AUTSSAR

Document Title Specification of OCU Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 615

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
AUTOSAR
2022-11-24 R22-11 Release « Editorial changes
Management
AUTOSAR ,
2021-11-25 | R21-11 Release Removed the .Olcu__ConflgType data
M structure specification
anagement
» Added missing specification for enum
values
AUTOSAR
2020-11-30 R20-11 Release » Updated return value for
Management Ocu_StartChannel

* Minor changes in Error Tables

AUTSSAR

* Error OCU_E_BUSY classifed as
Runtime Error

» Added reference to
OcuHWSpecificSettings in OcuChannel.

AUTOSAR A ~ _
2019-11-28 | R19-11 Release Multiplicity of OcuHWSpecificSettings
Management changed
* Introduced MCAL Multicore Distribution
» Changed Document Status from Final to
published
* OcuGroup removed
(ECUC_Ocu_00161,
ECUC_Ocu_00162, ECUC_Ocu_00163)
AUTOSAR
2018-10-31 440 Release » Updated Header File Structure
Management _
* Multicore feature (SWS_Ocu_00170,
SWS Ocu_ CONSTR_00001,
SWS_Ocu_CONSTR_00002)
» OcuGroup set to obsolete
AUTOSAR (ECUC_OCU_OO1 61, ECUC_OCU_001 62
2017-12-08 | 4.3.1 Release and ECUC_Ocu_00163)
Management « Renamed "default error detection” to
"development error detection”
* Removed SWS_Ocu_00134 and
SWS_Ocu_00135
* Renamed "SRS_BSW_000386" to
"SRS_BSW_00386"
* Removed SRS_BSW _ 00157,
2016-11-30 | 4.3.0 gg; SS:R SRS _BSW_00326, SRS_BSW_00329,
o "~ M SRS_BSW_00338, SRS_BSW_00355,
anagement

SRS_BSW_00370, SRS_BSW_00376,
SRS_BSW_00434

« Removed SRS _BSW 00431

» Changed "SRS_SPAL12448" to
"SRS_SPAL_ 12448"

AUTSSAR

* DET has been renamed

*+ SWS_Ocu_00041 and
SWS_Ocu_00042 requirements are

AUTOSAR removed
2015-07-31 422 Release
Management * OCU_E_PARAM_CONFIG is removed.
Added OCU_E_INIT_FAILED
* Invalid requirement IDs: Updated
SWS Ocu_156, SWS Ocu_169
* Set the postBuildVariantValue and
postBuildVariantMultiplicity to false and
also
AUTOSAR « Set the valueConfigClass and the
2014-10-31 4.2.1 Release multiplicityConfigClass for all variants to
Management preCompile.
* Removal of automatically supported
BSW requirement. Reference to
SWS BSW 00380 is removed.
» Minor update of the document structure
AUTOSAR o
2013-10-31 | 4.1.2 Release * Editorial changes
Management + Removed chapter(s) on change
documentation
AUTOSAR
2013-03-15 | 4.1.1 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 8
Acronyms and Abbreviations 9
Related documentation 10
3.1 Input documents & related standardsandnorms 10
3.2 Related specification 10
Constraints and assumptions 11
4.1 Assumptions L e 11
411 Clock e 11
41.2 RESOUICES« i i i e e e e e e e e e e e 11
4.1.3 Countingandcomparing 11
4.2 Limitations e 12
4.3 Applicabilitytocardomains o o o 12
Dependencies to other modules 13
5.1 Module DET 13
5.2 Module DEM e 13
5.3 Module MCU Driver e 13
5.4 Module PORT e 13
55 Filestructure e 13
5.5.1 Codefilestructure 13
5.5.2 Headerfilestructure o 14
Requirements Tracing 15
Functional specification 19
7.1 Generalbehavior 19
7.2 Versioncheck 20
7.2.1 Background & Rationale 20
7.3 TimeUnitTicks e 21
7.3.1 Background & Rationale 21
7.3.2 Requirements 21
7.4 Error Classification, 21
7.4.1 DevelopmentErrors 21
742 Runtime Errors 22
7.4.3 Production Errors 23
7.4.4 Extended ProductionErrors 23
7.5 ErrorDetection 23
7.6 Error Notification 23

7.7 Debug Support 23

AUTSSAR

8

10

API specification

8.1 Importedtypes e
8.2 Type definitions
8.2.1 Ocu_ChannelType e
8.2.2 Ocu_ValueType
8.2.3 Ocu_PinStateType
8.2.4 Ocu_PinActionType
8.2.5 Ocu_ConfigType
8.2.6 Ocu_ReturnType
8.3 Function definitions L
831 Ocu Init. e
8.3.2 Ocu Delnit e
8.3.3 Ocu_StartChannel
8.3.4 Ocu_StopChannel
8.3.5 Ocu SetPinState.
8.3.6 Ocu_SetPinAction
8.3.7 Ocu_GetCounter e
8.3.8 Ocu_SetAbsoluteThreshold
8.3.9 Ocu_SetRelativeThreshold
8.3.10 Ocu_DisableNotification
8.3.11 Ocu_EnableNotification
8.3.120cu_GetVersioninfo o
8.4 Callback notifications
8.5 Scheduled functions
8.6 Expectedinterfaces
8.6.1 Mandatoryinterfaces,
8.6.2 Optionalinterfaces
8.6.3 Configurable interfaces

Sequence diagrams

9.1 Initialization e
9.2 De-initialization e
9.3 Using the Ocu Notifications
9.4 Ocu_SetPinState
9.5 Ocu_SetPinAction.
9.6 Setting a new compare threshold

Configuration specification

10.1How toread thischapter
10.1.1 Configuration and configuration parameters
10.1.2C0onNntainers e e
10.1.3 Specification template for configuration parameters
10.2Containers and configuration parameters
10.2.10CU e

AUTSSAR

10.2.20cuGeneral e 58
10.2.3 OcuConfigurationOfOptionalApis 60
10.2.4OcuConfigSet 64
10.2.50cuChannel 65
10.2.6 OcuHWSpecificSettings 72
10.3Published Information., 74
A Not applicable requirements 75
B Change history of AUTOSAR traceable items 76
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 76
B.1.1 Added Specification Itemsin R25-11 76
B.1.2 Changed Specification Itemsin R25-11 76
B.1.3 Deleted Specification Itemsin R25-11 76
B.1.4 Added Constraints in R25-11 76
B.1.5 Changed Constraintsin R25-11 76
B.1.6 Deleted Constraints in R25-11 76
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 76
B.2.1 Added Specification ltemsinR24-11 76
B.2.2 Changed Specification ltemsin R24-11 77
B.2.3 Deleted Specification Itemsin R24-11 77
B.2.4 Added Constraintsin R24-11 77
B.2.5 Changed Constraintsin R24-11 77
B.2.6 Deleted Constraintsin R24-11 77
B.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e 77
B.3.1 Added Specification ltemsin R23-11 77
B.3.2 Changed Specification ltems in R23-11 77
B.3.3 Deleted Specification temsin R23-11 77
B.3.4 Added Constraints in R23-11 78
B.3.5 Changed Constraints in R23-11 78
B.3.6 Deleted Constraintsin R23-11 78

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module OCU driver.

Each OCU software channel is linked to a hardware OCU peripheral which belongs to
the microcontroller. An output pin can be optionally attached to this channel.

The driver provides functions for initialization and control of the microcontroller internal
OCU functionality (Output Compare Unit). The OCU driver allows comparing and act-
ing automatically when the value of a counter matches a defined threshold.The OCU
driver provides services and configuration parameters for:

» Starting and stopping a comparison process

+ Setting comparison threshold

» Enabling and disabling notification mechanisms

» Getting counter values

» Changing output pin states

» Triggering some hardware resources (ADC, DMA) if available.

The tick duration of a channel counter depends on the channel specific settings (part
of OCU driver) as well as on the system clock and settings of the clock tree controlled
by the MCU module. The tick duration is not limited by this specification.

Some microcontrollers don’t have a dedicated OCU hardware cell, but instead a
generic timer module that can be configured to provide the OCU functionality and other
timer functionalities as well. This specification does not assume the hardware archi-
tecture. Instead; it defines parameters and APIs so that they can be implemented on
any suitable hardware architecture. The picture below shows a typical representation
of an OCU channel.

The ’output’ is the action that is actually done upon compare match.

Free running counter

OUTPUT
Comparison threshold

Figure 1.1: Abstract view of an OCU channel

AUTSSAR

2 Acronyms and Abbreviations
The glossary below includes acronyms and abbreviations relevant to the OCU Driver

module that are not included in the [1, AUTOSAR glossary].

Acronyms and abbreviations that have a local scope appear in the glossary below.
Those that have a global scope are contained in the AUTOSAR glossary.

Acronym/Abbreviation Description

Oocu Output Compare Unit

DMA Direct Memory Access

SPAL Standard Peripheral Abstraction Layer

Term definition: Description:

OCU channel Represents a logical entity composed of a free running

counter a comparison threshold and the action that is done
as a result of the comparison process.

Compare threshold. Target value that is compared with the content of the counter
each time the counter is increased by one unit.

Free running counter A counter that runs from a minimum (respectively a maxium)
to a maximum (respectively a minimum) value and restarts
automatically from the minimum (respectively a maximum)
after reaching the maximum (respectively the minimum)
value.

Reference Interval Interval (in ticks) given by the caller of the Ocu_SetAbsolut

Threshold API, and used as base to compute the return
information.

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2], which is
also valid for OCU Driver.

Thus, General Specification on Basic Software modules [2] shall be considered as
additional and required specification for OCU Driver.

AUTSSAR

4 Constraints and assumptions

4.1 Assumptions

4.1.1 Clock

The driver does not support dynamic changes of the clock.

Since the system clock is fully managed by the MCU module, any dynamic change in
the system clock settings will impact this module.

The module does not run in the sleep mode.

4.1.2 Resources

The allocation of resources is made exclusively by SW or HW to avoid shared resource
issues.

e.g: usage of the APl Ocu_SetPinState. This APl cannot be called to change the state
of a pin for a channel that is in the RUNNING state, otherwise there might be a conflict
between the state set automatically by the hardware upon compre match and the one
set by the APIL.

4.1.3 Counting and comparing

Our assumption is that the hardware that will operate this driver has the following
counter abstraction model (example for an eight-bit counter).

IFreerunningup ofl112131.. 253 |254]255
counter

Figure 4.1: Abstraction model of the free running counter for this driver

Minimum value is 0
Maximum value is 255

The counter is reloaded with 0 when it exceeds the maximum value. That means it has
256 count steps.

Due to the quantization of counting, two different cases are possible when compar-
ing the content of the counter with the threshold. The comparaison can occur when
entering a state of the counter or while exiting from a state, as shown in the picture
below

AUTSSAR

IFree running counter] . 34 I 35— % 37 38 139
Compare threshold 35

Or
|Free running counter| 3t|:>'g5 36 37 | 38 |39
Compare threshold 35

Figure 4.2: Abstraction model of the comparison process expected in driver

The expected behavior of this driver is to have the comparison done on entering the
state represented by the threshold.

4.2 Limitations

No limitations.

4.3 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

5.1 Module DET

If development error detection is enabled for the OCU driver, then the driver shall raise
errors to the Default Error Tracer (DET) whenever a development error is encountered
by this module.

5.2 Module DEM

The OCU driver shall report production errors to the Diagnostic Event Manager (DEM).

5.3 Module MCU Driver

The Microcontroller Unit Driver (MCU Driver) is primarily responsible for initializing and
controlling the chip internal clock sources and clock prescalers. The OCU depends on
the system clock. Thus, changes of the system clock (e.g. PLL on PLL off) also affect
the clock settings of the OCU hardware.

The MCU driver will set global prescalers, and the OCU clock.The OCU driver will not
take care of setting the registers that configure the global clock, global prescalers and
PLL in its initialization function. This has to be done by the MCU module. The OCU
driver only configures local (OCU peripheral specific) resources.

Document AUTOSAR_TPS_ ECUConfiguration [3] contains the chapter '4.8 Clock Tree
Configuration’, which details the mechanism to deliver reference clock signals to pe-
ripherals.

5.4 Module PORT

The configuration of port pins used for the OCU as outputs is done by the PORT driver.
Hence the PORT driver has to be initialized prior to the use of OCU functions.

5.5 File structure

5.5.1 Code file structure

[SWS_Ocu_00001]
Upstream requirements: SRS_BSW_00419, SRS_BSW_00346, SRS_BSW_00314

[The code file structure shall not be defined completely within this specification. At this
point it shall be pointed out that the code-file structure shall include the following files

AUTSSAR

- Ocu_Lcfg.c - for link time configurable parameters and
- Ocu_PBcfg.c - for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters. |

5.5.2 Header file structure

[SWS_Ocu_00006]
Upstream requirements: SRS_BSW_00415, SRS_BSW_00456, SRS_BSW_00447

[Ocu.c shall include Ocu.h and Det.h. |

AUTSSAR

6 Requirements Tracing

The

following tables

reference the

requirements

specified

in

<CITA-

TIONS_OF _CONTRIBUTED DOCUMENTS> and links to the fulfilment of these.
Please note that if column “Satisfied by” is empty for a specific requirement this means
that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Ocu_00169]

[SRS_BSW_00004]

All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_Ocu_00012]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Ocu_00035] [SWS_Ocu_00036]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Ocu_00049] [SWS_Ocu_00070]
[SWS_Ocu_00079] [SWS_Ocu_00088]
[SWS_Ocu_00094] [SWS_Ocu_00103]
[SWS_Ocu_00111] [SWS_Ocu_00118]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_Ocu_00053] [SWS_Ocu_00061]
[SWS_Ocu_00068] [SWS_Ocu_00078]
[SWS_Ocu_00087] [SWS_Ocu_00093]
[SWS_Ocu_00102] [SWS_Ocu_00110]
[SWS_Ocu_00117]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_Ocu_00001]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Ocu_00169]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Ocu_00016] [SWS_Ocu_00056]
[SWS_Ocu_00064] [SWS_Ocu_00071]
[SWS_Ocu_00072] [SWS_Ocu_00073]
[SWS_Ocu_00075] [SWS_Ocu_00080]
[SWS_Ocu_00081] [SWS_Ocu_00082]
[SWS_Ocu_00089] [SWS_Ocu_00096]
[SWS_Ocu_00105] [SWS_Ocu_00113]
[SWS_Ocu_00114] [SWS_Ocu_00120]
[SWS_Ocu_00121] [SWS_Ocu_00126]

[SRS_BSW_00327]

Error values naming convention

[SWS_Ocu_00016]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Ocu_00016]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Ocu_00046]

[SRS_BSW_00337]

Classification of development errors

[SWS_Ocu_00015] [SWS_Ocu_00016]
[SWS_Ocu_00017] [SWS_Ocu_00127]
[SWS_Ocu_91001]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_Ocu_00017] [SWS_Ocu_00019]
[SWS_Ocu_00020] [SWS_Ocu_00021]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time

[SWS_Ocu_00013]

unit
Vv

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Ocu_00035] [SWS_Ocu_00036]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Ocu_00035]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a basic
set of module files

[SWS_Ocu_00001]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_Ocu_00027]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_Ocu_00128]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Ocu_00128]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Ocu_00018] [SWS_Ocu_00019]
[SWS_Ocu_00127]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_Ocu_00138]

[SRS_BSW_00385]

List possible error notifications

[SWS_Ocu_00016] [SWS_Ocu_00017]
[SWS_Ocu_91001] [SWS_Ocu_91002]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Ocu_00016] [SWS_Ocu_00017]
[SWS_Ocu_00018] [SWS_Ocu_00019]
[SWS_Ocu_00043] [SWS_Ocu_00050]
[SWS_Ocu_00056] [SWS_Ocu_00057]
[SWS_Ocu_00064] [SWS_Ocu_00065]
[SWS_Ocu_00071] [SWS_Ocu_00072]
[SWS_Ocu_00073] [SWS_Ocu_00074]
[SWS_Ocu_00075] [SWS_Ocu_00080]
[SWS_Ocu_00081] [SWS_Ocu_00082]
[SWS_Ocu_00083] [SWS_Ocu_00089]
[SWS_Ocu_00090] [SWS_Ocu_00095]
[SWS_Ocu_00096] [SWS_Ocu_00104]
[SWS_Ocu_00105] [SWS_Ocu_00112]
[SWS_Ocu_00113] [SWS_Ocu_00114]
[SWS_Ocu_00119] [SWS_Ocu_00120]
[SWS_Ocu_00121] [SWS_Ocu_00126]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Ocu_00169]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Ocu_00036]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Ocu_00033] [SWS_Ocu_00035]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Ocu_00043] [SWS_Ocu_00050]
[SWS_Ocu_00055] [SWS_Ocu_00057]
[SWS_Ocu_00065] [SWS_Ocu_00074]
[SWS_Ocu_00083] [SWS_Ocu_00090]
[SWS_Ocu_00095] [SWS_Ocu_00104]
[SWS_Ocu_00112] [SWS_Ocu_00119]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Ocu_00122] [SWS_Ocu_00123]
[SWS_Ocu_00124]

V

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Ocu_00124]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_Ocu_00006] [SWS_Ocu_00024]

[SRS_BSW_00419]

If a pre-compile time configuration
parameter is implemented as const
it should be placed into a separate
c-file

[SWS_Ocu_00001]

[SRS_BSW_00438]

Configuration data shall be defined in
a structure

[SWS_Ocu_00033]

[SRS_BSW_00447]

Standardizing Include file structure of
BSW Modules Implementing Autosar
Service

[SWS_Ocu_00006]

[SRS_BSW_00456]

A Header file shall be defined in order
to harmonize BSW Modules

[SWS_Ocu_00006]

[SRS_BSW_00482]

Get version information function shall
follow a naming rule

[SWS_Ocu_00027] [SWS_Ocu_00122]

[SRS_BSW_00487]

Errors for module initialization shall
follow a naming rule

[SWS_Ocu_91001]

[SRS_Ocu_00002]

The OCU driver shall support the
following basic static configurations
per channel

[SWS_Ocu_00028] [SWS_Ocu_00033]
[SWS_Ocu_00133]

[SRS_Ocu_00005]

The OCU Driver shall provide the
functionality to de-initialize OCU
driver

[SWS_Ocu_00044] [SWS_Ocu_00045]
[SWS_Ocu_00048]

[SRS_Ocu_00006]

The OCU driver shall provide a
notification for an OCU channel when
the current value of the counter
matches the threshold

[SWS_Ocu_00133]

[SRS_Ocu_00007]

The OCU driver shall allow enabling
/disabling notifications for an OCU
channel during runtime

[SWS_Ocu_00108] [SWS_Ocu_00109]
[SWS_Ocu_00115] [SWS_Ocu_00116]
[SWS_Ocu_00133]

[SRS_Ocu_00008]

The OCU driver shall provide
services for starting and stopping a
channel

[SWS_Ocu_00051] [SWS_Ocu_00052]
[SWS_Ocu_00058] [SWS_Ocu_00059]
[SWS_Ocu_00060]

[SRS_Ocu_00009]

The OCU driver shall provide a
synchronous service for reading the
value of the counter

[SWS_Ocu_00085] [SWS_Ocu_00086]

[SRS_Ocu_00010]

The OCU driver shall provide
services to modify the value of the
threshold of a channel

[SWS_Ocu_00091] [SWS_Ocu_00092]
[SWS_Ocu_00100] [SWS_Ocu_00101]

[SRS_Ocu_00011]

The OCU driver shall provide a
synchronous service to set the state
of the output pin attached to a
channel

[SWS_Ocu_00031] [SWS_Ocu_00066]
[SWS_Ocu_00067]

[SRS_Ocu_00012]

The OCU driver shall provide a
service to set the action that will be
performed by the pin attached to a
channel upon comparison match

[SWS_Ocu_00032] [SWS_Ocu_00076]
[SWS_Ocu_00077]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of

[SWS_Ocu_00128] [SWS_Ocu_00129]

drivers and handlers
V

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_Ocu_00132]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Ocu_00036] [SWS_Ocu_00037]
[SWS_Ocu_00039] [SWS_Ocu_00040]

[SRS_SPAL_12063]

All driver modules shall only support
raw value mode

[SWS_Ocu_00029]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Ocu_00010] [SWS_Ocu_00011]
[SWS_Ocu_00037] [SWS_Ocu_00136]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_Ocu_00130]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Ocu_00046] [SWS_Ocu_00047]

[SRS_SPAL_12263]

The implementation of all driver
modules shall allow the configuration
of specific module parameter types at
link time

[SWS_Ocu_00033]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_Ocu_00043] [SWS_Ocu_00050]
[SWS_Ocu_00055] [SWS_Ocu_00056]
[SWS_Ocu_00057] [SWS_Ocu_00064]
[SWS_Ocu_00065] [SWS_Ocu_00071]
[SWS_Ocu_00072] [SWS_Ocu_00073]
[SWS_Ocu_00074] [SWS_Ocu_00075]
[SWS_Ocu_00080] [SWS_Ocu_00081]
[SWS_Ocu_00082] [SWS_Ocu_00083]
[SWS_Ocu_00089] [SWS_Ocu_00090]
[SWS_Ocu_00095] [SWS_Ocu_00096]
[SWS_Ocu_00104] [SWS_Ocu_00105]
[SWS_Ocu_00112] [SWS_Ocu_00113]
[SWS_Ocu_00114] [SWS_Ocu_00119]
[SWS_Ocu_00120] [SWS_Ocu_00121]
[SWS_Ocu_00126]

[SRS_SPAL_12461]

Specific rules regarding initialization
of controller registers shall apply to all
driver implementations

[SWS_Ocu_00038]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General behavior

The OCU channel is composed of two main elements: a free running counter and a
compare threshold. These elements act together to generate actions required by the
user.The free running counter can be provided by hardaware or software whereas the
threshold is a value set by the user. It is then compared with the current content of the
counter each time the counter is increased by one unit.

y |

IFree running counter|Minl ... I 10 11 12 I 13 I 14 IMax

1L

Compare threshold 1

Figure 7.1: General behavior of the driver

The driver compares both values each time the counter is increased by one unit. In
case of equality, two different types of action can be done:

-report the information to the upper layer through a notification function.

-act on a configured output pin

The OCU driver provides the following services for managing a channel:
+ Starting a channel

« Stopping a channel

Setting the comparison threshold value

» Enabling and disabling a notification function for a channel
» Getting counter values

» Changing output pin states

The states and the state transitions of an output compare channel are shown in the
figure below.

AUTSSAR

States of an OCU channel | T Reset

(

Uninitialized }
o
Ocu_lInit()
P

Stopped }
.

Ocu_StartchanneI()‘ 4 Ocu_Stopchannel()
[Running }

Figure 7.2: State diagram of an OCU channel

An Ocu channel has a simple state diagram with the states shown above. All the
channels of the driver are initialized at once with the APl Ocu_lInit(). There’s no API to
inialize individually each channel.

Depending on the hardware architecture, the hardware tied to an Ocu channel may be
managed by the OCU cell or any other timer module in the microcontroller.

7.2 Version check

7.2.1 Background & Rationale

The integration of incompatible files is to be avoided. Minimum implementation is the
version check of the header file inside the .c file (version numbers of .c and .h files must
be identical).

[SWS_Ocu_00012]
Upstream requirements: SRS_BSW_00004

[The OCU driver shall perform Inter Module Checks to avoid integration of incompatible
files. The imported included files shall be checked by preprocessing directives.

The following version numbers shall be verified:
- <MODULENAME>_AR_RELEASE_MAJOR_VERSION
- <MODULENAME>_AR_RELEASE_MINOR_VERSION

Where <MODULENAME> is the module short name of the other (external) modules,
which provide header files included by the OCU driver.

If the values are not identical to the expected values, an error shall be reported. |

AUTSSAR

7.3 Time Unit Ticks
7.3.1 Background & Rationale

To get times out of register values it is necessary to know the oscillator frequency,
prescalers and some other settings of the whole system clock. Since these settings
are made in MCU and/or in other modules it is not possible to calculate such times.

Hence the conversions between time and ticks shall be part of an upper layer.

7.3.2 Requirements

[SWS_Ocu_00013]
Upstream requirements: SRS_BSW_00343

[All time units used within the API services of the OCU driver shall be of the unit ticks. |

7.4 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

[SWS Ocu_00016]

Upstream requirements: SRS_BSW_00337, SRS_BSW_00323, SRS_BSW_00327, SRS_BSW _
00331, SRS _BSW 00385, SRS BSW_00386

[The following errors shall be detectable by the OCU driver depending on its build
version (development / production mode). |

7.4.1 Development Errors

[SWS_Ocu_00015]
Upstream requirements: SRS_BSW_00337

[Development error values are of type uint8. |

AUTSSAR

[SWS_Ocu_91001] Definition of development errors in module Ocu
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00487

Type of error Related error code Error value
API services other than Ocu_GetVersioninfo() and | OCU_E_UNINIT 0x02
Ocu_init() used without module initialization

API service used with an invalid channel Identifier. OCU_E_PARAM_INVALID _CHANNEL 0x03

API Ocu_SetPinState() called with an invalid pin OCU_E_PARAM_INVALID_STATE 0x04

state or when the channel is in the RUNNING

state.

API Ocu_SetPinAction() called with an invalid pin OCU_E_PARAM_INVALID_ACTION 0x05
action.

Usage of Ocu_DisableNoatification() or Ocu_ OCU_E_NO_VALID_NOTIF 0x06

EnableNotification() on a channel where a NULL
pointer is configured as the notification function.

API Ocu_lInit() called while the OCU driver has OCU_E_ALREADY_INITIALIZED 0x07
already been initialized

API Ocu_GetVersionInfo() is called with a NULL OCU_E_PARAM_POINTER 0x08
parameter.

Ocu_SetPinState() or Ocu_SetPinAction() called OCU_E_PARAM_NO_PIN 0x0A
for a channel that doesn’t have an associated

output pin.

OCU initialization has been failed, e.g. selected OCU_E_INIT_FAILED 0x0B

configuration set doesn’t exist.

]

[SWS_Ocu_00017]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00339, SRS_BSW_00385, SRS_BSW_
00386
[Additional errors that are detected because of specific implementation and/or specific
hardware properties shall be added in the OCU device specific implementation spec-
ification. The classification and enumeration shall be compatible to the errors listed
above. |

7.4.2 Runtime Errors

[SWS_Ocu_91002] Definition of runtime errors in module Ocu
Upstream requirements: SRS_BSW_00385

[

Type of error Related error code Error value

API Ocu_StartChannel() called on a channel that OCU_E _BUSY 0x09
is in state RUNNING

AUTSSAR

7.4.3 Production Errors

There are no production errors.

7.4.4 Extended Production Errors

There are no extended production errors.

7.5 Error Detection

[SWS_Ocu_00018]
Upstream requirements: SRS_BSW_00369, SRS_BSW_00386

[The detection of development errors is configurable (ON / OFF) at pre-compile time.
The switch OcuDevErrorDetectApi shall activate or deactivate the detection of all de-
velopment errors. |

[SWS_Ocu_00019]
Upstream requirements: SRS_BSW_00386, SRS_BSW_00369, SRS_BSW_00339

[If the switch OcuDevErrorDetectApi is enabled, then API parameter checking is en-
abled. The detailed description of the detected errors can be found in chapter Error
classification and chapter API specification. |

[SWS_Ocu_00020]
Upstream requirements: SRS _BSW_ 00339
[The detection of production errors cannot be switched off. |

7.6 Error Notification

[SWS_Ocu_00021]
Upstream requirements: SRS_BSW_00339

[Detected development errors shall be reported with the service Det_ReportError of
the Default Error Tracer (DET) if the pre-processor switch OcuDevErrorDetectApi is
set. |

7.7 Debug Support

[SWS_Ocu_00023] [Each variable that shall be accessible by AUTOSAR Debugging,
shall be defined as global variable. |

AUTSSAR

[SWS_Ocu_00024]

Upstream requirements: SRS_BSW_00415
[All type definitions of variables which shall be debugged shall be accessible by the
header file Ocu.h. |

[SWS_Ocu_00025] [The declaration of variables in the header file shall be such that
it is possible to calculate the size of the variables by C-"sizeof". |

[SWS_Ocu_00026] [Variables available for debugging shall be described in the re-
spective OCU driver Description. |

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Ocu_00027] Definition of imported datatypes of module Ocu
Upstream requirements: SRS_BSW_00357, SRS_BSW_00482

Module Header File Imported Type
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Ocu_ChannelType

[SWS_Ocu_00028] Definition of datatype Ocu_ChannelType
Upstream requirements: SRS_Ocu_00002

Name Ocu_ChannelType

Kind Type

Derived from uint

Range 8/16/32 bits - This is implementation specific but
not all values may be valid within
the type. This type shall be
chosen in order to have the most
efficient implementation on a
specific microcontroller platform.

Description Numeric identifier of an OCU channel.

Available via

Ocu.h

AUTSSAR

8.2.2 Ocu_ValueType

[SWS_Ocu_00029] Definition of datatype Ocu_ValueType

Upstream requirements: SRS_SPAL_12063

Name Ocu_ValueType

Kind Type

Derived from uint

Range 8/16 /32 bits - This is implementation specific but
not all values may be valid within
the type. This type shall be
chosen in order to have the most
efficient implementation on a
specific microcontroller platform.

Description Type for reading the counter and writing the threshold values (in number of ticks).

Available via

Ocu.h

8.2.3 Ocu_PinStateType

[SWS_Ocu_00031] Definition of datatype Ocu_PinStateType

Upstream requirements: SRS_Ocu_00011

Name Ocu_PinStateType
Kind Enumeration
Range OCU_HIGH 0x00 The pin associated to an OCU channel is in
high state.
OCU_LOW 0x01 The pin associated to an OCU channel is in
low state.
Description Output state of the pin linked to an OCU channel.

Available via

Ocu.h

AUTSSAR

8.2.4 Ocu_PinActionType

[SWS_Ocu_00032] Definition of datatype Ocu_PinActionType
Upstream requirements: SRS_Ocu_00012

Name Ocu_PinActionType
Kind Enumeration
Range OCU_SET_HIGH 0x00 The channel pin will be set HIGH upon
compare match.
OCU_SET_LOW 0x01 The channel pin will be set LOW upon
compare match.
OCU_TOGGLE 0x02 The channel pin will be set to the opposite of
its current level HIGH upon compare match.
OCU_DISABLE 0x03 The channel pin will remain at its current level
upon compare match.
Description Automatic action (by hardware) to be performed on a pin attached to an OCU channel.

Available via

Ocu.h

8.2.5 Ocu_ConfigType

[SWS_Ocu_00033] Definition of datatype Ocu_ConfigType
Upstream requirements: SRS_Ocu_00002, SRS_SPAL_12263, SRS_BSW 00405, SRS _BSW -

00438
[

Name Ocu_ConfigType
Kind Structure
Elements Hardware dependent

Type -

Comment The contents of the initialization data structure are hardware specific.
Description This is the type of the data structure containing the initialization data for the OCU driver.
Available via Ocu.h

AUTSSAR

8.2.6 Ocu_ReturnType

[SWS_Ocu_00138] Definition of datatype Ocu_ReturnType
Upstream requirements: SRS_BSW_00377

Name Ocu_ReturnType

Kind Enumeration

Range OCU_CM_IN_REF_ 0x00 The compare match will occur inside the
INTERVAL current Reference Interval.
OCU_CM_OUT_REF_ 0x01 The compare match will not occur inside the
INTERVAL current Reference Interval.

Description Return information after setting a new threshold value.

Available via Ocu.h

8.3 Function definitions

8.3.1 Ocu_lnit

[SWS_ Ocu_00035] Definition of API function Ocu_Init
Upstream requirements: SRS_BSW_00101, SRS_BSW_00344, SRS_BSW_00405, SRS_BSW_

00345
Service Name Ocu_Init
Syntax void Ocu_Init (

const Ocu_ConfigTypex ConfigPtr
)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to the configuration set
Parameters (inout) None

Parameters (out) None

Return value None

Description

Service for OCU initialization.

Available via

Ocu.h

]

[SWS_Ocu_00036]
Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00101, SRS_SPAL _
12057

[The function Ocu_Init shall initialize all internals variables and the used Ocu structure
of the microcontroller according to a configuration set referenced by ConfigPtr. |

AUTSSAR

Note: All the channels are initialized at once by the API Ocu_Init. There’s no API to
individually initialize each channel.

[SWS_Ocu_00010]
Upstream requirements: SRS_SPAL_12125

[If a free-running counter of the OCU cell can be used by another timer module then
the Ocu driver must not start nor stop the free-running counter. |

[SWS_Ocu_00011]
Upstream requirements: SRS_SPAL_12125

[The API Ocu_Init shall start all free-running counters, which are exclusively used by
this driver. |

[SWS_Ocu_00037]
Upstream requirements: SRS_SPAL_12057, SRS_SPAL_12125

[the function Ocu_Init shall only initialize the configured resources and shall not touch
resources that are not configured in the configuration file. |

The following rules regarding initialization of controller registers shall apply to this driver
implementation:

* [SWS_Ocu_00038]
Upstream requirements: SRS_SPAL_12461

[If the hardware allows for only one usage of the register (register dedicated
only to the OCU resource), then the OCU driver is responsible for initializing the
register. |

* Note1: If the register can affect several hardware modules and if it is not an /O
register it shall be initialized by the MCU driver. (SRS_SPAL_12461)

* Note2: One-time writable registers that require initialization directly after reset
shall be initialized by the start-up code. (SRS_SPAL_12461)

* Note3: All other registers shall be initialized by the startup code. (SRS_
SPAL_12461).

» Note4: If a register can affect several hardware modules and if it is an 1/O register
it shall be initialized by the PORT driver. (SRS_SPAL_12461)

[SWS_Ocu_00039]

Upstream requirements: SRS_SPAL_12057
[The function Ocu_Init shall stop all channels. |
[SWS_Ocu_00040]

Upstream requirements: SRS_SPAL_12057

[The function Ocu_Init shall disable all notifications. |

AUTSSAR

The reason is that the users of these notifications may not be ready. They can call
Ocu_EnableNotification() to start getting notifications.

[SWS_Ocu_00043]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver and the function Ocu_Init
is called when the OCU driver and hardware are already initialized, the function Ocu_
Init shall raise development error OCU_E_ALREADY_INITIALIZED and return without
any action. |

[SWS_Ocu_00044]
Upstream requirements: SRS_Ocu_00005

[A re-initialization of the OCU driver by executing the function Ocu_Init requires a de-
initialization before by executing the function Ocu_Delnit. |

8.3.2 Ocu_Delnit

[SWS_Ocu_00045] Definition of API function Ocu_Delnit
Upstream requirements: SRS_Ocu_00005

[
Service Name Ocu_Delnit
Syntax void Ocu_DeInit (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This function de-initializes the OCU module.
Available via Ocu.h
]

[SWS_Ocu_00046]
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163
[The function Ocu_Delnit shall deinitialize the OCU variables and registers that were

initialized by Ocu_lInit to a state comparable to their power on reset state. Values of
registers which are not writeable are excluded. |

Note: It's the responsibility of the hardware design that the state does not lead to
undefined activities in the uC.

AUTSSAR

[SWS_Ocu_00047]
Upstream requirements: SRS_SPAL_12163

[The function Ocu_Delnit shall disable all used interrupts and notifications. |

[SWS Ocu_00048]
Upstream requirements: SRS_Ocu_00005
[The function Ocu_Delnit shall influence only the peripherals which are allocated by

static configuration and/or the runtime configuration set passed by the previous call of
Ocu_Init(). |

[SWS Ocu_00136]
Upstream requirements: SRS_SPAL_12125

[The API Ocu_Delnit shall stop all free-running counters, which are exclusively used
by this driver. |

Note: To prevent undefined behaviour during de-initialization, the user must stop all
RUNNING channels (by calling the function Ocu_StopChannel) before calling the API
Ocu_Delnit. Hence the requirement below.

[SWS_Ocu_00137] [If development error detection is enabled for the OCU driver: if
a channel is still in the RUNNING state when the function Ocu_Delnit is called, then
the function shall raise the development error 'OCU_E_PARAM_INVALID_STATE’ and
return without any action. |

[SWS_Ocu_00049]
Upstream requirements: SRS_BSW_00171
[The function Ocu_Delnit shall be pre compile time configurable On/Off by the config-
uration parameter: OcuDelnitApi {OCU_DE_INIT_API}. |
[SWS_Ocu_00050]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the driver is not initial-
ized, the function Ocu_Delnit shall raise the error OCU_E_UNINIT. |

AUTSSAR

8.3.3 Ocu_StartChannel

[SWS_Ocu_00051] Definition of API function Ocu_StartChannel
Upstream requirements: SRS_Ocu_00008

[
Service Name Ocu_StartChannel
Syntax Std_ReturnType Ocu_StartChannel (
Ocu_ChannelType ChannelNumber
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant for different channel numbers

Parameters (in)

ChannelNumber Numeric identifier of the OCU

Parameters (inout)

None

Parameters (out) None
Std_ReturnType

Return value E_OK Channel was started

E_NOT_OK Channel was not started

Description Service to start an OCU channel.

Available via Ocu.h

]

[SWS_Ocu_00052]
Upstream requirements: SRS_Ocu_00008

[The function Ocu_StartChannel shall start an OCU channel by allowing all compare
match configured actions to be performed. |

[SWS_Ocu_00053]
Upstream requirements: SRS_BSW_00312

[The function Ocu_StartChannel shall be reentrant if it is called for different channels. |

[SWS_Ocu_00054] [The state of the selected channel shall be set to "RUNNING" If
the function Ocu_StartChannel has been successfully performed. |

[SWS_Ocu_00055]
Upstream requirements: SRS_BSW_00406, SRS_SPAL_12448

[If the function Ocu_StartChannel is called on a channel in the state "RUNNING", then
the function shall raise the error OCU_E_BUSY and return without any action. |

[SWS_Ocu_00056]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Chan-
nelNumber is invalid (not within the range specified by the configuration), the function
Ocu_StartChannel shall raise the error OCU_E_PARAM_INVALID CHANNEL and re-
turn without any action. |

AUTSSAR

[SWS_Ocu_00057]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the driver is not initial-
ized, the function Ocu_StartChannel shall raise the error OCU_E_UNINIT and return
without any action. |

8.3.4 Ocu_StopChannel

[SWS_Ocu_00058] Definition of API function Ocu_StopChannel
Upstream requirements: SRS_Ocu_00008

Service Name

Ocu_StopChannel

Syntax void Ocu_StopChannel (
Ocu_ChannelType ChannelNumber
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant for different channel numbers

Parameters (in)

ChannelNumber Numeric identifier of the OCU

Parameters (inout) None
Parameters (out) None
Return value None
Description Service to stop an OCU channel.
Available via Ocu.h

]

[SWS_Ocu_00059]

Upstream requirements: SRS_Ocu_00008
[The function Ocu_StopChannel shall stop an OCU channel by halting compare match
configured actions for this channel. |

[SWS_Ocu_00060]

Upstream requirements: SRS_Ocu_00008
[The function Ocu_StopChannel shall not stop the free-running counter associated
with a channel. |

Note: This is due to the fact that a free-running counter can be associated with more
than one Ocu channel. Therefore, stopping that counter will harm the operation of the
other channel(s).

[SWS_Ocu_00061]
Upstream requirements: SRS_BSW_00312

[The function Ocu_StopChannel shall be reentrant if it is called for different channels. |

AUTSSAR

[SWS_Ocu_00062] [The state of the selected channel shall be set to "STOPPED"if
the function Ocu_StopChannel is successfully performed. |

[SWS_Ocu_00063] [If the function Ocu_StopChannel is called on a channel in the
state "STOPPED", then the function shall leave without any action (no change of the
channel state), and shall not raise a development error. |

[SWS Ocu_00064]
Upstream requirements: SRS_BSW_00323, SRS BSW 00386, SRS _SPAL_ 12448

[If development error detection is enabled for the OCU driver: If the parameter Chan-
nelNumber is invalid (not within the range specified by the configuration), the function
Ocu_StopChannel shall raise the error OCU_E_PARAM_INVALID CHANNEL and re-
turn without any action. |

[SWS_Ocu_00065]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the driver is not initial-
ized, the function Ocu_StopChannel shall raise the error OCU_E_UNINIT and return
without any action. |

8.3.5 Ocu_SetPinState

[SWS_Ocu_00066] Definition of API function Ocu_SetPinState
Upstream requirements: SRS_Ocu_00011

[

Service Name

Ocu_SetPinState

Syntax void Ocu_SetPinState (
Ocu_ChannelType ChannelNumber,
Ocu_PinStateType PinState

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant for different channel numbers

Parameters (in) ChannelNumber Numeric identifier of the OCU
PinState OCU_LOW, OCU_HIGH

Parameters (inout) None

Parameters (out) None

Return value None

Description

Service to set immediately the level of the pin associated to an OCU channel.

Available via

Ocu.h

AUTSSAR

[SWS_Ocu_00067]
Upstream requirements: SRS_Ocu_00011

[The function Ocu_SetPinState shall set the pin associated with the channel to the
level indicated by "PinState". |

[SWS_Ocu_00068]
Upstream requirements: SRS_BSW_00312

[The fuction Ocu_SetPinState shall be reentrant if it is called for different channels. |

[SWS_Ocu_00069] [The function Ocu_SetPinState shall be used only if the channel
is not in the RUNNING state. |

Note: The previous requirerment also means that it shall be possible to alter the state
of a STOPPED channel by this API.

[SWS_Ocu_00070]
Upstream requirements: SRS_BSW_00171

[The function Ocu_SetPinState shall be pre compile time configurable On/Off by the
configuration parameter: OcuSetPinStateApi {OCU_SET_PIN_STATE_API}. |

[SWS Ocu_00071]
Upstream requirements: SRS_BSW_00323, SRS BSW 00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Chan-
nelNumber is invalid (not within the range specified by the configuration), the function
Ocu_SetPinState shall raise the error OCU_E_PARAM _INVALID CHANNEL and re-
turn without any action. |

[SWS_Ocu_00072]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If a pin is not associated
with the channel (not defined in the configuration of the channel), the function Ocu_Set
PinState shall raise the error OCU_E_PARAM_NO_PIN and return without any action. |

[SWS_Ocu_00073]
Upstream requirements: SRS _BSW 00323, SRS BSW 00386, SRS SPAL 12448

[If development error detection is enabled for the OCU driver: If the parameter Pin
State is invalid (not within the range specified by the configuration), the function Ocu_
SetPinState shall raise the error OCU_E_PARAM_INVALID_STATE and return without
any action. |

AUTSSAR

[SWS_Ocu_00074]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the driver is not ini-
tialized, the function Ocu_SetPinState shall raise the error OCU_E_UNINIT and return
without any action. |

[SWS_Ocu_00075]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the channel is in the
RUNNING state, the function Ocu_SetPinState shall raise the error OCU_E_PARAM _
INVALID_STATE and return without any action. |

8.3.6 Ocu_SetPinAction

[SWS_Ocu_00076] Definition of API function Ocu_SetPinAction
Upstream requirements: SRS_Ocu_00012

[

Service Name

Ocu_SetPinAction

Syntax void Ocu_SetPinAction (
Ocu_ChannelType ChannelNumber,
Ocu_PinActionType PinAction

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant for different channel numbers

Parameters (in) ChannelNumber Numeric identifier of the OCU

PinAction OCU_SET_LOW, OCU_SET_HIGH, OCU_TOGGLE, OCU_

DISABLE

Parameters (inout) None

Parameters (out) None

Return value None

Description

Service to indicate the driver what shall be done automatically by hardware (if supported) upon
compare match.

Available via

Ocu.h

]

[SWS_Ocu_00077]

Upstream requirements: SRS_Ocu_00012
[The function Ocu_SetPinAction shall set the action to be performed by hardware au-
tomatically, at the next compare match in the corresponding OCU channel. |

[SWS_Ocu_00078]
Upstream requirements: SRS_BSW_00312

[The fuction OCU Ocu_SetPinAction shall be reentrant if it is called for different chan-
nels. |

AUTSSAR

[SWS_Ocu_00079]
Upstream requirements: SRS_BSW_00171

[The function Ocu_SetPinAction shall be pre compile time configurable by the config-
uration parameter: OcuSetPinActionApi {OCU_SET_PIN_ACTION_API}. |

[SWS_Ocu_00080]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Chan-
nelNumber is invalid (not within the range specified by the configuration), the function
Ocu_SetPinAction shall raise the error OCU_E_PARAM_INVALID_CHANNEL and re-
turn without any action. |

[SWS_Ocu_00081]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If a pin is not associated
with the channel (not defined in the configuration of the channel), the function Ocu_
SetPinAction shall raise the error OCU_E_PARAM_NO_PIN and return without any
action. |

[SWS_Ocu_00082]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Pin
Action is invalid (not within the range specified by the type), the function Ocu_SetPin
Action shall raise the error OCU_E_PARAM_INVALID_ACTION and return without any
action. |

[SWS_Ocu_00083]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448
[If development error detection is enabled for the OCU driver: If the driver is not initial-

ized, the function Ocu_SetPinAction shall raise the error OCU_E_UNINIT and return
without any action. |

[SWS_Ocu_00084] [If a pin is associated with a channel; the relevant action with this
pin shall be performed upon compare match. |

AUTSSAR

8.3.7 Ocu_GetCounter

[SWS_Ocu_00085] Definition of API function Ocu_GetCounter
Upstream requirements: SRS_Ocu_00009

[

Service Name

Ocu_GetCounter

Syntax Ocu_ValueType Ocu_GetCounter (
Ocu_ChannelType ChannelNumber
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

ChannelNumber | Numeric identifier of the OCU channel

Parameters (inout)

None

Parameters (out)

None

Return value Ocu_ValueType | Content of the counter in ticks

Service to read the current value of the counter.
Ocu.h

Description

Available via

]

[SWS_Ocu_00086]
Upstream requirements: SRS_Ocu_00009

[The function Ocu_GetCounter shall read and return the value of the counter of the
channel indicated by ChannelNumber. |

[SWS_Ocu_00087]
Upstream requirements: SRS_BSW_00312

[The function Ocu_GetCounter shall be re-entrant. |

[SWS_Ocu_00088]
Upstream requirements: SRS_BSW_00171

[The function Ocu_GetCounter shall be pre compile time configurable by the configu-
ration parameter: OcuGetCounterApi {OCU_GET_COUNTER_API}. |

[SWS_Ocu_00089]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Channel
Number is invalid (not within the range specified by the configuration), the function
Ocu_GetCounter shall raise the error OCU_E_PARAM_INVALID CHANNEL and shall
return the value "0". |

AUTSSAR

[SWS_Ocu_00090]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: if the driver is not ini-
tialized, then the function Ocu_GetCounterValue shall raise the error OCU_E_UNINIT
and shall return the value "0". |

8.3.8 Ocu_SetAbsoluteThreshold

[SWS_Ocu_00091] Definition of API function Ocu_SetAbsoluteThreshold
Upstream requirements: SRS_Ocu_00010

[

Service Name Ocu_SetAbsoluteThreshold
Syntax Ocu_ReturnType Ocu_SetAbsoluteThreshold (
Ocu_ChannelType ChannelNumber,
Ocu_ValueType ReferenceValue,
Ocu_ValueType AbsoluteValue
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber Numeric identifier of the OCU channel
ReferenceValue Value given by the upper layer and used as a base to determine
whether to call the notification before the function exits or not.
AbsoluteValue Value to compare with the content of the counter. This value is in
ticks.
Parameters (inout) None
Parameters (out) None
Return value Ocu_ReturnType Tells the caller whether the compare match will occur (or has
already occured) during the current Refence Interval, as a result
of setting the new threshold value.
Description Service to set the value of the channel threshold using an absolute input data.
Available via Ocu.h

]

[SWS_Ocu_00092]
Upstream requirements: SRS_Ocu_00010

[The function Ocu_SetAbsoluteThreshold shall set the channel threshold (the compare
value) to the value given by AbsoluteValue. |

[SWS_Ocu_00093]
Upstream requirements: SRS _BSW_ 00312

[The fuction Ocu_SetAbsoluteThreshold shall be reentrant if it is called for different
channels. |

AUTSSAR

[SWS_Ocu_00094]
Upstream requirements: SRS_BSW_00171

[The function Ocu_SetAbsoluteThreshold shall be pre compile time configurable On/
Off by the configuration parameter: OcuSetAbsoluteThresholdApi {OCU_SET_ABSO-
LUTE_THRESHOLD_API}. |

[SWS_Ocu_00095]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the driver is not ini-
tialized, the function Ocu_SetAbsoluteThreshold shall raise the error OCU_E_UNINIT
and return without any action. |

[SWS_Ocu_00096]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Chan-
nelNumber is invalid (not within the range specified by the configuration), the function
Ocu_SetAbsoluteThreshold shall raise the error OCU_E_PARAM_INVALID CHAN-
NEL and return without any action. |

Note: ReferenceValue is information from the upper layer. With the combination of the
ReferenceValue and the AbsoluteValue an interval (defined as 'Reference Interval’,
green area in the pictures below) is provided to take into account the fact that the
counter is running continuously and there might be a delay between the request from
a caller to update the compare threshold and the actual modification of this threshold.

To simplify the description here, we postulate that due to internal MCU and peripheral
timings the write action to a HW compare register is always done:

 Before the actual compare is made, this might even be within the same clock
cycle (casel)

« After the actual compare is made, this might even be within the same clock cycle
(case2)

As shown with the following example Ocu_SetAbsoluteThreshold(1,30,35); in the pic-
tures below.

» Case 1 The threshold is actually written before the target compare match occurs.

AUTSSAR

Current value of the counter when
the threshold is actually written

y

Free running counter] 29 | 3p | 31 | 32 33 | 34 I 35 |36 37] 38 |39

Reference Value 30

Compare threshold 35
(Absolute value)

The equality will occur after the threshold has been written. The interrupt will be triggered and the notification
function shall be called by the driver.

Figure 8.1: Threshold actually written before the target compare match occurs

» Case 2 The threshold is written after the targeted compare match has occurred.

Next value used for the compare process, when the
| hreshold i I tten

IFree running counter] 29 | 309 | 31 | 32 33 | 34 I 35 |36 37 | 38 39

IRefere nce Value 30 i

35
Compare threshold

The equality will NOT occur during this cycle as the used counter value will already be greater than the
threshold.

Figure 8.2: Threshold actually written after the target compare match occurs

The Reference Interval takes into account the possible rollover of the counter as shown
in the figure below.

Ocu_SetAbsoluteThreshold(1,70,20);

Example for a counter that runs from 0 to 255.

IFree running counter] 69 | 70 | 71 | ... 2551 0 ... N9 20 | 21 |22 I
IReference Value 70
Compare threshold 20

Figure 8.3: Definition of a Reference Interval

As a result of the cases explained above, the expected behaviour of the driver is as
follows.

* Notification to the upper layer is done only upon Compare Match (hardware):
therefore there shall be a unique (at most, see further below about how to man-

AUTSSAR

age written threshold values) notification for each written value of the threshold
during each Reference Interval.

» The API 'Ocu_SetAbsoluteThreshold’ shall return a status to inform the caller
whether:

— The writing was done inside the current Reference Interval (before actual
compare match, it is even possible that the Compare Match might have al-
ready happened before the API returns)(Case 1)

— or the writing was done outside the current Reference Interval. (Case2)

This status will help the caller (application) decide on how to proceed.

[SWS_Ocu_00098] [After setting a new threshold value, the APl Ocu_SetAbsolute
Threshold shall return a status to inform the caller whether the compare match will
occur (or has already occured) during the current Reference Interval, as a result of
setting the new threshold value. |

For the threshold value written during the previous call of the API Ocu_SetAbsolute
Threshold, the expected behaviour of the driver is as follows:

The previously written threshold value is erased by the current call.

Note: due to real time behaviour, the previously written threshold value might still pro-
duce a compare match; after the API has been called but the threshold value is not yet
actually changed.

[SWS_Ocu_00097] [Upon actual setting of a new threshold value, the previous thresh-
old value (written during the last call of this API) shall no longer produce a compare
match. |

8.3.9 Ocu_SetRelativeThreshold

[SWS_Ocu_00100] Definition of API function Ocu_SetRelativeThreshold
Upstream requirements: SRS_Ocu_00010

Service Name Ocu_SetRelativeThreshold
Syntax Ocu_ReturnType Ocu_SetRelativeThreshold (
Ocu_ChannelType ChannelNumber,
Ocu_ValueType RelativeValue
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant for different channel numbers
Parameters (in) ChannelNumber ‘ Numeric identifier of the OCU channel

Y%

AUTSSAR

A
RelativeValue ‘ Value to use for computing the new threshold.
Parameters (inout) None
Parameters (out) None
Return value Ocu_ReturnType Tells the caller whether the compare match will occur (or has
already occured) during the current Refence Interval, as a result
of setting the new threshold value.
Description Service to set the value of the channel threshold relative to the current value of the counter.
Available via Ocu.h
]

The behaviour of this API is as follows.

» On entry, the API reads the counter value (ReadValue). Then the new threshold
value is computed and written according to the following formula:

NewThresholdValue = ReadValue + RelativeValue.

The rest of the behaviour is then the same as for the API Ocu_SetAbsoluteThreshold
where the reference value is now ReadValue, and the Reference Interval is between
Readvalue and the new programmed threshold (NewThresholdValue) as shown in the
picture below.

Example with Ocu_SetRelativeThreshold(1,5);

IFrae running counter] I 40 41 42 43 I 44 i 45 46 I___
alue read on 40

ntering the API

New (programmed) 45

threshold

Figure 8.4: Example with OcuSetRelativeThreshold(1,5)

Note: As for the APl Ocu_SetAbsoluteThreshold, the possible rollover of the counter
is also included in the Reference Interval as shown in the figure below. Example with
Ocu_SetRelativeThreshold(1,20), with ReadValue equals to 253. As a result, this API
behaves like Ocu_SetAbsoluteThreshold, hence the requirements below.

AUTSSAR

¥ 3
!
1
Maximum value i
of the counter $:=-=---"--="=' ==+ =-=-=r=- = I
253~ " mm #
]
1
i
i
17 . _ . _. e L.-f.-—
! |
! i
. I -
Minimum value “Valid range’

of the counter

Figure 8.5: Taking into account the roll over of the counter

[SWS Ocu _00101]
Upstream requirements: SRS_Ocu_00010

[The function Ocu_SetRelativeThreshold shall add RelativeValue to the value of the
counter on entering the function to compute the new threshold relative to the counter. |

[SWS_Ocu_00106] [After setting a new threshold value, the APl Ocu_SetRelative
Threshold shall return a status to inform the caller whether the compare match will
occur (or has already occured) during the current Reference Interval, as a result of
setting the new threshold value. |

[SWS_Ocu_00107] [Upon actual setting of a new threshold value (absolute or rela-
tive), the previous threshold value shall no longer produce a compare match. |

[SWS_Ocu_00102]
Upstream requirements: SRS_BSW_00312

[The fuction OCU Ocu_SetAbsoluteThreshold shall be reentrant if it is called for differ-
ent channels. |

[SWS_Ocu_00103]
Upstream requirements: SRS_BSW_00171
[The function Ocu_SetRelativeThreshold shall be pre compile time configurable On/Off

by the configuration parameter: OcuSetRelativeThresholdApi {OCU_SET_RELATIVE
THRESHOLD_API}. |

[SWS_Ocu_00104]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448
[If development error detection is enabled for the OCU driver: If the driver is not initial-

ized, the function Ocu_SetRelativeThreshold shall raise the error OCU_E_UNINIT and
return without any action. |

AUTSSAR

[SWS_Ocu_00105]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: if the parameter Channel
Number is invalid (not within the range specified by the configuration), the function
Ocu_SetRelativeThreshold shall raise the error OCU_E_PARAM_INVALID CHANNEL
and return without any action. |

8.3.10 Ocu_DisableNotification

[SWS_Ocu_00108] Definition of API function Ocu_DisableNotification
Upstream requirements: SRS_Ocu_00007

[

Service Name

Ocu_DisableNotification

Syntax void Ocu_DisableNotification (
Ocu_ChannelType ChannelNumber
)

Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant for different channel numbers

Parameters (in)

ChannelNumber Numeric identifier of the OCU channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

This service is used to disable notifications from an OCU channel.

Available via

Ocu.h

]

[SWS_Ocu_00109]

Upstream requirements: SRS_Ocu_00007
[The function Ocu_DisableNotification shall disable the OCU compare match notifica-
tion. |

[SWS_Ocu_00110]
Upstream requirements: SRS_BSW_00312

[The fuction OCU Ocu_DisableNotification shall be reentrant if it is called for different
channels. |

[SWS_Ocu_00111]
Upstream requirements: SRS_BSW_00171
[The function Ocu_DisableNotification shall be pre compile time configurable On/Off by

the configuration parameter: OcuNotificationSupported {OCU_NOTIFICATION_SUP-
PORTED}. |

AUTSSAR

[SWS_Ocu_00112]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the driver is not ini-
tialized, the function Ocu_DisableNotification shall raise the error OCU_E_UNINIT and
return without any action. |

[SWS_Ocu_00113]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Channel
is invalid (not within the range specified by configuration), the function Ocu_DisableNo-
tification shall raise the error OCU_E_PARAM_INVALID_CHANNEL and return without
any action. |

[SWS Ocu_00114]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the notification function
is the NULL pointer, the function Ocu_DisableNotification shall raise the error OCU_E__
NO_VALID_NOTIF and return without any action. |

8.3.11 Ocu_EnableNotification

[SWS_Ocu_00115] Definition of API function Ocu_EnableNotification
Upstream requirements: SRS_Ocu_00007

[

Service Name

Ocu_EnableNotification

Syntax void Ocu_EnableNotification (
Ocu_ChannelType ChannelNumber
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant for different channel numbers

Parameters (in)

ChannelNumber Numeric identifier of the OCU channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

This service is used to enable notifications from an OCU channel.

Available via

Ocu.h

]

[SWS_Ocu_00116]

Upstream requirements: SRS_Ocu_00007

[The function Ocu_EnableNotification shall enable the OCU compare match notifica-

tion of the indexed channel. |

AUTSSAR

[SWS_Ocu_00117]
Upstream requirements: SRS_BSW_00312

[The function Ocu_EnableNotification shall be reentrant if it is called for different chan-
nels. |

[SWS_Ocu_00118]
Upstream requirements: SRS_BSW_00171
[The function Ocu_EnableNotification shall be pre compile time configurable On/Off by

the configuration parameter: OcuNotificationSupported {OCU_NOTIFICATION_SUP-
PORTED}. |

[SWS_Ocu_00119]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448
[If development error detection is enabled for the OCU driver: If the driver is not ini-

tialized, the function Ocu_EnableNotification shall raise the error OCU_E_UNINIT and
return without any action. |

[SWS_Ocu_00120]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the parameter Channel
is invalid (not within the range specified by configuration), then the function Ocu_En-
ableNotification shall raise the error OCU_E_PARAM INVALID CHANNEL and return
without any action. |

[SWS_Ocu_00121]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver: If the notification function
is the NULL pointer, the function Ocu_EnableNotification shall raise the error OCU_E__
NO_VALID_NOTIF and return without any action. |

8.3.12 Ocu_GetVersioninfo

[SWS_Ocu_00122] Definition of API function Ocu_GetVersioninfo
Upstream requirements: SRS_BSW_00482, SRS_BSW_00407

Service Name Ocu_GetVersioninfo
Syntax void Ocu_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x09

\Y

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module
Return value None
Description This service returns the version information of this module.
Available via Ocu.h
]

[SWS_Ocu_00123]
Upstream requirements: SRS_BSW_00407

[The function Ocu_GetVersionInfo shall return the version information of this module.
The version information includes:

* Module Id
* Vendor Id

» Vendor specific version numbers.

]

[SWS_Ocu_00124]
Upstream requirements: SRS _BSW_00407, SRS BSW_00411

[The function Ocu_GetVersioninfo shall be pre compile time configurable On/Off by
the configuration parameter: OcuVersioninfoApi {OCU_VERSION_INFO_API}. |

[SWS_Ocu_00125] [If source code for caller and callee of Ocu_GetVersioninfo is
available; the OCU driver should realize Ocu_GetVersionInfo as a macro, defined in
the module’s header file. |

[SWS_Ocu_00126]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection is enabled for the OCU driver, the function Ocu_Get
VersionInfo shall raise development error OCU_E_PARAM_POINTER if parameter ver-
sioninfo is a null pointer, and return without any action. |

8.4 Callback notifications

Since the OCU Driver is a module on the lowest architectural layer it doesn’t provide
any call-back functions for lower layer modules.

AUTSSAR

8.5 Scheduled functions

The OCU driver offers only synchronous services and therefore doesn’'t need any
scheduled functions.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

This module does not require any mandatory interfaces.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Ocu_00127] Definition of optional interfaces requested by module Ocu
Upstream requirements: SRS_BSW_00337, SRS_BSW_00369

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

[SWS Ocu _00128] Definition of configurable interface Ocu_Notifica-
tion_<Channel>

Upstream requirements: SRS_BSW_00359, SRS_BSW_00360, SRS_SPAL_00157

[

Service Name Ocu_Notification_<Channel>

Syntax void Ocu_Notification_<Channel> (
void

)

Y%

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrancy of this API call depends on the user code
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This notification function is called when a compare match occurs on the associated channel.
Available via <none>
]

The notification prototype Ocu_Notification_<channel#> is for the notification callback
function provided by the upper layer and shall be implemented by the user.

[SWS_Ocu_00129]
Upstream requirements: SRS_SPAL_00157

[The OCU driver shall call the function Ocu_Notification_<Channel#> according to the
last call of Ocu_EnableNotification/Ocu_DisableNotification for channel <Channel#>, if
there’s a compare match on that channel. |

[SWS_Ocu_00130]
Upstream requirements: SRS_SPAL_12129
[The OCU driver shall reset the interrupt flag

(if needed by hardware) associated with the notification Ocu_Notifica-
tion_<Channel#> |

[SWS_Ocu_00132]
Upstream requirements: SRS_SPAL_12056

[If the NULL pointer is configured for a notification call-back, then no call-back shall be
executed. |

[SWS Ocu_00133]
Upstream requirements: SRS_Ocu_00002, SRS_Ocu_00006, SRS_Ocu_00007

[When the notification mechanism is disabled, the OCU driver shall send no notifica-
tion. |

AUTSSAR

9 Sequence diagrams

9.1 Initialization

a«modulex»
EcuM

«module»
Ocu

Ocu_lnit(const Ocu_ConfigType*)

Ocu driver initialization.

Used HW is configured according to referenced configuration
structure.

All notifications are disabled.
All used interrupts are disabled.

Figure 9.1: Ocu Initialization

AUTSSAR

9.2 De-initialization

«module» amodule»
EcuM Ocu
I I
| |
: Ocu_Delnit() !
| |
AN

Ocu driver de-initialization.

All notifications are disabled.
All used interrupts are disabled.

It is the responsibility of the hardware design that this state does
not lead to undefined activities in the microcontroller.

Figure 9.2: Ocu De-initialization

AUTSSAR

9.3 Using the Ocu Notifications

Oculser «moduler Ocu Hardware
Ocu

T
I
1
Ocu_EnableNotification(ChannelNumber) !

==

Ocu_StartChannel(ChannelNumber)

StartChannel() -

|
T T |
: : Compare match
| |
| ! . interrupt() !
I -
| Ocu_Notification_<Channel>()
R
T - ———————=-=
I e
I I I
1 1 |
| Ocu_DisableNotification(ChannelNumber} _ | :
I
I
ke] |
1

I
interrupt() I
The upper layer will not be notified
about this compare match. | |

Figure 9.3: Enable and disable notifications

e

9.4 Ocu_SetPinState

OcuUser «moduler «peripheral»
Ocu Ocu pin

T
I
I
I
QOcu_SetPinState(ChannelNumber, PinState) 1

o
L

e 1]

77777777777777777777 Pin level changed
immediately

Figure 9.4: Ocu driver sets the pin state

AUTSSAR

9.5 Ocu_SetPinAction

« module » « Peripheral »
Ocu user®™ s
Ocu <= :

Ocu_SetPinAction

! g i
: (Ocu_ChannelType T Set Pin Action o
i ChannelNumber, Ocu_PinActionType |) ; v
i | 1
1 " . ' i
; Ocu_SetPinAction () : P !
i
1
i i

____________________________________ H
Pin le g')l changed only
upon ¢gmpare match
by HW ;
|
> !

Lol

Figure 9.5: Change the pin state upon compare match

9.6 Setting a new compare threshold

Refer to the chapters 8.3.8 (Ocu_SetAbsoliteThreshold)
(Ocu_SetRelativeThreshold).

and

8.3.9

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
OCuU.

Chapter 10.3 specifies published information of the module OCU.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.
In addition to this section, it is highly recommended to read the documents:

» AUTOSAR Layered Software Architecture [4]

+ AUTOSAR ECU Configuration Specification[3]

this document describes the AUTOSAR configuration methodology and the AU-
TOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Config-
uration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implementa-
tion of a module. This means that only generic or configurable module implementation
can be adapted to the environment (software/hardware) in use during system and/or
ECU configuration.

The configuration of parameters can be achieved at different times during the software
process: before compile time, before link time or after build time. In the following, the
term "configuration class" (of a parameter) shall be used in order to refer to a specific
configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:

« all configuration parameters are kept in containers.

AUTSSAR

* (sub-) containers can reference (sub-) containers. It is possible to assign a mul-
tiplicity to these references. The multiplicity then defines the possible number of
instances of the contained parameters.

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:

* the general section

» the configuration parameter section

 the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be of configura-

tion class Pre-compile time or not

Label

Description

X

The configuration parameter shall be of configuration class
Pre-compile time.

The configuration parameter shall never be of configuration
class Pre-compile time.

Link time - specifies whether the configuration parameter shall be of configuration class

Link time or not

Label

Description

X

The configuration parameter shall be of configuration class
Link time.

The configuration parameter shall never be of configuration
class Link time.

Post Build - specifies whether the configuration parameter shall be of configuration

class Post Build or not

Label

Description

X

The configuration parameter shall be of configuration class
Post Build and no specific implementation is required.

Loadable - the configuration parameter shall be of
configuration class Post Build and only one configuration
parameter set resides in the ECU.

Multiple - the configuration parameter shall be of
configuration class Post Build and is selected out of a set of
multiple parameters by passing a dedicated pointer to the init
function of the module.

The configuration parameter shall never be of configuration
class Post Build.

AUTSSAR

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Ocu_00170] [The OCU module shall reject configurations with partition map-
pings which are not supported by the implementation. |

10.2.1 Ocu

[ECUC_Ocu_00136] Definition of EcucModuleDef Ocu |

Module Name

Ocu

Description

Configuration of Ocu (Output Compare Unit) module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Dependency

OcuConfigSet

1

This container is the base of a Configuration Set, which contains
the configured OCU channels. This way, different configuration
sets can be defined for post-build process.

OcuConfigurationOfOptionalApis

Configuration of optional APIs.

OcuGeneral

This container contains the module-wide configuration
parameters of the OCU Driver.

AUTSSAR

Ocu: EcucModuleDef +container OcuGeneral:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+container| OcuConfigurationOfOptional Apis:
EcucParamConfContaineDef

-H:cnlainex

OcuConfigSet: OcuChannel:
EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+literal OCU UPCOUNTING:

OcuCountdirection:
i EcucEnumerationliteral Def

EcucEnumerationParamDef

+parameter

defaultValue = OCU_UPCOUNTING

lowerMultiplicity = 0 literal| ooy DOWNCOUNTING:

upperMultiplicity = 1 EcucEnumerationLiteral Def
OcuHWSpecificSettings: DeuClockSourse:
EcucParamConfContaineDef +parameter| EcucEnumerationParamDef
loweMultiplicity = 0 lowerMultiplicity = 0
. upperMultiplicity = * upperMultiplicity = 1
+subContainer
OcuPrescale:
+parameter| EcucEnumerationParamDef
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1: Ocu configuration

10.2.2 OcuGeneral

[SWS_Ocu_CONSTR_00001] [The ECUC partitions referenced by OcuKernelEcuc
PartitionRef shall be a subset of the ECUC partitions referenced by OcuEcucPartition
Ref. |

[ECUC_Ocu_00137] Definition of EcucParamConfContainerDef OcuGeneral |

Container Name OcuGeneral

Parent Container Ocu

Description This container contains the module-wide configuration parameters of the OCU Driver.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OcuDevErrorDetect 1 [ECUC_Ocu_00138]
OcuEcucPartitionRef 0.* [ECUC_Ocu_00167]
OcuKernelEcucPartitionRef 0..1 [ECUC_Ocu_00168]

| No Included Containers

AUTSSAR

[ECUC_Ocu_00138] Definition of EcucBooleanParamDef OcuDevErrorDetect |

Parameter Name OcuDevErrorDetect

Parent Container OcuGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and natification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Ocu_00167] Definition of EcucReferenceDef OcuEcucPartitionRef |

Parameter Name

OcuEcucPartitionRef

Parent Container

OcuGeneral

Description Maps the OCU driver to zero or multiple ECUC partitions to make the driver API
available in the according partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Ocu_00168] Definition of EcucReferenceDef OcuKernelEcucPartitionRef

[

Parameter Name

OcuKernelEcucPartitionRef

Parent Container

OcuGeneral

Description Maps the OCU kernel to zero or one ECUC partitions to assign the driver kernel to a
certain core. The ECUC partition referenced is a subset of the ECUC partitions where
the OCU driver is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

A
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[SWS_Ocu_CONSTR_00004] [If OcuEcucPartitionRef references one or more ECUC
partitions, OcuKernelEcucPartitionRef shall have a multiplicity of one and reference
one of these ECUC partitions as well |

. OcuDevEmorDetect:
OcuGeneral: . +parameter EcueBoolcanPasrDef
EcucParamConfContainerDef . EcucBooleanParamDe

defaultValue = false

p OcuEcucPartitionRef: EcucPartition:

. autclicr arifonner. —_—

relerence EcucReferenceDef *destination EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *

+ref OcuKemelEcucPartitionRef: +destination
& reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.2: Ocu General Configuration

10.2.3 OcuConfigurationOfOptionalApis

[ECUC_Ocu_00139] Definition of EcucParamConfContainerDef OcuConfigura-
tionOfOptionalApis |

Container Name OcuConfigurationOfOptional Apis
Parent Container Ocu

Description Configuration of optional APIs.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

OcuDelnitApi 1 [ECUC_Ocu_00140]
OcuGetCounterApi 1 [ECUC_Ocu_00141]
OcuNotificationSupported 1 [ECUC_Ocu_00142]

vV

AUTSSAR

A

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OcuSetAbsoluteThresholdApi

1

[ECUC_Ocu_00143]

OcuSetPinActionApi

1

[ECUC_Ocu_00144]

OcuSetPinStateApi

1

[ECUC_Ocu_00145]

OcuSetRelativeThresholdApi

[ECUC_Ocu_00146]

OcuVersionInfoApi

[ECUC_Ocu_00147]

No Included Containers

]

[ECUC_Ocu_00140] Definition of EcucBooleanParamDef OcuDelnitApi |

Parameter Name

OcuDelnitApi

Parent Container

OcuConfigurationOfOptional Apis

Description Adds / removes the service Ocu_Delnit() from the code.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Ocu_00141] Definition of EcucBooleanParamDef OcuGetCounterApi |

Parameter Name

OcuGetCounterApi

Parent Container

OcuConfigurationOfOptional Apis

Description Adds / removes the service Ocu_GetCounter() from the code.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Ocu_00142]
ported |

Definition of EcucBooleanParamDef OcuNotificationSup-

Parameter Name

OcuNotificationSupported

Parent Container

OcuConfigurationOfOptional Apis

Description Adds / removes the services Ocu_EnableNotification() and Ocu_DisableNotification()
from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Ocu_00143]
ThresholdApi |

Definition of EcucBooleanParamDef OcuSetAbsolute

Parameter Name

OcuSetAbsolute ThresholdApi

Parent Container

OcuConfigurationOfOptional Apis

Description Adds / removes the service Ocu_SetAbsoluteThreshold() from the code.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Ocu_00144] Definition of EcucBooleanParamDef OcuSetPinActionApi |

Parameter Name

OcuSetPinActionApi

Parent Container

OcuConfigurationOfOptionalApis

Description Adds / removes the service Ocu_SetPinAction() from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

[ECUC_Ocu_00145] Definition of EcucBooleanParamDef OcuSetPinStateApi |

Parameter Name

OcuSetPinStateApi

Parent Container

OcuConfigurationOfOptional Apis

Description Adds / removes the service Ocu_SetPinState() from the code.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Ocu_00146] Definition of EcucBooleanParamDef OcuSetRelativeThresh-

oldApi [

Parameter Name

OcuSetRelative ThresholdApi

Parent Container

OcuConfigurationOfOptional Apis

Description Adds / removes the service Ocu_SetRelativeThreshold() from the code.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Ocu_00147] Definition of EcucBooleanParamDef OcuVersioninfoApi |

Parameter Name

OcuVersionInfoApi

Parent Container

OcuConfigurationOfOptional Apis

Description Switch to indicate that the Ocu_GetVersioninfo() is supported.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

OcuConfigurationOfOptional Apis:

EcucParamConfContainerDef

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

OcuDelnitApi:
EcucBooleanParamDef

OcuSetPinActionApi:
EcucBooleanParamDef

OcuSetPinStateApi:
EcucBooleanParamDef

OcuGetCounterApi:
EcucBooleanParamDef

OcuSetAbsoluteThresholdApi:
EcucBooleanParamDef

OcuSetRelative ThresholdApi:
EcucBooleanParamDef

QOcuNotificationSupported:
EcucBooleanParamDef

EcucBooleanParamDef

defaultValue = false

Figure 10.3: Ocu Configuration Of Optional Apis

10.2.4 OcuConfigSet

[ECUC_Ocu_00148] Definition of EcucParamConfContainerDef OcuConfigSet |

Container Name

OcuConfigSet

Parent Container

Ocu

Description

This container is the base of a Configuration Set, which contains the configured OCU
channels. This way, different configuration sets can be defined for post-build process.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

OcuCountdirection

0..1

[ECUC_Ocu_00149]

AUTSSAR

Included Containers

hardware.

Container Name Multiplicity Dependency
OcuChannel 1.* Configuration of an individual OCU channel.
OcuHWSpecificSettings 0.” This container contains Ocu-specific parameters for selecting

the clock source and setting optional prescalers if supported by

Implementation is defined vendor specific.

]

[ECUC_Ocu_00149] Definition of EcucEnumerationParamDef OcuCountdirection

[

Parameter Name

OcuCountdirection

Parent Container OcuConfigSet

Description This parameter indicates the count direction for the whole OCU driver.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range OCU_DOWNCOUNTING The OCU counter will reckon from the maximum

to the minimum value.

OCU_UPCOUNTING

The OCU counter will reckon from the minimum
to the maximum value.

Default value

OCU_UPCOUNTING

Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time

Post-build time

X VARIANT-POST-BUILD

Dependency

10.2.5 OcuChannel

[ECUC_Ocu_00150] Definition of EcucParamConfContainerDef OcuChannel |

Container Name

OcuChannel

Parent Container

OcuConfigSet

Description

Configuration of an individual OCU channel.

Multiplicity

1.*

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

OcuAssignedHardwareChannel 1 [ECUC_Ocu_00151]
OcuChannelld 1 [ECUC_Ocu_00152]
OcuChannelTickDuration 1 [ECUC_Ocu_00153]
OcuDefaultThreshold 1 [ECUC_Ocu_00154]
OcuHardwareTriggeredAdc 0..1 [ECUC_Ocu_00155]
OcuHardwareTriggeredDMA 0..1 [ECUC_Ocu_00156]
OcuMaxCounterValue 1 [ECUC_Ocu_00157]
OcuNotification 0..1 [ECUC_Ocu_00158]
OcuOutputPinDefaultState 0..1 [ECUC_Ocu_00160]
OcuOutputPinUsed 1 [ECUC_Ocu_00159]
OcuChannelEcucPartitionRef 0..” [ECUC_Ocu_00169]
OcuHWSpecificSettingsRef 0..1 [ECUC_Ocu_00170]

No Included Containers

]

[ECUC_Ocu_00151] Definition of EcucintegerParamDef OcuAssignedHardware

Channel |

Parameter Name

OcuAssignedHardwareChannel

Parent Container OcuChannel

Description The physical hardware channel that is assigned to this logical channel.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00152] Definition of EcucintegerParamDef OcuChannelld |

Parameter Name OcuChannelld

Parent Container OcuChannel

Description Channel Id of the OCU channel. This value will be assigned to the symbolic name
derived from the OcuChannel container short name. It defines the assignment of the
channel to the physical OCU hardware channel.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..65535 |

Default value -

Post-Build Variant Value false

AUTSSAR

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Ocu_00153] Definition of EcucintegerParamDef OcuChannelTickDura-

tion [
Parameter Name OcuChannelTickDuration
Parent Container OcuChannel
Description Specifies the number of input clock edges (rising or falling edges) required to increase

the channel counter by one (i.e. one counter tick). The value range depends on the
used HW, not all values may be relevant

Multiplicity 1
Type EcuclntegerParamDef
Range 1..32768

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00154] Definition of EcucintegerParamDef OcuDefaultThreshold |

Parameter Name

OcuDefaultThreshold

Parent Container

OcuChannel

Description Value of comparison threshold used for Initialization.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Ocu_00155] Definition of EcuclntegerParamDef OcuHardwareTriggered
Adc |

Parameter Name

OcuHardwareTriggeredAdc

Parent Container

OcuChannel

Description This parameter is used to allow the OCU channel to trigger an ADC channel upon
compare match, if this is supported by hardware. The value of the parameter
represents the ADC physical channel to trigger.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0..255

Default value 0

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00156] Definition of EcuclntegerParamDef OcuHardwareTriggered
DMA [

Parameter Name

OcuHardwareTriggeredDMA

Parent Container

OcuChannel

Description This parameter is used to allow the OCU channel to trigger a DMA channel upon
compare match, if this is supported by hardware. The value of the parameter
represents the DMA physical channel to trigger.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0..255

Default value 0

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Ocu_00157] Definition of EcucintegerParamDef OcuMaxCounterValue |

Parameter Name

OcuMaxCounterValue

Parent Container OcuChannel

Description Maximum value in ticks, the counter of the OCU channel is able to count.
Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00158] Definition of EcucFunctionNameDef OcuNotification |

Parameter Name

OcuNotification

Parent Container

OcuChannel

Description Definition of a function pointer to a Callback function.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time

Post-build time

X VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00160] Definition of EcucEnumerationParamDef OcuOutputPinDe-

faultState |

Parameter Name

OcuOutputPinDefaultState

Parent Container

OcuChannel

Description The parameter OcuOutputPinDefaultState represents the state that a pin associated
with a channel shall be set to after initialisation.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range OCU_HIGH The OCU channel output pin will be set to high (3

or 5 V) when requested.

V

AUTSSAR

A
OCU_LOW The OCU channel output pin will be set to low (0
V) when requested.
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00159] Definition of EcucBooleanParamDef OcuOutputPinUsed |

Parameter Name

OcuOutputPinUsed

Parent Container

OcuChannel

Description Information about the usage of an output pin on this channel.
True: the channel uses an output pin.
False: the channel does not use an output pin.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Ocu_00169] Definition of EcucReferenceDef OcuChannelEcucPartition

Ref |

Parameter Name

OcuChannelEcucPartitionRef

Parent Container

OcuChannel

Description Maps an OCU channel to zero or multiple ECUC partitions to limit the access to this
channel. The ECUC partitions referenced are a subset of the ECUC partitions where
the OCU driver is mapped to.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

AUTSSAR

| Dependency

]

[ECUC_Ocu_00170] Definition of EcucReferenceDef OcuHWSpecificSettingsRef

[

Parameter Name

OcuHWSpecificSettingsRef

Parent Container

OcuChannel

Description Reference to the OcuHWSpecificSettings used by the OcuChannel.
Multiplicity 0..1
Type Reference to OcuHWSpecificSettings

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[SWS_Ocu_CONSTR_00002] [The ECUC partitions referenced by OcuChannelEcuc
PartitionRef shall be a subset of the ECUC partitions referenced by OcuEcucPartition

Ref. |

[SWS_Ocu_CONSTR_00005] [If OcuEcucPartitionRef references one or more ECUC

partitions, OcuKernelEcucPartitionRef shall have a multiplicity of one and reference

one of these ECUC partitions as well |

AUTSSAR

OcuChannel:
EcucParam ConfContainerDef

OcuChannelld:
EcuclntegerParamDef

lowerMultiplicity = 1
uppeMultiplicity = *

EcucReferenceDef

+parameter|
min=0
max = 85535
symbolicNameValue = tue OcuChannel TickDuration:
EcucintegerParamDef
+parameter|
> min =1
max = 32768
OcuAssignedHardwareChannel:
+parameter| EcuclntegerParamDef
min=0
max =255 OcuMotification:
+parameter| EcucFunctionNameDef
-
lowerMultiplicity = 0
OcuDefaultT hreshold L ZEALE =
+parameter| EcuclntegerParam Def
min=0
sl P B OcuMaxCounterValue:
+parameter| EcucintegerParamDef
>
min =1
max = 4294967295
OcuHamdwareTriggeredAdc:
EcuclntegerParamDef
+parameter| min=0
max = 255
defaultValue = 0
lowerMultiplicity = 0 OcuHardware Triggered DMA:
upperMultiplicity = 1 EcucintegeParamDef
+parameter]| min=0
> max = 255
defaultValue = 0
+parameter| OcuQutputPinUsed: Lowzmtlslplllz‘tty =_Ul
EcucBooleanParamDef PP plicity =
‘ +literal| OCU_HIGH: EcucEnumerationLiteralDef
OcuOutputPinDefaultState:
+parameter EcucEnumerationParam Def
lowerMultiplicity = 0 +Hiteral
upperMultiplicity = 1 OCU_LOW: EcucEnumerationLiteralDef
OcuChannelEcucPartitionRef: EcucPartition
+reference EcucRef Def +destination EcucP ConfC Def
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
OcuHWSpedificSettingsRef. OcuHWSpecificSettings
+reference +destination i

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.4: Ocu Channel Configuration

10.2.6 OcuHWSpecificSettings

[ECUC_Ocu_00164] Definition of EcucParamConfContainerDef OcuHWSpecific

Settings |

Container Name

OcuHWSpecificSettings

Parent Container

OcuConfigSet

Description This container contains Ocu-specific parameters for selecting the clock source and
setting optional prescalers if supported by hardware.
Implementation is defined vendor specific.

Multiplicity 0..*

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
OcuClockSource 0..1 [ECUC_Ocu_00165]
OcuPrescale 0..1 [ECUC_Ocu_00166]

| No Included Containers

]

[ECUC_Ocu_00165] Definition of EcucEnumerationParamDef OcuClockSource |

Parameter Name

OcuClockSource

Parent Container

OcuHWSpecificSettings

Description The OCU driver specific clock input for the unit can statically be configured to select
different clock sources if provided by hardware. Enumeration literals are defined vendor
specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Ocu_00166] Definition of EcucEnumerationParamDef OcuPrescale |

Parameter Name

OcuPrescale

Parent Container OcuHWSpecificSettings

Description Optional OCU driver specific clock prescale factor, if supported by hardware.
Implementation is defined vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

OcuHWSpecificSettings: OcuClockSource:
EcucParamConfContainerDef EcucEnumerationParamDef
lowerMultiplicity = 0 Pt werMultiplicity = 0
upperMultiplicity = * upperMultiplicity = 1
OcuPrescale:
tparameter| g, cFnumerationParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.5: Ocu Configuration Of HW Specific Settings

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

[SWS_Ocu_00169]
Upstream requirements: SRS_BSW_00402, SRS_BSW_00003, SRS_BSW_00318

[The standardized common published parameters as required by SRS_BSW_00402
in the General Requirements on Basic Software Modules [5] shall be published within
the header file of this module and need to be provided in the BSW Module Description.
The according module abbreviation can be found in the List of Basic Software Modules

[2].]

Additional module-specific published parameters are listed in the appendix Chapter A
if applicable.

AUTSSAR

A Not applicable requirements

[SWS_Ocu_NA_00156]

Upstream requirements: SRS_SPAL_12267, SRS_SPAL 12462, SRS_SPAL 12463, SRS -
SPAL 12068, SRS SPAL 12069, SRS _SPAL 12169, SRS SPAL -
12075, SRS SPAL 12064, SRS SPAL 12067, SRS _SPAL 12077,
SRS _SPAL 12078, SRS _SPAL 12092, SRS SPAL 12265

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items
B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification ltems in R25-11

none

B.1.3 Deleted Specification Items in R25-11

none

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

AUTSSAR

B.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_Ocu_00169]

Table B.1: Changed Specification ltems in R24-11

B.2.3 Deleted Specification Items in R24-11

none

B.2.4 Added Constraints in R24-11

none

B.2.5 Changed Constraints in R24-11

none

B.2.6 Deleted Constraints in R24-11

none

B.3 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.3.1 Added Specification Iltems in R23-11

none

B.3.2 Changed Specification Items in R23-11

none

B.3.3 Deleted Specification Iltems in R23-11

none

AUTSSAR

B.3.4 Added Constraints in R23-11

none

B.3.5 Changed Constraints in R23-11

none

B.3.6 Deleted Constraints in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Assumptions
	4.1.1 Clock
	4.1.2 Resources
	4.1.3 Counting and comparing

	4.2 Limitations
	4.3 Applicability to car domains

	5 Dependencies to other modules
	5.1 Module DET
	5.2 Module DEM
	5.3 Module MCU Driver
	5.4 Module PORT
	5.5 File structure
	5.5.1 Code file structure
	5.5.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.2 Version check
	7.2.1 Background & Rationale

	7.3 Time Unit Ticks
	7.3.1 Background & Rationale
	7.3.2 Requirements

	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors

	7.5 Error Detection
	7.6 Error Notification
	7.7 Debug Support

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Ocu_ChannelType
	8.2.2 Ocu_ValueType
	8.2.3 Ocu_PinStateType
	8.2.4 Ocu_PinActionType
	8.2.5 Ocu_ConfigType
	8.2.6 Ocu_ReturnType

	8.3 Function definitions
	8.3.1 Ocu_Init
	8.3.2 Ocu_DeInit
	8.3.3 Ocu_StartChannel
	8.3.4 Ocu_StopChannel
	8.3.5 Ocu_SetPinState
	8.3.6 Ocu_SetPinAction
	8.3.7 Ocu_GetCounter
	8.3.8 Ocu_SetAbsoluteThreshold
	8.3.9 Ocu_SetRelativeThreshold
	8.3.10 Ocu_DisableNotification
	8.3.11 Ocu_EnableNotification
	8.3.12 Ocu_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 De-initialization
	9.3 Using the Ocu Notifications
	9.4 Ocu_SetPinState
	9.5 Ocu_SetPinAction
	9.6 Setting a new compare threshold

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Ocu
	10.2.2 OcuGeneral
	10.2.3 OcuConfigurationOfOptionalApis
	10.2.4 OcuConfigSet
	10.2.5 OcuChannel
	10.2.6 OcuHWSpecificSettings

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11
	B.3.4 Added Constraints in R23-11
	B.3.5 Changed Constraints in R23-11
	B.3.6 Deleted Constraints in R23-11

