AUTSSAR

i Specification of Operating
Document Title System
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 34
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Removal of "Service Interfaces"
* Removal of feature "Controlldle”
AUTOSAR + Timing protection extension for aperiodic
2025-11-27 R25-11 Release servers
Management
» Several ARTI updates
» Minor correction / clarification / editorial
changes
« Clarification on PRO_IGNORE, new
PRO_PREVENT_ARRIVAL_RATE
« Clarification of
AUTOSAR CallTrustedFunction, added new
2024-11-27 | R24-11 Release column to table 7.1
Management « Remove option to restart a
OS-Application
« Minor correction / clarification / editorial
changes

AUTSSAR

* Renaming of restart symbols

» Added new APl isOsStarted,
configuration change in

AUTOSAR OS-Application/EcuPartition/Core
2023-11-23 | R23-11 Release assignment
Management
* Memory mapping update
* Minor correction / clarification / editorial
changes
 Several minor issues and clarifications
(IOC error codes, applicability of
multi-core, ARTI updates)
AUTOSAR + Additional memory allocation keywords
2022-11-24 R22-11 Release
Management Added further uptraces to SRS
requirements
* Removal of StartNonAutosarCore
API
* Further updates to ARTI sections
* API changes and clarifications
(SetScheduleTableAsync,
GetNumberOfActivatedCores)
AUTOSAR
2021-11-25 | R21-11 Release » New configuration options for placement
Management of callouts.
« Update of RES_SCHEDULER handling.
» Minor correction / clarification / editorial
changes
* Updates to ARTI description and
configuration
AUTOSAR : ,
* loc: correction regarding N:M
2020-11-30 | R20-11 Release communication
Management

» Minor correction / clarification / editorial
changes

AUTSSAR

* Various updates for ARTI
* Enhanced memory mapping for IOC
AUTOSAR » Some type improvements for multi-core
2019-11-28 | R19-11 Release . o
Management » Minor correction / clarification / editorial
changes
» Changed Document Status from Final to
published
* New asynchronous services
AUTOSAR
2018-10-31 440 Release * ARTI support (DRAFT)
Management o P
« Editorial changes / clarifications
AUTOSAR » minor corrections / clarifications /
2017-12-08 | 4.3.1 Release editorial changes; For details please
Management refer to the ChangeDocumentation
» Added new API for peripheral access
AUTOSAR » Added new API for interrupt handling
2016-11-30 | 4.3.0 Release « Minor updates/clarification of
Management descriptions
« Editorial changes
* Allow calls to Controlldle from all cores
AUTOSAR . e
* Minor updates/clarification of
2015-07-31 422 Release descriptions
Management
« Editorial changes
 Add support for AsilQmProtection
AUTOSAR . e
* Minor updates/clarification of
2014-10-31 4.21 Release descriptions
Management
« Editorial changes
» Changed multiplicity of attributes in
locSender/ReceiverProperties
AUTOSAR
2014-03-31 41.3 Release » Minor updates/clarification of
Management descriptions
« Editorial changes

AUTSSAR

« Clarification on
E OS NESTING _DEADLOCK

» Update of table 2

» Corrected multiplicity of

AUTOSAR ECUC_Os_00393
2013-10-31 4.1.2 Release
Management * Minor updates/clarification of
descriptions
« Editorial changes
* Removed chapter(s) on change
documentation
* Add support for ECU degradation
AUTOSAR » Changed service interface description to
2013-03-15 | 4.1.1 Administration a formal format
+ Several minor changes and clarifications
* Included Multi-Core support from former
2011-12-22 | 4.0.3 AUTQ.SAR , "Specification of Multi-Core OS
Administration . "
Architecture
« Clarification in 7.8.1 (meaning of "do
AUTOSAR nothing".) and 7.1.2.1 ("OSEK
2010-09-30 | 3.1.5 Administration declarations")
* Minor changes as typos and rewording
* Extension of services (Chapter 12)
« States in OS- Applications
AUTOSAR * Active termination of other
2010-02:02 | 314 Administration OS-Applications in possible (Chapter8)
* Legal disclaimer revised
» Chapter 10.4 revised
» Changes in OS configuration:
» removed "OsAppModeld" Parameter
5009-02-04 | 3.1.2 AUTQSAR ' from OsAppModeContainer
Administration .
+ added optional references from
OsAppModeContainer to OsAlarm,
OsTask and OsScheduleTable
2008-08-13 | 3.1.1 AUTOSAR « Legal Disclaimer revised

Administration

AUTSSAR

2008-02-01

3.0.2

AUTOSAR
Administration

» Added "OsScheduleTableDuration"
parameter to configuration specification
chapter

2007-12-21

3.0.1

AUTOSAR
Administration

» Changed methods for timing protection

* Moved configuration from OIL to
AUTOSAR XML

« Clarrified description for synchronization
and ScheduleTables

« Document meta information extended

» Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

» Added support for
SoftwareFreeRunningTimer (SWFRT)
incl. 2 new APls

» Added API to start a ScheduleTable
synchron

» Misc. Corrections, Clarification and
further explanations

* Legal disclaimer revised
* Release Notes added
 "Advice for users" revised

* "Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

» Document structure adapted to common
Release 2.0 SWS Template.

* Major changes in chapter 10
* Structure of document changed partly

 Other changes see chapter 14

2005-05-31

1.0

AUTOSAR
Administration

* Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations
2.1 Glossaryof Terms
3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification o o L.

4 Constraints and assumptions

4.1 ExistingStandards
4.2 Terminology e e
4.3 Interactionwiththe RTE
4.4 Operating System Abstraction Layer (OSAL)
4.5 Multi-Core Hardware assumptions
451 CPUCorefeatures.
452 Memoryfeatures
4.5.3 Multi-Core Limitations
4.6 Limitations L
4.6.1 Hardware e
4.6.2 Programming Language
4.6.3 Miscellaneous
4.7 Applicabilitytocardomains o o o

5 Dependencies to other modules

5.1 Filestructure e
5.1.1 Codefile structure
5.1.2 Headerfilestructure
5.1.3 ARTIFile Structure o

6 Requirements Tracing

7 Functional specification

71 Core OS e
7.1.1 Background & Rationale
7.1.2 Requirements

7.1.21 Restricionson OSEKOS
7.1.2.2 Undefined Behaviour in OSEKOS
7.1.2.3 Extensionsto OSEKOS

7.2 Software Free Running Timer

7.3 ScheduleTableS i v i i i i i i e e e e e e e e e
7.3.1 Background & Rationale
7.3.2 Requirements

17

18
18
22

22
22

23

23
23
23
24
24
24
25
25
25
25
26
26
26

27

27
27
27
27

28

AUTSSAR

7.3.2.1 Structure of a ScheduleTable 40
7.3.2.2 Constraints on Expiry Points 41
7.3.2.3 Processing ScheduleTableS 42
7.3.2.4 Repeated ScheduleTable Processing 44
7.3.2.5 Controlling ScheduleTable Processing. 45

7.4 ScheduleTable Synchronization 47
7.4.1 Background & Rationale L. 47
7.4.2 Requirements 49
7.4.2.1 Implicit Synchronization 49
7.4.2.2 Explicit Synchronization 50
7.4.2.3 Performing Synchronization 56

7.5 Stack Monitoring Facilities oL 58
7.5.1 Background & Rationale 58
7.5.2 Requirements 58
7.6 OS-Application 59
7.6.1 Background & Rationale L. 59
7.6.2 Requirements 61
7.7 Protection Facilities 63
7.7.1 Memory Protection. 63
7.7.1.1 Background & Rationale 63
7.7.1.2 Requirements 64
7.7.2 Timing Protection 66
7.7.2.1 Background & Rationale, 66
7.7.22 Requirements 72
7.7.2.3 ImplementationNotes 75
7.7.3 Service Protection 75
7.7.3.1 Background & Rationale 75
7.7.3.2 Invalid Object Parameter or Out of Range Value 76
7.7.3.3 Service Calls Made from Wrong Context 76
7.7.3.4 Services with Undefined Behaviour 78
7.7.3.5 Service Restrictions for Non-Trusted OS-Applications 81
7.7.3.6 Service Calls on Objects in Different OS-Applications 82
7.7.4 Protecting the Hardware used bythe OS 83
7.7.41 Background & Rationale 83
7.7.42 Requirements 83
7.7.4.3 ImplementationNotes 84
7.7.5 Providing TrustedfunctionS. 84
7.7.5.1 Background & Rationale 84
7.7.52 Requirements 85

7.8 Protection ErrorHandling o 86
7.8.1 Background & Rationale 86
7.8.2 Requirements 88

7.9 Operating System for Multi-Core 90

AUTSSAR

7.9.1 Background & Rationale L. 90
7.9.1.1 Requirements L 91
7.9.2 Scheduling 91
7.9.21 Requirements 92
7.9.3 Locatable entities (LE) oo 92
7.9.3.1 Requirements 93
7.9.4 Multi-Core start-upconcept 93
7.9.41 Requirements 95
7.9.5 Cores under control of the AUTOSAROS 97
7.9.5.1 Requirements 97
7.9.6 Multi-Core shutdownconcept 97
7.9.6.1 Synchronized shutdown concept 98
7.9.6.2 Individual shutdownconcept 99
7.9.6.3 Shutdown in case of fatal internalerrors 99
7.9.7 OS service functionality (overview) 99
7.9.8 GetTaskID 101
7.9.9 Interruptdisabling 101
7.9.91 Requirements 102
7.9.10 Task activation 102
7.9.10.1 Requirements L 103
7911 Task Chaining 103
7.9.11.1 Requirements 103
7.9.12Event setting 104
7.9.121 Requirements 104
7.9.13 Activating additionalcores 104
7.9.14 Startofthe OS 105
7.9.141 Requirements 105
7.9.15 Tasktermination L 106
7.9.15.1 Requirements L L 106
7.9.16 Termination of OS-Applications 106
7.9.16.1 Requirements Lo 107
7.9.17 Shutdown ofthe OS, 107
7.9.171 Requirements 107
7.9.18 Waiting for Eventso 108
7.9.18.1 Requirements Lo 108
7.9.19 Calling trusted functions L. 108
7.9.19.1 Requirements L 109
7.9.20 Invokingreschedule 109
7.9.20.1 Requirements 109
7.9.21 Resourcehandling 109
7.9.22TheCorelD 110
7.9.221 Requirements 111

7.9.23 Counters, background & rationale 111

AUTSSAR

7.9.24 Multi-Core restrictions on Counters 112
7.9.24.1 Requirements L 112
7.9.25 Synchronization of Counters, 114
7.9.26A1ArMS . . v o i e e e e e e e e e e e e e e e e e e 114
7.9.26.1 Requirements 114
7.9.27 ScheduleTableS i v i i i e e e e e e e e e e e e 115
7.9.27.1 Requirements 116
7.9.28 The spinlock mechanism 116
7.9.28.1 Requirements 119
7.9.290fflinechecks 120
7.9.29.1 Requirements L 121
7.9.30AutostartObjects 122
7.9.30.1 Requirements 122
7.10Inter-OS-Application Communicator (I0OC) 122
7.10.1 Background & Rationale 122
7.10.210C - General purposeo 125
7.10.310C functionality 126
7.10.3.1 Communication 126
7.10.3.2 Notification. 126
7.10410C interface 127
7.10.510C internal structure 127
7.10.6 IOC configuration and generation. 128
7.10.7 10C integrationexamples oL 129

7.10.7.1 Example 1 - 1:1 sender/receiver communication without notifi-
cation 129

7.10.7.2 Example 2 - N:1 client/server communication with receiver noti-
ficationby RTE 131
7.11System Scalability 132
7.11.1 Background & Rationale 132
711.2Requirements 132
7.12Hook Functionso 133
7.12.1 Background & Rationale 133
7.12.2Requirements 134
7.13Hardware peripheralaccess 135
7.13.1 Background & Rationale 135
7.13.2Requirements 136
7A4Interruptsource APl oL 137
7.14.1 Background & Rationale 137
7.142Requirements 137
7.15Error classification. o 138
7.16ARTI Debug Information 139
716.1OS ARTIODbjects 140
7A7ARTIHook Macros 141

7.17.1 Class AR_CP_OS_APPLICATION oo i it 142

AUTSSAR

717.2Class AR CP_OS TASK 143
717.3Class AR CP_OS CAT2ISR 149
7.17.4Class AR_CP_OS_SERVICECALLS 153
7175Class AR CP_OS SPINLOCK 156
7176Class AR CP_OS HOOK. 157

8 API specification 159
8.1 Constants 159
8.1.1 Error codes of type StatusType.« . o v v i i 159
8.2 Macros e 160
8.3 Type definitions 160
8.3.1 ApplicationType (for OS-Applications) 160
8.3.2 ApplicationStateType v v v v v i v vt e 161
8.3.3 ApplicationStateRefType v v v v i i v v i i v 161
8.3.4 TrustedFunctionIndeXTyPe . « « v v v v v v v v v v e e e 162
8.3.5 TrustedFunctionParameterRefType. 162
8.3.6 AcCCesSTYPEe « « v v v v i e e e e e e e e e e e e e e e 162
8.3.7 ODJeCtACCESSTYPE + v v v v v v e e e e e e e e e 163
8.3.8 ObJectTypPeTYPe « v v v v v e e e e e e e e e e e e e e e 163
8.3.9 MemoryStartAddressTyPe . . v v v v v v v v v e e 164
8.3.10 MemorySizeTyPe « v v v v v v e e e e e e e e e e e 164
8.3. 11T ISRTYPE . . v v o i e e e e e e e e e e e e e e e 164
8.3.12 ScheduleTableType . . . v v v v v v v v i e e e e e e 165
8.3.13 ScheduleTableStatusTypPe « « v v v v v v v v v e e e et 165
8.3.14 ScheduleTableStatusRefType v v v v v v v v v v v v 166
8.3.15 ProtectionReturnType v v v v v i v v i e e 166
8.3.16 RestartTypPe . .« v v v v i e e e e e e e e e e e e e 166
8.3.17 PhysicalTimeTyPe . « v v v v v v e e e et e e e e e e e e e 167
8.3.18 CoreIdType . « v« v v v i e e e e e e 167
8.3.19 SpinlockIdTyPe « v v v v v v e e e e e e e e e e 168
8.3.20 TryToGet SpinlockTyPe .« v v v v v v v it e e e e e e e e e e e 168
8.3.21 ArealdType « « v v v v v i e e e e e e e e e e e 168
8.3.22 CounterTyPe . . v v v v v e e e e e e e e e e e 169
8.4 Function definitions L 169
8.4.1 GetApplicationID v i i i v it i 169
8.4.2 GetCurrentApplicationID v v v v i v v .. 170
8.4.3 GetISRID . . . v v v ittt e e 171
8.4.4 CallTrustedFunction i, 172
8.45 ChecCkISRMEMOTYACCESS « v v v v v v v v v e et e e e e e e 174
8.4.6 CheckTaskMemOTryACCESS + v v v v v v v v e e et e e e e e e 175
8.4.7 CheckObJeCtACCESS v v v v v v i e e e e e e e e e e e e e 177
8.4.8 CheckObjectOwnership v v v v i v v i v it i e i o 178
8.4.9 StartScheduleTableRel 179

8.4.10 StartScheduleTableRbs . . . v v v v v v v et e e 180

AUTSSAR

8.4.11 StopScheduleTable i i i i i i ittt it 182
8.4.12NextScheduleTable i i i v i i i it i i e i et it 183
8.4.13 startScheduleTableSynchron 185
8.4.14 SsyncScheduleTable v v v v v it it e et e 186
8.4.15 Set ScheduleTableASYNC . . « v v v v v v b v v e e et e 187
8.4.16 GetScheduleTableStatus v v v v v v v v i v vt e 189
8.4.17 IncrementCounter o i v v it i v it e e 190
8.4.18 GetCounterValuet i i i i i i e e e e e e e e e e e 191
8.4.19GetElapsedValue . . v v v v v v i i e e e e e e e e 192
8.4.20 TerminateApplication o v v v v v v i i i e e 194
8.4.21 GetApplicationStateo 195
8.4.22 GetNumberOfActivatedCores v v v v v v v v v v v o 196
8.4.23GetCoreID . . . v i v i e e e e e e e e e e e e e e e 197
8.4.24 StartCore i i i e e e e e e e e e e 198
8.4.25GetSpinlock . . . i i i e e e e e e e e e 199
8.426 ReleaseSpinlock . . . v v v i i e e e e e e e e 200
8.4.27 TryToGetSpinlock v v v i v it i i e e e e e e 202
8.4.28 ShUtdOWNALLICOTES + v v v v v v e e v e e e e e e e e e 204

8.4.29 ReadPeripheral8, ReadPeripherall6, ReadPeripheral32 . 205
8.4.30WritePeripheral8, WritePeripherall6, WritePeriph-

erall32 . .o e e e e e 207
8.4.31 ModifyPeripheral8, ModifyPeripherall6, ModifyPeriph-
erall32 . . e e e e e e e e e 209
8.4.32EnablelnterruptSOUrCe . . v v v v v v v v et e e e e 211
8.4.383DisableInterruptSOUrce v v v v v v i e 211
8.4.34 ClearPendingInterrupt« v v v v v v i it e e 212
8.4.35 ActivateTaskASyN . . v v v v v i i e e e e e e e 213
8.4.36 SELEVENTASYN . v v v v v e e e e e e e e e e e e e e e e e 213
8.4.37 isOsStarted i e e e e e e e 214
8.4.38 BudgetReplenish v v v v i i it e e e e e 215
85 I0C e 215
8.5.1 Importedtypes 215
8.5.2 Typedefinitions. 216
853 Constants 216
8.5.4 Function definitions 217
8.5.4.1 TocInit (DRAFT) 217
8.5.42 TocSend/IocWrite v i i i it 218
8.5.4.3 TIocSendGroup/IocWriteGroup oo .. 221
85.44 TocReceive/IocRead v v v v v v i i i i 225
8.5.45 TIocReceiveGroup/IocReadGroup . . « « v v v v v v v v v .. 228
8546 ToCEMptyQuUEUE v v v v v i it e e e e e 231
8.6 ExpectediInterfaces o 232

8.6.1 Mandatory Interfaces 232

AUTSSAR

10

8.6.2 OptionalInterfaces
8.6.2.1 ReceiverPullCB

8.7 Hook functions
8.7.1 ProtectionHook i i i i i it e e e
8.7.2 Application specific StartupHook
8.7.3 Application specific ErrorHook
8.7.4 Application specific ShutdownHook
8.8 Servicelnterfaces

Sequence diagrams

9.1 Sequence chart for calling trusted functions
9.2 Sequence chart forusage of ErrorHook
9.3 Sequence chartfor ProtectionHook
9.4 Sequence chartfor StartupHook
9.5 Sequence chart for ShutdownHook
9.6 Sequence diagrams of Sender Receiver communication over the 10C . .
9.6.1 Last-is-best communication,
9.6.2 Queued communication without pull callback
9.6.3 Queued communication with pull callback

Configuration specification

10.1How toread thischapter
10.1.1 Rulesforparamters
10.2Containers and configuration parameters
10.210S . . . e
10.2.2 OsAlarmSetEvent Lo
10.2.30sAlarm e e e
10.2.4 OsAlarmAction e
10.2.5 OsAlarmActivateTask,
10.2.6 OsAlarmAutostart
10.2.7 OsAlarmCallback
10.2.8 OsAlarmincrementCounter
10.2.90sApplication.
10.2.10 OsApplicationHooks
10.2.11 OsApplicationTrustedFunction
10.2.12 OsAppMode L
10.2.13 0sCounter e e
10.2.14 0sEvent
10.2.150sDriver e
10.2.16 OsHooks e
10.217 Oslsr. e e e
10.2.18 OslsrResourcelock
10.2.19 OslsrTimingProtection
10.2.20 0s0OS e

AUTSSAR

10.2.21 OsPeripheralArea 289
10.2.22 OsResource e 291
10.2.283 OsScheduleTable 294
10.2.24 OsScheduleTableAutostart 298
10.2.25 OsScheduleTableEventSetting 299
10.2.26 OsScheduleTableExpiryPoint 301
10.2.27 OsScheduleTableTaskActivation 301
10.2.28 OsScheduleTblAdjustableExpPoint 302
10.2.29 OsScheduleTableTaskReplenish 303
10.2.30 OsScheduleTableSync 304
10.2.31 OsSpinlock 305
10.2.320sTask e 308
10.2.33 OsTaskAutostart 312
10.2.34 OsTaskResourceLock 313
10.2.35 OsTaskTimingProtection 314
10.2.36 OsTimeConstant 317
10.3Containers and configuration parameter extensions of the IOC 318
10.3.10sloc e 319
10.3.2 OslocCommunication 320
10.3.3 OslocSenderProperties 321
10.3.4 OslocReceiverProperties 322
10.3.5 OslocDataProperties, 325
10.4Containers and configuration parameters for ARTI 328
10.4.1 ArtiHardware 328
10.4.2 ArtiHardwareCoreClass 329
10.4.3 ArtiHardwareCorelnstance 333
10.4.4ArtHIOS e 338
10.4.5 ArtiOsAlarmClass e 340
10.4.6 ArtiOsAlarminstance, 341
10.4.7ArtiOsClass e 345
10.4.8 ArtiOsContextClass 347
10.4.9 ArtiOsContextinstance 348
10.4.10 ArtiOslInstance 350
10.4.11 ArtiOslsrClass e 354
10.4.12 ArtiOsilsrinstance 355
10.4.13 ArtiOsMessageContainerClass 359
10.4.14 ArtiOsMessageContainerinstance 360
10.4.15 ArtiOsResourceClass 363
10.4.16 ArtiOsResourcelnstance 365
10.4.17 ArtiOsScheduleTableClass 369
10.4.18 ArtiOsScheduleTablelnstance 370
10.4.19 ArtiOsSpinlockClass 374

10.4.20 ArtiOsSpinlockinstance 376

AUTSSAR

10.4.21 ArtiOsStackClass
10.4.22 ArtiOsStackinstance
10.4.23 ArtiOsTaskClass i
10.4.24 ArtiOsTasklnstance
10.5Published Information.

11 Generation of the OS

11.1Read in configuration
11.2Consistency check
11.3Generating operatingsystem oL

12 Application Notes

12.1HOOKS e
12.2Providing Trusted Functions
12.3Software Components and OS-Applications
12.4Global Time Synchronization.
125WorkingwithFlexRay o,
12.6Migrationfrom OlLto XML
12.7Debug support
12.8Integration hints for peripheral protection
12.9Termination of OS-Applications

13 Outlook on Memory Protection Configuration
13.1Configuration Approach.
A Not applicable requirements

B History of Constraints and Specification ltems

B.1 Differences between R24-11 and R25-11
B.1.1 Added Specification Itemsin R25-11
B.1.2 Changed Specification ltemsin R25-11
B.1.3 Deleted Specification Itemsin R25-11
B.1.4 Added Constraintsin R25-11
B.1.5 Changed Constraintsin R25-11
B.1.6 Deleted Constraintsin R25-11

B.2 Differences between R23-11and R24-11
B.2.1 Added Specification ltemsinR24-11
B.2.2 Changed Specification ltemsin R24-11
B.2.3 Deleted Specification Itemsin R24-11
B.2.4 Added ConstraintsinR24-11
B.2.5 Changed Constraintsin R24-11
B.2.6 Deleted Constraintsin R24-11

B.3 Differences between R22-11and R23-11
B.3.1 Added Specification ltemsinR23-11
B.3.2 Changed Specification Itemsin R23-11
B.3.3 Deleted Specification ltems in R23-11

AUTSSAR

B.3.4 Added Constraints in R23-11

B.3.5 Changed Constraintsin R23-11

B.3.6 Deleted Constraints in R23-11

AUTSSAR

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating Sys-
tem to satisfy the top-level requirements presented in the AUTOSAR SRS [1].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features of the OS

* is configured and scaled statically

* is amenable to reasoning of real-time performance

* provides a priority-based scheduling policy

* provides protective functions (memory, timing etc.) at run-time

* is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of au-
tomotive ECUs, except for Telematic/Infotainment systems. It is assumed that Telem-
atic/Infotainment systems will continue to use proprietary OSs under the AUTOSAR
framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case where AUTOSAR
components are needed to run on these proprietary OSs, the interfaces defined in this
document should be provided as an Operating System Abstraction Layer (OSAL).

This document uses the industry standard [2] (ISO 17356-3) as the basis for the
AUTOSAR OS. The reader should be familiar with this standard before reading this
document.

This document describes extensions to, and restrictions of [2].

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the AUTOSAR
Operating System module that are not included in the [3, AUTOSAR glossary].

Abbreviation Description

AR AUTOSAR

I0C Inter OS-Application communicator

LE A locatable entity is a distinct piece of software that has the same effect
regardless of which core it is located.

MC Multi-Core

NMI Non maskable interrupt

RTOS Real Time Operating System

SLA Software Layered Architecture

SWC Software Component

SWFRT Software FreeRunningTimer

Table 2.1: Acronyms and abbreviations

2.1 Glossary of Terms

Term

Definition

Access Right

An indication that an object (e.g. Task, ISR, hook function) of an OS-Application has the permission
of access or manipulation with respect to memory, OS services or (set of) OS objects.

Cardinality

The number of items in a set.

Counter

An operating system object that registers a count in ticks. There are two types of counters:

Hardware A Counter that is advanced by hardware (e.g. timer). The count value is
Counter maintained by the peripheral "in hardware".

Software A Counter which is incremented by making the IncrementCounter API call
Counter (see [SWS_0Os_00399]). The count value is maintained by the operating system
"in software".

Deadline

The time at which a Task/Category 2 ISR must reach a certain point during its execution defined by
system design relative to the stimulus that triggered activation. See figure 2.1

Delay

The number of ticks between two adjacent expiry points on a ScheduleTable.
A pair of expiry points X and Y are said to be adjacent when:
* There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this case the Delay =
Y.Offset-X.Offset

» Xand Y are the Final Expiry Point and the Initial Expiry Point respectively. In this case Delay =
(Duration-X.Offset)+Y.Offset

When used in the text, Delay is a relative number of ticks measured from a specified expiry point.
For example: X.Delay is the delay from X to the next expiry point.

Deviation

The minimum number of ticks between the current position on an explicitly synchronized Schedule
Table and the value of the synchronization count modulo the duration of the ScheduleTable.

Duration

The number of ticks from a notional zero at which a ScheduleTable wraps.

Y%

AUTSSAR

A

Term

Definition

Execution Time

Tasks: The net time a Task spends in the RUNNING state without entering the SUSPENDED or
WAITING state excluding all preemptions due to ISRrRs which preempt the Task. An extended Task
executing the waitEvent API call to wait on an Event which is already set notionally enters the
WAITING state. For multiple activated basic Tasks the net time is per activation of a Task.

IsRs: The net time from the first to the last instruction of the user provided Category 2 interrupt
handler excluding all preemptions due to higher priority ISRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks and the time spent
making OS service calls.

Execution Budget

Maximum permitted execution time for a Task/ISR.

Expiry Point

The offset on a ScheduleTable, measured from zero, at which the OS activates Tasks and/or
sets Events.

Initial Expiry The expiry point with the smallest offset
Point

Final Expiry The expiry point with the largest offset
Point

Hook Function

A Hook function is implemented by the user and invoked by the operating system in the case of
certain incidents. In order to react to these on system or application level, there are two kinds of
hook functions

Application-
specific

Hook functions within the scope of an individual OS-Application.

System-specific | Hook functions within the scope of the complete system (in general provided by

the integrator).

Initial Offset

The smallest expiry point offset on a ScheduleTable. This can be zero.

Interarrival Time

Basic Tasks: The time between successively entering the READY state from the SUSPENDED state.
Activation of a Task always represents a new arrival. This applies in the case of multiple activations,
even if an existing instance of the Task is in the RUNNING or READY state.

Extended Tasks: The time between successively entering the READY state from the SUSPENDED or
WAITING states. Setting an Event for a Task in the WAITING state represents a new arrival if the
Task is waiting on the Event. Waiting for an Event in the RUNNING state which is already set
represents a new arrival.

ISRs: The time between successive occurrences of an interrupt.

See figure 2.1

Interrupt Lock Time

The time for which a Task/ISR executes with Category 1 interrupts disabled/suspended and/or
Category 2 interrupts disabled/suspended .

Interrupt Source Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector Table

Conceptually, the interrupt vector table contains the mapping from hardware interrupt requests to
(software) interrupt service routines. The real content of the Interrupt Vector Table is very hardware
specific, e.g. it can contain the start addresses of the interrupt service routines.

Final Delay

The difference between the Final Expiry Point offset and the duration on a ScheduleTable in ticks.
This value defines the delay from the Final Expiry Point to the logical end of the ScheduleTable
for single-shot and "nexted" ScheduleTables.

Forced OS-Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks, disables interrupts,
etc., which are associated to the OS-Application. OS-Application and internal variables are
potentially left in an undefined state.

Forced Termination

The OS terminates the Task/Category 2 1SR and does "unlock” it’s held resources. For details see
[SWS_0Os_00108] and [SWS_Os_00109].

Linker File

File containing linking settings for the linker. The syntax of the linker file depends on the specific
linker and, consequently, definitions are stored "linker-specific" in the linker file.

Lock Budget

Maximum permitted Interrupt Lock Time or Resource Lock Time.

Master core

A master core is a core from which the AUTOSAR system is bootstrapped.

Memory Protection Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual protection attributes.
This is distinct from a Memory Management Unit (MMU) that provides a mapping between virtual
addresses and physical memory locations at runtime.

Note that some devices may realize the functionality of an MPU in an MMU.

Mode

Describes the permissions available on a processor.

Y%

AUTSSAR

A
Term Definition
Privileged In general, in "privileged mode" unrestricted access is available to memory as
well as the underlying hardware.
Non-privileged In "non-privileged mode" access is restricted.
Modulus The number of ticks required to complete a full wrap of an OSEK Counter. This is equal to

OsCounterMaxAllowedValue +1 ticks of the Counter.

OS-Application

A collection of OS objects

Trusted An OS-Application that may be executed in privileged mode and may have
unrestricted access to the APl and hardware resources. Only trusted
applications can provide trusted functions.

Non-trusted An OS-Application that is executed in non-privileged mode has restricted access
to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event, ScheduleTable,
Resource, Trustedfunction, Counter, application-specific hook.
OS Service OS services are the API of the operating system.

Protection Error

Systematic error in the software of an OS-Application.

Memory access | A protection error caused by access to an address in a manner for which no

violation access right exists.

Timing fault A protection error that violates the timing protection.

lllegal service A protection error that violates the service protection, e.g. unauthorized call to
OS service.

Hardware division by zero, illegal instruction etc.

exception

Resource Lock Time

The time an OSEK Resource is held by a Task/ISR (excluding the preemptions of the Task/ISR
by higher prior Tasks/ISRS).

Response Time

The time between a Task/ISR being made ready to execute and generating a specified response.
The time includes all preemptions. See figure 2.1

Scalability Class

The features of the OS (e.g. Memory Protection or Timing Protection), described by this document,
can be grouped together to customize the operating system to the needs of the application. There
are 4 defined groups of features which are named scalability classes. For details see Chapter 7.11

ScheduleTable

Encapsulation of a statically defined set of expiry points.

Section

Part of an object file in which instructions or data are combined to form a unit (contiguous address
space in memory allocated for data or code). A section in an object file (object file format) has a
name and a size.

From the linker perspective, two different sides can be distinguished:

Input section memory section in an input object file of the linker.

Output section memory section in an output object file of the linker.

Set (of OS objects)

This document uses the term set, indicating a collection of the same type of OS objects, in the strict
mathematical sense, i.e.:

- a set contains zero or more OS objects (this means a set can be empty)

- the OS objects in the set are unique (this means there cannot be duplicate OS objects in the set)

Spinlock

A spinlock is a locking mechanism where the Task waits in a loop (spins) repeatedly checking for a
shared variable to become a certain value.

The value indicates whether the lock is free or not. In Multi-Core systems the comparison and
changing of the variable typically requires an atomic operation.

As the Task remains active but is not doing anything useful, a spinlock is a busy waiting mechanism

Spinlock variable

A spinlock variable is a shared variable used by a spinlock to indicate whether a spinlock is free or
occupied.

Symbol

Address label that can be imported/used by software modules and resolved by the linker. The
precise syntax of the labels is linker-specific. Here, these address labels are used to identify the
start and end of memory sections.

Start symbol Tags the start of a memory section

End symbol Tags the end of a memory section

\Y%

AUTSSAR

A
Term Definition
Synchronization of Synchronization with a synchronization Counter is achieved, if the expiry points of the Schedule
ScheduleTables with Table are processed within an absolute deviation from the synchronization Counter that is smaller
a synchronization than or equal to a precision threshold.
Counter
Synchronization The "Synchronization Counter", distinct from an OS Counter object, is an external Counter,
Counter external to the OS, against which expiry points of a ScheduleTable are synchronized
Task A Task is the object which executes (user) code and which is managed by the OS. E.g. the OS
switches between different Tasks (schedules). There are 2 types of Tasks; for more details see [2].
Basic Task A Task which cannot block by itself. This means that it cannot wait for (OS)
Event(s).

Extended Task | A Task which can block by itself and wait for (OS) Event(s).

Time Frame The minimum inter-arrival time for a Task/ISR.

Trustedfunction A service provided by a trusted OS-Application that can be used by other OS-Applications (trusted
or non-trusted).

Worst case execution The longest possible execution time.

time (WCET)

Write access Storing a value in a register or memory location. All memory accesses that have the consequence
of writing (e.g. reads that have the side effect of writing to a memory location) are treated as write
accesses.

Table 2.2: Glossary of terms

A LOW's Inter-arrival time

L
LOwW o
w

v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Task HIGH
and Task .
LOW LOW Task L(;\é\;iictlvated
activated om
__LQW‘§_Ex_e_cy_ti_QU_T_im@_,I t:r?nina o

Figure 2.1: Definition of Timing Terminology

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Requirements on Operating System
AUTOSAR_CP_RS_OS

[2] ISO 17356-3: Road vehicles — Open interface for embedded automotive applica-
tions — Part 3: OSEK/VDX Operating System (OS)

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[5] Virtual Functional Bus
AUTOSAR_CP_TR_VFB

[6] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[7] Aperiodic Task Scheduling for Hard Real Time System

[8] Hard Real Time Computing Systems: Predictable Scheduling Algorithms and Ap-
plications

[9] RT-Xen: Towards real-time hypervisor scheduling in Xen

[10] ISO 17356-6: Road vehicles — Open interface for embedded automotive applica-
tions — Part 6: OSEK/VDX Implementation Language (OIL)

[11] Specification of AUTOSAR Run-Time Interface
AUTOSAR_CP_SWS_ARTI

[12] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[13] Specification of Memory Mapping
AUTOSAR_CP_SWS_MemoryMapping

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software Modules [4, SWS BSW
General], which is also valid for AUTOSAR Operating System.

Thus, the specification [4, SWS BSW General] shall be considered as additional and
required specification for AUTOSAR Operating System.

All OSEK OS related types, defines and functions can be found in [2]

AUTSSAR

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related stan-
dards and norms:

* [2] provides a sulfficiently flexible scheduling policy to schedule AUTOSAR sys-
tems.

* [2] is a mature specification and implementations are used in millions of ECUs
worldwide.

* [2] does not provide enough support for isolating multi-source software compo-
nents at runtime.

* [2] does not provide enough runtime support for demonstrating the absence of
some classes of fault propagation in a safety-case.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

* NOT : negation of a single term e.g. NOT Weekend
» AND : conjunction of two terms e.g. Weekend AND Saturday
» OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right. The precedence
rules are:

» Highest Precedence NOT
» Lowest Precedence AND OR
The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas are
used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [5] maps the runnables of a software compo-
nent to (one or more) Tasks that are scheduled by the operating system. All runnables
in a Task share the same protection boundary. In AUTOSAR, a software component
must not include an interrupt handler. A software component is therefore implemented
as runnables executing within the body of a Task, or set of Tasks, only.

AUTSSAR

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The RTE
provides the runtime interface between runnables and the basic software modules. The
basic software modules also comprise a number of Tasks and I SRs that are scheduled
by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior to
be able to specify the attributes of Tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System Abstraction
Layer. The interface to the OSAL is exactly that defined for the AUTOSAR OS.

4.5 Multi-Core Hardware assumptions

There are currently several existing and suggested HW-architectures' for Multi-Core
microprocessors. There is considerable variation in the features offered by these ar-
chitectures. Therefore this section attempts to capture a common set of architectural
features required for Multi-Core.

Hardware assumptions shall remain assumptions and shall not become official
AUTOSAR requirements.

4.5.1 CPU Core features

1. More than one core on the same piece of silicon.
2. The HW offers a method that can be used by the SW to identify a core.

3. The hardware supports atomic read and atomic write operations for a fixed word
length depending on the hardware.

4. The hardware supports some atomic Test-And-Set functionality or similar func-
tionalities that can be used to build a critical section shared between cores. Ad-
ditional atomic operations may exist.

5. The cores may have the same instruction set; at least a common basic instruction
set is available on all cores. Core specific add-ons may exist, but they are not
considered.

6. The cores have the same data representation. For example, the same size of
integer, same byte and bit order, etc.

'In this context "architecture” encompasses: the connections between cores and memory, and to
peripherals and how interrupts work.

AUTSSAR

7. If per-core caches exist, AUTOSAR requires support for RAM - cache coherency
in HW or in SW. In software means that the cache-controller can be programmed
by the SW in a way that it invalidates cache lines or excludes certain memory
regions from caching.

8. In case of an exception (such as an illegal memory reference or divide by zero)
the exception occurs on the core that introduced the exception.

9. For notification purposes, it is possible to trigger an interrupt/trap on any core.

4.5.2 Memory features

« Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

 Flash shall be shared between all cores at least. However, performance can be
improved if Flash/RAM can be partitioned so that there are separate pathways
from cores to Flash.

A single address space is assumed, at least in the shared parts of the memory
address space.

» The AUTOSAR Multi-Core architecture shall be capable to run on systems that
do and do not support memory protection. If memory protection exists, all cores
are covered by a hardware-based memory protection.

4.5.3 Multi-Core Limitations

* In AUTOSAR R4.0, it is not supported to activate additional cores under control
of AUTOSAR after the Operating System was started.

» The scheduling algorithm does not assign Tasks dynamically to cores.

 The AUTOSAR OS Resource algorithm is not supported across cores. Re-
sources can be used locally, between Tasks that are bound to the same core
but not between Tasks/ISRs which are bound to different cores.

4.6 Limitations

4.6.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

* interrupt control registers

AUTSSAR

* processor status words
« stack pointer(s)

Specific (extended) features of the core operating system extend the requirements on
hardware resource. The following list outlines the features that have requirements on
the hardware. Systems that do not use these OS features do not have these hardware
requirements.

* Memory Protection: A hardware memory protection unit is required. All memory
accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

» Time Protection: Timer Hardware for monitoring execution times and arrival rates.

* Privileged and non-privileged modes on the MCU: to protect the OS against in-
ternal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode inter-
nally and to transfer control back and forth from a non-trusted OS-Application to
a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

* Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating system.
In the event of hardware failure, correct operation of the OS cannot be guaranteed.

The resources managed by a specific OS implementation have to be defined within the
appropriate configuration file of the OS.

4.6.2 Programming Language

The API of the operating system is defined as C function calls or macros. If other
languages are used, they must adapt to the C interface.

4.6.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

4.7 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which [2] was designed. The immediate domain of applicability is therefore
currently body, chassis and power train ECUs. However, there is no reason that the
OS cannot be used to implement ECUs for infotainment applications.

AUTSSAR

5 Dependencies to other modules

* Itis assumed that the operating system may use timer units directly to drive coun-
ters.

« If the user needs to drive scheduling directly from global time, then a global time
interrupt is required.

« If the user needs to synchronize the processing of a ScheduleTable to a global
time, the operating system needs to be told the global time using the Sync-
ScheduleTable service.

» The 10C described in this document provides communication between OS-
Applications. The I0C generation is based on configuration information which
is generated by the RTE generator. On the other hand the RTE uses functions
generated by the 10C to transmit data.

» The Operating System depends on the definition of partitions and cores in the
virtual module EcuC if OS-Applications are used.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating System module is not fixed, besides the re-
quirements in the [6, General SRS].

5.1.2 Header file structure

The 10C generator generates an additional header file loc.h. Users of the loc.h shall
include the loc.h file. If an implementation of the IOC requires additional header files, it
is free to include them. The header files are self-contained, that means they will include
all other header files, which they require.

5.1.3 ARTI File Structure

To support ARTI based debugging and tracing, all source files of the OS module with
ARTI hook macros shall include an "Os_Arti.h" file. This file (along with the corre-
sponding Arti.h and Arti.c file) will be provided by the ARTI hook implementer, i.e. the
tracing tool. When building the final executable, the linker will pull in the compiled Arti.c
file, too.

The usage of the ARTI hook macros is configurable. If the OS is configured to not use
ARTI, the inclusion of "Os_Arti.h" may be omitted, and the ARTI hooks macros may be
expanded to empty macros (nothing).

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [6, SRS BSW General] and
[1, SRS OS] and links to the fulfilment of these. Please note that if column “Satisfied
by” is empty for a specific requirement this means that this requirement is not fulfilled
by this document.

Requirement

Description

Satisfied by

[RS_ARTIFO_00014]

ARTI Hooks shall be implemented
with minimal intrusion

[SWS_Os_00836] [SWS_Os_00837]

[RS_ARTIFO_00015]

ARTI Hooks shall follow a fixed
format

[SWS_Os_00839] [SWS_Os_00841]
[SWS_Os_00842] [SWS_Os_00844]
[SWS_Os_00846] [SWS_Os_00857]

[RS_Arti_00001]

The ARTI template shall support core
specific ARTI additions

[SWS_Os_00859]

[RS_Arti_00002]

The ARTI template shall support a
parameter for the current application

[SWS_Os_00859]

[RS_Arti_00003]

The ARTI template shall support a
parameter for the current task

[SWS_Os_00859]

[RS_Arti_00004]

The ARTI template shall support a
parameter for the last error

[SWS_Os_00859]

[RS_Arti_00005]

The ARTI template shall support OS
specific ARTI additions

[SWS Os_00859]

[RS_Arti_00007]

The ARTI template shall support task
specific ARTI additions

[SWS_Os_00859]

[RS_Arti_00009]

The ARTI description shall include a
core class definition.

[SWS_Os_00859]

[RS_Arti_00011]

The ARTI description for a core class
shall include a "current task"
reference to the interpret the
parameter value

[SWS_Os_00859]

[RS_Arti_00012]

The ARTI description shall include
instance definitions for all cores of the
ECU.

[SWS_Os_00859]

[RS_Arti_00014]

The ARTI description for a core
instance shall include a "current task”
reference to evaluate the parameter
value

[SWS_Os_00859]

[RS_Arti_00016]

The ARTI description shall include an
OS class definition.

[SWS_Os_00859]

[RS_Arti_00018]

The ARTI description shall include an
instance definition for the OS of the
ECU.

[SWS_Os_00859]

[RS_Arti_00022]

The ARTI description shall include a
task class definition.

[SWS_Os_00859]

[RS_Arti_00023]

The ARTI description shall include
instance definitions for all tasks of the
ECU.

[SWS_Os_00859]

[RS_Arti_00029]

AUTOSAR shall support recording
timing events of application states

[SWS_Os_00838]

[RS_Arti_00030]

AUTOSAR shall support recording
timing events of tasks

[SWS_Os_00840] [SWS_Os_00864]
[SWS_Os_00865] [SWS_Os_00866]
[SWS_Os_00867] [SWS_Os_00868]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_Arti_00031]

AUTOSAR shall support recording
timing events of category 2 interrupt
states

[SWS_Os_00849]

[RS_Arti_00032]

AUTOSAR shall support recording
timing events of service calls

[SWS_Os_00843]

[RS_Arti_00033]

AUTOSAR shall support recording
timing events of spinlock states

[SWS_Os_00845]

[RS_Arti_00034]

AUTOSAR shall support recording
timing events of protection hooks

[SWS_Os_00856] [SWS_Os_00857]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Os_00374]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_Os_00172] [SWS_Os_00370]
[SWS_Os_00393] [SWS_Os_00850]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Os_00045] [SWS_Os_00050]
[SWS_Os_00173] [SWS_Os_00177]
[SWS_Os_00179] [SWS_Os_00303]
[SWS_Os_00311] [SWS_Os_00320]
[SWS_Os_00328] [SWS_Os_00343]
[SWS_Os_00344] [SWS_Os_00361]
[SWS_Os_00461] [SWS_Os_00562]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Os_00100] [SWS_Os_00268]
[SWS_Os_00270] [SWS_Os_00274]
[SWS_Os_00275] [SWS_Os_00276]
[SWS_Os_00277] [SWS_Os_00279]
[SWS_Os_00280] [SWS_Os_00282]
[SWS_Os_00283] [SWS_Os_00285]
[SWS_Os_00292] [SWS_Os_00293]
[SWS_Os_00304] [SWS_Os_00309]
[SWS_Os_00330] [SWS_Os_00332]
[SWS_Os_00348] [SWS_Os_00349]
[SWS_Os_00350] [SWS_Os_00368]
[SWS_Os_00369] [SWS_Os_00376]
[SWS_Os_00381] [SWS_Os_00387]
[SWS_Os_00388] [SWS_Os_00391]
[SWS_Os_00452] [SWS_Os_00454]
[SWS_Os_00455] [SWS_Os_00456]
[SWS_Os_00458] [SWS_Os_00483]
[SWS_Os_00484] [SWS_Os_00493]
[SWS_Os_00494] [SWS_Os_00495]
[SWS_Os_00507] [SWS_Os_00509]
[SWS_Os_00566]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Os_00001] [SWS_Os_00713]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Os_00001]

[SRS_BSW_00351]

Encapsulation of compiler specific
methods to map objects

[SWS_Os_00815]

[SRS_BSW_00459]

It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_Os_00589]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_Os_91025]

vV

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Os_00097]

The OS shall provide an API that is
backward compatible to the API of
OSEK OS

[SWS_Os_00001] [SWS_Os_00071]
[SWS_Os_00239] [SWS_Os_00367]
[SWS_Os_00424] [SWS_Os_00425]
[SWS_Os_00439] [SWS_Os_00476]
[SWS_Os_00539] [SWS_Os_00541]
[SWS_Os_00854] [SWS_Os_00855]
[SWS_Os_91034]

[SRS_Os_00098]

The Operating System shall provide
statically configurable schedule
tables based on time tables as an
optional service

[SWS_Os_00002] [SWS_Os_00006]
[SWS_Os_00007] [SWS_Os_00009]
[SWS_Os_00194] [SWS_Os_00278]
[SWS_Os_00281] [SWS_Os_00289]
[SWS_Os_00291] [SWS_Os_00347]
[SWS_Os_00351] [SWS_Os_00353]
[SWS_Os_00358] [SWS_Os_00401]
[SWS_Os_00402] [SWS_Os_00403]
[SWS_Os_00404] [SWS_Os_00407]
[SWS_Os_00408] [SWS_Os_00409]
[SWS_Os_00410] [SWS_Os_00411]
[SWS_Os_00412] [SWS_Os_00413]
[SWS_Os_00427] [SWS_Os_00428]
[SWS_Os_00442] [SWS_Os_00443]
[SWS_Os_00444] [SWS_Os_00510]
[SWS_Os_00783] [SWS_Os_00784]
[SWS_Os_00785] [SWS_Os_00876]

[SRS_Os_00099]

The Operating System shall provide a
mechanism which allows switching
between different schedule tables

[SWS_Os_00191] [SWS_Os_00284]
[SWS_Os_00324] [SWS_Os_00414]
[SWS_Os_00453]

[SRS_Os_11000]

The OS may offer support to protect
the memory sections of an
OS-Application against read
accesses by all other OS-Applications

[SWS_Os_00026] [SWS_Os_00027]

[SRS_Os_11001]

The OS shall provide partitions which
allow for fault isolation capabilities

[SWS_Os_00016] [SWS_Os_00054]
[SWS_Os_00056] [SWS_Os_00058]
[SWS_Os_00060] [SWS_Os_00085]
[SWS_Os_00097] [SWS_Os_00112]
[SWS_Os_00198] [SWS_Os_00209]
[SWS_Os_00211] [SWS_Os_00225]
[SWS_Os_00226] [SWS_Os_00236]
[SWS_Os_00237] [SWS_Os_00261]
[SWS_Os_00262] [SWS_Os_00265]
[SWS_Os_00266] [SWS_Os_00271]
[SWS_Os_00272] [SWS_Os_00273]
[SWS_Os_00308] [SWS_Os_00312]
[SWS_Os_00313] [SWS_Os_00314]
[SWS_Os_00364] [SWS_Os_00423]
[SWS_Os_00445] [SWS_Os_00446]
[SWS_Os_00449] [SWS_Os_00450]
[SWS_Os_00451] [SWS_Os_00464]
[SWS_Os_00496] [SWS_Os_00499]
[SWS_Os_00500] [SWS_Os_00504]
[SWS_Os_00512] [SWS_Os_00513]
[SWS_Os_00540] [SWS_Os_00772]
[SWS_Os_00773] [SWS_Os_00774]
[SWS_Os_00775] [SWS_Os_00776]
[SWS_Os_00777] [SWS_Os_00778]
[SWS_Os_00779] [SWS_Os_00780]
[SWS_Os_00781] [SWS_Os_00787]
[SWS_Os_00788] [SWS_Os_00797]
[SWS_Os_00798] [SWS_Os_00799]
[SWS_Os_00861] [SWS_Os_91000]
[SWS_Os_91007]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Os_11002]

The operating system shall provide
the ability to synchronize the
processing of schedule tables with a
global system time base

[SWS_Os_00013] [SWS_Os_00199]
[SWS_Os_00201] [SWS_Os_00206]
[SWS_Os_00227] [SWS_Os_00290]
[SWS_Os_00300] [SWS_Os_00323]
[SWS_Os_00354] [SWS_Os_00362]
[SWS_Os_00389] [SWS_Os_00415]
[SWS_Os_00416] [SWS_Os_00417]
[SWS_Os_00418] [SWS_Os_00419]
[SWS_Os_00420] [SWS_Os_00421]
[SWS_Os_00422] [SWS_Os_00429]
[SWS_Os_00430] [SWS_Os_00431]
[SWS_Os_00435] [SWS_Os_00436]
[SWS_Os_00437] [SWS_Os_00438]
[SWS_Os_00440] [SWS_Os_00457]
[SWS_Os_00462] [SWS_Os_00463]
[SWS_Os_00505] [SWS_Os_00559]

[SRS_Os_11003]

The operating system shall be able to
monitor stack usage and check for a
stack overflow on a per executable
object basis

[SWS_Os_00067] [SWS_Os_00068]
[SWS_Os_00396]

[SRS_Os_11005]

The operating system shall prevent
an OS-Application from modifying the
memory of other OS-Applications

[SWS_Os_00083] [SWS_Os_00195]
[SWS_Os_00207] [SWS_Os_00208]
[SWS_Os_00267] [SWS_Os_00269]
[SWS_Os_00355] [SWS_Os_00356]
[SWS_Os_00795] [SWS_Os_00806]
[SWS_Os_00807] [SWS_Os_91010]
[SWS_Os 91011] [SWS_Os 91012]
[SWS_Os_91013] [SWS_Os_91014]
[SWS_Os 91015] [SWS_Os_91016]
[SWS_Os_91017] [SWS_Os_91018]

[SRS_Os_11006]

The operating system shall allow
tasks and ISRs within an
OS-Application to exchange data

[SWS_Os_00086] [SWS_Os_00087]
[SWS_Os_00196]

[SRS_Os_11007]

The operating system shall allow
OS-Applications to execute shared
code

[SWS_Os_00081]

[SRS_Os_11008]

Timing Fault Detection and
Prevention of Propagation

[SWS_Os_00028] [SWS_Os_00033]
[SWS_Os_00037] [SWS_Os_00048]
[SWS_Os_00064] [SWS_Os_00089]
[SWS_Os_00397] [SWS_Os_00465]
[SWS_Os_00466] [SWS_Os_00467]
[SWS_Os_00469] [SWS_Os_00470]
[SWS_Os_00471] [SWS_Os_00472]
[SWS_Os_00473] [SWS_Os_00474]
[SWS_Os_00475] [SWS_Os_00863]
[SWS_Os_00871]

[SRS_Os_11009]

The operating system shall prevent
the corruption of the OS by any call of
a system service

[SWS_Os_00051] [SWS_Os_00052]
[SWS_Os_00069] [SWS_Os_00070]
[SWS_Os_00088] [SWS_Os_00092]
[SWS_Os_00093]

[SRS_Os_11010]

The operating system shall prevent
an OS-Application modifying OS
objects that are not owned by that
OS-Application

[SWS_Os_00017] [SWS_Os_00056]
[SWS_Os_00256] [SWS_Os_00448]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Os_11011]

The OS shall protect itself against
OS-Applications attempting to modify
control registers directly which are
managed by the OS

[SWS_Os_00096] [SWS_Os_00245]
[SWS_Os_00808] [SWS_Os_00809]
[SWS_Os_00810] [SWS_Os_00811]
[SWS_Os_00812] [SWS_Os_00813]
[SWS_Os_00814] [SWS_Os_91019]
[SWS_Os_91020] [SWS_Os_91021]

[SRS_Os_11012]

The OS shall provide scalability for its
protection features

[SWS_Os_00240] [SWS_Os_00241]

[SRS_Os_11013]

The OS shall be capable of notifying
the occurrence of a protection error at
runtime

[SWS_Os_00033] [SWS_Os_00037]
[SWS_Os_00044] [SWS_Os_00051]
[SWS_Os_00056] [SWS_Os_00064]
[SWS_Os_00068] [SWS_Os_00070]
[SWS_Os_00088] [SWS_Os_00093]
[SWS_Os_00210] [SWS_Os_00246]
[SWS_Os_00538] [SWS_Os_00860]
[SWS_Os_00871]

[SRS_Os_11014]

In case of a protection error, the OS
shall provide an error reaction on
OS-, OS-Application and task/
ISR-level

[SWS_Os_00033] [SWS_Os_00037]
[SWS_Os_00106] [SWS_Os_00107]
[SWS_Os_00108] [SWS_Os_00109]
[SWS_Os_00110] [SWS_Os_00243]
[SWS_Os_00244] [SWS_Os_00506]
[SWS_Os_00553] [SWS_Os_00556]
[SWS_Os_00863]

[SRS_Os_11016]

The OS implementation shall offer
scalability which is configurable by a
generation tool

[SWS_Os_00240] [SWS_Os_00241]
[SWS_Os_00242] [SWS_Os_00327]
[SWS_Os_00514] [SWS_Os_00515]
[SWS_Os_00516] [SWS_Os_00517]
[SWS_Os_00518] [SWS_Os_00519]
[SWS_Os_00520] [SWS_Os_00521]
[SWS_Os_00522] [SWS_Os_00523]
[SWS_Os_00524] [SWS_Os_00525]
[SWS_Os_00526] [SWS_Os_00527]
[SWS_Os_00528] [SWS_Os_00530]
[SWS_Os_00532] [SWS_Os_00534]
[SWS_Os_00536] [SWS_Os_00537]
[SWS_Os_00542] [SWS_Os_00543]
[SWS_Os_00544] [SWS_Os_00545]
[SWS_Os_00763] [SWS_Os_00764]
[SWS_Os_00800]

[SRS_Os_11018]

The OS shall provide interrupt mask
functions

[SWS_Os_00299]

[SRS_Os_11019]

The AUTOSAR OS generation tool
shall create the interrupt vector table

[SWS_Os_00336]

[SRS_Os_11020]

The OS shall provide a standard
interface to tick a software counter

[SWS_Os_00286] [SWS_Os_00321]
[SWS_Os_00529] [SWS_Os_00531]

[SRS_Os_11021]

The OS shall provide a mechanism to
cascade multiple software counters
from a single hardware counter.

[SWS_Os_00301]

[SRS_Os_11022]

The OS shall provide a mechanism to
terminate OS-Application

[SWS_Os_00258] [SWS_Os_00287]
[SWS_Os_00447] [SWS_Os_00502]
[SWS_Os_00535] [SWS_Os_00554]

[SRS_Os_12001]

The OS shall create an ARTI module
description file

[SWS_Os_00858]

[SRS_Os_12002]

The OS code shall incorporate ARTI
hooks

[SWS_Os_00836] [SWS_Os_00837]

[SRS_Os_12003]

ARTI module description file shall
support all ORTI containers

[SWS_Os_00829]

Y

AUTSSAR

Requirement

Description

Satisfied by

[SRS_Os_13000]

Deferrable Server

[SWS_Os_00869] [SWS_Os_00870]
[SWS_Os_00872] [SWS_Os_00873]

[SRS_Os_80001]

The OS shall be able to manage
multiple closely coupled CPU Cores

[SWS_Os_00568] [SWS_Os_00569]
[SWS_Os_00579] [SWS_Os_00583]
[SWS_Os_00596] [SWS_Os_00600]
[SWS_Os_00606] [SWS_Os_00616]
[SWS_Os_00627] [SWS_Os_00628]
[SWS_Os_00672] [SWS_Os_00673]
[SWS_Os_00674] [SWS_Os_00675]

[SRS_Os_80003]

The multi core extension shall provide
the same degree of predictability as
the single core

[SWS_Os_00570] [SWS_Os_00571]
[SWS_Os_00573]

[SRS_Os_80005]

OsApplications and as a result
TASKS and OsISRs shall be
assigned statically to cores

[SWS_Os_00570] [SWS_Os_00571]
[SWS_Os_00572] [SWS_Os_00573]
[SWS_Os_00667] [SWS_Os_00826]
[SWS_Os_CONSTR_00001]
[SWS_Os_CONSTR_00002]

[SRS_Os_80006]

Initialization/Start-up of the system
shall be synchronized

[SWS_Os_00572] [SWS_Os_00574]
[SWS_Os_00575] [SWS_Os_00576]
[SWS_Os_00577] [SWS_Os_00578]
[SWS_Os_00579] [SWS_Os_00580]
[SWS_Os_00581] [SWS_Os_00582]
[SWS_Os_00607] [SWS_Os_00608]
[SWS_Os_00609] [SWS_Os_00610]
[SWS_Os_00625] [SWS_Os_00668]
[SWS_Os_00669] [SWS_Os_00670]
[SWS_Os_00676] [SWS_Os_00677]
[SWS_Os_00678] [SWS_Os_00679]
[SWS_Os_00681]

[SRS_Os_80007]

Shutdown procedure shall be
triggered by any core

[SWS_Os_00586] [SWS_Os_00587]
[SWS_Os_00588] [SWS_Os_00616]
[SWS_Os_00617] [SWS_Os_00621]
[SWS_Os_00713] [SWS_Os_00714]
[SWS_Os_00715] [SWS_Os_00716]
[SWS_Os_00762]

[SRS_Os_80008]

It shall be a common OS
configuration across multiple cores

[SWS_Os_00567] [SWS_Os_00582]
[SWS_Os_00851] [SWS_Os_00852]
[SWS_Os_00853]

[SRS_Os_80011]

The number of cores that the
operating system manages shall be
configurable offline

[SWS_Os_00583] [SWS_Os_00790]
[SWS_Os_00825] [SWS_Os_00862]
[SWS_Os_91002]

[SRS_Os_80013]

The behaviour of services shall be
identical to single core systems

[SWS_Os_00569] [SWS_Os_00589]
[SWS_Os_00590] [SWS_Os_00591]
[SWS_Os_00592] [SWS_Os_00593]
[SWS_Os_00594] [SWS_Os_00595]
[SWS_Os_00607] [SWS_Os_00618]
[SWS_Os_00619] [SWS_Os_00623]
[SWS_Os_00629] [SWS_Os_00630]
[SWS_Os_00631] [SWS_Os_00635]
[SWS_Os_00636] [SWS_Os_00637]
[SWS_Os_00638] [SWS_Os_00639]
[SWS_Os_00640] [SWS_Os_00643]
[SWS_Os_00645] [SWS_Os_00646]
[SWS_Os_00647] [SWS_Os_00663]
[SWS_Os_00664] [SWS_Os_00665]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Os_80015]

The MC extensions shall provide a
mechanism to activate tasks on
different cores

[SWS_Os_00596] [SWS_Os_00598]
[SWS_Os_00599] [SWS_Os_00600]
[SWS_Os_00816] [SWS_Os_00818]
[SWS_Os_00819] [SWS_Os_91022]
[SWS_Os_91023]

[SRS_Os_80016]

Event mechanism shall work across
cores

[SWS_Os_00602] [SWS_Os_00604]
[SWS_Os_00605] [SWS_Os_00817]

[SRS_Os_80018]

A method to synchronize tasks on
more than one core shall be provided

[SWS_Os_00632] [SWS_Os_00633]
[SWS_Os_00634] [SWS_Os_00641]
[SWS_Os_00642] [SWS_Os_00644]
[SWS_Os_00648] [SWS_Os_00649]
[SWS_Os_00650] [SWS_Os_00652]
[SWS_Os_00653] [SWS_Os_00654]
[SWS_Os_00655] [SWS_Os_00656]
[SWS_Os_00657] [SWS_Os_00658]
[SWS_Os_00659] [SWS_Os_00660]
[SWS_Os_00661]

[SRS_Os_80020]

A data exchange mechanism shall be
provided

[SWS_Os_00611] [SWS_Os_00671]
[SWS_Os_00718] [SWS_Os_00719]
[SWS_Os_00720] [SWS_Os_00721]
[SWS_Os_00722] [SWS_Os_00723]
[SWS_Os_00724] [SWS_Os_00725]
[SWS_Os_00726] [SWS_Os_00727]
[SWS_Os_00728] [SWS_Os_00729]
[SWS_Os_00730] [SWS_Os_00731]
[SWS_Os_00732] [SWS_Os_00733]
[SWS_Os_00734] [SWS_Os_00735]
[SWS_Os_00736] [SWS_Os_00737]
[SWS_Os_00738] [SWS_Os_00739]
[SWS_Os_00740] [SWS_Os_00741]
[SWS_Os_00742] [SWS_Os_00743]
[SWS_Os_00744] [SWS_Os_00745]
[SWS_Os_00746] [SWS_Os_00747]
[SWS_Os_00748] [SWS_Os_00749]
[SWS_Os_00750] [SWS_Os_00751]
[SWS_Os_00752] [SWS_Os_00753]
[SWS_Os_00754] [SWS_Os_00755]
[SWS_Os_00756] [SWS_Os_00757]
[SWS_Os_00758] [SWS_Os_00759]
[SWS_Os_00760] [SWS_Os_00761]
[SWS_Os_00803] [SWS_Os_00804]
[SWS_Os_00805] [SWS_Os_00820]
[SWS_Os_00822] [SWS_Os_00824]
[SWS_Os_00827] [SWS_Os_00828]
[SWS_Os_00830] [SWS_Os_00831]
[SWS_Os_00832] [SWS_Os_00833]
[SWS_Os_00834] [SWS_Os_00835]
[SWS_Os_91003] [SWS_Os_91004]
[SWS_Os_91005] [SWS_Os_91006]
[SWS_Os_91026]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Os_80021]

The MC extension of the AUTOSAR
environment shall support a mutual
exclusion mechanism between cores
that shall not cause deadlocks

[SWS_Os_00612] [SWS_Os_00613]
[SWS_Os_00614] [SWS_Os_00615]
[SWS_Os_00620] [SWS_Os_00622]
[SWS_Os_00624] [SWS_Os_00648]
[SWS_Os_00649] [SWS_Os_00650]
[SWS_Os_00651] [SWS_Os_00652]
[SWS_Os_00653] [SWS_Os_00654]
[SWS_Os_00655] [SWS_Os_00656]
[SWS_Os_00657] [SWS_Os_00658]
[SWS_Os_00659] [SWS_Os_00660]
[SWS_Os_00661] [SWS_Os_00662]
[SWS_Os_00666] [SWS_Os_00686]
[SWS_Os_00687] [SWS_Os_00688]
[SWS_Os_00689] [SWS_Os_00690]
[SWS_Os_00691] [SWS_Os_00692]
[SWS_Os_00693] [SWS_Os_00694]
[SWS_Os_00695] [SWS_Os_00696]
[SWS_Os_00697] [SWS_Os_00698]
[SWS_Os_00699] [SWS_Os_00700]
[SWS_Os_00701] [SWS_Os_00703]
[SWS_Os_00704] [SWS_Os_00705]
[SWS_Os_00706] [SWS_Os_00707]
[SWS_Os_00708] [SWS_Os_00709]
[SWS_Os_00710] [SWS_Os_00711]
[SWS_Os_00712] [SWS_Os_00791]
[SWS_Os_00792] [SWS_Os_00801]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [2] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The concepts
that OSEK OS has introduced are widely understood and the automotive industry has
many years of collective experience in engineering OSEK OS based systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives free-
dom for the selection of the events to drive scheduling at runtime, for example angular
rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon the
OSEK OS. In particular OSEK OS provides the following features to support concepts
in AUTOSAR:

« fixed priority-based scheduling

« facilities for handling interrupts

only interrupts with higher priority than Tasks

» some protection against incorrect use of OS services

* a startup interface through start0s and the startupHook

* a shutdown interface through shutdown0Os and the ShutdownHook

OSEK OS provides many features in addition to these. Readers should consult the
specification [2] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible - i.e. applications written for OSEK OS will run on AUTOSAR OS. However,
some of the features introduced by AUTOSAR OS require restrictions on the use of
existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

[SWS_Os_00001]
Upstream requirements: SRS_Os_ 00097, SRS_BSW_00336, SRS_BSW_00345

[The Operating System module shall provide an API that is backward compatible with
the OSEK OS API [2]. |

AUTSSAR

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes ([SWS_0Os_00242])

[SWS_Os 00242]
Upstream requirements: SRS_Os_11016

[The Operating System module shall only allow Alarm Callbacks in Scalability Class

1.]

OSEK OS is required to provide functionality to handle inter-task (internal) communi-
cation according to the OSEK COM specification when internal communication only
is required in the system. In AUTOSAR, internal communication is provided by the
AUTOSAR RTE or by AUTOSAR COM at least one of which will be present for all
AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to support
internal communication.

An OSEK OS must implement internal communication if the symbol LOCALMES-
SAGESONLY is defined. AUTOSAR OS can deprecate the need to implement OSEK
COM functionality and maintain compatibility with OSEK suite of specifications by
ensuring that AUTOSAR OS always exists in an environment where LOCALMES-
SAGESONLY is undefined.

OSEK OS has one special Resource called RES_SCHEDULER. This Resource has 2
specific aspects:

1. Itis always present in the system, even if it is not configured. This means that the
RES_SCHEDULER is always known by the OS.

2. It has always the highest Task priority. This means a Task which allocates this
Resource cannot be preempted by other Tasks.

Since special cases are always hard to handle (e.g. in this case with respect to timing
protection) AUTOSAR OS handles RES_SCHEDULER as any other Resource. This
means that the RES_SCHEDULER is not automatically created.

Note that on multi-core systems the scheduling happens per core. Chapter 7.9.21
contains more information regarding handling of Resources in such systems.

In OSEK OS users must declare Operating System objects with specific macros (e.g.
DeclareTask (), ...) An AUTOSAR OS implementation shall not depend on such
declarations and shall (for backwards compatibility) supply macros without functionality.

AUTSSAR

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS specifi-
cation by defining the required behaviour.

[SWS_Os_00304]

Upstream requirements: SRS_BSW_00323
[Ifin a call to setRelAlarm the parameter "increment” is set to zero, the service shall
return E_0S_VALUE in standard and extended status . |

[SWS_Os_00424]
Upstream requirements: SRS_Os_00097

[The first call to startos (for starting the Operating System) shall not return. |

[SWS_Os_00425]
Upstream requirements: SRS_Os_00097

[If ShutdownOSs is called and shutdownHook returns then the Operating System
module shall disable all interrupts and enter an endless loop. |

7.1.2.3 Extensions to OSEK OS

[SWS_Os_00299]
Upstream requirements: SRS_Os_11018

[The Operating System module shall provide the services DisableAllInter-
rupts, EnableAllInterrupts, SuspendAllInterrupts, ResumeAllInter-—
rupts prior to calling startos and after calling Shutdownos. |

It is assumed that the static variables of the functions mentioned in [SWS_Os_00299]
are initialized.

[SWS_Os_00301]

Upstream requirements: SRS_Os_ 11021
[The Operating System module shall provide the ability to increment a software
Counter as an alternative action on alarm expiry. |

The Operating System module provides API service IncrementCounter (see
[SWS_Os 00399]) to increment a software Counter.

[SWS_Os _00476]
Upstream requirements: SRS_Os_ 00097

[The Operating System module shall allow to automatically start preconfigured abso-
lute alarms during the start of the Operating System. |

AUTSSAR

[SWS_0Os_00476] is an extension to OSEK OS which allows this only for relative
alarms.

[SWS_Os_00566]
Upstream requirements: SRS_BSW_00323

[The Operating System API shall check in extended mode all pointer arguments for
a NULL_PTR and return E_OS_TILLEGAL_ADDRESS in this case unless NULL_PTR is
explicitly allowed as a valid pointer address value in the AP| parameter specification. |

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer measure-
ments.

[SWS_Os_00374]
Upstream requirements: SRS_BSW_00101

[The Operating System module shall handle all the initialization and configuration of
timers used directly by the Operating System module and not handled by the GPT
driver. |

The Operating System module provides APl service GetCounterValue (see
[SWS_Os 00383]) to read the current count value of a Counter (returning either the
hardware timer ticks if Counter is driven by hardware or the software ticks when user
drives Counter).

The Operating System module provides APl service GetElapsedvValue (see
[SWS_Os 00392]) to get the number of ticks between the current tick value and a
previously read tick value.

[SWS_Os_00384] [The Operating System module shall adjust the read out values of
hardware timers (which drive counters) in such that the lowest value is zero and con-
secutive reads return an increasing count value until the timer wraps at its modulus. |

7.3 ScheduleTablesS

7.3.1 Background & Rationale

It is possible to implement a statically defined Task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can
be achieved by specifying that the A1arms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be

AUTSSAR

guaranteed. This typically means modifying the alarms while associated Counter tick
interrupts are disabled.

ScheduleTables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

» one or more actions that must occur when it is processed where an action is the
activation of a Task or the setting of an event.

« An offset in ticks from the start of the ScheduleTable

Each scheduleTable has a duration in ticks. The duration is measured from zero
and defines the modulus of the ScheduleTable.

At runtime, the Operating System module will iterate over the ScheduleTable, pro-
cessing each expiry point in turn. The iteration is driven by an OSEK Counter. It
therefore follows that the properties of the Counter have an impact on what is possi-
ble to configure on the ScheduleTable.

7.3.2 Requirements

7.3.2.1 Structure of a ScheduleTable
Initial Expiry Final Expiry
Point Point
Expiry Point 1 Expiry Point 2 Expiry Point 3 Expiry Point 4 Expiry Point 5
Task Activations Task Activations Task Activations Task Activations Task Activations
TaskA <none> TaskA TaskA TaskB
TaskB TaskE TaskE TaskF
Event Settings Event Settings Event Settings Event Settings Event Settings
EventP:TaskC EventP:TaskC <none> EventQ:TaskC EventP TaskC
EventP TaskD EventP:TaskD EventQ:TaskE
Offset Offset Offset Offset Offset FinalDelay=10
4 ticks 12 ticks 20 ticks 32 ticks 40 ticks { Mnalbelay=
Init\alOffsel:ZI.
Delay=8 Delay=8 Delay=12 Delay=8
Delay=InitialOffset+FinalDelay="14
0 4 12 20 32 40
Schedule Table Duration = 50 ticks
Figure 7.1: Anatomy of a ScheduleTable

[SWS_Os _00401]
Upstream requirements: SRS_Os_ 00098

[A ScheduleTable shall have at least one expiry point. |

AUTSSAR

[SWS_Os _00402]
Upstream requirements: SRS_Os_00098

[An expiry point shall contain a (possibly empty) set of Tasks to activate. |

[SWS_Os_00403]
Upstream requirements: SRS_Os_ 00098

[An expiry point shall contain a (possibly empty) set of Events to set. |

[SWS_Os_00876] Replenish of execution budget by expiry point
Upstream requirements: SRS_Os_00098

[An expiry point shall contain a (possibly empty) set of Taskss to replenish their exe-
cution budget. The replenishment is allowed only for tasks with OsTaskTimingPro-
tectionDeferrableServer=TRUE and is done by means of BudgetReplenish (see
[SWS_Os_91035]) |

Note: For details about the background of [SWS_Os_00876] see 7.7.2.1.1.

[SWS_Os_00404]
Upstream requirements: SRS_Os_00098

[An expiry point shall contain an offset in ticks from the start of the ScheduleTable. |

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

[SWS_Os_00407]
Upstream requirements: SRS_Os_ 00098

[An expiry point shall activate at least one Task OR set at least one event OR replenish
a Tasks execution budget. |

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a SscheduleTable can be totally or-
dered. This is guaranteed by forcing each expiry point on a ScheduleTable to have
a unique offset.

[SWS_Os 00442]
Upstream requirements: SRS_Os_00098

[Each expiry point on a given ScheduleTable shall have a unique offset. |
Iteration over expiry points on a ScheduleTable is driven by an OSEK Counter.

The characteristics of the Counter - 0OsCounterMinCycle and OsCounterMaxAl—
lowedValue - place constraints on expiry point offsets.

AUTSSAR

[SWS_Os_00443]

Upstream requirements: SRS_Os_00098
[The Initial Offset shall be zero OR in the range OsCounterMinCycle .. OsCoun-
terMaxAllowedValue of the underlying Counter.]

Similarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the ScheduleTable.

[SWS_Os _00408]
Upstream requirements: SRS_Os_00098

[The delay between adjacent expiry points shall be in the range 0OsCounterMinCycle
.. OsCounterMaxAllowedValue of the underlying Counter.

7.3.2.3 Processing ScheduleTables

[SWS_Os_00002]
Upstream requirements: SRS_Os_00098

[The Operating System module shall process each expiry point on a ScheduleTable
from the Initial Expiry Point to the Final Expiry Point in order of increasing offset. |

[SWS_Os_00007]
Upstream requirements: SRS_Os_ 00098

[The Operating System module shall permit multiple ScheduleTables to be pro-
cessed concurrently. |

[SWS_Os_00409]
Upstream requirements: SRS_Os_00098

[A ScheduleTable of the Operating System module shall be driven by exactly one
Counter. |

[SWS_Os_00410]

Upstream requirements: SRS_Os_00098
[The Operating System module shall be able to process at least one ScheduleTable
per Counter at any given time. |

[SWS_Os_00411]

Upstream requirements: SRS_Os_00098
[The Operating System module shall make use of ticks so that one tick on the Counter
corresponds to one tick on the ScheduleTable. |

It is possible to activate a Task and set (one or more unique) Events for the same
Task at the same expiry point. The ordering of Task activations and event settings

AUTSSAR

performed from the expiry point could lead to different implementations exhibiting differ-
ent behaviour (for example, activating a suspended Task and then setting and event on
the Task would succeed but if the ordering was reversed then the event setting would
fail). To prevent such non-determinism, it is necessary to enforce a strict ordering of
actions on the expiry point.

[SWS_Os 00412]
Upstream requirements: SRS_Os_00098

[If an expiry point contains actions to activate a Task and to set one or several
Event(s) of the same Task, then the Operating System module shall process this
Task activation before the related Event(s) are set. No further assumptions about the
order for the processing of expiry points can be made. |

A ScheduleTable always has a defined state and the following figure illustrates the
different states (for a non-synchronized scheduleTable) and the transitions between
them.

SCHEDULETABLE STOPPED

StopScheduleTable()
\ NextScheduleTable()

StartScheduleTableAbs()
StartScheduleTableRel()

StopScheduleTable() (SCHEDULETABLE NEXT)
OR schedule table ends

Lprevious” schedule table ends

SCHEDULETABLE RUNNING

Figure 7.2: States of a ScheduleTable

If a ScheduleTable is not active - this means that is not processed by the Operat-
ing System - the state is SCHEDULETABLE_STOPPED. After starting a ScheduleTa-
bles enters the SCHEDULETABLE_RUNNING state where the OS processes the expiry
points. If the service to switch a ScheduleTable is called a ScheduleTable enters
the SCHEDULETABLE_NEXT state and waits until the "current” ScheduleTable ends.

AUTSSAR

7.3.2.4 Repeated scheduleTable Processing

A ScheduleTable may or may not repeat after the final expiry point is processed.
This allows two types of behaviour:

1. single-shot - the ScheduleTable processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of actions
in response to some trigger

2. repeating - the SscheduleTable processes each expiry point in turn, after pro-
cessing the final expiry point, it loops back to the initial expire point. This is useful
for building applications that perform repeated processing or system which need
to synchronize processing to a driver source.

A repeating ScheduleTable means that each expiry point is repeated at a period
equal to the scheduleTable duration.

[SWS_Os_00413]
Upstream requirements: SRS_Os_00098

[The scheduleTable shall be configurable as either single-shot or repeating. |

[SWS_Os_00009]
Upstream requirements: SRS_Os_00098

[If the ScheduleTable is single-shot, the Operating System module shall stop the
processing of the SscheduleTable Final Delay ticks after the Final Expiry Point is
processed. |

[SWS_Os_00427]

Upstream requirements: SRS_Os_00098
[If the ScheduleTable is single-shot, the Operating System module shall allow a
Final Delay between 0 .. OsCounterMaxAllowedValue of the underlying Counter. |

[SWS_Os_00444]
Upstream requirements: SRS_Os_00098

[For periodic ScheduleTables the value of Final Delay shall be in the range Os-
CounterMinCycle .. OsCounterMaxAllowedValue of the underlying Counter. |

[SWS_Os_00194]
Upstream requirements: SRS_Os_00098
[After processing the Final Expiry Point, and if the ScheduleTable is repeating, the

Operating System shall process the next Initial Expiry Point, after Final Delay plus Initial
Offset ticks have elapsed. |

AUTSSAR

7.3.2.5 Controlling ScheduleTable Processing

The application is responsible for starting and stopping the processing of a Schedule
Table.

The Operating System module provides the service StartScheduleTablelAbs (see
[SWS_Os 00358]) to start the processing of a ScheduleTable at an absolute value
"Start" on the underlying Counter. (The Initial Expiry Point has to be processed when
the value of the underlying Counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel (see
[SWS_Os_00347]) to start the processing of a ScheduleTable at "Offset" relative to
the "Now" value on the underlying Counter (The Initial Expiry Point shall be processed
when the value of the underlying Counter equals Now + Offset + InitialOffset).

The figure below illustrates the two different methods for a ScheduleTable driven
by a Counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue =
65535).

AUTSSAR

‘EP1 \ ‘EPZ‘ ‘EP3 \ Schedule Table Tbl
Initial Offset= 2
. > Final Delay= 2
T ‘ ‘ ‘ ‘ ‘ ‘ ‘ Duration= 10
0 1 2 3 4 5 6 7 8 9 0
STOPPED ¢ RUNNING >
‘EP1‘ ‘EPZ‘ ‘EP3‘ ‘EP1‘ ‘EPZ‘ ‘EP3‘ ‘EP1‘
TTTTT I T T T T T I T T I TT I
0o 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
el
65530 | 65532 | 65534 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
65531 65533 65535 OS Counter
L StartScheduleTableAbs(Tbl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 4
STOPPED * RUNNING >
‘EP1‘ ‘EPZ‘ ‘EP3‘ ‘EP1‘ ‘EPZ‘ ‘EP3‘ ‘EP1‘ ‘EPZ‘
rrrrrrrrrrTtrrrrrrrrr T rrErrErrTe
0 1 2 3 45 6 7 8 9 0 1 2 3 456 7 8 9 01 2 3 45 6 7
et
65530 | 65532 | 65534 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
65531 65533 65535 OS Counter

L StartScheduleTableRel(Tbl,2);

Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset = 1

Figure 7.3: Starting a ScheduleTable at an Absolute and a Relative Count

The Operating System module provides the service StopScheduleTable (see
[SWS_0Os_00006]) to cancel the processing of a ScheduleTable immediately at any
point while the ScheduleTable is running.

[SWS_Os_00428]
Upstream requirements: SRS_Os_00098

[If ScheduleTable processing has been cancelled before reaching the Final Expiry
Point and is subsequently restarted then [SWS_Os_00358])/[SWS_Os_00347] means
that the re-start occurs from the start of the ScheduleTable. |

The Operating System module provides the service NextScheduleTable (see
[SWS_0Os_00191]) to switch the processing from one ScheduleTable to another
ScheduleTable.

AUTSSAR

[SWS_Os 00414]
Upstream requirements: SRS_Os_00099

[When a ScheduleTable switch is requested, the OS shall continue to process expiry
points on the current ScheduleTable. After the Final Expiry Point there will be a delay
equivalent to Final Delay ticks before processing the switched-to ScheduleTable.
The initial expiry point will be processed after initial offset. |

The Operating System module provides the service Get ScheduleTableStatus (see
[SWS_0Os_00227]) to query the state of a ScheduleTable.

ScheduleTables can be configured (see chapter 10) to start automatically during
start of the Operating System module (like Tasks and A1arms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with ScheduleTables.

[SWS_Os_00510]
Upstream requirements: SRS_Os_00098

[The Operating System module shall perform the autostart of ScheduleTables dur-
ing startup after the autostart of Tasks and Alarms. |

7.4 ScheduleTable Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a ScheduleTable is processed
is under user control. However, if the ScheduleTable repeats then it is not guaran-
teed that the absolute count value at which the initial expiry point was first processed
is the same count value at which it is subsequently processed. This is because the
duration of the ScheduleTable need not be equal to the Counter modulus.

In many cases it may be important that ScheduleTable expiry points are processed
at specific absolute values of the underlying Counter. This is called synchronization.
Typical use-cases include:

» Synchronization of expiry points to degrees of angular rotation for motor manage-
ment

» Synchronizing the computation to a global (network) time base. Note that in
AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases

2. other AUTOSAR modules, most notably FlexRay, provide this independently
to the Operating System

AUTSSAR

3. if the Operating System is required to synchronize to multiple global (net-
work) time sources (for example when building a gateway between two time-
triggered networks) the Operating System cannot be the source of a unique
global time.

AUTOSAR OS provides support for synchronization in two ways:

* implicit synchronization - the Counter driving the ScheduleTable is the
Counter with which synchronization is required. This is typically how syn-
chronization with time-triggered networking technologies (e.g. FlexRay, TTP) is
achieved - the underlying hardware manages network time synchronization and
simply presents time as an output/compare timer interface to the Operating Sys-
tem. The following figure shows the possible states for ScheduleTables with
implicit synchronization.

(: SCHEDULETABLE STOPPED

StopScheduleTable()

NextScheduleTable()

StartScheduleTableAbs() SCHEDULETARLE NEXT)

StopScheduleTable()

Lprevious” ScheduleTable ends

SCHEDULETABLE RUNNING AND
__SYNCHRONOUS

Figure 7.4: States of an implicit synchronized ScheduleTable

+ explicit synchronization - the scheduleTable is driven by an Operating Sys-
tem Counter which is not the Counter with which synchronization is required.
The Operating System provides additional functionality to keep ScheduleTa-
ble processing driven by the Operating System Counter synchronized with the
synchronization Counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such Sched-
uleTables.

AUTSSAR

SCHEDULETABLE STOPPED StopScheduleTable()

NextScheduleTable()

SCHEDULETABLE NEXT ‘:)

StartScheduleTableAbs()
StartScheduleTableRel()
StopScheduleTable()
Lprevious” ScheduleTable ends

StopScheduleTable()
StartScheduleTableSync()

(:- SCHEDULETABLE WATTING -:) (:- SCHEDULETABLE RUNNING

ABS(CounterValue-GlobalVValue)<=PRECISION

StopScheduleTable()
SyncScheduleTable() SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

SCHEDULETABLE RUNNING AND
~ SYNCHRONOUS

Figure 7.5: States of an explicit synchronized SscheduleTable (not all conditions for
transitions are shown in the picture)

7.4.2 Requirements

[SWS_Os_00013]
Upstream requirements: SRS_Os_11002

[The Operating System module shall provide the ability to synchronize the processing
of ScheduleTable to known Counter values. |

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of ScheduleTables. However, it is necessary to constrain
configuration and runtime control of the ScheduleTable so that ticks on the config-
ured ScheduleTable can be aligned with ticks on the Counter. This requires the
range of the SscheduleTable to be identical to the range of the Counter (the equality
of tick resolution of each is guaranteed by the requirements on the ScheduleTable /
Counter interaction):

AUTSSAR

[SWS_Os_00429]
Upstream requirements: SRS_Os_11002

[A ScheduleTable of the Operating System module that is implicitly synchronized
shall have a Duration equal to OsCounterMaxAllowedValue + 1 of its associated
OSEK OS counter. |

To synchronize the processing of the ScheduleTable it must be started at a known
counter value. The implication of this is that a ScheduleTable requiring implicit syn-
chronization must only be started at an absolute counter value and cannot be started
at a relative count value.

[SWS_Os_00430]
Upstream requirements: SRS_Os_11002

[The Operating System module shall prevent a ScheduleTable that is implicitly syn-
chronized from being started at a relative count value. |

When the SscheduleTable is started at an absolute counter value each expiry point
will be processed when the counter equals the value specified in the service call plus
expiry point’s offset. The common use-case is to ensure that the offsets specified
in the scheduleTable configuration correspond to absolute values of the underlying
Counter. This is achieved trivially using Start ScheduleTableAbs(Tbl,0) as shown
below.

v

Py
STOPPED - RUNNING AND SYNCHRONOUS

‘EP1 ‘ ‘EPZ‘ ‘EP3‘ ‘EP1 ‘ ‘EPZ‘ ‘EP3‘ ‘EP1 ‘
YT TT T I T T T YT T T T T TT T I T
01 2 3 456 7 8 9 01 2 3 45 6 7 8 901 2 3 4
crrrrrrrrrrrrrrrrrrrr Tt
4 5 6 7 8 9 01 2 3 45 6 7 8 9 01 2 3 45 6 7 8 901 2 3 4
OS Counter

L StartScheduleTableAbs(Tbl,0);

Process Initial Expiry Point when the Counter = 0 + Initial Offset = 2

Figure 7.6: Example for implicit synchronized ScheduleTable

7.4.2.2 Explicit Synchronization

An explicitly synchronized ScheduleTable requires additional support from the Op-
erating System module. The ScheduleTable is driven by an Operating System mod-
ule’s Counter as normal (termed the "drive Counter") but processing needs to be
synchronized with a different Counter (termed the "synchronization Counter") which
is not an Operating System module’s Counter object.

AUTSSAR

The following constraints must be enforced between the ScheduleTable, the Oper-
ating System module’s Counter and the synchronization Counter:

Constraint1:

[SWS_Os_00431]
Upstream requirements: SRS_Os_ 11002

[A scheduleTable that is explicitly synchronized shall have a duration no greater
than modulus of the drive Counter. |

Constraint2:

[SWS_Os_00462]
Upstream requirements: SRS_Os_11002

[A scheduleTable that is explicitly synchronized shall have a duration equal to the
modulus of the synchronization Counter. |

Constraint3:

[SWS_Os_00463]
Upstream requirements: SRS_Os_11002

[The synchronization Counter shall have the same resolution as the drive Counter
associated with the ScheduleTable. This means that a tick on the ScheduleTable
has the same duration as a tick on the synchronization Counter. |

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep
processing each expiry point at absolute value of the synchronization Counter equal
to the expiry point’s offset. This means that explicit synchronization always assumes
that the notional zero of the ScheduleTable has to be synchronized with absolute
value zero on the synchronization Counter.

To achieve this, the Operating System module must be told the value of the synchro-
nization Counter by the user. As the modulus of the synchronization Counter and
the scheduleTable are identical, the Operating System module can use this infor-
mation to calculate drift. The Operating System module then automatically adjusts the
delay between specially configured expiry points, retarding them or advancing them as
appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup

There are two options for starting an explicitly synchronized ScheduleTable:

AUTSSAR

1. Asynchronous start: Start the ScheduleTable at an arbitrary value of the syn-
chronization Counter.

2. Synchronous start: Start the ScheduleTable at absolute value zero of the syn-
chronization Counter only after a synchronization count has been provided. This
may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative ScheduleTable
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver Counter not the synchronization Counter. This
allows the scheduleTable to start running before the value of the synchronization
Counter is known.

Synchronous start requires an additional service that starts the ScheduleTable only
after the Operating System module is told the value of the synchronization Counter.

The Operating System module provides the service StartScheduleTableSyn-
chron (see [SWS_0Os_00201]) to start an explicitly synchronized scheduleTable
synchronously. The Initial Expiry Point will be processed after (Duration - Value) + Ini-
tial Offset ticks of the driver Counter have elapsed where Value is the absolute value
of the synchronization Counter provided to the ScheduleTable.

[SWS_Os_00435]
Upstream requirements: SRS_Os_11002

[If an explicitly synchronized scheduleTable was started synchronously, then the
Operating System module shall guarantee that it has state "waiting" when the call of
service startScheduleTableSynchron returns. |

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization Counter.
Since the scheduleTable duration is equal to the modulus of the synchronization
Counter, the Operating System module can use this to determine the drift between
the current count value on the ScheduleTable time and the synchronization count
and decide whether (or not) any action to achieve synchronization is required.

The Operating System module provides the service SyncScheduleTable (see
[SWS_Os 00199]) to provide the scheduleTable with a synchronization count and
start synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A ScheduleTable defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

AUTSSAR

* OsScheduleTableMaxShorten : the maximum value that can be subtracted
from the expiry offset

* OsScheduleTableMaxLengthen: the maximum value that can be added to the
expiry point offset

The following figure illustrates the behaviour depending on OsScheduleTable-
MaxShorten and OsScheduleTableMaxLengthen:

AUTSSAR

Expected Delays

Expiry Point Expiry Peoint Expiry Point
Cument Neax NaxtNaxt
Task Activations Task Activations Task Activations
Event Ssttings Event Settings Event Settings
Offest Offeat Offest
10 wcE 24 9cks £2 soes
MaxShorten MazsSnhorten MaxSnortan
7 o
MaxLangtnan MaxLangthan MaxLangthan
2 i
Selay=14 Dalay =18
Expiry Point Expiry Point Expiry Point
Cument Next MNextNaxt
Task Acthvations Task Activations Task Acthvations
Event 3attings Evant 3attings Event 3attings
Offest Offest Offest
10 2o 24 o £2 ucis
MaxShorten MaxShorien MaxShorten
7 9cas
MazLangthan MaxLangthan MazLangthan
29
Delay=14T=T Deday =13
Expiry Point Expiry Point Expiry Point
Cumant Nexd NaxtMexd

Task Actiwations

Task Activations

Task Activations

Event Ssttings Evant Ssttings Svent Ssttings

Offeat Offest Offest

10 9cks 24 100 £2 ucs

Maxshortan Maxshorten Max$horten
=

MaxLangtnaen MaxLangthan MasLangthan
2 tos

SeEy =iiaintd

Delay =18

Figure 7.7: Adjustment of Expiry Points

AUTSSAR

[SWS_Os_00415]
Upstream requirements: SRS_Os_11002

[An expiry point shall permit the configuration of an OsScheduleTableMaxShorten
that defines the maximum number of ticks that can be subtracted from expiry point
offset. |

[SWS_Os_00416]
Upstream requirements: SRS_Os_11002

[An expiry point shall permit the configuration of an OsScheduleTable-
MaxLengthen that defines the maximum number of ticks that can be added to expiry
point offset. |

When performing synchronization it is important that the expiry points on the Sched-
uleTable are processed according to the total ordering defined by their offsets. This
means that the range of permitted values for 0sScheduleTableMaxShorten and
OsScheduleTableMaxLengthen must ensure that the next expiry point is not re-
tarded into the past or advanced beyond more than one iteration of the Schedule
Table.

[SWS_Os_00436]
Upstream requirements: SRS_Os_11002

[The value of (Offset - 0OsScheduleTableMaxShorten) of an expiry point shall be
greater than (Offset + OsCounterMinCycle) of the pervious expiry point. |

[SWS_Os_00559]
Upstream requirements: SRS_Os_ 11002

[The value of OsScheduleTableMaxLengthen shall be smaller than the duration of
the ScheduleTable. |

[SWS_Os_00437]
Upstream requirements: SRS_Os_11002

[The value of (OsScheduleTableMaxLengthen + delay_from_previous_EP) of an
expiry point shall be less than the 0OsCounterMaxaAllowedvalue of the underlying
Counter. |

Explicitly synchronized ScheduleTables allow the tolerance of some drift between
the scheduleTable value and the synchronization counter value. This tolerance can
be zero, indicating that the ScheduleTable is not considered synchronized unless
the values are identical.

[SWS_Os_00438]
Upstream requirements: SRS_Os_11002

[A ScheduleTable shall define a precision bound with a value in the range 0 to
duration. |

AUTSSAR

7.4.2.3 Performing Synchronization

The Operating System module uses the synchronization count to support (re-
)synchronization of a ScheduleTable at each expiry point by calculating an adjust-
ment to the delay to the next expiry point. This provides faster re-synchronization of
the ScheduleTable than doing the action on the final expiry point.

[SWS_Os_00206]
Upstream requirements: SRS_Os_11002

[When a new synchronization count is provided, the Operating System module shall
calculate the current deviation between the explicitly synchronized scheduled table and
the synchronization count. |

It is meaningless to try and synchronize an explicitly synchronized ScheduleTable
before a synchronization count is provided.

[SWS_Os_00417]
Upstream requirements: SRS_Os_ 11002

[The Operating System module shall start to synchronize an explicitly synchronized
ScheduleTable after a synchronization count is provided AND shall continue to ad-
just expiry points until synchronized. |

[SWS_Os_00418]
Upstream requirements: SRS_Os_ 11002

[The Operating System module shall set the state of an explicitly synchronized Sched-
uleTable to "running and synchronous" if the deviation is less than or equal to the
configured OsScheduleTblExplicitPrecision threshold. |

[SWS_Os_00419]
Upstream requirements: SRS_Os_11002

[The Operating System module shall set the state of an explicitly synchronized Sched-
uleTable to "running" if the deviation is greater than the configured OsScheduleT-
blExplicitPrecision threshold. |

[SWS_Os_00420]
Upstream requirements: SRS_Os_11002

[IF the deviation is non-zero AND the next expiry point is adjustable AND the table
is behind the sync counter (TableTicksAheadOfSyncCounter <= TableTicksBehindOf
SyncCounter) THEN the OS shall set the next EP to expire delay - min(MaxShorten,
Deviation) ticks from the current expiry. |

AUTSSAR

[SWS_Os_00421]
Upstream requirements: SRS_Os_11002

[IF the deviation is non-zero AND the next expiry point is adjustable AND the table is
ahead of the sync Counter (TableTicksAheadOfSyncCounter > TableTicksBehindOf
SyncCounter) THEN the OS shall set the next EP to expire delay + min(MaxLengthen,
Deviation) ticks from the current expiry. |

Figure 7.8 shows explicit synchronization of a ScheduleTable. It assumes the fol-
lowing:

« EP1-3 have OsScheduleTableMaxLengthen=2

e EP1-3 have OsScheduleTableMaxShorten =1

sToPPED WATING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS
EREARED [ep1] [er2| [er3| [ep1[eP2]ers]
> »e >
FPTTTTTITTT T2 TTTTTTTTT T Fal fal TT 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 4 5 7 8 9 0
EP3.Delay = EP3.Delay + Adjustment EP1.Delay = EP1.Delay - Adjustment EP2.Delay = EP2.Delay - Adjustment
= 3 + min(MaxLengthenDeviation) — = 2 - min(MaxShorten, Deviation) — — =3 + min(MaxShortenDeviation)
=3+2=5 =2-1=1 =3-1=2
> Synchronization
T - Counter
8 5 3
P
SyncScheduleTable(Thl,5);
PositionOnTbl
= NextEP.Offset - (DriveCtr.Match - DriveCtr.Now) SyncScheduleTable(Thl,3);
=8-(9-8)=7 PositionOnTbl
Deviation = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
SyncScheduleTable(Tbl,8); = PositionOnTbl-5 = 2 =2-(25-24)=1
DriveCtr Match Deviation ~
= DriveCtr.Now + (Duration-8) + InitialOffset = PositionOnTbk-3 = -2
=65535+2+2=3

— StartScheduleTableSynchron(Tbl);

T]

65530 ' 65532 ' 65534
65531 65533 65535

Drive

[T T T T T T T T I T TTTT I TTTT T counter

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 7.8: Explicit ScheduleTable Synchronization

The Operating System module provides the service Set ScheduleTableAsync (see
[SWS_Os_00422]) to cancel synchronization being performed at adjustable expiry
points on a ScheduleTable.

The Operating System module provides the service Get ScheduleTableStatus (see
[SWS_0Os_00227]) to query the state of a ScheduleTable also with respect to syn-
chronization.

AUTSSAR

7.5 Stack Monitoring Facilities
7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a "best effort with available resources" scheme for detectable
classes of memory faults. Stack monitoring will identify where a Task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there
is considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system be-
cause it is not necessarily the Task/I SR that was executing that used more than stack
space than required - it could be a lower priority object that was pre-empted.

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using an MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

[SWS_Os_00067]
Upstream requirements: SRS_Os_11003

[The Operating System module shall provide a stack monitoring which detects possible
stack faults of Task(s)/Category 2 ISR(S). |

[SWS_Os_00068]
Upstream requirements: SRS_Os_11003, SRS_Os_11013
[If a stack fault is detected by stack monitoring AND no ProtectionHook is config-

ured, the Operating System module shall call the ShutdownOs service with the status
E_OS_STACKFAULT. |

[SWS_Os_00396]
Upstream requirements: SRS_Os_11003
[If a stack fault is detected by stack monitoring AND a ProtectionHook is config-

ured the Operating System module shall call the ProtectionHook with the status
E_OS_STACKFAULT. |

AUTSSAR

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRS, Alarms, ScheduleTables, Counters) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRS, Counters, Alarms and ScheduleTables must belong to
an OS-Application. All objects which belong to the same OS-Application have access
to each other. The right to access objects from other OS-Applications may be granted
during configuration. An Event is accessible if the Task for which the event can be
set is accessible. Access means that these Operating System objects are allowed as
parameters to API services.

There are two classes of OS-Application:

1. Trusted OS-Applications are allowed to run with monitoring or protection features
disabled at runtime. They may have unrestricted access to memory, the Oper-
ating System module’s API, and need not have their timing behaviour enforced
at runtime. They are allowed to run in privileged mode when supported by the
processor. The Operating System module assumes that trusted OS-Applications
(and trusted functions) do not cause a memory related protection fault. If such a
fault happens the system stability is likely gone and a shutdown may be the only
option.

2. Non-Trusted OS-Applications are not allowed to run with monitoring or protection
features disabled at runtime. They have restricted access to memory, restricted
access to the Operating System module’s APl and have their timing behaviour
enforced at runtime. They are not allowed to run in privileged mode when sup-
ported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information about
the access rights and the membership of objects. These services are intended to be
used in case of an inter-OS-Application call for checking access rights and arguments.

Note that Resource objects do not belong to any OS-Application, but access to them
must be explicitly granted. (The same principle applies to spinlocks in Multi-Core sys-
tems)

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

AUTSSAR

class OS-Application Mcdel/

0OS-Application Hook
#itsShutdownHook
' utdowntioo | Shutdow nHook_<Appl>
SCHEDULETABLE #itsSchedule ! 01
—
: 1
#itsStartupHook ficok
i StartupHook_<Appl>
1 0.1
ALARM
#itsAlam Hook
#itsEmorHook
1 tsermormioo | ErrorHook_<Appl>
1 0.1
TASK
COUNTER .
#itsCounter i sitsTask| - EVENTS (of the TASK)
; <>—————————1- One optional restart TASK
.

ISR

#tsISR

A Ay
- wom J---

«realjize» «realize»
i L An OS-Application may acces OS

objects of other OS-Application (e.g.

+itsProvidedServices

trusted non-trusted starting an Alarm or setting an Event
PR RUNCTION OS-Application OS-Application to anothers OS-Application Task) if
their configuration allows this.
0.r 1
constraints constraints
{privileged mode} {non-privileged mode

Figure 7.9: UML-model of OS-Application

OS-Applications have a state which defines the scope of accessibility of its Operating
System objects from other OS-Applications. Each OS-Application is always in one of
the following states:

* Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects
may be accessed from other OS-Applications. This is the default state at startup.

» Terminated and not accessible (APPLICATION_TERMINATED): Operating Sys-
tem objects cannot be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

AUTSSAR

After StartOS()
OR

before StartupHooks{)

APPLICATION_ACCESSIBLE ‘
h i

ProtectionHook{)
OR

TerminatApplication()

‘IAPPLICATIONiTERMINATED |

Figure 7.10: States of OS-Applications

7.6.2 Requirements

[SWS_Os_00445]
Upstream requirements: SRS_Os_11001

[The Operating System module shall support OS-Applications which are a configurable
selection of Trusted Functions, Tasks, TSRS, Alarms, ScheduleTableS, Counters,
hooks (for startup, error and shutdown). |

[SWS_Os_00446]
Upstream requirements: SRS_Os_11001

[The Operating System module shall support the notion of trusted and non-trusted
OS-Applications. |

[SWS_Os_00464]
Upstream requirements: SRS_Os_11001

[Trusted OS-Applications may offer services ("trusted services") to other (even non-
trusted) OS-Applications. |

The Operating System module provides the services GetApplicationID and
GetCurrentApplicationID (see [SWS_Os 00016]) to determine the configured
resp. currently executing OS-Application (a unique identifier shall be allocated to each
application).

The Operating System module provides the service CheckObjectOwnership
(see [SWS_Os_00017]) to determine to which OS-Application a given Task, ISR,
Counter, Alarm Or ScheduleTable belongs.

The Operating System module provides the service CheckObjectAccess (see
[SWS_0Os_00256]) to determine which OS-Applications are allowed to use the IDs of
a Task, Resource, Counter, Alarm or ScheduleTable in APl calls.

The Operating System module provides the service TerminateApplication (see
[SWS_Os 00258]) to terminate the OS-Application to which the calling Task/Category

AUTSSAR

2 IsR/application specific error hook belongs. (This is an OS-Application level variant
of the TerminateTask service)

The Operating System provides the service TerminateApplication (see
[SWS_0Os_00258]) to terminate another OS-Application AND calls to this service shall
be ignored if the caller does not belong to a trusted OS-Application.

[SWS_Os_00447]
Upstream requirements: SRS_Os_11022

[If the Operating System module terminates an OS-Application, then it shall:
+ terminate all running, ready and waiting Tasks/ISRs of the OS-Application AND
» disable all interrupts of the OS-Application AND
« stop all active alarms of the OS-Applications AND

* stop all ScheduleTables of the OS-Application.

]

[SWS_Os_00448]
Upstream requirements: SRS_Os_ 11010

[The Operating System module shall prevent access of OS-Applications, trusted or
non-trusted, to objects not belonging to this OS-Application, except access rights for
such objects are explicitly granted by configuration. |

The Operating System provides the service GetApplicationState (see
[SWS_Os 00499]) to request the current state of an OS-Application.

[SWS_Os_00500]
Upstream requirements: SRS_Os_11001

[The Operating System module shall set the state of all OS-Applications after the call
of Startos and before any startupHook is called to APPLICATION_ACCESSIBLE. |

[SWS_Os_00502]
Upstream requirements: SRS_Os_11022

[If an OS-Application is terminated (e.g. through a service call or via protection hook)
then the Operating System module shall set the state of this OS-Application to APPLI-
CATION_TERMINATED. |

[SWS_Os_00504]
Upstream requirements: SRS_Os_11001
[The Operating System module shall deny access to Operating System objects

from other OS-Applications to an OS-Application which is not in state APPLICA-
TION_ACCESSIBLE.]

AUTSSAR

[SWS_Os_00509]
Upstream requirements: SRS_BSW_00323
[If a service call is made on an Operating System object that is owned by another

OS-Application without state APPLICATION_ACCESSIBLE, then the Operating Sys-
tem module shall return E_0S_ACCESS. |

An example for [SWS_Os_00509] is a call to ActivateTask for a Task in an OS-
Application that already terminated.

7.7 Protection Facilities

Protection is only possible for Operating System managed objects. This means that:

* It is not possible to provide protection during runtime of Category 1 1sRs, be-
cause the operating system is not aware of any Category 1 IsSRs being invoked.
Therefore, if any protection is required, Category 1 ISRs have to be avoided. If
Category 1 interrupts AND OS-Applications are used together then all Category
1 1SR must belong to a trusted OS-Application.

* It is not possible to provide protection between functions called from the body of
the same Task/Category 2 ISR.

7.7.1 Memory Protection
7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

The memory protection scheme is based on the (data, code and stack) sections of the
executable program.

Stack: An OS-Application comprises a number of Tasks and 1SRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore no
need to share stack data between objects, even if those objects belong to the same
OS-Application.

Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:

1. Provide a more immediate detection of stack overflow and underflow for the Task
or ISR than can be achieved with stack monitoring

2. Provide protection between constituent parts of and OS-Application, for example
to satisfy some safety constraints.

AUTSSAR

Data: OS-Applications can have private data sections and Tasks/ISRs can have pri-
vate data sections. OS-Application’s private data sections are shared by all Tasks/
ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared between
all OS-Applications (to use shared libraries). In the case where code protection is not
used, executing incorrect code will eventually result in a memory, timing or service
violation.

7.7.1.2 Requirements
Data Sections and Stack

[SWS_Os_00198]

Upstream requirements: SRS_Os_11001
[The Operating System module shall prevent write access to its own data sections and
its own stack from non-trusted OS-Applications. |

[SWS_Os_00795]

Upstream requirements: SRS_Os_11005
[The OS shall offer the possibility to restrict write access of trusted OS-Applications in
the same way as it is done for non-trusted OS-Applications. |

This can be configured with the OsTrustedApplicationWithProtection.

Private data of an OS-Application

[SWS_Os_00026]
Upstream requirements: SRS_Os_11000

[The Operating System module may prevent read access to an OS-Application’s data
section attempted by other non-trusted OS-Applications. |

[SWS_Os_00086]

Upstream requirements: SRS_Os_11006
[The Operating System module shall permit an OS-Application read and write access
to that OS-Application’s own private data sections. |

[SWS_Os _00207]
Upstream requirements: SRS_Os_11005

[The Operating System module shall prevent write access to the OS-Application’s pri-
vate data sections from other non-trusted OS-Applications. |

Private Stack of Task/ISR

AUTSSAR

[SWS_Os 00196]
Upstream requirements: SRS_Os_11006

[The Operating System module shall permit a Task/Category 2 ISR read and write
access to that Task’s/Category 2 ISR’s own private stack. |

[SWS_Os_00208]
Upstream requirements: SRS_Os_11005

[The Operating System module may prevent write access to the private stack of Tasks/
Category 2 1sRs of a non-trusted application from all other Tasks/ISRs in the same
OS-Application. |

[SWS_Os _00355]
Upstream requirements: SRS_Os_11005

[The Operating System module shall prevent write access to all private stacks
of Tasks/Category 2 1sRs of an OS-Application from other non-trusted OS-
Applications. |

Private data of a Task/ISR

[SWS_Os_00087]
Upstream requirements: SRS_Os_11006

[The Operating System module shall permit a Task/Category 2 ISR read and write
access to that Task’s/Category 2 ISR’s own private data sections. |

[SWS_Os_00195]
Upstream requirements: SRS_Os_11005

[The Operating System module may prevent write access to the private data sections
of a Task/Category 2 1SR of a non-trusted application from all other Tasks/ISRS in
the same OS-Application. |

[SWS_Os_00356]
Upstream requirements: SRS_Os_11005

[The Operating System module shall prevent write access to all private data sections of
a Task/Category 2 1SR of an OS-Application from other non-trusted OS-Applications. |
Code Sections

[SWS_Os_00027]
Upstream requirements: SRS_Os_11000

[The Operating System module may provide an OS-Application the ability to protect its
code sections against executing by non-trusted OS-Applications. |

AUTSSAR

[SWS_Os_00081]
Upstream requirements: SRS_Os_11007

[The Operating System module shall provide the ability to provide shared library code
in sections that are executable by all OS-Applications. |

Peripherals

[SWS_Os_00209]
Upstream requirements: SRS_Os_11001

[If OsTrustedApplicationWithProtection == FALSE then the Operating Sys-
tem module shall permit trusted OS-Applications read and write access to peripher-
als. |

[SWS_Os_00083]
Upstream requirements: SRS_Os_11005

[The Operating System module shall allow non-trusted OS-Applications to write to their
assigned peripherals only (incl. reads that have the side effect of writing to a memory
location). |

Memory Access Violation

[SWS_Os_00044]
Upstream requirements: SRS_Os_11013

[If a memory access violation is detected, the Operating System module shall call the
ProtectionHook With status code E_0S_PROTECTION_MEMORY. |

7.7.2 Timing Protection
7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a Task or interrupt misses its deadline
at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline mon-
itoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault in-
troduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in this
case lies with the unrelated Task/ISR and this will propagate through the system until
a Task/ISR misses its deadline. The Task/ISR that misses a deadline is therefore not
necessarily the Task/ISR that has failed at runtime, it is simply the earliest point that
a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in

AUTSSAR

favor of allowing an incorrect OS-Application to continue running. The problem is best
illustrated by example. Consider a system with the following configuration:

TaskID Priority Execution Time Deadline
(=Period)

A High 1 5

B Medium 3 10

C Low 5 15

Assuming that all Tasks are ready to run at time zero, the following execution trace
would be expected and all Tasks would meet their respective deadlines.

_

9 10 11 12 13 14 15

Figure 7.11: Example execution trace

Now consider the case when Tasks A and B behave incorrectly. The figure below
shows both Task A and Task B executing for longer than specified and Task B arriving
2 ticks earlier than specified. Both Tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation - a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

AUTSSAR

Task A executes for too long
Task A meets its deadline |

Task B executes for too long
Task B meets its deadline |,

A A A Task C has executed within specification.
3 L Task C misses its deadline 4 ticks into its

| execution with 1 tick of execution
— | remaining

B I B | |B '

Task B arrives too early (at 8 rather than at 10) | -~)
B

Task B executes as expected otherwise |~
Task B meets its deadline

v

BEREREE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

o —9

Figure 7.12: Insufficiency of Deadline Monitoring

Whether a Task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

+ the execution time of Task/ISRs in the system

+ the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

* the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

* TaskS
» Category 2 ISRs

AUTOSAR OS prevents timing errors from (2) by using locking time protection to guar-
antee a statically configured upper bound, called the Lock Budget, on the time that:

* Resources are held by Tasks/Category 2 ISRs
» OS interrupts are suspended by Tasks/Category 2 ISRs

» ALL interrupts are suspended/disabled by Tasks/Category 2 TSRS

AUTSSAR

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:

* A Task being permitted to transition into the READY state due to:
— Activation (the transition from the SUSPENDED to the READY state)
— Release (the transition from the WATITING to the READY state)

» A Category 2 1SR arriving. An arrival occurs when the Category 2 ISR is recog-
nized by the OS

Inter-arrival time protection for basic Tasks controls the time between successive ac-
tivations, irrespective of whether activations are queued or not. In the case of queued
activations, activating a basic Task which is in the READY or RUNNING state is a new
activation because it represents the activation of a new instance of the Task. Inter-
arrival time protection therefore interacts with queued activation to control the rate at
which the queue is filled.

Inter-arrival time protection for extended Tasks controls the time between successive
activations and releases. When a Task is in the WAITING state and multiple Events
are set with a single call to setEvent this represents a single release. When a Task
waits for one or more Events which are already set this represents a notional Wait/
Release/Start transition and therefore is considered as a new release.

The following figure shows how execution time protection and inter-arrival time protec-
tion interact with the task state transition model for AUTOSAR OS.

Terminate

/- OsTaskExecutionBudget reset
Successful activation of a task already in the RUNNING A task that waits on an event which is already set
state marks the start of a new OsTaskTimeFrame [™. L notionally transitions into the WAITING state
“
y ¢
' N

Wait
RUNNING OsTaskExecutionBudget reset

o % ’
A 4
e N e ™

Start Preempt
SUSPENDED OsTaskExecutionBudget started OsTaskExecutionBudget stopped WAITING

. J N
) A 4
4 ™
Release
READY -
OsTaskTimeFrame started
. {,
\\ Successful activation of a task already in the READY
\ Activate state marks the start of a new OsTaskTimeFrame

OsTaskTimeFrame started

Figure 7.13: Time protection interaction with the task state transition model with os-
TaskTimingProtectionDeferrableServer=FALSE

AUTSSAR

Notes:

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a "babbling idiot" source of interrupts (e.g. a CAN controller taking an
interrupt each time a frame is received from another ECU on the network).

2. Timing protection only applies to Tasks or Category 2 IsRrs. There is no pro-
tection for Category 1 IsRrs. If timing protection error occurs during a category 1
ISR, consistency of the Operating System module cannot be guaranteed. There-
fore we discourage timing protection in systems with category 1 interrupts.

3. Timing protection does not apply before the Operating System module is started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries between
executable objects.

7.7.2.1.1 Deferrable Server

If timing protection is enabled the normal behavior for the OS after detection of a timing
violation is to call the ProtectionHook. By this the user is informed and can decide
on a proper reaction. Unfortunately the reaction is often limited to a killing of the faulty
entity.

Another option for the Timing Protection is to somehow "freeze" a task when it exhausts
its execution budget. Instead of calling the ProtectionHook and applying one of the
current destructive reactions, such as abruptly terminating the task or shutting down
the entire OS, the new reaction consists in quietly descheduling the task and placing it
in a state where it cannot be scheduled until its budget is replenished again.

This approach is also known as "Deferrable Server", an effective and easy-to-
implement variant of a real-time scheduling mechanism known as "Aperiodic Server".
For further details see [7], [8], [9]. Under certain assumptions, the approach also
supports the implementation of the "Polling Server", another well-known variant of the
"Aperiodic Server" mechanism.

If a task uses OsTaskTimingProtectionDeferrableServer, then it gets an ad-
ditional task state BUDGET_EXHAUSTED which will be entered if the tasks budget is
exhausted. It will stay in this state until its budget is replenished ("refilled"). The re-
filling can be realitzed via API (see BudgetReplenish), via Alarm action or via an
expiry point in a ScheduleTable. The user is reponsible for the refilling, e.g. by having
an Alarm which cyclically replenish the execution budget of the deferred server task.
The following details explain the possible state changes for Deferrable Servers and
what’s happening:

1. When the Operating System starts each Deferrable Server get’s its initial execu-
tion budget (configured in OsTaskExecutionBudget)

AUTSSAR

2. This budget is used while Deferrable Server is in task state RUNNING

3. When Deferrable Server is preempted (becoming READY), blocked (becoming
WAITING) or terminates (becoming SUSPENDED) the current execution budget is
kept.

4. When Deferrable Server is RUNNING and the budget is exhausted (<=zero ; see
also [SWS_0Os_00871]) the Operating System changes the task state to BUD-
GET_EXHAUSTED and schedules another Task.

5. A Deferrable Server in BUDGET_EXHAUSTED can only leave this task state when
another entity replenishes the budget. Replenish means that the OsTaskEx-
ecutionBudget is added to the current budget. This can happen via API or
an alarm action or an expiy point of a ScheduleTable. (see [SWS_Os 00872],
[SWS_Os_00874]).

The following figure shows the possible Task states for Tasks with OsTaskTiming-
ProtectionDeferrableServer=TRUE

Terminate Current Task budget exhausted
/ OsTaskExecutionBudget stopped (equal or smaller than 0) N\
(Current Task budget is kept)

s/ \x

RUNNING Wait
OsTaskExecutionBudget stopped

Current Task budget (Current Task budget is kept)

is consumed J
v l

SUSPENDED
OsTaskExecutionBudget OsTaskExecutionBudget stopped
started (Current Task budget is kept)

- / -] —
Release
READY OsTaskTimeFrame started
(Current Task budget is kept)

Activate
OsTaskTimeFrame started
(Current Task budget is kept)

Start Preempt WAITING BUDGET_EXHAUSTED

Current Task budget positiv
(higher than 0 after BudgetReplenish)

Figure 7.14: Task states and transitions for Deferrable Server Tasks

Using Deferrable Server mechanism has some restrictions regarding configurability.
See [SWS_0Os_00877], [SWS_Os_00879], [SWS_Os_00880] and [SWS_0Os_00881]
for details.

Note: In this context the term "Server" is used in accordance with the real-time schedul-
ing terminology to refer to a task used to handle aperiodic requests and subject to
execution budget monitoring. It has nothing to do with the "Server" of a Client/Server
interface in AUTOSAR.

v
™ e ™ -~ ‘1
_

AUTSSAR

7.7.2.2 Requirements

[SWS_Os_00028]

Upstream requirements: SRS_Os_11008
[In a non-trusted OS-Application, the Operating System module shall apply timing pro-
tection to every Task/Category 2 ISR of this non-trusted OS-Application. |

[SWS_Os_00089]

Upstream requirements: SRS_Os_11008
[In a trusted OS-Application, the Operating System module shall provide the ability to
apply timing protection to Tasks/Category 2 1SRs of this OS-Application. |

[SWS _Os 00397]
Upstream requirements: SRS_Os_11008

[If no OS-Application is configured, the Operating System module shall be able to
apply timing protection to Tasks/Category 2 ISRs. |
Timing Protection: Tasks

[SWS_Os_00064]
Upstream requirements: SRS_Os_11008, SRS_Os_11013

[If a Task’s OsTaskExecutionBudget is reached and the OsTaskTiming-
ProtectionDeferrableServer is not configured for that Task (as per de-
fault), then the Operating System module shall call the ProtectionHook with
E_OS_PROTECTION_TIME.]

[SWS_Os 00473]
Upstream requirements: SRS_Os_11008

[The Operating System module shall reset a Task’s OsTaskExecutionBudget ona
transition to the SUSPENDED or WAITING states if the OsTaskTimingProtection—
DeferrableServer is not configured for that Task (as per default). |

[SWS_Os_00465]
Upstream requirements: SRS_Os_11008
[The Operating System module shall limit the inter-arrival time of Tasks to one per

OsTaskTimeFrame. |

[SWS_Os_00469]
Upstream requirements: SRS_Os_11008

[The Operating System module shall start an 0OsTaskTimeFrame when a Task is
activated successfully. |

AUTSSAR

[SWS_Os 00472]
Upstream requirements: SRS_Os_11008

[The Operating System module shall start an 0OsTaskTimeFrame when a Task is
released successfully. |

[SWS_Os _00466]
Upstream requirements: SRS_Os_11008

[If an attempt is made to activate a Task before the end of an OsTaskTimeFrame
then the Operating System module shall not perform the activation AND shall call the
ProtectionHook with E_OS_PROTECTION_ARRIVAL.]

[SWS_Os 00467]
Upstream requirements: SRS_Os_11008

[If an attempt is made to release a Task before the end of an OsTaskTimeFrame
then the Operating System module shall not perform the release AND shall call the
ProtectionHook with E_OS_PROTECTION_ARRIVAL.]

Timing Protection: Tasks with Deferrable Server option

[SWS_Os_00869] Additional Task state
Upstream requirements: SRS_Os_13000

[The AUTOSAR OS shall support an additional task state BUDGET_EXHAUSTED for
Tasks configured with OsTaskTimingProtectionDeferrableServer=TRUE. This
state can be entered only if the timing protection is active and only by the Tasks con-
figured with OsTaskTimingProtectionDeferrableServer. Inthis state a Task is
not running and cannot be scheduled. |

[SWS_Os 00870] Behavior of Tasks in state BUDGET EXHAUSTED
Upstream requirements: SRS_Os_13000

[Any functionallity (API or alarm action or expiry point) which tries to activate the Task
(or set an Event of a Task) in state BUDGET_EXHAUSTED shall behave as if the Task
would be in state READY except that BUDGET_EXHAUSTED can be left only as specified
by [SWS_Os_00872]. |

Example: If a user calls setEvent for a Task which is currently in BUD-
GET_EXHAUSTED, the function shall set the events and return E_OK.

[SWS_Os_00872] Leaving state BUDGET EXHAUSTED
Upstream requirements: SRS_Os_13000

[The BUDGET_EXHAUSTED state can only be left by calling BudgetReplenish or us-
ing an Alarm with action OsAlarmBudgetReplenish or a related action at an expiry
point of a ScheduleTable. If the replenish succeeded (the current execution budget of
the Task is >0) then the Task will change to state READY. Afterwards a rescheduling
may happen. |

AUTSSAR

[SWS_Os_00871] Entering BUDGET_EXHAUSTED

Upstream requirements: SRS_Os_11008, SRS_Os_11013
[If a Task is in state RUNNING and OsTaskExecutionBudget has been exhausted
and OsTaskTimingProtectionDeferrableServer=TRUE is configured for that
Task: As soon as the Task is neither suspending/disabling any interrupts nor hold-

ing any OS resource or spinlock, the Operating System module shall deschedule it,
put it in the new state BUDGET_EXHAUSTED and schedule another Task. |

[SWS_0Os_00871] effectively mean that the Tasks current budget can be lower than
zero. This can e.g. happen when the budget is exhasuted but a switch to the BUD-
GET_EXHAUSTED state is delayed because the Task still holds a OS resource (or simi-
lar object).

Timing Protection: ISRs

[SWS_Os_00210]
Upstream requirements: SRS_Os_11013

[If a Category 2 ISR’s OsIsrExecutionBudget is reached then the Operating Sys-
tem module shall call the ProtectionHook with E_0OS_PROTECTION_TIME. |

[SWS_Os 00474]
Upstream requirements: SRS_Os_11008

[The Operating System module shall reset an ISR’s OsIsrExecutionBudget when
the ISR returns control to the OS or terminates. |

[SWS_Os 00470]
Upstream requirements: SRS_Os_11008

[The Operating System module shall limit the inter-arrival time of Category 2 IsSRs to
one per OsIsrTimeFrame. |

[SWS_Os 00471]
Upstream requirements: SRS_Os_ 11008

[The Operating System module shall measure the start of an 0OsIsrTimeFrame from
the point at which it recognizes the interrupt (i.e. in the Operating System interrupt
wrapper). |

[SWS_Os_00048]
Upstream requirements: SRS_Os_ 11008

[If Category 2 interrupt occurs before the end of the OsIsrTimeFrame then the Op-
erating System module shall not execute the user provided IsrR AND shall call the
ProtectionHook With E_OS_PROTECTION_ARRIVAL. |

Timing Protection: Resource Locking and Interrupt Disabling

AUTSSAR

[SWS_Os 00033]
Upstream requirements: SRS_Os_11008, SRS_Os_11013, SRS_Os_11014

[If a Task/Category 2 ISR holds an OSEK Resource and exceeds the OsTaskRe-
sourceLockBudget (Or OsIsrResourceLockBudget) , the Operating System
module shall call the ProtectionHook with E_0OS_PROTECTION_LOCKED. |

[SWS_Os_00037]
Upstream requirements: SRS_Os_11008, SRS_Os_11013, SRS_Os_11014

[If a Task/Category 2 1ISR disables interrupts (via Suspend/Disable|All/
OS|Interrupts()) and exceeds the configured OsIsrAllInterruptLockBudget
(or OsIsrOsInterruptLockBudget Or OsTaskAllInterruptLockBudget Of
OsTaskOsInterruptLockBudget) the Operating System module shall call the
ProtectionHook With E_OS_PROTECTION_LOCKED. |

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt has to be high enough to "interrupt" the supervised Tasks or ISRS.

Depending on the real hardware support this could mean that DisableAllInter-
rupts and SuspendAllInterrupts disable not all interrupts (e.g. all interrupts
except of the interrupt used for timing protection) or that the usage of Category 1 1SRs
- which bypass the Operating System (and also the timing protection) - is limited some-
how.

The implementation has to document such implementation specific behaviour (e.g. the
limitations when timing protection is used).

7.7.3 Service Protection
7.7.3.1 Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module itself.
Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

1. with an invalid handle or out of range value.
2. in the wrong context, e.g. calling ActivateTask in the StartupHook.

3. or fails to make an API call that results in the OSEK OS being left in an undefined
state, e.g. it terminates without a ReleaseResource call

AUTSSAR

4. that impacts on the behaviour of every other OS-Application in the system, e.g.
ShutdownOS

5. to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application
tries to execute ActivateTask on a Task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following sections
describe - besides the mandatory extended status - the additional protection require-
ments to be applied in each of these cases.

7.7.3.2 Invalid Object Parameter or Out of Range Value
7.7.3.2.1 Background & Rationale

The current OSEK OS service calls already return E_0S_1ID on invalid objects (i.e.
objects not defined in the OIL file) and E_0s_VALUE for out of range values (e.g. setting
an alarm cycle time less than OsCounterMinCycle).

7.7.3.2.2 Requirements

[SWS_Os_00051]
Upstream requirements: SRS_Os_11009, SRS_Os_11013

[If an invalid address (address is not writable by this OS-Application) is passed as an
out-parameter to an Operating System service, the Operating System module shall
return the status code E_0OS_ILLEGAL_ADDRESS. |

7.7.3.3 Service Calls Made from Wrong Context
7.7.3.3.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls (see [2]), how-
ever protects against only a small set of these invalid calls, e.g. calling Terminate-
Task from a Category 2 ISR.

AUTSSAR

Service &]] S S = = S = S
o = = o o o o (] o =
S = T - - - - 2
3 E 2 2 £ 2 S | g 2
Sl w5 | 5 s e | 8 3
g |2 | 2| & |¢g g
® < = =
o ko
2
ActivateTask OK OK OK
ActivateTaskAsyn OK OK OK
TerminateTask OK C
ChainTask OK C
Schedule OK C
GetTaskID OK OK OK OK OK OK
GetTaskState OK OK OK OK OK
DisableAllInterrupts OK OK OK OK OK OK OK OK OK OK
EnableAllinterrupts OK OK OK OK OK OK OK OK OK OK
SuspendAllinterrupts OK OK OK OK OK OK OK OK OK OK
ResumeAllinterrupts OK OK OK OK OK OK OK OK OK OK
SuspendOSinterrupts OK OK OK OK OK OK OK OK OK OK
ResumeOSinterrupts OK OK OK OK OK OK OK OK OK OK
GetResource OK OK OK
ReleaseResource OK OK OK
SetEvent OK OK OK
SetEventAsyn OK OK OK
ClearEvent OK C
GetEvent OK OK OK OK OK
WaitEvent OK C
GetAlarmBase OK OK OK OK OK
GetAlarm OK OK OK OK OK
SetRelAlarm OK OK OK
SetAbsAlarm OK OK OK
CancelAlarm OK OK OK
GetActiveApplicationMode OK OK OK OK OK OK OK
StartOS
ShutdownOS OK OK OK OK OK
GetApplicationID OK OK OK OK OK OK OK OK
GetISRID OK OK OK OK OK
CallTrustedFunction OK OK OK
ChecklISRMemoryAccess OK OK OK OK OK
CheckTaskMemoryAccess OK OK OK OK OK
CheckObjectAccess OK OK OK OK OK
CheckObjectOwnership OK OK OK OK OK
StartScheduleTableRel OK OK OK
StartScheduleTableAbs OK OK OK
StopScheduleTable OK OK OK
NextScheduleTable OK OK OK
StartScheduleTableSynchron OK OK OK
SyncScheduleTable OK OK OK
GetScheduleTableStatus OK OK OK

AUTSSAR

JAN

SetScheduleTableAsync OK OK OK
IncrementCounter OK OK OK
GetCounterValue OK OK OK
GetElapsedValue OK OK OK
TerminateApplication OK OK OK!

GetApplicationState OK OK OK OK OK OK OK OK
GetCurrentApplicationID OK OK OK OK OK OK OK OK
ReadPeripheral8 OK OK OK
ReadPeripheral16 OK OK OK
ReadPeripheral32 OK OK OK
WritePeripheral8 OK OK OK
WritePeripheral16 OK OK OK
WritePeripheral32 OK OK OK
ModifyPeripheral8 OK OK OK
ModifyPeripheral16 OK OK OK
ModifyPeripheral32 OK OK OK
DisablelnterruptSource OK OK OK
EnablelnterruptSource OK OK OK
ClearPendinglnterrupt OK OK

isOsStarted OK OK OK OK OK OK OK OK OK OK
BudgetReplenish OK OK OK

Table 7.1: Allowed Calling Context for OS Service Calls

In the table above "C" indicates that validity is only "Checked in Extended status by
E_OS_CALLEVEL".

7.7.3.3.2 Requirements

[SWS_Os_00088]
Upstream requirements: SRS_Os_11009, SRS_Os_11013

[If an OS-Application makes a service call from the wrong context AND is currently not
inside a Category 1 1SR the Operating System module shall not perform the requested
action (the service call shall have no effect) and return E_0S_CALLEVEL or the "invalid
value" of the service. |

7.7.3.4 Services with Undefined Behaviour
7.7.3.4.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow the

1Only in case of self termination.

AUTSSAR

Operating System module to be corrupted through its own service calls. The implemen-
tation of service protection for the Operating System module must therefore describe
and implement a behaviour that does not jeopardize the integrity of the system or of
any OS-Application which did not cause the specific error.

7.7.3.4.2 Requirements
TasksS ends without calling a TerminateTask or ChainTask

[SWS_Os_00052]
Upstream requirements: SRS_Os_ 11009
[If a Task returns from its entry function without making a TerminateTask or

ChainTask call, the Operating System module shall terminate the Task (and call
the OsPostTaskHook if configured). |

[SWS_Os_00069]

Upstream requirements: SRS_Os_11009
[If a Task returns from its entry function without making a TerminateTask or Chain-
Task call AND the error hook is configured, the Operating System module shall call
the ErrorHook (this is done regardless of whether the Task causes other errors, e.g.

E_OS_RESOURCE) with status E_0S_MISSINGEND before the Task leaves the RUN-
NING state. |

[SWS_Os_00070]
Upstream requirements: SRS_Os_11009, SRS_Os_11013

[If a Task returns from the entry function without making a TerminateTask or
ChainTask call and still holds OSEK rResources, the Operating System module shall
release them. |

[SWS_Os_00239]
Upstream requirements: SRS_Os_00097

[If a Task returns from the entry function without making a TerminateTask or
ChainTask call and interrupts are still disabled, the Operating System module shall
enable them. |

Category 2 1SR ends with locked interrupts or allocated resources

AUTSSAR

[SWS_Os_00368]
Upstream requirements: SRS_BSW_00323

[If a Category 2 ISR calls DisableAllInterrupts / SuspendAllInterrupts /
SuspendOSInterrupts and ends (returns) without calling the corresponding En-
ableAllInterrupts/ResumeAllInterrupts /ResumeOSInterrupts, the Op-
erating System module shall perform the missing service and shall call the ErrorHook
(if configured) with the status E_0S_DISABLEDINT. |

[SWS_Os_00369]
Upstream requirements: SRS_BSW_00323

[If a Category 2 1SR calls GetResource and ends (returns) without calling the corre-
sponding ReleaseResource, the Operating System module shall perform the rRe-
leaseResource call and shall call the ErrorHook (if configured) with the status
E_OS_RESOURCE. |

PostTaskHook called during Shutdown0OSs

[SWS_Os_00071]
Upstream requirements: SRS_Os_00097

[If the PostTaskHook is configured, the Operating System module shall not call the
hook if ShutdownOs is called. |

TaskS/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSIn—
terrupts without a corresponding disable

[SWS_Os_00092]
Upstream requirements: SRS_Os_11009

[If EnableAllInterrupts / ResumeAllInterrupts / ResumeOSInterrupts
are called and no corresponding DisableAllInterrupts / SuspendAllInter-
rupts / SuspendOSInterrupts was done before, the Operating System module
shall not perform this Operating System service. |

Tasks/ISRs calling OS services when DisableAllinterupts/SuspendAllInterrupts/
SuspendOSInterrupts called

[SWS_Os _00093]
Upstream requirements: SRS_Os_11009, SRS_Os_11013

[If interrupts are disabled/suspended by a Task/ISrR/Hook and the Task/ISR/Hook
calls any Operating System service (excluding the interrupt services) then the Operat-
ing System module shall ignore the service AND shall return E_0OS_DISABLEDINT if
the service returns a statusType value. |

Au.r@ SAR Specification of Operating System

AUTOSAR CP R25-11

7.7.3.5 Service Restrictions for Non-Trusted OS-Applications
7.7.3.5.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see 7.7.3.3). In a protected system, additional constraints need to be placed to
prevent non-trusted OS-Applications executing API calls that can have a global effect
on the system. Each level of restriction is a proper subset of the previous level as
shown in the figure below.

All service calls

Calling context
restrictions

Trust-based
restrictions

Figure 7.15: API Restrictions

There are two defined integrity levels:
1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

81 of 410 Document ID 34: AUTOSAR_CP_SWS _OS

AUTSSAR

7.7.3.5.2 Requirements

[SWS_Os_00054]
Upstream requirements: SRS_Os_11001

[The Operating System module shall ignore calls to Shutdown0s from non-trusted
OS-Applications. |

7.7.3.6 Service Calls on Objects in Different OS-Applications
7.7.3.6.1 Background

Section 7.7.3.2 stated that E_0s_1D is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-OS-
Application systems).

This is a similar case to an object not being accessible in OSEK OS (for example, when
a Task tries to get a Resource which exists in the system but has not been configured
as used by the Task).

7.7.3.6.2 Requirements

[SWS_Os_00056]

Upstream requirements: SRS_Os_11001, SRS_Os_11010, SRS_Os_11013
[If an OS-object identifier is the parameter of an Operating System module’s system
service, and no sufficient access rights have been assigned to this OS-object at config-
uration time (parameter OsJ...]AccessingApplication, e.g. OsTaskAccessingAppli-

cation) to the calling Task/Category 2 ISR, the Operating System module’s system
service shall return E_0OS_ACCESS. |

[SWS_Os _00449]
Upstream requirements: SRS_Os_11001

[CheckTaskMemoryAccess and CheckISRMemoryAccess check the memory ac-
cess. Memory access checking is possible for all OS-Applications and from all OS-
Applications and does not need granted rights. |

[SWS_0Os_00449] is an exception to [SWS_Os_00056].

[SWS_Os_00450]
Upstream requirements: SRS_Os_11001
[CheckObjectAccess checks the access rights for Operating System objects.

Checking object access is possible for all OS-Applications and from all OS-Applications
and does not need granted rights. |

AUTSAR
[SWS_0Os_00450] is an exception to [SWS_Os_00056].

7.7.4 Protecting the Hardware used by the OS
7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
TaskS/ISRS in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in non-
privileged mode. The Operating System module’s services will need to execute in
privileged mode as they will need to modify the registers that are protected outside this
mode.

The Operating System module can use the control registers of the MPU, timer unit(s),
interrupt controller, etc. and therefore it is necessary to protect those registers against
non-trusted OS-Applications.

7.7.4.2 Requirements

[SWS_0Os_00058]

Upstream requirements: SRS_Os_11001
[If supported by hardware, the Operating System module shall execute non-trusted
OS-Applications in non-privileged mode. |

[SWS_Os_00096]
Upstream requirements: SRS_Os_11011

[As far as supported by hardware, the Operating System module shall not allow non-
trusted OS-Applications to access control registers managed by the Operating System
module. |

[SWS_0Os_00245]
Upstream requirements: SRS_Os_11011

[If an instruction exception occurs (e.g. division by zero) the Operating System module
shall call the protection hook with E_0S_PROTECTION_EXCEPTION. |

AUTSSAR

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the Oper-
ating System module’s treatment of interrupt entry and hook routines must be carefully
managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this
section) 1SRs will require the Operating System module to do extra work in the ISR ()
wrapper. ISRs will typically be entered in privileged mode. If the handler is part of a
non-trusted OS-Application then the ISR () wrapper must make sure that a switch to
non-privileged mode occurs before the handler executes.

7.7.5 Providing Trustedfunctions
7.7.5.1 Background & Rationale

An OS-Application can invoke a Trustedfunction provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

» Each trusted OS-Application may export services which are callable from other
OS-Applications.

« During configuration these trusted services must be configured to be called from
a non-trusted OS-Application.

» The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System. The
service is passed as an identifier that is used to determine, in the trusted envi-
ronment, if the service can be called.

» The Operating System offers services to check if a memory region is write/read/
execute accessible from an OS-Application. It also returns information if the
memory region is part of the stack space.

The Operating System software specification does not provide support for non-trusted
services.

Please note: During the execution of a trusted function a protection violation or the
self-termination of the calling OS-Application can be fatal. In such cases the fault
reaction (e.g. restart or terminate OS-Application) impacts also the ongoing trusted
function call. It is assumed that the code of the trusted function itself is free of such
direct violations, but there are some cases where a violation nevertheless may occur.
These are:

* (A) Timing violation inside the trusted function: It might happen that during
the execution of a trusted function a timing violation happens. E.g. the configured
execution budget of the caller is exhausted inside the trusted function. In such

AUTSSAR

cases the violation can be delayed until the function returns to the non-trusted
caller (see also [SWS_0Os_00565].

+ (B) Parallel violations within the OS-Application which called the trusted
function: It might happen that a Task which executes the trusted function is
preempted by another Task (or Category 2 ISR) of the same OS-Application.
Then this other Task (or Category 2 ISR) is causing a violation, e.g. via a memory
fault or a timing violation.

* (C) Self termination of the OS-Application: Each application can perform a
self-termination, e.g. initated by another Task of the same OS-Application. In
case of an ongoing trusted function call of the OS-Application this may also im-
pact the (trusted) OS-Application which offers the trusted function.

» (D) Foreign termination of the OS-Application: Each trusted OS-Application
can request a termination of another OS-Application. If the to be terminated OS-
Application is currently executing a trusted function it may have also impact on
this trusted OS-Application. It is assumed that a (trusted) OS-Application never
terminates another OS-Application with an on-going trusted function call.

Situations like (B) or (C) can be solved by avoiding preemptions in the OS-Application
when a trusted function is ongoing. This can be reached by using locks which are
preventing the scheduling (on the same core). The disadvantage of this approach is
that it impacts the overall timing (i.e. also of other OS-Applications which use the same
core). So a violation caused by another entity is avoided, but maybe at the cost of
a timing violation which then may also require a restart or reset. On the other hand
a careful design could solve the issue without locking, e.g. by only perfoming calls to
trusted function from tasks with the highest priority of the OS-Application. Therefore the
OS offers a (global) switch (see OsLockTrustedFunctionCall) to allow adaption
of the required behaviour.

For OsLockTrustedFunctionCall == TRUE the OS will lock parallel activities of the
OS-Application to avoid situations like (B) or (C).

For OsLockTrustedFunctionCall == FALSE no locks are perfomed by the OS and
parallel activities may happen in the OS-Application.

7.7.5.2 Requirements

[SWS_Os_00451]
Upstream requirements: SRS_Os_11001

[The Operating System module shall allow exporting services from trusted OS-
Applications. |

The Operating System module provides the service CallTrustedFunction (see
[SWS_Os_00097]) to call a trusted function from a (trusted or non-trusted) OS-
Application.

AUTSSAR

[SWS_Os_00100]
Upstream requirements: SRS_BSW_00323

[If callTrustedFunction is called and the called trusted function is not configured
the Operating System module shall call the ErrorHook with E_0S_SERVICEID. |

The Operating System module provides the services CheckISRMemoryAccess and
CheckTaskMemoryAccess (see [SWS_Os 00512] and [SWS_Os 00513]) for OS-
Applications to check if a memory region is write/read/execute accessible from a Task/
Category 2 1SR and also return information if the memory region is part of the stack
space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured in-
formation on what the constituent parts of an OS-Application can do at runtime. See
section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the error
occurs, resulting in the shortest possible time between transition into an erroneous
state and detection of the fault. The different kinds of protection errors are described
in the glossary. If a protection error occurs before the Operating System module is
started the behaviour is not defined. If a protection error happens during shutdown,
e.g. in the application-specific shutdown hook, an endless loop between the shutdown
service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
ProtectionHook for the notification of protection errors at runtime. The Protec-
tionHook runs in the context of the Operating System module and must therefore be
trusted code.

The Operating System module itself needs only to detect an error and provide the abil-
ity to act. The ProtectionHook can select the right action, which will be performed
after returning from the ProtectionHook, depending on the return value of the Pro-
tectionHook. The options are:

1. do nothing

2. for arrival rate errors: do not perform the requested action (task activation / ISR
2 call / event setting)

3. forcibly terminate the faulty Task/Category 2 ISR
4. forcibly terminate all Tasks and ISRs in the faulty OS-Application

5. shutdown the Operating System module.

AUTSSAR

Requirements [SWS_0Os_00243] and [SWS_Os_00244] define the order of the default
reaction if no faulty Task/Category 2 1SR or OS-Application can be found, e.g. in the
system specific hook routines. Also OS-Applications are only mandatory in Scalability
Classes 3 and 4, therefore in other Scalability Classes OS-Applications need not be
defined.

Note that forcibly terminating interrupts is handled differently in "forcibly terminate the
faulty TSR" and "forcibly terminate the OS-Application”. If a faulty TSR is forcibly ter-
minated, the current invocation of the TSR is terminated. A subsequent invocation is
allowed. If the OS-Application is forcibly terminated, then the interrupt source is also
disabled, preventing subsequent interrupts.

Notes regarding the return value PRO_IGNORE:

The meaning of "do nothing" (PRO_IGNORE) means that the error reaction is ignored.
The PRO_IGNORE is only allowed in specific situations (currently: arrival rate errors).
After the error is detected (e.g. as specified in [SWS_Os_00466] or [SWS_Os_00467])
the protection hook is called. If the hook returns with PRO_TGNORE the OS does con-
tinue its normal operation. If a service call was the root cause of the violation (e.g.
an ActivateTask) and protection hook returns PRO_IGNORE the service call shall
continue its operation (e.g. to activate a Task) and return E_OXK (if successful and
possible).

Example 1: A Task calls ActivateTask(B) and causes an arrival rate violation. The
activation is not performed ([SWS_Os_00466]) and protection hook is called. When
returning PRO_IGNORE the OS continues and the ActivateTask service activates B
and returns E_OK.

Example 2: A Task A calls setEvent for Task B (which currently waits for the event).
The OS detects ([SWS_Os_00467]) an arrival rate violation and performs a call of
the protection hook. When the call returns with PRO_IGNORE, the SetEvent service
continues and sets the event. Task B changes to READY state and a rescheduling
might happen. The setEvent service call will return E_OK to Task A.

Notes regarding the return value PRO_ PREVENT_ARRIVAL_RATE:
The PRO_PREVENT_ARRIVAL_RATE is used to prevent arrival rate errors.

Example 1 : A Task calls ActivateTask(B) and causes an arrival rate violation. The
activation is not performed ([SWS_Os 00466]) and protection hook is called. When
returning PRO_PREVENT_ARRIVAL_RATE the OS will not perform the task activation
(it prevents the arrival rate error). The ActivateTask service will return in such cases
E_OK, S0 no error hooks are called.

Example 2: A Task A calls setEvent for Task B (which currently waits for the event).
The OS detects ([SWS_Os_00467]) an arrival rate violation and performs a call of the
protection hook. When the call returns with PRO_PREVENT_ARRIVAIL_RATE, the event
setting will not be performed and the setEvent service call will return E_0OXK. Also here
no additional error hooks will be called.

AUTSSAR

7.8.2 Requirements

[SWS_Os_00211]

Upstream requirements: SRS_Os_11001
[The Operating System module shall execute the ProtectionHook with the same
permissions as the Operating System module. |

[SWS_0Os_00107]

Upstream requirements: SRS_Os_11014
[If no ProtectionHook is configured and a protection error occurs, the Operating
System module shall call Shutdownos. |

[SWS_Os 00106]
Upstream requirements: SRS_Os_11014

[If the ProtectionHook returns PRO_IGNORE and was called with
E_OS_PROTECTION_ARRIVAL the Operating System module shall perfom the
requested action. |

[SWS_Os 00863] Prevent arrival rate errors
Upstream requirements: SRS_Os_11014, SRS_Os_11008

[Ifthe ProtectionHook returns PRO_PREVENT_ARRIVAL_RATE and was called with
E_OS_PROTECTION_ARRIVAL the Operating System module shall not perform the
action which caused the arrival rate error. |

[SWS_Os_00553]

Upstream requirements: SRS_Os_11014
[If the ProtectionHook returns PRO_TERMINATETASKISR the Operating System
module shall forcibly terminate the faulty Task/Category 2 ISR. |

[SWS_Os_00554]

Upstream requirements: SRS_Os_11022
[If the ProtectionHook returns PRO_TERMINATEAPPL the Operating System mod-
ule shall forcibly terminate the faulty OS-Application. |

[SWS_Os_00556]

Upstream requirements: SRS_Os_11014
[If the ProtectionHook returns PRO_SHUTDOWN the Operating System module shall
call the shutdownos. |

[SWS_Os_00506]
Upstream requirements: SRS_Os_11014

[If the ProtectionHook is called with E_0S_PROTECTION_ARRIVAL the only valid
return values are PRO_IGNORE Or PRO_PREVENT_ARRIVAL_RATE Of

AUTSSAR

PRO_SHUTDOWNZ. Returning other values will result in a call to Shut downO0s. |

[SWS_Os 00475]
Upstream requirements: SRS_Os_11008

[If the ProtectionHook returns PRO_IGNORE and the ProtectionHook was not
called with E_0OS_PROTECTION_ARRIVAL then the Operating System module shall
call shutdownOs. |

[SWS_Os 00243]
Upstream requirements: SRS_Os_11014

[Ifthe ProtectionHook returns PRO_TERMINATETASKISR and no Task or ISR can
be associated with the error, the running OS-Application is forcibly terminated by the
Operating System module. If even no OS-Application can be assigned, shutdown0S
is called. |

[SWS Os 00244]
Upstream requirements: SRS_Os_11014

[If the ProtectionHook returns PRO_TERMINATEAPPL and no OS-Application can
be assigned, shutdownos is called. |

[SWS_Os 00108]
Upstream requirements: SRS_Os_11014

[If the Operating System module forcibly terminates a Task, it terminates
the Task, releases all allocated OSEK resources and calls EnableAllInter-
rupts/ ResumeOSInterrupts / ResumeAllInterrupts if the Task called Dis-
ableAllInterrupts / SuspendOSInterrupts / SuspendAllInterrupts be-
fore without the corresponding EnableAllInterrupts/ ResumeOSInterrupts /
ResumeAllInterrupts call]

[SWS_Os_00109]
Upstream requirements: SRS_Os_11014

[If the Operating System module forcibly terminates an interrupt service routine, it
clears the interrupt request, aborts the interrupt service routine (The interrupt source
stays in the current state.) and releases all OSEK resources the interrupt service
routine has allocated and calls EnableAllInterrupts / ResumeOSInterrupts
/ ResumeAllInterrupts if the interrupt called DisableAllInterrupts / Sus—
pendOSInterrupts / SuspendAllInterrupts before without the corresponding

EnableAllInterrupts/ ResumeOSInterrupts/ResumeAllInterrupts call |

[SWS_Os_00110]
Upstream requirements: SRS_Os_11014

[If the Operating System module shall forcibly terminate an OS-Application, it: shall

2The reason for this case is that the Task which is supervised is not necessary active (and can not
be e.g. terminated) and it can be that the caller of the activation is the real problem.

AUTSSAR

« forcibly terminate all Tasks/ISRs of the OS-Application AND

cancel all alarms of the OS-Application AND

* stop ScheduleTables of the OS-Application AND

disable interrupt sources of Category 2 1sRs belonging to the OS-Application

]

[SWS_Os_00860]
Upstream requirements: SRS_Os_ 11013

[If the call to the ProtectionHook is caused by a trusted function which causes a
E_OS_PROTECTION_EXCEPTION or E_OS_PROTECTION_MEMORY, the only valid re-
turn value shall be PRO_SHUTDOWN. Returning other values shall also result in a shut-
down of the OS. |

7.9 Operating System for Multi-Core

This chapter specifies some extensions that allow to use an AUTOSAR system on
Multi-Core micro-processors. It describes the main philosophy as well as additional
extensions to the existing OS functionality regarding Multi-Core. The following chap-
ter contains a specification of a new mechanism within the OS called 10C (Inter OS-
Application Communicator) that supports the communication between OS-Applications
located on the same or on different cores

7.9.1 Background & Rationale

The existing AUTOSAR-OS is based on the OSEK/VDX Operating System which is
widely used in the automotive industry. The AUTOSAR Multi-Core OS is derived from
the existing AUTOSAR OS.

The Multi-Core OS in AUTOSAR is not a virtual ECU concept, instead it shall be under-
stood as an OS that shares the same configuration and most of the code but operates
on different data structures for each core.

To reduce the memory footprint all cores should use the same code base. Sometimes
it can be beneficial to spend some more ROM/Flash, e.g. to use a local ROM, and
"double" parts of the code to get faster ROM/Flash access.

AUTSSAR

7.9.1.1 Requirements

[SWS_Os_00567]
Upstream requirements: SRS_Os_80008

[The generated part of the OS is derived from a single configuration that contains the
relevant information for all cores. This implies, that IDs (e.g. TaskID, ResourceID,
...) are unique across cores. Every ID shall refer exactly to one entity independent
from the core on which the entity is accessed. This applies also to objects that cannot
be shared between cores. |

7.9.2 Scheduling

The priority of the Tasks drives the scheduling. Since multiple cores run truly parallel,
several Tasks can execute at the same time.

Prio Core 0 Core 1 Core 2
A P PN
5 | 5 5
4 4 4 T
JERE 3 E
2| |- 2 A
1 1 i Lk

Figure 7.16: Priorities are assigned to Tasks. The cores schedule independently from
each other. The Tasks T2, T3 and T5 are executed in true parallelism. Tasks with the
same priority on the same core will be executed in order of activation; Tasks with the
same priority on different cores may not be executed in the order of activation, since the
cores schedule independent from each other.

The OS can be entered on each core in parallel. This optimizes scalability towards
multiple cores. The cores schedule independently. This implies that the schedule on

AUTSSAR

one core does not consider the scheduling on the other cores®. A low priority Task on
one core may run in parallel with a high priority Task on another core.

Tasks and ISRs cannot dynamically change cores by means of the scheduling algo-
rithm.

7.9.2.1 Requirements

[SWS_Os_00568]
Upstream requirements: SRS_Os_80001

[Implementations shall be able to independently execute a Task or an ISR on each
started AUTOSAR OS core in parallel. |

[SWS_Os_00569]
Upstream requirements: SRS_Os_80001, SRS_Os_80013

[The scheduling strategy as defined in AUTOSAR OS shall apply for each individual
core in a Multi-Core system, for the Tasks and ISR assigned to the core. |

7.9.3 Locatable entities (LE)

A locatable entity is an entity that has to be located entirely on one core. The assign-
ment of LEs to cores is defined at configuration time (OsAppEcucPartitionRef).

In this release of the AUTOSAR standard OS-Applications shall be the LEs. Because
every Task has to run on some core, the usage of OS-Applications becomes obligatory
in AUTOSAR R4.0 for Multi-Core systems. BSW modules are not allowed to ignore OS-
Applications, even if they do not use any protection mechanisms. This is independent
from the SC class.

As is stated in the AUTOSAR Specification of the Operating System, if OS-Applications
are used, all Tasks, ISR etc. must belong to an OS-Application. This implies, that no
AUTOSAR software exists outside of an OS-Application in Multi-Core systems.

On single-core systems OS-Applications are available only for SC3 and SC4 because
the mechanism is used to support memory protection and implies the usage of ex-
tended mode. In Multi-core systems OS-Applications are always available independent
of memory protection and on SC1 standard mode shall be possible.

3This also applies to Tasks with the same priority, bound to different cores. It also means that non-
preemptive Tasks cannot be preempted on the core they are running, but Tasks on other cores can run
in parallel.

AUTSSAR

7.9.3.1 Requirements

[SWS_Os_00570]

Upstream requirements: SRS_Os_80003, SRS_Os_80005
[All Tasks that are assigned to the same OS-Application shall execute on the same
core. |

[SWS_Os_00571]

Upstream requirements: SRS_Os_80003, SRS_Os_80005
[All TSRs that are assigned to the same OS-Application shall execute on the same
core. |

[SWS_Os 00572]
Upstream requirements: SRS_0Os_80005, SRS_Os_80006

[ISR balancing (if supported by the HW) shall be switched off at boot time by the OS. |

[SWS_Os_00764]
Upstream requirements: SRS_Os_11016

[The OS module shall support OS-Applications in case of Multi-Core also for SC1 and
SC2.]

[SWS_Os_00763]
Upstream requirements: SRS_Os_11016

[In an SC1 system standard mode shall be possible. |

[SWS_Os 00573]
Upstream requirements: SRS_0Os_80003, SRS_Os_80005

[The binding of OS-Applications to cores shall be derived from the referenced Ecuc-
Partition. |

The configuration item OsAppEcucPartitionRef within the OS-Application con-
tainer shall be used to define the core to which the EcucPartition and hence the OS-
Application is bound. The OS generator will map the configuration parameter "CORE"
to a certain core, so that all OS-Applications with the same configuration parameter
reside on the same core.

7.9.4 Multi-Core start-up concept

The way cores are started depends heavily on the hardware. Typically the hardware
only starts one core, referred as the master core, while the other cores (slaves) remain
in halt state until they are activated by the software.

AUTSSAR

In contrast to such a master-slave system other boot concepts with cores that start
independently from each other are conceivable. However it is possible to emulate
master-slave behavior on such systems by software.

The AUTOSAR Multi-Core OS specification requires a system with master-slave start-
up behavior, either supported directly by the hardware or emulated in software. The
master core is defined to be the core that requires no software activation, whereas a
slave core requires activation by software.

In Multi-Core configurations, each slave core that is used by AUTOSAR must be acti-
vated before startos is entered on the core. Depending on the hardware, it may be
possible to only activate a subset of the available cores from the master. The slave
cores might activate additional cores before calling start0s. All cores that belong to
the AUTOSAR system have to be activated by the designated AUTOSAR API function.
Additionally, the startos function has to be called on all these cores.

If a core is activated it executes some HW and compiler specific operations, before the
"main" function is called. In case the same "main" function is executed on each core,
the cores have to be differentiated by their specific core Id within the function.

Example:
1 void main ()
2 |
3 StatusType rv;
4
5 /x ... x/
6
7 switch (GetCoreID())
8 {
9
10 case OS_CORE_ID_MASTER:
11 [x oo *x/
12
13 StartCore (OS_CORE_ID_O0, &rv);
14 StartOS (OSDEFAULTAPPMODE) ;
15 break;
16
17 case OS_CORE_ID_O:
18 [x .. *x/
19
20 StartCore (OS_CORE_ID_1, &rv);
21 StartOS (DONOTCARE) ;
22 break;
23
24 otherwise:

26 StartOS (DONOTCARE) ;

AUTSSAR

Start0s synchronizes all cores twice. The first synchronization point is located before
the startupHooks are executed, the second after the OS-Application specific Star-
tupHooks have finished and before the scheduler is started. The exact point where the
second synchronization occurs depends on the implementation, but it shall be before
the scheduling is started. This release of the AUTOSAR specification does not support
timeouts during the synchronization phase. Cores that are activated with SstartCore
but do not call start0s may cause the system to hang. It is in the responsibility of the
integrator to avoid such behavior.

As shown in figure 7.17, the startupHook is called on every core right after the first
synchronization. However, there is only one startupHook in the system. If, for exam-
ple, core-individual functionality must be executed during startupHook the GetCor-
eID function can be used to discriminate the individual cores. After the global star-
tupHook has finished each core performs the startupHooks of its OS-Applications .
Since OS-Applications are bound to cores the OS-Application specific StartupHooks
are executed only on the core to which the corresponding OS-Application is bound.

Il ISRs disabled ISR Cat2 disabled

OS executes
oparating system Synchronize cores
initialisation code

c 0 Hardware-specific | Activation Call of
ore initialization code | of core 1 StartOs

OS executes applicaion | Synchroniz | OS kemel is First user task
StartupHook StartupHook e cores running is running

<4———All ISRs disabled——» ISR Cat2 disabled:

Hardware-specific Activation Call of 03 f"ecums OS executes application Synchronize OS kemel is First user task
C 1 initialization code i StartOS operaling system SUECEZEES StartupHook StartupHook cores running is running
ore and 3 initialisation code
<«+——All ISRs disabled: ISR Cat2 disabled
) 0S executes Synchro Synchro . N
ot | S | opunoman | e | S98% | pcon sansba [| OSjamlle | it er o
Core 2 initialisation code cores P cores d 9
-+——All ISRs disabled. ISR Cat2 disabled:
08 executes Synchro N B
Hardware-specific Call of OS executes application 0OS kemel is First user task
Core 3 inalzation code | Stan0S | OPeragsyslem | iz | gnpion | Sirupook | SMEOnzecores | oy ™| i rinning

Figure 7.17: This figure shows an example of an initialization process with 4 cores

7.9.4.1 Requirements

[SWS_Os_00574]
Upstream requirements: SRS_Os_80006

[The master core shall be able to activate cores. |
[SWS_Os_00575]

Upstream requirements: SRS_Os_80006
[Any slave core shall be able to activate cores. |

AUTSSAR

[SWS_Os 00576]
Upstream requirements: SRS_Os_80006

[It shall be allowed to use only a subset of the cores available on a nC for the
AUTOSAR system. |

[SWS_Os _00577]
Upstream requirements: SRS_Os_80006

[The cores shall boot in master-slave mode. If this is not supported by the hardware,
it shall be that the cores boot in parallel and emulate the behavior of a master-slave
system. |

[SWS_Os 00578]
Upstream requirements: SRS_Os_80006

[In case of an emulation a slave core (CoreS), which is controlled by the AUTOSAR OS
(AUTOSAR core), shall not enter the main function before another core has activated
the slave core by means of startCore(CoreS). |

[SWS_Os_00579]
Upstream requirements: SRS_0Os_80001, SRS_Os_80006

[All cores that belong to the AUTOSAR system shall be synchronized within the star-
tos function before the scheduling is started and after the global startupHook is
called. |

[SWS_Os_00580]
Upstream requirements: SRS_Os_80006

[All cores that belong to the AUTOSAR system shall be synchronized within the star-
tOos before the global startupHook is called. |

[SWS_Os_00581]

Upstream requirements: SRS_Os_80006
[The global startupHook shall be called on all cores immediately after the first syn-
chronization point. |

[SWS_Os_00582]
Upstream requirements: SRS_Os_80006, SRS_Os_80008

[The OS-Application-specific StartupHooks shall be called after the global star-
tupHook but only on the cores to which the OS-Application is bound. |

AUTSSAR

7.9.5 Cores under control of the AUTOSAR OS

The AUTOSAR OS controls several cores as stated above. It need not control all cores
of a 1C, however. The maximum number of controlled cores shall be configured within
the 0s0Os section of the configuration.

The AUTOSAR OS API provides a startCore function to start the cores under its
control. The startCore function takes a scalar value parameter of type CoreIdType,
specifying the core that shall be started. startCore can be called more than once on
the master core and also on slave cores. Each core can only be started once, however.
For example:
StartusType rvl, rv2;
StartCore (OS_CORE_ID_1, &rvl);
StartCore (OS_CORE_ID_2, &rv2);
if (rvl !'= E_OK) || (rv2 !'= E_OK)

EnterPanicMode () ;
StartOS (OSDEFAULTAPPMODE) ;

o g »~A 0 N =

The startos function shall be called on all cores that have been activated by start -
Core. ltis not allowed to call startCore from a core that has already called startos.

Cores that belong to the AUTOSAR system shall be started by the designated
AUTOSAR OS API service StartCore.

7.9.5.1 Requirements

[SWS_Os _00583]
Upstream requirements: SRS_Os_80001, SRS_Os_80011

[The number of cores that can be controlled by the AUTOSAR OS shall be configured
offline.

A new configuration item (OsNumberOfCores) within the 0s0S container is used to
specify the maximum number of cores that are controlled by the AUTOSAR OS. If no
value for 0sNumberOfCores has been specified the number of cores shall be one. |

7.9.6 Multi-Core shutdown concept

AUTOSAR supports two shutdown concepts, the synchronized shutdown and the in-
dividual shutdown concept. While the synchronized shutdown is triggered by the new
API function shutdownAllCores, the individual shutdown is invoked by the existing
API function shutdownOSs.

AUTSSAR

7.9.6.1 Synchronized shutdown concept

If a Task with the proper rights calls ShutdownAllCores, a signal is sent to all other
cores to induce the shutdown procedure. Once the shutdown procedure has started
on a core, interrupts and Tasks are not further processed, and no scheduling will take
place, therefore it makes no sense to activate any Task, however no error will be
generated. It is in the responsibility of the application developer/system integrator to
make sure that any preparations for shutdown on application and basic software level
are completed before calling shutdownAllCores (e.g. by means of the ECU state
manager).

During the shutdown procedure every core executes its OS-Application specific Shut -
downHook functions, followed by a synchronization point. After all cores have reached
the synchronization point the global shutdownHook function is executed by all cores
in parallel.

ShutdownAllCores synchronize

distribute shutdown to other cores

TASK 3 TASK 3 TASK 3 utdown

TASK 2 TASK 2 TASK 2 g Sh\%wn

TASK TASK S G)

L

-

TASK 4 g Shutdown

Figure 7.18: Example of a shutdown procedure

[SWS_Os_00586]

Upstream requirements: SRS_Os_80007
[During the shutdown, the OS-Application specific Shut downHook shall be called on
the core on which the corresponding OS-Application is bound. |

[SWS_Os_00587]
Upstream requirements: SRS_Os_80007

[Before calling the global shutdownHook, all cores shall be synchronized. |
[SWS_Os_00588]

Upstream requirements: SRS_Os_80007
[The global shutdownHook shall be called on all cores. |

AUTSSAR

7.9.6.2 Individual shutdown concept

If a Task calls shutdown0s the OS will be shut down on the core on which shut-
downOS has been called. Every core shall be able to invoke shutdownOs . Similar to
Start0s this function will shutdown the individual core. To shutdown the whole ECU
ShutdownOs has to be called on every core. The function will not return.

Individual shutdown is not supported in AUTOSAR R4.x (AUTOSAR mode manage-
ment will not use it).

7.9.6.3 Shutdown in case of fatal internal errors

In multicore systems it can happen that a fatal internal OS error is detected only on
one core. In such cases a local shutdown of that core does not make sense.

[SWS_Os_00762]
Upstream requirements: SRS_Os_80007

[In cases where the OS detects a fatal internal error all cores shall be shut down. |

7.9.7 OS service functionality (overview)

Within this chapter we describe which existing single core AUTOSAR OS functionality
has been extended. The following table gives an overview of all standard OS API
functions. The column "Multi-Core support" contains one of the following values:

» Extended: The function that has been extended substantially to support special
Multi-Core functionality.

» Adapted: the function required some minor changes but basically remains un-
changed.

« Unchanged: the behavior of the function has not changed.
* New: the function is a new AUTOSAR OS API-function.

Service Multi-Core support Annotation

ActivateTask Extended Cross core use shall be supported.
CallTrustedFunction Adapted Function must be bound to the same core.
CancelAlarm Extended Cross core use shall be supported.
ChainTask Extended Cross core use shall be supported.
ChecklISRMemoryAccess Unchanged

CheckObjectAccess Unchanged

CheckObjectOwnership Unchanged

CheckTASKMemoryAccess Unchanged

AUTSSAR

A
Service Multi-Core support Annotation
ClearEvent Unchanged
DisableAllinterrupts Unchanged Works only on the same core.
EnableAllinterrupts Unchanged Works only on the same core.
GetActiveApplicationMode Unchanged
GetAlarm Extended Cross core use shall be supported.
GetAlarmBase Extended Cross core use shall be supported.
GetApplicationID Unchanged
GetApplicationState Extended Cross core use shall be supported.
GetCorelD New ID of the current core.
GetCounterValue Adapted Cross core is not allowed.
GetElapsedValue Adapted Cross core is not allowed.
GetEvent Unchanged
GetISRID Unchanged
GetNumberOfActivatedCores New Number of cores running the AUTOSAR OS.
GetResource Adapted Nestable with spinlocks.
GetScheduleTableStatus Extended Cross core use shall be supported.
GetSpinlock New Occupy a spinlock.
GetTaskID Unchanged Works only on the same core.
GetTaskState Extended Cross core use shall be supported.
IncrementCounter Adapted Cross core is not allowed.
NextScheduleTable Unchanged
ReleaseResource Adapted Nestable with spinlocks.
ReleaseSpinlock New Release a spinlock.
ResumeAllinterrupts Unchanged Works only on the same core.
ResumeOSinterrupts Unchanged Works only on the same core.
Schedule Adapted Check for unreleased spinlocks
SetAbsAlarm Extended Cross core use shall be supported
SetEvent Extended Cross core use shall be supported.
SetRelAlarm Extended Cross core use shall be supported
SetScheduleTableAsync Unchanged
ShutdownAllCores New Synchronized shutdown.
ShutdownOS Extended Support for MC systems
StartCore New Start additional core
StartOS Extended Support for MC systems
StartScheduleTableAbs Extended Cross core use shall be supported.
StartScheduleTableRel Extended Cross core use shall be supported.
StartScheduleTableSynchron Unchanged
StopScheduleTable Extended Cross core use shall be supported.
SuspendAllinterrupts Unchanged Works only on the same core
SuspendOSinterrupts Unchanged Works only on the same core
SyncScheduleTable Unchanged
TerminateApplication Extended Check for unreleased spinlocks. Cross core use shall be

supported.

TerminateTask Adapted Check for unreleased spinlocks

Y%

AUTSSAR

A

Service Multi-Core support Annotation

TryToGetSpinlock New Try to occupy a spinlock

WaitEvent Adapted Check for unreleased spinlocks

isOsStarted Adapted In case of multi-core it returns just the value for the core
which called the service

BudgetReplenish Unchanged Works only on the same core

Table 7.2: Gives an overview of changes to the OS Service Calles

Service Task Catl Cat2 Error Pre/- Startup | Shut- Alarm | Pro- inside

ISR ISR Hook Post- Hook | down Call- tec- | trusted
TaskHo(Hook back tion- | func-
Hook tion

GetNumberOfActivated- Ok Ok Ok

Cores

GetCorelID Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok

StartCore

GetSpinlock Ok Ok Ok

ReleaseSpinlock Ok Ok Ok

TryToGetSpinlock Ok Ok Ok

GetNumberOfActivated- Ok Ok Ok

Cores

ShutdownAllCores Ok Ok Ok Ok Ok

Table 7.3: Allowed Calling Context for OS Service Calls

[SWS_Os_00589]

Upstream requirements: SRS_Os_80013, SRS_BSW_00459

[All functions that are not allowed to operate cross core shall return E_0S_CORE in
extended status if called with parameters that require a cross core operation. |

7.9.8 GetTaskID

GetTaskID can be called both from Task and Category 2 1SR level. When called from
an interrupt routine, on Single-Core systems, Get Task ID returns either the interrupted

Task or indicates that no Task is running. On Multi-Core systems it

* indicates that no Task is running on the core or,

« returns the ID of the interrupted Task on the core.

7.9.9

Interrupt disabling

Note: All types of interrupts can only be disabled on the local core. This implies that
the interrupt flags on other cores remain in their current state. Scheduling continues

on the other cores. Running ISRs on other cores continue executing.

AUTSSAR

7.9.9.1 Requirements

[SWS_Os_00590]
Upstream requirements: SRS_Os 80013

[The OS service DisableAllInterrupts shall only affect the core on which it is
called.

[SWS_Os_00591]
Upstream requirements: SRS_Os_80013

[The OS service EnableAllInterrupts shall only affect the core on which it is
called. |

[SWS_Os 00592]
Upstream requirements: SRS_Os_80013

[The OS service SuspendAllInterrupts shall only affect the core on which it is
called. |

[SWS_Os _00593]
Upstream requirements: SRS_Os_80013

[The OS service ResumeAllInterrupts shall only affect the core on which it is
called. |

[SWS_Os_00594]
Upstream requirements: SRS_Os 80013

[The OS service suspendOSInterrupts shall only affect the core on which it is
called. |

[SWS_Os_00595]
Upstream requirements: SRS_Os_80013

[The OS service ResumeOSInterrupts shall only affect the core on which it is
called. |

7.9.10 Task activation

Task activation shall be extended to work across cores. This document will not specify
any implementation details. This functions timing behavior can be slower when working
across cores. If a Task has to be activated on another core, a scheduling decision is
necessary on that core. If the core has not been started an error is generated.

AUTSSAR

7.9.10.1 Requirements

[SWS_Os_00596]
Upstream requirements: SRS_Os_80001, SRS_Os_80015

[It shall be possible to activate a Task that is part of an OS-Application located on
another core, as long as the assigned access rights allow it. |

[SWS_Os_00598]
Upstream requirements: SRS_Os_80015

[The call of ActivateTask across cores shall behave synchronously, i.e. a call re-
turns after the Task has been activated or an error has been detected. It shall not be
possible to continue execution on the calling core before ActivateTask is accom-
plished on the remote core. |

[SWS_Os_00599]

Upstream requirements: SRS_Os_80015
[In case of an error when calling Act ivateTask across cores, the error handler shall
be called on the core on which ActivateTask was originally called. |

[SWS_Os_00816]
Upstream requirements: SRS_Os_80015

[The operating system shall provide an asynchronous version of ActivateTask
which does not return errors to the caller, but only calls the (global) error hook (if
configured). The function name shall be ActivateTaskAsyn.]

7.9.11 Task Chaining

Task chaining shall be extended to work across cores. This document will not specify
any implementation details. This function’s timing behavior can be slower when work-
ing across cores. If a Task has to be activated on another core, a scheduling decision
is necessary on that core. If the core has not been activated, an error is generated.

7.9.11.1 Requirements

[SWS_Os_00600]
Upstream requirements: SRS_0Os_80001, SRS_Os_80015

[It shall be possible to chain a Task that is part of an OS-Application located on an-
other core, as long as the assigned access rights allow it. |

AUTSSAR

7.9.12 Event setting

SetEvent shall be extended to work across cores. This document will not specify any
implementation details. This function’s timing behavior can be slower when working
across cores. If the core has not been activated, an error is generated.

7.9.12.1 Requirements

[SWS_Os_00602]

Upstream requirements: SRS_Os_80016
[It shall be possible to set an Event that is part of an OS-Application located on an-
other core, as long as the assigned access rights allow it. |

[SWS_Os_00604]
Upstream requirements: SRS_Os_ 80016

[The call of setEvent across cores shall behave synchronously, i.e. a call returns
after the Event has been set or an error has been detected. It shall not be possible
to continue execution on the calling core before setEvent is accomplished on the
remote core. |

[SWS_Os_00605]
Upstream requirements: SRS_Os 80016

[In case of an error when calling setEvent across cores, the error handler shall be
called on the core on which setEvent was originally called. |

[SWS_Os_00817]
Upstream requirements: SRS_Os_ 80016

[The operating system shall provide an asynchronous version of setEvent which
does not return errors to the caller, but only calls the (global) error hook (if configured).
The function name shall be SetEventAsyn. |

7.9.13 Activating additional cores

The mechanism by which additional cores can be activated as described in section
7.9.5

AUTSSAR

7.9.14 Start of the OS

It is necessary to extend the functionality of startos. This is because StartoOs is
called once on each core. The user provides the so called application mode # to the
Operating System through the call parameter of Start0S (AppMode) .The application
mode defines which of the configured (startup) objects (Tasks, Alarms, Schedule
Tables) the OS automatically starts.

On a Multi-Core system all cores shall run in the same application mode. If Startos
is called with the Appmode DONOTCARE, the AppMode of the other cores is used. At
least one core has to define an AppMode other than DONOTCARE.

If the application mode is the same on all cores, startos will proceed its task. More
details can be found in chapter 7.9.4.

7.9.14.1 Requirements

[SWS_Os_00606]
Upstream requirements: SRS_Os_80001

[The AUTOSAR specification does not support the activation of AUTOSAR cores after
calling startos onthat core. If sStartCore is called after Startos it shall return with
E_OS_ACCESS in extended status. |

[SWS_Os_00607]
Upstream requirements: SRS_Os_80006, SRS_Os_80013

[startos shall start the OS on the core on which it is called. |

[SWS_Os 00608]
Upstream requirements: SRS_Os_80006

[If more than one core calls startos with an AppMode other than DONOTCARE, the
AppModes shall be the same. startos shall check this at the first synchronization
point. In case of violation, sStartos shall not start the scheduling, shall not call any
StartupHooks, and shall enter an endless loop on every core. |

[SWS_Os_00609]

Upstream requirements: SRS_Os_80006
[If startos is called with the AppMode DONOTCARE the application mode of the other
core(s) (differing from DONOTCARE) shall be used. |

[SWS_Os 00610]
Upstream requirements: SRS_Os_80006

[At least one core shall define an AppMode other than DONOTCARE. |

4This is the application mode of the Operating System and shall not be confused by other application
modes defined in the AUTOSAR mode management.

AUTSSAR

[SWS_Os_00611]
Upstream requirements: SRS_Os_80020

[If the 10C is configured, start0s shall initialize the data structures of the I0C. |

[SWS_Os_00830] DRAFT
Upstream requirements: SRS_Os_ 80020

[If the 10C is configured and the OS Generator is invoked in "Default mode", startos
shall invoke the TocInit (See [SWS_Os_00835]) to initialize the data structures of
the 10C. |

7.9.15 Task termination

The termination of Tasks requires an additional check: It is not allowed to terminate a
Task while a spinlock is occupied. If TerminateTask / ChainTask is called with an
occupied spinlock an error is returned.

7.9.15.1 Requirements

If TerminateTask (Or ChainTask) is called while the calling Task holds a spinlock,
the behavior is undefined in standard status.

[SWS_Os_00612]
Upstream requirements: SRS_Os_80021

[In extended status TerminateTask / ChainTask shall return with an error (
E_0S_SPINLOCK), which can be evaluated in the application. |

[SWS_Os_00613]
Upstream requirements: SRS_Os_80021
[Spinlocks occupied by Tasks that are terminated in response to a protection hook

shall be automatically released. This applies also to the case in which an OS-
Application is terminated. |

7.9.16 Termination of OS-Applications

Similar to Tasks an OS-Application cannot be terminated while any of its Tasks occupy
a spinlock. In such cases, the lock is automatically released. To avoid an avalanche of
error handling, no calls to the ErrorHook are made.

It might be possible that TerminateApplication(A) is called in parallel from differ-
ent cores. The implementation has to support such a call pattern by executing the first

AUTSSAR

arriving call of TerminateApplication(A)and ignoring any subsequent calls until
the termination is completed.

7.9.16.1 Requirements

[SWS_Os_00614]

Upstream requirements: SRS_Os_ 80021
[TerminateApplication shall check if any of the Tasks in the OS-Application have
occupied a spinlock. If so, the spinlocks shall be released. |

[SWS_Os_00615]
Upstream requirements: SRS_Os_80021

[If TerminateApplication(A) is called in parallel from different cores, the OsaAp-
plication Ais terminated by the first call, any subsequent calls will return with £_0OK
in standard and extended status without doing anything, until the termination is com-
pleted. |

7.9.17 Shutdown of the OS

Every core shall be able to invoke shutdown by using the shutdown0S function. By
calling shutdownOs only the calling core will enter the shutdown procedure.

If the user wants to shutdown all cores (more or less in parallel) ShutdownAllCores
shall be used. shutdown0Os and ShutdownAllCores will not return.

The OS service shutdownOs is not used by the AUTOSAR mode management in
AUTOSAR R4.0. The function is offered for users that run the OS on cores without
RTE and without mode management.

7.9.17.1 Requirements

[SWS Os 00616]
Upstream requirements: SRS_0Os_80001, SRS_Os_80007

[ShutdownOs shall be callable from each core running an AUTOSAR OS. |
[SWS_Os_00617]

Upstream requirements: SRS_Os_80007
[ShutdownOs shall shutdown the core on which it was called. |

AUTSSAR

[SWS_Os_00618]

Upstream requirements: SRS_Os_80013
[The OS shall not start Tasks of an OS-Application once the shutdown procedure has
been entered on a particular core. |

[SWS_Os_00619]

Upstream requirements: SRS_Os_80013
[The AUTOSAR OS function shutdownOs shall be callable in parallel on multiple
cores. |

[SWS_Os_00620]
Upstream requirements: SRS_Os_ 80021

[shutdownOs shall release all spinlocks which are occupied by the calling core. |

[SWS_Os_00621]
Upstream requirements: SRS_Os_80007

[ShutdownAllCores shall be callable from each core running an AUTOSAR OS. |

7.9.18 Waiting for Events
The Event waiting mechanism must be adapted to the new Multi-Core spinlock func-
tionality:

A Task might be de-scheduled when calling WwaitEvent, in which case it would not
be able to release the spinlock. WaitEvent must therefore check if the calling Task
holds a spinlock. As with Resources, spinlocks cannot be occupied by Tasks in wait
state.

7.9.18.1 Requirements

[SWS_Os_00622]
Upstream requirements: SRS_Os_80021

[The AUTOSAR Operating System waitEvent API service shall check if it has been
called while the calling Task has occupied a spinlock. In extended status an error
E_O0S_SPINLOCK shall be returned and the Task shall not enter the wait state. |

7.9.19 Calling trusted functions

Functions can be declared as trusted as part of an OS-Application. They can then
only be executed through the CallTrustedFunction API function. Assuming that

AUTSSAR

the access rights are configured accordingly, a Task from OS-Application A can call a
trusted function from OS-Application B.

On a Multi-Core system, these trusted function calls from one OS-Application to an-
other are limited to the same core.

7.9.19.1 Requirements

[SWS_Os_00623]
Upstream requirements: SRS_Os_80013

[The OS API function CallTrustedFunction shall return E_OS_ACCESS in ex-
tended status if the target trusted function is part of an OS-Application on another
core. |

7.9.20 Invoking reschedule

The schedule API service must be adapted to the new Multi-Core spinlock function-
ality in the same manner as WaitEvent.

A Task shall not actively force a de-scheduling while it occupies spinlocks.

7.9.20.1 Requirements

[SWS_Os_00624]
Upstream requirements: SRS_Os_80021

[The AUTOSAR Operating System schedule API service shall check if it has been
called while the calling Task has occupied a spinlock. In extended status an error
E_O0S_SPINLOCK shall be returned and the scheduler shall not be called. |

7.9.21 Resource handling

The GetResource function allows mutual exclusion between Tasks on the same core.
The OS generator shall check offline that the Tasks are not on different cores.(see
7.9.29) and the GetResource function will check this requirement online.

The priority ceiling protocol (used by GetResource) temporarily changes the priority
of a Task. Such an approach fails on Multi-Core systems as the priorities are local to
each core. Therefore the ceiling protocol is not sufficient to protect a critical section
against access from different cores.

AUTSSAR

[SWS_Os_00801]
Upstream requirements: SRS_Os_80021

[If Spinlocks and Resources are locked by a Task/ISR they have to be unlocked in
strict LIFO order. ReleaseResource shall return E_0S_NOFUNC if the unlock order is
violated. No other functionality shall be performed. |

[SWS_Os 00851]
Upstream requirements: SRS_Os_80008

[If OsUseResScheduler is TRUE, the OS generation tool shall create a virtual in-
stance of RES_SCHEDULER for each configured core. |

[SWS_Os_00852]
Upstream requirements: SRS_Os_80008

[It shall be possible for tasks running on different cores to occupy their own instance
of RES_SCHEDULER at the same time. |

[SWS_Os_00853]
Upstream requirements: SRS_Os_80008

[The ceiling priority of each instance of RES_SCHEDULER shall prevent the execution
of any other task on the core on which it is occupied but shall have no effect on the
scheduling on any other core. |

[SWS_Os_00854]
Upstream requirements: SRS_Os_00097

[If 0OsUseResScheduler is FALSE AND the configuration contains a resource called
RES_SCHEDULER, the configured resource shall behave the same as any other config-
ured resource. |

[SWS_Os_00855]
Upstream requirements: SRS_Os_00097

[t shall be possible to configure a LINKED resource that links to RES_SCHEDULER. In a
multi-core configuration with 0sUseResScheduler=TRUE, the linkage shall be to the
instance of RES_SCHEDULER on the core to which the LINKED resource is assigned. |

7.9.22 The CorelD

Every HW assigns a unique physical Id to a core. The physical core Id is the only
way to distinguish between cores. The physical core Ids of a ;C are not necessarily
consecutive and do not necessarily start with zero.

The SW requires a mechanism to identify a core, e.g. to use core specific variables.
Because the physical core Id usually cannot be used as a direct array index for core
specific variables, a logical CorelD is necessary to map physical core Ids to array

AUTSSAR

indexes. In the SW it is not necessary to know the physical core Id, the logical CorelD
is sufficient.

The mapping of OS-Applications and other SW objects to cores is specified in the
configuration files. All such mappings shall be HW independent and therefore shall not
be based on the physical core Id but on the logical CorelD.

The function GetCorelID internally maps the physical core Id to the logical CorelD.
The value is defined in the configuration parameter EcucCoreld. GetCoreID can be
either a C function or a macro.

7.9.22.1 Requirements

[SWS_Os_00625]
Upstream requirements: SRS_Os_80006

[The AUTOSAR Operating System API function GetCoreID shall be callable before
Startos.]

[SWS_Os 00627]
Upstream requirements: SRS_Os_80001

[An implementation shall define a set of constants 0S_CORE_ID_<No> of the type
CoreIdType with <No> a value from 0 to OsNumberOfCores-1.|

[SWS_Os _00628]
Upstream requirements: SRS_Os_80001

[An implementation shall offer a constant 0S_CORE_ID_MASTER of the type CoreI-
dType that refers to the master core. |

7.9.23 Counters, background & rationale

A Counter is represented by a counter value, measured in "ticks", and some counter
specific constants.

Similarly to Single-Core situation, each operating system (on each core) offers at least
one Counter that is derived from a timer. Therefore, it is possible to define several
Counters which belong to different OS-Applications and either resides on the same
or different cores.

AUTSSAR

/¢“\\ I,-—“\\ ’/,—.\ ,,—\\ /;*\ ,/;;I\‘
| Task } | Event b | Event y Task) | Event } | 1
\ S ! \ ~ ! \ /! \ back !
- N SN o s NS
\\.
= ~
I/ N \'\
| Task }“ o
\ 4 ~~o ~
SN~ ~~_ ~
~—_ 0~
~=~2_ SCHEDULE-
TABLE
adi
i
ALARM = femcceceme—eed —f-+ Task |
\\\—/,
SCHEDULE- A _
TABLE I,’ -
| Event le————L 44 ALARM ALARM
A \ 4
-
'
COUNTER J COUNTER COUNTER COUNTER
@) 8

———— Intra core actions.

———-» Inter core actions.

{8y Synchronized counter | ‘
|
|

Figure 7.19: Examples of allowed configurations for Counters, Alarms, Schedule-tables
and ISRs

7.9.24 Multi-Core restrictions on Counters

The AUTOSAR OS can only increment Counters on the core on which it resides.
A counter which is assigned to an OS-Application X cannot be incremented by an
OS-Application Y if X and Y are assigned to different cores.

7.9.24.1 Requirements

[SWS_Os_00629]
Upstream requirements: SRS_Os 80013

[A counter belonging to an OS-Application shall be incremented by the core on which
the OS-Application resides. The Counter shall not be incremented by other cores. |

[SWS_Os_00630]
Upstream requirements: SRS_Os_80013

[It shall not be allowed to drive a ScheduleTable from a Counter, which is assigned
to a different core. |

A UTGS AR Specification of Operating System

AUTOSAR CP R25-11

[SWS_Os_00631]
Upstream requirements: SRS_Os_80013

[It shall not be allowed to drive an Alarm from a Counter, which is assigned to a
different core. |

There are two different reasons for these restrictions:

* Race conditions can occur when cross-core modification of Counter is allowed
(one core waits for a Counter to be modified by another core).

» The core which is incrementing the Counter has to check if Alarms which are
based on the Counter have expired. Handling of expired Alarms is more com-
plex when different cores manipulate the same Alarms, because mutual exclu-
sion becomes necessary.

QOO

SCHEDULE-
m

— » Allowed configuration/usage
e - - » Prohibited configuration/usage

Figure 7.20: Example of disallowed configurations for Counters, Alarms, Schedule-
tables and Call-backs

113 of 410 Document ID 34: AUTOSAR_CP_SWS OS

AUTSSAR

7.9.25 Synchronization of Counters

Counters are used to drive Alarms and ScheduleTables. To synchronize Alarms
and ScheduleTables that reside on different cores, the corresponding Counters
have to be synchronized. For example, if the hardware supports this, it is possible
that corresponding free running hardware counters on different cores use the same
timer (same counter value maintained by the peripheral) and therefor provide the same
timebase on different cores. Software Counters can then get advanced by alarms at-
tached to these core local corresponding hardware counters, e.g. to drive synchronized
ScheduleTables on different cores. The quality of the synchronicity depends on the
hardware architecture and on the system configuration. .

7.9.26 Alarms

The Alarm mechanism of the AUTOSAR Operating System provides services to acti-
vate Tasks, set Events, increment Counters, or call an Alarm call-back (OsAlarm-
CallbackName).

As stated above, A1arms can only be bound to a Counter which resides on the same
core. Tasks can be activated and Events can be set with an A1arm action regardless
of the core to which the Task is bound. The access rights defined by OS-Applications
have to be respected, however. Additionally it shall be allowed to manipulate Alarms
when they are bound to other cores. The API-services SetRelAlarm, SetAbsAlarm,
and CancelAlarm can be used to manipulate parameters of Alarms on other cores.

7.9.26.1 Requirements

[SWS_Os_00632]
Upstream requirements: SRS_Os_ 80018

[If an Alarm expires, it shall be allowed to activate a Task on a different core. |

[SWS_Os_00633]
Upstream requirements: SRS_Os_80018

[If an Alarm expires, it shall be allowed to set an Event on a different core. |

[SWS_Os _00634]
Upstream requirements: SRS_Os 80018

[The AUTOSAR Operating System shall process an Alarm on the core on which its
corresponding OS-Application resides. |

AUTSSAR

[SWS_Os 00635]
Upstream requirements: SRS_Os_80013

[Alarm callbacks shall be executed on the core to which the Alarm is bound. This is
only applicable to SC1 systems, because otherwise A1arm Callback are not allowed
(ISWS_0Os_00242)).

[SWS_Os 00636]
Upstream requirements: SRS_Os_80013

[SetRelAlarm shall also work on an Alarm that is bound to another core. |

[SWS_Os_00637]
Upstream requirements: SRS_Os 80013

[SetAbsAlarm shall also work on an Alarm that is bound to another core. |

[SWS_Os_00638]
Upstream requirements: SRS_Os_80013

[CancelAlarm shall also work on an Alarm that is bound to another core. |

[SWS_Os _00639]
Upstream requirements: SRS_Os_80013

[GetAlarmBase shall also work on an Alarm that is bound to another core. |

[SWS_Os_00640]
Upstream requirements: SRS_Os_80013

[GetAlarm shall also work on an Alarm that is bound to another core. |

7.9.27 ScheduleTables

Similarly to Alarms, ScheduleTables can be used to activate Tasks and set
Events. As with Alarms, a ScheduleTable can only be bound to a Counter which
resides on the same core.

To simplify system startup, it should be possible to start ScheduleTables on other
cores. The system designer is responsible for the correct handling of ScheduleTa-
bles. For example, ScheduleTables can be controlled from one core.

AUTSSAR

7.9.27.1 Requirements

[SWS_Os_00641]
Upstream requirements: SRS_Os_ 80018

[A ScheduleTable shall be able to activate a Task bound on a core other than the
one upon which the ScheduleTables resides. |

[SWS_Os_00642]
Upstream requirements: SRS_Os_80018

[A scheduleTable shall be able to set an Event on a core other than the one upon
which the ScheduleTables resides |

[SWS_Os_00643]

Upstream requirements: SRS_Os_80013
[The AUTOSAR Operating System shall process a ScheduleTable on the core on
which its corresponding OS-Application resides. |

[SWS_Os_00644]

Upstream requirements: SRS_Os_80018
[The API call sStartScheduleTableAbs shall be able to start ScheduleTables of
OS-Applications residing on other cores. |

[SWS_Os_00645]

Upstream requirements: SRS_Os 80013
[The APl call startScheduleTableRel shall be able to start ScheduleTables of
OS-Applications residing on other cores. |

[SWS_Os_00646]

Upstream requirements: SRS_Os_80013
[The API call stopScheduleTable shall be able to stop ScheduleTables of OS-
Applications residing on other cores. |

[SWS_Os_00647]
Upstream requirements: SRS_Os_80013

[The API service GetScheduleTableStatus shall be able to get the status of a
ScheduleTable that is part of an OS-Application residing on a different core. |

7.9.28 The spinlock mechanism

With the Multi-Core concept, a new mechanism is needed to support mutual exclusion
for Tasks on different cores. This new mechanism shall not be used between Tasks

AUTSSAR

on the same core because it makes no sense. In such cases the AUTOSAR Operating
System returns an error.

A SpinlockType, which is similar to OSEK’s ResourceType, shall be used. Spinlocks
are configured offline.

A spinlock is a busy waiting mechanism that polls a (lock) variable until it becomes
available. Typically, this requires an atomic test and set functionality, the details of
which are implementation specific.

Once a lock variable is occupied by a Task/Category 2 1SR, other Tasks/Category 2
ISRs on other cores shall be unable to occupy the lock variable. The spinlock mecha-
nism will not de-schedule these other Tasks while they poll the lock variable. However
it might happen that a Task/1SR with a higher priority becomes ready while the lock
variable is being polled. In such cases the spinning Task will be interfered. This is
illustrated in figure 7.21.

Spin for

Task high
g lock A

Do something GetSpin Lock(A)g

Point of preemption
Core 0 P P [‘

Task low | | GetSpinLock(A) | _ Omgfhin . ’ preempta/ S S

!
Deadlock caused
by interference.

Figure 7.21: A deadlock situation caused by interference, the high priority Task spins
indefinitely because the low priority Task has occupied the spinlock. In such cases the
second GetSpinlock call will return with an error.

A user can protect a Task against such a situation by, for example, rapping the spinlock
with SuspendAllInterrupts, SO that it cannot be interfered by other Tasks. The
OS can do this automatically for the caller - see OsSpinlockLockMethod.

A second deadlock situation can be created by nested spinlocks calls, as illustrated in
figure 7.22.

AUTSSAR

Core 0
lock B

GetSpinLock(A) | Do something GetSpinLocka)S Spin for %

Deadlock caused
by different nesting
order.

Core 1 lock A

GetSpinLock(B) | Do something GetSpinLock(A)g Spin for g

Figure 7.22: This figure shows a typical deadlock caused by two spinlocks taken in
different order by Tasks on two different cores

To avoid deadlocks it is not allowed to nest different spinlocks. Optionally if spinlocks
shall be nested, a unique order has to be defined. Spinlocks can only be taken in this
order whereas it is allowed to skip individual spinlocks. Cycles are not allowed within
the defined order. This is illustrated in figure 7.23.

TASK 1 =N
N
\
A
\ I e T e
\ A e T A
S1 /=y S2 =) 83 | —J S4 =4 S5 =/ S6
- Y T . > T
\ e st emm—————— T === N—-—T s
\ ~.. -
\\\ :D Configured order
e TASK 2 -~ ~a Allowed effective order
~ " ~& Disallowed effective order

Figure 7.23: Usage of spinlocks

This figure 7.23 shows an example in which two Tasks have access to a set of spin-
locks S1 — S6. It is allowed to occupy the spinlocks in the predefined order and it is
allowed to skip spinlocks. If multiple spinlocks are occupied at the same time, locking
and unlocking has to occur in strict LIFO order

The spinlock mechanism is not deadlock free by itself. The order in which spinlocks
from Tasks/ISRs are requested has to be mentioned in the configuration description.
If a Task occupies a spinlock, scheduling shall be restricted.

Note: AUTOSAR does not prescribe which algorithms are used to implement spinlocks.
Since users may want to analyze the timing behavior (e.g. lock times) an implementa-
tion shall document the real behavior.

AUTSSAR

7.9.28.1 Requirements

[SWS_Os_00648]
Upstream requirements: SRS_Os_80018, SRS_Os_80021

[The AUTOSAR Operating System shall provide a spinlock mechanism that works
across cores. |
[SWS_0Os_00649]

Upstream requirements: SRS_Os_80018, SRS_Os_80021

[The AUTOSAR Operating System shall provide a GetSpinlock function which oc-
cupies a spinlock. If the spinlock is already occupied, GetSpinlock shall keep on
trying to occupy the spinlock until it succeeds. |

[SWS Os 00650]

Upstream requirements: SRS_Os_80018, SRS_Os_80021
[GetSpinlock shall be callable from Task level. |
[SWS_Os_00651]

Upstream requirements: SRS_Os_80021
[Getspinlock shall be callable from Category 2 1SR level. |

The behavior of Get Spinlock is undefined if called from a category 1 ISR
[SWS_Os_00652]

Upstream requirements: SRS_Os_80018, SRS_Os_80021

[The AUTOSAR Operating System shall provide a TryToGetSpinlock function
which occupies a spinlock. If the spinlock is already occupied by a Task, TryTo-
GetSpinlock shall return.]

[SWS_Os_00653]

Upstream requirements: SRS_Os_80018, SRS_Os_80021
[TryToGetSpinlock shall be callable from Task level. |
[SWS_Os_00654]

Upstream requirements: SRS_Os_80018, SRS_Os_80021
[TryToGetSpinlock shall be callable from Category 2 1SR level. |
[SWS_Os_00655]

Upstream requirements: SRS _Os_ 80018, SRS_Os_80021

[The AUTOSAR Operating System shall provide a ReleaseSpinlock function which
releases an occupied spinlock. If the spinlock is not occupied an error shall be re-
turned. |

AUTSSAR

[SWS_Os 00656]
Upstream requirements: SRS_Os_80018, SRS_Os_80021

[ReleaseSpinlock shall be callable from Task level.

[SWS_Os_00657]
Upstream requirements: SRS_Os_ 80018, SRS_Os_80021

[ReleaseSpinlock shall be callable from Category 2 ISR level. |

[SWS Os 00658]
Upstream requirements: SRS_Os_80018, SRS_Os_80021

[The AUTOSAR Operating System shall generate an error if a Task tries to occupy
a spinlock that is assigned to a Task/Category 2 ISR on the same core (including
itself). |

[SWS Os 00659]
Upstream requirements: SRS_Os_80018, SRS_Os_80021

[The AUTOSAR Operating System shall generate an error if an Category 2 ISR tries
to occupy a spinlock that is assigned to a Task/Category 2 ISR on the same core. |

[SWS_Os _00660]
Upstream requirements: SRS_Os_80018, SRS_Os_80021

[A unique order in which multiple spinlocks can be occupied by a Task/Category 2 ISR
on one core should be configurable in the AUTOSAR Operating System. This might
be realized by the configuration item (OsSpinlockSuccessor {NEXT_SPINLOCK})
where NEXT_SPINLOCK refers to the consecutive spinlock. (See OsSpinlockSuc-
cessor) |

[SWS_Os_00661]
Upstream requirements: SRS_Os_80018, SRS_Os_80021

[The AUTOSAR Operating System shall generate an error if a Task/Category 2 ISR
on a core, where the same or a different Task/ISR already holds a spinlock, tries to
seize another spinlock that has not been configured as a direct or indirect successor of
the latest acquired spinlock (by means of the 0OsSpinlockSuccessor configuration
parameter) or if no successor is configured. |

7.9.29 Offline checks

AUTOSAR Resources cannot be shared between Tasks/ISRs on different cores. The
OS generator has to check if a user tries to assign a Resource to Tasks on different
cores and stop the generation process with an error.

Counters cannot be accessed from OS-Applications on different cores. The OS gen-
erator has to reject configurations that violate this rule.

AUTSSAR

The linked list of spinlocks must be free of cycles to allow correct nesting of spinlocks
in order to prevent deadlocks.

The OS generator tool must check that an OS-Application does not get assigned to
a non-existing core. Additional checks at configuration time, e.g. by an AUTOSAR
description editor are recommended.

7.9.29.1 Requirements

[SWS_Os_00662]
Upstream requirements: SRS_Os_80021

[The OS generator tool shall return with an error if it detects a Resource referred to
by any Tasks or ISRs assigned to different cores. |

[SWS_Os_00663]
Upstream requirements: SRS_Os_80013

[The OS generator tool shall return with an error if an Alarmis assigned to a Counter
on a different core. |

[SWS_Os 00664]
Upstream requirements: SRS_Os_80013

[The OS generator tool shall return with an error if a Counter on a different core shall
be incremented as an Alarm action. |

[SWS_Os _00665]
Upstream requirements: SRS_Os_80013

[The OS generator tool shall return with an error if a ScheduleTable is assigned to
a Counter on a different core. |

[SWS_Os_00666]
Upstream requirements: SRS_Os_ 80021

[The OS generator tool shall return with an error if the linked list of spinlocks is not free
of cycles. |

[SWS_Os_00667]
Upstream requirements: SRS_Os_80005
[The OS generator tool shall check the assignment of OsApplications (including

the Tasks assigned to the 0sApplication) to cores and return an error in case any
of these cores does not exist. |

AUTSSAR

7.9.30 Auto start Objects

Before scheduling starts the AUTOSAR Operating System® activates all auto-start ob-
jects that are configured. This mechanism shall work similar on a Multi-Core system.
Before scheduling starts, the Multi-Core OS shall activate all configured auto-start ob-
jects on the respective core. Due to the fact that OS-Applications are defined as the
locatable entity no further configuration container is required. Auto-start objects are
already configured as part of an OS-Application.

7.9.30.1 Requirements

[SWS_Os_00668]
Upstream requirements: SRS_Os_80006

[The AUTOSAR Operating System shall automatically activate all auto-start Tasks
configured for the current AppMode, with respect to the core, before the initial start of
the scheduling. |

[SWS_Os_00669]
Upstream requirements: SRS_Os_80006

[The AUTOSAR Operating System shall automatically activate all auto-start Alarms
configured for the current AppMode, with respect to the core, before the initial start of
the scheduling. |

[SWS_Os_00670]
Upstream requirements: SRS_Os_80006

[The AUTOSAR Operating System shall automatically activate all auto-start Sched-
uleTables configured for the current AppMode, with respect to the core, before the
initial start of the scheduling. |

7.10 Inter-OS-Application Communicator (I0C)

7.10.1 Background & Rationale

IOC stands for Inter OS-Application Communicator.

The "IOC" is responsible for the communication between OS-Applications and in partic-
ular for the communication crossing core or memory protection boundaries. Its internal
functionality is closely connected to the Operating System.

5StartOS

AUTSSAR

Software Component Software Component Software Component Software Component

10C (Cluster Local) 10C (Cluster Local)

Binary Manifest Binary Manifest

10C (Cluster Local)

10C (Socket)

Figure 7.24: 10C overall view

There are use cases where 1 to N IOC code instances needs to be generated on top of
the OS code which is used by multiple different Software Clusters. As those Software
Clusters use different IOC configurations, as a consequence the OS code shall not
include any code depending on a specific IOC configuration.

To ensure compatibility between IOC and OS code, there is still a dependency in that it
is necessary to use the same OS configuration for the generation of the different I0C
code Instances. Furthermore, the OS and IOC code should be generated from an OS
Generator coming from the same vendor.

[SWS_Os_00671]
Upstream requirements: SRS_Os_80020

[The 10C implementation shall be part of the Operating System
The I0C is a third type of communication, in addition to
* Intra OS-Application communication: Always handled within the RTE

* Inter ECU communication: Already available via well-defined interfaces to the
communication stack (COM)

]

I0C mode: This is the mode where the OS generator is invoked with a configuration
parameter to generate the I0C code only.

OS mode: This is the mode where the OS generator is invoked with a configuration
parameter to generate the OS code only.

Default mode: This is the current behavior where the I0C code is generated along
with OS code.

AUTSSAR

[SWS_Os_00831] DRAFT
Upstream requirements: SRS_Os_80020

[The OS Generator shall provide configuration parameters allowing IOC communica-
tion code ("IOC mode") to be generated separately from OS code (("OS mode"). |

[SWS_0Os_00831] means that the OS Generator shall be able to produce only OS code
or only IOC code in a single invocation.

[SWS_Os_00832] DRAFT
Upstream requirements: SRS_Os_80020

[The Operating System in the Host Software Cluster shall be able to handle multiple
IOC code Instances related to different Software Clusters. |

[SWS_Os 00833] DRAFT
Upstream requirements: SRS_Os_80020

[When the OS generator is invoked in "OS mode" it shall only generate the OS code.
Thereby the OS code shall not include any code that depends on a specific IOC config-
uration, because different Clusters will use different IOC configurations with the same
OS code. |

Please note that it is mandatory to use the same OS configuration for the generation
of the different IOC instances to ensure compatibility between the |IOC and OS code.

[SWS Os 00834] DRAFT
Upstream requirements: SRS_Os_80020

[When the OS generator is invoked in "IOC mode" it shall only generate the I0C code.
Thereby the name of the C module containing the generated I0C code shall be loc.c
and the name of the header file containing the generated I0OC APIs shall be loc.h. |

Requirements [SWS_Os_00833] and [SWS_0Os_00834] ensure that OS and 10C can
be generated independently from each other but linked together while building the ECU
instance /Machine. ()

[SWS_Os_00835] DRAFT
Upstream requirements: SRS_Os_80020

[If the 10C is configured, there shall be a function TocInit responsible for the initial-
ization of the data structures of the 10C. |

Memory protection boundaries are a characteristic of OS-Applications and special
communication mechanisms are needed to cross them. Multi-Core systems may also
need additional measures to make communication between cores safe.

All AUTOSAR software, both BSW and software components, must belong to an OS-
Application (see 7.9.3), but not necessarily to the same one. It is expected that the
BSW will be trusted code, but it shall be defined as one or more OS-Applications.

AUTSSAR

The IOC provides communication services between OS-Applications and in particular
over core boundaries in Multi-Core systems. Because the cross-core communication
is always an inter-OS-Application communication, the two mechanisms are combined.
An inter OS-Application communication may not necessarily require a cross core com-
munication, however.

Communication between OS-Applications is expected to be more frequent than inter
ECU communication. This would be the case when existing; closely related Software
Components and their runnable entities are distributed to two or more cores to increase
system performance. Meeting timing constraints is expected to become more difficult,
when runnables which have been designed to run on a single core are distributed over
several cores.

In systems with only one core, the IOC can be omitted completely, if just one OS-
Application is available, or if no OS-Application uses memory protection mechanisms.

The I0C does not provide standardized support for measurement of IOC channels.

7.10.2 10C - General purpose

The IOC provides communication services which can be accessed by clients which
need to communicate across OS-Application boundaries on the same ECU or Software
Cluster.

The RTE uses IOC services to communicate across such boundaries. All communica-
tion must be routed through the RTE on sender (or client) and on receiver (or server)
side.

Direct access to IOC services by clients other than the RTE is not supported. A use
of I0C from CDDs is discouraged. Only sender/receiver communication is supported
however by the 10C.

To keep the RTE as hardware independent as possible, all inter OS-Application and
inter core communication mechanisms and implementation variants are encapsulated
in the IOC. The IOC internal functionality is dependent on hardware architecture prop-
erties, in particular on the memory architecture.

The IOC has to guarantee data consistency in inter OS-Application and inter core
(Multi-Core systems) communication, this means in particular:

* In queued communication the sequential order of communication operations shall
remain unchanged. In the N:1 communication case, the order of the messages
from the different sources is a property of the implementation.

* The content of all data sent in one communication operation shall remain un-
changed, i.e. each communication operation shall be treated as atomic opera-
tion.

» The lock mechanism (interrupt locks; spinlocks; lock free implementation; ...)
which is used by the I0C to guarantee the data consistency is not standardized.

AUTSSAR

7.10.3 10C functionality
7.10.3.1 Communication

The 10C provides sender-receiver (signal passing) communication only. The RTE
translates Client-Server invocations and response transmissions into Sender-Receiver
communication.

1:1, N:1 and N:M (unqueued only) communication are supported by the 10C.

The 10C allows the transfer of one data item per atomic communication operation. A
data item can either be a value for atomic basic data types or a reference for complex
data structures. The data structure must be implemented as a single memory block,
however. This way the data item can be transmitted in one piece. The IOC does not
need to know the internal data structure. The basic memory address and length (which
can be calculated from the type of the data item) is sufficient. The I0C does, e.g., not
support a conversion of endianness between cores.

Transferring more than one data item in one operation is also supported for 1:1 com-
munication only. In this case several types and memory addresses have to be used by
the 10C function. The advantage compared to sequential IOC calls is that mechanisms
to open memory protection boundaries and to notify the receiver have to be executed
just once. Additionally, all data items are guaranteed to be consistent, because they
are transferred in one atomic operation.

The 10C provides both, unqueued (Last-is-Best, data semantics) or queued (First-In-
First-Out, event semantics) communication operations. If present, the I0C internal
queue has a configurable length.

Each atomic communication operation gets specified individually by its own descrip-
tion block in a Configuration Description with regard to sender, receiver, data type(s),
notification, and queuing.

7.10.3.2 Notification

The IOC optionally notifies the receiver as soon as the transferred data is available
for access on the receiver side, by calling a configured callback function which gets
provided by the user of the communication.

A possible implementation is to trigger an interrupt (Category 2 1sSR) mechanism to
invoke the callback function from the ISR on receiver side, or to use a microcontroller
supplied trap. The callback function shall be efficient and compact, because it is called
from within the TsR.

In certain cases, it might not be necessary to trigger an ISR to notify the receiver. The
IOC generator can then select the appropriate IOC internal notification method based
on the hardware architecture and other constraints. This might be more efficient than
an ISR for communication between OS-Applications on the same core.

AUTSSAR

The notification might be handled completely by the client of the I0C, e.g. when the
RTE calls the IOC send function, and then notifies the receiver side RTE that new data
are available from the IOC. In this case, the IOC is not affected at all by the details of
the notification mechanism.

In case such alternative solutions prove to be more efficient, the IOC internal notifica-
tion might get removed in future AUTOSAR releases.

7.10.4 10C interface

The interface between RTE and IOC shall be similar to the interface between Software
Components and the RTE, i.e. by generating specific interfaces for each communica-
tion operation instead of providing a generic API.

This supports optimization methods (like function inlining or replacing function calls
by macros) much better than standardized interfaces. Most of the optimization can
be performed offline at code generation time instead of consuming valuable real-time
resources.

There is a unique set of IOC service APIs (at least to send and receive data) for each
data communication specified in the IOC Configuration Description. Each service API
gets generated and can be identified by a unique Id for each data communication. In
case of N:1 communication, each sender must use its own API.

The same I0C service API and hence the same 1:1 communication can get used by
more than one runnable inside the same SWC both on sender and on receiver side.
However, the 10C functions are not reentrant, because otherwise e.g. spinlock errors
could occur in case the IOC uses spinlocks in Multi-Core systems. The same IOC API
must therefore only be called sequentially. This is no problem, if all runnable entities
are scheduled within the same Task, otherwise the caller is responsible to guarantee
that the same I0C APl is not called again before it returns from a different invocation.

Software Components may access the IOC only via RTE. Only the RTE decides which
communication services to use to support the communication needs of Software Com-
ponents.

7.10.5 10C internal structure

This section gives some hints on possible IOC implementation options.

The 10C may enter the privileged mode to cross the protection boundaries between
OS-Applications. The IOC therefore has to be part of the OS. Note that functionality
that is placed in the kernel context might be non-interruptible by Tasks or Category 2
ISR. The functionality can be interrupted by Cat1 1SRs, however.

The 10C send service writes data into a buffer located in a memory area which is
shared with the receiving communication partners (This is one possible implementation

AUTSSAR

example using shared memory). Depending on the hardware architecture and other
constraints, different implementation options might be available within the I0C. These
options shall be transparent to the client (RTE), however.

The IOC ensures data consistency, i.e. there is a protection against concurrent access
to the same data from all senders and the receiver for protection against inconsistent
behavior and data corruption. The implementation can be hardware dependent.

In systems with shared memory, there can be a specific communication buffer for each
data item in a memory section which is shared between the sending and receiving
OS-Applications.

If an IOC communication with event semantics (queued) is configured the length of the
gueue shall be defined.

7.10.6 10C configuration and generation

Data element specific interfaces between RTE and IOC require extensive code genera-
tion. Instead of generating the IOC together with the RTE, a sequential code generation
process is used, to separate generic RTE code generation and hardware dependent
IOC code generation as much as possible. The following steps shall be performed:

» Step 1: Specify all information about the allocation of Software Components to
OS-Applications and cores in the ECU Configuration Description file.

» Step 2: Generate the RTE. The RTE generator creates data element specific IOC
services calls and the corresponding I0C Configuration Description blocks (XML
format) to specify the communication relations for each data element.

» Step 3: Generate the IOC code, according to the IOC Configuration Description
(Step 2) while considering the hardware description files. Additionally, generate a
header file (loc.h) for inclusion in RTE.c to provide definitions, function prototypes
and macros.

Each atomic communication has to be specified in the IOC Configuration Description
in a standardized XML format. There is one description block per communication op-
eration specifying:

» Unique identifier

» Data type(s)

Sender properties

* Receiver properties

» Name of callback function on receiver side in case of notification.
* Whether communication is queued or unqueued (last is best)

* In case of queued communication: Length of the queue

AUTSSAR

For details see chapter 10.3

For each inter-OS-Application communication, the RTE generator creates one or more
calls to an I0C function to send or receive data, and adds a corresponding description
block to the IOC Configuration Description.

In ECUs or Software Clusters with only one OS-Application, the IOC Configuration
Description can be omitted.

[SWS_Os_00824]
Upstream requirements: SRS_Os_80020

[All the data allocated by the OS for the IOC communication shall be wrapped with the
memory allocation keywords mechanism

#define 0OS_<IE>_ START SEC_<sadm>
#include "Os_MemMap.h"

<IOC buffers>

#define 0OS_<IE>_ STOP_SEC_<sadm>
#include "Os_MemMap.h"

N o g A~ W oN =

where <IE> is the shortName of the sending OsApplication configured in Os-
TocSendingOsApplicationRef of the respective OsTocCommunication chan-
nel, and <sadm> is the shortName of the referred swAddrMethod, if configured in
OsMemoryMappingCodeLocationRef Of the respective OsTIocDataProperties
within the OsTocCommunication channel. If the OsMemoryMappingCodeLoca—
tionRef is not defined the OS is permitted to select an appropriate swAddrMethod. |

7.10.7 10C integration examples

This section describes two typical use cases that show how the IOC can support com-
munication between OS-Applications. In both examples the OS-Applications are lo-
cated on different cores of a Multi-Core system.

7.10.7.1 Example 1 - 1:1 sender/receiver communication without notification

One Software Component sends data items in event semantics (queued) to another
Software Component located on a different core. A runnable entity on the receiver side
is invoked periodically (e.g. by an Alarm) and receives the data via RTE (see figure
7.25).

Because the communication crosses core boundaries, the RTE invokes the 10C to
transfer the data from core 0 to core 1.

On the sending side, the

Rte_Send_<port>_<item> (..., <data>)

AUTSSAR

call is mapped to an

IocSend_<Id> (<data>)
call.
Core 0 Core 1
Software Component Software Component
| o et - §
1
! RE L ¥ '@ RE ;
R momoooonocaomooonnm 4=t e —— 1
Rte_Send_... ,/Rte Send ... Rte Receive ...\ /?l;e_Receive_
A ") 3y
Y ---l: :---S--l ai
1 1 1
L} 1 1
] ! RTE : ! RTE
] H H :
(S L bcoroftocccoood !
\\ T
a4
% o
5} & of A
o] Q ol =
w kel B v
o ANCE & o * Part of E—_—
2 ARV 21 = Task 2
[o o 8
A N GO o) jmmmmmmmmmmm—n
] . 0os e 4 ! Functionor !
v AN 7 e} - macro !
N 10C I
*3‘- ==-b ﬂ, SRl)
1)
' (e B NI
> Buffer s } Data flow
! e :
1 1 1 1
I Buffering
mechanism

Figure 7.25: 10C without notification

In this example, the TocSend service writes the data into a buffer, located in a shared
memory area which can get read by the receiver via the 10C.

On the receiving side, the receiving runnable gets invoked periodically. The
Rte_Receive_<port>_<item> (..., <data>)
call is mapped to an
IocReceive_ <Id> (<data>)

call to read data from the IOC internal queue. An additional queue within the RTE is
not necessary for 1:1 communication.

The IOC generator generates all the send and receive functions. The functions might
be defined as macros for optimization purposes.

This kind of port to port communication without notification is suitable for:
» Sender/receiver communication
* Queued or unqueued communication

* 1:1 communication.

AUTSSAR

7.10.7.2 Example 2 - N:1 client/server communication with receiver notification

by RTE
One Software Component invokes a service operation that is provided by another Soft-
ware Component located on a different core. A runnable entity on the receiver side is
activated to calculate the result (see figure 7.26).

The RTE realizes the service on client side by mapping the client/server call to a
Because the communication crosses core bound-

sender/receiver communication.
aries, the RTE uses the I0OC to transfer the data from Core 0 to Core 1.

On the sending side, the

Rte_Call_<port>_<op> (..., <data>)

call is mapped to a

IocSend_<Id> (<data>)
call to transmit the parameters over the I0OC to the core hosting the server runnable.

Core 1

Core 0

Software Component Software Compone%

;ﬁ' RE @ RE :
_a__‘ __________________ '

i
Rte_Call_... ,/Rte call ... RE (...<data>)

‘ = = = = T
I===p====9 ----!a

‘R‘ ------ ” ____________ _—— N I ! g
1 Task 95 . RTE

RTE ¢
aktivation \ !

-
.-
’\@c_?
. /Q
Ceipe
BAGE
locReceive <ID>
—
Bg
=~
[SR=3
2
O

<d|> PUago0|

Data flow

\
\
© 4
*—1--—----. oo ’--‘ﬁ

: : : : . Notfication
T i Buffer\ : :

f !] 0 Buffering

mechanism

Figure 7.26: 10C with notification by RTE

After writing the data into the 10C internal queue buffer, the Rte_cCal1l function uses
an OS call to notify the receiver by activating the server Task on the receiving core.
This Task is provided by the RTE. This Task body is responsible for reading the data
from the IOC buffer by calling TocReceive function and for forwarding the data to the
server runnable. Depending on the return value of the I0C function, the TocReceive
and server runnable calls might be repeated several times to empty the 10C internal

queued buffer (if specified).

AUTSSAR

The result of the service on Core 1 is transferred back to the client on Core 0 in a
similar way. The communication path of the result is not displayed in figure 7.26.

This kind of port to port communication with notification by the RTE is suitable for:

» Sender/receiver communication with notification

Client/server communication. In this case the RTE has to provide services to
map the server call into 1:1 sender/receiver communication for the server call
and another sender/receiver communication to return the result to the client

* Queued or unqueued communication

* 1:1 communication, if the receiver does not poll for data periodically (In this case,
the solution in example 1 might have been more suitable)

* N:1 communication.

7.11 System Scalability

7.11.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled accordingly
with scalability classes, see [SWS_Os_00241].

Feature

Scalability
Class 1

Scalability
Class 2

Scalability
Class 3

Scalability
Class 4

Minimum number of Schedule
Tables supported

2

8

2

8

Minimum number of
OS-Applications supported

0

0

2

2

Minimum number of software
Counters supported

8

8

8

8

Table 7.4: Minimum requirements of scalability classes

7.11.2 Requirements

[SWS_Os_00240]
Upstream requirements: SRS_Os_11012, SRS_Os_11016
[If an implementation of a lower scalability class supports features of higher classes

then the interfaces for the features must comply with this Operating System software
specification. |

AUTSSAR

[SWS_Os_00241] Scalability classes
Upstream requirements: SRS_Os_11012, SRS_Os_11016

[

Feature Described in Scala- Scala- Scala- Scala- Hardware requirements
Section bility bility bility bility
Class 1 Class2 | Class3 | Class 4
OSEK OS (all Chapter 7.1 Yes Yes Yes Yes
conformance classes)
Counter Interface Increment— Yes Yes Yes Yes
Counter
SWEFRT Interface GetCounter— Yes Yes Yes Yes
Value,
GetElapsed-
Value
ScheduleTables Chapter 7.3 Yes Yes Yes Yes
Stack Monitoring Chapter 7.5 Yes Yes Yes Yes
ProtectionHook Chapter 7.8 Yes Yes Yes
Timing Protection Chapter 7.7.2 Yes Yes Timer(s) with high priority interrupt
Global Chapter 7.4 Yes Yes Global time source
Time/Synchronization
Support
Memory Protection Chapter 7.7.1, Yes Yes MPU
Chapter 7.7.4
OS-Applications Chapter 7.6, «6 *7 Yes Yes
Chapter 7.12
Service Protection Chapter 7.7.3 Yes Yes
CallTrustedFunc— Chapter 7.7.5 Yes Yes (Non-)privileged Modes
tion

The Operating System module shall support the features according to this given table.

]

[SWS_Os_00327]
Upstream requirements: SRS_Os_11016

[The Operating System module shall always use extended status in Scalability Class
3 and 4.]

7.12 Hook Functions

7.12.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the Operating System module
and therefore can only belong to the trusted environment. Furthermore, these hook
routines are global to the system (system-specific) and will probably be supplied by the
ECU integrator.

6see [SWS_Os_00764]
’see [SWS_Os_00764]

AUTSSAR

In AUTOSAR however, each OS-Application may have the need to execute application
specific code e.g. initialize some hardware in its own additional (application-specific)
startup hook. These are called application specific hook routines. In general the appli-
cation specific hooks have the same properties as the hook routines described in the
OSEK OS specification. Differences are described below.

7.12.2 Requirements

[SWS_Os_00439]
Upstream requirements: SRS_Os_00097

[The Operating System module shall provide the OSEK error macros (OSEr-
ror... ()) to all configured error hooks AND there shall be two (like in OIL) global
configuration parameters to switch these macros on or off. |

StartupHook

[SWS_Os_00060]
Upstream requirements: SRS_Os_11001

[If an application-specific startup hook is configured for an OS-Application <App>, the
Operating System module shall call StartupHook_<App> on startup of the Operating
System module. |

[SWS_Os_00226]

Upstream requirements: SRS_Os_11001
[The Operating System module shall execute an application-specific startup hook with
the access rights of the associated OS-Application. |

[SWS_Os 00236]
Upstream requirements: SRS_Os_11001

[If both a system-specific and one (or more) application specific startup hook(s) are
configured, the Operating System module shall call the system-specific startup hook
before the application-specific startup hook(s). |

ShutdownHook

[SWS_Os 00112]
Upstream requirements: SRS_Os_11001
[If an application-specific shutdown hook is configured for an OS-Application <App>,

the Operating System module shall call ShutdownHook_<App> on shutdown of the
0S.]

AUTSSAR

[SWS_Os 00225]
Upstream requirements: SRS_Os_11001

[The Operating System module shall execute an application-specific shutdown hook
with the access rights of the associated OS-Application. |

[SWS_Os_00237]
Upstream requirements: SRS_Os_11001
[If both a system-specific and one (or more) application specific shutdown hook(s) are

configured, the Operating System module shall call the system-specific shutdown hook
after the application-specific shutdown hook(s). |

ErrorHook

[SWS_Os_00246]
Upstream requirements: SRS_Os_11013

[When an error occurs AND an application-specific error hook is configured for the
faulty OS-Application <App>, the Operating System module shall call that application-
specific error hook ErrorHook_<App> after the system specific error hook is called
(if configured). |

[SWS_Os_00085]
Upstream requirements: SRS_Os_11001

[The Operating System module shall execute an application-specific error hook with
the access rights of the associated OS-Application. |

[SWS_Os_00367]
Upstream requirements: SRS_Os_00097

[Operating System module’s services which do not return a statusType - except
ActivateTaskAsyn and SetEventAsyn - shall not raise the error hook(s). |

7.13 Hardware peripheral access

7.13.1 Background & Rationale

On some MCU architectures, there are memory mapped hardware registers (peripheral
area), which are only accessible in specific modes (e.g. in privileged mode). As long
as a TasksS/ISRs is running with full hardware access they can directly access these
registers. If memory protection is used by the Operating System, Task/IsSRs of non-
trusted Os-Applications cannot access such registers directly because this would be
recognized as a memory violation by the Operating System.

To allow access to such registers even from non-trusted applications the Operating
Systems offers the following APlIs to read, write and modify registers:

AUTSSAR

* ReadPeripherals

* ReadPeripherallb

* ReadPeripheral3?2

* WritePeripheral8

* WritePeripherallb
* WritePeripheral3?2
* ModifyPeripheralS8
* ModifyPeripherall6
* ModifyPeripheral3?2

In order to control the access to the registers the access has to be configured for each
OsApplication. By this the Os can check during run-time if a caller has sufficient
rights.

7.13.2 Requirements

[SWS_Os_00806]
Upstream requirements: SRS_Os_11005

[Check access to peripheral registers

The Operating System shall only execute access to peripheral registers via APIs Read
PeripheralX, WritePeripheralX and ModifyPeripheralX if :

» parameter Address is in range of OsPeripheralAreaStartAddress and Os—
PeripheralAreaEndAddress

» parameter Area is valid

» the caller is configured to have sufficient rights (OsPeripheralArealAc—
cessingApplication).

]

[SWS_Os _00807]
Upstream requirements: SRS_Os_11005

[Error handling of peripheral access API

If the Operating System detects an error (see [[SWS_Os 00806]]) while executing a
ReadPeripheralX, WritePeripheralX and ModifyPeripheralX the OS shall return the ap-
propriate StatusType and call the ErrorHook. Otherwise E_OK shall be returned. |

AUTSSAR

7.14 Interrupt source API

7.14.1 Background & Rationale

The Operating System needs to guarantee the scheduling, wherefore it needs to be the
only component which accesses the interrupt controller. Therefore it provides to other
BSW/CDD components the interfaces DisableInterruptSource, EnableInter—
ruptSource and ClearPendingInterrupt {0 give access to the interrupt control
registers of category 2 TISRs.

The pair of DisableInterruptSource/EnableInterruptSource may be used
for two different purposes:

1. A specific interrupt should be masked for a short time (potentially to avoid data con-
sistency problems). A masked request shall be served afterwards, once the interrupt
source gets enabled again.

2. Interrupt requests of a specific source should be ignored for a specific time (poten-
tially a longer time e.g. while the CAN driver sleeps). After enabling the source, only
new requests should be considered.

7.14.2 Requirements

[SWS_Os_00808]
Upstream requirements: SRS_Os_11011

[The Operating System shall provide for each category 2 interrupt source (OsIsr-
Category == CATEGORY_2)the APIs DisableInterruptSource, EnableInter-
ruptSource and ClearPendingInterrupt. |

DisableInterruptSource/EnableInterruptSource does not support nested
calls.

[SWS_Os_00809]
Upstream requirements: SRS_Os_11011

[Nested calls of interrupt source control API

The Operating System shall return E_0S_NOFUNC (in EXTENDED status) in case Dis-
ableInterruptSource is called for an interrupt source which is already disabled or
EnableInterruptSource is called for an interrupt source which is already enabled. |

[SWS_Os_00810]
Upstream requirements: SRS_Os_ 11011
[Error handling of interrupt source control API

If the Operating System detects an error while executing a DisableInterrupt-
Source, EnableInterruptSource and ClearPendingInterrupt the OS shall

AUTSSAR

return the appropriate StatusType and call the ErrorHook. Otherwise E_OK shall
be returned. |

[SWS_Os_00811]
Upstream requirements: SRS_Os_11011

[A call of EnableInterruptSource shall enable the requested interrupt source by
modifying the interrupt controller registers. Additionally it shall clear the interrupt pend-

ing flag. |
[SWS_Os_00812]
Upstream requirements: SRS_Os_11011
[Acallof DisableInterruptSource shall disable the requested interrupt source by
modifying the interrupt controller registers. |

[SWS_Os 00813]
Upstream requirements: SRS_Os_11011

[A call of ClearPendingInterrupt shall clear the interrupt pending flag by modify-
ing the respective interrupt controller registers. |

[SWS_Os _00814]
Upstream requirements: SRS_Os_11011

[Clearing of pending interrupts shall be restricted to clearing the pending flag in the
interrupt controller. |

Note: This does not necessarily guarantee that the interrupt request is cleared suc-
cessfully, i.e. the ISR may still be serviced afterwards. (This may happen due to racing
conditions or as the request needs to be cleared in the requesting hardware unit also.)

7.15 Error classification

AUTOSAR BSW modules normally report their errors to Det (development errors) or
Dem (production errors). The OS handles errors differently (see also [2]) and does not
report its errors to Dem/Det. If a reporting of errors to Dem/Det is needed the user can
perform these actions in the ErrorHook.

The following table contains all error codes which might be reported from the OS (be-
sides those already defined in [2])

AUTSSAR

[SWS_Os_91025] Definition of development errors in module Os

Upstream requirements: SRS_BSW_00480

Type of error

Related error code

Error value

An invalid address is given as a parameter to a
service.

E_OS_ILLEGAL_ADDRESS

Assigned by
implementation

A memory access violation occurred

E_OS_PROTECTION_MEMORY

Assigned by
implementation

A stack fault detected via stack monitoring by the
(O]

E_OS_STACKFAULT

Assigned by
implementation

Core is not available

E_OS_CORE

Assigned by
implementation

Potential deadlock due to wrong nesting

E_OS_NESTING_DEADLOCK

Assigned by
implementation

Tasks terminates without a TerminateTask() or
ChainTask() call.

E_OS_MISSINGEND

Assigned by
implementation

A Task/Category 2 ISR blocks for too long

E_OS_PROTECTION_LOCKED

Assigned by
implementation

De-scheduling with occupied spinlock

E_OS_SPINLOCK

Assigned by
implementation

Service cannot be called.

E_OS_SERVICEID

Assigned by
implementation

A trap occurred

E_OS_PROTECTION_EXCEPTION

Assigned by
implementation

Deadlock situation due to interference

E_OS_INTERFERENCE_DEADLOCK

Assigned by
implementation

A Task or Category 2 ISR exceeds its execution
time budget

E_OS_PROTECTION_TIME

Assigned by
implementation

A service of the OS is called inside an interrupt
disable/enable pair.

E_OS_DISABLEDINT

Assigned by
implementation

A Task/Category 2 ISR arrives before its
timeframe has expired

E_OS_PROTECTION_ARRIVAL

Assigned by
implementation

7.16 ARTI Debug Information

[SWS_Os_00858]
Upstream requirements: SRS_Os_12001

[The OS shall create an ARTI module description file. |

[SWS_Os_00829]
Upstream requirements: SRS_Os_12003

[ARTI module description file shall support all ORTI containers. |
The ARTI Debug Information intends to enable the attached tool to evaluate and display

information about the operating system, its state, its performance, the different Task
states, the different operating system objects etc.

AUTSSAR

Additionally the ARTI Debug Information contains dynamic information as a set of at-
tributes that are represented by formulas to access corresponding dynamic values.
Formulas for dynamic data access are comprised of constants, operations, and sym-
bolic names within the target file. To obtain internal values of the required OS objects,
the debug tool can then evaluate the given formula.

7.16.1 OS ARTI Objects

It describes a set of attributes for system objects and a method for interpreting the
data obtained. The types defined in the section are specified to allow the debugger
to determine the target memory access method as well as the best way of displaying
the retrieved data. In most cases the information that the user will require to see is a
textual description of an attribute rather than the actual value read from the variable.

An example of this is as follows; when a user requests the current state of a Task he
will expect to see something like RUNNING, WAITING, READY Oof SUSPENDED, instead
of the actual numeric value that is used by the OS to represent this information inter-
nally. For this reason a mapping is specified, which allows a kernel manufacturer to
describe how an internal OS value must be mapped to a descriptive value.

* ArtiOs

* ArtiHwCore

* ArtiOsAlarm

* ArtiOsContext

* ArtiOslsr

* ArtiOsResource

* ArtiOsMessageContainer
* ArtiOsScheduleTable
* ArtiOsSpinlock

+ ArtiOsStack

* ArtiOsTask

These objects are declared in Arti containers with definitions named "*Class". The
instances of these objects are placed in the same Arti container with definitions named
"*Instance".

AUTSSAR

7.17 ARTI Hook Macros

[SWS_Os 00836]
Upstream requirements: RS_ARTIFO_00014, SRS_0Os_12002

[The OS shall incorporate special macros that can be used by an ARTI trace tool to
insert tracing functionality of any kind.

These macros shall be active only if the Boolean configuration parameter OsUseArti
is set to true, thereby enabling tracing support globally within the OS. |

[SWS_Os_00837]
Upstream requirements: RS_ARTIFO_00014, SRS_Os_12002
[The hooks for an AUTOSAR CP OS shall follow the general structure of

ARTI macros: ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter);J

Some of the parameters are using literal text (Token) rather than a symbolic identi-
fier. This allows a macro definition concatenating these parameters to more specific
macros. Passing and evaluating all parameters at run-time would be very costly es-
pecially by means of run-time consumption. Here is a possible implementation of the
generic ARTI_TRACE macro as it could be defined by a ARTI trace tool vendor to match
the interface of his trace tool:

1 #define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter) \

2 ARTI_TRACE##_##_className##_##_eventName##_ ##_ instanceName##_##
_contextName ((instanceParameter), (eventParameter))

Such an implementation will generate one hook for all the possible combinations of
_className, _eventName and _contextName and pass only parameters instance_id
and event_value at run-time.

The parameters’ meanings are described in the following.
 _contextName Token, literal text, name of the context. One of the following:

— NOSUSP indicating that the hook gets called in a context where interrupts
are disabled

— SPRVSR indicating that the called hook may disable interrupts
— USER indicating the called hook cannot disable interrupts

« className Token, literal text, name of the class of macros. Predefined classes
for an AUTOSAR OS are:

— AR_CP_OS_APPLICATION starts and stops the application
— AR_CP_OS TASK schedules Tasks
— AR_CP_OS_CAT2ISR dispatches Category 2 interrupts

AUTSSAR

— AR_CP_OS_SERVICECALLS calls service routines
— AR_CP_OS_SPINLOCK calls spinlocks
— AR _CP_0OS HOOK calls OS hooks
» _instanceName Short name of the OS instance as defined in the ARXML.

* instanceParameter Index [uint32] 0..4294967295 of the CPU core as seen by the
OS (<Core Index>). Should always start with 0 and count up consecutively. This
might be equal to the index of the physical core, but doesn’t have to be.

« _eventName Token, literal text, name of the event as defined for a particular class.
» eventParameter A [uint32] 0..4294967295 value as an argument to an event.

Therefore all ARTI macros for an AUTOSAR OS do compile the following template:

1 ARTI_TRACE (_contextName, <AR 0OS Class Name>, <OS Short Name>, <Core
Index>, <Event Name>, <Event Parameter>)

Example of hook call in OS:

1 ARTI_TRACE (NOSUSP, AR _CP_OS_TASK, 0S1, (uint32)GetCorelID(),
OsTask_Activation, (uint32)GetTaskID());

Example of preprocessed output:

1 ARTI_TRACE_NOSUSP_AR_CP_OS_TASK_0S1_OsTask_Activation((uint32)GetCorelID
(), (uint32)GetTaskID());

7.17.1 Class AR_CP_OS_APPLICATION

[SWS_Os _00838]

Upstream requirements: RS_Arti_00029
[The OS shall create events of class AR_CP_OS_APPLICATION to allow tracing of
OS applications [as defined for the AUTOSAR Classic Platform] |

The states used by ARTI are based on the states of OS-Applications, see figure 7.10
in chapter Background & Rationale 7.6.1 for details.

States used by ARTI:

ARTI (O]

Initial

Accessible APPLICATION_ACCESSIBLE
Terminated APPLICATION_TERMINATED

Table 7.5: OS-Application states used by ARTI

Transitions used by ARTI:

AUTSSAR

Name Transition Event Name
Start Initial -> Accessible OsApplication_Start
Terminate Accessible -> Terminated OsApplication_Terminate

Table 7.6: OS-Application transitions used by ARTI

[SWS_Os_00839]
Upstream requirements: RS_ARTIFO_00015

[ARTI macros of the class AR_CP_OS_APPLICATION shall compile the following tem-
plate:

1 ARTI_TRACE (_contextName, AR _CP_OS_APPLICATION, <OS Short Name>, <Core
ID>, <Event Name>, <Application ID>)

]

The <Core ID> for any event shall represent the core id where the corresponding ap-
plication is running on.

The <Event Name> should follow the transition table above.

The <Application ID> shall be a numeric identifier of the OS Application.

7.17.2 Class AR_CP_OS TASK

ARTI needs to trace all Task states and all state transitions within the OS. For some
timing parameters (e.g. the "runtime" of a Task, which goes from started to termi-
nated), the simple "ready" state of the OS is not enough. Tools evaluating the timings
need to reconstruct a more complex state diagram by calculating the transitions from
history. To be compatible to the pure OS state diagram, AR_CP_OS_TASK refers to
this state model, knowing that tools need to postprocess the event flow to get all rele-
vant information. However, if an OS implementation can provide a more detailed state
diagram, ARTI allows to define more events that won’t need postprocessing and allow
earlier synchronization of the trace if it is truncated (limited trace buffers). This state di-
agram is then handled with the class "AR_CP_OSARTI_TASK". If possible, the second
state machine is to be preferred.

[SWS_Os_00840]
Upstream requirements: RS_Arti_00030

[The OS shall create events that follow the state machine defined in the classes
AR_CP_OSARTI_TASK or AR_CP_OS TASK. Both classes may be used for task-
level tracing, with AR_CP_OSARTI_TASK being preferred due to its extended tracing
capabilities. |

AUTSSAR

[SWS_Os_00864] Task State Order
Upstream requirements: RS_Arti_00030

[The OS shall invoke ARTI hooks for tasks following the order specified in ISO 17356-3
"Task state model". |

[SWS_Os_00865] Task Running State
Upstream requirements: RS_Arti_00030

[Only one task shall be in the "Running" state for each core at a time. |

AR_CP_OS_TASK

The following state diagram shows the states and transitions as defined by the OS:

. Running
Wait \'I‘err‘mnate
| Waiting l Preempt Start SUSPe”d‘Ed]

'\

Release - 4_,,f"4iva te
— Ready

Figure 7.27: ARTI Task states

Transitions used by ARTI:

Name Transition Event Name
Activate Suspended -> Ready OsTask_Activate
Start Ready -> Running OsTask_Start
Preempt Running -> Ready OsTask_Preempt
Wait Running -> Waiting OsTask_Wait
Release Waiting -> Ready OsTask_Release
Terminate Running -> Suspended OsTask_Terminate

Table 7.7: Task transitions used by ARTI

AR_CP_OSARTI_TASK

The class AR_CP_OSARTI_TASK contains events allowing the tracing of OS Tasks
with an enhanced state model.

The following states diagram shows the state machine as used by ARTI:

AUTSSAR

Released *—%

. Waitin
Continue 9
Preempted | < Preempt
Resume Running
Terminate
Start
Activated Suspended
Activate
Figure 7.28: ARTI enhanced Task states
States used by ARTI:
ARTI (O]
Suspended SUSPENDED
Activated READY
Running RUNNING
Preempted READY
Waiting WAITING
Released READY
Table 7.8: Task states used by ARTI
Transitions used by ARTI:
Name Transition Event Name
Activate Suspended -> Activated OsTask_Activate
Start Activated -> Running OsTask_Start
Preempt Running -> Preempted OsTask_Preempt
Resume Preempted -> Running OsTask_Resume
Wait Running -> Waiting OsTask_Wait

V

AUTSSAR

A
Name Transition Event Name
Release Waiting -> Released OsTask_Release
Continue Released -> Running OsTask_Continue
Terminate Running -> Suspended OsTask_Terminate

Table 7.9: Enhanced task transitions used by ARTI

[SWS_Os_00841]
Upstream requirements: RS_ARTIFO_00015

[ARTI macros of the classes AR_CP_OS_TASK and AR_CP_OSARTI_TASK shall
compile the following templates:

1 ARTI_TRACE (_contextName, AR_CP_OS_TASK, <0S Short Name>, <Core ID>, <
Event Name>, <Task ID>)
2 ARTI_TRACE (_contextName, AR_CP_OSARTI_TASK, <0OS Short Name>, <Core 1ID>,
<Event Name>, <Task ID>)

]

The <Core ID> for any event shall represent the core id where the corresponding Task
is scheduled on.

The <Event Name> should follow the transition table above.

The <Task ID> shall be a numeric identifier of the OS Task.

[SWS_Os_00866] ARTI Hook Sequence Task Termination
Upstream requirements: RS_Arti_00030

[If a task is in the Ready, Activated, Released, or Preempted state when another task
terminates, the OS shall invoke the OsTask Terminate event for the terminating task,
followed by the OsTask_Start, OsTask_Resume, or OsTask_Continue event for the
task transitioning to the Running state. |

[SWS_Os_00867] ARTI Hook Sequence Task Preemption
Upstream requirements: RS_Arti_00030

[If a task (B) is transitioning to Running state while another task (A) is in the Running
state, the OS shall first invoke the OsTask_Preempt event for the already running task
(A), followed by the OsTask_Start or OsTask_Resume event for the task (B). |

[SWS_Os_00868] ARTI Hook Sequence Task Chaining
Upstream requirements: RS_Arti_00030
[In the case of task chaining, the OS shall first invoke the OsTask_Terminate event for

the task that called the ChainTask() service. Followed by an OsTask_Activate event for
the task which got chained to it. The same is true if the task chains to itself. |

AUT<

Example 7.1
Single Basic Task:

The following diagram shows the life cycle of a single terminating basic task.

The diagram illustrates the order of events; however, it does not depict the timing.
The OS shall call the corresponding ARTI hooks for the events shown in the diagram.
Therefore, two events cannot happen at the same point in time. Even if no other task
is running, as shown in the diagram, it is expected that the OS calls both ARTI hooks
(Activate and Start). It will take the CPU some time to call the two ARTI hooks and

SAR

Single Basic Task

Task A

[Suspended l

[Actlvated l [Runn

1 OsTask_Activate

2 OsTask_Start

[Termina teTask())

Figure 7.29: Single Basic Task

therefore the two events will be spaced apart in time.

Example 7.2

Two Basic Tasks Without Preemption:

The following diagram shows the life cycle of two terminating basic tasks. Task A starts
first, Task B which has a lower priority than Task A gets activated and will therefore run

after Task A.

Task B Activated While Higher Priority Task A is Running

Task B (Low Priority) Task A (High Priority)
l Suspended l l Activated l l Runnin g l l Suspended l lActivated l l Runnin g l
1 OsTask_Activate
2 OsTask_Start
3 OsTask_Activate
4 OsTask_Terminal te
5 OsTask_Start
‘ Termina teTask() 5
6 OsTask_Terminafe
B
l Suspended l l Activated l l Runnin g l l Suspended l lActivated l l Running l
Task A 1(High Priority) ; ; ;
St (AT i
Task B 0(Low Priority) | | | | | |
— O G
3 5 6 7

Figure 7.30: Two Basic Tasks Without Preemption

AUTSSAR

Example 7.3

Two Basic Tasks With Preemption:

The following diagram shows the life cycle of a two terminating basic task. Task A starts
first, Task B which has a higher priority than Task A gets activated and will therefore
preempt it.

Task B Gets Activated While Task A is Running

Task A (Low Priority)

Task B (High Priority)

[Running]

[Preempted }

[Suspended }

[Activated }

[Running}

[Suspended }

[Activated]

1 OsTask_Activate

2 OsTask_Start

3 OsTask_Activate

4 OsTask_Preempt

5 OsTask_Start

3

TerminateTask()

6 OsTask_Terminal

-
7 OsTask_Resume
TerminateTask()
8 OsTask_Terminate
B
[Suspended] [Activated] [Running] [Preempted] [Suspended] [Activated] [Running]
Task B 1(High Priority) ; ; ; ;
Suspended X Activated > 5:svenced
Task A O(Low Priority) ' : | | i i H
S D = > D
1 2 3 4 5 6 7 8 9

Figure 7.31: Two Basic Tasks With Preemption

Example 7.4
Two Basic Tasks Chained:
The following diagram shows the life cycle of task A chaining to task B.

Task A chains to Task B

Task B

Task A
[Activated]

[Activated]

[Suspended] [Runmng] [Suspended] [Running]

1 OsTask_Activate

2 OsTask_Start

ChainTask(Task B)

3 OsTask_Terminaf

4 OsTask_Activate
5 OsTask_Start

[TerminateTask()

6 OsTask_Terminate

D
[Suspended } [Act\vated } [Runmng } [Suspended} [Actlvated } [Runnlng }
TaskB 1 ; ;
Suspended X Activated Suspended
TaskAO |) : :
sapented QAR Spanied
1 2 3 4 5 6 7

Figure 7.32: Two Basic Tasks Chained

AUTSSAR

Example 7.5
Single Basic Task Chains to Itself:

The following diagram shows the life cycle of a single terminating basic task which uses
task chaining to activate itself one more time, therefore runs a second time before it

finally terminates.

Task Chained to Itself

Task A
[Suspended] [Activated] [Running]

1 OsTask_Activate

2 OsTask_Start

[ChainTask(Task A)N
3 OsTask_Terminaj e
[4 OsTask_Activate
5 OsTask_Start
[Termina teTask())
6 OsTask_Terminate
]

[owenied] [pevss] [runmng)

[TaskAo/

Figure 7.33: Task Chained to Itself

There will be a rescheduling between step (3) and (4), if a task with a higher or same
priority is in ready state during the ChainTask call.

7.17.3 Class AR_CP_OS_CAT2ISR

[SWS_Os_00849]
Upstream requirements: RS_Arti_00031

[The OS shall create events to trace all states of Cat2lsrs and all state transitions
within the OS ("Cat2lsr" refers to a category 2 interrupt service routine). |

For some timing parameters (e.g. the interrupt pending time), the simple Category
2 interrupt start/stop of the OS is not enough. Tools evaluating the timings need to
reconstruct a more complex state diagram by calculating the transitions from history.
To be compatible to the OS, AR_CP_OS_CAT2ISR refers to this state model, knowing
that tools need to postprocess the event flow to get all relevant information. However,
if an OS implementation can provide a more detailed state diagram, ARTI allows to
define more events that won’t need postprocessing and allow earlier synchronization
of the trace if it is truncated (limited trace buffers). This state diagram is then handled
with the class "AR_CP_OSARTI_CAT2ISR". If possible, the second state machine is

to be preferred.
AR_CP_OS_CAT2ISR

AUTSSAR

The class AR_CP_OS_CAT2ISR contains events allowing the tracing of Category 2
interrupts as defined for the AUTOSAR Classic Platform.

The following state diagram shows the states and transitions as defined by the OS:

Running
Stop

Inactive

Figure 7.34: ARTI category 2 ISR states

Transitions used by ARTI:

Name Transition Event Name
Start Inactive -> Running OsCat2lsr_Start
Stop Running -> Inactive OsCat2lsr_Stop

Table 7.10: ISR transitions used by ARTI

AR_CP_OSARTI_CAT2ISR

The class AR_CP_OSARTI_CAT2ISR contains events allowing the tracing of Category
2 interrupts with an enhanced state model.

The following state diagram shows the state machine as used by ARTI:

AUTSSAR

Preempted | Preempt

Resu%—-»ﬂ,_ [Running

J
~" Start

Stop

Activated Inactive

Activate
Figure 7.35: ARTI enhanced category 2 ISR states

States used by ARTI:

ARTI (OF]

Inactive Inactive
Activated Inactive
Running Running
Preempted Running

Table 7.11: ISR states used by ARTI

Transitions used by ARTI:

Name Transition Event Name
Activate Inactive-> Activated OsCat2lsr_Activate
Start Activated -> Running OsCat2lsr_Start
Preempt Running -> Preempted OsCat2lsr_Preempt
Resume Preempted -> Running OsCat2lsr_Resume
Stop Running -> Inactive OsCat2lsr_Stop

Table 7.12: Enhanced ISR transitions used by ARTI

[SWS_Os_00842]
Upstream requirements: RS_ARTIFO_00015

[ARTI macros of the classes AR_CP_OS_CAT2ISR and AR_CP_OSARTI_CAT2ISR
shall compile the following template:

1 ARTI_TRACE (_contextName, AR CP_OS_CAT2ISR,

<0S Short Name>, <Core Index

>, <Event Name>,

2 ARTI_TRACE (_contextName,
<Event Name>,

Index>,

<Cat2Isr Index>)
AR_CP_OSARTI_CAT2ISR,
<Cat2Isr Index>)

<0S Short Name>,

<Core

AUTSSAR

]

The <Core Index> for any event shall represent the core index where the corresponding
Category 2 interrupt is scheduled on.

The <Event Name> should follow the transition table above.
The <Cat2lsr Index> shall be a numeric identifier of the Category 2 interrupt.

Example 7.6
Category 2 ISR interrupting a task without rescheduling:

The following diagram shows a category 2 ISR interrupting a task. Depending on the
implementation of the OS, a category 2 ISR may cause a preemption of a task. The
state transition to the Preempted state is optional, as there is no state model in the OS
that refers to ISRs and tasks. If the task state does not change to Preempted, the task
stays in the Running state during the whole ISR run.

Task Gets Preempted by ISR

3 OsCat2lIsr_Activate

6 OsCat2Isr_Stop

8 OsTask_Terminate

[Suspended] [Actwated]

= D
5 6 7 8 9

Figure 7.36: ISR2 Interrupting Task

Example 7.7
Category 2 ISR causing a rescheduling of tasks:

The following diagram shows a category 2 ISR interrupting Task A and activating the
higher priority task B. Task B gets scheduled and preempts Task A. Depending on
the implementation of the OS, the preemption of Task A may already happen at the
activation of the ISR (between 3 and 4), or after the activation of Task B (between 5
and 8).

AUTSSAR

Tasks and ISR With Rescheduling

Task A (Low Priority) Task B (High Priority) ISR

l Suspended] lActivated] l Running] l Preempted] [Suspended lActivated [Running] l Inactive] lActivated] l Running]

1 OsTask_Activate

2 OsTask_Start

3 OsCat2lsr_Activate
4 OsCat2Isr_Start
ActivateTask(Task B) 5
5 OsTask_Activate
6 OsCat2Isr_Stop
B
7 OsTask_Preempt
|8 OsTask_Start
TermmateTask()b
9 OsTask_Terminate
D
10 OsTask_Resume
TerminateTask()
11 OsTask_Terminjate
<«
l Suspended] lActivated] l Running] l Preempted] [Suspended] lActivated] [Running] l Inactive] lActivated] l Running]
R2 : : ' ' : '
e X s> D -
Task B 1(High Priority) : : : : : : : :
Tﬂ(AO(LDW Priority) | . . | | .
=) — ; e N Cwa
2 3 a 5 s 7 3 5 1 1 B

Figure 7.37: ISR2 Rescheduling Tasks

7.17.4 Class AR_CP_OS_SERVICECALLS

[SWS_Os_00843]
Upstream requirements: RS_Arti_00032

[The OS shall create events of class AR_CP_OS_SERVICECALLS when entering and
exiting the service call from an application context. |

These hooks shall only be called, if the service call is called from an application context.
It shall not be called, if the service call is used within the OS context.

The events apply only to the entries and exits of the service calls, not to the objects
(and their states) handled by the service call.

[SWS_Os_00844]
Upstream requirements: RS_ARTIFO_00015

[ARTI macros of the class AR_CP_OS_SERVICECALLS shall compile the following
template:

1 ARTI_TRACE (_contextName, AR_CP_OS_SERVICECALLS, <0OS Short Name>, <Core
Index>, <eventName>, <eventParameter>)

AUTSSAR

]

The <Core Index> for any event in the following table shall represent the core id where
the corresponding service call is called.

The <eventName> is a string literal composed of a prefix "OsServiceCall", the ser-
vice call name and "_Start" or "_Return" for the entry or exit of the service call. E.g.
when ActivateTask is called, the event names on entry and exit are OsServiceCall_
ActivateTask_Start rsp. OsServiceCall_ActivateTask_Return.

The <eventParamter> is an uint32 representation of either one of the function param-
eters or the return value. It depends on the service call and is listed in the following
table:

OS Service Call From eventParameter on Start on Return
ActivateTask OSEK TaskID (StatusType) returnValue
TerminateTask OSEK TaskID (statusType) returnValue
ChainTask OSEK TaskID (StatusType) returnValue
Schedule OSEK 0 (StatusType) returnValue
GetTaskID OSEK 0 (TaskType) *TaskID
GetTaskState OSEK TaskID (TaskStateType) *State
EnableAllInterrupts OSEK 0 0
DisableAllInterrupts OSEK 0 0
ResumeAllInterrupts OSEK 0 0
SuspendAllInterrupts OSEK 0 0
ResumeOSInterrupts OSEK 0 0
SuspendOSInterrupts OSEK 0 0
GetResource OSEK ResID (StatusType) returnValue
ReleaseResource OSEK ResID (statusType) returnValue
SetEvent OSEK TaskID (StatusType) returnValue
ClearEvent OSEK Mask (StatusType) returnValue
GetEvent OSEK TaskID (EventMaskType) * Event
WaitEvent OSEK Mask (StatusType) returnValue
GetAlarmBase OSEK AlarmlD (AlarmBaseRefType) Info
GetAlarm OSEK AlarmlD (TickType) *Tick
SetRelAlarm OSEK AlarmlD (StatusType) returnValue
SetAbsAlarm OSEK AlarmlD (StatusType) returnValue
CancelAlarm OSEK AlarmlD (StatusType) returnValue
GetActiveApplication- | OSEK 0 (AppModeType) returnValue
Mode
StartOs OSEK Mode not applicable
ShutdownOS OSEK Error not applicable
GetApplicationID AUTOSAR 0 (ApplicationType) return
Value
GetCurrentApplica- AUTOSAR 0 (ApplicationType) return
tionID Value
GetISRID AUTOSAR 0 (ISRType) returnValue
CallTrustedFunction AUTOSAR Functionindex (StatusType) returnValue

AUTSSAR

A
OS Service Call From eventParameter on Start on Return
CheckISRMemoryAccess AUTOSAR ISRID (AccessType) returnValue
CheckTaskMemoryAccess | AUTOSAR TaskID (AccessType) returnValue
CheckObjectAccess AUTOSAR ApplID (ObjectaccessType) return
Value
CheckObjectOwnership AUTOSAR ObjectTypeType (ApplicationType) return
Value
StartScheduleTableRel | AUTOSAR ScheduleTablelD (statusType) returnValue
StartScheduleTableAbs | AUTOSAR ScheduleTablelD (StatusType) returnValue
StopScheduleTable AUTOSAR ScheduleTablelD (StatusType) returnValue
NextScheduleTable AUTOSAR ScheduleTablelD_To (StatusType) returnValue
StartScheduleTa- AUTOSAR ScheduleTablelD (StatusType) returnValue
bleSynchron
SyncScheduleTable AUTOSAR ScheduleTablelD (StatusType) returnValue
SetScheduleTableAsync | AUTOSAR ScheduleTablelD (statusType) returnValue
GetScheduleTableSta- AUTOSAR ScheduleTablelD (ScheduleTableSta-
tus tusType) *ScheduleStatus
IncrementCounter AUTOSAR CounterlD (StatusType) returnValue
GetCounterValue AUTOSAR CounterlD (TickType) *Value
GetElapsedvalue AUTOSAR CounterlD (TickType) *ElapsedValue
TerminateApplication AUTOSAR Application (StatusType) returnValue
GetApplicationState AUTOSAR Application (
ApplicationStateType)
*Value
GetNumberOfActivated- | AUTOSAR 0 (uint32) returnValue
Cores
GetCorelD AUTOSAR 0 (CoreIdType) returnValue
StartCore AUTOSAR CorelD (StatusType) *Status
GetSpinlock AUTOSAR Spinlockld (statusType) returnValue
ReleaseSpinlock AUTOSAR Spinlockld (StatusType) returnValue
TryToGetSpinlock AUTOSAR Spinlockld (
TryToGetSpinlockType)
*Success
ShutdownAllCores AUTOSAR Error 0
ReadPeripheral8 AUTOSAR Address (uint8) *ReadValue
ReadPeripherall6 AUTOSAR Address (uint16) *ReadValue
ReadPeripheral3?2 AUTOSAR Address (uint32) *ReadValue
WritePeripheral8 AUTOSAR Address (StatusType) returnValue
WritePeripherall6 AUTOSAR Address (StatusType) returnValue
WritePeripheral32 AUTOSAR Address (StatusType) returnValue
ModifyPeripheral$§ AUTOSAR Address (StatusType) returnValue
ModifyPeripherall6 AUTOSAR Address (StatusType) returnValue
ModifyPeripheral32 AUTOSAR Address (StatusType) returnValue
EnableInterruptSource | AUTOSAR ISRID (StatusType) returnValue
DisableInterrupt-— AUTOSAR ISRID (StatusType) returnValue
Source
ClearPendingInterrupt | AUTOSAR ISRID (StatusType) returnValue
ActivateTaskAsyn AUTOSAR id 0

AUTSSAR

A
OS Service Call From eventParameter on Start on Return
SetEventAsyn AUTOSAR id 0
isOsStarted AUTOSAR 0 (boolean) returnValue

Table 7.13: Parameter details for AR_CP_OS_SERVICECALLS

If the eventParameter of a returning service call is not of type StatusType, and if the
service call does not return E_OK, the hook shall be called with a non-valid value as
eventParameter, to give the hook consuming tool the possibility to detect the failure of
the call.

7.17.5 Class AR_CP_OS_SPINLOCK

[SWS_Os_00845]
Upstream requirements: RS_Arti_00033

[The OS shall create events of class AR_CP_OS_SPINLOCK to allow tracing of OS
spinlocks and all state transistions within the OS. |

These macros mark an event of an actual state change, not the OS service call. (E.g.
getting a spinlock may happen later than requesting it; a request to release may not
cause a release if it is already released.)

Ty Release
| \\r , “-H"‘k
i Locked - Released
Get Get Release

Figure 7.38: ARTI spin lock states

[SWS_Os_00846]

Upstream requirements: RS_ARTIFO_00015
[ARTI macros of the class AR_CP_OS_SPINLOCK shall compile the following tem-
plate:

1 ARTI_TRACE (_contextName, AR_CP_OS_SPINLOCK, <OS Short Name>, <Core
Index>, <_eventName>, <eventParameter>)

AUTSSAR

The <Core Index> for any event in the following table shall represent the core id where
the corresponding service call is called.

The following events are part of the class AR_CP_0OS_SPINLOCK:

Event description State transition _eventName eventParameter
Locking Spinlock Released -> Locked OsSpinlock_Locked Spinlockld
Releasing Spinlock Locked -> Released OsSpinlock_Released Spinlockld

Table 7.14: Events for spinlocks

7.17.6 Class AR_CP_OS_HOOK

[SWS_Os_00856]
Upstream requirements: RS_Arti_00034

[The OS shall create events of class AR_CP_OS_HOOK when entering and exiting
the hook function. |

[SWS_Os 00857]
Upstream requirements: RS_Arti_00034, RS_ARTIFO_00015
[ARTI macros of the class AR_CP_OS_HOOK shall compile the following template:

1 ARTI_TRACE (_contextName, AR_CP_OS_HOOK, <0OS Short Name>, <Core Index>,
<eventName>, <eventParameter>)

]

The <Core Index> for any event in the following table shall represent the core id on
which the corresponding hook function is executed.

The <eventName> is a string literal composed of the prefix OsHook, the hook
function name and _Start or _Return for the entry or exit of the hook function.
E.g. when the ErrorHook is called, the event names on entry and exit are Os-
Hook_ErrorHook_Start respectively OsHook_ErrorHook_Return.

The <eventParamter> is an uint32 representation of either the function parameter
or the return value. It depends on the hook function and is listed in the following table:

OS hook function Origin eventParameter on Start eventParameter on Return
ErrorHook OSEK Error 0

ErrorHook_<App> AUTOSAR Error 0

PostTaskHook OSEK 0 0

PreTaskHook OSEK 0 0

ProtectionHook AUTOSAR Fatalerror ReturnValue

StartupHook OSEK 0 0

StartupHook_<App> AUTOSAR 0 0

AUTSSAR

A
OS hook function Origin eventParameter on Start eventParameter on Return
ShutdownHook OSEK Error 0
ShurtdownHook_<App> AUTOSAR Fatalerror 0

Table 7.15: Parameters for hook functions

The ARTI hook which indicates the exit of the ProtectionHook (.. eventName
is OsHook_ProtectionHook_Return) shall be invoked after the OS has checked
the Returnvalue of the ProtectionHook (based on the requirements described in
chapter 7.8.2., for example [SWS_Os_00506] or [SWS_Os_00475]). The eventPa-
rameter of this ARTI hook shall reflect the action which is taken by the OS as a result
of the return value of the ProtectionHook.

AUTSSAR

8 API specification

This chapter contains the APIs offered by the operating system. Note that not all
services are available in all scalability classes, and that the behavior of some ser-
vices is extended for specific scalability classes. For example, API to relatively start a
ScheduleTable has an additional check if the ScheduleTable allows implicit syn-
chronization. This check is only performed in SC2 and SC4 where synchronization of
ScheduleTables is supported.

8.1 Constants
8.1.1 Error codes of type StatusType
The following constants are available in a multi-core environment.

[SWS_Os_91007] Definition of datatype AppModeType
Upstream requirements: SRS_Os_11001

[
Name AppModeType
Kind Enumeration
Range DONOTCARE - -
Description AppMode of the core shall be inherited from another core.
Available via Os.h

]

[SWS_Os_91002] Definition of datatype TotalNumberOfCores
Upstream requirements: SRS_Os_80011

[
Name TotalNumberOfCores
Kind Type
Derived from scalar
Range 1..65535 - -
Description The total number of cores
Available via Os.h
]

[SWS_Os_00873] Additional task state
Upstream requirements: SRS_Os_13000

[The AUTOSAR OS shall provide the symbol BUDGET_EXHAUSTED as additional task
state if there is at least one Task configured with OsTaskTimingProtectionDe-
ferrableServer=TRUE. |

Additional constants are in section 7.15 and [2].

AUTSSAR

8.2 Macros

OSMEMORY_IS_READABLE (<AccessType>)
OSMEMORY_IS_WRITEABLE (<AccessType>)
OSMEMORY_IS_EXECUTABLE (<AccessType>)
OSMEMORY_IS_STACKSPACE (<AccessType>)

These macros return a value not equal to zero if the memory is readable / writable
/ executable or stack space. The argument of the macros must be of type Ac-
cessType. lypically the return value of the service CheckTaskMemoryAccess (Or
CheckISRMemoryAccess) is used as argument for these macros.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

[SWS_Os_00772] Definition of datatype ApplicationType
Upstream requirements: SRS_Os_11001

[
Name ApplicationType
Kind Type
Derived from uint32
Range INVALID_OSAPPLICATION | — -
Description This data type identifies the OS-Application.
Available via Os.h
|

[SWS_Os 00826]
Upstream requirements: SRS_Os_80005

[The range of valid OS-Applications described by ApplicationType shall be zero-
based and consecutive. The value shall be defined by the EcucPartitionld of the Ecuc-
Partition referenced by the OS-Application. The Value of INVALID_OSAPPLICATION
shall lie outside the range of valid OS-Application IDs. |

Note: The OS may use other representations internally for a performance optimal im-
plementation.

[SWS_Os_ CONSTR_00001]
Upstream requirements: SRS_Os_80005
[The relationship between OsApplication and EcucPartition is supposed to be unique.

This means that an EcucPartition must not be referenced by multiple OsAppEcucPar-
titionRefs. |

AUTSSAR

[SWS_Os_CONSTR_00002]
Upstream requirements: SRS_Os_80005

[EcucPartitionlds shall be unique, zero based and consecutive. |

8.3.2 ApplicationStateType

[SWS_Os_00773] Definition of datatype ApplicationStateType
Upstream requirements: SRS_Os_11001

Name ApplicationState Type

Kind Type

Derived from scalar

Range APPLICATION_ - -
ACCESSIBLE
APPLICATION_ - -
TERMINATED

Description This data type identifies the state of an OS-Application.

Available via Os.h

8.3.3 ApplicationStateRefType

[SWS_Os_00774] Definition of datatype ApplicationStateRefType
Upstream requirements: SRS_Os_ 11001

Name ApplicationStateRefType

Kind Type

Derived from pointer

Description This data type points to location where a ApplicationStateType can be stored.
Available via Os.h

AUTSSAR

8.3.4 TrustedFunctionIndexType

[SWS_Os_00775] Definition of datatype TrustedFunctionindexType
Upstream requirements: SRS_Os_11001

Name TrustedFunctionindexType

Kind Type

Derived from scalar

Description This data type identifies a trusted function.
Available via Os.h

8.3.5 TrustedFunctionParameterRefType

[SWS_Os_00776] Definition of datatype TrustedFunctionParameterRefType
Upstream requirements: SRS_Os_11001

Name TrustedFunctionParameterRefType

Kind Type

Derived from pointer

Description This data type points to a structure which holds the arguments for a call to a trusted function.
Available via Os.h

8.3.6 AccessType

[SWS_Os_00777] Definition of datatype AccessType
Upstream requirements: SRS_Os_11001

Name AccessType

Kind Type

Derived from integral

Description This type holds information how a specific memory region can be accessed.
Available via Os.h

AUTSSAR

8.3.7 ObjectAccessType

[SWS_Os_00778] Definition of datatype ObjectAccessType
Upstream requirements: SRS_Os_11001

Name ObjectAccessType

Kind Type

Derived from implementation_specific

Range ACCESS - -
NO_ACCESS - -

Description This data type identifies if an OS-Application has access to an object.

Available via Os.h

8.3.8 ObjectTypeType

[SWS_Os_00779] Definition of datatype ObjectTypeType
Upstream requirements: SRS_Os_11001

Name ObjectTypeType

Kind Type

Derived from implementation_specific

Range OBJECT_TASK - -
OBJECT_ISR - -

OBJECT_ALARM - -

OBJECT_RESOURCE - -

OBJECT_COUNTER - -

OBJECT_ - -
SCHEDULETABLE

Description This data type identifies an object.

Available via Os.h

AUTSSAR

8.3.9 MemoryStartAddressType

[SWS_Os_00780] Definition of datatype MemoryStartAddressType
Upstream requirements: SRS_Os_11001

Name MemoryStartAddressType

Kind Pointer

Type void*

Description This data type is a pointer which is able to point to any location in the MCU address space.
Available via Os.h

8.3.10 MemorySizeType

[SWS_Os_00781] Definition of datatype MemorySizeType
Upstream requirements: SRS_Os_11001

Name MemorySizeType

Kind Type

Derived from implementation_specific

Description This data type holds the size (in bytes) of a memory region.
Available via Os.h

8.3.11 ISRType

[SWS_Os_00782] Definition of datatype ISRType |

Name ISRType

Kind Type

Derived from implementation_specific

Range INVALID_ISR - -
Description This data type identifies an interrupt service routine (ISR).
Available via Os.h

AUTSSAR

8.3.12 ScheduleTableType

[SWS_Os_00783] Definition of datatype ScheduleTableType
Upstream requirements: SRS_Os_ 00098

Name ScheduleTableType

Kind Type

Derived from implementation_specific

Description This data type identifies a schedule table.
Available via Os.h

8.3.13 ScheduleTableStatusType

[SWS_Os_00784] Definition of datatype ScheduleTableStatusType
Upstream requirements: SRS_Os_00098

Name

ScheduleTableStatusType

Kind

Type

Derived from

implementation_specific

Range

SCHEDULETABLE_ - -
STOPPED

SCHEDULETABLE_NEXT - -

SCHEDULETABLE_ - -
WAITING

SCHEDULETABLE_ - -
RUNNING

SCHEDULETABLE _ _ _
RUNNING_AND_
SYNCHRONOUS

Description

This type describes the status of a schedule. The status can be one of the following:
» The schedule table is not started (SCHEDULETABLE_STOPPED)

» The schedule table will be started after the end of currently running schedule table (schedule
table was used in NextScheduleTable() service) (SCHEDULETABLE_NEXT)

» The schedule table uses explicit synchronization, has been started and is waiting for the global
time. (SCHEDULETABLE_WAITING)

« The schedule table is running, but is currently not synchronous to a global time source
(SCHEDULETABLE_RUNNING)

» The schedule table is running and is synchronous to a global time source (SCHEDULETABLE_
RUNNING_AND_SYNCHRONOUS)

Available via

Os.h

AUTSSAR

8.3.14 ScheduleTableStatusRefType

[SWS_Os_00785] Definition of datatype ScheduleTableStatusRefType
Upstream requirements: SRS_Os_ 00098

Name ScheduleTableStatusRefType

Kind Pointer

Type ScheduleTableStatusType*

Description This data type points to a variable of the data type ScheduleTableStatusType.

Available via

Os.h

8.3.15 ProtectionReturnType

[SWS_Os_00787] Definition of datatype ProtectionReturnType
Upstream requirements: SRS_Os_11001

Name ProtectionReturnType

Kind Type

Derived from implementation_specific

Range PRO_IGNORE - -
PRO_TERMINATETASKISR | — -
PRO_TERMINATEAPPL - -
PRO_SHUTDOWN - -
PRO_PREVENT_ - -
ARRIVAL_RATE

Description This data type identifies a value which controls further actions of the OS on return from the

protection hook.

Available via

Os.h

8.3.16 RestartType

[SWS_Os_00788] Definition of datatype RestartType
Upstream requirements: SRS_Os_11001

Name RestartType
Kind Type
Derived from implementation_specific

AUTSSAR

A
Range OS_OSAPPLICATION - —
RESTART
OS_OSAPPLICATION_NO_ | — -
RESTART
Description This data type defines the use of a Restart Task after terminating an OS-Application.
Available via Os.h

8.3.17 PhysicalTimeType

[SWS_Os_00789] Definition of datatype PhysicalTimeType |

Name PhysicalTimeType

Kind Type

Derived from implementation_specific

Description This data type is used for values returned by the conversion macro (see [SWS_Os_00393]) OS_
TICKS2<Unit>_<Counter>().

Available via Os.h

8.3.18 CoreIdType

[SWS_Os_00790] Definition of datatype CoreldType
Upstream requirements: SRS_Os_80011

Name CoreldType

Kind Type

Derived from scalar

Range OS_CORE_ID_MASTER - refers to the master core, may be

an alias for OS_CORE_ID_<x>

OS_CORE_ID_0..0S - refers to logical core 0, core 1 etc.
CORE_ID_65533

Description CoreldType is a scalar that allows identifying a single core. The CoreldType shall represent the
logical CorelD

Available via Os.h

]

[SWS_Os_00825]
Upstream requirements: SRS_Os_80011

[The range of valid Core-IDs described by Core1dType shall be zero-based and con-
secutive. |

AUTSSAR

8.3.19 SpinlockIdType

[SWS_Os_00791] Definition of datatype SpinlockldType
Upstream requirements: SRS_Os_80021

Name SpinlockldType
Kind Type
Derived from scalar
Range 1..65535 - 0x01, 0x02, ...: identifies a
spinlock instance
INVALID_SPINLOCK 0 represents an invalid spinlock
instance
Description SpinlockldType identifies a spinlock instance and is used by the API functions: GetSpinlock,
ReleaseSpinlock and TryToGetSpinlock.
Available via Os.h

8.3.20 TryToGetSpinlockType

[SWS_Os_00792] Definition of datatype TryToGetSpinlockType
Upstream requirements: SRS_Os_80021

Name TryToGetSpinlockType

Kind Enumeration

Range TRYTOGETSPINLOCK _ - Spinlock successfully occupied
SUCCESS
TRYTOGETSPINLOCK_ - Unable to occupy the spinlock
NOSUCCESS

Description The TryToGetSpinlockType indicates if the spinlock has been occupied or not.

Available via Os.h

8.3.21 ArealIdType

[SWS_Os_91000] Definition of datatype ArealdType
Upstream requirements: SRS_Os_11001

[

Name ArealdType
Kind Type
Derived from scalar

AUTSSAR

A

Range 0..65534 | - identifies a peripheral area

Description ArealdType identifies a peripheral area and is used by the API functions: ReadPeripheralX, Write
PeripheralX and ModifyPeripheralX

Available via Os.h

8.3.22 cCounterType

[SWS_Os_00786] Definition of datatype CounterType |

Name CounterType

Kind Type

Derived from uint32

Description This data type identifies a counter.
Available via Os.h

8.4 Function definitions

The availability of the following services is defined in table [SWS_Os_00241]. The use
of these services may be restricted depending on the context they are called from. See
table 7.1 for details.

8.4.1 GetApplicationID

[SWS_Os_00016] Definition of API function GetApplicationlD
Upstream requirements: SRS_Os_11001

[

Service Name GetApplicationIlD
Syntax ApplicationType GetApplicationID (
void
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value ApplicationType <identifier of running OS-Application> or
INVALID_OSAPPLICATION

V

AUTSSAR

A
Description This service determines the OS-Application (a unique identifier has to be allocated to each
application) where the caller originally belongs to (was configured to).
Available via Os.h

[SWS_Os_00261]

Upstream requirements: SRS_Os_11001
[GetApplicationID shall return the application identifier to which the executing
Task/Cat2 Isr/hook was configured. |

This means that the return value of GetApplicationID, when called from a category
1 ISR, is undefined.

[SWS_Os_00262]

Upstream requirements: SRS_Os_11001
[If no OS-Application is running, GetApplicationID shall return INVALID_OSAP-
PLICATION.]

[SWS_Os 00514]
Upstream requirements: SRS_Os_11016

[Availability of GetApplicationID: Available in Scalability Classes 3 and 4 and in
multi-core systems. |

8.4.2 GetCurrentApplicationID

[SWS_Os_00797] Definition of API function GetCurrentApplicationlD
Upstream requirements: SRS_Os_11001

[
Service Name GetCurrentApplicationID
Syntax ApplicationType GetCurrentApplicationID (
void
)
Service ID [hex] 0x27
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value ApplicationType ‘ <identifier of the OS-Application> or INVALID_OSAPPLICATION

V

AUTSSAR

A
Description This service determines the OS-Application where the caller of the service is currently
executing. Note that if the caller is not within a CallTrustedFunction() call the value is equal to
the result of GetApplicationID().
Available via Os.h

]

[SWS_Os_00798]

Upstream requirements: SRS_Os_11001
[GetCurrentApplicationID shall return the application identifier in which the cur-
rent Task/Cat2 ISRrR/hook is executed. |

This means that the return value of GetCurrentApplicationID, when called from
a category 1 ISR, is undefined.

[SWS_Os_00799]

Upstream requirements: SRS_Os_11001
[If no OS-Application is running, GetCurrentApplicationID shall return IN-
VALID_OSAPPLICATION.|

[SWS_Os 00800]
Upstream requirements: SRS_Os_11016

[Availability of GetCurrentApplicationID: Available in Scalability Classes 3 and
4.]

8.4.3 GetISRID

[SWS_Os_00511] Definition of API function GetISRID |

Service Name GetISRID
Syntax ISRType GetISRID (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value ISRType <ldentifier of running ISR> or
INVALID_ISR
Description This service returns the identifier of the currently executing ISR.
Available via Os.h

AUTSSAR

[SWS_Os_00263] [If called from category 2 1SR (or Hook routines called inside a
category 2 1SR), Get ISRID shall return the identifier of the currently executing ISR. |

[SWS_Os_00264] [If its caller is not a category 2 ISR (or Hook routines called inside
a category 2 ISR), Get ISRID shall return INVALID_ISR.|

[SWS_Os_00515]
Upstream requirements: SRS_Os_11016

[Availability of Get ISRID: Available in all Scalability Classes. |

8.4.4 CallTrustedFunction

[SWS_Os _00097] Definition of API function CallTrustedFunction
Upstream requirements: SRS_Os_11001

Service Name CallTrustedFunction
Syntax StatusType CallTrustedFunction (
TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Functionlndex Index of the function to be called.
FunctionParams Pointer to the parameters for the function - specified by the
Functionindex - to be called. If no parameters are provided, a
NULL_PTR has to be passed.
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_O0S_SERVICEID: No function defined for this index
Description A (trusted or non-trusted) OS-Application uses this service to call a trusted function
Available via Os.h

[SWS_Os _00265]
Upstream requirements: SRS_Os_11001

[If <FunctionIndex> is a defined function index, CallTrustedFunction shall call the
function <Functionlndex> out of a list of implementation specific trusted functions with
the protection settings of the OS-Application which provides the trusted function AND
shall return E_OK after completion. |

[SWS_Os 00312]
Upstream requirements: SRS_Os_11001

[Caveats of CallTrustedFunction:

AUTSSAR

» The called trusted function must conform to the following C prototype: void
TRUSTED_<name_of_the_trusted_service>(TrustedFunctionIndex
Type, TrustedFunctionParameterRefType); (The arguments are the
same as the arguments of Cal1TrustedFunction).

» Normally, a user will not directly call this service, but it will be part of some stan-
dard interface, e.g. a standard 1/O interface.

« It is the duty of the called trusted function to check rights of passed parameters,
especially if parameters are interpreted as out parameters.

* It should be noted that the Cal1TrustedFunction does not disable timing pro-
tection for the Task which called the service. This may lead to timing faults (calls
of the ProtectionHook) even inside of a trusted OS-Application. It is therefore
recommended to use CallTrustedFunction only for stateless functions (e.g.
functions which do not write or do not have internal states)

]

[SWS_Os_00266]
Upstream requirements: SRS_Os_11001

[When callTrustedFunction calls the function <Functionindex>, that function
shall be executed with the same processor mode, memory protection boundaries and
the service protection limitations of the OS-Application to which it belongs. The notion
of "current application" shall remain that of the calling Task or Category 2 IsR.]

Reaction to timing protection can be defined to terminate the OS-Application. If a
Task isinside CallTrustedFunction and Task rescheduling takes place within the
same OS-Application, the newly running higher priority Task may cause timing protec-
tion and terminate the OS-Application, thus indirectly aborting the trusted function. To
avoid this, the scheduling of other Tasks which belong to the same OS-Application as
the caller can be restricted, as well as the availability of interrupts of the same OS-
Application.

[SWS_0Os_00565] [When callTrustedFunction is called and the caller of cal11-
TrustedFunction is supervised with timing protection, the Operating System shall
delay any timing protection errors until the CallTrustedFunction returns to a

OsApplication with OsTrustedApplicationDelayTimingViolationCall ==
FALSE.

[SWS_Os_00563] [

If OsLockTrustedFunctionCall == TRUE the OperatingSystem shall not schedule
any other Tasks which belong to the same OS-Application as the non-trusted caller
of the service. Also interrupts of Category 2 which belong to the same OS-Application
shall be disabled during the execution of the service. |

AUTSSAR

The lock/disabling in [SWS_0Os_00563] is required to support timing supervision. Since
the caller of a trusted function can be any Task or Category 2 ISR the Operating System
has to make sure that no other calls can preempt/interrupt the ongoing trusted function.

[SWS_Os_00364]
Upstream requirements: SRS_Os_11001

[If callTrustedFunction calls the trusted function, that function shall continue to
run on the same interrupt/task priority and be allowed to call system services defined
for inside trusted functions. |

See also table in chapter 7.7.3.3.

[SWS_Os_00292]
Upstream requirements: SRS_BSW_00323

[If the function index <Functionindex> in a call of CallTrustedFunction is unde-
fined, CallTrustedFunction shall return E_0OS_SERVICEID.]

[SWS_Os_00516]
Upstream requirements: SRS_Os_11016

[Availability of CallTrustedFunction: Available in Scalability Classes 3 and 4. |

8.4.5 CheckISRMemoryAccess

[SWS_Os_00512] Definition of API function CheckISRMemoryAccess
Upstream requirements: SRS_Os_11001

Service Name ChecklISRMemoryAccess
Syntax AccessType CheckISRMemoryAccess (
ISRType ISRID,
MemoryStartAddressType Address,
MemorySizeType Size
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID ISR reference
Address Start of memory area
Size Size of memory area
Parameters (inout) None
Parameters (out) None
Return value AccessType | Value which contains the access rights to the memory area.
Description This service checks if a memory region is write/read/execute accessible and also returns
information if the memory region is part of the stack space.

Y%

AUTSSAR

| Available via Os.h

]

[SWS_Os 00267]
Upstream requirements: SRS_Os_11005

[If the 1SR reference <ISRID> in a call of CheckISRMemoryAccess is valid, Check-
ISRMemoryAccess shall return the access rights of the ISR on the specified memory
area. |

[SWS_Os 00313]
Upstream requirements: SRS_Os_11001

[If an access right (e.g. "read") is not valid for the whole memory area specified in
a call of CheckISRMemoryAccess, CheckISRMemoryAccess shall yield no access
regarding this right. |

[SWS_Os_00268]
Upstream requirements: SRS_BSW_00323
[If the ISR reference <ISRID> is not valid, CheckISRMemoryAccess shall yield no
access rights. |
[SWS_Os_00517]
Upstream requirements: SRS_Os_11016
[Availability of CheckISRMemoryAccess: Available in Scalability Classes 3 and 4. |

8.4.6 CheckTaskMemoryAccess

[SWS_Os_00513] Definition of API function CheckTaskMemoryAccess
Upstream requirements: SRS_Os_11001

Service Name CheckTaskMemoryAccess
Syntax AccessType CheckTaskMemoryAccess (
TaskType TaskID,
MemoryStartAddressType Address,
MemorySizeType Size
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) TaskID Task reference
Address Start of memory area

V

AUTSSAR

A
Size ‘ Size of memory area
Parameters (inout) None
Parameters (out) None
Return value AccessType | Value which contains the access rights to the memory area.
Description This service checks if a memory region is write/read/execute accessible and also returns
information if the memory region is part of the stack space.
Available via Os.h
]

[SWS_Os_00269]
Upstream requirements: SRS_Os_11005

[If the Task reference <TaskID> in a call of CheckTaskMemoryAccess is valid,
CheckTaskMemoryAccess shall return the access rights of the Task on the specified
memory area. |

[SWS_Os 00314]
Upstream requirements: SRS_Os_11001

[If an access right (e.g. "read") is not valid for the whole memory area specified in a
call of CheckTaskMemoryAccess, CheckTaskMemoryAccess shall yield no access
regarding this right. |

[SWS_Os_00270]
Upstream requirements: SRS_BSW_00323
[If the Task reference <TaskID> in a call of CheckTaskMemoryAccess is not valid,
CheckTaskMemoryAccess shall yield no access rights. |
[SWS_Os_00518]
Upstream requirements: SRS_Os_11016
[Availability of CheckTaskMemoryAccess: Available in Scalability Classes 3 and 4 |

AUTSSAR

8.4.7 CheckObjectAccess

[SWS_Os_00256] Definition of API function CheckObjectAccess
Upstream requirements: SRS_Os_11010

[

Service Name

CheckObjectAccess

Syntax ObjectAccessType CheckObjectAccess (
ApplicationType ApplID,
ObjectTypeType ObjectType,
void ...
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ApplID OS-Application identifier
ObjectType Type of the following parameter
The object to be examined
Parameters (inout) None
Parameters (out) None
Return value ObjectAccessType ACCESS if the ApplID has access to the object
NO_ACCESS otherwise

Description

This service determines if the OS-Applications, given by ApplID, is allowed to use the IDs of a
Task, Resource, Counter, Alarm or Schedule Table in API calls.

Available via

Os.h

]

[SWS_Os_00271]

Upstream requirements: SRS_Os_11001

[If the OS-Application <ApplID> in a call of CheckObjectAccess has access to the

queried object, CheckObjectAccess shall return ACCESS. |

[SWS_Os_00272]

Upstream requirements: SRS_Os_ 11001

[If the OS-Application <ApplID> in a call of CheckObjectAccess has no access to

the queried object, CheckObjectAccess shall return NO_ACCESS. |

[SWS_Os_00423]

Upstream requirements: SRS_Os_11001

[If in a call of CheckObjectAccess the object to be examined is not a valid object
OR <ApplID> is invalid OR <ObjectType> is invalid THEN CheckObjectAccess shall
return NO_ACCESS. |

[SWS_Os_00519]

Upstream requirements: SRS_Os_11016

[Availability of CheckObjectAccess: Available in Scalability Classes 3 and 4. |

AUTSSAR

8.4.8 CheckObjectOwnership

[SWS_Os_00017] Definition of API function CheckObjectOwnership
Upstream requirements: SRS_Os_11010

[

Service Name

CheckObjectOwnership

Syntax ApplicationType CheckObjectOwnership (
ObjectTypeType ObjectType,
void ...
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ObjectType Type of the following parameter
The object to be examined
Parameters (inout) None
Parameters (out) None
Return value ApplicationType <OS-Application>: the OS-Application to which the object Object
Type belongs or
INVALID_OSAPPLICATION if the object does not exists

Description

This service determines to which OS-Application a given Task, ISR, Counter, Alarm or
Schedule Table belongs

Available via

Os.h

]

[SWS_Os_00273]

Upstream requirements: SRS_Os_11001

[If the object <ObjectType> specified in a call of CheckObjectOwnership exists,
CheckObjectOwnership shall return the identifier of the OS-Application to which

the object belongs. |
[SWS_Os_00274]

Upstream requirements: SRS_BSW_00323

[If in a call of CheckObjectOwnership the specified object <ObjectType> is invalid
OR the argument of the type (the "...") is invalid OR the object does not belong to any
OS-Application, CheckObjectOwnership shall return INVALID_OSAPPLICATION. |

[SWS_Os_00520]

Upstream requirements: SRS_Os_11016

[Availability of CheckObjectOwnership: Available in Scalability Classes 3 and 4 and
in multi-core systems. |

AUTSSAR

8.4.9 StartScheduleTableRel

[SWS_ Os 00347] Definition of API function StartScheduleTableRel
Upstream requirements: SRS_Os_ 00098

[

Service Name StartScheduleTableRel
Syntax StatusType StartScheduleTableRel (
ScheduleTableType ScheduleTablelD,
TickType Offset
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be started
Offset Number of ticks on the counter before the the schedule table
processing is started
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_0S_1ID (only in EXTENDED status): ScheduleTablelD not valid.
E_0S_VALUE (only in EXTENDED status): Offset is greater than
(OsCounterMaxAllowedValue - InitialOffset) or is equal to 0.
E_OS_STATE: Schedule table was already started.
Description This service starts the processing of a schedule table at "Offset" relative to the "Now" value on
the underlying counter.
Available via Os.h

]

[SWS_Os_00275]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable <ScheduleTablelD> in a call of StartScheduleTableRel
is not valid, startScheduleTableRel shall return E_0OS_1ID. |

[SWS_Os_00452]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable <ScheduleTableID> in a call of StartScheduleTableRel
is implicitely synchronized (0OsScheduleTblSyncStrategy = [IMPLICIT),
StartScheduleTableRel shall return E_0S_1ID.]|

[SWS_Os_00332]
Upstream requirements: SRS_BSW_00323

[If <Offset> in a call of StartScheduleTableRel is zero StartSched-
uleTableRel shall return E_0OS_VALUE. |

AUTSSAR

[SWS_Os_00276]
Upstream requirements: SRS_BSW_00323

[If the offset <Offset>) is greater than OsCounterMaxAllowedvValue of the un-
derlying Counter minus the Initial Offset, StartScheduleTableRel shall return
E_OS_VALUE.]

[SWS_Os_00277]
Upstream requirements: SRS_BSW_00323

[Ifthe ScheduleTable <ScheduleTablelD>in acall of StartScheduleTableRel is
not in the state SCHEDULETABLE_STOPPED, StartScheduleTableRel shall return
E_OS_STATE.]

[SWS_Os 00278]
Upstream requirements: SRS_Os_00098

[If the input parameters of StartScheduleTableRel are valid and the state
of ScheduleTable <ScheduleTablelD> is SCHEDULETABLE_STOPPED, then
StartScheduleTableRel shall start the processing of a ScheduleTable <Sched-
uleTableID>. The Initial Expiry Point shall be processed after <Offset> + Initial Offset
ticks have elapsed on the underlying Counter. The state of <ScheduleTablelD> is set
to SCHEDULETABLE_RUNNING before the service returns to the caller. |

[SWS_Os_00521]
Upstream requirements: SRS_Os_11016

[Availability of StartScheduleTableRel: Available in all Scalability Classes. |

8.4.10 StartScheduleTableAbs

[SWS_Os_00358] Definition of API function StartScheduleTableAbs
Upstream requirements: SRS_Os_00098

[
Service Name StartScheduleTableAbs
Syntax StatusType StartScheduleTableAbs (
ScheduleTableType ScheduleTablelD,
TickType Start
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be started
Start Absolute counter tick value at which the schedule table is started
Parameters (inout) None

Y

AUTSSAR

A
Parameters (out) None
Return value StatusType E_OK: No Error
E_0S_ID (only in EXTENDED status): ScheduleTablelD not valid
E_OS_VALUE (only in EXTENDED status): "Start" is greater than
OsCounterMaxAllowedValue
E_OS_STATE: Schedule table was already started
Description This service starts the processing of a schedule table at an absolute value "Start" on the
underlying counter.
Available via Os.h

[SWS_Os_00348]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable <ScheduleTablelD> in a call of StartScheduleTablelbs
is not valid, StartScheduleTableAbs shall return E_0S_1ID. |

[SWS_Os _00349]
Upstream requirements: SRS_BSW_00323

[If the <Start>inacall of StartScheduleTableAbs is greater than the OsCounter-
MaxAllowedValue of the underlying Counter, StartScheduleTableAbs shall re-
turn E_OS_VALUE. |

[SWS_Os _00350]
Upstream requirements: SRS_BSW_00323

[Ifthe ScheduleTable <ScheduleTablelD>inacall of StartScheduleTableAbs is
not in the state SCHEDULETABLE_STOPPED, StartScheduleTableAbs shall return
E_OS_STATE. |

[SWS_Os 00351]
Upstream requirements: SRS_Os_00098

[If the input parameters of StartScheduleTableAbs are valid and <ScheduleTable
ID> is in the state SCHEDULETABLE_STOPPED, StartScheduleTableAbs shall start
the processing of ScheduleTable <ScheduleTablelD> when the underlying Counter
next equals <Start> and shall set the state of <ScheduleTablelD> to

- SCHEDULETABLE_RUNNING (for a non-synchronized / Explicitly synchronized
ScheduleTable) OR

- SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (for implicitly synchronized
ScheduleTable)

before returning to the user. (The Initial Expiry Point will be processed when the un-
derlying Counter next equals <Start>+Initial Offset). |

[SWS_Os_00522]
Upstream requirements: SRS_Os_11016

[Availability of StartScheduleTableAbs: Available in all Scalability Classes. |

AUTSSAR

8.4.11 StopScheduleTable

[SWS_Os_00006] Definition of API function StopScheduleTable
Upstream requirements: SRS_Os_ 00098

Service Name StopScheduleTable
Syntax StatusType StopScheduleTable (
ScheduleTableType ScheduleTableID
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be stopped
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_0S_1ID (only in EXTENDED status): ScheduleTablelD not valid.
E_OS_NOFUNC: Schedule table was already stopped
Description This service cancels the processing of a schedule table immediately at any point while the
schedule table is running.
Available via Os.h

[SWS_Os_00279]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable identifier <ScheduleTableID> in a call of StopSched-
uleTable is not valid, StopScheduleTable shall return E_0S_1D.]

[SWS_Os_00280]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable with identifier <ScheduleTableID> is in state SCHED-
ULETABLE_STOPPED when calling StopScheduleTable, StopScheduleTable
shall return E_0S_NOFUNC. |

[SWS_Os 00281]
Upstream requirements: SRS_Os_00098

[If the input parameters of StopScheduleTable are valid, StopSched-
uleTableshall set the state of <ScheduleTablelD> to SCHEDULETABLE_STOPPED
and (stop the scheduleTable <ScheduleTablelD> from processing any further ex-
piry points and) shall return E_OX. |

[SWS_Os_00523]
Upstream requirements: SRS_Os_11016

[Availability of stopScheduleTable: Available in all Scalability Classes. |

AUTSSAR

8.4.12 NextScheduleTable

[SWS_Os_00191] Definition of API function NextScheduleTable
Upstream requirements: SRS_Os_ 00099

[

Service Name NextScheduleTable
Syntax StatusType NextScheduleTable (
ScheduleTableType ScheduleTableID_From,
ScheduleTableType ScheduleTableID_To
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD_From Currently processed schedule table
ScheduleTablelD_To Schedule table that provides its series of expiry points

Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No error

E_0S_1ID (only in EXTENDED status): ScheduleTablelD_From or

ScheduleTablelD_To

not valid

E_OS_NOFUNC: ScheduleTablelD_From not started

E_0S_STATE: ScheduleTablelD_To is started or next
Description This service switches the processing from one schedule table to another schedule table.
Available via Os.h

]

[SWS_Os_00282]
Upstream requirements: SRS_BSW_00323

[If the input parameter <ScheduleTablelD_From> or <ScheduleTablelD_To> in a call
of Next ScheduleTable is not valid, Next ScheduleTable shall return E_0S_1D. |

[SWS_Os _00330]
Upstream requirements: SRS_BSW_00323

[If in a call of NextScheduleTable ScheduleTable <ScheduleTablelD_To> is
driven by different Counter than ScheduleTable <ScheduleTablelD From> then
NextScheduleTable shall return an error E_0OS_1ID. |

[SWS_Os _00283]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable <ScheduleTablelD_Froms in a call of Next ScheduleTable
is in state SCHEDULETABLE_STOPPED OR in state SCHEDULETABLE_NEXT,
NextScheduleTable shall leave the state of <ScheduleTable From> and <Sched-
uleTable_To> unchanged and return E_0S_NOFUNC. |

AUTSSAR

[SWS_Os_00309]
Upstream requirements: SRS_BSW_00323

[If the ScheduleTable <ScheduleTablelD_To> in a call of NextScheduleTable
is not in state SCHEDULETABLE_STOPPED, NextScheduleTable shall leave the
state of <ScheduleTable_From> and <ScheduleTable_To> unchanged and return
E_OS_STATE.]

[SWS_Os_00484]
Upstream requirements: SRS_BSW_00323

[If OsScheduleTblSyncStrategy of <ScheduleTablelD_To> in a call of
NextScheduleTable is not equal to the OsScheduleTblSyncStrategy oOf
<ScheduleTablelD_From> then Next ScheduleTable shall return E_0S_1ID. |

[SWS_Os_00284]
Upstream requirements: SRS_Os_00099

[If the input parameters of NextScheduleTable are valid then NextSched-
uleTable shall start the processing of ScheduleTable <ScheduleTablelD_To>
<ScheduleTablelD_Froms>.FinalDelay ticks after the Final Expiry Point on <Sched-
uleTablelD_From> is processed and shall return E_OK. NextScheduleTable shall
process the Initial Expiry Point on <ScheduleTablelD To> at <ScheduleTablelD
From>.Final Delay + <ScheduleTable_To>.Initial Offset ticks after the Final Expiry Point
on <ScheduleTableID_From> is processed . |

[SWS_Os 00324]
Upstream requirements: SRS_Os_00099

[If the input parameters of NextScheduleTable are valid AND the <ScheduleTa-
blelID_From> already has a "next" ScheduleTable then NextScheduleTableshall
replace the previous "next" ScheduleTable with <ScheduleTablelD_To> and shall
change the old "next" ScheduleTable state to SCHEDULETABLE_STOPPED. |

[SWS_Os_00505]
Upstream requirements: SRS_Os_11002

[If OsScheduleTblSyncStrategy of the ScheduleTables <ScheduleTablelD_
From> and <ScheduleTablelD_To> in a call of NextScheduleTable is EXPLICIT
and the Operating System module already synchronizes <ScheduleTableID_From>,
NextScheduleTable shall continue synchonization after the start of processing
<ScheduleTablelD_To>. |

[SWS_Os_00453]
Upstream requirements: SRS_Os_00099
[If the <ScheduleTablelD_From> in a call of NextScheduleTable is stopped,

NextScheduleTable shall not start the "next" ScheduleTable and change its state
to SCHEDULETABLE_STOPPED. |

AUTSSAR

[SWS_Os _00524]
Upstream requirements: SRS_Os_11016

[Availability of Next ScheduleTable: Available in all Scalability Classes. |

8.4.13 sStartScheduleTableSynchron

[SWS_Os_00201] Definition of API function StartScheduleTableSynchron
Upstream requirements: SRS_Os_11002

[
Service Name StartScheduleTableSynchron
Syntax StatusType StartScheduleTableSynchron (
ScheduleTableType ScheduleTableID
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be started
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_0S_1ID (only in EXTENDED status): ScheduleTablelD not valid
E_OS_STATE: Schedule table was already started
Description This service starts an explicitly synchronized schedule table synchronously.
Available via Os.h
]

[SWS_Os_00387]
Upstream requirements: SRS_BSW_00323

[If in a call of startScheduleTableSynchron the ScheduleTable <Schedule
TablelD> is not valid OR the ScheduleTable <ScheduleTablelD> is not explicitly
synchronized (OsScheduleTblSyncStrategy !|= EXPLICIT) StartScheduleTa-
bleSynchron shall return E_0S_1ID. |

[SWS_Os_00388]
Upstream requirements: SRS_BSW_00323
[If the ScheduleTable <ScheduleTablelD> in a call of StartScheduleTableSyn-

chron is not in the state SCHEDULETABLE_STOPPED, StartScheduleTableSyn—
chron shall return E_OS_STATE. |

[SWS_Os_00389]
Upstream requirements: SRS_Os_11002
[If <ScheduleTablelD> in a call of StartScheduleTableSynchron is valid,

StartScheduleTableSynchron shall set the state of <ScheduleTablelD> to
SCHEDULETABLE_WAITING and start the processing of ScheduleTable <Schedule

AUTSSAR

TableID> after the synchronization count of the ScheduleTable is set via Sync-
ScheduleTable. The Initial Expiry Point shall be processed when (Duration-Sync
Value)+InitialOffset ticks have elapsed on the synchronization Counter where:

 Duration is <ScheduleTablelD>.0sScheduleTableDuration
» SyncValue is the <Value> parameter passed to the SyncScheduleTable

« InitialOffset is the shortest expiry point offset in <ScheduleTablelD>

]

[SWS_Os 00525]
Upstream requirements: SRS_Os_11016

[Availability of StartScheduleTableSynchron: Available in Scalability Classes 2
and 4. |

8.4.14 sSyncScheduleTable

[SWS_Os_00199] Definition of API function SyncScheduleTable
Upstream requirements: SRS_Os_11002

[

Service Name SyncScheduleTable
Syntax StatusType SyncScheduleTable (
ScheduleTableType ScheduleTablelD,
TickType Value
)
Service ID [hex] 0x0c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be synchronized
Value The current value of the synchronization counter
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No errors
E_0S_1D (only in EXTENDED status): The ScheduleTablelD was
not valid or schedule
table can not be synchronized (OsScheduleTbISyncStrategy not
set or
OsScheduleTbISyncStrategy = IMPLICIT)
E_OS_VALUE (only in EXETENDED status): The <Value> is out
of range
E_OS_STATE: The state of schedule table <ScheduleTablelD> is
equal to
SCHEDULETABLE_STOPPED
Description This service provides the schedule table with a synchronization count and start synchronization.
Available via Os.h

AUTSSAR

[SWS_Os_00454]
Upstream requirements: SRS_BSW_00323

[If the <ScheduleTablelD> in a call of SyncScheduleTable is not valid OR Sched-
uleTable can not be explicitely synchronized (OsScheduleTblSyncStrategy is
not equal to EXPLICIT) SyncScheduleTable shall return E_0S_1ID. |

[SWS_Os_00455]

Upstream requirements: SRS_BSW_00323
[If the <Value> in a call of SyncScheduleTable is greater or equal than the 0ss-
cheduleTableDuration, SyncScheduleTable shall return E_0OS_VALUE. |

[SWS_Os_00456]
Upstream requirements: SRS_BSW_00323

[If the state of the ScheduleTable <ScheduleTablelD> in a call of SyncSched-
uleTable is equal to SCHEDULETABLE_STOPPED Of SCHEDULETABLE_NEXT Sync-
ScheduleTable shall return E_0OS_STATE. |

[SWS_Os_00457]
Upstream requirements: SRS_Os_11002

[If the parameters in a call of SyncScheduleTable are valid, SyncScheduleTable
shall provide the Operating System module with the current synchronization count for
the given ScheduleTable. (Itis used to synchronize the processing of the Schedule
Table to the synchronization Counter.)]

[SWS_Os 00526]
Upstream requirements: SRS_Os_11016

[Availability of SsyncScheduleTable: Available in Scalability Classes 2 and 4. |

8.4.15 SetScheduleTableAsync

[SWS_Os_00422] Definition of API function SetScheduleTableAsync
Upstream requirements: SRS_Os_ 11002

Service Name SetScheduleTableAsync
Syntax StatusType SetScheduleTableAsync (
ScheduleTableType ScheduleTableID
)
Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Reentrant

AUTSSAR

A
Parameters (in) ScheduleTablelD | Schedule table for which status is requested
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_0S_1D (only in EXTENDED status): Invalid ScheduleTablelD
Description This service stops synchronization of a schedule table.
Available via Os.h
]

[SWS_Os_00362]
Upstream requirements: SRS_Os_11002

[If SetScheduleTableAsync is called for a running SscheduleTable, the Operating
System module shall stop further synchronization until a SyncScheduleTable call is
made. |

[SWS_Os_00323]
Upstream requirements: SRS_Os_11002

[If SetScheduleTableAsync is called for a running ScheduleTable the Operating
System module shall continue to process expiry points on the ScheduleTable.]

[SWS_Os_00458]
Upstream requirements: SRS_BSW_00323
[If OsScheduleTblSyncStrategy of <ScheduleTablelD> in a call of SetSched-

uleTableAsync is not equal to EXPLICIT OR if <ScheduleTablelD> is invalid then
SetScheduleTableAsync shall return E_0OS_1D.]

[SWS_Os_00483]
Upstream requirements: SRS_BSW_00323
[If the current state of the <ScheduleTablelD> in a call of Set ScheduleTableAsync

equals to SCHEDULETABLE_STOPPED, SCHEDULETABLE_NEXT Or SCHEDULETABLE _
WAITING then setScheduleTableAsync shall return E_OS_STATE. |

[SWS_Os_00300]
Upstream requirements: SRS_Os_11002

[If the current state of <ScheduleTableID> in a «call of sSetSched-
uleTableAsync equals SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (or
SCHEDULETABLE_RUNNING) then SsetScheduleTableAsync shall set (or keep in
case of SCHEDULETABLE_RUNNING) the status of <ScheduleTablelD> to SCHED-
ULETABLE_RUNNING. |

[SWS_Os_00527]
Upstream requirements: SRS_Os_11016

[Availability of setScheduleTableAsync: Available in Scalability Classes 2 and 4. |

AUTSSAR

8.4.16 GetScheduleTableStatus

[SWS_Os_00227] Definition of API function GetScheduleTableStatus
Upstream requirements: SRS_Os_11002

[
Service Name GetScheduleTableStatus
Syntax StatusType GetScheduleTableStatus (
ScheduleTableType ScheduleTablelD,
ScheduleTableStatusRefType ScheduleStatus
)
Service ID [hex] 0x0e
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table for which status is requested
Parameters (inout) None
Parameters (out) ScheduleStatus Reference to ScheduleTableStatusType
Return value StatusType E_OK: No Error
E_0S_ID (only in EXTENDED status): Invalid ScheduleTablelD
Description This service queries the state of a schedule table (also with respect to synchronization).
Available via Os.h
]

[SWS_Os_00289]
Upstream requirements: SRS_Os_00098

[If the ScheduleTable <ScheduleTablelD> in a call of GetScheduleTableSta-
tus is NOT started, GetScheduleTableStatus shall pass back SCHED-
ULETABLE_STOPPED via the reference parameter <ScheduleStatus> AND shall return
E_OK. |

[SWS_Os_00353]
Upstream requirements: SRS_Os_00098

[If the ScheduleTable <ScheduleTablelD> in a call of Get ScheduleTableStatus
was used in a Next ScheduleTable call AND waits for the end of the current Sched-
uleTable, GetScheduleTableStatus shall return SCHEDULETABLE_NEXT via the
reference parameter <ScheduleStatus> AND shall return E_OK. |

[SWS_Os_00354]
Upstream requirements: SRS_Os_ 11002

[If the ScheduleTable <ScheduleTablelD> in a call of GetScheduleTableSta-
tus is configured with explicit synchronization AND <ScheduleTablelD> was started
with startScheduleTableSynchronAND no synchronization count was provided to
the Operating System, GetScheduleTableStatus shall return SCHEDULETABLE _
WAITING via the reference parameter <ScheduleStatus> AND shall return £_OX. |

AUTSSAR

[SWS_Os_00290]
Upstream requirements: SRS_Os_11002

[If the ScheduleTable <ScheduleTablelD> in a call of Get ScheduleTableStatus
is started AND synchronous, GetScheduleTableStatus shall pass back SCHED-
ULETABLE_RUNNING_AND_SYNCHRONOUS via the reference parameter <Schedule
Status> AND shall return £_OK. |

[SWS_Os_00291]
Upstream requirements: SRS_Os_00098

[If the ScheduleTable <ScheduleTablelD> in a call of GetScheduleTableSta-
tus is started AND NOT synchronous (deviation is not within the precision interval
OR the scheduleTable has been set asynchronous), Get ScheduleTableStatus
shall pass back SCHEDULETABLE_RUNNING via the reference parameter Schedule
Status AND shall return E_OK. |

[SWS_Os_00293]
Upstream requirements: SRS_BSW_00323

[If the identifier <ScheduleTablelD> in a call of GetScheduleTableStatus is NOT
valid, Get ScheduleTableStatus shall return E_0S_1ID. |

[SWS_Os_00528]
Upstream requirements: SRS_Os_11016

[Availability of Get ScheduleTableStatus: Available in all Scalability Classes. |

8.4.17 IncrementCounter

[SWS_Os_00399] Definition of API function IncrementCounter |

Service Name

IncrementCounter

Syntax StatusType IncrementCounter (
CounterType CounterID
)

Service ID [hex] 0xOf

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) CounterlD The Counter to be incremented
Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK: No errors

E_0S_1D (only in EXTENDED status): The CounterID was not
valid or counter is implemented in hardware and can not be
incremented by software

Description

This service increments a software counter.

Available via

Os.h

AUTSSAR

[SWS_Os_00285]
Upstream requirements: SRS_BSW_00323

[If the input parameter <CounterlID> in a call of IncrementCounter is not valid OR
the Counter is a hardware Counter, IncrementCounter shall return E_0S_1D. |

[SWS_Os_00286]
Upstream requirements: SRS_Os_11020

[If the input parameter of IncrementCounter is valid, IncrementCounter shall
increment the Counter <CounterlID> by one (if any alarm connected to this Counter
expires, the given action, e.g. Task activation, is done) and shall return E_OX. |

[SWS_Os 00321]
Upstream requirements: SRS_Os_11020

[Ifin acall of IncrementCounter an error happens during the execution of an alarm
action, e.g. E_0S_LIMIT caused by a Task activation, IncrementCounter shall call
the error hook(s), but the IncrementCounter service itself shall return E_OK. |

[SWS_Os_00529]

Upstream requirements: SRS_Os_11020
[Caveats of IncrementCounter: If called from a Task, rescheduling may take
place. |

[SWS_Os_00530]
Upstream requirements: SRS_Os_11016

[Availability of IncrementCounter: Available in all Scalability Classes. |

8.4.18 GetCounterValue

[SWS_Os_00383] Definition of API function GetCounterValue |

Service Name GetCounterValue
Syntax StatusType GetCounterValue (
CounterType CounterlID,

TickRefType Value
)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) CounterlD | The Counter which tick value should be read
Parameters (inout) None

Parameters (out) Value | Contains the current tick value of the counter

\Y

AUTSSAR

A
Return value StatusType E_OK: No errors
E_0S_ID (only in EXTENDED status): The <CounterID> was not
valid
Description This service reads the current count value of a counter (returning either the hardware timer
ticks if counter is driven by hardware or the software ticks when user drives counter).
Available via Os.h

]

[SWS_Os_00376]

Upstream requirements: SRS_BSW_00323
[If the input parameter <CounterlID> in a call of GetCountervalue is not valid,
GetCounterValue shall return E_OS_1ID. |

[SWS_Os_00377] [If the input parameter <CounterID> in a call of GetCounter-
Value is valid, GetCountervalue shall return the current tick value of the Counter
via <Value> and return E_OK. |

[SWS_Os 00531]
Upstream requirements: SRS_Os_11020

[Caveats of GetCountervalue: Note that for counters of OsCounterType =
HARDWARE the real timer value (the - possibly adjusted - hardware value, see
[SWS_Os 00384]) is returned, whereas for counters of 0OsCounterType = SOFTWARE
the current "software" tick value is returned. |

[SWS_Os 00532]
Upstream requirements: SRS_Os_11016

[Availability of GetCountervalue: Available in all Scalability Classes. |

8.4.19 GetElapsedValue

[SWS_Os_00392] Definition of API function GetElapsedValue |

Service Name GetElapsedValue

Syntax StatusType GetElapsedvValue (
CounterType CounterID,
TickRefType Value,
TickRefType ElapsedValue

)

Service ID [hex] 0x11

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) CounterlD The Counter to be read

Parameters (inout) Value in: the previously read tick value of the counter out: the current
tick value of the counter

Y%

AUTSSAR

A
Parameters (out) ElapsedValue The difference to the previous read value
Return value StatusType E_OK: No errors
E_0S_ID (only in EXTENDED status): The CounterID was not
valid
E_OS_VALUE (only in EXTENDED status): The given Value was
not valid
Description This service gets the number of ticks between the current tick value and a previously read tick
value.
Available via Os.h

[SWS_Os_00381]

Upstream requirements: SRS_BSW_00323
[If the input parameter <CounterID> in a call of GetElapsedvalue is not valid
GetElapsedValue shall return E_0OS_1D. |

[SWS_Os_00391]
Upstream requirements: SRS_BSW_00323

[If the <Value> in a call of GetElapsedvalue is larger than the max allowed value of
the <CounterlD>, GetElapsedvalue shall return E_0OS_VALUE. |

[SWS_Os_00382] [If the input parameters in a call of GetElapsedvalue are valid,
GetElapsedvalue shall return the number of elapsed ticks since the given <Value>
value via <ElapsedValue> and shall return E_OK. |

[SWS_Os_00460] [GetElapsedvalue shall return the current tick value of the
Counter in the <Value> parameter. |

[SWS_Os_00533] [Caveats of GetElapsedvalue:lf the timer already passed the
<Value> value a second (or multiple) time, the result returned is wrong. The reason is
that the service can not detect such a relative overflow. |

[SWS_Os 00534]
Upstream requirements: SRS_Os_11016

[Availability of GetElapsedvalue: Available in all Scalability Classes. |

AUTSSAR

8.4.20 TerminateApplication

[SWS_Os_00258] Definition of API function TerminateApplication
Upstream requirements: SRS_Os_11022

[

Service Name

TerminateApplication

Syntax StatusType TerminateApplication (
ApplicationType Application,
RestartType RestartOption
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Application The identifier of the OS-Application to be terminated. If the caller
belongs to <Application> the call results in a self termination.
RestartOption Parameter is no longer used and ignored.
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No errors

E_0S_1D: <Application> was not valid (only in EXTENDED
status)

E_OS_ACCESS: The caller does not have the right to terminate
<Application> (only in EXTENDED status)

E_OS_STATE: The state of <Application> does not allow
terminating <Application>

Description

This service terminates the OS-Application to which the calling Task/Category 2 ISR/application

specific error hook belongs.

Available via

Os.h

]

[SWS_Os_00493]

Upstream requirements: SRS_BSW_00323

[If the input parameter <Application> in a call of TerminateApplication is not valid
TerminateApplication shall return E_0S_1ID.]

[SWS_Os_00494]

Upstream requirements: SRS_BSW_00323

[If the input parameter <Application> in a call of TerminateApplication is valid
AND the caller belongs to a non-trusted OS-Application AND the caller does not belong
to <Application> TerminateApplication shall return E_OS_ACCESS. |

[SWS_Os_00507]

Upstream requirements: SRS_BSW_00323

[If the state of <Application> in a call of TerminateApplication iS APPLICA-
TION_TERMINATED TerminateApplication shall return E_OS_STATE.]

AUTSSAR

[SWS_Os_00287]
Upstream requirements: SRS_Os_11022

[If the parameters in a call of TerminateApplication are valid and the above cri-
teria are met TerminateApplication shall terminate <Application> (i.e. to kill all
Tasks, disable the interrupt sources of those 1SRs which belong to the OS-Application
and free all other OS resources associated with the application). The <Application>
state is set to APPLICATION_TERMINATED. If the caller belongs to <Application>
TerminateApplication shall not return, otherwise it shall return E_OK. |

[SWS_Os_00535]
Upstream requirements: SRS_Os_11022

[Caveats of TerminateApplication:

* If no applications are configured the implementation shall make sure that this
service is not available.

* Tasks and interrupts that are owned by a trusted application can terminate any
OS-Application. Tasks and interrupts that are owned by a non-trusted application
can only terminate their owning OS-Application.

]

Note: Although trusted OS-Application can be forcibly terminated by Tasks/Interrupts
of other trusted OS-Applications it is not recommended. This may have further impacts,
e.g. to users who are currently part of such an OS-Application via a CallTrusted-
Function call

[SWS_Os_00536]
Upstream requirements: SRS_Os_11016

[Availability of TerminateApplication: Available in Scalability Classes 3 and 4. |

8.4.21 GetApplicationState

[SWS_Os_00499] Definition of API function GetApplicationState
Upstream requirements: SRS_Os_11001

Service Name GetApplicationState
Syntax StatusType GetApplicationState (
ApplicationType Application,
ApplicationStateRefType Value
)
Service ID [hex] 0x14
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant
Parameters (in) Application ‘ The OS-Application from which the state is requested
Parameters (inout) None
Parameters (out) Value The current state of the application
Return value StatusType E_OK: No errors
E_0S_ID: <Application> is not valid (only in EXTENDED status)

Description

This service returns the current state of an OS-Application.

Available via

Os.h

]

[SWS_Os_00495]

Upstream requirements: SRS_BSW_00323

[If the <Application> in a call of GetApplicationState is not valid GetApplica-
tionState shall return E_0S_1ID.|

[SWS_Os_00496]

Upstream requirements: SRS_Os_ 11001

[If the parameters in a call of GetApplicationState are valid, GetApplication-
State shall return the state of OS-Application <Application> in <Value>. |

[SWS_Os_00537]

Upstream requirements: SRS_Os_11016

[Availability of GetApplicationState: Available in Scalability Classes 3 and 4. |

8.4.22 GetNumberOfActivatedCores

[SWS_Os_00672] Definition of API function GetNumberOfActivatedCores
Upstream requirements: SRS_Os_80001

[

Service Name

GetNumberOfActivatedCores

Syntax uint32 GetNumberOfActivatedCores (
void

)
Service ID [hex] 0x15
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value uint32 ‘ Number of cores running the AUTOSAR OS (see below)

\Y

AUTSSAR

A

macro.

Description The function returns the number of cores running the AUTOSAR OS. This function might be a

Available via Os.h

]

The function GetNumberOfActivatedCores shall be callable from within a Task
and an Category 2 1SR. Otherwise the behavior is unspecified.

[SWS_Os_00673]
Upstream requirements: SRS_Os_80001

[The return value of GetNumberOfActivatedCores shall be less or equal to the

configured value of OsNumberOfCores. |

8.4.23 GetCoreID

[SWS_Os 00674] Definition of API function GetCorelD

Upstream requirements: SRS_Os_80001

[
Service Name GetCorelD
Syntax CoreldIype GetCoreID (
void
)
Service ID [hex] 0x16
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value CoreldType The return value is the unique ID of the core.
Description The function returns a unique core identifier.
Available via Os.h

]

[SWS_Os_00675]

Upstream requirements: SRS_Os_80001

[The function GetCoreID shall return the unique logical CorelD of the core on which
the function is called. The value is defined in the configuration parameter EcucCoreld. |

AUTSSAR

8.4.24 StartCore

[SWS_Os_00676] Definition of API function StartCore
Upstream requirements: SRS_Os_80006

[

Service Name StartCore

Syntax void StartCore (
CoreldType CorelD,
StatusTypex Status

)

Service ID [hex] 0x17

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) CorelD Core identifier

Parameters (inout) None

Parameters (out) Status Return value of the function in extended status: E_OK: No Error
E_OS_ID: Core ID is invalid. E_OS_ACCESS: The function was
called after starting the OS. E_OS_STATE: The Core is already
activated.
Return value of the function in standard status E_OK: No Error

Return value None

Description It is not supported to call this function after StartOS(). The function starts the core specified by

the parameter CorelD. The OUT parameter allows the caller to check whether the operation
was successful or not. If a core is started by means of this function StartOS shall be called on
the core.

Available via Os.h

]

[SWS_Os_00677]

Upstream requirements: SRS_Os_80006
[The function startCore shall start one core that shall run under the control of the
AUTOSAR OS. |

[SWS_Os_00678]

Upstream requirements: SRS_Os_80006
[Calls to the startCore function after startos shall return with E_0S_ACCESs and
the core shall not be started. |

[SWS_Os_00679]

Upstream requirements: SRS_Os_80006
[If the parameter CorelDs refers to a core that was already started by the function
StartCore the related core is ignored and E_0S_STATE shall be returned. |

[SWS_Os 00681]
Upstream requirements: SRS_Os_80006

[There is no call to the ErrorHook if an error occurs during StartCore. |

AUTSSAR

8.4.25 GetSpinlock

[SWS_Os_00686] Definition of API function GetSpinlock
Upstream requirements: SRS_Os_80021

[

Service Name GetSpinlock
Syntax StatusType GetSpinlock (
SpinlockIdType SpinlockId
)

Service ID [hex] 0x19

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Spinlockld The value refers to the spinlock instance that shall be locked.

Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK - In standard and extended status : No Error

E_OS_ID - In extended status: The Spinlockld is invalid
E_OS_INTERFERENCE_DEADLOCK - In extended status: A TASK
tries to occupy the spinlock while the lock is already occupied by
a TASK on the same core. This would cause a deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries to
occupy the spinlock while a TASK on the same core is holding a
different spinlock in a way that may cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be
accessed.

Description GetSpinlock tries to occupy a spin-lock variable. If the function returns, either the lock is
successfully taken or an error has occurred. The spinlock mechanism is an active polling
mechanism. The function does not cause a de-scheduling.

Available via Os.h

]

[SWS_Os_00687]

Upstream requirements: SRS_Os_80021
[The function Get Spinlock shall occupy a spinlock. If the spinlock is already occu-
pied the function shall busy wait until the spinlock becomes available. |

[SWS_Os_00688]

Upstream requirements: SRS_Os_80021
[The function GetSpinlock shall return E_OK if no error was detected. The spinlock
is now occupied by the calling Task/Category 2 1SR on the calling core. |

[SWS_Os_00689]
Upstream requirements: SRS_Os_ 80021

[The function Get Spinlock shall return E_0s_1D if the parameter SpinlocklID refers
to a spinlock that does not exist. |

AUTSSAR

[SWS_Os_00690]
Upstream requirements: SRS_Os_80021

[The function GetSpinlock shall return E_OS_INTERFERENCE_DEADLOCK if the
spinlock referred by the parameter SpinlockID is already occupied by a Task/Cate-
gory 2 ISR on the same core. |

[SWS_Os_00691]
Upstream requirements: SRS_Os_80021

[The function Get Spinlock shall return E_0OS_NESTING_DEADLOCK if the sequence
by which multiple spinlocks are occupied at the same time on one core do not comply
with the configured order. |

[SWS_Os_00692]
Upstream requirements: SRS_Os_80021
[The function GetSpinlock shall return E_o0s_AccEessS if the accessing OS-
Application was not listed in the configuration (OsSpinlock).]
[SWS_Os_00693]
Upstream requirements: SRS_Os_80021
[It shall be allowed to call the function Get Spinlock while interrupts are disabled. |
[SWS_Os_00694]
Upstream requirements: SRS_Os_80021
[It shall be allowed to call the function Get Spinlock while @ Resource is occupied. |

8.4.26 ReleaseSpinlock

[SWS_Os_00695] Definition of API function ReleaseSpinlock
Upstream requirements: SRS_Os_80021

[
Service Name ReleaseSpinlock
Syntax StatusType ReleaseSpinlock (
SpinlockIdType SpinlockId
)
Service ID [hex] Ox1a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Spinlockld ‘ The value refers to the spinlock instance that shall be locked.
Parameters (inout) None
Parameters (out) None

V

AUTSSAR

A

Return value StatusType E_OK - In standard and extended status: No Error

E_O0S_ID - In extended status: The Spinlockld is invalid.
E_OS_STATE - In extended status: The Spinlock is not occupied
by the TASK

E_OS_ACCESS - In extended status: The Spinlock cannot be
accessed.

E_OS_NOFUNC - In extended status: Attempt to release a spinlock
while another spinlock (or resource) has to be released before.

Description ReleaseSpinlock releases a spinlock variable that was occupied before. Before terminating a
TASK all spinlock variables that have been occupied with GetSpinlock() shall be released.
Before calling WaitEVENT all Spinlocks shall be released.

Available via Os.h

]

[SWS_Os_00696]
Upstream requirements: SRS_Os_80021

[The function ReleaseSpinlock shall release a spinlock that has been occupied by
the same (calling) Task. If the related GetSpinlock call used configured locks (
OsSpinlockLockMethod) the function shall also perform the undo of the used lock. |

[SWS_Os_00697]

Upstream requirements: SRS_Os_80021
[The function ReleaseSpinlock shall return E_OK if no error was detected. The
spinlock is now free and can be occupied by the same or other Tasks. |

[SWS_Os_00698]

Upstream requirements: SRS_Os_80021
[The function ReleaseSpinlock shall return E_o0s_1D if the parameter SpinlocklD
refers to a spinlock that does not exist. |

[SWS_Os_00699]
Upstream requirements: SRS_Os_80021

[The function ReleaseSpinlock shall return E_0s_STATE if the parameter Spinlock
ID refers to a spinlock that is not occupied by the calling Task. |

[SWS_Os_00700]

Upstream requirements: SRS_Os_ 80021
[The function ReleaseSpinlock shall return E_0S_ACCESS if the Task has no ac-
cess to the spinlock referred by the parameter SpinlockID |

[SWS_Os_00701]
Upstream requirements: SRS_Os_80021
[The function ReleaseSpinlock shall return E_0S_NOFUNC if the Task tries to re-

lease a spinlock while another spinlock (or Resource) has to be released before. No
functionality shall be performed. |

AUTSSAR

8.4.27 TryToGetSpinlock

[SWS_Os_00703] Definition of API function TryToGetSpinlock
Upstream requirements: SRS_Os_80021

[

Service Name TryToGetSpinlock
Syntax StatusType TryToGetSpinlock (
SpinlockIdType SpinlockId,
TryToGetSpinlockType* Success
)
Service ID [hex] 0x1b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Spinlockld The value refers to the spinlock instance that shall be locked.
Parameters (inout) None
Parameters (out) Success Returns if the lock has been occupied or not
Return value StatusType E_OK - In standard and extended status: No Error
E_0S_ID - In extended status: The Spinlockld is invalid.
E_OS_INTERFERENCE_DEADLOCK - In extended status: A TASK
tries to occupy the spinlock while the lock is already occupied by
a TASK on the same core. This would cause a deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries to
occupy a spinlock while holding a different spinlock in a way that
may cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be
accessed.
Description TryToGetSpinlock has the same functionality as GetSpinlock with the difference that if the
spinlock is already occupied by a TASK on a different core the function sets the OUT parameter
"Success" and returns with E_OK.
Available via Os.h

]

[SWS_Os_00704]

Upstream requirements: SRS_Os_80021
[The function TryToGetSpinlock shall atomically test the availability of the spinlock
and if available occupy it. The result of success is returned. |

[SWS_Os_00705]
Upstream requirements: SRS_Os_80021

[The function TryToGetSpinlock shall set the OUT parameter "Success" to TRY-
TOGETSPINLOCK_SUCCESS if the spinlock was successfully occupied, and TRYTO-
GETSPINLOCK_NOSUCCESS if not. In both cases E_OK shall be returned. |

[SWS_Os_00706]
Upstream requirements: SRS_Os_80021

[If the function TryToGetSpinlock does not return E_OK, the OUT parameter "Suc-
cess" shall be undefined. |

AUTSSAR

[SWS_Os_00707]
Upstream requirements: SRS_Os_80021

[The function TryToGetSpinlock shall return E_0S_1ID if the parameter SpinlocklD
refers to a spinlock that does not exist. |

[SWS_Os_00708]
Upstream requirements: SRS_Os_80021

[The function TryToGetSpinlock shall return E_0OS_INTERFERENCE_DEADLOCK if
the spinlock referred by the parameter SpinlockID is already occupied by a Task on
the same core. |

[SWS_Os_00709]
Upstream requirements: SRS_Os_80021

[The function TryToGetSpinlock shall return E_OS_NESTING_DEADLOCK if a Task
tries to occupy a spinlock while holding a different spinlock in a way that may cause a
deadlock. |

[SWS_Os_00710]
Upstream requirements: SRS_Os_80021

[The function TryToGetSpinlock shall return E_0S_ACCESS if the Task has no
access to the spinlock referred by the parameter SpinlockID |

[SWS_Os_00711]
Upstream requirements: SRS_Os_80021

[t shall be allowed to call the function TryToGetSpinlock while interrupts are dis-
abled. |

[SWS_Os_00712]
Upstream requirements: SRS_Os_80021

[It shall be allowed to call the function TryToGetsSpinlock while a Resource is
occupied. |

AUTSSAR

8.4.28 ShutdownAllCores

[SWS_Os 00713] Definition of API function ShutdownAlICores
Upstream requirements: SRS_Os_ 80007, SRS_BSW 00336

[

Service Name

ShutdownAllCores

Syntax void ShutdownAllCores (
StatusType Error
)
Service ID [hex] Ox1c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Error <Error> needs to be a valid error code supported by the
AUTOSAR OS.
Parameters (inout) None
Parameters (out) None
Return value None

Description

After this service the OS on all AUTOSAR cores is shut down. Allowed at TASK level and ISR
level and also internally by the OS. The function will never return. The function will force other
cores into a shutdown.

Available via

Os.h

]

[SWS_Os_00714]

Upstream requirements: SRS_Os_80007

[A synchronized shutdown shall be triggered by the API function shutdownaAll-

Cores.]|

[SWS_Os_00715]

Upstream requirements: SRS_Os_80007

[ShutdownAllCores shall not return. |

[SWS_Os_00716]

Upstream requirements: SRS_Os_ 80007

[If shutdownAllCores is called from non trusted code the call shall be ignored. |

AUTSSAR

8.4.29 ReadPeripheral8, ReadPeripherallé, ReadPeripheral32

[SWS_Os_91013] Definition of API function ReadPeripheral8
Upstream requirements: SRS_Os_11005

Service Name

ReadPeripheral8

Syntax StatusType ReadPeripheral8 (
ArealdType Area,
const uint8+ Address,
uint8x ReadValue
)
Service ID [hex] 0x28
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) ReadValue content of the given memory location (<Address>)
Return value StatusType E_OK No error

E_0S_1ID Areaid is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_O0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service returns the content of a given memory location (<Address>).

Available via

Os.h

]

[SWS_Os_91015] Definition of APl function ReadPeripheral16
Upstream requirements: SRS_Os_11005

Service Name

ReadPeripheral16

Syntax StatusType ReadPeripherall6 (
ArealdType Area,
const uintléx Address,
uintl6+ ReadValue
)
Service ID [hex] 0x29
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) ReadValue ‘ content of the given memory location (<Address>)

\Y

AUTSSAR

JAN

Return value StatusType E_OK No error
E_0S_1ID Areaid is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service returns the content of a given memory location (<Address>).

Available via Os.h

[SWS_Os_91014] Definition of APl function ReadPeripheral32
Upstream requirements: SRS_Os_11005

Service Name ReadPeripheral32
Syntax StatusType ReadPeripheral32 (
ArealdType Area,
const uint32x Address,
uint32+ ReadValue
)
Service ID [hex] 0x2a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) ReadValue content of the given memory location (<Address>)
Return value StatusType E_OK No error
E_0S_1ID Area id is out of range (EXTENDED status)
E_O0S_VALUE Address does not belong to given Area
(EXTENDED status)
E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_O0S_ACCESS The calling task or ISR is not allowed to access
the given
Description This service returns the content of a given memory location (<Address>).
Available via Os.h

AUTSSAR

8.4.30 WritePeripheral8, WritePeripherall6, WritePeripheral32

[SWS_Os_91010] Definition of API function WritePeripheral8
Upstream requirements: SRS_Os_11005

Service Name

WritePeripheral8

Syntax StatusType WritePeripheral8 (
ArealdType Area,
uint8+ Address,
uint8 WriteValue
)
Service ID [hex] 0x2b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) WriteValue value to be written at the memory address
Return value StatusType E_OK No error

E_0S_1ID Areaid is out of range (EXTENDED status)
E_O0S_VALUE Address does not belong to given Area
(EXTENDED status)

E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_O0S_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service writes the <value> to a given memory location (<memory address>).

Available via

Os.h

]

[SWS_Os_91012] Definition of API function WritePeripheral16
Upstream requirements: SRS_Os_11005

Service Name

WritePeripheral16

Syntax StatusType WritePeripherall6 (
ArealdType Area,
uintl6+ Address,
uintlé WriteValue
)
Service ID [hex] 0x2c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) WriteValue | value to be written at the memory address

V

AUTSSAR

A

Return value StatusType E_OK No error
E_0S_1ID Areaid is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service writes the <value> to a given memory location (<memory address>).

Available via Os.h

[SWS_Os_91011] Definition of APl function WritePeripheral32
Upstream requirements: SRS_Os_11005

Service Name WritePeripheral32
Syntax StatusType WritePeripheral32 (
ArealdType Area,
uint32+ Address,
uint32 WriteValue
)
Service ID [hex] ox2d
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) WriteValue content of the given memory location (<Address>)
Return value StatusType E_OK No error
E_0S_1ID Area id is out of range (EXTENDED status)
E_O0S_VALUE Address does not belong to given Area
(EXTENDED status)
E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_O0S_ACCESS The calling task or ISR is not allowed to access
the given
Description This service writes the <value> to a given memory location (<memory address>).
Available via Os.h

AUTSSAR

8.4.31 ModifyPeripheral8, ModifyPeripherallé6, ModifyPeripheral32

[SWS_Os_91016] Definition of API function ModifyPeripheral8
Upstream requirements: SRS_Os_11005

Service Name

ModifyPeripheral8

Syntax StatusType ModifyPeripheral8 (
ArealdType Area,
uint 8+ Address,
uint8 Clearmask,
uint8 Setmask
)
Service ID [hex] 0x2e
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Clearmask memory address will be modified by an bit-AND
Setmask memory address will be modified by an bit-OR
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error

E_0S_1ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_O0S_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service modifies a given memory location (<memory address>) with the formula:
<Address> = ((<Address> & <clearmask>) | <setmask>)

Available via

Os.h

]

[SWS_Os_91018] Definition of API function ModifyPeripheral16
Upstream requirements: SRS_Os_11005

Service Name ModifyPeripheral16
Syntax StatusType ModifyPeripherall6 (
ArealdType Area,
uintl6x Address,
uintl6 Clearmask,
uintlé6 Setmask
)
Service ID [hex] 0x35
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address

\Y

AUTSSAR

A
Clearmask memory address will be modified by an bit-AND
Setmask memory address will be modified by an bit-OR
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error

E_0S_1ID Areaid is out of range (EXTENDED status)
E_O0S_VALUE Address does not belong to given Area
(EXTENDED status)

E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service modifies a given memory location (<memory address>) with the formula:
<Address> = ((<Address> & <clearmask>) | <setmask>)

Available via

Os.h

[SWS_Os_91017] Definition of API function ModifyPeripheral32
Upstream requirements: SRS_Os_11005

Service Name ModifyPeripheral32
Syntax StatusType ModifyPeripheral32 (
ArealdType Area,
uint32+ Address,
uint32 Clearmask,
uint32 Setmask
)
Service ID [hex] ox2f
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Clearmask memory address will be modified by an bit-AND
Setmask memory address will be modified by an bit-OR
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error

E_0S_1ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_O0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service modifies a given memory location (<memory address>) with the formula:
<Address> = ((<Address> & <clearmask>) | <setmask>)

Available via

Os.h

AUTSSAR

8.4.32 EnablelInterruptSource

[SWS_Os_91020] Definition of API function EnablelnterruptSource
Upstream requirements: SRS_Os_11011

Service Name

EnablelnterruptSource

Syntax StatusType EnableInterruptSource (
ISRType ISRID,
boolean ClearPending
)
Service ID [hex] 0x31
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID The ID of a category 2 ISR.
ClearPending Defines whether the pending flag shall be cleared (TRUE) or not
(FALSE).
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error.

E_0S_1D ISRID is not a valid category 2 ISR identifier
(EXTENDED status)

E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the ISR
passed in ISRID (Service Protection)

Description

Enables the interrupt source by modifying the interrupt controller registers. Additionally it may
clear the interrupt pending flag

Available via

Os.h

8.4.33 DisableInterruptSource

[SWS_Os_91019] Definition of API function DisablelnterruptSource
Upstream requirements: SRS_Os_11011

Service Name

DisablelnterruptSource

Syntax StatusType DisablelnterruptSource (
ISRType ISRID
)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID ‘ The ID of a category 2 ISR.
Parameters (inout) None
Parameters (out) None

Y

AUTSSAR

A

Return value

E_OK No error.

E_0S_1D ISRID is not a valid category 2 ISR identifier
(EXTENDED status)

E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_O0S_ACCESS The calling application is not the owner of the ISR
passed in ISRID (Service Protection)

StatusType

Description

Disables the interrupt source by modifying the interrupt controller registers.

Available via

Os.h

8.4.34 ClearPendingInterrupt

[SWS_Os_91021] Definition of API function ClearPendinginterrupt
Upstream requirements: SRS_Os_11011

Service Name

ClearPendinglnterrupt

Syntax StatusType ClearPendingInterrupt (
ISRType ISRID

)
Service ID [hex] 0x32
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID The ID of a category 2 ISR.
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error.

E_0S_1D ISRID is not a valid category 2 ISR identifier
(EXTENDED status)

E_0S_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_O0S_ACCESS The calling application is not the owner of the ISR
passed in ISRID (Service Protection)

Description

Clears the interrupt pending flag by modifying the interrupt controller registers.

Available via

Os.h

AUTSSAR

8.4.35 ActivateTaskAsyn

[SWS_Os_91022] Definition of API function ActivateTaskAsyn
Upstream requirements: SRS_Os 80015

[

Service Name

ActivateTaskAsyn

Syntax void ActivateTaskAsyn (
TaskType id

)
Service ID [hex] 0x33
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) id The id of the task to be activated
Parameters (inout) None
Parameters (out) None
Return value None

Description

Asynchronous version of the ActivateTask() function. Intended to be used for cross core task
activation. Possible errors are not returned to the caller, but may be reported via error hooks.

Available via

Os.h

]
[SWS_Os_00818]

Upstream requirements: SRS_Os_80015

[Availability of ActivateTaskAsyn: Available in systems which support OS-

Applications. |

Note: If during the Task activation an error occurs, and the caller is already gone (e.g.
callers OS-Application is already terminated, OR callers core is shutting down OR ...)
calls to error hooks are dropped and no reporting is done.

8.4.36 SetEventAsyn

[SWS_Os_91023] Definition of API function SetEventAsyn
Upstream requirements: SRS_Os 80015

Service Name SetEventAsyn
Syntax void SetEventAsyn (
TaskType 1id,
EventMaskType m
)
Service ID [hex] 0x34
Sync/Async Asynchronous
Reentrancy Reentrant

AUTSSAR

JAN
Parameters (in) id The id of the task to be activated
m Mask of the events to be set
Parameters (inout) None
Parameters (out) None
Return value None

Description

Asynchronous version of the SetEvent() function. Intended to be used for cross core event
setting. Possible errors are not returned to the caller, but may be reported via error hooks.

Available via

Os.h

]

[SWS_Os_00819]

Upstream requirements: SRS_Os_80015

[Availability of setEventAsyn: Available in systems which support OS-Applications. |

Note: If during the event setting an error occurs and the caller is already gone (e.g.
callers OS-Application is already terminated, OR callers core is shutting down OR ...)
calls to error hooks are dropped and no reporting is done.

8.4.37 isOsStarted

[SWS_Os_91034] Definition of API function isOsStarted

Status:

DRAFT

Upstream requirements: SRS_Os_00097

[

Service Name

isOsStarted (draft)

Syntax boolean isOsStarted (
void

)
Service ID [hex] 0x36
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value boolean | returns true if StartOS() was called otherwise false.

Description

This API returns a boolean value which indicates if the Os was already started. In case of
multi-core it shall check if StartOs was already called on the core where isOsStarted was
called. If the Os was (locally) started it returns true otherwise false. The function is intended to
be implemented as macro. The function is by nature also callable before StartOs, but assumes
a valid and initialized C environment (e.g. main() was called before the use of isOsStarted)
Tags: atp.Status=draft

Available via

Os.h

]

The is0sstarted API can be useful for drivers to detect if the Os was already started
or not. Note that if called from within category 1 TSRs during startup it my happen that

AUTSSAR

this interrupt just happened while the call to startos is processed. In such cases the
correct return value of true is not guaranteed.

8.4.38 BudgetReplenish

[SWS_Os_91035] Definition of API function BudgetReplenish |

Service Name BudgetReplenish
Syntax StatusType BudgetReplenish (
TaskType id
)
Service ID [hex] 0x38
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) id The id of the Task whose budget is replenished
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No error
E_0s_1D: Ifid is no Task Id OR if Task is no Deferrable Server.
E_0S_ACCESs: Calling application is not owner/has no access to
Task OR id is Task Id of caller Task.
Description This API replenishes the execution budget of the given Task.
Available via Os.h

[SWS_Os_00874] Details of BudgetReplenish [The function BudgetReplenish
will add the configured execution budget (OsTaskExecutionBudget) to the current
budget of the Task. If this would result in a bigger current budget than configured (in
OsTaskExecutionBudget), the budget is saturated to OsTaskExecutionBudget.
If the new budget is bigger than 0 and the task was previously in BUDGET_EXHAUSTED
it will change state to READY and a rescheduling may happen. |

Note: As per [SWS_Os_91035] it is not allowed to do a "self" replenish by calling the
APl with the own Task Id. In such cases the API returns E_0S_ACCESS.

[SWS_Os_00875] Availability of BudgetReplenish [The function BudgetRe-
plenish is only available in Scalability Classes 2 and 4. |

8.5 10C

8.5.1 Imported types

In this chapter all types included from the following modules are listed:

AUTSSAR

[SWS_Os_91028] Definition of imported datatypes of module Os |

Module Header File Imported Type

Gpt Gpt.h Gpt_ChannelType
Gpt.h Gpt_ValueType

Std Std_Types.h Std_ReturnType

|
[SWS_Os_00827]

Upstream requirements: SRS_Os_80020

[If an ImplementationDataType is defined with the typeEmitter empty or set to
RTE and is used for IOC communication, the I0C shall include Rte_Type.h|

[SWS_Os_00828]

Upstream requirements: SRS_Os_80020

[If an ImplementationDataType is defined with the typeEmitter = RTE and does
end with ".h" and is used for IOC communication, the I0C shall include specified header

file. |

8.5.2 Type definitions

None

8.5.3 Constants

Name Communication

Type

Errorname / Value

Annotation

IOC_E_OK All, SND/RCV

Std_ReturnType

RTE_E_OK/O0

No error occurred

IOC_E_LENGTH Queued SND

Std_ReturnType

RTE_E_LIMIT /130

In case of "event"
(queued) semantic,
the internal buffer
within the IOC
communication
service is too small
for the requested
transmission size.

IOC_E_LIMIT Queued
SND

Std_ReturnType

RTE_E_LIMIT/ 130

In case of "event"
(queued) semantic,
the internal buffer
within the IOC
communication
service is full (Case:
Receiver slower than
sender). This error
produces additionally
an Overlayed Error on
the receiver side at
the next data
reception.

AUTSSAR

A

IOC_E_LOST_DATA

Queued
RCV

Std_ReturnType

Overlayed Error
RTE_E_LOST_DATA /
64

In case of "event”
(queued) semantic,
this Overlayed Error
indicates that the IOC
service refuses an
TocSend request due
to internal buffer
overflow.

IOC_E_NO_DATA

Queued
RCV

Std_ReturnType

RTE_E_NO_DATA /
131

In case of "event"
(queued) semantic,
no data is available
for reception.

Table 8.1: I0C constants

8.5.4 Function definitions

[SWS_Os_00805] :
Upstream requirements: SRS_Os_ 80020

[The optional length parameter of the API shall be generated if the VariableDataProto-
type is of type dynamic and no size indicator is used in the according Application-—
ArrayDataType.]

8.5.4.1

IocInit (DRAFT)

[SWS_Os_91026] Definition of API function loclnit

Status:

DRAFT

Upstream requirements: SRS_Os_ 80020

[

Service Name

loclnit (draft)

Syntax void IocInit
void

)
Service ID [hex] 0x37
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This service initializes the data structures of the I0C.
Tags: atp.Status=draft

Available via

loc.h

AUTSSAR

8.5.4.2 TIocSend/IocWrite

The Tocwrite API call is generated for "data" (unqueued) semantics and the Toc-

Send API call is generated for "event" (queued) semantics.

[SWS_Os_00718] Definition of API function locSend_<locld>[<Senderld>]
Upstream requirements: SRS_Os_80020

Service Name

locSend_<locld>[<Senderld>]

Syntax Std_ReturnType IocSend_<IocId>[_<SenderId>] (
<Data> IN,
[uintl6 numberOfBytesIN]
)
Service ID [hex] Oxle
Sync/Async Asynchronous
Reentrancy This function is generated individually for each sender. The individual function is not reentrant

(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

Parameters (in)

IN Data value to be sent over a communication identified by the <loc
Id>. The parameter will be passed by value for primitive data
elements and by reference for all other types.

Example: Std_ReturnType locSend_RTE_25 (const uint32 Ul_
Value); Std_ReturnType locSend_RTE_42 (const TASKParams3
*pStr_Value);

numberOfBytesIN (optional) number of bytes to be send

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType I0C_E_OK: The data has been passed successfully to the
communication service.

10C_E_LIMIT: IOC internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an I0C_E_
LoST_DATA Overlayed Error on the receiver side at the next data
reception.

IOC_E_LENGTH: The <numberOfBytesIN> exceeds either the

internal buffer or is equal zero, so no data is send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "event" semantic for a
unidirectional 1:1 or N:1 communication between OS-Applications located on the same or on
different cores.

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.
<Senderld> is used only in N:1 communication. Together with <locld>, it uniquely identifies the
sender. It is separated from <locld> with an underscore. In case of 1:1 communication, it shall
be omitted.

Available via

loc.h

AUTSSAR

[SWS_Os_ 91003] Definition of API function locWrite_<locld>[_<Senderid>]
Upstream requirements: SRS_Os_80020

Service Name locWrite_<locld>[_<Senderld>]
Syntax Std_ReturnType IocWrite_<IocId>[_<SenderId>] (
<Data> 1IN,

[uint1l6 numberOfBytesIN]
)

Service ID [hex] ox1f
Sync/Async Asynchronous
Reentrancy This function is generated individually for each sender. The individual function is not reentrant

(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

Parameters (in) IN Data value to be sent over a communication identified by the <loc
Id>. The parameter will be passed by value for primitive data
elements and by reference for all other types.

Example: Std_ReturnType locWrite_RTE_25 (const uint32 UI_
Value); Std_ReturnType locWrite_ RTE_42 (const TASKParams3
*pStr_Value);

numberOfBytesIN (optional) number of bytes to be send
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service.
TOC_E_LENGTH: The <numberOfBytesIN> exceeds either the
internal buffer or is equal zero, so no data is send.

Description Performs an "explicit" sender-receiver transmission of data elements with "data" semantic for a
unidirectional 1:1 or N:1 communication between OS-Applications located on the same or on
different cores.

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.
<Senderld> is used only in N:1 communication. Together with <locld>, it uniquely identifies the
sender. It is separated from <locld> with an underscore. In case of 1:1 communication, it shall
be omitted.

<numberOfBytesIN> specifies the size of the data to be transmitted (in bytes).

Available via loc.h

General:

[SWS_Os_00719]
Upstream requirements: SRS_Os_80020

[TocSend/TocWrite is asynchronous in that way it shall not have to wait for the re-
ception of the data on the receiving side to return from execution. |

[SWS_Os_00720]
Upstream requirements: SRS_Os_80020

[The TocSend/IocwWrite function shall not return until the data given in parameter
have been completely physically sent over the communication medium.

For example in case of communication over shared RAM, an TocSend/TocWrite shall
return when all data have been copied in the target shared RAM. |

AUTSSAR

[SWS_Os_00721]
Upstream requirements: SRS_Os_80020

[In case of "event" (queued) semantic, the Tocsend function shall guarantee the order
of delivery. In case of senders from different cores, the order in which messages are
received will be determined by the implementation. |

[SWS_Os_00722]
Upstream requirements: SRS_Os_80020

[The Tocsend/Ioclrite function shall support mechanism to guarantee data-
Integrity during transmission.

The Tocsend/Ioclrite function shall solve the crossing of the protection boundaries
of OS-Applications. It has to be generated in case of intra-core and inter-core commu-
nication. |

[SWS_Os_00820]

Upstream requirements: SRS_Os_80020
[The TocSend/Ioclrite resp. IocSendGroup/IocWriteGroup function shall be
wrapped with the memory allocation keywords mechanism

#define OS_START SEC_<sadm>
#include "Os_MemMap.h"

<IocSend, IocSendGroup, IocWrite, IocWriteGroup >

#define OS_STOP_SEC_<sadm>
#include "Os_MemMap.h"

o N o O »~ 0N =

where <sadm> is the shortName of the SwAddrMethod referenced by the 0OsMemo-
ryMappingCodeLocationRef of the sending OsApplication configured in OsToc-
SendingOsApplicationRef of the respective OsTocCommunication channel.

]

Parameters:

[SWS_Os 00723]
Upstream requirements: SRS_Os_80020

[The IN <Data> parameter of the TocSend/IocWrite function shall be passed

by value for primitive data types, as an pointer to the array base type for arrays and by
reference for all other types. |

[SWS_Os_00724]
Upstream requirements: SRS_Os_80020

[For data passed as an pointer to the array base type or by reference, the TocSend/
TocWrite function shall guarantee upon return that the parameter is safe for re-use. |

AUTSSAR

Returned values:

[SWS_Os_00725]

Upstream requirements: SRS_Os_80020
[The ITocsend/IocWrite function shall return IOC_E_OX if the data was passed suc-
cessfully to the communication service. |

[SWS_Os_00726]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic the Tocsend function shall return ToC_E_LIMIT if an
IOC internal transmission buffer became full (Case: Receiver is slower than sender or/
and configured internal I0C buffer size is too small).

If this error occurs the I0C internal buffer could not be filled with the parameter. In that
case this error shall produce an 10c_E_10ST_DATAOverlayed Error on the receiver
side at the next data reception (s. SWS_Os_00745). |

Internal structures:

[SWS_Os_00727]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic the IOC shall configure its internal transmission buffer size
with the value of the attribute OsTocBufferLength.]

8.5.4.3 IocSendGroup/IocWriteGroup

The TocWriteGroup API call is generated for "data" (unqueued) semantics and the
TocSendGroup API call is generated for "event" (queued) semantics.

[SWS_Os_00728] Definition of API function locSendGroup_<locld>
Upstream requirements: SRS_Os_80020

Service Name locSendGroup_<locld>
Syntax Std_ReturnType IocSendGroup_<IocId> (
<Datal> IN1,
[uint1l6 numberOfBytesIN1],
<Data2> IN2,
[uintl6 numberOfBytesIN2],
)
Service ID [hex] 0x20
Sync/Async Asynchronous

AUTSSAR

A

Reentrancy

This function is generated individually for each sender. The individual function is not reentrant
(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

Parameters (in)

IN1

List of parameters with data values to be sent over a
communication identified by the <locld>. The parameters will be
passed by value for simple data elements and by reference for all
other types.

Example:

Std_ReturnType locSendGroup_RTE_G1 (const uint32 Ul_
Value1, const uint16 Value2, const uint8 Value3, const uint16
Value4);

numberOfBytesIN1

(optional) number of bytes for parameter IN1 to be send.

IN2

numberOfBytesIN2

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType I0C_E_OK: The data has been passed successfully to the
communication service.

10C_E_LIMIT: IOC internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an 10C_E_
LosT_DATA Overlayed Error on the receiver side at the next data
reception.

IOC_E_LENGTH: Al least one of the <numberOfBytesIN<x>>
exceeds either the internal buffer or is equal zero, so no data is
send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "event" semantic for a
unidirectional 1:1 communication between OS-Applications located on the same or on different
cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

The optional parameter <numberOfBytesIN<x>> specifies the size of the data to be transmitted
(in bytes) for parameter <IN<x>>.

Available via

loc.h

[SWS_Os_91004] Definition of API function locWriteGroup_<locld>
Upstream requirements: SRS_Os_80020

[

Service Name

locWriteGroup_<locld>

Syntax Std_ReturnType IocWriteGroup_<IocId> (
<Datal> INI,
[uintl6 numberOfBytesIN1],
<Data2> IN2,
[uintl6 numberOfBytesIN2],
)
Service ID [hex] 0x21
Sync/Async Asynchronous

AUTSSAR

A

Reentrancy

This function is generated individually for each sender. The individual function is not reentrant
(if called from different runnable entities that belong to the same sender), but different functions

can be called in parallel.

Parameters (in)

IN1

List of parameters with data values to be sent over a
communication identified by the <locld>. The parameters will be
passed by value for simple data elements and by reference for all
other types.

Example:

Std_ReturnType locWriteGroup_RTE_G1 (const uint32 Ul_
Value1, const uint16 Value2, const uint8 Value3, const uint16
Value4);

numberOfBytesIN1

(optional) number of bytes for parameter IN1 to be send.

IN2

numberOfBytesIN2

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType

I0C_E_OK: The data has been passed successfully to the
communication service.

IOC_E_LENGTH: Al least one of the <numberOfBytesIN<x>>
exceeds either the internal buffer or is equal zero, so no data is
send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "data" semantic for a
unidirectional 1:1 communication between OS-Applications located on the same or on different

cores.

This APl involves a group of data elements which values are specified in parameter.
<locld> is a unique identifier that references a unidirectional 1:1 communication involving many

data elements.

The optional parameter <numberOfBytesIN<x>> specifies the size of the data to be transmitted
(in bytes) for parameter <IN<x>>.

Available via

loc.h

General:

[SWS_Os_00729]
Upstream requirements: SRS_Os_80020

[IocSendGroup/IociriteGroup is asynchronous in that way it shall not have to
wait for the reception of the data on the receiving side to return from execution. |

[SWS_Os_00730]
Upstream requirements: SRS_Os_80020

[The ITocSendGroup/IocWriteGroup function shall not return until the data given in
parameter have been completely physically sent over the communication medium. For
example in case of communication over shared RAM, an TocSendGroup/IocWrite-
Group shall return when all data have been copied in the target shared RAM. |

AUTSSAR

[SWS_Os_00731]

Upstream requirements: SRS_Os_80020
[In case of "event" semantic, the TocSendGroup function shall guarantee the order of
delivery. |

[SWS_Os 00732]
Upstream requirements: SRS_Os_80020

[The IocSendGroup/IocWriteGroup function shall support mechanisms to guar-
antee data-Integrity during transmission.

The TocsSendGroup/TIocWriteGroup function shall solve the crossing of the protec-
tion boundaries of OS-Applications. It has to be generated in case of intra-core and
inter-core communication. |

Parameters:

[SWS_Os_00733]
Upstream requirements: SRS_Os_80020

[The IN <DataN> parameters of the TocSendGroup/IocWriteGroup function shall
be passed by values for primitive data types, as pointer to the array base type for arrays
and by references for all other types. |

[SWS_Os_00734]
Upstream requirements: SRS_Os_80020

[For data passed as an pointer to the array base type or by reference, the TocSend-
Group/IocWriteGroup function shall guarantee upon return that the parameter is
safe for re-use. |

Returned values:

[SWS_Os_00735]
Upstream requirements: SRS_Os_80020

[The TocSendGroup/IocWriteGroup function shall return I0C_E_oK if the data
was passed successfully to the communication service. |

[SWS_Os_00736]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic the TocSendGroup function shall return ToC_E_LIMIT
if an 10C internal transmission buffer got full (Case: Receiver is slower than sender or/
and configured internal I0C buffer size is too small).

If this error occurs the 10C Internal buffer could not be filled with the parameter. In that
case this error produces an 10C_E_L0ST_DATAOverlayed Error on the receiver side
at the next data reception. |

AUTSSAR

Internal structures:

[SWS_Os_00737]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic the I0C shall configure its internal transmission buffer size
with the value of the attribute 0OsTocBufferLength.]|

8.5.4.4 IocReceive/IocRead

The TocRead API call is generated for "data" and the TocReceive API call is gener-
ated for "events".

[SWS_Os 00738] Definition of API function locReceive_<locld>
Upstream requirements: SRS_Os_80020

[

Service Name

locReceive_<locld>

Syntax Std_ReturnType IocReceive_<IocId> (
<Data> OUT,
[uintl6* numberOfBytesOUT]
)
Service ID [hex] 0x22
Sync/Async Synchronous
Reentrancy This function is generated individually for each receiver. The individual function is not reentrant

(if called from different runnable entities that belong to the same receiver), but different
functions can be called in parallel.

Parameters (in) None

Parameters (inout) None

Parameters (out) ouT Data reference to be filled with the received data element.
numberOfBytesOUT (optional) data reference to be filled with the length of the

received data element in bytes.

Return value

Std_ReturnType 10C_E_OK: Data was received successfully

TI0C_E_NO_DATA: No data is available for reception.
IOC_E_LOST_DATA: This Overlayed Error indicates that the 10C
communication service refused an I0CSend request from sender
due to an internal buffer overflow. There is no error in the data

returned in parameter.

Description

Performs an "explicit" sender-receiver reception of data elements with "event" semantic for a
unidirectional communication between OS-Applications located on the same or on different
cores..

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.

Available via

loc.h

AUTSSAR

[SWS_Os 91005] Definition of API function locRead_<locld>[_<Receiverid>]
Upstream requirements: SRS_Os_80020

Service Name locRead_<locld>[_<Receiverld>]

Syntax Std_ReturnType IocRead_<IocId>[_<ReceiverId>] (
<Data> OUT,
[uint1l6* numberOfBytesOUT]

)

Service ID [hex] 0x23
Sync/Async Synchronous
Reentrancy Non Reentrant This function is generated individually for each receiver. The individual function

is not reentrant (if called from different runnable entities that belong to the same receiver), but
different functions can be called in parallel.

Parameters (in) None

Parameters (inout) None

Parameters (out) ouT Data reference to be filled with the received data element.
numberOfBytesOUT (optional) data reference to be filled with the length of the

received data element in bytes.

Return value Std_ReturnType 10C_E_OK: Data was received successfully

Description Performs an "explicit" sender-receiver reception of data elements with "data" semantic for a
unidirectional communication between OS-Applications located on the same or on different
cores.

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.
<Receiverld> is used only in N:M communication. Together with <locld>, it uniquely identifies
the receiver. It is separated from <locld> with an underscore. If communication is different from
N:M it shall be omitted.

Available via loc.h

General:

[SWS_Os_00739]
Upstream requirements: SRS_Os_80020

[A successful call to the TocReceive/IocRead function indicates that data has been
received successfully in the OUT <Data> given in parameter.

The TocReceive/TocRead function has to be generated in case of intra-core and
inter-core communication. |

[SWS_Os_00822]
Upstream requirements: SRS_Os_80020

[The TocReceive/IocRead resp. IocReceiveGroup/IocReadGroup function
shall be wrapped with the memory allocation keywords mechanism

#define OS_START_SEC_<sadm>
#include "Os_MemMap.h"

1
2
3
4 <IocReceive, IocReceiveGroup , IocRead, IocReadGroup>
5
6

#define OS_STOP_SEC_<sadm>

AUTSSAR

7 #include "Os_MemMap.h"

where <sadm> is the shortName of the SwAddrMethod referenced by the 0OsMemo-
ryMappingCodeLocationRef of the reading OsApplication configured in OsTocRe-
ceivingOsApplicationRef of the respective OsTocCommunication channel.c()

]

[SWS_Os_00740]
Upstream requirements: SRS_Os_80020

[If the OsTocReceiverPullCB attribute is defined with a callback function name, the
IOC shall call this function on the receiving core for each data transmission. |
Parameters:

[SWS_Os 00741]
Upstream requirements: SRS_Os_80020

[In case of "data" semantic the TocRead function shall always be able to deliver the
last available datum. In case of senders from different cores, the precision of the order
might be limited by the hardware and implementation. |

[SWS_Os_00742]

Upstream requirements: SRS_Os_80020
[The TocReceive/IocRead function shall guarantee upon returning from execution
that the reference given in parameter is safe for use. |

[SWS_Os_00803]
Upstream requirements: SRS_Os_80020

[The OUT <Data> parameter of the TocReceive/IocRead function shall be passed
as an pointer to the array base type for arrays and by reference for all other types. |
Returned values:

[SWS_Os_00743]

Upstream requirements: SRS_Os_80020
[The TocReceive/IocRead function shall return IOC_E_OK if the data was received
successfully in the OUT <Data> parameter. |

[SWS_Os_00744]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic and if no data is available the function TocReceive shall
return IOC_E_NO_DATA. |

AUTSSAR

[SWS_Os_00745]

Upstream requirements: SRS_Os_80020

[In case of "event" semantic an 10C_E_10ST_DATAOQOverlayed Error shall be returned
by the TocReceive function if the IOC communication service refused an TocSend
request from sender due to an internal buffer overflow. There is no error in the data
returned in parameter. |

8.5.4.5 IocReceiveGroup/IocReadGroup

The TocReadGroup API call is generated for "data" and the TocReceiveGroup API
call is generated for "events".

[SWS_Os_00746] Definition of API function locReceiveGroup_<locld>
Upstream requirements: SRS_Os_80020

Service Name

locReceiveGroup_<locld>

Syntax Std_ReturnType IocReceiveGroup_<IocId> (
<Datal> OUT1,
[uintl6x numberOfBytesOUT1],
<Dataz2> 0OUTZ2,
[uintl6% numberOfBytesOUT2],
)
Service ID [hex] 0x24
Sync/Async Synchronous
Reentrancy This function is generated individually for each receiver. The individual function is not reentrant

(if called from different runnable entities that belong to the same receiver), but different
functions can be called in parallel.

Parameters (in) None
Parameters (inout) None
Parameters (out) OUTH List of data references to be filled with the received data
elements. The specified order of the parameter shall match to the
specified order in the corresponding send function.
numberOfBytesOUT1 (optional) data reference to be filled with the length of the
received data element (OUT1) in bytes.
ouT2 -
numberOfBytesOUT2 -

Return value

Std_ReturnType I0C_E_OK: Data was received successfully

10C_E_NO_DATA: No data is available for reception.
IOC_E_LOST_DATA: This Overlayed Error indicates that the 10C
communication service refused an IOCSend request from sender
due to an internal buffer overflow. There is no error in the data

returned in parameter.

\Y

AUTSSAR

A

Description

Performs an "explicit" sender-receiver transmission of data elements with "event" semantic for a
unidirectional 1:1 communication between OS-Applications located on the same or on different
cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

Available via

loc.h

[SWS_Os_91006] Definition of API function locReadGroup_<locld>
Upstream requirements: SRS_Os_80020

Service Name

locReadGroup_<locld>

Syntax Std_ReturnType IocReadGroup_<IocId> (
<Datal> OUTL,
[uint1l6* numberOfBytesOUT1],
<Data2> OUT2,
[uint1l6* numberOfBytesOUT2],
)
Service ID [hex] 0x25
Sync/Async Synchronous
Reentrancy This function is generated individually for each receiver. The individual function is not reentrant

(if called from different runnable entities that belong to the same receiver), but different
functions can be called in parallel.

Parameters (in) None
Parameters (inout) None
Parameters (out) OouT1 List of data references to be filled with the received data
elements. The specified order of the parameter shall match to the
specified order in the corresponding send function.
numberOfBytesOUT1 (optional) data reference to be filled with the length of the
received data element (OUT1) in bytes.
ouT2 -
numberOfBytesOUT2 -
Return value Std_ReturnType 10C_E_OK: Data was received successfully

Description

Performs an "explicit" sender-receiver transmission of data elements with a "data" semantic for
a unidirectional 1:1 communication between OS-Applications located on the same or on
different cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

Available via

loc.h

General:

AUTSSAR

[SWS_Os_00747]
Upstream requirements: SRS_Os_80020

[A successful call to the TocReceiveGroup/IocReadGroup function indicates that
data has been received successfully in the given parameters.

The TocReceiveGroup/IocReadGroup function has to be generated in case of intra-
core and inter-core communication. |

[SWS_Os_00748]
Upstream requirements: SRS_Os_80020

[If the OsTocReceiverPullCB attribute is defined with a callback function name, the
IOC shall call this function on the receiving core for each data transmission. |

Parameters:

[SWS_Os_00749]
Upstream requirements: SRS_Os_80020

[In case of "data" semantic the TocReadGroup function shall always be able to deliver
the last available datum. |

[SWS_Os_00750]
Upstream requirements: SRS_Os_80020

[The ITocReceiveGroup/IocReadGroup function shall guarantee upon returning
from execution that the references given in parameters are safe for use. |

[SWS_Os_00804]
Upstream requirements: SRS_Os_80020

[The OUT <DataN> parameters of the TocReceiveGroup/ IocReadGroup function
shall be passed as pointer to the array base type for arrays and by references for all
other types. |

Returned values:

[SWS_Os_00751]
Upstream requirements: SRS_Os_80020

[The TocReceiveGroup/IocReadGroup function shall return IOC_E_OK if the data
was received successfully in the list of references given in parameter. |

[SWS_Os_00752]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic and if no data is available the function TocReceiveGroup
shall return TOC_E_NO_DATA. |

AUTSSAR

[SWS_Os_00753]
Upstream requirements: SRS_Os_80020

[In case of "event" semantic an 10C_E_10ST_DATAOQOverlayed Error shall be returned
by the TocReceiveGroup function if the IOC communication service refused an Toc-
SendGroup request from sender due to an internal buffer overflow. There is no error
in the data returned in parameter. |

8.5.4.6 IocEmptyQueue

[SWS_Os_00754] Definition of API function locEmptyQueue_<locld>
Upstream requirements: SRS_Os_80020

[
Service Name locEmptyQueue_<locld>
Syntax Std_ReturnType IocEmptyQueue_<IocId> (
void
)
Service ID [hex] 0x26
Sync/Async Synchronous
Reentrancy Non reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType TI0C_E_OK: Content of the queue was successfully deleted
Description In case of queued communication identified by the <locld> in the function name, the content of
the 10C internal communication queue shall be deleted.
Available via loc.h
]
General:

[SWS_Os_00755]
Upstream requirements: SRS_Os_80020

[The function TocEmptyQueue_<locld> shall be present for all IOC elements with
queued semantics. |

[SWS_Os_00756]
Upstream requirements: SRS_Os_80020

[The function TocEmptyQueue_<locld> shall delete all contents from the associated
data queue.

The TocEmptyQueue should be generated in a more efficient way than an iterative
call to an TocReceive function.

AUTSSAR

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

There are no mandatory interfaces for the IOC.

8.6.2 Optional Interfaces

The following table contains the optional interfaces which might be used by the Os and
which are provided by other BSW modules.

[SWS_Os_91036] Definition of optional interfaces requested by module Os |

API Function Header File Description

Gpt_DisableNotification Gpt.h Disables the interrupt notification for a channel
(relevant in normal mode).

Gpt_EnableNotification Gpt.h Enables the interrupt notification for a channel
(relevant in normal mode).

Gpt_GetTimeElapsed Gpt.h Returns the time already elapsed.

Gpt_StartTimer Gpt.h Starts a timer channel.

Gpt_StopTimer Gpt.h Stops a timer channel.

8.6.2.1 ReceiverPuliCB

[SWS_Os_00757] Definition of configurable interface <ReceiverPullCB>
Upstream requirements: SRS_Os_80020

[
Service Name <ReceiverPullCB>
Syntax void <ReceiverPullCB> (
void
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A

Description This callback function can be configured for the receiver of a communication. If configured, |OC
calls this callback on the receiving core for each data reception. <ReceiverPullCB> is the
callback function name configured by the receiver in the OslocReceiverPullCB attribute to be
called on data reception."

Available via Os.h

]

[SWS_Os _00758]
Upstream requirements: SRS_Os_ 80020

[The <ReceiverPullCB> function name shall be defined within a configuration file for
each I0C communication in the 0OsTocReceiverPullCB attribute. |

[SWS_Os_00759]
Upstream requirements: SRS_Os_80020

[The name of the callback shall be unique over the micro controller. For this purpose
the following example can be considered as orientation for the I0C user:

Example: Rte_TIocReceiveCB_<IocId>]|

[SWS_Os_00760]
Upstream requirements: SRS_Os_ 80020

[The <ReceiverPullCB> function on the receiver side is using the access rights of the
receiving OsApplication.]|
Note: This means that such a callback cannot be reused by another 0sApplication.

[SWS_Os_00761]
Upstream requirements: SRS_Os_80020

[This notification mechanism shall be supported for both queued and unqueued com-
munication semantic. |

The owner of the <ReceiverPullCB> function shall pay attention that the execution time
of the function shall not last too long. It shall be possible to call this function from an
IOC-1SR.

8.7 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user. Besides the ProtectionHook below, the hooks from [10] and/
or extensions from 7.12 may be called by the OS.

AUTSSAR

8.7.1 ProtectionHook

[SWS_Os_00538] Definition of configurable interface ProtectionHook
Upstream requirements: SRS_Os_ 11013

[

Service Name ProtectionHook
Syntax ProtectionReturnType ProtectionHook (
StatusType Fatalerror
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Fatalerror The error which caused the call to the protection hook
Parameters (inout) None
Parameters (out) None
Return value ProtectionReturnType PRO_IGNORE
PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_SHUTDOWN
The return value defines the action the OS shall take after the
protection hook.
Description The protection hook is always called if a serious error occurs. E.g. exceeding the worst case
execution time or violating against the memory protection.
Available via Os_Externals.h

Depending on the return value the Operating System module will either:
« forcibly terminate the Task/Category 2 ISR which causes the problem OR
« forcibly terminate the OS-Application the Task/Category 2 ISR belong OR
* shutdown the system OR
+ do nothing

(see 7.8.2)

[SWS_Os_00308]

Upstream requirements: SRS_Os_11001
[If ProtectionHook returns an invalid value, the Operating System module shall take
the same action as if no protection hook is configured. |

[SWS_Os 00542]
Upstream requirements: SRS_Os_11016

[Availability of ProtectionHook: Available in Scalability Classes 2, 3 and 4. |

AUTSSAR

8.7.2 Application specific StartupHook

[SWS_Os_00539] Definition of configurable interface StartupHook_<App>
Upstream requirements: SRS_Os_00097

[

Service Name

StartupHook_<App>

Syntax void StartupHook_<App> (
void
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

The application specific startup hook is called during the start of the OS (after the user has
started the OS via StartOS()).

Available via

Os_Externals.h

]

The application specific startupHook is always called after the standard star-
If more than one OS-Application is configured
which use startup hooks, the order of calls to the startup hooks of the different OS-

tupHook (see [SWS_Os 00236]).

Applications is not defined.

[SWS_Os_00543]
Upstream requirements: SRS_Os_11016

[Availability of startupHook_<App>: Available in Scalability Classes 3 and 4. |

8.7.3 Application specific ErrorHook

[SWS_Os_00540] Definition of configurable interface ErrorHook_<App>
Upstream requirements: SRS_Os_11001

[

Service Name

ErrorHook_<App>

Syntax void ErrorHook_<App> (
StatusType Error

)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Error | The error which caused the call to the error hook
Parameters (inout) None
Parameters (out) None

\Y

AUTSSAR

A
Return value None
Description The application specific error hook is called whenever a Task or Category 2 ISR which belongs
to the OS-Application causes an error.
Available via Os_Externals.h
]

If the general ErrorHook is configured, the general ErrorHook is called before the
application specific error hook is called (see [SWS_Os_00246]).

[SWS_Os_00544]
Upstream requirements: SRS_Os_11016

[Availability of ErrorHook_<App>: Available in Scalability Classes 3 and 4. |

8.7.4 Application specific ShutdownHook

[SWS_Os_00541] Definition of configurable interface ShutdownHook_<App>
Upstream requirements: SRS_Os_00097

[
Service Name ShutdownHook_<App>
Syntax void ShutdownHook_<App> (
StatusType Fatalerror
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Fatalerror The error which caused the action to shut down the operating
system.
Parameters (inout) None
Parameters (out) None
Return value None
Description The application specific shutdown hook is called whenever the system starts the shut down of
itself.
Available via Os_Externals.h
|

If the general shutdownHook is configured, the general Shut downHook is called after
all application specific shutdown hook(s) are called (see [SWS_0Os_00237]). If more
OS-Applications with an application specific shutdown hook exist the order of calls to
these application specific shutdown hooks is not defined.

[SWS_Os_00545]
Upstream requirements: SRS_Os_11016

[Availability of shutdownHook_<App>: Available in Scalability Classes 3 and 4. |

AUTSSAR

8.8 Service Interfaces

The Os does not provide any service interfaces.

AUTSSAR

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

sd Interactions

calling
OS-Appl.

<trusted
function stub>

<trusted function stub>
1

L

providing
OS-Appl.

operating
system

CallTrustedFu nctioniFunID‘FunParPtr)

alt Check permission /

[denied]

[accepted]

B e bl

E_OS_SERVICEID

[y ——

<CheckAccess>

¥

<trusted function>

<Access Information>

system call
dispatcher

¥

The above sequence describes a call to the Cal1TrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the
OS checks if the access to the requested service is valid. If no access is granted
E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the

Figure 9.1: System Call sequence chart

function checks the arguments for access right, etc.

AUTSSAR

9.2 Sequence chart for usage of ErrorHook

sd Interactions /

QS-Appl, operating
<App> system

condition: <System service> is called outside an Error Hook
AND both the system-/appl,-specific Error Hook are configured

%

[condition]

<system service> which returns
a value of type StatusType

alt
[retumn 1= E_OK] ErrorHook (<Error>)

e

ErrorHook_<App> (<Error>)

................................ x>

StatusType value

G e LT TP

Figure 9.2: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service
does not return with £_0OK. Note that in this case the general error hook and the OS-
Application specific error hook are called.

AUTSSAR

9.3 Sequence chart for ProtectionHook

| Processor | | Operating System ‘ | Os-Appl / Task / Category 2 ISR

[]
alt g [break] !
]
1

Exception

.
ol

! ProtectionHook(Fatalerror)

alt / [PRO_TERMINATETIASKISR] .

i forced termination of Task/ISR §<

[PR'D_TIERMINATEAPPL] !

! forced termination of OS-Application »‘(

[PRO_IGNORE]
. _ lgnore exception

ShutdownOS

=

]

1

1

]

]

]

| |
[PRO_SHUTDOWN] i
1

]

]

]

]

1

1

| Processor | | Operating System ‘ | Os-Appl / Task / Category 2 ISR

Figure 9.3: ProtectionHook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on the
return values of the ProtectionHook, either the faulty Task/ISR is forcibly terminated
or the OS-Application is forcibly terminated or the system is shut down.

AUTSSAR

9.4 Sequence chart for startupHook

sd Interactions /
OS-Appl. <App> operating system
StartOS(<Mode>) | :
® : il
Initial C Startup)
alt E
[system-/application-specific Startup Hook are configured]
E StartupHook
' StartupHook_<App>
I:I‘ P _<APP
T Uy S
< Normal Operation)

Figure 9.4: startupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in
OSEK OS the user calls the starto0s service to start the OS. During the startup the
startup hooks are called in the above order. The rest of the startup sequence is identi-
cal to the defined behaviour of OSEK OS.

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour in case of a shut down. The flow is the same
as in OSEK OS with the exception that the shut down hooks of the OS-Applications are
called before the general shutdownHook is called. Note that the specific shutdown
hooks of the application are not allowed to block, they must return to the caller.

AUTSSAR

sd Interactions /

OS-Appl. <App> operating system

C Shutdown >

alt i '

[system-v'applicétion-specific Shutdown Hook are configiured]

: 4ShutdownHook_<App>(<Error>) :

ShutdownHook(<Error>)

5]4——|

X X

Terminate Terminate

Figure 9.5: shutdownHook sequence chart

9.6 Sequence diagrams of Sender Receiver communication over
the I0C

9.6.1 Last-is-best communication

The 9.6 shows a sequence of successful and failure cases in the interaction between
the 10C and the RTE in case of last-is-best communication ("data" semantic).

AUTSSAR

sd loc LastisBest)

Sender Application «module» «module» «module» Receiver Application
(SND Core) SND Core RTE :Rte loc::loc RCV Core RTE :Rte (RCV Core)

T T
| |
Rte_Write_<p>_<o>(Std_ReturnType, |

i =T 1
Rte_Instance, void) locWrite_<locld>[_<Senderld>](<Data>,

Std_RetunType) >
(IOC_E_OK The RTE buffer is copied
RTELEOK ||~~~ 77777 into an 10C intemal buffer.

1 Rte_Read_<p>_<o>(Rte_Instance, |
void*)

locRead_<locld>(<Data>*,

i ic Std_RetunType)
The 10C reception buffer is yP! 10C_E_OK

copied into the bufferofthe | | b ——————=—=——— ——
receiver application.

‘RTE_E_OK

Figure 9.6: 10C - Last-is-best communication

9.6.2 Queued communication without pull callback

The figure 9.7 shows the interaction between IOC and RTE with a focus on the con-
gestion control for a queued communication.

The defined communication has no callback functionality for data reception, has an
internal buffer size of 2 data elements, no waitpoints are defined and the implicated
OS-Applications are located on different cores.

AUTSSAR

sd loc Queued without Callback /

amodulexs
RCV Core RTE :Rte

Sender Application amodules amodules
(SND Core) SND Core RTE :Rte loc::loc
T T T
| | |
Rte_Send_<p>_<o>(Rte_lIngtance, _ | :
ey
oid) locSend_<locld>[<Senderd>](<Data>, .
Std_RetumT =
_Retum Type) 10C_E_OK The RTE buffer is copied into
= — — GRTEEOK |~~~ 7777777 ° 10C intemal buffer.

Receiver Application
(RCV Core)

_Compute new buffer
content()

|
locReceive_<locld>{<Data>*,

The first queue entry isdeliverad to Std_RetumType)

the receiver application. An
overlayed emor isdelivered on the
receiver sde to inform that the
receiver istoo sow.

|
locReceive <locld>{<Data>",
Std_RetumType)
Jd0C_E_OK

|
locReceive_<locld>{<Data>*,
Std_RetumType)

Rte_Send_<p>_<o>(Rte_Insance,
void) =1
locSend_<locld>[<Senderd>](<Data>, .
Std_RetumType) =
10C_E_OK
RTEEOK | [~<——""7>">"~>"~~=~~——-
{ 777777 _— - — —
|
| Compute new buffer : :
content() | |
[I I
Rte_Send_<p>_<o>(Rte_Ingtance, | |
void) ’| |
|
locSend_<locld>[_<Senderd>](<Data>, |
Std_RetumType) _ - The 10C intemal queue gets
___docELmm__ _ _ full, last send request is
= — RTEE LMIT __ _ rejected.
T |

J10C_E_NO_DATA

Rte_Receive_<p>_<o>(Rte_Instance,

JOC_E_OK and I0C_E_LOST_DATA

Figure 9.7: 10C - Queued communication without callback

9.6.3 Queued communication with pull callback

The figure 9.8 shows the interaction between IOC and RTE in case of a queued com-
munication with an activated callback functionality. The RTE might handle notification
internally and might therefore not provide any callback functions, but a similar scenario
will occur in case of communication between CDDs on different cores. The receiving

CDD will provide the callback function in this case.

The defined communication has no waitpoints and describes a communication impli-

cating two OS-Applications located on different cores.

veid*)™
T [0 RIE £ LOST DAt
|
1
Rte Receive_<p>_<o>(Rte_Indance,
void*)™
T RTE_E_OK
7777777 - = — — — — }
L]
Rte_Receive_<p>_<o>(Rte_Instance,
void*)™
T ‘RTE_E_NO_DATA
______ — ____"5,
T T

AUTSSAR

d loc Queued with CaHback/

Sender Application
(SND Core)

Rte_Send_<p>_<o>(Rte_Instance |

«module» «module»
SND Core RTE :Rte loc :loc

void)

«module»
RCV Core RTE :Rte

I
|
|
o |
|
locSend_<|ocld>[_<Senderld>](<Data>, :
Std_RetumType) = Inter core notification (e.g. IRQ) |
|
(I0C_E_OK
a——_—— S N |
‘RTE_E_OK |
| |
: 1 RTE_locpPulice_slocld>) !
In case of N:1 communication the RTE stores | [| . . o
incoming data from different sendersin an 19¢Receive_<locld>(<Data>",
intemal buffer (on same or different cores) Std _RetumType)
| JOC_E_OK
S - >
1
)) I:ch.Rgce_ive_<IocId>(<Data>“,
It |srecomm_ended to empty the IOC_lntemaIStd RetumType]
queues within the pull callback function. | 10C E NO DATA
R e e e SL LGN >
‘RTE_E_OK

Rte_Receive_<p>_<o>(Rte_Instance,

Receiver Application
(RCV Core)

void*)"

‘RTE_E_OK

Figure 9.8: IOC Queued Communication with callback

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module Os.
Chapter 10.3 specifies the structure (containers) and the parameters of the loc.

Chapter 10.4 specifies the structure (containers) and the ARTI parameters for the Os
and loc.

Chapter 10.5 specifies published information of the module Os.

10.1 How to read this chapter

For details refer to [4] Chapter 10.1 “Introduction to configuration specification”.

10.1.1 Rules for paramters

Some configuration parameters are configured as floating point values and sometimes
these values must be rounded in order to be used. The following rules define the
rounding of specific parameters:

» Execution times (for the timing protection) are "round down"

» Timeframes are "round down"

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
Background information about the detailed meaning of the parameters can be found in
chapters 7 and 8.

For better readability OIL names of the 2.1 OS specification are given in curly braces
in the namefield of configuration parameters.

[SWS_Os_00861]
Upstream requirements: SRS_Os_11001
[The used EcucPartitionld(s) which are assigned to an OS-Application shall be zero-

based and consecutive. If this is not the case the consistency check shall issue an
error. |

AUTSSAR

[SWS_Os_00862]

Upstream requirements: SRS_Os_80011

[The used EcucCoreld(s) which are assigned to an OS-Application shall be zero-based
and consecutive. If this is not the case the consistency check shall issue an error. |

10.2.1 Os

[ECUC_Os_00396] Definition of EcucModuleDef Os |

Module Name

Os

Description

Configuration of the Os (Operating System) module.

Post-Build Variant Support

false

Supported Config Variants

VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Dependency

OsAlarm

0.*

An OsAlarm may be used to asynchronously inform or activate a
specific task. It is possible to start alarms automatically at
system start-up depending on the application mode.

OsAppMode

OsAppMode is the object used to define ISO 17356-3 properties
for an ISO 17356-3 application mode.

No standard attributes are defined for AppMode.

In a CPU, at least one AppMode object has to be defined.
[source: 1ISO 17356-6]

An OsAppMode called OSDEFAULTAPPMODE must always be
there for ISO 17356 compatibility.

OsApplication

An AUTOSAR OS must be capable of supporting a collection of
OS objects (tasks, interrupts, alarms, hooks etc.) that form a
cohesive functional unit. This collection of objects is termed an
OS-Application.

All objects which belong to the same OS-Application have
access to each other. Access means to allow to use these
objects within API services.

Access by other applications can be granted separately.

OsCounter

Configuration information for the counters that belong to the Os
Application.

OsEvent

Representation of OS events in the configuration context.
Adopted from the ISO 17356-6 specification.

Osloc

Configuration of the IOC (Inter OS Application Communicator).

Oslsr

The Oslsr container represents an ISO 17356 interrupt service
routine.

Os0S

OS is the object used to define ISO 17356-3 properties for an
1ISO 17356 application.
Per CPU exactly one OS object has to be defined.

OsPeripheralArea

0..65534

Container to structure the configuration parameters of one
peripheral area. The container short name can be used to
access this area.

OsResource

An OsResource object is used to co-ordinate the concurrent
access by tasks and ISRs to a shared resource, e.g. the
scheduler, any program sequence, memory or any hardware
area.

\Y

AUTSSAR

JAN

Included Containers

Container Name Multiplicity Dependency

OsScheduleTable 0..* An OsScheduleTable addresses the synchronization issue by
providing an encapsulation of a statically defined set of alarms
that cannot be modified at runtime.

OsSpinlock 0..” An OsSpinlock object is used to co-ordinate concurrent access
by TASKs/ISR2s on different cores to a shared resource.

OsTask 0.” This container represents an ISO 17356 task.

AUTSSAR

Os: EcucModuleDef +container 0s08:
@ EcucParam ConiContainerDef
upperMultiplicity = 1 -
lowerMultiplicity = 0) OsApplication: +destination
+CoNtaiNer| g 6paramConfContainerDef
>
upperMultiplicity = *
. OsTask: lowerMultiplicity = 0
+container| g param ConfContainerDef
upperMultiplicity = *
| Multiplicity = 0
owerMultiplicity) Osls:
+eontainer| g paramConfContainerDef
>
upperMultiplicity = *
. OsScheduleTable: lowerMultiplicity = 0
+container| gparam ConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0) OsResource:
+container| g, cparamConfContainerDef
>
upperMultiplicity = *
OsAlarm: lowerMultiplicity = 0
+container| g, cparamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0
+container OsCounter:
> EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
(@i OsEvent: " OsEventMask:
+container S CanfCantai +parameter e T e
EcucParamConfContainerDef EcuclntegerParamDef
o | —orederaeTe
upperMultiplicity = * upperMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 0
min =0
OsAppMode:
+container| EcucParamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 1
Osloc:
+container| EcucParamConfContainerDef
> =
lowerMultiplicity = 0
_ upperMultiplicity = 1
. OsSpinlock:
+container| g cparam ConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
OsPeripheralArea: +parameter OsPeripheralAreald:
EcucParamConfContainerDef |@———— EcuclntegerParam Def
upperMultiplicity = 65534 symbolicNameValue = true
lowerMultiplicity = 0
+parameter| OsPeripheral AreaStartAddress:
EcuclntegerParamDef
min = 0
+container
+p tor| OsPeripheralAreaEndAddress:
e EcucintegerParamDef
min = 0
. OsPeripheral AreaAccessingApplication:
+Heference EcucReferenceDef

upperMultiplicity = *
lowerMultiplicity = 0

Figure 10.1: Os configuration overview

10.2.2 OsAlarmSetEvent

[ECUC_Os_00016] Definition of EcucParamConfContainerDef OsAlarmSetEvent
[

AUTSSAR

Container Name

OsAlarmSetEvent

Parent Container

OsAlarmAction

Description

This container specifies the parameters to set an event

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OsAlarmSetEventRef

1

[ECUC_Os_00017]

OsAlarmSetEventTaskRef

1

[ECUC_Os _00018]

No Included Containers

]

[ECUC_Os_00017] Definition of EcucReferenceDef OsAlarmSetEventRef |

Parameter Name

OsAlarmSetEventRef

Parent Container

OsAlarmSetEvent

Description Reference to the event that will be set by that alarm action
Multiplicity 1
Type Reference to OsEvent

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00018] Definition of EcucReferenceDef OsAlarmSetEventTaskRef |

Parameter Name

OsAlarmSetEventTaskRef

Parent Container

OsAlarmSetEvent

Description Reference to the task that will be activated by that event
Multiplicity 1
Type Reference to OsTask

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

10.2.3 OsAlarm

[ECUC_Os_00003] Definition of EcucParamConfContainerDef OsAlarm |

AUTSSAR

Container Name

OsAlarm

Parent Container

Os

Description An OsAlarm may be used to asynchronously inform or activate a specific task. It is
possible to start alarms automatically at system start-up depending on the application
mode.

Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsAlarmAccessingApplication 0..* [ECUC_Os_00004]

OsAlarmCounterRef 1 [ECUC_Os_00005]

Included Containers

Container Name Multiplicity Dependency

OsAlarmAction 1 This container defines which type of notification is used when the

alarm expires.

OsAlarmAutostart 0..1 If present this container defines if an alarm is started

automatically at system start-up depending on the application
mode.

]

[ECUC_Os_00004] Definition of EcucReferenceDef OsAlarmAccessingApplica-

tion |

Parameter Name

OsAlarmAccessingApplication

Parent Container

OsAlarm

Description Reference to applications which have an access to this object.

Multiplicity 0.x

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Os_00005] Definition of EcucReferenceDef OsAlarmCounterRef |

Parameter Name

OsAlarmCounterRef

Parent Container

OsAlarm

Description Reference to the assigned counter for that alarm
Multiplicity 1
Type Reference to OsCounter

V

AUTSSAR

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Vari

ants

Link time

Post-build time

Dependency

EcucParal nerDef

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer

OsAlarmAutostart:

+reference

OsAlarmAppModeR:

EcucReferenceDef

EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

+reference

upperMultiplicity = *
lowerMultiplicity = 1

+parameter

EcucintegerParamDef

+destination

min =0

OsAppMode:
EcucParamConfContainerDef

+parameter

OsAlarmCycleTime:
EcucintegerParamDef

upperMultiplicity
lowerMultiplicity = 1

min =0

+parameter

OsAlarmAutostartType:
EcucEnumerationParamDef

+literal

ABSOLUTE:

+literal

EcucEnumerationLiteralDef

| RELATIVE:

EcucReferenceDef

+reference

OsAlarmAccessingApplication:

+destination

licati
EcucParamConfContainerDef

EcucEnumerationLiteralDef

upperMultiplicity
lowerMultiplicity = 0

upperMultiplicity = *

lowerMultiplicity = 0

OsAlarmCounterRef:

+subContainer

EcucReferenceDef

OsCounter:
EcucParamConfContainerDef

+destination

lowerMultiplicity = 0

+destination

upperMultiplicity = *

OsAlarmAction:
EcucChoiceContainerDef

. OsAlarmIncrementCounter: +reference | OsAlarmIncrementCounterRef:
+ohoice | Eo,cParamGonfContainerDef EcucReferenceDef
upperMultiplicity = 1
lowerMultiplicity = 0 OsTask:
[EcucParamConfContainerDef|
hoi OsAlarmActivateTask: +reference | OsAlarmActivateTaskRef: —
+Choice | o cParamConfContainerDef = EcucReferenceDef tiplicity
—_— lowerMultiplicity = 0
upperMultiplicity = 1
lowerMultiplicity = 0
sreference| SSAlarmSetEventTasRef:
+choice OsAlarmSetEvent: EcucReferenceDef +destination
EcucParamConfContainerDef
1 +reference Id - OsEvent:
lowerMultiplicity = 0 OsAlarmSetEventRef: +destinalion | oy oparamGonfContainerDef
‘EcucReferenceDef =
upperMultiplicity = *
OsAlarmCallback: lowerMultiplicity = 0
EcucParamConfContainerDef
= OsAlamCallbackName:
upperMultiplicity = 1 EcucFunctionNameDef
+choice lowerMultiplicity = 0
OsMemoryMappingCodeLocationRef:
+reference EcucForeignReferenceDef
destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0
upperMultiplicity = 1
OsAlarmBudgetReplenish: OsAlarmBudgetReplenishRef:
+choice| EcucParamConfContainerDef | +reference EcucReferenceDef
upperMultiplicity = 1 lowerMultiplicity = 1
lowerMultiplicity = 0 upperMultiplicity = 1

Figure 10.2: OsAlarm configuration overview

10.2.4 OsAlarmAction

AUTSSAR

[ECUC_Os_00006] Definition of EcucChoiceContainerDef OsAlarmAction |

Choice Container Name

OsAlarmAction

Parent Container

OsAlarm

Description

This container defines which type of notification is used when the alarm expires.

Multiplicity

1

No Included Parameters

Container Choices

Container Name Multiplicity Dependency

OsAlarmActivate Task 0..1 This container specifies the parameters to activate a task.

OsAlarmBudgetReplenish 0..1 This container specifies the parameters to activate a task.

OsAlarmCallback 0..1 This container specifies the parameters to call a callback OS
alarm action.

OsAlarmincrementCounter 0..1 This container specifies the parameters to increment a counter.

OsAlarmSetEvent 0..1 This container specifies the parameters to set an event

10.2.5 OsAlarmActivateTask

[ECUC_Os_00007] Definition of EcucParamConfContainerDef OsAlarmActivate

Task [

Container Name

OsAlarmActivate Task

Parent Container

OsAlarmAction

Description

This container specifies the parameters to activate a task.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

OsAlarmActivate TaskRef

1 [ECUC_Os_00008]

No Included Containers

]

[ECUC_Os_00008] Definition of EcucReferenceDef OsAlarmActivateTaskRef |

Parameter Name

OsAlarmActivate TaskRef

Parent Container

OsAlarmActivate Task

Description

Reference to the task that will be activated by that alarm action

Multiplicity

1

V

AUTSSAR

A
Type Reference to OsTask
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Os_00412] Definition of EcucParamConfContainerDef OsAlarmBudget

Replenish |

Container Name

OsAlarmBudgetReplenish

Parent Container OsAlarmAction

Description This container specifies the parameters to activate a task.
Multiplicity 0..1

Post-Build Variant Multiplicity false

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

OsAlarmBudgetReplenishRef

1 [ECUC_Os_00413]

No Included Containers

]

[ECUC_Os_00413] Definition of EcucReferenceDef OsAlarmBudgetReplenishRef

[

Parameter Name

OsAlarmBudgetReplenishRef

Parent Container

OsAlarmBudgetReplenish

Description Reference to the task whose execution budget will be replenished by that alarm
action.Note that the task must have OsTaskTimingProtectionDeferrableServer enabled.
Multiplicity 1
Type Reference to OsTask
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.6 OsAlarmAutostart

[ECUC_Os_00009] Definition of EcucParamConfContainerDef OsAlarmAutostart
[

AUTSSAR

Container Name

OsAlarmAutostart

Parent Container

OsAlarm

Description If present this container defines if an alarm is started automatically at system start-up
depending on the application mode.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsAlarmAlarmTime 1 [ECUC_Os_00010]
OsAlarmAutostartType 1 [ECUC_Os_00011]
OsAlarmCycleTime 1 [ECUC_Os_00012]
OsAlarmAppModeRef 1.* [ECUC_Os_00013]

No Included Containers

]

[ECUC_Os_00010] Definition of EcucintegerParamDef OsAlarmAlarmTime |

Parameter Name

OsAlarmAlarmTime

Parent Container

OsAlarmAutostart

Description The relative or absolute tick value when the alarm expires for the first time. Note that
for an alarm which is RELATIVE the value must be at bigger than 0.

Multiplicity 1

Type EcuclintegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os 00011] Definition of EcucEnumerationParamDef OsAlarmAutostart

Type [
Parameter Name OsAlarmAutostartType
Parent Container OsAlarmAutostart

Description This specifies the type of autostart for the alarm..

Multiplicity 1

Type EcucEnumerationParamDef

Range ABSOLUTE The alarm is started on startup via SetAbs
Alarm().

RELATIVE The alarm is started on startup via SetRel

Alarm().

Post-Build Variant Value false

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Os_00012] Definition of EcucintegerParamDef OsAlarmCycleTime |

Parameter Name

OsAlarmCycleTime

Parent Container

OsAlarmAutostart

Description Cycle time of a cyclic alarm in ticks. If the value is 0 than the alarm is not cyclic.
Multiplicity 1
Type EcucintegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00013] Definition of EcucReferenceDef OsAlarmAppModeRef |

Parameter Name

OsAlarmAppModeRef

Parent Container

OsAlarmAutostart

Description Reference to the application modes for which the AUTOSTART shall be performed

Multiplicity 1.*

Type Reference to OsAppMode

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.7 OsAlarmCallback

[ECUC_Os 00014] Definition of EcucParamConfContainerDef OsAlarmCallback

[

AUTSSAR

Container Name

OsAlarmCallback

Parent Container

OsAlarmAction

Description

This container specifies the parameters to call a callback OS alarm action.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OsAlarmCallbackName 1 [ECUC_Os_00087]
OsMemoryMappingCodeLocationRef 0..1 [ECUC_Os_00409]

No Included Containers

]

[ECUC_Os_00087] Definition of EcucFunctionNameDef OsAlarmCallbackName [

Parameter Name

OsAlarmCallbackName

Parent Container

OsAlarmCallback

Description Name of the function that is called when this alarm callback is triggered.
Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00409] Definition of EcucForeignReferenceDef OsMemoryMapping

CodelLocationRef |

Parameter Name

OsMemoryMappingCodeLocationRef

Parent Container

OsAlarmCallback

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class

Pre-compile time All Variants

Link time

Post-build time

Dependency

AUTSSAR

10.2.8 OsAlarmincrementCounter

[ECUC_Os_00302]
mentCounter |

Definition of EcucParamConfContainerDef OsAlarmincre-

Container Name OsAlarmincrementCounter

Parent Container OsAlarmAction

Description This container specifies the parameters to increment a counter.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

OsAlarmincrementCounterRef

1 [ECUC_Os _00015]

No Included Containers

]

[ECUC_Os 00015] Definition of EcucReferenceDef OsAlarmincrementCounter

Ref |

Parameter Name

OsAlarmincrementCounterRef

Parent Container

OsAlarmincrementCounter

Description Reference to the counter that will be incremented by that alarm action
Multiplicity 1
Type Reference to OsCounter

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time All Variants

Link time

Post-build time

Dependency

10.2.9 OsApplication

[ECUC_Os_00114] Definition of EcucParamConfContainerDef OsApplication |

Container Name

OsApplication

Parent Container

Os

Description

An AUTOSAR OS must be capable of supporting a collection of OS objects (tasks,
interrupts, alarms, hooks etc.) that form a cohesive functional unit. This collection of
objects is termed an OS-Application.

All objects which belong to the same OS-Application have access to each other.
Access means to allow to use these objects within API services.

Access by other applications can be granted separately.

Multiplicity

0.*

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

OsTrusted 1 [ECUC_Os_00115]

OsTrustedApplicationDelay TimingViolationCall 1 [ECUC_Os_00395]

OsTrustedApplicationWithProtection 1 [ECUC_Os_00394]

OsAppAlarmRef 0..* [ECUC_Os_00231]

OsAppCounterRef 0.* [ECUC_Os_00234]

OsAppEcucPartitionRef 1 [ECUC_Os_00392]

OsApplsrRef 0..* [ECUC_Os_00221]

OsAppScheduleTableRef 0..” [ECUC_Os_00230]

OsAppTaskRef 0..” [ECUC_Os_00116]

OsMemoryMappingCodelLocationRef 0..1 [ECUC_Os_00402]

Included Containers

Container Name Multiplicity Dependency

OsApplicationHooks 1 Container to structure the OS-Application-specific hooks

OsApplicationTrustedFunction 0.~ fContainer to structure the configuration parameters of trusted
unctions

]
[ECUC_Os_00115] Definition of EcucBooleanParamDef OsTrusted |

Parameter Name OsTrusted

Parent Container OsApplication

Description Parameter to specify if an OS-Application is trusted or not.
true: OS-Application is trusted false: OS-Application is not trusted (default)

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency Required for scalability class 3 and 4.

]

[ECUC_Os_00395] Definition of EcucBooleanParamDef OsTrustedApplication
DelayTimingViolationCall |

Parameter Name OsTrustedApplicationDelay TimingViolationCall
Parent Container OsApplication
Description Parameter to specify if a timing violation which occurs within an trusted OS-Application

is raised immediately or if it is delayed until the current task returns to the calling
OS-Application (return of CallTrustedFunction) true: violation / call to ProtectionHook()
is delayed false: timing violation cause an immediate call to the ProtectionHook().

Multiplicity 1
Type EcucBooleanParamDef
Default value true

Y%

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00394] Definition of EcucBooleanParamDef OsTrustedApplication
WithProtection |

Parameter Name OsTrustedApplicationWithProtection

Parent Container OsApplication

Description Parameter to specify if a trusted OS-Application is executed with memory protection or
not.

true: OS-Application runs within a protected environment. This means that write
access is limited. false: OS-Application has full write access (default)

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]
[ECUC_Os_00231] Definition of EcucReferenceDef OsAppAlarmRef |

Parameter Name OsAppAlarmRef

Parent Container OsApplication

Description Specifies the OsAlarms that belong to the OsApplication.
Multiplicity 0.x

Type Reference to OsAlarm

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

AUTSSAR

[ECUC_Os_00234] Definition of EcucReferenceDef OsAppCounterRef |

Parameter Name

OsAppCounterRef

Parent Container

OsApplication

Description References the OsCounters that belong to the OsApplication.

Multiplicity 0..”

Type Reference to OsCounter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00392] Definition of EcucReferenceDef OsAppEcucPartitionRef |

Parameter Name

OsAppEcucPartitionRef

Parent Container

OsApplication

Description Denotes which "EcucPartition" is implemented by this "OSApplication".
Multiplicity 1
Type Reference to EcucPartition
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00221] Definition of EcucReferenceDef OsApplsrRef |

Parameter Name

OsApplsrRef

Parent Container

OsApplication

Description references which Oslsrs belong to the OsApplication
Multiplicity 0.*

Type Reference to Oslsr

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

AUTSSAR

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

[ECUC_Os_00230] Definition of EcucReferenceDef OsAppScheduleTableRef |

Parameter Name

OsAppScheduleTableRef

Parent Container

OsApplication

Description References the OsScheduleTables that belong to the OsApplication.

Multiplicity 0..*

Type Reference to OsScheduleTable

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

[ECUC_Os_00116] Definition of EcucReferenceDef OsAppTaskRef |

Parameter Name

OsAppTaskRef

Parent Container

OsApplication

Description references which OsTasks belong to the OsApplication

Multiplicity 0..”

Type Reference to OsTask

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Os_00402] Definition of EcucForeignReferenceDef OsMemoryMapping
CodelocationRef |

Parameter Name OsMemoryMappingCodelocationRef

Parent Container OsApplication, OsApplicationHooks, OsHooks, Oslsr, OsTask

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

OsApplication: EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer

OsApplicationHooks:

EcucParamConfContainerDef

+referenceT

OsAppScheduleTableRef: OsScheduleTable:
+reference EcucReferenceDef +destination EcucParamConfContainerDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0
OsAppTaskRef: OsTask:
+reference EcucReferenceDef +destination| EcucParamConfContainerDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0
OsApplsrRef: EcucReferenceDef L Oslsr:
+reference +destination| £y cParamConfContainerDef
upperMultiplicity = * S
lowerMultiplicity = 0 upperMultiplicity = *
lowerMultiplicity = 0
OsAppCounterRef: OsCounter:
+reference EcucReferenceDef +destination| EcucParamConfContainerDef
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = *
OsAppAlarmRef:
+reference EcucReferenceDef 5
S —— +destination _OSAIarm .
upperMultiplicity = * EcucParamConfContainerDef
lowerMultiplicity = 0 upperMultiplicity = *
lowerMultiplicity = 0
OsAppEcucPartitionRef:
+reference EcucReferenceDef +destination EcucPartition:
EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *
OsTrusted:
+parameter EcucBooleanParamDef
defaultValue = false o X
X OsApplicationTrustedFunction:
+subContainer|"Ec,,cParamConfContainerDef
> ———————
upperMultiplicity = *
+parameter OsTrustedApplicationDelayTimingViolationCall: lowerMultiplicity = 0
EcucBooleanParamDef
defaultValue = true
OsT rustedApplicationWithProtection:
P +param EcucBooleanParamDef

defaultValue = false

+reference

+reference

OsMemoryMappingCodeL ocationRef:
EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD

lowerMultiplicity = 0
upperMultiplicity = 1

+reference

Figure 10.3: OsApplication configuration overview

AUTSSAR

10.2.10 OsApplicationHooks

[ECUC_Os_00020] Definition of EcucParamConfContainerDef OsApplication

Hooks |

Container Name

OsApplicationHooks

Parent Container

OsApplication

Description

Container to structure the OS-Application-specific hooks

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsAppErrorHook 1 [ECUC_Os_00213]
OsAppShutdownHook 1 [ECUC_Os_00125]
OsAppStartupHook 1 [ECUC_Os_00124]
OsMemoryMappingCodeLocationRef 0..1 [ECUC_Os_00402]

| No Included Containers

]

[ECUC_Os_00213] Definition of EcucBooleanParamDef OsAppErrorHook |

Parameter Name

OsAppErrorHook

Parent Container

OsApplicationHooks

Description Select the OS-Application error hook.
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Required for scalability class 3 and 4.

]

[ECUC_Os_00125] Definition of EcucBooleanParamDef OsAppShutdownHook |

Parameter Name

OsAppShutdownHook

Parent Container

OsApplicationHooks

Description Select the OS-Application specific shutdown hook for the OS-Application.
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

V

AUTSSAR

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

Required for scalability class 3 and 4.

]

[ECUC_Os_00124] Definition of EcucBooleanParamDef OsAppStartupHook |

Parameter Name

OsAppStartupHook

Parent Container

OsApplicationHooks

Description Select the OS-Application specific startup hook for the OS-Application.
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

Required for scalability class 3 and 4.

]

For parameter table [ECUC_Os_00402] OsMemoryMappingCodeLocationRef, see

definition below container OsApplication.

OsApplication:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

¢

+subContainer OsApplicationHooks:

EcucParamConfContainerDef

+parameter| OsAppStartupHook:

EcucBooleanParamDef

+parameter

OsAppShutdownHook:
EcucBooleanParamDef

+parameter

OsAppErrorHook:

EcucBooleanParamDef

OsMemoryMappingCodeLocationRef:

+reference EcucForeignReferenceDef
destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0

+reference

upperMultiplicity = 1

v
ARElement
AtpBlueprint
AtpBlueprintable
SwAddrMethod

-
+
+
.

memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
option: Identifier [0..*]

sectionlnitializationPolicy: SectionlnitializationPolicyType [0..1]

sectionType: MemorySectionType [0..1]

Figure 10.4: OsApplicationHooks configuration overview

AUTSSAR

10.2.11 OsApplicationTrustedFunction

[ECUC_Os_00021]
TrustedFunction |

Definition of EcucParamConfContainerDef OsApplication

Container Name

OsApplicationTrustedFunction

Parent Container

OsApplication

Description

Container to structure the configuration parameters of trusted functions

Multiplicity

0.~

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OsTrustedFunctionName 1 [ECUC_Os_00254]
OsMemoryMappingCodelLocationRef 0..1 [ECUC_Os_00408]

| No Included Containers

]

[ECUC_Os_00254] Definition of EcucFunctionNameDef OsTrustedFunctionName

[

Parameter Name

OsTrustedFunctionName

Parent Container

OsApplicationTrustedFunction

Description Trusted function (as part of a trusted OS-Application) available to other
OS-Applications. This also supersedes the ISO 17356-6 attribute TRUSTED in
APPLICATION because the optionality of this parameter is describing that already.

Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Required for scalability class 3 and 4 and in trusted OS-Applications.

]

[ECUC_Os_00408] Definition of EcucForeignReferenceDef OsMemoryMapping

CodelLocationRef |

Parameter Name

OsMemoryMappingCodelocationRef

Parent Container

OsApplicationTrustedFunction

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

V

AUTSSAR

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

OsApplicationTrustedFunction: OsTrustedFunctionName:
EcucParamConfContainerDef EcucFunctionNameDef
+parameter

upperMultiplicity = *
lowerMultiplicity = 0

+reference ARElement
AtpBlueprint

OsMemoryMappingCodeLocationRef: AtpBlueprintable
EcucForeignReferenceDef -——=> SwAddrMethod

destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0
upperMultiplicity = 1

memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
option: Identifier [0..*]

sectionlnitializationPolicy: SectionlInitializationPolicyType [0..1]

sectionType: MemorySectionType [0..1]

+ o+ o+ o+

Figure 10.5: OsApplicationTrustedFunction configuration overview

10.2.12 OsAppMode

[ECUC_Os_00022] Definition of EcucParamConfContainerDef OsAppMode |

Container Name OsAppMode
Parent Container Os
Description OsAppMode is the object used to define ISO 17356-3 properties for an ISO 17356-3

application mode.

No standard attributes are defined for AppMode.

In a CPU, at least one AppMode object has to be defined.

[source: ISO 17356-6]

An OsAppMode called OSDEFAULTAPPMODE must always be there for ISO 17356
compatibility.

Multiplicity 1.*

Configuration Parameters

| No Included Parameters

| No Included Containers

10.2.13 OsCounter

[ECUC_Os_00026] Definition of EcucParamConfContainerDef OsCounter |

AUTSSAR

Container Name

OsCounter

Parent Container

Os

Description

Configuration information for the counters that belong to the OsApplication.

Multiplicity

0..x

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OsCounterMaxAllowedValue 1 [ECUC_Os_00027]
OsCounterMinCycle 1 [ECUC_Os_00028]
OsCounterTicksPerBase 1 [ECUC_Os_00029]
OsCounterType 1 [ECUC_Os_00255]
OsSecondsPerTick 0..1 [ECUC_Os_00030]
OsCounterAccessingApplication 0..” [ECUC_Os_00031]
Included Containers
Container Name Multiplicity Dependency
OsDriver 0..1 This Container contains the information who will drive the
counter. This configuration is only valid if the counter has Os
CounterType set to HARDWARE.
If the container does not exist (multiplicity=0) the timer is
managed by the OS internally (OSINTERNAL).
If the container exists the OS can use the GPT interface to
manage the timer. The user have to supply the GPT channel.
If the counter is driven by some other (external to the OS) source
(like a TPU for example) this must be described as a vendor
specific extension.
OsTimeConstant 0.* Allows the user to define constants which can be e.g. used to
compare time values with timer tick values.
A time value will be converted to a timer tick value during
generation and can later on accessed via the OsConstName.
The conversation is done by rounding time values to the nearest
fitting tick value.

]

[ECUC_Os_00027] Definition of EcuclntegerParamDef OsCounterMaxAllowed

Value |

Parameter Name

OsCounterMaxAllowedValue

Parent Container

OsCounter

Description Maximum possible allowed value of the system counter in ticks.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Os_00028] Definition of EcuclntegerParamDef OsCounterMinCycle |

Parameter Name

OsCounterMinCycle

Parent Container

OsCounter

Description The MINCYCLE attribute specifies the minimum allowed number of counter ticks for a
cyclic alarm linked to the counter.

Multiplicity 1

Type EcuclintegerParamDef

Range 1 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Os_00029] Definition of EcucintegerParamDef OsCounterTicksPerBase

[

Parameter Name

OsCounterTicksPerBase

Parent Container

OsCounter

Description The TICKSPERBASE attribute specifies the number of ticks required to reach a
counterspecific unit. The interpretation is implementation-specific.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00255] Definition of EcucEnumerationParamDef OsCounterType |

Parameter Name

OsCounterType

Parent Container

OsCounter

Description This parameter contains the natural type or unit of the counter.
Multiplicity 1
Type EcucEnumerationParamDef
Range HARDWARE This counter is driven by some hardware e.g. a
hardware timer unit.
SOFTWARE The counter is driven by some software which
calls the IncrementCounter service.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time

Dependency

]

[ECUC_Os_00030] Definition of EcucFloatParamDef OsSecondsPerTick |

Parameter Name

OsSecondsPerTick

Parent Container

OsCounter

Description Time of one counter tick in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00031] Definition of EcucReferenceDef OsCounterAccessingAppli-

cation [

Parameter Name

OsCounterAccessingApplication

Parent Container

OsCounter

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

AUTSSAR

OsCounter:

EcucParamConfContainerDef

+parameter

OsCounterMinCycle:

EcuclntegerParamDef

min =1

lowerMultiplicity = 0
upperMultiplicity = *

+parameter

OsCounterMaxAllowedValue:
EcucintegerParamDef

min =1

OsCounterTicksPerBase:

+p

EcucintegerParamDef

min =1
max = 4294967295

OsCounterType:
EcucEnumerationParamDef

+literal

HARDWARE:
EcucEnumerationLiteral Def|

+parameter

+literal

SOFTWARE:
EcucEnumerationLiteral Def|

OsDriver:
EcucParamConfContainerDef|

+subContainer

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

OsTimeCongtant:
EcucParamConfContainerDef|

+reference

OsGptChannelRef: EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+parameter

+deslinalion\|/

GptChannelConfiguration:

EcucParamConfContainerDef

OsTimeValue:
EcucFloatParamDef

+parameter

lowerMultiplicity = 0
upperMultiplicity = *

OsSecondsPerTick
EcucFloatParamDef

upperMultiplicity = 1
lowerMultiplicity = 0
min =0

max = INF

+reference

OsCounterAccessingApplication:
EcucReferenceDef

+destination

upperMultiplicity = *
lowerMultiplicity = 1

min =0
max = INF

+parameter Y

GptChannelld:
EcuclntegerParamDef

min =0
max = 4294967295
symbolicNameValue = true

OsApplication:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

10.2.14 OsEvent

upperMultiplicity = *
lowerMultiplicity = 0

Figure 10.6: OsCounter configuration overview

[ECUC_Os_00033] Definition of EcucParamConfContainerDef OsEvent |

Container Name

OsEve

nt

Parent Container

Os

Description Representation of OS events in the configuration context. Adopted from the ISO
17356-6 specification.
Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OsEventMask

0..1

[ECUC_Os_00034]

| No Included Containers

AUTSSAR

[ECUC_Os_00034] Definition of EcucintegerParamDef OsEventMask |

Parameter Name

OsEventMask

Parent Container

OsEvent

Description If event mask would be set to AUTO in OIL, this parameter should be omitted here.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.15 OsDriver

[ECUC_Os_00371] Definition of EcucParamConfContainerDef OsDriver |

Container Name

OsDriver

Parent Container

OsCounter

Description

This Container contains the information who will drive the counter. This configuration is
only valid if the counter has OsCounterType set to HARDWARE.

If the container does not exist (multiplicity=0) the timer is managed by the OS internally
(OSINTERNAL).

If the container exists the OS can use the GPT interface to manage the timer. The user
have to supply the GPT channel.

If the counter is driven by some other (external to the OS) source (like a TPU for
example) this must be described as a vendor specific extension.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

OsGptChannelRef

0..1 [ECUC_Os_00032]

No Included Containers

AUTSSAR

[ECUC_Os_00032] Definition of EcucReferenceDef OsGptChannelRef |

Parameter Name

OsGptChannelRef

Parent Container

OsDriver

Description Reference to the GPT channel.

Multiplicity 0..1

Type Symbolic name reference to GptChannelConfiguration

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

10.2.16 OsHooks

[ECUC_Os_00035] Definition of EcucParamConfContainerDef OsHooks |

Container Name

OsHooks

Parent Container

0s0S

Description

Container to structure all hooks belonging to the OS

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsErrorHook 1 [ECUC_Os_00036]
OsPostTaskHook 1 [ECUC_Os_00037]
OsPreTaskHook 1 [ECUC_Os_00038]
OsProtectionHook 0..1 [ECUC_Os_00214]
OsShutdownHook 1 [ECUC_Os_00039]
OsStartupHook 1 [ECUC_Os_00040]
OsMemoryMappingCodeLocationRef 0..1 [ECUC_Os_00402]

No Included Containers

AUTSSAR

[ECUC_Os_00036] Definition of EcucBooleanParamDef OsErrorHook |

Parameter Name OsErrorHook

Parent Container OsHooks

Description Error hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

J
[ECUC_Os_00037] Definition of EcucBooleanParamDef OsPostTaskHook |

Parameter Name OsPostTaskHook

Parent Container OsHooks

Description Post-task hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

J
[ECUC_Os_00038] Definition of EcucBooleanParamDef OsPreTaskHook |

Parameter Name OsPreTaskHook

Parent Container OsHooks

Description Pre-task hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Os_00214] Definition of EcucBooleanParamDef OsProtectionHook |

Parameter Name

OsProtectionHook

Parent Container

OsHooks

Description Switch to enable/disable the call to the (user supplied) protection hook.
true: Protection hook is called on protection error false: Protection hook is not called
Multiplicity 0..1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2,3 and 4

]

[ECUC_Os_00039] Definition of EcucBooleanParamDef OsShutdownHook |

Parameter Name

OsShutdownHook

Parent Container

OsHooks

Description Shutdown hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Os_00040] Definition of EcucBooleanParamDef OsStartupHook |

Parameter Name

OsStartupHook

Parent Container

OsHooks

Description Startup hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

AUTSSAR

| Dependency

]

For parameter table [ECUC_Os_00402] OsMemoryMappingCodeLocationRef, see
definition below container OsApplication.

Ceuep OgHot;ICS: inerD +parameter OsStartupHook:
o oS @ EcucBooleanParamDef

0s0S:
EcucParamConfContainerDef

+parameter(OsShutdownHook:
EcucBooleanParamDef

+parameter OsPreTaskHook:
EcucBooleanParamDef

+subContainer
OsPostTaskHook:

+parameter
EcucBooleanParamDef

OsProtectionHook:

+parameter| g ¢, cBooleanParamDef

upperMultiplicity = 1
lowerMultiplicity = 0

+parameter OsErrorHook:
EcucBooleanParamDef

OsMemoryMappingCodeLocationRef:
+reference EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0
upperMultiplicity = 1

v

ARElement
AtpBlueprint
AtpBlueprintable
SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
+ option: Identifier [0..*]

+ sectionlnitializationPolicy: SectionlInitializationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

Figure 10.7: OsHooks configuration overview

10.2.17 Oslsr

[ECUC_Os_00041] Definition of EcucParamConfContainerDef Oslsr |

Container Name Oslsr

Parent Container Os

Description The Oslsr container represents an ISO 17356 interrupt service routine.
Multiplicity 0..”

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

OslsrCategory 1 [ECUC_Os_00042]
OslsrPeriod 0..1 [ECUC_Os_00403]
OslsrResourceRef 0..” [ECUC_Os_00043]
OsMemoryMappingCodeLocationRef 0..1 [ECUC_Os_00402]

Included Containers

Container Name Multiplicity Dependency

OslsrTimingProtection 0..1 This container contains all parameters which are related to
timing protection

If the container exists, the timing protection is used for this
interrupt. If the container does not exist, the interrupt is not
supervised regarding timing violations.

]
[ECUC_Os_00042] Definition of EcucEnumerationParamDef OslisrCategory |

Parameter Name OslsrCategory

Parent Container Oslsr

Description This attribute specifies the category of this ISR.

Multiplicity 1

Type EcucEnumerationParamDef

Range CATEGORY_1 Interrupt is of category 1
CATEGORY_2 Interrupt is of category 2

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_Os_00403] Definition of EcucFloatParamDef OslsrPeriod |

Parameter Name OslsrPeriod
Parent Container Oslsr
Description This parameter specifies the period in seconds of this ISR in case of a cyclically

triggered interrupt.

If this parameter is not given the interrupt can be activated sporadicly or cyclically with
a unknown period value.

This value is information, e.g. for time base calculations in the RTE in case Timing
Events are mapped onto this Oslsr. Be aware, that this parameter is not supposed to
be relevant for the OS! It’s the responsibility of the integrator to ensure the activation of
the ISR according the configured period. This information is given as part of the OS
configuration to support configuration work flows using a fixed set of Oslsrs.

Multiplicity 0..1
Type EcucFloatParamDef
Range [-INF .. INF] |

Default value -

Post-Build Variant Multiplicity false

AUTSSAR

A
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

J
[ECUC_Os_00043] Definition of EcucReferenceDef OslsrResourceRef |

Parameter Name OslsrResourceRef

Parent Container Oslsr

Description This reference defines the resources accessed by this ISR.
Multiplicity 0..”

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

For parameter table [ECUC_Os_00402] OsMemoryMappingCodeLocationRef, see
definition below container OsApplication.

AUTSSAR

+literal o
Oslsr: OslsrCategory: o—] E E—CATEGQRYE1 = B
ks t S TAlOnDaT cucEnumerationLiteral De
EcucParamConiComainerDefC +parameter| EcucEnumerationParamDef Ssiesiiineleein el bl
+literal
upperMultiplicity = * CATEGORY_2:
lowerMultiplicity = 0 EcucEnumerationLiteral Def
. OslsrResourceRef: N OsResource: +destination| OslsrResourceLockResourceRef:
+reference EcucReferenceDef +destination | o, cparam ConfGontainerDef EcucReferenceDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0 +reference
OslsrTimingProtection:
EcucParamConfContainerDef OslsrResourceLock:
+subContainer EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *

. +parameter
+subContainer
OslstTimeFrame: OslsrResourceLockBudget:
EcucFloatParamDef EcucFloatParamDef
+parameter| ———————— ——
upperMultiplicity = 1 min =0
lowerMultiplicity = 0 max = INF
min =0
max = INF
OslsrExecutionBudget:
EcucFloatParam Def
+parameter ——
Iuopm’/]:rrhr;llll:]llttig)llifi‘t;y:g OslsrOsInterruptLockBudget:
. EcucFloatParamDef
min =0 R
max = INF upperMultiplicity = 1
+parameter lowerMultiplicity = 0
o min =0
max = INF

+parameter| OslsrAllInterruptLockBudget:
EcucFloatParamDef

upperMultiplicity = 1
lowerMultiplicity = 0
+parameter OslsrPeriod: EcucFloatParamDef min =0

max = INF

lowerMultiplicity = 0
upperMultiplicity = 1

OsMemoryMappingCodeLocationRef:
+reference EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0
upperMultiplicity = 1

v

ARElement
AtpBlueprint
AtpBlueprintable
SwAddrMethod

memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
option: Identifier [0..*]

sectionlnitializationPolicy: SectionlnitializationPolicyType [0..1]

sectionType: MemorySectionType [0..1]

+ o+ o+ o+

Figure 10.8: Oslsr configuration overview

10.2.18 OslsrResourcelLock

[ECUC_Os 00388] Definition of EcucParamConfContainerDef OslsrResource
Lock [

AUTSSAR

Container Name

OslsrResourcelock

Parent Container

OslsrTimingProtection

Description

This container contains a list of times the interrupt uses resources.

Multiplicity

0.*

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OslsrResourcelLockBudget

1

[ECUC_Os_00389]

OslsrResourceLockResourceRef

1

[ECUC_Os_00390]

No Included Containers

]

[ECUC_Os_00389] Definition of EcucFloatParamDef OslsrResourceLockBudget

[

Parameter Name

OslsrResourcelLockBudget

Parent Container

OslsrResourcelLock

Description This parameter contains the maximum time the interrupt is allowed to hold the given
resource (in seconds).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

Required for scalability class 2 and 4

]

[ECUC_Os_00390] Definition of EcucReferenceDef OslsrResourceLockResource

Ref |

Parameter Name

OslsrResourceLockResourceRef

Parent Container

OslsrResourcelock

Description Reference to the resource the locking time is depending on
Multiplicity 1
Type Reference to OsResource

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

Required for scalability class 2 and 4

AUTSSAR

10.2.19 OslsrTimingProtection

[ECUC_Os_00326] Definition of EcucParamConfContainerDef OslsrTimingPro-

tection |

Container Name

OslsrTimingProtection

Parent Container

Oslsr

Description This container contains all parameters which are related to timing protection
If the container exists, the timing protection is used for this interrupt. If the container
does not exist, the interrupt is not supervised regarding timing violations.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OslsrAlllinterruptLockBudget 0..1 [ECUC_Os_00229]

OslsrExecutionBudget 0..1 [ECUC_Os_00222]

OslsrOslInterruptLockBudget 0..1 [ECUC_Os_00387]

OslsrTimeFrame 0..1 [ECUC_Os_00223]

Included Containers

Container Name Multiplicity Dependency

OslsrResourcelock 0.x This container contains a list of times the interrupt uses
resources.

]

[ECUC_Os_00229] Definition of EcucFloatParamDef OsisrAllinterruptLockBud-

get [

Parameter Name

OslsrAllinterruptLockBudget

Parent Container

OslsrTimingProtection

Description This parameter contains the maximum time for which the ISR is allowed to lock all
interrupts (via SuspendAllinterrupts() or DisableAlllnterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2 and 4

AUTSSAR

[ECUC_Os_00222] Definition of EcucFloatParamDef OslsrExecutionBudget |

Parameter Name

OslsrExecutionBudget

Parent Container

OslsrTimingProtection

Description The parameter contains the maximum allowed execution time of the interrupt (in
seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Required for scalability class 2 and 4

]

[ECUC_Os_00387] Definition of EcucFloatParamDef OslsrOsinterruptLockBud-

get [

Parameter Name

OslsrOslnterruptLockBudget

Parent Container

OslsrTimingProtection

Description This parameter contains the maximum time for which the ISR is allowed to lock all
Category 2 interrupts (via SuspendOSinterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0.. INF]
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2 and 4

AUTSSAR

[ECUC_Os_00223] Definition of EcucFloatParamDef OslsrTimeFrame |

Parameter Name

OslsrTimeFrame

Parent Container

OslsrTimingProtection

Description This parameter contains the minimum inter-arrival time between successive interrupts
(in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2 and 4

10.2.20 OsOS

[ECUC_Os_00044] Definition of EcucParamConfContainerDef OsOS |

Container Name

0s0S

Parent Container

Os

Description

OS is the object used to define ISO 17356-3 properties for an ISO 17356 application.
Per CPU exactly one OS object has to be defined.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsLockTrustedFunctionCall 1 [ECUC_Os_00410]
OsNumberOfCores 0..1 [ECUC_Os_01019]
OsScalabilityClass 0..1 [ECUC_Os_00259]
OsStackMonitoring 1 [ECUC_Os_00307]
OsStatus 1 [ECUC_Os_00046]
OsUseArti 1 [ECUC_Os_00406]
OsUseGetServiceld 1 [ECUC_Os_00047]
OsUseParameterAccess 1 [ECUC_Os_00048]
OsUseResScheduler 1 [ECUC_Os_00049]

Included Containers

Container Name

Multiplicity Dependency

OsHooks

1 Container to structure all hooks belonging to the OS

AUTSSAR

]

[ECUC_Os_00410] Definition of EcucBooleanParamDef OsLockTrustedFunction

Call

Parameter Name

OsLockTrustedFunctionCall

Parent Container

0s0S

Description The OsLockTrustedFunctionCall attribute defines whether the OS locks preemption
while a trusted function call is ongoing.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_01019] Definition of EcucintegerParamDef OsNumberOfCores |

Value Configuration Class

Parameter Name OsNumberOfCores

Parent Container 0Os0S

Description Maximum number of cores that are controlled by the OS.
The OS uses the value internally. It depends on the ECU HW.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time Al Variants
Link time
Post-build time
Pre-compile time All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Os_00259] Definition of EcucEnumerationParamDef OsScalabilityClass

[

Parameter Name

OsScalabilityClass

Parent Container

0s0S

Description A scalability class for each System Object "OS" has to be selected. In order to
customize the operating system to the needs of the user and to take full advantage of
the processor features the operating system can be scaled according to the scalability
ﬁ‘l?s:es%alability class is omitted this translates to the OIL AUTO mechanism.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range SCH1 -

SC2 -
SC3 -
SC4 -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00307] Definition of EcucBooleanParamDef OsStackMonitoring [

Parameter Name OsStackMonitoring

Parent Container Os0S

Description Select stack monitoring of Tasks/Category 2 ISRs
true: Stacks are monitored false: Stacks are not monitored

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00046] Definition of EcucEnumerationParamDef OsStatus |

Parameter Name

OsStatus

Parent Container

0s0S

Description The Status attribute specifies whether a system with standard or extended status has
to be used. Automatic assignment is not supported for this attribute.

Multiplicity 1

Type EcucEnumerationParamDef

Range EXTENDED -
STANDARD -

Post-Build Variant Value false

AUTSSAR

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00406] Definition of EcucBooleanParamDef OsUseArti |

Parameter Name

OsUseArti

Parent Container

0s0S

Description The OsUseAtrti attribute defines whether the OS uses and calls ARTI hooks. This
includes also the generation of related ARTI artifacts by the generator.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00047] Definition of EcucBooleanParamDef OsUseGetServiceld |

Parameter Name

OsUseGetServiceld

Parent Container

0s0S

Description As defined by ISO 17356
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00048] Definition of EcucBooleanParamDef OsUseParameterAccess

[

Parameter Name

OsUseParameterAccess

Parent Container

0s0S

Description As defined by ISO 17356
Multiplicity 1
Type EcucBooleanParamDef

Default value

V

AUTSSAR

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00049] Definition of EcucBooleanParamDef OsUseResScheduler |

Parameter Name

OsUseResScheduler

Parent Container

0Os0S

Description The OsUseResScheduler attribute defines whether the resource RES_SCHEDULER is
used within the application.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

Os: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

0s0S:
EcucParamConfContainerDef

sliteral STANDARD:
EcucEnumerationLiteral Def]

OsStatus:
EcucEnumerationParamDef

+parameter
+literal EXTENDED:
EcucEnumerationLiteral Def
i 2 +literal SC1:
OsScalabilityClass: :
EcucEnumerationParamDef g |EcucEnumerationLiteral Defl
lowerMultiplicity = 0
+literal SC2:
[EcucEnumerationLiteral Def|
+parameter

+literal SC3:
EcucEnumerationLiteral Def]

+literal SC4:
EcucEnumerationLiteral Def]

+parameter| OsUseGetServiceld:
EcucBooleanParamDef

+p
o OsUseP. terAccess:
EcucBooleanParamDef

+parameter OsStackMonitoring:
EcucBooleanParamDef

+parameter OsUseResScheduler:
> EcucBooleanParamDef

defaultValue = true

+subContainer OsHooks:
EcucParamConfContainerDef

+parameter OsUseArti:
> EcucBooleanParamDef

OsNumberOfCores:
EcucIntegerParamDef
min =1
max = 65535
lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

OslLockTrustedFunctionCall:

+parameter| EcucBooleanParamDef

defaultValue = true
lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.9: OsOs configuration overview

10.2.21 OsPeripheralArea

[ECUC_Os_00397] Definition of EcucParamConfContainerDef OsPeripheralArea
[

AUTSSAR

Container Name OsPeripheralArea

Parent Container Os

Description Container to structure the configuration parameters of one peripheral area. The
container short name can be used to access this area.

Multiplicity 0..65534

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsPeripheralAreaEndAddress 1 [ECUC_Os_00400]
OsPeripheralAreald 1 [ECUC_Os_00398]
OsPeripheralAreaStartAddress 1 [ECUC_Os_00399]
OsPeripheralAreaAccessingApplication 0..” [ECUC_Os_00401]

No Included Containers

]

[ECUC_Os_00400] Definition of EcucintegerParamDef OsPeripheralAreaEndAd-
dress |

Parameter Name OsPeripheralAreaEndAddress

Parent Container OsPeripheralArea

Description Last valid address of a peripheral area.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
[ECUC_Os_00398] Definition of EcucintegerParamDef OsPeripheralAreald |

Parameter Name OsPeripheralAreald

Parent Container OsPeripheralArea

Description Id of peripheral area.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 18446744073709551615 |

V

AUTSSAR

A
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Os_00399] Definition of EcuclntegerParamDef OsPeripheralAreaStartAd-
dress |

Parameter Name OsPeripheralAreaStartAddress

Parent Container OsPeripheralArea

Description First valid address of a peripheral area.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -
Post-Build Variant Multiplicity false

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Os_00401] Definition of EcucReferenceDef OsPeripheralAreaAccessing
Application |

Parameter Name OsPeripheralAreaAccessingApplication

Parent Container OsPeripheralArea

Description Reference to application which have access to this object.
Multiplicity 0.x

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Dependency

10.2.22 OsResource

[ECUC_Os_00252] Definition of EcucParamConfContainerDef OsResource |

AUTSSAR

Container Name

OsResource

Parent Container

Os

Description An OsResource object is used to co-ordinate the concurrent access by tasks and ISRs
to a shared resource, e.g. the scheduler, any program sequence, memory or any
hardware area.

Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsResourceProperty 1 [ECUC_Os_00050]
OsResourceAccessingApplication 0.~ [ECUC_Os_00051]
OsResourceLinkedResourceRef 0..1 [ECUC_Os_00052]

No Included Containers

]

[ECUC_Os_00050] Definition of EcucEnumerationParamDef OsResourceProp-

erty [
Parameter Name OsResourceProperty
Parent Container OsResource

Description This specifies the type of the resource.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERNAL The resource is an internal resource.
LINKED The resource is a linked resource (a second

name for a existing resource).

STANDARD The resource is a standard resource.

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Os_00051] Definition of EcucReferenceDef OsResourceAccessingAppli-

cation [
Parameter Name OsResourceAccessingApplication
Parent Container OsResource
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Os_00052] Definition of EcucReferenceDef OsResourceLinkedResource

Ref |

Parameter Name

OsResourcelinkedResourceRef

Parent Container

OsResource

Description The link to the resource. Must be valid if OsResourceProperty is LINKED. If Os
ResourceProperty is not LINKED the value is ignored.

Multiplicity 0..1

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

OsResource:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+destination
OsResourceLinkedResourceRef:
EcucReferenceDef
——————————— !
+reference upperMultiplicity = 1 |
lowerMultiplicity = 0 I
v
o literal LINKED:
OsResourceProperty: +
EcucEnumerationParamDef " @———— EcucEnumerationLiteral Def
+parameter +literal INTERNAL:
EcucEnumerationLiteralDef
+iteral STANDARD:
EcucEnumerationLiteral Def
+reference OsResourceAccessingApplication: +dedination OsAEglwcation:.
EcucReferenceDef EcucParamConfContainerDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0

Figure 10.10: OsResource configuration overview

AUTSSAR

10.2.23 OsScheduleTable

[ECUC_Os_00141] Definition of EcucParamConfContainerDef OsScheduleTable

[

Container Name

OsScheduleTable

Parent Container

Os

Description An OsScheduleTable addresses the synchronization issue by providing an
encapsulation of a statically defined set of alarms that cannot be modified at runtime.
Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsScheduleTableDuration 1 [ECUC_Os_00053]

OsScheduleTableRepeating 1 [ECUC_Os_00144]

OsScheduleTableCounterRef 1 [ECUC_Os_00145]

OsSchTblAccessingApplication 0..* [ECUC_Os_00054]

Included Containers

Container Name Multiplicity Dependency

OsScheduleTableAutostart 0..1 This container specifies if and how the schedule table is started
on startup of the Operating System. The options to start a
schedule table correspond to the API calls to start schedule
tables during runtime.

OsScheduleTableExpiryPoint 1. The point on a Schedule Table at which the OS activates tasks
and/or sets events

OsScheduleTableSync 0..1 This container specifies the synchronization parameters of the
schedule table.

]

[ECUC_Os_00053] Definition of EcuclntegerParamDef OsScheduleTableDuration

[

Parameter Name

OsScheduleTableDuration

Parent Container

OsScheduleTable

Description This parameter defines the modulus of the schedule table (in ticks).
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Os 00144] Definition of EcucBooleanParamDef OsScheduleTableRe-

peating |

Parameter Name

OsScheduleTableRepeating

Parent Container

OsScheduleTable

Description true: first expiry point on the schedule table shall be processed at final expiry point
delay ticks after the final expiry point is processed.
false: the schedule table processing stops when the final expiry point is processed.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00145] Definition of EcucReferenceDef OsScheduleTableCounterRef

[

Parameter Name

OsScheduleTableCounterRef

Parent Container

OsScheduleTable

Description This parameter contains a reference to the counter which drives the schedule table.
Multiplicity 1
Type Reference to OsCounter
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Os_00054] Definition of EcucReferenceDef OsSchTblAccessingApplica-

tion [

Parameter Name OsSchTblAccessingApplication

Parent Container OsScheduleTable

Description Reference to applications which have an access to this object.

Multiplicity 0.~

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time =

AUTSSAR

Post-build time B

Dependency
OsScheduleTable: +reference | OsScheduleTableCounterRef: +destination OsCounter:
EcucParamConfContainerDef [€@—— EcucReferenceDef EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 0

lowerMultiplicity = 0
upperMultiplicity = *

(fromOS)

+parameter| OsScheduleTableRepeating:
EcucBooleanParamDef

OsEvent:
(g OS) EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+destinationfp\0S)

+subContainer,

OsScheduleTableExpiryPoint: . | OsScheduleTableEventSetting: . .
EcucParamConfContainerDef +subContainer ~E) cparamConfContainerDef 1ce OsScheduleTableSetEventRef:
g EcucReferenceDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 1 lowerMultiplicity = 0 >
OsScheduleTableMaxShorten:
. OsScheduleTblAdjustableExpPoint: +parameter EcuclntegerParamDef
+subContainer -
EcucParamConfContainerDef -
o— min =0
lowerMultiplicity = 0 +parameter
upperMultiplicity = 1
OsScheduleTableMaxLengthen
EcucIntegerParamDef
OsScheduleTbIExpPointOffset: min = 0
+parameter EcucintegerParamDef
min =0
. OsScheduleTableTaskReplenish: OsScheduleTableReplenishTaskRef:
+subContainer ™ EcucParamConfContainerDef | +reference EcucReferenceDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = 1
OsScheduleTableTaskActivation:
+subContainer| EcucParamConfContainerDef
o upperMultiplicity = *
lowerMultiplicity = 0
+reference
OsScheduleTableActivate TaskRef:
EcucReferenceDef
+destination +destination +reference
I
OsTask: EcucParamConfContainerDef +destination OsScheduleTableSetEventT askRef:
—— EcucReferenceDef
upperMultiplicity = * -
lowerMultiplicity = 0

(fromOS)

Figure 10.11: OsScheduleTable configuration overview (part 1)

AUTSSAR

OsScheduleTable:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

OsScheduleTableAutostart:

+reference

OsAppMode:
EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 1

+destination S)

OsScheduleTableAppModeRef:

EcucintegerParamDef

(fromOS)

EcucParamConfContainerDef EcucReferenceDef
upperMultiplicity = 1 upperMultiplicity = *
. lowerMultiplicity = 0 lowerMultiplicity = 1
+subContainer
+parameter OsSEhedluI‘eTab;eStang)/aflue:
cuclntegerParamDe
>
lowerMultiplicity = 0
upperMultiplicity = 1
+paramete$
+literal
(OsScheduleTableAutostartType: ABSOLUTE:
EcucEnumerationParamDef EcucEnumerationLiteralDef
+literal
RELATIVE:
EcucEnumerationLiteral Def
Hiteral SYNCHRON:
EcucEnumerationLiteral Def
OsScheduleTableSync: OsScheduleTblExplicitPrecision:
+subContainer| EcucParamConfContainerDef +parameter EcucintegerParamDef
o upperMultiplicity = 1 upperMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 0
min =0
+parameter
+literal o
OsScheduleTblSyncStrategy: NON_E' .
EcucEnumerationParambef EcucEnumerationLiteralDe
defaultvValue = NONE i |
Hiteral IMPLICIT:
EcucEnumerationLiteralDef
Hiteral EXPLICIT:
EcucEnumerationLiteralDef|
+reference 0sSchTblAccessingApplication: +destination OsAEEhcatlon:v
EcucReferenceDef EcucParamConfContainerDef|
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0
(fromOS)
+parameter OsScheduleTableDuration:

Figure 10.12: OsScheduleTable configuration overview (part 2)

AUTSSAR

10.2.24 OsScheduleTableAutostart

[ECUC_Os 00335] Definition of EcucParamConfContainerDef OsScheduleTable
Autostart |

Container Name OsScheduleTableAutostart
Parent Container OsScheduleTable
Description This container specifies if and how the schedule table is started on startup of the

Operating System. The options to start a schedule table correspond to the API calls to
start schedule tables during runtime.

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsScheduleTableAutostartType 1 [ECUC_Os_00056]
OsScheduleTableStartValue 0..1 [ECUC_Os_00057]
OsScheduleTableAppModeRef 1.* [ECUC_Os_00058]

| No Included Containers

]

[ECUC_Os_00056] Definition of EcucEnumerationParamDef OsScheduleTable
AutostartType |

Parameter Name OsScheduleTableAutostartType
Parent Container OsScheduleTableAutostart
Description This specifies the type of the autostart for the schedule table.
Multiplicity 1
Type EcucEnumerationParamDef
Range ABSOLUTE The schedule table is started during startup with
the StartScheduleTableAbs() service.
RELATIVE The schedule table is started during startup with
the StartScheduleTableRel() service.
SYNCHRON The schedule table is started during startup with
the StartScheduleTableSynchron() service.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

AUTSSAR

[ECUC_Os_00057] Definition of EcucintegerParamDef OsScheduleTableStart
Value |

Parameter Name

OsScheduleTableStartValue

Parent Container

OsScheduleTableAutostart

Description Absolute autostart tick value when the schedule table starts. Only used if the Os
ScheduleTableAutostartType is ABSOLUTE.
Relative offset in ticks when the schedule table starts. Only used if the OsSchedule
TableAutostartType is RELATIVE.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Os_00058] Definition of EcucReferenceDef OsScheduleTableAppMode

Ref |

Parameter Name

OsScheduleTableAppModeRef

Parent Container

OsScheduleTableAutostart

Description Reference in which application modes the schedule table should be started during
startup

Multiplicity 1.7

Type Reference to OsAppMode

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.25 OsScheduleTableEventSetting

[ECUC_Os_00059] Definition of EcucParamConfContainerDef OsScheduleTable
EventSetting |

AUTSSAR

Container Name

OsScheduleTableEventSetting

Parent Container

OsScheduleTableExpiryPoint

Description

Event that is triggered by that schedule table.

Multiplicity

0.*

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OsScheduleTableSetEventRef

1

[ECUC_Os_00060]

OsScheduleTableSetEventTaskRef

1

[ECUC_Os_00061]

No Included Containers

]

[ECUC_Os 00060] Definition of EcucReferenceDef OsScheduleTableSetEvent

Ref |

Parameter Name

OsScheduleTableSetEventRef

Parent Container

OsScheduleTableEventSetting

Description Reference to event that will be set by action
Multiplicity 1
Type Reference to OsEvent

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Os_00061] Definition of EcucReferenceDef OsScheduleTableSetEvent

TaskRef |

Parameter Name

OsScheduleTableSetEventTaskRef

Parent Container

OsScheduleTableEventSetting

Description

Multiplicity

1

Type

Reference to OsTask

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

10.2.26 OsScheduleTableExpiryPoint

[ECUC_Os_00143] Definition of EcucParamConfContainerDef OsScheduleTable

ExpiryPoint |

Container Name

OsScheduleTableExpiryPoint

Parent Container

OsScheduleTable

Description

The point on a Schedule Table at which the OS activates tasks and/or sets events

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OsSchedule TblExpPointOffset 1 [ECUC_Os_00062]
Included Containers

Container Name Multiplicity Dependency

OsScheduleTableEventSetting 0..” Event that is triggered by that schedule table.
OsScheduleTableTaskActivation 0..” Task that is triggered by that schedule table.
OsScheduleTableTaskReplenish 0..* Task that is replenished by that expiry point
OsScheduleTblAdjustableExpPoint | 0..1 Adjustable expiry point

]

[ECUC_Os_00062] Definition of EcucintegerParambDef OsScheduleTbIExpPoint

Offset |

Parameter Name

OsScheduleTbIExpPointOffset

Parent Container

OsScheduleTableExpiryPoint

Description The offset from zero (in ticks) at which the expiry point is to be processed.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.27 OsScheduleTableTaskActivation

[ECUC_Os_00066] Definition of EcucParamConfContainerDef OsScheduleTable
TaskActivation |

AUTSSAR

Container Name

OsScheduleTableTaskActivation

Parent Container

OsScheduleTableExpiryPoint

Description

Task that is triggered by that schedule table.

Multiplicity

0.~

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OsScheduleTableActivateTaskRef

1

[ECUC_Os_00067]

No Included Containers

]

[ECUC_Os_00067] Definition of EcucReferenceDef OsScheduleTableActivate

TaskRef |

Parameter Name

OsScheduleTableActivate TaskRef

Parent Container

OsScheduleTableTaskActivation

Description Reference to task that will be activated by action
Multiplicity 1
Type Reference to OsTask
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.28 OsScheduleTblAdjustableExpPoint

[ECUC_Os_00068] Definition of EcucParamConfContainerDef OsScheduleTbl

AdjustableExpPoint |

Container Name

OsScheduleTblAdjustableExpPoint

Parent Container

OsScheduleTableExpiryPoint

Description

Adjustable expiry point

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OsScheduleTableMaxLengthen

1

[ECUC_Os_00069]

OsScheduleTableMaxShorten

1

[ECUC_Os_00070]

No Included Containers

AUTSSAR

]

[ECUC_Os_00069]
Lengthen |

Definition of EcuclntegerParamDef OsScheduleTableMax

Parameter Name

OsScheduleTableMaxLengthen

Parent Container

OsScheduleTblAdjustableExpPoint

Description The maximum positive adjustment that can be made to the expiry point offset (in ticks).
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00070]
Shorten |

Definition of EcuclntegerParamDef OsScheduleTableMax

Parameter Name

OsScheduleTableMaxShorten

Parent Container

OsScheduleTblAdjustableExpPoint

Description The maximum negative adjustment that can be made to the expiry point offset (in ticks).
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

10.2.29 OsScheduleTableTaskReplenish

[ECUC_Os_00414] Definition of EcucParamConfContainerDef OsScheduleTable

TaskReplenish |

Container Name

OsScheduleTableTaskReplenish

Parent Container

OsScheduleTableExpiryPoint

Description

Task that is replenished by that expiry point

Multiplicity

0..*

\Y

AUTSSAR

A
Post-Build Variant Multiplicity false
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
OsScheduleTableReplenishTaskRef 1 [ECUC_Os_00415]

| No Included Containers

]

[ECUC_Os_00415] Definition of EcucReferenceDef OsScheduleTableReplenish
TaskRef |

Parameter Name OsScheduleTableReplenishTaskRef

Parent Container OsScheduleTableTaskReplenish

Description Reference to Task that will be replenished.

Multiplicity 1

Type Reference to OsTask

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.30 OsScheduleTableSync

[ECUC_Os_00063] Definition of EcucParamConfContainerDef OsScheduleTable
Sync |

Container Name OsScheduleTableSync

Parent Container OsScheduleTable

Description This container specifies the synchronization parameters of the schedule table.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OsScheduleTbIExplicitPrecision 0..1 [ECUC_Os_00064]
OsScheduleTblSyncStrategy 1 [ECUC_Os_00065]

| No Included Containers

AUTSSAR

[ECUC_Os_00064] Definition of EcucintegerParamDef OsScheduleTbIExplicit

Precision |

Parameter Name

OsScheduleTbIExplicitPrecision

Parent Container

OsScheduleTableSync

Description This configuration is only valid if the explicit synchronization is used.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Os_00065] Definition of EcucEnumerationParamDef OsScheduleTbISync

Strategy |

Parameter Name

OsScheduleTbISyncStrategy

Parent Container

OsScheduleTableSync

Description AUTOSAR OS provides support for synchronization in two ways: explicit and implicit.
Multiplicity 1
Type EcucEnumerationParamDef
Range EXPLICIT The schedule table is driven by an OS counter
but processing needs to be synchronized with a
different counter which is not an OS counter
object.
IMPLICIT The counter driving the schedule table is the
counter with which synchronisation is required.
NONE No support for synchronisation.
Default value NONE
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
]
10.2.31 OsSpinlock

[ECUC_Os_00258] Definition of EcucParamConfContainerDef OsSpinlock |

AUTSSAR

Container Name OsSpinlock

Parent Container Os

Description An OsSpinlock object is used to co-ordinate concurrent access by TASKs/ISR2s on
different cores to a shared resource.

Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsSpinlockLockMethod 1 [ECUC_Os_01038]
OsSpinlockAccessingApplication 1.* [ECUC_Os_01021]
OsSpinlockSuccessor 0..1 [ECUC_Os_01022]

No Included Containers

]

[ECUC_Os_01038]
Method |

Definition of EcucEnumerationParamDef OsSpinlockLock

Parameter Name OsSpinlockLockMethod

Parent Container OsSpinlock

Description Lock method which is used when a spinlock is taken. Note that it is possible that a user
(e.g. a Task) might hold more than one spinlock. In this case the last lock taken is
forced to use at least a lock methode which locks as strong as the current one.

Multiplicity 1

Type EcucEnumerationParamDef

Range LOCK_ALL_INTERRUPTS -

LOCK_CAT2_INTERRUPTS -

LOCK_NOTHING -

LOCK_WITH_RES_ -

SCHEDULER

Default value LOCK_NOTHING

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

]

[ECUC_Os_01021] Definition of EcucReferenceDef OsSpinlockAccessingAppli-

cation [

Parameter Name

OsSpinlockAccessingApplication

Parent Container

OsSpinlock

Description Reference to OsApplications that have an access to this object.
Multiplicity 1.*
Type Reference to OsApplication

V

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]
[ECUC_Os_01022] Definition of EcucReferenceDef OsSpinlockSuccessor |

Parameter Name OsSpinlockSuccessor

Parent Container OsSpinlock
Description To check whether a spinlock can be occupied (in a nested way) without any danger of
deadlock, a linked list of spinlocks can be defined. A spinlock can only be occupied in
the order of the linked list. It is allowed to skip a spinlock.
If no linked list is specified, spinlocks cannot be nested.
Multiplicity 0..1
Type Reference to OsSpinlock
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
]
OsApplication:

OsSpinlock:
EcucParamConfContainerDef

OsSpinlockAccessingApplication:

+destination | EcucParamConfContainerDef
EcucReferenceDef ——————

+reference

upperMultiplicity = *

lowerMultiplicity =
owerMultiplicity = 0 lowerMultiplicity = 0

upperMultiplicity = *

lowerMultiplicity = 1
upperMultiplicity = *

+reference

OsSpinlockSuccessor:
EcucReferenceDef

+destination
lowerMultiplicity = 0
upperMultiplicity = 1
OsSpinlocklockMethod: +literal | LOCK_ALL_INTERRUPTS:
EcucEnumerationParamDef ionLiteral Def
defaultValue = LOCK_NOTHING
+literal [LOCK_CAT2_INTERRUPTS:
EcucEnt i iteralDef
+parameter

+literal [LOCK_WITH RES _SCHEDULER:
EcucEnt ionLiteral Def

+literal LOCK_NOTHING:

EcucEnumerationLiteralDef

Figure 10.13: OsSpinlock configuration overview

AUTSSAR

10.2.32 OsTask

[ECUC_Os_00073] Definition of EcucParamConfContainerDef OsTask |

Container Name

OsTask

Parent Container

Os

Description

This container represents an ISO 17356 task.

Multiplicity

0.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OsTaskActivation 1 [ECUC_Os_00074]

OsTaskPeriod 0..1 [ECUC_Os_00404]

OsTaskPriority 1 [ECUC_Os_00075]

OsTaskSchedule 1 [ECUC_Os_00076]

OsMemoryMappingCodeLocationRef 0..1 [ECUC_Os_00402]

OsTaskAccessingApplication 0..* [ECUC_Os_00077]

OsTaskEventRef 0..* [ECUC_Os_00078]

OsTaskResourceRef 0..* [ECUC_Os_00079]

Included Containers

Container Name Multiplicity Dependency

OsTaskAutostart 0..1 This container determines whether the task is activated during
the system start-up procedure or not for some specific
application modes.
If the task shall be activated during the system start-up, this
container is present and holds the references to the application
modes in which the task is auto-started.

OsTaskTimingProtection 0..1 This container contains all parameters regarding timing
protection of the task.

]

[ECUC_Os_00074] Definition of EcucintegerParamDef OsTaskActivation |

Parameter Name

OsTaskActivation

Parent Container

OsTask

Description This attribute defines the maximum number of queued activation requests for the task.
A value equal to "1" means that at any time only a single activation is permitted for this
task. Note that the value must be a natural number starting at 1.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Os_00404] Definition of EcucFloatParamDef OsTaskPeriod |

Parameter Name OsTaskPeriod
Parent Container OsTask
Description This parameter specifies the period in seconds of this task in case of a cyclically

activated task.

If this parameter is not given the task can be activated sporadicly or cyclically with a
unknown period value.

This value is information, e.g. for time base calculations in the RTE in case Timing
Events are mapped onto this OsTask.Be aware, that this parameter is not supposed to
be relevant for the OS! This information is given as part of the OS configuration to
support configuration work flows using a fixed set of OsTasks.

Multiplicity 0..1
Type EcucFloatParamDef
Range [-INF .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time —

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]
[ECUC_Os_00075] Definition of EcucintegerParamDef OsTaskPriority |

Parameter Name OsTaskPriority

Parent Container OsTask

Description The priority of a task is defined by the value of this attribute. This value has to be
understood as a relative value, i.e. the values show only the relative ordering of the
Tgsoks{7356—3 defines the lowest priority as zero (0); larger values correspond to higher
priorities.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Os_00076] Definition of EcucEnumerationParamDef OsTaskSchedule |

Parameter Name OsTaskSchedule
Parent Container OsTask
Description The OsTaskSchedule attribute defines the preemptability of the task.
If this attribute is set to NON, no internal resources may be assigned to this task.
Multiplicity 1
Type EcucEnumerationParamDef
Range FULL Task is preemptable.
NON Task is not preemptable.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

For parameter table [ECUC_Os_00402] OsMemoryMappingCodeLocationRef, see
definition below container OsApplication.

[ECUC_Os_00077] Definition of EcucReferenceDef OsTaskAccessingApplication
[

Parameter Name OsTaskAccessingApplication

Parent Container OsTask

Description Reference to applications which have an access to this object.

Multiplicity 0..”

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_Os_00078] Definition of EcucReferenceDef OsTaskEventRef |

Parameter Name OsTaskEventRef

Parent Container OsTask

Description This reference defines the list of events the extended task may react on.
Multiplicity 0.”

Type Reference to OsEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

AUTSSAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

[ECUC_Os_00079] Definition of EcucReferenceDef OsTaskResourceRef |

Parameter Name

OsTaskResourceRef

Parent Container

OsTask

Description This reference defines a list of resources accessed by this task.

Multiplicity 0..”

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

+literal NON:
: TaskSchedule: E
OsTasc +p OcTiadkSenoduls EcucEnumerationLiteral Def
EcucParamConfContainerDef | g, EcucEnumerationParamDef
P +literal
upperMultiplicity = * o FULL:
lowerMultiplicity = 0 EcucEnumerationLiteral Def
+parameter OsTaskPriority:
EcucintegerParamDef
-> 2
rameter OsTaskActivation: 0 =®
+parameter Ec—uclntegerParamDef max = 4294967295
min =1
max = 4294967295
+reference OsTaskEventRef: Ostvents

EcucReferenceDef +destination [EcucParamConfContainerDef

upperMultiplicity = *

upperMultiplicity = *
B AL lowerMultiplicity = 0

lowerMultiplicity = 0

grtasulose OsTasAppModeRef: +destination EcucPag;ACor::lg:r?t:ainerDef
+subContainer|EcucParamConfContainerDef +reference EcucReferenceDef =
upperMultiplicity = 1 upperMultiplicity = * Iuopm’/)eerrhr;lll:jllttimllilcci‘t‘y—:w
lowerMultiplicity = 0 lowerMultiplicity = 1 plicity =
OsT askResourceRef: OsResource:

+reference EcucReferenceDef +destination [EcucParamConfContainerDef

upperMultiplicity = *

upperMultiplicity = *
B I JowerMultiplicity = 0

lowerMultiplicity = 0

OsTaskTimingProtection:
+subContainerEcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

OsTaskAccessingApplication: - OsApplication:
+reference EcucReferenceDef +destinalion| £, sparamGonfContainerDet ®
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0
OsTaskPeriod: +reference
+parameter EcucFloatParamDef
lowerMultiplicity = 0 EcucForeignReference Def
upperMultiplicity = 1
ereference destinationType = SW-ADDR-METHOD
P lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.14: OsTask configuration overview

10.2.33 OsTaskAutostart

[ECUC_Os_00080] Definition of EcucParamConfContainerDef OsTaskAutostart |

Container Name OsTaskAutostart
Parent Container OsTask
Description This container determines whether the task is activated during the system start-up

procedure or not for some specific application modes.
If the task shall be activated during the system start-up, this container is present and
holds the references to the application modes in which the task is auto-started.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

OsTaskAppModeRef 1.* [ECUC_Os_00081]

AUTSSAR

| No Included Containers

]

[ECUC_Os_00081] Definition of EcucReferenceDef OsTaskAppModeRef |

Parameter Name

OsTaskAppModeRef

Parent Container

OsTaskAutostart

Description Reference to application modes in which that task is activated on startup of the OS

Multiplicity 1.*

Type Reference to OsAppMode

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.34 OsTaskResourcelLock

[ECUC_Os_00082] Definition of EcucParamConfContainerDef OsTaskResource

Lock |

Container Name

OsTaskResourcelLock

Parent Container

OsTaskTimingProtection

Description This container contains the worst case time between getting and releasing a given
resource (in seconds).
Multiplicity 0..”

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OsTaskResourceLockBudget 1 [ECUC_Os_00083]
OsTaskResourceLockResourceRef 1 [ECUC_Os_00084]

No Included Containers

AUTSSAR

[ECUC_Os_00083] Definition of EcucFloatParamDef OsTaskResourceLockBud-

get |

Parameter Name

OsTaskResourceLockBudget

Parent Container

OsTaskResourcelLock

Description This parameter contains the maximum time the task is allowed to lock the resource (in
seconds)

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Required for scalability class 2 and 4

]

[ECUC_Os_00084]
sourceRef |

Definition of EcucReferenceDef OsTaskResourceLockRe-

Parameter Name

OsTaskResourceLockResourceRef

Parent Container OsTaskResourcelLock

Description Reference to the resource used by the task

Multiplicity 1

Type Reference to OsResource

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Required for scalability class 2 and 4

10.2.35 OsTaskTimingProtection

[ECUC_Os_00325] Definition of EcucParamConfContainerDef OsTaskTimingPro-

tection |

Container Name

OsTaskTimingProtection

Parent Container

OsTask

Description

This container contains all parameters regarding timing protection of the task.

Multiplicity

0..1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

OsTaskAllInterruptLockBudget 0..1 [ECUC_Os_00085]

OsTaskExecutionBudget 0..1 [ECUC_Os_00185]

OsTaskOslnterruptLockBudget 0..1 [ECUC_Os_00086]

OsTaskTimeFrame 0..1 [ECUC_Os_00391]

OsTaskTimingProtectionDeferrableServer 0..1 [ECUC_Os_00416]

Included Containers

Container Name Multiplicity Dependency

OsTaskResourcelLock 0.x This container contains the worst case time between getting and
releasing a given resource (in seconds).

]

[ECUC_Os_00085]

Budget |

Definition of EcucFloatParamDef OsTaskAllinterruptLock

Parameter Name

OsTaskAllInterruptLockBudget

Parent Container

OsTaskTimingProtection

Description This parameter contains the maximum time for which the task is allowed to lock all
interrupts (via SuspendAllinterrupts() or DisableAlllnterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2 and 4

]

[ECUC_Os_00185] Definition of EcucFloatParamDef OsTaskExecutionBudget |

Parameter Name

OsTaskExecutionBudget

Parent Container

OsTaskTimingProtection

Description This parameter contains the maximum allowed execution time of the task (in seconds).
Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

AUTSSAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

Required for scalability class 2 and 4

]

[ECUC_Os_00086]
Budget |

Definition of EcucFloatParamDef OsTaskOsinterruptLock

Parameter Name

OsTaskOslnterruptLockBudget

Parent Container

OsTaskTimingProtection

Description This parameter contains the maximum time for which the task is allowed to lock all
Category 2 interrupts (via SuspendOSinterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2 and 4

]

[ECUC_Os_00391] Definition of EcucFloatParamDef OsTaskTimeFrame |

Parameter Name

OsTaskTimeFrame

Parent Container

OsTaskTimingProtection

Description The minimum inter-arrival time between activations and/or releases of a task (in
seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

Only available in scalability class 2 and 4

]

[ECUC_Os_00416] Definition of EcucBooleanParamDef OsTaskTimingProtection

DeferrableServer |

Parameter Name

OsTaskTimingProtectionDeferrableServer

Parent Container

OsTaskTimingProtection

Description This parameter defines if the timing protection for this task is done as "Deferrable
Server" or not. True means that the Task is a deferrable server

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Required for scalability class 2 and 4

10.2.36 OsTimeConstant

[ECUC_Os_00386] Definition of EcucParamConfContainerDef OsTimeConstant |

Container Name

OsTimeConstant

Parent Container

OsCounter

Description

Allows the user to define constants which can be e.g. used to compare time values with
timer tick values.

A time value will be converted to a timer tick value during generation and can later on
accessed via the OsConstName. The conversation is done by rounding time values to
the nearest fitting tick value.

Multiplicity

0.~

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

OsTimeValue

1 [ECUC_Os_00002]

No Included Containers

AUTSSAR

]

[ECUC_Os_00002] Definition of EcucFloatParamDef OsTimeValue |

Parameter Name

OsTimeValue

Parent Container

OsTimeConstant

Description This parameter contains the value of the constant in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

10.3 Containers and configuration parameter extensions of the

I0C

This section describes the content of the IOC Configuration Description that is needed

for the generation of the IOC API.

AUTSSAR

Os: EcucModuleDef OslocSenderld:

EcuclntegerParamDef

=1
lowerMultiplicity = 0

min =0
@ - +parameter max = 255
EclcParamConfContainerDef (ot il - ©
+container upperMultiplicity = 1
lowerMultiplicity = 1
Osloc: +subContainer upperMultiplicity = *
EcucParamConiContainerDef o
lowerMultiplicity = 0 EcucReferenceDef
upperMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = 1
+parameter
+subContainer - -
OslocFunctionimplementationKind: | jive ! MAGFO.
OslocCommunication: EcucEnumerationParamDef EcucEnumerationLiteral Def
EcucParamConfContainerDef R EEEEEE
lowerMultiplicity = 0 upperMultiplicity = Teral DO_NOT_CARE:
upperultiplicity = * defaultValue = DO_NOT_CARE iteralDef
Jliteral FUNCTION:
EcucEnumerationLiteralDef
OsApplication:
\ainer| EcucParamConfContainerDef
upperMultiplicity = *
Itiplicity =
OslocBufferLength: TR =0
+parameter| EcuclntegerParamDef -
+destination
min =1
max = 4294967295
lowerMultiplicity = 0 OslocReceivingOsApplicationRef:
upperMultiplicity = 1 EcucReferenceDef
lowerMultiplicity
- - +reference
OslocReceiverProperties:
EcucParamConfContainerDef
lowerMultiplicit
+parameter| OslocReceiverPullCB:
EcucFunctionNameDef
+subContainer lowerMuliplicity = 0
OslocReceiverld: upperMultiplicity = 1
aramDef
min=0
max = 255
[+parameter | |owerMultiplicity = 0
upperMultiplicity = 1
«sjbComame*
e O: del i ef:
OslocDataPropeties: 9 Def
EcucParamConfContainerDet destinationType = SW-ADDR-METHOD
lowerMultiplicit; lowerMultiplicity = 0
upperMultiplicit - upperMultiplicity = 1
OslochnitValue
o Def
lowerMultiplicity = 0
upperMultiplicity = 1 OslocDataTypeRef: EcucForeign Def
f

Type = IMPLEMENTATION-DATA-TYPE
lowerMultiplicity = 1

OslocDataPropertyindex upperMultplicty = 1

Def

max = 255
upperMultiplicity = 1
lowerMultiplicity = 0

OsMemoryMappingCodeL ocationRef:
©reference EcucForeignReferenceDef
destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0

upperMultiplicity = 1

Figure 10.15: Osloc configuration overview

10.3.1 Osloc

[ECUC_Os_01000] Definition of EcucParamConfContainerDef Osloc |

Container Name Osloc

Parent Container Os

Description Configuration of the I0C (Inter OS Application Communicator).
Multiplicity 0..1

Configuration Parameters

No Included Parameters

AUTSSAR

Included Containers
Container Name Multiplicity Dependency

OslocCommunication 0..” Representation of a 1:1 or N:1 or N:M (unqueued only)
communication between software parts located in different
OS-Applications that are bound to the same or to different cores.
The name shall begin with the name of the sending software
service and be followed by a unique identifier delivered by the
sending software service. In the case of RTE as user attention
shall be paid on the fact that uniqueness for identifier names has
to be reached over ports, data elements, object instances and
maybe additional identification properties (E.g. Case 1:N
mapping to 1:1). Example:

» <NameSpace>_UniquelD

10.3.2 OslocCommunication

[ECUC_Os_01003] Definition of EcucParamConfContainerDef OslocCommunica-
tion |

Container Name OslocCommunication
Parent Container Osloc
Description Representation of a 1:1 or N:1 or N:M (unqueued only) communication between

software parts located in different OS-Applications that are bound to the same or to
different cores. The name shall begin with the name of the sending software service
and be followed by a unique identifier delivered by the sending software service. In the
case of RTE as user attention shall be paid on the fact that uniqueness for identifier
names has to be reached over ports, data elements, object instances and maybe
additional identification properties (E.g. Case 1:N mapping to 1:1). Example:

» <NameSpace>_UniquelD

Multiplicity 0.*
Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

OslocBufferLength 0..1 [ECUC_Os_01001]

Included Containers

Container Name Multiplicity Dependency

OslocDataProperties 1.* Data properties of the data to be transferred on the I0C
communication channel.

OslocReceiverProperties 1.7 Representation of receiver properties for one communication.

For each OslocCommunication one (1:1) or many receivers
(N:M) have to be defined. This container should be instantiated
within an OslocCommunication.

OslocSenderProperties 1.* Representation of sender properties for one communication. For
each OslocCommunication one (1:1) or many senders (N:1 or
N:M) have to be defined. Multiplicity > 1 (N:1 or N:M
communication) is only allowed for Multiplicity of OslocDataType
Ref = 1.

This container should be instantiated within an Osloc
Communication.

AUTSSAR

[ECUC_Os_01001] Definition of EcucintegerParamDef OslocBufferLength [

Parameter Name OslocBufferLength

Parent Container OslocCommunication

Description This attribute defines the size of the IOC internal queue to be allocated for a queued
communication.

This configuration information shall allow the optimization of the needed memory for
communications requiring buffers within the RTE and within the 10C.

Multiplicity 0..1
Type EcuclntegerParamDef
Range 1 .. 4294967295

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

10.3.3 OslocSenderProperties

[ECUC_Os_01015] Definition of EcucParamConfContainerDef OslocSenderProp-
erties |

Container Name OslocSenderProperties
Parent Container OslocCommunication
Description Representation of sender properties for one communication. For each Osloc

Communication one (1:1) or many senders (N:1 or N:M) have to be defined. Multiplicity
> 1 (N:1 or N:M communication) is only allowed for Multiplicity of OslocDataTypeRef =
1.

This container should be instantiated within an OslocCommunication.

Multiplicity 1.5

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OslocFunctionlmplementationKind 0..1 [ECUC_Os_01036]
OslocSenderld 0..1 [ECUC_Os_01016]
OslocSendingOsApplicationRef 1 [ECUC_Os_01014]

| No Included Containers

]

For parameter table [ECUC_Os_01036] OslocFunctionimplementationKind, see defi-
nition below container OslocReceiverProperties.

AUTSSAR

[ECUC_Os_01016] Definition of EcuclntegerParamDef OslocSenderid |

Parameter Name OslocSenderld

Parent Container OslocSenderProperties

Description Representation of a sender in a N:1 or N:M communication to distinguish between
senders.
This parameter does not exist in 1:1 communication.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0..255

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Os_01014] Definition of EcucReferenceDef OslocSendingOsApplication
Ref |

Parameter Name OslocSendingOsApplicationRef
Parent Container OslocSenderProperties
Description This attribute is a reference to the sending OS-Application instance defined in the

configuration file of the OS.
This information shall allows the generator to get additional information necessary for
the code generation like:
* The protection properties of the communicating OS-Applications to find out which
protection boundaries have to be crossed.

* The core identifiers to find out if an intra or an inter core communication has to be
realized

« Interrupt details in case of cross core notification to realize over IRQs

Multiplicity 1

Type Reference to OsApplication

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.3.4 OslocReceiverProperties

[ECUC _Os 01017] Definition of EcucParamConfContainerDef OslocReceiver
Properties |

AUTSSAR

Container Name

OslocReceiverProperties

Parent Container

OslocCommunication

Description Representation of receiver properties for one communication. For each Osloc
Communication one (1:1) or many receivers (N:M) have to be defined. This container
should be instantiated within an OslocCommunication.

Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OslocFunctionlmplementationKind 0..1 [ECUC_Os_01036]
OslocReceiverld 0..1 [ECUC_Os_00407]
OslocReceiverPullCB 0..1 [ECUC_Os_01010]
OslocReceivingOsApplicationRef 1 [ECUC_Os_01012]
OsMemoryMappingCodeLocationRef 0..1 [ECUC_Os_00411]

No Included Containers

]

[ECUC_Os 01036] Definition of EcucEnumerationParamDef OslocFunctionim-
plementationKind [

Parameter Name

OslocFunctionimplementationKind

Parent Container

OslocReceiverProperties, OslocSenderProperties

Description This parameter is used to select whether this communication is implemented as a
macro or as a function.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range DO_NOT_CARE It is not defined whether a macro or a function is
used.
FUNCTION Communication is implemented as a function
MACRO Communication is implemented as a macro
Default value DO_NOT_CARE
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Os_00407] Definition of EcucintegerParamDef OslocReceiverld |

Parameter Name

OslocReceiverld

Parent Container

OslocReceiverProperties

Description Representation of a receiver in a N:M communication to distinguish between receivers.
This parameter does not exist in 1:1 or N:1 communication.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 0..255

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

[ECUC_Os_01010] Definition of EcucFunctionNameDef OslocReceiverPullCB |

Parameter Name

OslocReceiverPullCB

Parent Container

OslocReceiverProperties

Description This attribute defines the name of a callback function that the IOC shall call on the
receiving core for each data reception.
In case of non existence of this attribute no ReceiverPullCB notification shall be applied
by the IOC. The name of the function shall begin with the name of the receiving
module, followed with a callback name and followed by the locld.
Example: void RTE_ReceiverPullCB_RTE25 (void).
If this attribute does not exist, it means that no ReceiverPullCB shall be called (No
notification from 10C is required). If this attribute exists the IOC shall call the callback
function on the receiving core.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Os_01012] Definition of EcucReferenceDef OslocReceivingOsApplica-

tionRef |

Parameter Name

OslocReceivingOsApplicationRef

Parent Container

OslocReceiverProperties

Description This attribute is a reference to the receiving OsApplication instance defined in the
configuration file of the OS.
This information allows for the generator to get additional information necessary for the
code generation like:
« The protection properties of the communicating OsApplications to find out which
protections have to be crossed
* The core identifiers to find out if an intra or an inter core communication has to be
realized
« Interrupt details in case of cross core notification to realize over IRQs
Multiplicity 1
Type Reference to OsApplication
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Os_00411] Definition of EcucForeignReferenceDef OsMemoryMapping
CodelLocationRef |

Parameter Name OsMemoryMappingCodeLocationRef

Parent Container OslocReceiverProperties

Description Reference to the memory mapping containing details about the section where the code
of OslocReceiverPullCB is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

10.3.5 OslocDataProperties

[ECUC_Os_01023] Definition of EcucParamConfContainerDef OslocDataProper-
ties [

AUTSSAR

Container Name

OslocDataProperties

Parent Container

OslocCommunication

Description

Data properties of the data to be transferred on the IOC communication channel.

Multiplicity

1.7

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
OslocDataPropertylndex 0..1 [ECUC_Os_01035]
OsloclnitValue 0..1 [ECUC_Os_01024]

OslocDataTypeRef

1 [ECUC_Os_01005]

OsMemoryMappingCodeLocationRef

0..1 [ECUC_Os_00405]

No Included Containers

J
[ECUC_Os_01035] Definition of EcuclntegerParamDef OslocDataPropertylndex

[

Parameter Name

OslocDataPropertylndex

Parent Container

OslocDataProperties

Description This parameter is used to define in which order the data is send, e.g. whether locSend
Group(A,B) or locSendGroup(B,A) shall be used.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 0..255

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

|
[ECUC_Os_01024] Definition of EcucStringParamDef OsloclnitValue |

Parameter Name

OsloclnitValue

Parent Container

OslocDataProperties

Description Initial Value for the data to be transferred on the IOC communication channel.
Multiplicity 0..1
Type EcucStringParamDef

Default value

V

AUTSSAR

A
Regular Expression -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Os_01005] Definition of EcucForeignReferenceDef OslocDataTypeRef |

Parameter Name

OslocDataTypeRef

Parent Container

OslocDataProperties

Description

This is the type of the data to be transferred on the IOC communication channel. This
attribute is necessary to generate the parameter type of the loc functions. Additionally
this information should be used to compute the data size for necessary data copy
operations within the loc module.

If more than one attribute is defined, the IOC generator should generate an locXxx
Group function (Xxx= CHOICE [Send, Receive, Write, Read)).

N:1 or N:M communication (Multiplicity of OslocSenderProperties > 1) is only allowed
for multiplicity of OslocDataTypeRef = 1

Multiplicity

1

Type

Foreign reference to IMPLEMENTATION-DATA-TYPE

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Os_00405] Definition of EcucForeignReferenceDef OsMemoryMapping
CodeLocationRef |

Parameter Name

OsMemoryMappingCodelLocationRef

Parent Container

OslocDataProperties

Description Reference to the memory mapping containing details about the section where the I0C
buffer is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

AUTSSAR

Link time -
Post-build time -

Dependency

10.4 Containers and configuration parameters for ARTI

This section describes the structure (containers) and the parameters of ARTI objects
related to the OS configuration. ARTI objects are defined by the MOD_ARTI model.

For a detailed description of the referenced ARTI parameters, please see chapter 10
of [11]. Also refer to application note 12.7 of this document.

[SWS_Os_00859]

Upstream requirements: RS_Arti_00001, RS_Arti_00002, RS_Arti_00003, RS_Arti_00005, RS_-
Arti_00007, RS_Arti 00011, RS _Arti 00012, RS Arti 00014, RS -
Arti_00016, RS_Arti 00018, RS _Arti 00022, RS _Arti_ 00023, RS Arti
00004, RS_Arti_00009

[The configuration items Art iHardware and Art 10s and their related subcontainers
contain the parameters to configure ARTI objects. |

10.4.1 ArtiHardware

[ECUC_Arti_00061] Definition of EcucParamConfContainerDef ArtiHardware |

Container Name ArtiHardware
Parent Container Arti
Description The ArtiHardware container contains ARTI extensions to the EcucHardware module.
Multiplicity 0..1
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

ArtiHardwareCoreClass 0..1 Contains the layout of an ARTI "Core" object, extending the Ecuc
CoreDefinition.

ArtiHardwareCorelnstance 0..” Description: Represents an instance of an ARTI "Core" object,

extending the EcucCoreDefinition. When using ARTI for
debugging or hardware based tracing, this is mandatory (i.e.
multiplicity 1..*), else optional.

AUTSSAR

]

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArtiHardware</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-MODULE-DEF">
/AUTOSAR/Arti/ArtiHardware</DEFINITION-REF>

<CONTAINERS>

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiCoreClass</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreClass</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiCore(O</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

<ECUC—-CONTAINER-VALUE>

<SHORT-NAME>ArtiCorel</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

</CONTAINERS>

</ECUC-MODULE—-CONFIGURATION-VALUES>

10.4.2 ArtiHardwareCoreClass

[ECUC_Arti_00062] Definition of EcucParamConfContainerDef ArtiHardware
CoreClass |

Container Name ArtiHardwareCoreClass
Parent Container ArtiHardware
Description Contains the layout of an ARTI "Core" object, extending the EcucCoreDefinition.
Multiplicity 0..1
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUCID

ArtiHardwareCoreClassCurrentApplicationRef 0..1 [ECUC_Arti_00054]
ArtiHardwareCoreClassCurrentlsrRef 0..1 [ECUC_Arti_00056]
ArtiHardwareCoreClassCurrentTaskRef 1 [ECUC_Arti_00058]
ArtiHardwareCoreClassGenericComponentRef 0..1 [ECUC_Arti_00064]

\Y%

AUTSSAR

JAN
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiHardwareCoreClassLastErrorRef 0..1 [ECUC_Arti_00066]
ArtiHardwareCoreClassRunningTaskPriorityRef 0..1 [ECUC_Arti_00094]

| No Included Containers

]

[ECUC_Arti_00054] Definition of EcucReferenceDef ArtiHardwareCoreClassCur-

rentApplicationRef |

Parameter Name

ArtiHardwareCoreClassCurrentApplicationRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentApplicationinstance
parameter.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00056] Definition of EcucReferenceDef ArtiHardwareCoreClassCur-

rentisrRef |

Parameter Name

ArtiHardwareCoreClassCurrentlsrRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentlsrinstance
parameter.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Arti_00058] Definition of EcucReferenceDef ArtiHardwareCoreClassCur-

rentTaskRef |

Parameter Name

ArtiHardwareCoreClassCurrentTaskRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentTaskinstance
parameter.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]
[ECUC_Arti_00064]

Definition of EcucReferenceDef ArtiHardwareCoreClass

GenericComponentRef |

Parameter Name

ArtiHardwareCoreClassGenericComponentRef

Parent Container

ArtiHardwareCoreClass

Description Refers to an ArtiGenericComponentClass that extends the core description.
Multiplicity 0..1
Type Reference to ArtiGenericComponentClass
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00066] Definition of EcucReferenceDef ArtiHardwareCoreClassLast

ErrorRef |

Parameter Name

ArtiHardwareCoreClassLastErrorRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiLastErrorinstance
parameter.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

AUTSSAR

A
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]

[ECUC_Arti_00094] Definition of EcucReferenceDef ArtiHardwareCoreClassRun-
ningTaskPriorityRef |

Parameter Name ArtiHardwareCoreClassRunningTaskPriorityRef
Parent Container ArtiHardwareCoreClass
Description Refers to the ArtiObjectClassParameter that defines the ArtiHwCorelnstanceRunning

TaskPriority parameter. This attribute specifies how to evaluate the current priority of
the task referred by RUNNINGTASK. The current priority can be different from the
static task priority as a result of priority ceiling protocol. This attribute differs from Arti
CurrentTask->ArtiOsTaskClassPriority as here is a single variable while in multiple
tasks there is a single variable per task.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiCoreClass</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreClass</DEFINITION-REF>
<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreClass/
ArtiHardwareCoreClassCurrentApplicationRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectClassParameter_ ArtiHwCore_CurrentApplication
</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreClass/
ArtiHardwareCoreClassCurrentTaskRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectClassParameter_ArtiHwCore_CurrentTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

AUTSSAR

10.4.3 ArtiHardwareCorelnstance

[ECUC_Arti_00063]

Corelnstance |

Definition of EcucParamConfContainerDef ArtiHardware

Container Name

ArtiHardwareCorelnstance

Parent Container

ArtiHardware

Description Description: Represents an instance of an ARTI "Core" object, extending the EcucCore
Definition. When using ARTI for debugging or hardware based tracing, this is
mandatory (i.e. multiplicity 1..*), else optional.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiHardwareCorelnstanceCoreld 0..1 [ECUC_Arti_00091]
ArtiHardwareCorelnstanceCurrentApplicationRef 0..1 [ECUC_Arti_00055]
ArtiHardwareCorelnstanceCurrentlsrRef 0..1 [ECUC_Arti_00057]
ArtiHardwareCorelnstanceCurrentTaskRef 0..1 [ECUC_Arti_00059]
ArtiHardwareCorelnstanceEcucCoreRef 1 [ECUC_Arti_00060]
ArtiHardwareCorelnstanceGenericComponentRef 0..1 [ECUC_Arti_00065]
ArtiHardwareCorelnstancelLastErrorRef 0..1 [ECUC_Arti_00067]
ArtiHardwareCorelnstanceRunningTaskPriorityRef 0..1 [ECUC_Arti_00095]
ArtiHardwareCorelnstanceValidRef 0..1 [ECUC_Arti_00096]

No Included Containers

]
[ECUC_Arti_00091]

stanceCoreld |

Definition of EcuclntegerParamDef ArtiHardwareCoreln-

Parameter Name

ArtiHardwareCorelnstanceCoreld

Parent Container

ArtiHardwareCorelnstance

Description This parameter represents the "CorelD" as given by the OS, returned by GetCorelD().
Multiplicity 0..1

Type EcuclntegerParamDef

Range 0.. 65533 |

Default value -

Post-Build Variant Multiplicity false

AUTSSAR

Post-Build Variant Value

Value Configuration Class

A
true
Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00055] Definition of EcucReferenceDef ArtiHardwareCorelnstance

CurrentApplicationRef |

Parameter Name

ArtiHardwareCorelnstanceCurrentApplicationRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
application" that is running on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00057] Definition of EcucReferenceDef ArtiHardwareCorelnstance

CurrentlsrRef |

Parameter Name

ArtiHardwareCorelnstanceCurrentlsrRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
ISR" that is running on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Arti_00059] Definition of EcucReferenceDef ArtiHardwareCorelnstance
CurrentTaskRef |

Parameter Name

ArtiHardwareCorelnstanceCurrentTaskRef

Parent Container ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
task" that is running on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00060] Definition of EcucReferenceDef ArtiHardwareCorelnstance
EcucCoreRef |

Parameter Name ArtiHardwareCorelnstanceEcucCoreRef

Parent Container ArtiHardwareCorelnstance

Description Refers to the EcucCoreDefinition of this core.
Multiplicity 1
Type Reference to EcucCoreDefinition

Post-Build Variant Value

true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00065] Definition of EcucReferenceDef ArtiHardwareCorelnstance

GenericComponentRef |

Parameter Name

ArtiHardwareCorelnstanceGenericComponentRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to an ArtiGenericComponentinstance that extends a core.
Multiplicity 0..1
Type Reference to ArtiGenericComponentinstance
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

Dependency

]

[ECUC_Arti_00067] Definition of EcucReferenceDef ArtiHardwareCorelnstance
LastErrorRef |

Parameter Name

ArtiHardwareCorelnstancelLastErrorRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "last
error" that happened on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Arti_00095] Definition of EcucReferenceDef ArtiHardwareCorelnstance
RunningTaskPriorityRef |

Parameter Name

ArtiHardwareCorelnstanceRunningTaskPriority Ref

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "running
task priority" that is on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Arti_00096] Definition of EcucReferenceDef ArtiHardwareCorelnstance
ValidRef |

Parameter Name ArtiHardwareCorelnstanceValidRef
Parent Container ArtiHardwareCorelnstance
Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"

of this ArtiHwCorelnstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiCore(O</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>
<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreInstance/
ArtiHardwareCorelnstanceCurrentApplicationRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectInstanceParameter_CurrentApplicationOnCore0
</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCorelInstance/
ArtiHardwareInstanceCurrentTaskRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectInstanceParameter_CurrentTaskOnCore(</VALUE-REF>
</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreInstance/
ArtiHardwareCoreInstanceEcucCoreRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">
/Vendorl/VendorlEcucEcuC/Hardware/Core0</VALUE-REF>
</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

AUTSSAR

10.4.4 ArtiOs

[ECUC_Arti_00071] Definition of EcucParamConfContainerDef ArtiOs |

Container Name

ArtiOs

Parent Container

Arti

Description The ArtiOs container contains ARTI extensions to the EcucDefs/Os module.

Multiplicity 0..1

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsGenericComponentRef 0.* [ECUC_Arti_00178]

Included Containers

Container Name Multiplicity Dependency

ArtiOsAlarmClass 0..1 Contains the layout of an ArtiOsAlarm object.

ArtiOsAlarminstance 0..” Represents an instance of an ArtiOsAlarm object, extending the
EcuC OsTaskAlarm.

ArtiOsClass 0..1 Contains the layout of an ARTI "Os" object, extending the EcuC
OsOS.

ArtiOsContextClass .1 Contains the layout of an ARTI "OsContext" object.

ArtiOsContextinstance > Represents an instance of an "ArtiContext" object.

ArtiOslnstance .1 Represents an instance of an ARTI "Os" object, extending the
EcuC OsOS.

ArtiOslsrClass 0..1 Contains the layout of an ARTI "Oslsr" object, extending the Ecu
C Oslsr.

ArtiOslsrinstance 0..* Represents an instance of an ARTI "Oslsr" object, extending the
EcuC Oslsr.

ArtiOsMessageContainerClass 0..1 Contains the layout of an ARTI "OsMessageContainer" object.
The "OsMessageContainer" object represents an existing
combination of OSEK messages.

ArtiOsMessageContainerinstance > Represents an instance of an "ArtiMessageContainer" object.

ArtiOsResourceClass .1 Contains the layout of an ArtiOsResource object. The ArtiOs
Resource object represents an OSEK resource.

ArtiOsResourcelnstance > Represents an instance of an ArtiOsResource object.

ArtiOsScheduleTableClass .1 Contains the layout of an ArtiOsScheduleTable object.

ArtiOsScheduleTablelnstance > Represents an instance of an ArtiOsScheduleTable object,
extending the EcuC OsScheduleTable.

ArtiOsSpinlockClass .1 Contains the layout of an ArtiOsSpinlock object.

ArtiOsSpinlockinstance > Represents an instance of an ArtiOsSpinlock object, extending
the EcuC OsSpinlock.

ArtiOsStackClass 0..1 Contains the layout of an ArtiOsStack object. The ArtiOsStack
object defines the memory area of any stack in the system.

ArtiOsStackinstance > Represents an instance of an ArtiOsStack object.

ArtiOsTaskClass .1 Contains the layout of an ARTI "OsTask" object, extending the
EcuC OsTask.

ArtiOsTasklInstance 0.” Represents an instance of an ARTI "OsTask" object, extending
the EcuC OsTask.

AUTSSAR

]

[ECUC_Arti_00178] Definition of EcucReferenceDef ArtiOsGenericComponent
Ref |

Parameter Name ArtiOsGenericComponentRef

Parent Container ArtiOs

Description Refers to an ArtiGenericComponentClass that relates to the OS.

Multiplicity 0..*

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArtiOs</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-MODULE-DEF">
/AUTOSAR/Arti/ArtiOs</DEFINITION-REF>

<CONTAINERS>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsClass_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsClass</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskClass_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsTaskClass</DEFINITION-REF>
</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskInstance_TaskHighPriority</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskInstance_TaskLowPriority</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>
<...>

AUTSSAR

</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE—-CONF IGURATION-VALUES>

10.4.5 ArtiOsAlarmClass

[ECUC_Arti_00108] Definition of EcucParamConfContainerDef ArtiOsAlarm
Class |

Container Name ArtiOsAlarmClass

Parent Container ArtiOs

Description Contains the layout of an ArtiOsAlarm object.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiOsAlarmClassGenericComponentClassRef 0..1 [ECUC_Arti_00110]
ArtiOsAlarmClassStateRef 0..1 [ECUC_Arti_00111]

No Included Containers

]

[ECUC_Arti_00110] Definition of EcucReferenceDef ArtiOsAlarmClassGeneric
ComponentClassRef |

Parameter Name ArtiOsAlarmClassGenericComponentClassRef

Parent Container ArtiOsAlarmClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsAlarmClass.
Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00111] Definition of EcucReferenceDef ArtiOsAlarmClassStateRef |

ArtiOsAlarmClassStateRef
ArtiOsAlarmClass

Parameter Name

Parent Container

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsAlarmState
Ref in ArtiOsAlarminstances. This attribute specifies if an alarm is "RUNNING" or
"STOPPED". The refered ArtiObjectClassParameter does include the mapping from
integer to human readable "RUNNING" or "STOPPED".

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.6 ArtiOsAlarminstance

[ECUC_Arti_00109] Definition of EcucParamConfContainerDef ArtiOsAlarmin-

stance |

Container Name

ArtiOsAlarminstance

Parent Container

ArtiOs

Description Represents an instance of an ArtiOsAlarm object, extending the EcuC OsTaskAlarm.
Multiplicity 0..”
Post-Build Variant Multiplicity false

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsAlarmInstanceAction 0..1 [ECUC_Arti_00112]
ArtiOsAlarminstanceCounter 0..1 [ECUC_Arti_00113]
ArtiOsAlarminstanceAlarmTimeRef 0..1 [ECUC_Arti_00156]
ArtiOsAlarminstanceCycle TimeRef 0..1 [ECUC_Arti_00114]
ArtiOsAlarminstanceEcuCRef 0..1 [ECUC_Arti_00115]
ArtiOsAlarminstanceGenericComponentinstanceRef 0..1 [ECUC_Arti_00116]
ArtiOsAlarminstanceStateRef 0..1 [ECUC_Arti_00117]
ArtiOsAlarminstanceValidRef 0..1 [ECUC_Arti_00118]

No Included Containers

AUTSSAR

]

[ECUC_Arti_00112] Definition of EcucStringParamDef ArtiOsAlarminstanceAc-

tion |

Parameter Name

ArtiOsAlarminstanceAction

Parent Container

ArtiOsAlarminstance

Description This attribute provides a string with a description of the action when the alarm expires,
e.g. "ActivateTask TaskA".

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00113]
Counter |

Definition of EcucStringParamDef ArtiOsAlarminstance

Parameter Name

ArtiOsAlarminstanceCounter

Parent Container

ArtiOsAlarminstance

Description This attribute provides a string containing the name of the counter used by this alarm.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00156] Definition of EcucReferenceDef ArtiOsAlarminstanceAlarm

TimeRef |

Parameter Name

ArtiOsAlarminstanceAlarmTimeRef

Parent Container

ArtiOsAlarminstance

Description This attribute specifies how to evaluate the time until the alarm expires next. The time
should be represented in seconds.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00114] Definition of EcucReferenceDef ArtiOsAlarminstanceCycle

TimeRef |

Parameter Name

ArtiOsAlarminstanceCycleTimeRef

Parent Container

ArtiOsAlarminstance

Description This attribute specifies how to evaluate the cycle time for cyclic alarms. The value of
"cycle time" is 0 for non-cyclic alarms. The time should be represendet in seconds.
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00115] Definition of EcucReferenceDef ArtiOsAlarminstanceEcu

CRef |

Parameter Name

ArtiOsAlarminstanceEcuCRef

Parent Container

ArtiOsAlarminstance

Description Refers to an EcuC OsAlarm that is beeing extended.
Multiplicity 0..1
Type Reference to OsAlarm

\Y%

AUTSSAR

A

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00116]
GenericComponentinstanceRef |

Definition of EcucReferenceDef ArtiOsAlarminstance

Parameter Name

ArtiOsAlarminstanceGenericComponentinstanceRef

Parent Container

ArtiOsAlarminstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsAlarminstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00117] Definition of EcucReferenceDef ArtiOsAlarminstanceState
Ref |

Parameter Name

ArtiOsAlarminstanceStateRef

Parent Container

ArtiOsAlarminstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "state" of
this alarm. The result then is mapped with the typemap of the ArtiOsAlarmStateRef of
the ArtiOsAlarmClass.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time B

Dependency

J
[ECUC_Arti_00118] Definition of EcucReferenceDef ArtiOsAlarminstanceValid

Ref |

Parameter Name ArtiOsAlarminstanceValidRef

Parent Container ArtiOsAlarminstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this alarm. Every object declaration may contain a VALID attribute telling the
debugger whether the object’s attributes are currently valid. It may have an integer type
of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.7 ArtiOsClass

[ECUC_Arti_00074] Definition of EcucParamConfContainerDef ArtiOsClass |

Container Name ArtiOsClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "Os" object, extending the EcuC OsOS.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsClassAppModeRef 1 [ECUC_Arti_00072]
ArtiOsClassGenericComponentRef 0..1 [ECUC_Arti_00076]
ArtiOsClassServiceTraceRef 0..1 [ECUC_Arti_00097]

No Included Containers

AUTSSAR

]

[ECUC_Arti_00072] Definition of EcucReferenceDef ArtiOsClassAppModeRef |

Parameter Name

ArtiOsClassAppModeRef

Parent Container

ArtiOsClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiOsAppModelnstance
parameter.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_Arti_00076] Definition of EcucReferenceDef ArtiOsClassGenericCompo-
nentRef |

Parameter Name

ArtiOsClassGenericComponentRef

Parent Container

ArtiOsClass

Description Refers to an ArtiGenericComponentClass that extends the OS description.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00097] Definition of EcucReferenceDef ArtiOsClassServiceTraceRef

[

Parameter Name

ArtiOsClassServiceTraceRef

Parent Container

ArtiOsClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiOsInstanceServiceTrace
parameter. This attribute indicates the entry or exit of a service routine and the ID of
this service routine. The value of this attribute must be evaluated from one single
memory location.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

V

AUTSSAR

A
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsClass_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsClass</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsClass/ArtiOsClassAppModeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectClassParameter_ArtiOs_OsAppMode</VALUE-REF>
</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.4.8 ArtiOsContextClass

[ECUC_Arti_00119] Definition of EcucParamConfContainerDef ArtiOsContext
Class |

Container Name ArtiOsContextClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsContext" object.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsContextClassGenericComponentClassRef 0..1 [ECUC_Arti_00121]

No Included Containers

AUTSSAR

[ECUC_Arti_00121] Definition of EcucReferenceDef ArtiOsContextClassGeneric

ComponentClassRef |

Parameter Name

ArtiOsContextClassGenericComponentClassRef

Parent Container

ArtiOsContextClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsContextClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.9 ArtiOsContextinstance

[ECUC_Arti_00120] Definition of EcucParamConfContainerDef ArtiOsContextin-

stance |
Container Name ArtiOsContextInstance
Parent Container ArtiOs
Description Represents an instance of an "ArtiContext" object.
Multiplicity 0..*
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsContextInstanceAddressRef 0..1 [ECUC_Arti_00122]
ArtiOsContextInstanceGenericComponentinstanceRef 0..1 [ECUC_Arti_00123]
ArtiOsContextlnstanceSizeRef 0..1 [ECUC_Arti_00124]
ArtiOsContextlnstanceValidRef 0..1 [ECUC_Arti_00125]

No Included Containers

AUTSSAR

[ECUC_Arti_00122] Definition of EcucReferenceDef ArtiOsContextinstanceAd-

dressRef |

Parameter Name

ArtiOsContextinstanceAddressRef

Parent Container

ArtiOsContextInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"address" of this context.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]
[ECUC_Arti_00123]

Definition of EcucReferenceDef ArtiOsContextinstance

GenericComponentinstanceRef |

Parameter Name

ArtiOsContextInstanceGenericComponentinstanceRef

Parent Container

ArtiOsContextInstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsContext.
Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00124] Definition of EcucReferenceDef ArtiOsContextinstanceSize

Ref |

Parameter Name

ArtiOsContextInstanceSizeRef

Parent Container

ArtiOsContextInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "size" of
this context.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Y%

AUTSSAR

A

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00125] Definition of EcucReferenceDef ArtiOsContextinstanceValid
Ref |

Parameter Name

ArtiOsContextinstanceValidRef

Parent Container

ArtiOsContextlnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this context. Every object declaration may contain a VALID attribute telling the
debugger whether the object’s attributes are currently valid. It may have an integer type
of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.10 ArtiOsinstance

[ECUC_Arti_00080] Definition of EcucParamConfContainerDef ArtiOsInstance |

Container Name

ArtiOsInstance

Parent Container

ArtiOs

Description Represents an instance of an ARTI "Os" object, extending the EcuC OsOS.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

AUTSSAR

A
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiOsInstanceAppModeRef 1 [ECUC_Arti_00073]
ArtiOslInstanceEcucRef 1 [ECUC_Arti_00075]
ArtiOsInstanceGenericComponentRef 0..1 [ECUC_Arti_00078]
ArtiOsInstanceHookRef 0.* [ECUC_Arti_00079]
ArtiOslInstanceServiceTraceRef 0..1 [ECUC_Arti_00098]
ArtiOsInstanceValidRef 0..1 [ECUC_Arti_00099]

No Included Containers

]

[ECUC_Arti_00073] Definition of EcucReferenceDef ArtiOsinstanceAppModeRef
[

Parameter Name ArtiOslInstanceAppModeRef

Parent Container ArtiOslInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"application mode" of this OS.

Multiplicity 1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

J
[ECUC_Arti_00075] Definition of EcucReferenceDef ArtiOsIinstanceEcucRef |

Parameter Name ArtiOsInstanceEcucRef

Parent Container ArtiOsInstance

Description Refers to the EcucDefs/Os/OsOS of this OS.

Multiplicity 1

Type Reference to OsOS

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00078] Definition of EcucReferenceDef ArtiOsIinstanceGenericCom-

ponentRef |

Parameter Name

ArtiOslInstanceGenericComponentRef

Parent Container

ArtiOslnstance

Description Refers to an ArtiGenericComponentinstance that extends the OS.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00079] Definition of EcucReferenceDef ArtiOsinstanceHookRef |

Parameter Name

ArtiOsInstanceHookRef

Parent Container

ArtiOslInstance

Description Refers to a hook defined in the OS.

Multiplicity 0..”

Type Reference to ArtiHook

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00098] Definition of EcucReferenceDef ArtiOsIinstanceServiceTrace

Ref |

Parameter Name

ArtiOsInstanceServiceTraceRef

Parent Container

ArtiOslInstance

Description Refers to a hook defined in the OS.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time | X | VARIANT-PRE-COMPILE

V

AUTSSAR

A
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

J
[ECUC_Arti_00099] Definition of EcucReferenceDef ArtiOsinstanceValidRef |

Parameter Name ArtiOsInstanceValidRef
Parent Container ArtiOsInstance
Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"

of this ArtiOsInstance. Every object declaration may contain a VALID attribute telling
the debugger whether the object’s attributes are currently valid. It may have an integer
type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceAppModeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectInstanceParameter_OsAppMode</VALUE-REF>
</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceEcucRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlEcucOs/
Vendor1l0Os</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ArtiOs_TaskStart</VALUE-REF>

</ECUC-REFERENCE-VALUE>

AUTSSAR

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ArtiOs_TaskStop</VALUE-REF>

</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC—-CONTAINER-VALUE>

10.4.11 ArtiOsisrClass

[ECUC_Arti_00081] Definition of EcucParamConfContainerDef ArtiOslsrClass [

Container Name ArtiOslsrClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "Oslsr" object, extending the EcuC Oslsr.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiOslsrClassGenericComponentRef 0..1 [ECUC_Arti_00084]

No Included Containers

]

[ECUC_Arti_00084] Definition of EcucReferenceDef ArtiOslsrClassGenericCom-
ponentRef |

Parameter Name ArtiOslsrClassGenericComponentRef

Parent Container ArtiOslsrClass

Description Refers to an optional ArtiGenericComponentClass that extends the Oslsr with
additional parameters.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time B

Dependency

10.4.12 ArtiOslsrinstance

[ECUC_Arti_00086] Definition of EcucParamConfContainerDef ArtiOslsrinstance

[

Container Name

ArtiOslsrinstance

Parent Container

ArtiOs

Description Represents an instance of an ARTI "Oslsr" object, extending the EcuC Oslsr.

Multiplicity 0..*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOslsrinstanceCategory 0..1 [ECUC_Arti_00174]
ArtiOslsrinstanceFunction 0..1 [ECUC_Arti_00083]
ArtiOslsrinstanceld 1 [ECUC_Arti_00093]
ArtiOslsrinstanceEcucRef 0..1 [ECUC_Arti_00082]
ArtiOslsrinstanceGenericComponentRef 0..1 [ECUC_Arti_00085]
ArtiOslsrinstanceTimingProtectionLastTimeFrameRef 0..1 [ECUC_Arti_00211]
ArtiOslsrinstance TimingProtectionUsedBudgetRef 0..1 [ECUC_Arti_00212]
ArtiOslsrinstanceValidRef 0..1 [ECUC_Arti_00157]

No Included Containers

]

[ECUC_Arti_00174] Definition of EcucEnumerationParamDef ArtiOslsrinstance

Category |

Parameter Name

ArtiOslsrinstanceCategory

Parent Container

ArtiOslsrinstance

Description Specifies category of this ISR. If omitted the instance is related to a CATEGORY_2.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CATEGORY_1 -
CATEGORY 2 -

V

AUTSSAR

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Arti_00083] Definition of EcucFunctionNameDef ArtiOslsrinstanceFunc-
tion [

Parameter Name
Parent Container

ArtiOslsrinstanceFunction

ArtiOslsrinstance

Description This parameter represents the C function name of the ISR routine.
Multiplicity 0..1
Type EcucFunctionNameDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]
[ECUC_Arti_00093] Definition of EcucintegerParamDef ArtiOslsrinstanceld |

Parameter Name

ArtiOslsrinstanceld
ArtiOslsrinstance

Parent Container

Description This parameter represents the "ISRID" as given by the OS, returned by GetISRID().
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

AUTSSAR

[ECUC_Arti_00082] Definition of EcucReferenceDef ArtiOslsrinstanceEcucRef |

Parameter Name

ArtiOslsrinstanceEcucRef

Parent Container

ArtiOslsrinstance

Description Refers to the EcucDefs/Os/Oslsr of this ISR.

Multiplicity 0..1

Type Reference to Oslsr

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_Arti_00085] Definition of EcucReferenceDef ArtiOslsrinstanceGeneric

ComponentRef |

Parameter Name

ArtiOslsrinstanceGenericComponentRef

Parent Container

ArtiOslsrinstance

Description Refers to an optional ArtiGenericComponentinstance that extends this Oslsr with
additional parameters.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00211] Definition of EcucReferenceDef ArtiOslsrinstanceTimingPro-
tectionLastTimeFrameRef |

Parameter Name

ArtiOslsrinstanceTimingProtectionLastTimeFrameRef

Parent Container

ArtiOslsrinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the last time
frame related to the Oslsr/OslsrTimingProtection configuration.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity

false

Y%

AUTSSAR

Post-Build Variant Value

false

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00212] Definition of EcucReferenceDef ArtiOslsrinstanceTimingPro-

tectionUsedBudgetRef |

Parameter Name

ArtiOslsrinstanceTimingProtectionUsedBudgetRef

Parent Container

ArtiOslsrinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the used
budget related to the Oslsr/OslsrTimingProtection configuration.
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00157] Definition of EcucReferenceDef ArtiOslsrinstanceValidRef |

Parameter Name

ArtiOslsrinstanceValidRef

Parent Container

ArtiOslsrinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOslsrinstance. Every object declaration may contain a VALID attribute telling
the debugger whether the object’s attributes are currently valid. It may have an integer
type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time B

Dependency

10.4.13 ArtiOsMessageContainerClass

[ECUC_Arti_00126] Definition of EcucParamConfContainerDef ArtiOsMessage
ContainerClass |

Container Name ArtiOsMessageContainerClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsMessageContainer" object. The "OsMessage
Container" object represents an existing combination of OSEK messages.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiOsMessageContainerClassGenericComponentClass 0..1 [ECUC_Arti_00128]
Ref

No Included Containers

]

[ECUC_Arti_00128] Definition of EcucReferenceDef ArtiOsMessageContainer
ClassGenericComponentClassRef |

Parameter Name ArtiOsMessageContainerClassGenericComponentClassRef

Parent Container ArtiOsMessageContainerClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsMessageContainer
Class.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time B

Dependency

10.4.14 ArtiOsMessageContainerinstance

[ECUC_Arti_00127] Definition of EcucParamConfContainerDef ArtiOsMessage

Containerlnstance |

Container Name

ArtiOsMessageContainerinstance

Parent Container

ArtiOs

Description Represents an instance of an "ArtiMessageContainer" object.

Multiplicity 0..”

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiOsMessageContainerinstanceMsgName 0..1 [ECUC_Arti_00129]
ArtiOsMessageContainerinstanceMsgType 0..1 [ECUC_Arti_00130]
ArtiOsMessageContainerinstanceFirstElementRef 0..1 [ECUC_Arti_00131]
ArtiOsMessageContainerlnstanceGenericComponent 0..1 [ECUC_Arti_00132]
InstanceRef

ArtiOsMessageContainerinstanceQueueCountRef 0..1 [ECUC_Arti_00133]
ArtiOsMessageContainerinstanceQueueSizeRef 0..1 [ECUC_Arti_00134]
ArtiOsMessageContainerlnstanceValidRef 0..1 [ECUC_Arti_00135]

No Included Containers

]

[ECUC_Arti_00129] Definition of EcucStringParamDef ArtiOsMessageContainer

InstanceMsgName |

Parameter Name

ArtiOsMessageContainerinstanceMsgName

Parent Container

ArtiOsMessageContainerinstance

Description This attribute provides the name of the message as defined in OIL file.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

AUTSSAR

A

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00130] Definition of EcucStringParamDef ArtiOsMessageContainer
InstanceMsgType |

Parameter Name

ArtiOsMessageContainerinstanceMsgType

Parent Container

ArtiOsMessageContainerinstance

Description This attribute provides the type of the message.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00131] Definition of EcucReferenceDef ArtiOsMessageContainerin-

stanceFirstElementRef |

Parameter Name

ArtiOsMessageContainerinstanceFirstElementRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"firstelement” of this "ArtiOsMessageContainer". This attribute provides the formula for
evaluation of address of first valid message. This message will be received next. If no
message is in the queue the value is zero.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time -
Value Configuration Class Pre-compile time

Link time

VARIANT-PRE-COMPILE
VARIANT-LINK-TIME

x| X

Post-build time -

Dependency

]

[ECUC_Arti_00132] Definition of EcucReferenceDef ArtiOsMessageContainerin-
stanceGenericComponentinstanceRef |

Parameter Name ArtiOsMessageContainerinstanceGenericComponentinstanceRef

Parent Container ArtiOsMessageContainerlnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsMessageContainer
Instance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00133] Definition of EcucReferenceDef ArtiOsMessageContainerin-
stanceQueueCountRef |

Parameter Name ArtiOsMessageContainerinstanceQueueCountRef
Parent Container ArtiOsMessageContainerinstance
Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the

"queuecount" of this "ArtiOsMessageContainer". This attribute provides the number of
valid messages in the queue and "1" for unqueued messages.

Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00134] Definition of EcucReferenceDef ArtiOsMessageContainerin-
stanceQueueSizeRef |

Parameter Name

ArtiOsMessageContainerinstanceQueueSizeRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"queuesize" of this "ArtiOsMessageContainer". This attribute provides the size of the
queue for queued messages and "1" for unqueued messages.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00135] Definition of EcucReferenceDef ArtiOsMessageContainerin-
stanceValidRef |

Parameter Name

ArtiOsMessageContainerinstanceValidRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsMessageContainerinstance. Every object declaration may contain a
VALID attribute telling the debugger whether the object’s attributes are currently valid. It
may have an integer type of any size. Its possible values are 0 (invalid) and non zero
(object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.15 ArtiOsResourceClass

[ECUC_Arti_00136] Definition of EcucParamConfContainerDef ArtiOsResource
Class |

AUTSSAR

Container Name

ArtiOsResourceClass

Parent Container

ArtiOs

Description Contains the layout of an ArtiOsResource object. The ArtiOsResource object
represents an OSEK resource.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsResourceClassGenericComponentClassRef 0..1 [ECUC_Arti_00138]

ArtiOsResourceClassLockerRef 0..1 [ECUC_Arti_00139]

ArtiOsResourceClassStateRef 0..1 [ECUC_Arti_00140]

No Included Containers

]
[ECUC_Arti_00138]

Definition of EcucReferenceDef ArtiOsResourceClass

GenericComponentClassRef |

Parameter Name

ArtiOsResourceClassGenericComponentClassRef

Parent Container

ArtiOsResourceClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsResourceClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00139] Definition of EcucReferenceDef ArtiOsResourceClassLocker

Ref |

Parameter Name

ArtiOsResourceClassLockerRef

Parent Container

ArtiOsResourceClass

Description

Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsResource
LockerRef in ArtiOsResourcelnstances. This attribute indicates the locking ArtiOsTask
Instance or ArtiOslsrinstance.

V

AUTSSAR

A

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00140] Definition of EcucReferenceDef ArtiOsResourceClassState
Ref [

Parameter Name ArtiOsResourceClassStateRef
Parent Container ArtiOsResourceClass
Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsResource

StateRef in ArtiOsResourcelnstances. This attribute represents the state of a resource
("LOCKED"/"UNLOCKED"). The ArtiObjectClassParameter does include the mapping
from integer to human readable "LOCKED" or "UNLOCKED".

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.16 ArtiOsResourcelnstance

[ECUC_Arti_00137] Definition of EcucParamConfContainerDef ArtiOsResource
Instance |

Container Name ArtiOsResourcelnstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsResource object.
Multiplicity 0..*

\Y

AUTSSAR

A

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsResourcelnstancePriority

[ECUC_Arti_00141]

ArtiOsResourcelnstanceEcuCRef

[ECUC_Arti_00142]

ArtiOsResourcelnstanceGenericComponentinstanceRef

[ECUC_Arti_00143]

ArtiOsResourcelnstancelLockerRef

[ECUC_Arti_00145]

ArtiOsResourcelnstanceStateRef

[ECUC_Arti_00144]

ArtiOsResourcelnstanceValidRef

elef(elelele
) IR I I [N

[ECUC_Arti_00146]

No Included Containers

]

[ECUC_Arti_00141] Definition of EcucStringParamDef ArtiOsResourcelnstance

Priority [

Parameter Name

ArtiOsResourcelnstancePriority

Parent Container

ArtiOsResourcelnstance

Description This attribute has two components that state: that the RESOURCE is used by TASKs
only or by TASKs and ISRs, and the priority that will be used when locking the
RESOURCE.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity

false

Post-Build Variant Value

false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

AUTSSAR

[ECUC_Arti_00142] Definition of EcucReferenceDef ArtiOsResourcelnstanceEcu

CRef |

Parameter Name

ArtiOsResourcelnstanceEcuCRef

Parent Container

ArtiOsResourcelnstance

Description Refers to an EcuC OsResource that is beeing extended.

Multiplicity 0..1

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00143] Definition of EcucReferenceDef ArtiOsResourcelnstance
GenericComponentinstanceRef |

Parameter Name

ArtiOsResourcelnstanceGenericComponentinstanceRef

Parent Container

ArtiOsResourcelnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsResourcelnstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00145] Definition of EcucReferenceDef ArtiOsResourcelnstance

LockerRef |

Parameter Name

ArtiOsResourcelnstancelLockerRef

Parent Container

ArtiOsResourcelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "locker"
of this ArtiOsResource.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity

false

V

AUTSSAR

A

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00144] Definition of EcucReferenceDef ArtiOsResourcelnstance
StateRef |

Parameter Name

ArtiOsResourcelnstanceStateRef

Parent Container

ArtiOsResourcelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "state" of
this ArtiOsResource.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00146] Definition of EcucReferenceDef ArtiOsResourcelnstance
ValidRef |

Parameter Name

ArtiOsResourcelnstanceValidRef

Parent Container

ArtiOsResourcelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsResourcelnstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

AUTSSAR

Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.17 ArtiOsScheduleTableClass

[ECUC_Arti_00182] Definition of EcucParamConfContainerDef ArtiOsSchedule
TableClass |

Container Name ArtiOsScheduleTableClass

Parent Container ArtiOs

Description Contains the layout of an ArtiOsScheduleTable object.
Multiplicity 0..1

Post-Build Variant Multiplicity false

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiOsScheduleTableClassCurrentStateRef 0..1 [ECUC_Arti_00184]
ArtiOsScheduleTableClassGenericComponentClassRef 0..1 [ECUC_Arti_00183]

No Included Containers

]

[ECUC_Arti_00184] Definition of EcucReferenceDef ArtiOsScheduleTableClass
CurrentStateRef |

Parameter Name ArtiOsScheduleTableClassCurrentStateRef

Parent Container ArtiOsScheduleTableClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentScheduleTable
Statelnstance parameter including the state mapping.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00183] Definition of EcucReferenceDef ArtiOsScheduleTableClass
GenericComponentClassRef |

Parameter Name ArtiOsScheduleTableClassGenericComponentClassRef

ArtiOsScheduleTableClass

Parent Container

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsScheduleTableClass.
Multiplicity 0..1
Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Pre-compile time X

Multiplicity Configuration Class All Variants

Link time -

Post-build time -
Pre-compile time X

Value Configuration Class All Variants

Link time —
Post-build time -

Dependency

10.4.18 ArtiOsScheduleTablelnstance

[ECUC_Arti_00185] Definition of EcucParamConfContainerDef ArtiOsSchedule
Tablelnstance |

Container Name ArtiOsScheduleTablelnstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsScheduleTable object, extending the EcuC Os
ScheduleTable.

Multiplicity 0..”

Post-Build Variant Multiplicity false

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiOsScheduleTablelnstanceCoreRef 0..1 [ECUC_Arti_00186]
ArtiOsScheduleTableInstanceCounterValueRef 0..1 [ECUC_Arti_00187]
ArtiOsScheduleTablelnstanceCurrentStateRef 0..1 [ECUC_Arti_00188]
ArtiOsScheduleTablelnstanceEcucRef 0..1 [ECUC_Arti_00189]
ArtiOsScheduleTableInstanceExpiry TimeRef 0..1 [ECUC_Arti_00190]
ArtiOsScheduleTablelnstanceGenericComponentinstance 0..1 [ECUC_Arti_00191]
Ref

ArtiOsScheduleTablelnstanceNextEventRef .1 [ECUC_Arti_00224]
ArtiOsScheduleTableInstanceNextExpiryPointRef .1 [ECUC_Arti_00192]
ArtiOsScheduleTablelnstanceNextScheduleTableRef .1 [ECUC_Arti_00193]

No Included Containers

AUTSSAR

[ECUC_Arti_00186]
stanceCoreRef |

Definition of EcucReferenceDef ArtiOsScheduleTableln-

Parameter Name

ArtiOsScheduleTablelnstanceCoreRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiHardwareCorelnstance on which this OsScheduleTable runs.

Multiplicity 0..1

Type Reference to ArtiHardwareCorelnstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_Arti_00187]

Definition of EcucReferenceDef ArtiOsScheduleTableln-

stanceCounterValueRef |

Parameter Name

ArtiOsScheduleTablelnstanceCounterValueRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the absolute
counter value.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
[ECUC_Arti_00188]

Definition of EcucReferenceDef ArtiOsScheduleTableln-
stanceCurrentStateRef |

Parameter Name

ArtiOsScheduleTablelnstanceCurrentStateRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
state" of this OsScheduleTable.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity

false

\Y%

AUTSSAR

Post-Build Variant Value

false

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00189]

stanceEcucRef |

Definition of EcucReferenceDef ArtiOsScheduleTableln-

Parameter Name

ArtiOsScheduleTablelnstanceEcucRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to an EcuC OsScheduleTable that is beeing extended.

Multiplicity 0..1

Type Reference to OsScheduleTable

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00190]
stanceExpiryTimeRef |

Definition of EcucReferenceDef ArtiOsScheduleTableln-

Parameter Name

ArtiOsScheduleTablelnstanceExpiry TimeRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the expiry
time.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

Dependency

]

[ECUC_Arti_00191]

Definition of EcucReferenceDef ArtiOsScheduleTableln-

stanceGenericComponentinstanceRef |

Parameter Name

ArtiOsScheduleTablelnstanceGenericComponentinstanceRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsScheduleTable
Instance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00224]

stanceNextEventRef |

Definition of EcucReferenceDef ArtiOsScheduleTableln-

Parameter Name

ArtiOsScheduleTablelnstanceNextEventRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "next
event".

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00192]

Definition of EcucReferenceDef ArtiOsScheduleTableln-

stanceNextExpiryPointRef |

Parameter Name

ArtiOsScheduleTablelnstanceNextExpiryPointRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "next
expiry point".

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_Arti_00193]

Definition of EcucReferenceDef ArtiOsScheduleTableln-

stanceNextScheduleTableRef |

Parameter Name

ArtiOsScheduleTablelnstanceNextSchedule TableRef

Parent Container

ArtiOsScheduleTablelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "next
schedule table".

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.4.19 ArtiOsSpinlockClass

[ECUC_Arti_00194] Definition of EcucParamConfContainerDef ArtiOsSpinlock
Class |

AUTSSAR

Container Name ArtiOsSpinlockClass

Parent Container ArtiOs

Description Contains the layout of an ArtiOsSpinlock object.
Multiplicity 0..1

Post-Build Variant Multiplicity false

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsScheduleTableClassGenericComponentClassRef 0..1 [ECUC_Arti_00195]
ArtiOsSpinlockClassCurrentOwnerTypeRef 0..1 [ECUC_Arti_00197]
ArtiOsSpinlockClassCurrentStateRef 0..1 [ECUC_Arti_00196]

No Included Containers

]

[ECUC_Arti_00195] Definition of EcucReferenceDef ArtiOsScheduleTableClass

GenericComponentClassRef |

Parameter Name

ArtiOsScheduleTableClassGenericComponentClassRef

Parent Container

ArtiOsSpinlockClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsSpinlockClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00197] Definition of EcucReferenceDef ArtiOsSpinlockClassCurrent

OwnerTypeRef |

Parameter Name

ArtiOsSpinlockClassCurrentOwnerTypeRef

Parent Container

ArtiOsSpinlockClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentSpinlockOwner
Typelnstance parameter including the type mapping.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

\Y%

AUTSSAR

A
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Arti_00196] Definition of EcucReferenceDef ArtiOsSpinlockClassCurrent
StateRef |

Parameter Name ArtiOsSpinlockClassCurrentStateRef

Parent Container ArtiOsSpinlockClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentSpinlockState
Instance parameter including the state mapping.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time —

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

10.4.20 ArtiOsSpinlockinstance

[ECUC_Arti_00198] Definition of EcucParamConfContainerDef ArtiOsSpinlockin-
stance |

Container Name ArtiOsSpinlockinstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsSpinlock object, extending the EcuC OsSpinlock.
Multiplicity 0.*

Post-Build Variant Multiplicity false

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiOsSpinlocklnstanceCurrentOwnerRef 0..1 [ECUC_Arti_00199]
ArtiOsSpinlockInstanceCurrentOwnerTypeRef 0..1 [ECUC_Arti_00200]
ArtiOsSpinlocklnstanceCurrentStateRef 0..1 [ECUC_Arti_00201]
ArtiOsSpinlocklnstanceEcuCRef 0..1 [ECUC_Arti_00202]
ArtiOsSpinlockinstanceGenericComponentinstanceRef 0..1 [ECUC_Arti_00203]
ArtiOsSpinlockinstanceLockingCoreRef 0..1 [ECUC_Arti_00204]

No Included Containers

]

[ECUC_Arti_00199] Definition of EcucReferenceDef ArtiOsSpinlockinstanceCur-

rentOwnerRef |

Parameter Name

ArtiOsSpinlockinstanceCurrentOwnerRef

Parent Container

ArtiOsSpinlockinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the owner ID
(task or ISR2).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00200] Definition of EcucReferenceDef ArtiOsSpinlockinstanceCur-

rentOwnerTypeRef |

Parameter Name

ArtiOsSpinlockinstanceCurrentOwnerTypeRef

Parent Container

ArtiOsSpinlockinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
owner type" of this OsSpinlock.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

AUTSSAR

Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00201] Definition of EcucReferenceDef ArtiOsSpinlockinstanceCur-
rentStateRef |

Parameter Name ArtiOsSpinlockInstanceCurrentStateRef

Parent Container ArtiOsSpinlockinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
state" of this OsSpinlock.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00202] Definition of EcucReferenceDef ArtiOsSpinlockinstanceEcu
CRef |

Parameter Name ArtiOsSpinlockinstanceEcuCRef

Parent Container ArtiOsSpinlockinstance

Description Refers to an EcuC OsSpinlock that is beeing extended.

Multiplicity 0..1

Type Reference to OsSpinlock

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00203] Definition of EcucReferenceDef ArtiOsSpinlockinstance
GenericComponentinstanceRef |

Parameter Name

ArtiOsSpinlockInstanceGenericComponentinstanceRef

Parent Container

ArtiOsSpinlockinstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsSpinlockinstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time =
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00204]
LockingCoreRef |

Definition of EcucReferenceDef ArtiOsSpinlockinstance

Parameter Name

ArtiOsSpinlockInstanceLockingCoreRef

Parent Container

ArtiOsSpinlockinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the current
locking core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.4.21 ArtiOsStackClass

[ECUC_Arti_00147] Definition of EcucParamConfContainerDef ArtiOsStackClass
[

AUTSSAR

Container Name ArtiOsStackClass

Parent Container ArtiOs

Description Contains the layout of an ArtiOsStack object. The ArtiOsStack object defines the
memory area of any stack in the system.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

ArtiOsStackClassGenericComponentClassRef 0..1 [ECUC_Arti_00149]

No Included Containers

]

[ECUC_Arti_00149] Definition of EcucReferenceDef ArtiOsStackClassGeneric
ComponentClassRef |

Parameter Name ArtiOsStackClassGenericComponentClassRef

Parent Container ArtiOsStackClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsStackClass.
Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.22 ArtiOsStackinstance

[ECUC_Arti_00148] Definition of EcucParamConfContainerDef ArtiOsStackin-
stance |

AUTSSAR

Container Name

ArtiOsStackInstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsStack object.

Multiplicity 0.~

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsStackInstanceDirection 0..1 [ECUC_Arti_00150]
ArtiOsStackInstanceBaseAddressRef 0..1 [ECUC_Arti_00151]
ArtiOsStacklnstanceFillPatternRef 0..1 [ECUC_Arti_00152]
ArtiOsStackInstanceGenericComponentinstanceRef 0..1 [ECUC_Arti_00153]
ArtiOsStackInstanceSizeRef 0..1 [ECUC_Arti_00154]
ArtiOsStacklnstanceValidRef 0..1 [ECUC_Arti_00155]

No Included Containers

]

[ECUC_Arti_00150] Definition of EcucStringParamDef ArtiOsStackinstanceDi-

rection |

Parameter Name

ArtiOsStackInstanceDirection

Parent Container

ArtiOsStackInstance

Description This attribute specifies the direction of stack growth and may have either "UP" or
"DOWN" as its value. UP means growing from lower to higher addresses. DOWN
means growing from higher addresses to lower addresses.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00151] Definition of EcucReferenceDef ArtiOsStackinstanceBase
AddressRef |

Parameter Name

ArtiOsStackinstanceBaseAddressRef
ArtiOsStacklnstance

Parent Container

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"baseaddress" of this ArtiOsStack. This attribute specifies the lowest address of stack
memory area, regardless of the stack direction.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00152] Definition of EcucReferenceDef ArtiOsStackinstanceFillPat-
ternRef |

Parameter Name

ArtiOsStackInstanceFillPatternRef

Parent Container

ArtiOsStacklInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"fillpattern" of this ArtiOsStack. If the operating system fills the stack during
initialisation, this attribute specifies with which pattern the stack area is initialised. This
allows the debugger to evaluate the maximum stack usage. For "stackdirection"
"DOWN" the pattern starts at "baseaddress". For "stackdirection" "UP" the pattern
starts at "baseaddress" + "size". If no pattern is used, this attribute must be omitted.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00153] Definition of EcucReferenceDef ArtiOsStackinstanceGeneric
ComponentinstanceRef |

Parameter Name

ArtiOsStackinstanceGenericComponentinstanceRef

Parent Container

ArtiOsStackInstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsStackinstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00154] Definition of EcucReferenceDef ArtiOsStackinstanceSizeRef

[

Parameter Name

ArtiOsStackInstanceSizeRef

Parent Container

ArtiOsStackInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "size" of
this ArtiOsStack. This attribute represents the size (in bytes) of the memory area
allocated for stack.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00155] Definition of EcucReferenceDef ArtiOsStackinstanceValid
Ref |

Parameter Name

ArtiOsStackInstanceValidRef

Parent Container

ArtiOsStacklInstance

Description

Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsStackinstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Y%

AUTSSAR

A

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.4.23 ArtiOsTaskClass

[ECUC_Arti_00087] Definition of EcucParamConfContainerDef ArtiOsTaskClass

[

Container Name ArtiOsTaskClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsTask" object, extending the EcuC OsTask.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiOsTaskClassClassGenericComponentRef 0..1 [ECUC_Arti_00077]
ArtiOsTaskClassContextRef 0..1 [ECUC_Arti_00100]
ArtiOsTaskClassCurrentTaskStateRef 0..1 [ECUC_Arti_00068]
ArtiOsTaskClassPriorityRef 0..1 [ECUC_Arti_00101]
ArtiOsTaskClassStackRef 0..1 [ECUC_Arti_00102]

No Included Containers

AUTSSAR

[ECUC_Arti_00077]

Definition of EcucReferenceDef ArtiOsTaskClassClass

GenericComponentRef |

Parameter Name

ArtiOsTaskClassClassGenericComponentRef

Parent Container

ArtiOsTaskClass

Description Refers to an ArtiGenericComponentClass that extends the OsTask.
Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00100] Definition of EcucReferenceDef ArtiOsTaskClassContextRef

[

Parameter Name

ArtiOsTaskClassContextRef

Parent Container

ArtiOsTaskClass

Description ArtiOsTaskContextRef in ArtiOsTaskInstances. This attribute contains a reference to
the context object that the task is currently using.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00068] Definition of EcucReferenceDef ArtiOsTaskClassCurrent

TaskStateRef |

Parameter Name

ArtiOsTaskClassCurrentTaskStateRef

Parent Container

ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentTaskStatelnstance
parameter including the task state mapping.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

\Y%

AUTSSAR

Post-Build Variant Multiplicity

false

Post-Build Variant Value

false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00101] Definition of EcucReferenceDef ArtiOsTaskClassPriorityRef

[

Parameter Name

ArtiOsTaskClassPriorityRef

Parent Container

ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsTaskPriority
Ref in ArtiOsTaskInstances. This attribute represents the current priority of the TASK
object. The current priority can be different from the static task priority as a result of
priority ceiling protocol. The priority displayed is the priority as defined in the OsTask.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00102] Definition of EcucReferenceDef ArtiOsTaskClassStackRef |

ArtiOsTaskClassStackRef
ArtiOsTaskClass

Parameter Name
Parent Container

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsTaskStackRef
in ArtiOsTaskInstances. This attribute contains a reference to the stack object that the
task is currently using.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

AUTSSAR

Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskClass_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskClass</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskClass/
ArtiOsTaskClassGenericComponentRef</DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArtiGeneric/
ArtiGenericComponentClass_VendorlTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.4.24 ArtiOsTasklnstance

[ECUC_Arti_00090] Definition of EcucParamConfContainerDef ArtiOsTaskin-
stance |

Container Name ArtiOsTasklInstance
Parent Container ArtiOs
Description Represents an instance of an ARTI "OsTask" object, extending the EcuC OsTask.
Multiplicity 0..*
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

A [ECUC_Arti_00089]
1 [ECUC_Arti_00104]
1 [ECUC_Arti_00105]
1 [ECUC_Arti_00069]
[ECUC_Arti_00088]
[ECUC_Arti_00070]
[ECUC_Arti_00225]
1 [ECUC_Arti_00106]

ArtiOsTaskInstanceFunction

ArtiOsTaskInstanceContextRef

ArtiOsTasklInstanceCurrentActivationsRef

ArtiOsTasklInstanceCurrentTaskStateRef

ArtiOsTasklInstanceEcucRef

ArtiOsTaskInstanceGenericComponentRef
ArtiOsTaskInstanceldRef

ArtiOsTaskInstancePriorityRef

Jle|=|o|=|o|e|e|e
a

AUTSSAR

JAN
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiOsTaskInstanceStackRef 0..1 [ECUC_Arti_00107]
ArtiOsTaskInstance TimingProtectionLastTimeFrameRef 0..1 [ECUC_Arti_00214]
ArtiOsTaskInstance TimingProtectionUsedBudgetRef 0..1 [ECUC_Arti_00213]
ArtiOsTaskInstanceValidRef 0..1 [ECUC_Arti_00103]

No Included Containers

]

[ECUC_Arti_00089]

Function |

Definition of EcucFunctionNameDef ArtiOsTasklnstance

Parameter Name

ArtiOsTaskInstanceFunction

Parent Container

ArtiOsTaskInstance

Description This parameter represents the C function name of the task body.
Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_Arti_00104] Definition of EcucReferenceDef ArtiOsTaskinstanceContext

Ref |

Parameter Name

ArtiOsTaskInstanceContextRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the ArtiOs
Context of this ArtiOsTask.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

AUTSSAR

Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_Arti_00105] Definition of EcucReferenceDef ArtiOsTaskinstanceCurrent

ActivationsRef |

Parameter Name

ArtiOsTaskInstanceCurrentActivationsRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
activations" of this task. This attribute specifies the number of current activations for the
task.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00069] Definition of EcucReferenceDef ArtiOsTaskinstanceCurrent

TaskStateRef |

Parameter Name

ArtiOsTaskInstanceCurrentTaskStateRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
state" of this task.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00088] Definition of EcucReferenceDef ArtiOsTaskinstanceEcucRef

[

Parameter Name

ArtiOsTaskInstanceEcucRef

Parent Container

ArtiOsTaskInstance

Description Refers to the EcucDefs/Os/OsTask of this TASK.
Multiplicity 1
Type Reference to OsTask

Post-Build Variant Value

Value Configuration Class

false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_Arti_00070] Definition of EcucReferenceDef ArtiOsTaskinstanceGeneric

ComponentRef |

Parameter Name

ArtiOsTaskInstanceGenericComponentRef

Parent Container

ArtiOsTaskInstance

Description Refers to an ArtiGenericComponentinstance that extends the OsTask.
Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_Arti_00225] Definition of EcucReferenceDef ArtiOsTasklInstanceldRef |

Parameter Name

ArtiOsTaskInstanceldRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "Task
ID"; of type TaskType as given by the OSEK OS, returned by GetTaskID().
Multiplicity 1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

AUTSSAR

Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00106] Definition of EcucReferenceDef ArtiOsTaskinstancePriority
Ref |

Parameter Name

ArtiOsTaskInstancePriorityRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "task
priority" of this task.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00107] Definition of EcucReferenceDef ArtiOsTaskinstanceStackRef

[

Parameter Name

ArtiOsTaskInstanceStackRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the ArtiOs
Stack of this ArtiOsTask.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00214] Definition of EcucReferenceDef ArtiOsTaskinstanceTiming
ProtectionLastTimeFrameRef |

Parameter Name

ArtiOsTaskInstanceTimingProtectionLastTimeFrameRef

Parent Container

ArtiOsTasklInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the last time
frame related to the OsTask/OsTaskTimingProtection configuration.
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00213] Definition of EcucReferenceDef ArtiOsTasklinstanceTiming
ProtectionUsedBudgetRef |

Parameter Name

ArtiOsTaskInstanceTimingProtectionUsedBudgetRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the used
budget related to the OsTask/OsTaskTimingProtection configuration.
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00103] Definition of EcucReferenceDef ArtiOsTaskinstanceValidRef

[

Parameter Name

ArtiOsTaskInstanceValidRef

Parent Container

ArtiOsTaskInstance

Description

Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsTasklnstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. lts possible values are 0 (invalid) and non zero (object is valid).

V

AUTSSAR

A

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskInstance_TaskHighPriority</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceGenericComponentRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArtiGeneric/
ArtiGenericComponentInstance_TaskHighPriority</VALUE-REF>
</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceEcucRef</DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlEcucOs/
TaskHighPriority</VALUE-REF>

</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.5 Published Information

For details refer to [4] Chapter 10.3 “Published Information”.

AUTSSAR

11 Generation of the OS

generates/
reads configures
<<source>> « > :
Configuration generator operating
file system
V¥ generates
linker file
v controls
<<binary>> <<executable>>
object linker executable
file program
1 1
1.* 1.7
(input-) (output-)
section selection
Figure 11.1: Generation activities
11.1 Read in configuration

[SWS_Os_00172]

Upstream requirements: SRS_BSW_00159

[The generator shall provide the user the ability of reading the information of a se-
lectable configuration file. |

11.2 Consistency check

The conistency check can issue warnings or errors. Warnings mean that the generation
is completed successfully, only indicating a not advisable configuration. Errors mean
that the generation is not performed.

AUTSSAR

[SWS_Os_00173]
Upstream requirements: SRS_BSW_00167

[The generator shall provide the user the ability of performing a consistency check of
the current configuration. |

[SWS_Os_00050]
Upstream requirements: SRS_BSW_00167

[If service protection is required and OsStatus is not equal to EXTENDED (all the
associated error handling is provided), the consistency check shall issue an error. |

[SWS_Os_00045]
Upstream requirements: SRS_BSW_00167

[1f timing protection is configured together with OSEK OS Category 1 interrupts, the
consistency check shall issue a warning. |

[SWS_Os_00562]
Upstream requirements: SRS_BSW_00167

[If timing protection is configured together with OsPreTaskHook oOr OsPost-
TaskHook the consistency check shall issue a warning. |

[SWS_Os_00320]
Upstream requirements: SRS_BSW_00167
[If configured attributes do not match the configured scalability class (e.g. defining an

execution time budget in Tasks or Category 2 1SRs and selected scalability class is 1)
the consistency check shall issue a warning. |

[SWS _Os 00311]
Upstream requirements: SRS_BSW_00167
[If OsScalabilityClass is SC3 or SC4, or system is Multi-Core, AND a Task OR

Category 2 ISR OR Counters OR Alarms OR ScheduleTables does not belong to
exactly one OS-Application the consistency check shall issue an error. |

[SWS Os 00361]
Upstream requirements: SRS_BSW_00167
[If OsScalabilityClass is SC3 or SC4, or system is Multi-Core, AND a Category 1

ISR does not belong to exactly one trusted OS-Application the consistency check shall
issue an error |

[SWS_Os_00177]
Upstream requirements: SRS_BSW_00167
[If OsscalabilityClass is SC3 or SC4, or system is Multi-Core, AND an interrupt

source that is used by the OS is assigned to an OS-Application, the consistency check
shall issue an error. |

AUTSSAR

[SWS_Os_00303]
Upstream requirements: SRS_BSW_00167

[If OsAlarmIncrementCounter is configured as action on alarm expiry AND the
alarm is driven directly or indirectly (a cyclic chain of alarm actions with OsAlarmIn-
crementCounter) by that Counter, the consistency check shall issue a warning. |

[SWS_Os_00328]
Upstream requirements: SRS_BSW_00167

[If osstatus is STANDARD and OsScalabilityClass is SC3 or SC4 the consis-
tency check shall issue an error. |

[SWS_Os 00343]
Upstream requirements: SRS_BSW_00167
[If OsScalabilityClass is SC3 or SC4, or system is Multi-Core, AND a Task is

referenced within a ScheduleTable object AND the OS-Application of the Schedule
Table has no access to the Task, the consistency check shall issue an error. |

[SWS_Os_00344]
Upstream requirements: SRS_BSW_00167
[If OsScalabilityClass is SC3 or SC4, or system is Multi-Core, AND a Task is

referenced within an alarm object AND the OS-Application of the alarm has no access
to the Task, the consistency check shall issue an error. |

[SWS_Os_00440]
Upstream requirements: SRS_Os_11002
[Ifa ScheduleTable has OsScheduleTblSyncStrategy = IMPLICIT and the Os-

CounterMaxAllowedValue+1 of the associated Counter is not equal to the dura-
tion of the ScheduleTable then the consitency check shall issue an error. |

[SWS_Os _00461]
Upstream requirements: SRS _BSW 00167

[If OsScalabilityClass is SC2, SC3 or SC4 AND Alarm Callbacks are configured
the conistency check shall isuue an error. |

[SWS_Os_00850]
Upstream requirements: SRS_BSW_00159

[If 0OsUseResScheduler is TRUE AND the configuration contains a resource called
RES_SCHEDULER, the generation tool shall ignore the configured RES_ SCHEDULER. |

[SWS_Os_00877] Alarm action and Task property must fit together [If an
Alarm uses the action to replenish a budget then the Task referenced by OsAlarm-
BudgetReplenishRef must have have OsTaskTimingProtectionDeferrable—
Server enabled. If this is not the case the consistency check shall issue an error. |

AUTSSAR

[SWS_Os_00878] Replenish via expiry point must fit to Task [If an expiry point of
a SchuduleTable uses the action to replenish a budget then the Task referenced by
OsScheduleTableReplenishTaskRef must have have OsTaskTimingProtec—
tionDeferrableServer enabled. If this is not the case the consistency check shall
issue an error. |

[SWS_Os_00879] A Deferrable Server needs a execution time budget [If a Task
has OsTaskTimingProtectionDeferrableServer enabled (is TRUE), then this
Task must also have a valid 0OsTaskExecutionBudget. Otherwise the consistency
check shall issue an error. |

[SWS_Os_00880] A Deferrable Server requires its own priority level [If a Task
has OsTaskTimingProtectionDeferrableServer enabled (is TRUE), then on
the same core there shall be no other Task(s) configured which use the same 0s-
TaskPriority. Otherwise the consistency check shall issue an error. |

[SWS_Os_00881] A Deferrable Server cannot use internal OS resources [If a
Task has OsTaskTimingProtectionDeferrableServer enabled (is TRUE), then
this Task cannot reference a OsResource (via OsTaskResourceRef) which has a
OsResourceProperty configured as LINKED. In such cases the consistency check
shall issue an error. |

11.3 Generating operating system

[SWS_Os_00179]

Upstream requirements: SRS_BSW_00167
[If the consistency check of the read-in configuration file has not run free of errors, the
generator shall not generate/configure the operating system. |

[SWS_Os_00336]
Upstream requirements: SRS_Os_11019

[The generator shall generate a relocatable memory section containing the interrupt
vector table. |

[SWS_Os _00370]
Upstream requirements: SRS_BSW_00159

[The generator shall print out information about timers used internally by the OS during
generation (e.g. on console, list file). |

[SWS_Os 00393]
Upstream requirements: SRS_BSW_00159

[The generator shall create conversation macros to convert counter ticks (given as ar-
gument) into real time. The format of the macro is 0S_TICKS2<Unit>_<Counter>

AUTSSAR

(ticks) whereas <Unit> is one of NS (nanoseconds), US (microseconds), MS (mil-
liseconds) or SEC (seconds) and <Counter> is the name of the Counter; E.g.
OS_TICKS2MS_MyCounter ())]

[SWS_Os_00815]
Upstream requirements: SRS_BSW_00351

[The OS code shall wrap each declaration of Task, ISR, trusted functions, alarm
callbacks and hook functions with the Memory Mapping Allocation Keywords macros.

#define OS_START_SEC_<sadm>
#include "Os_MemMap.h"

< Task, ISR, trusted functions or hook functions declaration>

#define OS_STOP_SEC_<sadm>
#include "Os_MemMap.h"

N o g A~ WoN =

where <sadm> is the shortName of the SwAddrMethod if configured (e.g. in OsMemo-
ryMappingCodeLocationRef).|

AUTSSAR

12 Application Notes

12.1 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-Application
are not called.

All application-specific hook functions (startup, shutdown and error) must return (block-
ing or endless loops are not acceptable).

12.2 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a Task or interrupt,
because this address space might no longer belong to the Task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

1 struct parameter_struct {typel namel, type2 name2, StatusType
return_value};

2

3 /* This service is called by the user and uses a trusted function =*/

4 StatusType system_service(typel parameterl, type2 parameter?)

5

6 /* store parameters in a structure (parameterl and parameter2) =/

7 struct parameter_struct local_struct;

8 local_struct.namel = parameterl;

9 local_struct.name2 = parameter?2;

10 /* call CallTrustedFunction with appropriate index and

1 * pointer to structure x/

12 if (CallTrustedFunction (SYSTEM_SERVICE_INDEX, &local_struct) != E_OK
)

13 return (FUNCTION_DOES_NOT_EXIST);

14 return (local_struct.return_value);

15}

16

17 /+ The CallTrustedFunction() service switches to the privileged

18 * mode. Note that the example is only a fragment! =/

19 StatusType CallTrustedFunction(TrustedFunctionIndexType 1ix,
TrustedFunctionParameterRefType ref)

20

21 /+ check for legal service index and return error if necessary =/
22 if(ix > MAX_SYSTEM_SERVICE)
23 return (E_OS_SERVICEID) ;

24 /+ some implementation specific magic happens: the processor is

AUTSSAR

25
26
27
28
29
30
31

33
34
35
36

38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66
67
68
69
70

* set to privileged mode */

/+ indirectly call target function based on the index =/

(% (system-service_list[ix])) (ix, ref);

/* some implementation specific magic happens: the processor is
*+ set to non-privileged mode */

return (E_OK) ;

/+ This part of the system service is called by
* CallTrustedFunction() =/
void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,

parameter_struct xlocal_struct)

TaskRefType task;
typel parameterl;
type2 parameter?2;
if (GetTaskID (&task) != E_OK)
task = INVALID_TASK;
/* get parameters out of the structure (parameterl and
* parameter2) «*/
parameterl = local_struct.namel;
parameter?2 = local_struct.name?2;
/* check the parameters if necessary =/
/* example is for parameterl being an address and parameter?2
x being a size x/
/+ example only for system_service called from tasks =/
1f (GetISRID () !=INVALID_ISR)
{
/+ error: not callable from ISR «/
local_struct.return_value = E_OS_ACCESS;
}
else if (OSMEMORY_IS_WRITEABLE (CheckTaskMemoryAccess (task,parameterl
,parameter?)))

/x system_service_part3() is now the function as it
* would be if directly called in a non-protected
* environment x/
local_struct.return_value = system_service_part3 (parameterl,
parameter?2) ;

}

else

{

/+ error handling =/
local_struct.return_value = E_OS_ACCESS;

Note: Since the service of CallTrustedFunction is very generic, it is needed to
define a stub-interface which does the packing and unpacking of the arguments (as the
example show). Depending on the implementation the stub interface may be (partly)
generated by the generation tool.

AUTSSAR

12.3 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to 10 space. As software compo-
nents can not be allowed direct access to the hardware, software components can
not be trusted OS-Applications because this would violate this protection feature. The
configuration process must ensure that this is the case.

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on how
runnables from software components are mapped to OS Tasks. However, the protec-
tion mechanisms in AUTOSAR OS apply only to OS managed objects. This means
that all runnables in a Task:

 Are not protected from each other at runtime
» Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different Tasks
and those Tasks protected accordingly.

A simple rule can suffice:

"When allocating runnables to Tasks, only allocate runnables from the same software
component into the same Task."

If multiple software components from the same application are to reside on the
same processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of pro-
tection to the application:

"When allocating runnables to Tasks, only allocate runnables from the same applica-
tion into the same Task."

12.4 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user
(unless implicit synchronization is used). This allows maximum flexibility regarding the
time source. For synchronization with e.g. FlexRay some glue code may be necessary
which transfer the information from the time source to the OS.

12.5 Working with FlexRay

ScheduleTables in the AUTOSAR OS may be synchronized with a global (network)
time provided by FlexRay in essentially two ways:

» Using the FlexRay interface’s services for controlling timer interrupts related to
global time to provide a "hardware" counter tick source to drive the processing of
a ScheduleTable (implicit synchronization)

AUTSSAR

+ Using the FlexRay interface’s service for accessing the current global time and
passing this into the OS through the SyncscheduleTable OS service call

This section looks at the second option only.

In FlexRay time is presented as a tuple of a Cycle and a MacrotickOffset within the
cycle. Cycle is an 8-bit value and MacrotickOffset is a 16-bit value.

In AUTOSAR OS a scheduleTable is associated with an underlying Counter that
has a notion of ticks. It is therefore possible to synchronize with either the Cycle or the
tuple of Cycle/MacrotickOffset to give the resolution of synchronization required by the
application.

If Cycle only resolution is required then an OS Counter object should be configured
to have a OsCounterMaxAllowedValue equal to the maximum number of Cycles.
If Cycle/MacrotickOffset is required then an OS Counter object should be configured
with a OsCounterMaxAllowedValue of the maximum number of Cycles multiplied by
the MacrotickOffset. This provides the OS with a time base against which a Schedule
Table can be synchronized.

Synchronization between the OS and an external global time source is provided by
telling the OS the global time through the syncScheduleTable service call. This call
takes a scalar parameter of TickType so to interface this to FlexRay’s representation
of time a small conversion needs to be done. The following example assumes a Cycle
of 255 with 65535 Macroticks per Cycle. TickType is at least 24-bits wide.

1 #define OSTIME (x) (TickType) (x);

2

3 FrIf GetGlobalTime (Controller, &Cycle, &Macrotick);
4

5

SyncScheduleTable (Tbl, ((OSTIME (Cycle) <<16)+ (OSTIME (Macrotick))));

Telling the ScheduleTable that GlobalTime can be done when the application detects
that the FlexRay controller has lost synchronization with the network (by polling the
controller sync status). The following code indicates how this can be used to force an
associated ScheduleTable into the SCHEDULETABLE_RUNNING state from the SCHED-
ULETABLE_RUNNING_AND_SYNCHRONOUS state.

Fr_SyncStateType CurrentSyncStatus;

if (FrIf_GetSyncState(Controller, &CurrentSyncStatus) == E_OK) {

SetScheduleTableAsync (Table) ;

1
2
3
4
5 if (CurrentSyncStatus == FR_ASYNC) {
6
7 }

8

9

}

Of course, other actions are possible here, like stopping the ScheduleTable, as best
fits user requirements.

AUTSSAR

12.6 Migration from OIL to XML

This version of the AUTOSAR OS specification does not directly support the config-
uration via OIL. The support for OIL was dropped in favour of XML because XML is
the standard configuration language in AUTOSAR and is essential if configuration data
has to be imported / exported from / to other AUTOSAR modules or between different
tools during development.

Since OIL and XML are both ASCII formats a tool vendor may offer a possibility to
import (old) OIL files and to store them as (AUTOSAR OS) XML files. Currently all
known vendors support at least the import of existing OIL configurations.

Note that for showing conformance to the OSEK OS specification, each OSEK OS ven-
dor must support OIL. This means that practically each AUTOSAR OS vendor will offer
some sort of import of OIL configurations - at least to show the OSEK OS conformance.

12.7 Debug support

For the AUTOSAR OS the following information may be useful for users and should be
considert for debug support (and may be published, e.g. in the BSWMD):

» General information about how to retrieve the current (active) Task or ISR and
their (current) priority and (current) stack.

» For IsRrs: Information about the name of interrupts, their mapping to the ISR
identifier, the associated hardware and the used stack(s).

» For Tasks: Information about the name of the Task, its identifier, the task
state, the possible priorities, the event mask (if its an extended Task), the OS-
Application to whom the Task belongs (if existant) and the used stack.

* For Resources: Information about the name of the Resource, its mapping to
the identifier, its priority and the current owner (the Task/ISR which currently
holds the Resource)

» For Alarms: Information about the name of the Alarm, its mapping to the identi-
fier, the Counter to whom it belong, the action which is executed on expiry and
the current state (running or stopped). In running state the next expiry in ticks
and the possible cycle time shall be also published.

* For Counters: Information about the name of the Counter, its mapping to the
identifier, its associated alarms and the current counter value.

* For SchduleTables: Information about the name of the ScheduleTable, its
mapping to the identifier, its current state and the next expiry point (if the table is
running).

» For OS-Applications: Information about the name of the OS-Application, its map-
ping to the identifier, its current state and the memory sections assigned to it (if
memory protection is used).

AUTSSAR

ARTI implements mechanisms to retrieve the described information (see [11]).

User documentation should contain information about the implemeted debug features.

12.8 Integration hints for peripheral protection

Peripheral protection requires configuration on the core level usually conditioned by a
supervisor access. For this reason the task of the peripheral protection is assigned to
the OS module.

Peripheral protection may be implemented in two ways
- using MPU
- using dedicated peripheral protection units of the target MCU.

When using the memory protection unit, it is reasonable if two or more protected region
descriptors are available for peripheral protection mechanism. The region descriptors
shall be programmed to allow access to those peripherals the current OS-Application
shall work with. The defined regions shall cover all memory mapped configuration
registers for the periphiherals to be protected. The advantage of using the MPU is that
the configuration is the same as for memory protection. One of the disadvantages of
this method is that it could be impossilbe to cover all peripheral control registers with
available MPU region descriptors. The number of such descriptors is typically low.

Beware that using this method may have implication to the linker file of the project
software configuration.

Second method is using a dedicated register protection schema. This method shall
allow to precisely select peripherals for every OS Application. However the number of
peripherals may make the register protection implementation rather bulky. Therefore it
is advisable to reduce the number of protected peripherals to a reasonable value.

For both methods the configuration shall be placed into custom OS Application prop-
erties. The configuration shall be active when a Task (or IsSR) of a particular OS
Application is running.

12.9 Termination of OS-Applications

Inconsistencies may occur when an OsApplication is terminated, depending on its
state at the termination.

A notification from an asynchronous job started before the termination of 0sap-
plication can occur afterwards.

» An asynchronous memory read or write started before the termination of 0sap-
plication can occur afterwards and may cause data inconsistency.

AUTSSAR

* A requested mode or state to another OsApplication (e.g. froma SW-C to A
BSW) can lead to unsynchronized state machines.

Therefore special care needs to be taken by developers to avoid such inconsistencies
and guaranty a correct behavior. This is especially true if an OS-Application is forcible
terminated.

AUTSSAR

13 Outlook on Memory Protection Configuration

As stated before, memory protection configuration is not standardized yet. Neverthe-
less it seems helpful to contribute a recommendation in this chapter, how the configu-
ration might work.

13.1 Configuration Approach

Both, SW-Components and BSW modules, map code and variables to dedicated, dis-
joined memory sections (see [12] Chapter 8 “Implementation”, and Specification of
Memory Mapping [13]).

This essential precondition (avoid an inseparable conglomeration of variables in the
default section) can be used to support configuration of memory protection domains:

» The generator can save for each OS-Application a (processor-specific) maximum
number of output sections for data in a file (to be used in the linker file).

» The generator can uniquely identify the address spaces of the data output sec-
tions with symbols using the naming convention (see memory allocation key-
words _STOP_SEC_VAR and _START_SEC_VAR for start and stop symbols) in
the specification mentioned above.

The input data sections in the object files of an OS-Application can then be assigned to
the output sections (with potential tool support). Usually, this is one segment for global
data, and one segment for code.

To archieve portability, the user shall group all variables belonging to a private data
section (Task/ISR or OS-Application) in separate files.

AUTSSAR

A Not applicable requirements

[SWS_Os_NA_00767]

Upstream requirements:

SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW._
00170, SRS_BSW 00419, SRS_BSW 00383, SRS _BSW_00384,
SRS_BSW_00375, SRS_BSW_00406, SRS_BSW_00168, SRS_BSW._
00407, SRS_BSW 00423, SRS_BSW 00337, SRS _BSW_ 00369,
SRS_BSW_00339, SRS _BSW_00422, SRS _BSW 00417, SRS_BSW_
00409, SRS_BSW_00385, SRS_BSW 00386, SRS_BSW_00437,
SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_
00392, SRS_BSW 00393, SRS _BSW 00395, SRS _BSW_00396,
SRS_BSW_00399, SRS _BSW_00403, SRS_BSW_00416, SRS_BSW_
00425, SRS_BSW 00432, SRS_BSW 00452, SRS _BSW 00458,
SRS_BSW_00461, SRS_BSW_00466, SRS_BSW_00469, SRS_BSW._
00470, SRS_BSW_00471, SRS_BSW 00472, SRS_BSW_00478,
SRS_BSW_00490, SRS _BSW_00491, SRS BSW 00492, RS_Arti_
00008, RS _Arti 00025, RS_Arti 00039, RS _Arti 00040, RS _Arti_
00041, RS_Arti_ 00042, RS_Arti_04085, RS_Arti_04086, RS_Arti_
04087, RS_Arti_04089, RS_Arti_04090, RS_Arti_04101, RS_Arti_
04143, RS_Arti 04145, RS_Arti 00038, RS _Arti 00028, RS Arti_
00035, RS_Arti_00036, RS_Arti_00037

[These requirements are not applicable to this specification. |

AUTSSAR

B History of Constraints and Specification ltems

B.1 Differences between R24-11 and R25-11

B.1.1 Added Specification Iltems in R25-11

[ECUC_Arti_00225] [ECUC Os 00411] [ECUC_Os 00412] [ECUC_Os_00413]
[ECUC_Os_00414] [ECUC _Os 00415] [ECUC_Os 00416] [SWS_Os_00864]
[SWS_Os_00865] [SWS_Os_00866] [SWS_Os 00867] [SWS_Os_00868] [SWS_
Os_00869] [SWS_Os_00870] [SWS_Os_00871] [SWS_Os_00872] [SWS_Os_00873]
[SWS_Os 00874] [SWS_Os 00875] [SWS_Os 00876] [SWS_Os 00877] [SWS_
Os_00878] [SWS_Os_00879] [SWS_Os_00880] [SWS_Os_00881] [SWS_Os_91035]
[SWS_Os_91036]

B.1.2 Changed Specification Items in R25-11

[ECUC_Arti_00055] [ECUC_Arti_00059] [ECUC_Arti 00063] [ECUC_Arti_00090]
[ECUC_Arti 00091] [ECUC_Os_00006] [ECUC Os 00143] [ECUC_Os_00325]
[ECUC_Os_01017] [SWS_Os_00064] [SWS_Os_00407] [SWS_Os_00440] [SWS_
Os_00473] [SWS_Os_00786] [SWS_Os_00788] [SWS_Os_00836] [SWS_Os_00840]
[SWS_Os 91028]

B.1.3 Deleted Specification Items in R25-11

[ECUC_Arti_00092] [SWS_Os_00560] [SWS_Os_00769] [SWS_Os_00770] [SWS_-
Os_00771] [SWS_Os_00793] [SWS_Os_00794] [SWS_Os_00802] [SWS Os_-
91027]

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

AUTSSAR

B.2 Differences between R23-11 and R24-11

B.2.1 Added Specification Iltems in R24-11

[ECUC_Arti_00182]
[ECUC_Arti_00186]
[ECUC_Arti_00190]
[ECUC_Arti_00194]
[ECUC_Arti_00198]
[ECUC_Arti_00202]
[ECUC_Arti_00212]

[ECUC_Arti_00183]
[ECUC_Arti_00187]
[ECUC_Arti_00191]
[ECUC_Arti_00195]
[ECUC_Arti_00199]
[ECUC_Arti_00203]
[ECUC_Arti_00213]

[ECUC_Arti_00184]
[ECUC_Arti_00188]
[ECUC_Arti_00192]
[ECUC_Arti_00196]
[ECUC_Arti_00200]
[ECUC_Arti_00204]
[ECUC_Arti_00214]

[ECUC_Os_00410] [SWS_Os_00863] [SWS_Os_91028]

B.2.2 Changed Specification Items in R24-11

[ECUC_Arti_00071]

[ECUC_Arti_00086]

[ECUC_Arti_00090]

[ECUC_Arti_00185]
[ECUC_Arti_00189]
[ECUC_Arti_00193]
[ECUC_Arti_00197]
[ECUC_Arti_00201]
[ECUC_Arti_00211]
[ECUC_Arti_00224]

[ECUC_Os_00044]

[ECUC_Os_00114] [SWS_Os_00106] [SWS_Os_00244] [SWS_Os_00258] [SWS_-
Os_00287] [SWS_Os_00364] [SWS_Os_00467] [SWS_Os_00502] [SWS_Os_00506]
[SWS_Os_00538] [SWS_Os_00563] [SWS_Os_00773] [SWS_Os_00784] [SWS_-
Os_00787] [SWS_Os_00788] [SWS_Os_91026]

B.2.3 Deleted Specification Iltems in R24-11

[ECUC_Os_00120] [SWS_Os_00111] [SWS_Os_00365] [SWS_Os_00459] [SWS_-
Os_00497] [SWS_Os_00498] [SWS_Os_00501] [SWS_Os_00503] [SWS_Os_00508]
[SWS_Os_00547] [SWS_Os_00548] [SWS_Os_00555] [SWS_Os_00557] [SWS._-
Os_00564] [SWS_Os_91029]

B.2.4 Added Constraints in R24-11

none

B.2.5 Changed Constraints in R24-11

none

B.2.6 Deleted Constraints in R24-11

none

AUTSSAR

B.3 Differences between R22-11 and R23-11

B.3.1 Added Specification Items in R23-11

[SWS_Os_00859] [SWS_Os_00860] [SWS_Os_00861] [SWS_Os_00862] [SWS -
Os_91034]

B.3.2 Changed Specification ltems in R23-11

[SWS_Os_00261] [SWS_Os_00287] [SWS_Os_00548] [SWS_Os_00566] [SWS._-
Os_00573] [SWS_Os_00675] [SWS_Os_00798] [SWS_Os_00820] [SWS_Os_00822]
[SWS_Os_00826] [SWS_Os_91025]

B.3.3 Deleted Specification Iltems in R23-11
[SWS_Os_00821] [SWS_0Os_00823]

B.3.4 Added Constraints in R23-11
[SWS_Os CONSTR_00001] [SWS_Os CONSTR _00002]

B.3.5 Changed Constraints in R23-11

none

B.3.6 Deleted Constraints in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	2.1 Glossary of Terms

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Existing Standards
	4.2 Terminology
	4.3 Interaction with the RTE
	4.4 Operating System Abstraction Layer (OSAL)
	4.5 Multi-Core Hardware assumptions
	4.5.1 CPU Core features
	4.5.2 Memory features
	4.5.3 Multi-Core Limitations

	4.6 Limitations
	4.6.1 Hardware
	4.6.2 Programming Language
	4.6.3 Miscellaneous

	4.7 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure
	5.1.3 ARTI File Structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Core OS
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.2.1 Restrictions on OSEK OS
	7.1.2.2 Undefined Behaviour in OSEK OS
	7.1.2.3 Extensions to OSEK OS

	7.2 Software Free Running Timer
	7.3 ScheduleTables
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.2.1 Structure of a ScheduleTable
	7.3.2.2 Constraints on Expiry Points
	7.3.2.3 Processing ScheduleTables
	7.3.2.4 Repeated ScheduleTable Processing
	7.3.2.5 Controlling ScheduleTable Processing

	7.4 ScheduleTable Synchronization
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.2.1 Implicit Synchronization
	7.4.2.2 Explicit Synchronization
	7.4.2.3 Performing Synchronization

	7.5 Stack Monitoring Facilities
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 OS-Application
	7.6.1 Background & Rationale
	7.6.2 Requirements

	7.7 Protection Facilities
	7.7.1 Memory Protection
	7.7.1.1 Background & Rationale
	7.7.1.2 Requirements

	7.7.2 Timing Protection
	7.7.2.1 Background & Rationale
	7.7.2.2 Requirements
	7.7.2.3 Implementation Notes

	7.7.3 Service Protection
	7.7.3.1 Background & Rationale
	7.7.3.2 Invalid Object Parameter or Out of Range Value
	7.7.3.3 Service Calls Made from Wrong Context
	7.7.3.4 Services with Undefined Behaviour
	7.7.3.5 Service Restrictions for Non-Trusted OS-Applications
	7.7.3.6 Service Calls on Objects in Different OS-Applications

	7.7.4 Protecting the Hardware used by the OS
	7.7.4.1 Background & Rationale
	7.7.4.2 Requirements
	7.7.4.3 Implementation Notes

	7.7.5 Providing Trustedfunctions
	7.7.5.1 Background & Rationale
	7.7.5.2 Requirements

	7.8 Protection Error Handling
	7.8.1 Background & Rationale
	7.8.2 Requirements

	7.9 Operating System for Multi-Core
	7.9.1 Background & Rationale
	7.9.1.1 Requirements

	7.9.2 Scheduling
	7.9.2.1 Requirements

	7.9.3 Locatable entities (LE)
	7.9.3.1 Requirements

	7.9.4 Multi-Core start-up concept
	7.9.4.1 Requirements

	7.9.5 Cores under control of the AUTOSAR OS
	7.9.5.1 Requirements

	7.9.6 Multi-Core shutdown concept
	7.9.6.1 Synchronized shutdown concept
	7.9.6.2 Individual shutdown concept
	7.9.6.3 Shutdown in case of fatal internal errors

	7.9.7 OS service functionality (overview)
	7.9.8 GetTaskID
	7.9.9 Interrupt disabling
	7.9.9.1 Requirements

	7.9.10 Task activation
	7.9.10.1 Requirements

	7.9.11 Task Chaining
	7.9.11.1 Requirements

	7.9.12 Event setting
	7.9.12.1 Requirements

	7.9.13 Activating additional cores
	7.9.14 Start of the OS
	7.9.14.1 Requirements

	7.9.15 Task termination
	7.9.15.1 Requirements

	7.9.16 Termination of OS-Applications
	7.9.16.1 Requirements

	7.9.17 Shutdown of the OS
	7.9.17.1 Requirements

	7.9.18 Waiting for Events
	7.9.18.1 Requirements

	7.9.19 Calling trusted functions
	7.9.19.1 Requirements

	7.9.20 Invoking reschedule
	7.9.20.1 Requirements

	7.9.21 Resource handling
	7.9.22 The CoreID
	7.9.22.1 Requirements

	7.9.23 Counters, background & rationale
	7.9.24 Multi-Core restrictions on Counters
	7.9.24.1 Requirements

	7.9.25 Synchronization of Counters
	7.9.26 Alarms
	7.9.26.1 Requirements

	7.9.27 ScheduleTables
	7.9.27.1 Requirements

	7.9.28 The spinlock mechanism
	7.9.28.1 Requirements

	7.9.29 Offline checks
	7.9.29.1 Requirements

	7.9.30 Auto start Objects
	7.9.30.1 Requirements

	7.10 Inter-OS-Application Communicator (IOC)
	7.10.1 Background & Rationale
	7.10.2 IOC - General purpose
	7.10.3 IOC functionality
	7.10.3.1 Communication
	7.10.3.2 Notification

	7.10.4 IOC interface
	7.10.5 IOC internal structure
	7.10.6 IOC configuration and generation
	7.10.7 IOC integration examples
	7.10.7.1 Example 1 - 1:1 sender/receiver communication without notification
	7.10.7.2 Example 2 - N:1 client/server communication with receiver notification by RTE

	7.11 System Scalability
	7.11.1 Background & Rationale
	7.11.2 Requirements

	7.12 Hook Functions
	7.12.1 Background & Rationale
	7.12.2 Requirements

	7.13 Hardware peripheral access
	7.13.1 Background & Rationale
	7.13.2 Requirements

	7.14 Interrupt source API
	7.14.1 Background & Rationale
	7.14.2 Requirements

	7.15 Error classification
	7.16 ARTI Debug Information
	7.16.1 OS ARTI Objects

	7.17 ARTI Hook Macros
	7.17.1 Class AR_CP_OS_APPLICATION
	7.17.2 Class AR_CP_OS_TASK
	7.17.3 Class AR_CP_OS_CAT2ISR
	7.17.4 Class AR_CP_OS_SERVICECALLS
	7.17.5 Class AR_CP_OS_SPINLOCK
	7.17.6 Class AR_CP_OS_HOOK

	8 API specification
	8.1 Constants
	8.1.1 Error codes of type StatusType

	8.2 Macros
	8.3 Type definitions
	8.3.1 ApplicationType (for OS-Applications)
	8.3.2 ApplicationStateType
	8.3.3 ApplicationStateRefType
	8.3.4 TrustedFunctionIndexType
	8.3.5 TrustedFunctionParameterRefType
	8.3.6 AccessType
	8.3.7 ObjectAccessType
	8.3.8 ObjectTypeType
	8.3.9 MemoryStartAddressType
	8.3.10 MemorySizeType
	8.3.11 ISRType
	8.3.12 ScheduleTableType
	8.3.13 ScheduleTableStatusType
	8.3.14 ScheduleTableStatusRefType
	8.3.15 ProtectionReturnType
	8.3.16 RestartType
	8.3.17 PhysicalTimeType
	8.3.18 CoreIdType
	8.3.19 SpinlockIdType
	8.3.20 TryToGetSpinlockType
	8.3.21 AreaIdType
	8.3.22 CounterType

	8.4 Function definitions
	8.4.1 GetApplicationID
	8.4.2 GetCurrentApplicationID
	8.4.3 GetISRID
	8.4.4 CallTrustedFunction
	8.4.5 CheckISRMemoryAccess
	8.4.6 CheckTaskMemoryAccess
	8.4.7 CheckObjectAccess
	8.4.8 CheckObjectOwnership
	8.4.9 StartScheduleTableRel
	8.4.10 StartScheduleTableAbs
	8.4.11 StopScheduleTable
	8.4.12 NextScheduleTable
	8.4.13 StartScheduleTableSynchron
	8.4.14 SyncScheduleTable
	8.4.15 SetScheduleTableAsync
	8.4.16 GetScheduleTableStatus
	8.4.17 IncrementCounter
	8.4.18 GetCounterValue
	8.4.19 GetElapsedValue
	8.4.20 TerminateApplication
	8.4.21 GetApplicationState
	8.4.22 GetNumberOfActivatedCores
	8.4.23 GetCoreID
	8.4.24 StartCore
	8.4.25 GetSpinlock
	8.4.26 ReleaseSpinlock
	8.4.27 TryToGetSpinlock
	8.4.28 ShutdownAllCores
	8.4.29 ReadPeripheral8, ReadPeripheral16, ReadPeripheral32
	8.4.30 WritePeripheral8, WritePeripheral16, WritePeripheral32
	8.4.31 ModifyPeripheral8, ModifyPeripheral16, ModifyPeripheral32
	8.4.32 EnableInterruptSource
	8.4.33 DisableInterruptSource
	8.4.34 ClearPendingInterrupt
	8.4.35 ActivateTaskAsyn
	8.4.36 SetEventAsyn
	8.4.37 isOsStarted
	8.4.38 BudgetReplenish

	8.5 IOC
	8.5.1 Imported types
	8.5.2 Type definitions
	8.5.3 Constants
	8.5.4 Function definitions
	8.5.4.1 IocInit (DRAFT)
	8.5.4.2 IocSend/IocWrite
	8.5.4.3 IocSendGroup/IocWriteGroup
	8.5.4.4 IocReceive/IocRead
	8.5.4.5 IocReceiveGroup/IocReadGroup
	8.5.4.6 IocEmptyQueue

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.2.1 ReceiverPullCB

	8.7 Hook functions
	8.7.1 ProtectionHook
	8.7.2 Application specific StartupHook
	8.7.3 Application specific ErrorHook
	8.7.4 Application specific ShutdownHook

	8.8 Service Interfaces

	9 Sequence diagrams
	9.1 Sequence chart for calling trusted functions
	9.2 Sequence chart for usage of ErrorHook
	9.3 Sequence chart for ProtectionHook
	9.4 Sequence chart for StartupHook
	9.5 Sequence chart for ShutdownHook
	9.6 Sequence diagrams of Sender Receiver communication over the IOC
	9.6.1 Last-is-best communication
	9.6.2 Queued communication without pull callback
	9.6.3 Queued communication with pull callback

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Rules for paramters

	10.2 Containers and configuration parameters
	10.2.1 Os
	10.2.2 OsAlarmSetEvent
	10.2.3 OsAlarm
	10.2.4 OsAlarmAction
	10.2.5 OsAlarmActivateTask
	10.2.6 OsAlarmAutostart
	10.2.7 OsAlarmCallback
	10.2.8 OsAlarmIncrementCounter
	10.2.9 OsApplication
	10.2.10 OsApplicationHooks
	10.2.11 OsApplicationTrustedFunction
	10.2.12 OsAppMode
	10.2.13 OsCounter
	10.2.14 OsEvent
	10.2.15 OsDriver
	10.2.16 OsHooks
	10.2.17 OsIsr
	10.2.18 OsIsrResourceLock
	10.2.19 OsIsrTimingProtection
	10.2.20 OsOS
	10.2.21 OsPeripheralArea
	10.2.22 OsResource
	10.2.23 OsScheduleTable
	10.2.24 OsScheduleTableAutostart
	10.2.25 OsScheduleTableEventSetting
	10.2.26 OsScheduleTableExpiryPoint
	10.2.27 OsScheduleTableTaskActivation
	10.2.28 OsScheduleTblAdjustableExpPoint
	10.2.29 OsScheduleTableTaskReplenish
	10.2.30 OsScheduleTableSync
	10.2.31 OsSpinlock
	10.2.32 OsTask
	10.2.33 OsTaskAutostart
	10.2.34 OsTaskResourceLock
	10.2.35 OsTaskTimingProtection
	10.2.36 OsTimeConstant

	10.3 Containers and configuration parameter extensions of the IOC
	10.3.1 OsIoc
	10.3.2 OsIocCommunication
	10.3.3 OsIocSenderProperties
	10.3.4 OsIocReceiverProperties
	10.3.5 OsIocDataProperties

	10.4 Containers and configuration parameters for ARTI
	10.4.1 ArtiHardware
	10.4.2 ArtiHardwareCoreClass
	10.4.3 ArtiHardwareCoreInstance
	10.4.4 ArtiOs
	10.4.5 ArtiOsAlarmClass
	10.4.6 ArtiOsAlarmInstance
	10.4.7 ArtiOsClass
	10.4.8 ArtiOsContextClass
	10.4.9 ArtiOsContextInstance
	10.4.10 ArtiOsInstance
	10.4.11 ArtiOsIsrClass
	10.4.12 ArtiOsIsrInstance
	10.4.13 ArtiOsMessageContainerClass
	10.4.14 ArtiOsMessageContainerInstance
	10.4.15 ArtiOsResourceClass
	10.4.16 ArtiOsResourceInstance
	10.4.17 ArtiOsScheduleTableClass
	10.4.18 ArtiOsScheduleTableInstance
	10.4.19 ArtiOsSpinlockClass
	10.4.20 ArtiOsSpinlockInstance
	10.4.21 ArtiOsStackClass
	10.4.22 ArtiOsStackInstance
	10.4.23 ArtiOsTaskClass
	10.4.24 ArtiOsTaskInstance

	10.5 Published Information

	11 Generation of the OS
	11.1 Read in configuration
	11.2 Consistency check
	11.3 Generating operating system

	12 Application Notes
	12.1 Hooks
	12.2 Providing Trusted Functions
	12.3 Software Components and OS-Applications
	12.4 Global Time Synchronization
	12.5 Working with FlexRay
	12.6 Migration from OIL to XML
	12.7 Debug support
	12.8 Integration hints for peripheral protection
	12.9 Termination of OS-Applications

	13 Outlook on Memory Protection Configuration
	13.1 Configuration Approach

	A Not applicable requirements
	B History of Constraints and Specification Items
	B.1 Differences between R24-11 and R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	B.2 Differences between R23-11 and R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Differences between R22-11 and R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11
	B.3.4 Added Constraints in R23-11
	B.3.5 Changed Constraints in R23-11
	B.3.6 Deleted Constraints in R23-11

