition of EcucReferenceDef PduRDestPduRef |

Parameter Name PduRDestPduRef
Parent Container PduRDestPdu
Description Destination PDU reference; reference to unique PDU identifier which shall be used by

the PDU Router instead of the source PDU ID when calling the related function of the
destination module.

Multiplicity 1
Type Reference to Pdu
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

10.2.9 PduRSrcPdu

[ECUC_PduR_00288] Definition of EcucParamConfContainerDef PAduRSrcPdu |

Container Name PduRSrcPdu

Parent Container PduRRoutingPaths

Description This container is a subcontainer of PduRRoutingPath and specifies the source of the
PDU to be routed.

Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

PduRSourcePduBlockSize 0..1 [ECUC_PduR_00355]
PduRSourcePduHandleld 1 [ECUC_PduR_00311]
PduRSrcPduUpTxConf 1 [ECUC_PduR_00351]
PduRSrcPduRef 1 [ECUC_PduR_00318]

No Included Containers

AUTSSAR

[ECUC_PduR_00355] Definition of EcucintegerParamDef PduRSourcePduBlock

Size |
Parameter Name PduRSourcePduBlockSize
Parent Container PduRSrcPdu

Description Minimum amount of buffer space required by receiving transport protocol layer to
continue reception.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value

Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_PduR_00311] Definition of EcucintegerParamDef PduRSourcePduHandle

Id [
Parameter Name PduRSourcePduHandleld
Parent Container PduRSrcPdu

Description PDU identifier assigned by PDU Router.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

withAuto = true

]

[ECUC_PduR_00351]
Conf |

Definition of EcucBooleanParamDef PduRSrcPduUpTx

Parameter Name

PduRSrcPduUpTxConf

Parent Container

PduRSrcPdu

Description When enabled, the TxConfirmation will be forwarded to the upper layer. Prerequisites:
Lower layer and upper layer support TxConfirmation.

Multiplicity 1

Type EcucBooleanParamDef

V

AUTSSAR

A
Default value true
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time

Post-build time

X VARIANT-POST-BUILD

Dependency

]

[ECUC_PduR_00318] Definition of EcucReferenceDef PduRSrcPduRef |

Parameter Name PduRSrcPduRef

Parent Container PduRSrcPdu

Description Source PDU reference; reference to unique PDU identifier which shall be used for the
requested PDU Router operation.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

10.2.10 PduRDefaultValue

[ECUC_PduR_00299] Definition of EcucParamConfContainerDef PduRDefault

Value |

Container Name PduRDefaultValue

Parent Container PduRRoutingPath

Description Specifies the default value of the I-PDU. Only required for gateway operation and if at
least one PDU specified by PduRDestPdu uses TriggerTransmit Data provision.
Represented as an array of IntegerParamDef.

Multiplicity 0..1

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

PduRDefaultValueElement 0..* Each value element is represented by the element and the

position in an array.

AUTSSAR

10.2.11 PduRDefaultValueElement

[ECUC_PduR_00300] Definition of EcucParamConfContainerDef PduRDefault
ValueElement |

Container Name PduRDefaultValueElement
Parent Container PduRDefaultValue
Description Each value element is represented by the element and the position in an array.
Multiplicity 0.x
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
PduRDefaultValueElement 1 [ECUC_PduR_00290]
PduRDefaultValueElementBytePosition 1 [ECUC_PduR_00292]

| No Included Containers

]

[ECUC_PduR_00290] Definition of EcucintegerParamDef PduRDefaultValueEle-
ment |

Parameter Name PduRDefaultValueElement

Parent Container PduRDefaultValueElement

Description The default value consists of a number of elements. Each element is one byte long and
the number of elements is specified by SduLength. The position of this parameter in
the container is specified by the PduRElementBytePosition parameter.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_PduR_00292] Definition of EcucintegerParamDef PduRDefaultValueEle-
mentBytePosition |

Parameter Name PduRDefaultValueElementBytePosition
Parent Container PduRDefaultValueElement
Description This parameter specifies the byte position of the element within the default value
Multiplicity 1
Type EcucintegerParamDef
Range 0 .. 4294967294
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

10.2.12 PduRBuffer

[ECUC_PduR_00336] Definition of EcucParamConfContainerDef PduRBuffer |

Container Name PduRBuffer
Parent Container PduRRoutingPaths
Description Specifies a buffer used for gatewaying via communication interfaces or transport

protocols, transport protocol 1:n receiving, or for fan-in reception routing for
communication interface modules.

Multiplicity 0..*
Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE,
VARIANT-POST-BUILD

Link time -

Post-build time —

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

PduRPduMaxLength 1 [ECUC_PduR_00324]

No Included Containers

J
[ECUC_PduR_00324] Definition of EcuclntegerParamDef PduRPduMaxLength |

Parameter Name PduRPduMaxLength

Parent Container PduRBuffer

Description Length of the PDU buffer in bytes. This parameter limits the size of buffered routed
PDUs.

\Y%

AUTSSAR

A
Multiplicity 1
Type EcuclntegerParamDef
Range 1.. 4294967295 |

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X

All Variants

Link time

Post-build time

Dependency

When this buffer is used for TP routing path or 1:n reception the PduRPduMaxLength
has to be large enough to contain the largest possible single frame of the source

network.

10.3 Published Information

For details refer to [3] Chapter 10.3 “Published Information”.

AUTSSAR

11 PDU Router module design notes

This chapter collects a set of notes that describes features of this document.

11.1 Configuration parameter considerations

The configuration parameters listed in chapter 10 contain restrictions for the parame-
ters themselves. But no restrictions are set that affects more than one parameter. The
intention of this section is to list some of these to better understand the configuration
parameters and also to allow a simpler configuration generator tool for the PDU Router
module.

The buffers needed for gatewaying (communication interface and transport protocol)
are specified per destination in the configuration. Since no specific traffic shaping can
be specified it is assumed that worst case where all I-PDUs are gatewayed at the same
time. It is possible to extend the configuration with parameters that allow more efficient
usage of buffers.

11.2 Generic interfaces concept

The provided and used APIs of the PDU Router module are not connected to specific
busses. The APl names in chapter 8.3.1.3 have a generic part (<Up>, <Lo>, etc) that
will be exchanged with the name of the module using or implementing the API.

The way to identify the name is using the reference to an ECUC description, see
Figure 10.2. The short-name will be used in the referenced ECUC description.

The PduRBswModules container contain parameters that describe the supported
functionality (if it is communication interface, transport layer, upper layer, lower layer,
etc.) of the BSW module.

[SWS_PduR_00800]
Upstream requirements: SRS_GTW_06117, SRS_GTW_06121, SRS _BSW 00310

[In case the lower layer module supports both TP and IF, the infixes Tp and
If shall be added to the function names directly in front of the function, e.g.
<Lo>_[TplTransmit, PduR_<Lo>[If] TxConfirmation.J

The connection between the generic interface configuration of a BSW module and the
I-PDUs are made using the routing paths and the I-PDU configuration in the ECUC
module.

AUTSSAR

11.3 Example structure of Routing tables

This chapter shows example structures of routing tables that contain the properties of
each |-PDU. It does not specify the internals of the PDU Router but shall rather serve
as example for better understanding of APIs and I-PDUs.

The IpduM is not considered by these examples.

Note: This chapter is by no means the recommended implementation way. The chapter
focuses more on understandability than optimizing implementation.

11.3.1 Single and Multicast transmission via communication interface modules

Routing table used by PduR_ComTransmit for I-PDUs transmitted by Com:

PduR_ComTransmit (PduldType TxPduld,const PdulnfoType* PduInfoPtr)

CAN busses

Multicast using Canlf and
Linlf. Note that for Linlf this
is a sporadic frame (will later
be a TriggerTransmit call).

Canlf_Transmit

4 Linlf_Transmit
Canlf_Transmit

id TargetFctPtr TargetPduld Description

0 Canlf_Tansmit 0 Transmission on Canlf

1 Frif_Transmit 0 Transmission on Frlf

2 Canlf_Tansmit 1 Transmission on Canlf

3 Canlf_Transmit 0 Multicast using Canlf on two
2
2
3

Table 11.1: Example routing table used by the PduR for transmission

The first three entries represent normal PDU transmit operations from Com via Canlf
or Frif respectively, the remaining two entries are related to multicast I-PDU transmit
operations from Com module to two different CAN busses and Com module to Linlf
and Canlf. For the latter an internal PDU Router function (Multilf_Transmit) and an
additional routing table is used.

The destination module will confirm the transmission of the I-PDU using the configured
[-PDU id, and it might not be the same as in the <User:Lo>_Transmit call.

AUTSSAR

11.3.2 Reception and gatewaying via communication interface modules

Routing table used by PduR_<User:Lo>RxIndication for receiving I-PDUs re-
ceived from the lower layer communication interfaces:

PduR_<User:Lo>RxIndication (PduldType RxPduId const PdulnfoType* PduInfoPtr)

id TargetFctPtr1 TargetPduld Description
0 Com_RxIndication 0 Routed to Com module
1 Com_RxIndication 0 Routed to Com and
Canlf_Transmit 1 gatewayed to Canlf
2 Canlf_Transmit 1 Gatewayed to Canlf and to
LIN 2 Linlf. In the Linlf case the
Linlf will later call Trigger
Transmit. The PDU Router
ill not call Linlf_Transmit

Table 11.2: Example routing table used by the PduR for reception

11.4 Configuration generator

The PDU Router configuration generator will take the ECU configuration description
XML file containing the PDU Router configuration as input. And the generator will
produce . c and .h files containing the configuration.

One aim of the configuration generator is to allow the generator to produce an effi-
cient PDU Router module implementation. Since the PDU Router module is a central
module it is important that the final executable including configuration be as efficient as
possible:

[SWS_PduR_00764]
Upstream requirements: SRS_GTW_06020

[The PDU Router module generator shall be able to optimize away features based on
if they are used or not. At least following features shall be considered:

 Transport protocol
« Communication interfaces
» Gateway

» FIFO queue handling
]

One part of the job made by the generator is to lookup all routing paths and produces
the correct look-up tables and the correct APIs to be used. Here are some examples
how the generator may handle the routing paths.

AUTSSAR

11.4.1 Canlf and Com routing path example

This is an example that shows how an |-PDU received by the Canlf module and for-
warded by the Com module is handled.

In Figure 11.1 the configuration of Canlf, Com and PDU Router is shown. The PDU
Router has a routing path with a source I-PDU pduRSrcPduRe f and destination I-PDU
PduRDestPduRef. When following the |-PDU PduRSrcPduRef it is found that the
Canlf pduIdref is pointing at the same I-PDU in the ECUC. The PduRDestPduRef
is followed and it is found that Com PduIdRef is pointing at the same I-PDU in the
ECUC.

+reference
PduRSrcPdu: g PduRSrcPduRef:
EcucParamConfContainerDef EcucReferenceDef
PduRRoutingPaths: +subContainer ——
EcucParamConfContainerDef DS lowerMultiplicity = 0 o
upperMultiplicity = * +destination
PduRSrcPduRRef: +parameter
EcucReferenceDef
PduRRoutingPath: +reference PduRSourcePduHandleld:
. i EcucintegerParamDef
+subContainer EcucParamConfContainerDef 9
upperMultiplicity = * P min =0
lowerMultiplicity = 0 max = 65535
+reference withAuto = true
symbolicNameValue = true
PduRDestPduRRef:
EcucReferenceDef
+destination
PduRDestPdu: .
i —_— PduRRoutingPathGroupRef:
+subContainer| gcycparamConfContainerDef W
rrenttipliey = = +reference |owerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = *

EcucintegerParamDef

CanlfRxPduCfg: min =0
EcucParamConfContainerDef max = 4294967295

fInitCa: ‘+parameter lowerMultiplicity = 1
canifinitelg. lowerMultiplicity = 0 upperMultiplicity = 1
EcucParamConfContainerDef +subContainer upperMultiplicity = * withAuto = true

symbolicNameValue = true

lowerMultiplicity = 1
upperMultiplicity = 1 +reference

EcucReferenceDef
+container l
Canlf: EcucModuleDef
upperMultiplicity = 1
lowerMultiplicity = 0
+destination +destination

Pdu: EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 11.1: PDU Router, Canlf and Com configuration example

AUTSSAR

The canIfCanRxPdulId reveals the I-PDU ID for the source |I-PDU and the ComIPdu
HandleId reveals the I-PDU ID for the destination I-PDU.

The shortname of the Canlf module and the Com module (and that the I-PDU is trans-
ported on a communication interface module) will generate the routing table and APIs
to be used:

PduR_<User:Lo>RxIndication (PduldType RxPduId const PdulnfoType* PduInfoPtr)

id Source TargetPduld Destination
12 PduR_CanlfRxIndication 13 Com_RxIndication

PduR_CanIf.h

void PduR_CanIfRxIndication (PduldType RxPduld const Pdulnfo
Typex PdulnfoPtr);

If PduRZeroCostOperation is enabled and the Canlf module only forwards (through
PDU Router module) to the Com module, the PduR generator may optimize the gen-
erated code (if source code is used):

#define PduR_CanIfRxIndication Com_RxIndication

11.5 Post-build considerations

This section describes some important behavior when using the post-build variant of
the PDU Router. It contains no requirements, just important issues that need to be
considered.

NVRAM and RAM memory size can potentially grow if a new post-build configuration
is downloaded into the ECU. Estimation at design time must be done to allow such
grow so other areas are not overwritten (in case of RAM) or memory borders are not
crossed.

It is not possible to configure restrictions/locations/etc of memory in the PduR module
configuration since this is implementation specific and relitevly difficult to implement
(pre-compile and link-time does not really need this). It is recommended for implemen-
tations of PduR module generators to extend the configuration with specific memory
constraints if needed.

AUTSSAR

A Not applicable requirements

[SWS_PduR_NA_00777]

Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00336, SRS_BSW _
00375, SRS_BSW_00383, SRS_BSW_00386, SRS_BSW_00388,
SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_
00393, SRS_BSW_00395, SRS_BSW_00403, SRS_BSW_00416,
SRS_BSW_00417, SRS_BSW_00419, SRS_BSW_00422, SRS_BSW_
00437, SRS_BSW_00425, SRS_BSW_00432, SRS_BSW_00461,
SRS_BSW_00478, SRS_BSW_00490, SRS_BSW_00491, SRS_GTW_
06055, SRS_GTW_06056, SRS_GTW_06061, SRS_GTW_06098,
SRS_GTW_06099, SRS_GTW_06077, SRS_GTW_06064, SRS_GTW_
06089

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R22-11

B.1.1

Added Specification Items in R22-11

Number

Heading

[SWS_PduR_00921]

[SWS_PduR_
CONSTR_00920]

[SWS_PduR_NA_
00777]

Table B.1: Added Specification Items in R22-11

B.1.2 Changed Specification Items in R22-11

Number

Heading

[SWS_PDUR_00816]

[SWS_PduR_00100]

[SWS_PduR_00333]

[SWS_PduR_00334]

[SWS_PduR_00338]

[SWS_PduR_00341]

[SWS_PduR_00362]

[SWS_PduR_00365]

[SWS_PduR_00369]

[SWS_PduR_00375]

[SWS_PduR_00381]

[SWS_PduR_00406]

[SWS_PduR_00424]

[SWS_PduR_00507]

[SWS_PduR_00512]

[SWS_PduR_00518]

AUTSSAR

Number Heading

[SWS_PduR_00615]

[SWS_PduR_00617]

[SWS_PduR_00654]

[SWS_PduR_00742]

[SWS_PduR_00743]

[SWS_PduR_00767]

[SWS_PduR_00769]

[SWS_PduR_00771]

[SWS_PduR_00824]

[SWS_PduR_91001]

Table B.2: Changed Specification Iltems in R22-11

B.1.3 Deleted Specification ltems in R22-11

Number Heading

[SWS_PduR_00777]

[SWS_PduR_00827]

Table B.3: Deleted Specification Items in R22-11

B.1.4 Added Constraints in R22-11

none

B.1.5 Changed Constraints in R22-11

none

B.1.6 Deleted Constraints in R22-11

none

AUTSSAR

B.2 Traceable item history of this document according to
AUTOSAR Release R23-11

B.2.1 Added Specification Items in R23-11

none

B.2.2 Changed Specification Items in R23-11

Number Heading

[SWS_PduR_00913]

[SWS_PduR_00914]

[SWS_PduR_00915]

[SWS_PduR_91001] Definition of mandatory interfaces in module PduR

Table B.4: Changed Specification Items in R23-11

B.2.3 Deleted Specification Iltems in R23-11

none

B.2.4 Added Constraints in R23-11

none

B.2.5 Changed Constraints in R23-11

none

B.2.6 Deleted Constraints in R23-11

none

AUTSSAR

B.3 Traceable item history of this document according to
AUTOSAR Release R24-11

B.3.1 Added Constraints in R24-11

Number Heading

[CSC\)AII\ISS_'II'DF?UR_ PduRQueueingStrategy setting constraint for fan-in/fan-out

00871] - PduRRout ingPaths that share the same source or destination.
?&SS—ESUR— Constraint for setting PduRQueueingStrategy for PduRRoutingPath
00872] - destinations in a fan-in operation.

[SWS_PduR_

CONSTR_ PduRQueueingStrategy constraint for PduRDestBufferRef setting.
00873]

[C?C\)AII\ISS_'II'DSUR_ Constraint regarding EcuC/Pdu configuration for PduRDestPduRef and
00931] - PduRSrcPduRef in the same PduRRoutingPath.

Table B.5: Added Constraints in R24-11

B.3.2 Changed Constraints in R24-11

none

B.3.3 Deleted Constraints in R24-11

none

B.3.4 Added Specification Items in R24-11

Number

Heading

[ECUC_PduR_00367] | Definition of EcucEnumerationParamDef PduRQueueingStrategy

[ECUC_PduR_00368] | Definition of EcucBooleanParamDef PduRReleaseRxBuffer

[SWS_PduR_91002] Definition of API function PduR_<User:Up>ReleaseRxBuffer

Table B.6: Added Specification Iltems in R24-11

AUTSSAR

B.3.5 Changed Specification Items in R24-11

Number Heading

[ECUC_PduR_00248] | Definition of EcucParamConfContainerDef PduRRoutingPath

[ECUC_PduR_00295] | Definition of EcucParamConfContainerDef PduRBswModules

[SWS_PduR_00333] Definition of imported datatypes of module PduR

[SWS_PduR_00424] Definition of optional interfaces requested by module PduR

[SWS_PduR_00743] Definition of datatype PduR_PBConfigType

[SWS_PduR_00813]

[SWS_PduR_00814]

[SWS_PduR_00815]

Table B.7: Changed Specification Items in R24-11

B.3.6 Deleted Specification Iltems in R24-11

none

B.4 Traceable item history of this document according to
AUTOSAR Release R25-11

B.4.1 Added Constraints in R25-11

none

B.4.2 Changed Constraints in R25-11

Number Heading

[SWS_PduR_
CONSTR_
00920]

Table B.8: Changed Constraints in R25-11

B.4.3 Deleted Constraints in R25-11

none

AUTSSAR

B.4.4 Added Specification Iltems in R25-11

none

B.4.5 Changed Specification Items in R25-11

Number Heading

[SWS_PduR_00333] Definition of imported datatypes of module PduR

[SWS_PduR_00424] Definition of optional interfaces requested by module PduR

[SWS_PduR_00589]

[SWS_PduR_00663]

[SWS_PduR_00805]

[SWS_PduR_00813]

[SWS_PduR_00814]

Table B.9: Changed Specification Items in R25-11

B.4.6 Deleted Specification ltems in R25-11

Number Heading

[SWS_PduR_00717]

Table B.10: Deleted Specification Items in R25-11

	1 Introduction and functional overview
	1.1 AUTOSAR architecture
	1.2 PDU Router module function overview
	1.3 I-PDU handling

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.1.1 Limitations on supported functionality

	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	5.2 Version check

	6 Requirements Tracing
	7 Functional Specification
	7.1 I-PDU handling
	7.1.1 Buffering concept
	7.1.1.1 Type of buffers
	7.1.1.2 Buffering strategies
	7.1.1.3 Buffer sharing
	7.1.1.4 Buffering in case of fan-in and multicast routings

	7.1.2 I-PDU Reception to upper layer module(s)
	7.1.2.1 Communication Interface
	7.1.2.2 Transport Protocol

	7.1.3 I-PDU Transmission from upper layer module(s)
	7.1.3.1 Multicast
	7.1.3.2 Communication Interface
	7.1.3.3 Transport Protocol

	7.1.4 I-PDU Gatewaying
	7.1.4.1 Communication interface
	7.1.4.2 Transport Protocol
	7.1.4.3 Forwarding to upper layers
	7.1.4.4 Error handling

	7.2 Cancel transmission
	7.3 Cancel reception
	7.4 Zero Copy Operation
	7.5 Zero Cost Operation
	7.6 State Management
	7.7 Routing path groups
	7.7.1 PduRRoutingPathGroup definitions
	7.7.2 Initialization of PduRRoutingPathGroups
	7.7.3 Switching of PduRRoutingPathGroups

	7.8 Complex Driver Interaction
	7.9 Error classification
	7.9.1 Development Errors
	7.9.2 Runtime Errors
	7.9.3 Production Errors
	7.9.4 Extended Production Errors

	7.10 API parameter checking
	7.11 Multicore Distribution
	7.11.1 Intra-partition Routing Path
	7.11.2 Inter-partition Routing Path
	7.11.2.1 Upper layer module interaction
	7.11.2.2 Lower layer Communication Interface module interaction
	7.11.2.3 Lower layer Transport Protocol module interaction
	7.11.2.4 Communication Interface Gatewaying
	7.11.2.5 Transport Protocol Gatewaying

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 PduR_PBConfigType
	8.2.2 PduR_PBConfigIdType
	8.2.3 PduR_RoutingPathGroupIdType
	8.2.4 PduR_StateType

	8.3 Function definitions
	8.3.1 General functions provided by the PDU Router
	8.3.1.1 PduR_Init
	8.3.1.2 PduR_GetVersionInfo
	8.3.1.3 PduR_GetConfigurationId
	8.3.1.4 PduR_EnableRouting
	8.3.1.5 PduR_DisableRouting

	8.3.2 Configurable interfaces definitions for interaction with upper layer module
	8.3.2.1 PduR_<User:Up>Transmit
	8.3.2.2 PduR_<User:Up>CancelTransmit
	8.3.2.3 PduR_<User:Up>CancelReceive
	8.3.2.4 PduR_<User:Up>ReleaseRxBuffer

	8.3.3 Configurable interfaces definitions for lower layer communication interface module interaction
	8.3.3.1 PduR_<User:Lo>RxIndication
	8.3.3.2 PduR_<User:Lo>TxConfirmation
	8.3.3.3 PduR_<User:Lo>TriggerTransmit

	8.3.4 Configurable interfaces definitions for lower layer transport protocol module interaction
	8.3.4.1 PduR_<User:LoTp>CopyRxData
	8.3.4.2 PduR_<User:LoTp>RxIndication
	8.3.4.3 PduR_<User:LoTp>StartOfReception
	8.3.4.4 PduR_<User:LoTp>CopyTxData
	8.3.4.5 PduR_<User:LoTp>TxConfirmation

	8.4 Scheduled functions
	8.5 Expected Interfaces
	8.5.1 Mandatory Interfaces
	8.5.2 Optional Interfaces

	9 Sequence diagrams
	9.1 I-PDU Reception
	9.1.1 CanIf module I-PDU reception
	9.1.2 FrIf module I-PDU reception
	9.1.3 LinIf module I-PDU reception
	9.1.4 CanTp module I-PDU reception

	9.2 I-PDU transmission
	9.2.1 CanIf module I-PDU transmission
	9.2.2 FrIf module I-PDU transmission
	9.2.3 LinIf module I-PDU transmission
	9.2.4 CanTp module I-PDU transmission
	9.2.5 Multicast I-PDU transmission on Transport Protocol modules

	9.3 Gateway of I-PDU
	9.3.1 Gateway between two CanIfs
	9.3.2 Gateway from CAN to FlexRay
	9.3.3 Gateway from CAN to LIN
	9.3.4 Gateway from CAN to CAN and received by the COM module
	9.3.5 Singlecast Gateway TP I-PDU
	9.3.6 Multicast Gateway TP I-PDU with Forwarding to Upper Layer
	9.3.7 Gateway Single Frame TP I-PDU with Forwarding to Upper Layer
	9.3.8 Gateway Broadcast Announce Message of J1939Tp

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Variants

	10.2 Containers and configuration parameters
	10.2.1 PduR
	10.2.2 PduRDemEventParameterRefs
	10.2.3 PduRBswModules
	10.2.4 PduRGeneral
	10.2.5 PduRRoutingPathGroup
	10.2.6 PduRRoutingPaths
	10.2.7 PduRRoutingPath
	10.2.8 PduRDestPdu
	10.2.9 PduRSrcPdu
	10.2.10 PduRDefaultValue
	10.2.11 PduRDefaultValueElement
	10.2.12 PduRBuffer

	10.3 Published Information

	11 PDU Router module design notes
	11.1 Configuration parameter considerations
	11.2 Generic interfaces concept
	11.3 Example structure of Routing tables
	11.3.1 Single and Multicast transmission via communication interface modules
	11.3.2 Reception and gatewaying via communication interface modules

	11.4 Configuration generator
	11.4.1 CanIf and Com routing path example

	11.5 Post-build considerations

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R22-11
	B.1.1 Added Specification Items in R22-11
	B.1.2 Changed Specification Items in R22-11
	B.1.3 Deleted Specification Items in R22-11
	B.1.4 Added Constraints in R22-11
	B.1.5 Changed Constraints in R22-11
	B.1.6 Deleted Constraints in R22-11

	B.2 Traceable item history of this document according to AUTOSAR Release R23-11
	B.2.1 Added Specification Items in R23-11
	B.2.2 Changed Specification Items in R23-11
	B.2.3 Deleted Specification Items in R23-11
	B.2.4 Added Constraints in R23-11
	B.2.5 Changed Constraints in R23-11
	B.2.6 Deleted Constraints in R23-11

	B.3 Traceable item history of this document according to AUTOSAR Release R24-11
	B.3.1 Added Constraints in R24-11
	B.3.2 Changed Constraints in R24-11
	B.3.3 Deleted Constraints in R24-11
	B.3.4 Added Specification Items in R24-11
	B.3.5 Changed Specification Items in R24-11
	B.3.6 Deleted Specification Items in R24-11

	B.4 Traceable item history of this document according to AUTOSAR Release R25-11
	B.4.1 Added Constraints in R25-11
	B.4.2 Changed Constraints in R25-11
	B.4.3 Deleted Constraints in R25-11
	B.4.4 Added Specification Items in R25-11
	B.4.5 Changed Specification Items in R25-11
	B.4.6 Deleted Specification Items in R25-11

