AUTSSAR

Document Title Specification of Network
= Management Interface
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 228

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR Shutdown clarfication for actively
2025-11-27 | R25-11 | Release coordinated channels
Management « Editorial changes
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
AUTOSAR « NM harmonization
2023-11-23 | R23-11 Release
Management « Editorial Changes
AUTOSAR « Refined Partial Network Cluster handling
2022-11-24 | R22-11 Release
Management « Editorial changes
» Reworked Partial Network functionality
and Partial Network Cluster handling
AUTOSAR
2021-11-25 | R21-11 Release » Caveats that were no real requirements
Management were change to notes

« Editorial changes

AUTSSAR

» Support for synchronized PNC shutdown
functionality

* Introduction of Dynamic
PNC-to-channel-mapping and PNC
Learning algorithm

2020-11-30 | R20-11 QSLSS:R + Added limitation regarding Nm
o i Management Coordinator functionality when using
9 10BASE-T1S in combination with PLCA
media access
» Support for passing NM state change to
SwC
« Editorial changes
* Minor changes
AUTOSAR * Multicore Distribution support (draft)
2019-11-28 | R19-11 Release added
Management)
» Changed Document Status from Final to
published
* Removed LinNM from the architecture
AUTOSAR
2018-10-31 440 Release * Removed obsolete elements
Management _
» Header File Cleanup
AUTOSAR * minor corrections / clarifications /
2017-12-08 4.3.1 Release editorial changes; For details please
Management refer to the ChangeDocumentation
+ Add functionality for synchronizing
channel A and channel B
AUTOSAR » removed dependencies of .
2016-11 4 Release ComMChannels to each other in respect
016-11-30 3.0 to NMVariants
Management
* minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
« "Coordination algorithm™ and
"“Coordinated shutdown" redefined
AUTOSAR .
2015-07-31 400 Release » Make the CarWakeup feature available
Management

» Debugging support marked as obsolete

« Editorial changes

AUTSSAR

« Corrections on the requirement tracing

AUTOSAR I
2014-10-31 491 Release Clarification at use of callback versus
callout
Management
« Editorial changes
* Rework of wakeup and abortion of
AUTOSAR coordinated shutdown
2014-03-31 4.1.3 Release
Management * Rework of coordination of nested
sub-busses
* Remove DEM usage
» Correct multiplicity and dependency of
configuration parameter
* Corrections on RemoteSleeplndication
f
AUTOSAR cature
2013-10-31 | 4.1.2 Release « Corrections on MainFunction and
Managment coordinated shutdown
» Formal correction on REQ Tags
« Editorial changes
* Removed chapter(s) on change
documentation
* Introduction J1939Nm
» Merged and corrected calculation of
delay timer for Coordination Algorithm
2013-03-15 | 4.1.1 AUTOSAR + Correction of parametrization and

Administration

Services for Coordinator Synchonization
Algorithm

* Moved Nm_Passive Mode Enabled
Parameter back to global container

AUTSSAR

* NmMultipleChannelsEnabled removed

» Added Mandatory Interfaces provided by
ComM to Chapter 8.6.1

» move NmPassiveMode

* Enabled form global configuration to
channel configuration

2011-12-22 | 4.0.3 Q;JTQ.SAR .
ministration « Removed Nm_ReturnType
* Fixed some min and max values of
FloatPAramDef configuration parameters
* Added support of NmCarWakup-Feature
» Added support of coordinated shutdown
of nested sub-busses
* Release check added
AUTOSAR * DET Error Code for false Pointer added
2009-12-18 | 4.0.1 . , _
Administration « ChannellD harmonized in COM-Stack
» Nm-State-changes in Userdata via Nmlf
* Remove explicit support for OSEK NM
from specification
* NM Coordinator functionality reworked
AUTOSAR (chapter 7.2 and 7.2.4)
2010-02-02 | 3.14 Administration « Debugging functionality added
* Link time configuration variant
introduced
* Legal disclaimer revised
2008-08-13 3.1.1 AUTQ_SAR_ * Legal disclaimer revised
Administration
2007-12-21 3.0.1 AUTOSAR * Initial release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 11
Acronyms and Abbreviations 12
Related documentation 14
3.1 Inputdocuments 14
3.2 Related specification 14
Constraints and assumptions 15
4.1 Limitations 15
4.2 Specific limitations of the currentrelease 16
4.3 Applicability to automotive domains 16
Dependencies to other modules 17
5.1 Interfacestomoduleso 17
5.1.1 ComM, CanNm, J1939Nm, FrNm, UdpNm, generic bus specific NM
layersand CDD 19
5.1.2 Errorhandlingmodules 19
5.1.3 BSW Scheduler 19
5.2 Filestructure 20
5.2.1 Codefilestructure 20
5.2.2 Headerfilestructure 20
Requirements traceability 21
Functional specification 27
7.1 Basefunctionality 27
7.2 NM Coordinator functionality 28
7.2.1 Applicability of the NM Coordinator functionality 28
7.2.2 Keeping coordinated busses alive 30
7.2.3 Shutdown of coordinatedbusses oL 31
7.2.4 Coordination of nested sub-busses 34
7.2.5 Calculation of shutdowntimers 37
7.2.6 Synchronization Use Case 1 - Synchronous command 38
7.2.7 Synchronization Use Case 2 - Synchronous initiation 38
7.2.8 Synchronization Use Case 3 - Synchronous network sleep 39
7281 Examples 40
7.3 Wakeup and abortion of the coordinated shutdown 41
7.3.1 Externalnetwork wakeup 41
7.3.2 Coordinatedwakeup 42
7.3.3 Abortion of the coordinated shutdown 42
7.4 Partial Network functionality 44

7.4.1 PNC bit vector filter algorithmo 44

AUTSSAR

7.4.2 Aggregationof PNCrequests
7.4.2.1 Aggregation of internal and external Partial Network Cluster . .
7.4.2.2 Aggregation of external Partial Network Cluster

7.4.3 EIRA/ERA state and PNC reset timer handling

7.4.4 Synchronized PNC shutdown functionality

7.5 Prerequisites of bus specific Network Management modules

7.5.1 Prerequisites for basic functionality

7.5.2 Prerequisites for NM Coordinator functionality

7.5.3 Prerequisites of Partial Network functionality
7.5.3.1 Prerequisite for aggregation of PNC requests
7.5.3.2 Prerequisites for synchronized PNC shutdown functionality . . .

7.5.4 Configuration of global parameters for bus specific networks ..

7.6 NM_BUSNM_LOCALNM e
7.7 Multicore Distribution
7.8 Additional Functionality L
7.8.1 Nm_CarWakeUplndication
7.8.2 Nm_StateChangeNotification
7.9 Errorclassification.

7.9.1 DevelopmentErrors

7.9.2 RuntimeErrors

7.9.3 ProductionErrorso oo

7.9.4 Extended ProductionErrors L L.

8 API specification

8.1 Importedtypes
8.2 Typedefinitions
8.2.1 Nm_ModeType
8.22 Nm_StateType
8.2.3 Nm_BusNmType
8.24 Nm_ConfigType
8.3 Functiondefinitions o
8.3.1 Standard services provided by NM Interface
83.1.1 Nm_Init
8.3.1.2 Nm_PassiveStartUp
8.3.1.3 Nm_NetworkRequest
8.3.1.4 Nm NetworkRelease
8.3.2 Communication control services provided by NM Interface
8.3.2.1 Nm_DisableCommunication
8.3.2.2 Nm_EnableCommunication
8.3.3 Partial Network services provided by NM Interface
8.3.3.1 Nm_RequestSynchronizedPncShutdown
8.3.32 Nm_UpdatelRA L
8.3.4 Extra services provided by NM Interface
8341 Nm SetUserData

AUTSSAR

8342 Nm GetUserData. 77
83.43 Nm GetPduData 78
8.3.44 Nm_RepeatMessageRequest 79
8.3.4.5 Nm_GetNodeldentifier 80
8.3.4.6 Nm_GetLocalNodeldentifier 81
8.3.4.7 Nm_CheckRemoteSleeplindication 82
8348 Nm GetState 83
8.3.49 Nm GetVersioninfo 84
8.3.4.10 Nm_PnLearningRequest 84

8.4 Call-back notifications., 85
8.4.1 Standard Call-back notifications 86
8.4.1.1 Nm_NetworkStartindication 86
8.4.1.2 Nm_ NetworkMode 86
8.4.1.3 Nm_BusSleepMode 87
8.4.1.4 Nm_PrepareBusSleepMode 88
8.4.1.5 Nm_SynchronizeMode 88
8.4.1.6 Nm_RemoteSleeplindication 89
8.4.1.7 Nm_RemoteSleepCancellation 90
8.4.1.8 Nm_SynchronizationPoint 90
8.4.1.9 Nm_CoordReadyToSleeplIndication 91
8.4.1.10 Nm_CoordReadyToSleepCancellation 92
8.4.1.11 Nm_ForwardSynchronizedPncShutdown 92
8.4.1.12 Nm_PncBitVectorRxIndication 93
8.4.1.13 Nm_PncBitVectorTxIndication 94
8.4.1.14 Nm_PncBitVectorTxConfirmation 94
8.4.2 Extra Call-back notifications 95
8.4.2.1 Nm_PduRxIndication 95
8.4.2.2 Nm_StateChangeNotification 96
8.4.2.3 Nm_RepeatMessagelndication 96
8.4.2.4 Nm_TxTimeoutException 97
8.4.2.5 Nm_CarWakeUplndication 98

8.5 Scheduled functions 98
8.5.1 Nm_MainFunction 99
8.6 Expectedinterfaces 99
8.6.1 Mandatory Interfaces L Lo 99
8.6.2 OptionalInterfaces 100
8.6.3 Configurable Interfaces 102
8.6.3.1 NmCarWakeUpCallout 102

8.7 VersionCheck e 102
9 Sequence diagrams 103
9.1 Basicfunctionality 103
9.2 Seq of NM Coordinator functionality 103

9.3 Sequence of Partial network functionality 105

AUTSSAR

10 Configuration specification

10.1How to read this chapter
10.2Configuration parameters
10.2.1 Nm

10.3Global configurable parameters
10.3.1 NmGlobalConfig
10.3.2NmGilobalConstants
10.3.3 NmGilobalProperties
10.3.4NmGilobalFeatures,
10.4Channel configurable parameters
10.4.1 NmChannelConfig
10.4.2 NmPnFilterMaskByte L.
10.43NmBusType.
10.4.4 NmGenericBusNmConfig,
10.4.5 NmStandardBusNmConfig,
10.5Published Information. L.

Not applicable requirements

Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6

Added Specification Itemsin R22-11
Changed Specification Itemsin R22-11
Deleted Specification ItemsinR22-11
Added Constraintsin R22-11
Changed Constraintsin R22-11
Deleted Constraintsin R22-11

B.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6

Added Specification Itemsin R23-11
Changed Specification Itemsin R23-11
Deleted Specification ltemsin R23-11
Added Constraints in R23-11
Changed Constraints in R23-11
Deleted Constraints in R23-11

B.3 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6

Added Constraintsin R24-11
Changed Constraintsin R24-11
Deleted Constraints in R24-11
Added Specification ltemsin R24-11
Changed Specification Itemsin R24-11
Deleted Specification ltemsin R24-11

110

112
112
112
113
113
115
115
119
127
127
134
135
136
137
138

139

140

AUTSSAR

B.4 Traceable item history of this document according to AUTOSAR Release

R25-11 e 145
B.4.1 Added Constraintsin R25-11 145
B.4.2 Changed Constraintsin R25-11 145
B.4.3 Deleted Constraintsin R25-11 146
B.4.4 Added Specification ltemsinR25-11 146
B.4.5 Changed Specification ltemsin R25-11 146
B.4.6 Deleted Specification Itemsin R25-11 146

AUTSSAR

1 Introduction and functional overview

This document describes the concept, interfaces and configuration of the Network
Management Interface module.

The Network Management Interface is an adaptation layer between the AUTOSAR
Communication Manager and the AUTOSAR bus specific network management mod-
ules (e.g. CAN Network Management and FlexRay Network Management). This is
also referred to as Basic functionality.

Additionally, this document describes the following optional features:

* interoperability between several networks connected to the same (coordinator)
ECU that run AUTOSAR NV, where "interoperability” means that these networks
can be put to sleep synchronously. This is also referred to as NM Coordinator
functionality.

« Partial Network Cluster (pNC) handling, including handling of PNC timers and
handling of synchronized PNC shutdown requests. If Partial Network is enabled,
AUTOSAR NM aggregates all internal PNC requests (notified by comm), all ex-
ternal PNC requests (notified by the <Bus>Nm’s) and manage the PNC timers of
each notified PNC. Additionally, if using the synchronized PNC shutdown func-
tionality, AUTOSAR NM collect all synchronized PNC shutdown requests (noti-
fied by ComM) and control the PNC shutdown handling. For transmission of PN
shutdown messages the AUTOSAR NM indicate the <Bus>Nm to fetch the ag-
gregated PN shutdown requests. On reception of PN shutdown message the
AUTOSAR NM acts as an interface layer between <Bus>Nm’s and ComM. It for-
wards requests from <Bus>Nm’s to ComM. Handling of PNC timer and handling
of synchronized PNC shutdown requests are also referred to as Partial Network
functionality.

Support of the NM Coordinator functionality and Partial Network functionality are op-
tional. A Network Management Interface implementation can either support only
Basic functionality or one of the following combinations:

« Basic functionality and NM Coordinator functionality.
« Basic functionality and Partial Network functionality.

The Network Management Interface is constructed to support generic lower layer
modules that follow a fixed set of requirement for bus specific NM modules. This will
allow third parties to offer support for OEM specific or legacy NM protocols such as
direct OSEK NM.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations and terms relevant to the
Network Management Interface module that are not included in the [1, AUTOSAR glos-

sary].
Abbreviation / Acronym: Description:
Canlf CAN Interface module
CanNm CAN Network Management module
ComM Communication Manager module
EcuM ECU State Manager module
Nm Generic Network Management Interface module, this ist the abre-
viation used for this module throughout this specification
CBV Control Bit Vector in NM-message
PNC Partial network cluster

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Terms:

Definition:

Bus-Sleep Mode

Network mode where all interconnected communication con-
trollers are in the sleep mode.

NM-Channel

Logical channel associated with the NM-cluster

NM-Cluster

Set of NM nodes coordinated with the use of the NM algorithm.

NM-Coordinator

A functionality of the Nm which allows coordination of network
sleep for multiple NM Channels.

NM-Message

Packet of information exchanged for purposes of the NM algo-
rithm.

NM-Timeout

Timeout in the NM algorithm that initiates transition into Bus-
Sleep Mode.

NM User Data

Supplementary application specific piece of data that is attached
to every NM message sent on the bus.

Node Identifier

Node address information exchanged for purposes of the NM al-
gorithm.

Node |dentifier List

List of Node Identifiers recognized by the NM algorithm.

Physical communication medium to which a NM node/ecu is con-

Bus nected to.

Entity of all NM nodes/ecus which are connected to the same
network bus
channel Logical bus to which the NM node/ecu is connected to.

Coordinated shutdown

Shutdown of two or more busses in a way that their shutdown is
finished coinciding.

Coordination algorithm

Initiation of coordinated shutdown in case all conditions are met.

PNC bit vector

Represent the Partial Network information in a NM frame

PNC bit vector length

Represent the length of a Partial Network information in bytes

PNC bit

One bit which represent a particular Partial Network in the Partial
Network Info Range

PN filter mask

Vector of filter mask bytes defined by configuration container(s)
NmPnFilterMaskByte per channel to filter relevant PNC requests
for the PNC timer handling

AUTSSAR

Terms:

Definition:

Top-level PNC coordinator

An ECU acts as top-level PNC coordinator for those PNCs which
are actively coordinated on all assigned channels. This ECU
has the PNC gateway functionality enabled. The top-level PNC
coordinator triggers for those PNCs a synchronized PNC shut-
down, if no other ECU in the network requests them and if the
synchronized PNC shutdown is enabled. Note: For different
PNCs it is possible to have different top-level PNC coordinators.

Intermediate PNC coordinator

An ECU acts as intermediate PNC coordinator for those PNCs
which are passively coordinated on at least one channel. This
ECU has the PNC gateway functionality enabled. The interme-
diate PNC coordinator forwards a synchronized PNC shutdown
to active coordinated channels for PNCs which are passively
coordinated, if the synchronized PNC shutdown is enabled

PNC leaf node

A PNC leaf node is an ECU that act neither as top-level PNC
coordinator nor as an intermediate PNC coordinator. It act as
an ECU without a PNC gateway in the network and process PN
shutdown message as usual NM messages.

PN shutdown message

A top-level PNC coordinator transmits PN shutdown messages to
indicate a synchronized PNC shutdown across the PN topology.
A PN shutdown message is a NM message which has PNSR
bit in the control bit vector and all PNCs which are indicated
for a synchronized shutdown set to '1’. An intermediate PNC
coordinator which receive a PN shutdown message has to
forward the PNC bit vector as PN shutdown message on the
affected channels.

Note: An intermediate PNC coordinators has to forward the PNC
bit vector of received PN shutdown message as fast as possible
to ensure a nearly synchronized shutdown of the affected PNCs
across the PN topology.

Table 2.2: Terms used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of CAN Network Management
AUTOSAR_CP_SWS_CANNetworkManagement

[4] Specification of FlexRay Network Management
AUTOSAR_CP_SWS_FlexRayNetworkManagement

[5] Specification of UDP Network Management
AUTOSAR_CP_SWS_UDPNetworkManagement

[6] Specification of Network Management for SAE J1939
AUTOSAR_CP_SWS_SAEJ1939NetworkManagement

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on AUTOSAR Network Management
AUTOSAR_FO_RS_NetworkManagement

[9] Guide to Mode Management
AUTOSAR_CP_EXP_ModeManagementGuide

[10] Specification of Communication Manager
AUTOSAR_CP_SWS_COMManager

[11] Guide to BSW Distribution
AUTOSAR_CP_EXP_BSWDistributionGuide

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for the Generic Network Management Interface.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for the Generic Network Management Interface.

AUTSSAR

4

4.1

1.

Constraints and assumptions

Limitations

The Generic Network Management Interface can only be applied to communica-
tion systems that support broadcast communication and 'bus-sleep mode’.

. There is only one instance of the Generic Network Management Interface layer

for all NM-Clusters. This instance manages all channels where a NM is used.

. The Generic Network Management Interface shall only include the common

modes, definitions and return values of different bus specific NM layers.

. The Generic Network Management Interface shall only include the common

modes, definitions and return values of different bus specific NM layers.

If TOBASE-T1S is used in combination with PLCA media access, then Nm
Coordinator functionality are not supported.

Note: Consequently, the configuration parameter NmCoordinatorSupport-
Enabled shall be set to false.

NM Coordination functionality in combination with Partial Network functionality
and vice versa is not supported.

Figure 4.1 shows a typical example of the AUTOSAR NM stack.

«module» gl

:ComM

«module» gl

‘Nm

J1939Nm CanNm FrNm UdpNm

«mod... gl «m... gl «m... gl «module» gl

«module» gl «m gl «module» gl

Canlf Frif SoAd

Figure 4.1: Nm stack modules

AUTSSAR

4.2 Specific limitations of the current release

The following limitations reflect desired functionality that has yet not been implemented
or agreed upon, but might be added for future releases:

» No support of a back-up coordinator ECU (fault tolerance).

Also; explicit support for OSEK NM has been completely removed from this specifi-
cation as of AUTOSAR Release 4.0. OSEK NM can still be supported by extending
the CanNm or by introducing a Complex Driver (CDD) on <Bus>Nm level as a generic
BusNm. Supporting the OSEK NM through a CDD is not specified by AUTOSAR.

4.3 Applicability to automotive domains

The AUTOSAR NM Interface is generic and provides flexible configuration; it is inde-
pendent of the underlying communication system and can be applied to any automotive
domain under limitations provided above.

AUTSSAR

5 Dependencies to other modules

5.1 Interfaces to modules

Figure 5.1 shows the interfaces provided to and required from other modules in the
AUTOSAR BSW.

AUT<S

SAR

O

/ «realize»
Nm_SynchronizeMode
Q realize
Nm_ComControl

Q «realize»

Nm_Init

Q «realize»
Nm_PnLeamingRequest

Q «realize»

Nm
Q «realize»
Nm_RepeatMessagelndication

Q «realize»
Nm_NetworkStartindication «realize»
Nm_SynchronizationPoint

Q «realize».
Nm_PrepareBusSleepMode

Q X «realize»

Nm_MainFunction

Q «realize»

Nm_Types

Q «realize»

Nm_Extra

Q «realize»

Nm_RequestSynchronizedPncShutdown
. : . . «realize»
Nm_PncBitVectorTxConfirmation
<< — — —«configurable»- — — — —

<NmCarWakeUpCallout>

«module» El

Nm

Femmeer e ==

«optional» ComM_Nm_UpdateERA

F—me—rererer e >

«optional» ComM_Nm_UpdateEIRA

«optional» Com_SendSignal

F—————eer e e - >

«optional» Det_ReportError

ComM_Nm_PncLearningBitindication

«optional»

O

«derived_generic_interface»

«optional» R -
<Bus>Nm_DisableCommunication

O

Femmeeer e ==

" «derived_generic_interface»
«optional»

<Bus>Nm_EnableCommunication

O

Cemmo oo

" «derived_generic_interface»
«optional»

e —— — — — — — — — 3> (derived_generic_interface»
«optional»
<Bus>Nm_SetUserData

—— = ————————— — — — => (derived_generic_interface»
«optional»
<Bus>Nm_GetUserData

——————————————— >> ({erived_generic_interface»
«optional»
<Bus>Nm_GetPduData

O

e = =>

N «derived_generic_interface»
«optional»

<Bus>Nm_RepeatMessageRequest

O

—————————————— => derived generic_interface»
«optional» - - o
<Bus>Nm_GetNodeldentifier

O

Femeee e ==

«derived_generic_interface»
«optional»

<Bus>Nm_GetLocalNodeldentifier

O

=

. «derived_generic_interface»
«optional» - —

O

———— e = >

! «derived_generic_interface»
«optional» - -

<Bus>Nm_PnLeamingRequest

O

- = >

«derived_generic_interface»
«mandatory» = =

<Bus>Nm_PassiveStartUp

O

e >

«derived_generic_interface»
«mandatory»

<Bus>Nm_NetworkRequest

O

_______________>

«derived_generic_interface»
«mandatory» - =

<Bus>Nm_NetworkRelease

Fe—mmmm = — > «derived_generic_interface»

«mandatory»
<Bus>Nm_GetState

Figure 5.1: Nm’s interfaces to other modules

ComM_Nm_ForwardSynchronizedPncShutdown

<Bus>Nm_RequestSynchronizedPncShutdown

<Bus>Nm_CheckRemoteSleepindication

AUTSSAR

5.1.1 ComM, CanNm, J1939Nm, FrNm, UdpNm, generic bus specific NM layers
and CDD

The Generic Network Management Interface module (Nm) provides services to the
Communication Manager (ComM) and uses services of the bus specific Network Man-
agement modules:

» CAN Network Management ([3, CanNm)])

» FlexRay Network Management ([4, FrNm])

» Ethernet Network Management ([5, UdpNm]).
» J1939 Network Management ([6, J1939Nm]).

For Buses which do not need to provide Network Management Information on the
bus like for example a LIN-bus the Bus-Type can be configured as "local Nm". With
respect to callbacks, the Nm provides notification callbacks to the bus specific Network
Management modules and calls the notification callbacks provided by the ComM.

In addition to the official AUTOSAR NM-modules above, Nm also support generic bus
specific NM layers (<Bus>Nm). Any component which implements the required pro-
vided interfaces and uses the provided callback functions of Nm can be used as a bus
specific NM. See Chapter 7.5 for the prerequisites for a generic bus specific NM.

Rationale: Nm is specified to support generic bus specific NM layers by adding generic
lower layer modules as Complex Drivers. As such, Nm does not explicitly use the ser-
vices by the official AUTOSAR bus-NM modules (CanNm, FrNm and UdpNm), but
rather the services of the generic <Bus>Nm. The AUTOSAR bus-NMs are then explic-
itly supported since they implement the interfaces of <Bus>Nm.

The optional CarWakeUp-Functionality needs a Complex Driver which Coordinates Ba-
sic Software Mode Management.

5.1.2 Error handling modules

Nm reports development errors to the Default Error Tracer according to
[SWS_Nm_00232].

5.1.3 BSW Scheduler

In case of the NM Coordinator functionality and depending on the configuration, the
Nm will need cyclic invocation of it's main scheduling function in order to evaluate and
detect when timers have expired.

AUTSSAR

5.2 File structure

5.2.1 Code file structure

[SWS_Nm_00247]
Upstream requirements: SRS_BSW_00159, SRS_BSW_00345, SRS_BSW_00419

[The code file structure shall not be defined within this specification completely. At this
point it shall be pointed out that the code-file structure shall include the following files
named:

]

5.2.2 Header file structure

[SWS_Nm_00124]

Upstream requirements: SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00357, SRS_BSW _
00384

[The following header files shall be included by the Nm Interface module:

» Std_Types.h (for AUTOSAR standard types)
Note: Platform_Types.h (for platform specific types) is indirectly included via
AUTOSAR standard types.

« ComM_Nm.h (for Communication Manager callback functions)

* BswM_Nm.h (If the BswM is used for CarWakeup-functionalitiy)

]

[SWS_Nm_00243]
Upstream requirements: SRS_BSW_00171, SRS_BSW_00301, SRS_BSW_00384

[The Nm Interface shall optionally include the header file of Default Error Tracer (de-
pending on the pre-processor switch NmDevErrorDetect, see ECUC_Nm_00203).

» Det.h for service of the Default Error Tracer.

AUTSSAR

6 Requirements traceability

The following tables references the requirements specified in [7] as well as [8] and links

to the fulfillment of these.

Requirement

Description

Satisfied by

[RS_Nm_00044]

The Nm shall be applicable to
different types of communication
systems which are in the scope of
AUTOSAR and support a bus sleep
mode.

[SWS_Nm_00051] [SWS_Nm_00172]
[SWS_Nm_00274] [SWS_Nm_00276]
[SWS_Nm_00483]

[RS_Nm_00045]

Nm shall provide services to
coordinate shutdown of Nm-clusters
independently of each other

[SWS_Nm_00167] [SWS_Nm_00168]

[RS_Nm_00046]

It shall be possible to trigger the
startup of all Nodes at any Point in
Time

[SWS_Nm_00031] [SWS_Nm_00032]

[RS_Nm_00047]

Nm shall provide a service to request
to keep the bus awake and a service
to cancel this request.

[SWS_Nm_00002] [SWS_Nm_00003]
[SWS_Nm_00032] [SWS_Nm_00046]
[SWS_Nm_00171]

[RS_Nm_00048]

Nm shall put the communication
controller into sleep mode if there is
no bus communication

[SWS_Nm_00046]

[RS_Nm_00050]

The Nm shall provide the current
state of Nm

[SWS_Nm_00043] [SWS_Nm_00114]
[SWS_Nm_00275]

[RS_Nm_00051]

Nm shall inform application when Nm
state changes occur.

[SWS_Nm_00031] [SWS_Nm_00032]
[SWS_Nm_00046] [SWS_Nm_00114]
[SWS_Nm_00156] [SWS_Nm_00158]
[SWS_Nm_00159] [SWS_Nm_00161]
[SWS_Nm_00162] [SWS_Nm_00163]
[SWS_Nm_00230] [SWS_Nm_00249]
[SWS_Nm_00487] [SWS_Nm_00509]

[RS_Nm_00052]

The Nm interface shall signal to the
application that all other ECUs are
ready to sleep.

[SWS_Nm_00192]

[RS_Nm_00054]

There shall be a deterministic time
from the point where all nodes agree
to go to bus sleep to the point where
bus is switched off.

[SWS_Nm_00171]

[RS_Nm_00149]

The timing of Nm shall be
configurable.

[SWS_Nm_00175] [SWS_Nm_00281]
[SWS_Nm_00284]

[RS_Nm_00150]

Specific features of the Network
Management shall be configurable

[SWS_Nm_00055] [SWS_Nm_00134]
[SWS_Nm_00136] [SWS_Nm_00138]
[SWS_Nm_00140] [SWS_Nm_00150]
[SWS_Nm_00164] [SWS_Nm_00165]
[SWS_Nm_00166] [SWS_Nm_00241]
[SWS_Nm_00251] [SWS_Nm_00255]
[SWS_Nm_00273] [SWS_Nm_00277]
[SWS_Nm_00278] [SWS_Nm_00279]
[SWS_Nm_00290] [SWS_Nm_00502]

[RS_Nm_00151]

The Network Management algorithm
shall allow any node to integrate into
an already running Nm cluster

[SWS_Nm_00031] [SWS_Nm_00032]

[RS_Nm_00153]

The Network Management shall
optionally provide a possibility to
detect present nodes

[SWS_Nm_00038] [SWS_Nm_00230]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_Nm_00154]

The Network Management API shall
be independent from the
communication bus

[SWS_Nm_00006] [SWS_Nm_00012]
[SWS_Nm_00276]

[RS_Nm_02503]

The Nm API shall optionally give the
possibility to send user data

[SWS_Nm_00035] [SWS_Nm_00250]
[SWS_Nm_00252] [SWS_Nm_00285]

[RS_Nm_02504]

The Nm API shall optionally give the
possibility to get user data

[SWS_Nm_00036] [SWS_Nm_00291]

[RS_Nm_02506]

The Nm API shall give the possibility
to read the source node identifier of
the sender

[SWS_Nm_00039]

[RS_Nm_02508]

Every node shall have a node
identifier associated with it that is
unique in the Nm-cluster.

[SWS_Nm_00040]

[RS_Nm_02509]

The Nm interface shall signal to the
application that at least one ECU is
not ready to sleep anymore.

[SWS_Nm_00193]

[RS_Nm_02511]

It shall be possible to configure the
Network Management of a node so
that it does not contribute to the
cluster shutdown decision.

[SWS_Nm_00168] [SWS_Nm_00228]

[RS_Nm_02512]

The Nm shall give the possibility to
enable or disable the network
management related communication
configured for an active Nm node

[SWS_Nm_00033] [SWS_Nm_00034]

[RS_Nm_02513]

Nm shall provide functionality which
enables upper layers to control the
sleep mode.

[SWS_Nm_00006] [SWS_Nm_00012]
[SWS_Nm_00031] [SWS_Nm_00032]
[SWS_Nm_00033] [SWS_Nm_00042]
[SWS_Nm_00154] [SWS_Nm_00155]

[RS_Nm_02514]

It shall be possible to group networks
into Nm Coordination Clusters

[SWS_Nm_00001] [SWS_Nm_00168]

[RS_Nm_02515]

Nm shall offer a generic possibility to
run other Nms than the
AUTOSAR-Nms

[SWS_Nm_00051] [SWS_Nm_00119]
[SWS_Nm_00166] [SWS_Nm_00276]

[RS_Nm_02516]

All AUTOSAR Nm instances shall
support the Nm Coordinator
functionality including Bus
synchronization on demand

[SWS_Nm_00169] [SWS_Nm_00171]
[SWS_Nm_00173] [SWS_Nm_00174]
[SWS_Nm_00175] [SWS_Nm_00176]
[SWS_Nm_00177] [SWS_Nm_00194]
[SWS_Nm_00284] [SWS_Nm_00293]
[SWS_Nm_91002]

[RS_Nm_02517]

CanNm shall support Partial
Networking on CAN

[SWS_Nm_00302] [SWS_Nm_00308]
[SWS_Nm_00312] [SWS_Nm_00313]
[SWS_Nm_00317] [SWS_Nm_00318]
[SWS_Nm_00319] [SWS_Nm_00320]
[SWS_Nm_00321] [SWS_Nm_00322]
[SWS_Nm_00323] [SWS_Nm_00324]
[SWS_Nm_00325] [SWS_Nm_00326]
[SWS_Nm_00327] [SWS_Nm_00328]
[SWS_Nm_00329] [SWS_Nm_00330]
[SWS_Nm_00331] [SWS_Nm_00533]
[SWS_Nm_00534] [SWS_Nm_00535]
[SWS_Nm_00536] [SWS_Nm_00537]

[RS_Nm_02527]

Nm shall implement a filter algorithm
dropping all Nm messages that are

[SWS_Nm_00308] [SWS_Nm_00312]

not relevant for the ECU
\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_Nm_02535]

The Nm coordination shall support
the coordination of nested sub-buses

[SWS_Nm_00254] [SWS_Nm_00256]
[SWS_Nm_00257] [SWS_Nm_00259]
[SWS_Nm_00261] [SWS_Nm_00262]
[SWS_Nm_00267] [SWS_Nm_00271]
[SWS_Nm_00272] [SWS_Nm_00280]

[RS_Nm_02536]

Nm shall provide functionality to
start-up without requesting the
network.

[SWS_Nm_00031] [SWS_Nm_00119]
[SWS_Nm_00245] [SWS_Nm_00250]

[RS_Nm_02537]

The Nm Coordinator shall be able to
abort the coordinated shutdown

[SWS_Nm_00181] [SWS_Nm_00182]
[SWS_Nm_00183] [SWS_Nm_00185]
[SWS_Nm_00235] [SWS_Nm_00236]
[SWS_Nm_00267]

[RS_Nm_02544]

Nm Forwarding PN Shutdown
Message Indication

[SWS_Nm_91006] [SWS_Nm_91007]
[SWS_Nm_91008] [SWS_Nm_91009]

[RS_Nm_02547]

<Bus>Nm Propagation and
Evaluation for Partial Networking
Learning

[SWS_Nm_00501] [SWS_Nm_00504]
[SWS_Nm_91003]

[RS_Nm_02548]

<Bus>Nm PNC shutdown
Propagation and Evaluation

[SWS_Nm_00305]

[RS_Nm_02562]

Nm shall support channel-specific
storage of IRA

[SWS_Nm_00330]

[RS_Nm_02563]

Nm shall calculate the combined
partial network request status EIRA

[SWS_Nm_00302] [SWS_Nm_00313]
[SWS_Nm_00317] [SWS_Nm_00318]
[SWS_Nm_00319] [SWS_Nm_00320]
[SWS_Nm_00534] [SWS_Nm_00535]
[SWS_Nm_00536] [SWS_Nm_00537]

[RS_Nm_02564]

Nm shall calculate the status of the
external partial network requests
ERA

[SWS_Nm_00322] [SWS_Nm_00323]
[SWS_Nm_00324] [SWS_Nm_00325]
[SWS_Nm_00326] [SWS_Nm_00328]
[SWS_Nm_00329]

[RS_Nm_02565]

<Bus>Nm shall communicate EIRA
and ERA requests to the upper layers
using dedicated APIs

[SWS_Nm_00321] [SWS_Nm_00327]

[RS_Nm_02571]

Nm shall handle requests for
synchronized PNC shutdown

[SWS_Nm_00521] [SWS_Nm_00523]
[SWS_Nm_00524] [SWS_Nm_00525]
[SWS_Nm_00527] [SWS_Nm_00529]
[SWS_Nm_00530] [SWS_Nm_00532]
[SWS_Nm_00533] [SWS_Nm_91005]

[RS_Nm_02572]

<Bus>Nm shall transmit requests for
synchronized PNC shutdown as
NM-PDU

[SWS_Nm_91005]

[RS_Nm_02574]

Nm shall provide a confirmation API
to indicate the transmission state
PNC bit vector

[SWS_Nm_91010]

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Nm_00044]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Nm_00030]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_Nm_00247]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Nm_00243]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_Nm_00117] [SWS_Nm_00243]

[SRS_BSW_00310]

API naming convention

[SWS_Nm_00037] [SWS_Nm_91003]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Nm_00130] [SWS_Nm_00132]
[SWS_Nm_00286] [SWS_Nm_00287]
[SWS_Nm_00288] [SWS_Nm_00289]
[SWS_Nm_00488] [SWS_Nm_00489]
[SWS_Nm_00490] [SWS_Nm_00491]
[SWS_Nm_00492] [SWS_Nm_00493]
[SWS_Nm_00494] [SWS_Nm_00495]
[SWS_Nm_00496] [SWS_Nm_00497]
[SWS_Nm_00498] [SWS_Nm_00499]
[SWS_Nm_00500] [SWS_Nm_00503]
[SWS_Nm_00505] [SWS_Nm_00508]

[SRS_BSW_00327]

Error values naming convention

[SWS_Nm_00232]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

[SWS_Nm_00091]

[SRS_BSW_00333]

For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_Nm_00028]

[SRS_BSW_00337]

Classification of development errors

[SWS_Nm_00232]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Nm_00030]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Nm_00247]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Nm_00124]

[SRS_BSW_00353]

All integer type definitions of target
and compiler specific scope shall be
placed and organized in a single type
header

[SWS_Nm_00124]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_Nm_00124]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_Nm_00030]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_Nm_00112] [SWS_Nm_00114]
[SWS_Nm_00154] [SWS_Nm_00156]
[SWS_Nm_00159] [SWS_Nm_00162]
[SWS_Nm_00192] [SWS_Nm_00193]
[SWS_Nm_00194] [SWS_Nm_00230]
[SWS_Nm_00234] [SWS_Nm_00250]
[SWS_Nm_00254] [SWS_Nm_00272]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Nm_00130] [SWS_Nm_00132]
[SWS_Nm_00286] [SWS_Nm_00287]
[SWS_Nm_00288] [SWS_Nm_00289]
[SWS_Nm_00488] [SWS_Nm_00489]
[SWS_Nm_00490] [SWS_Nm_00491]
[SWS_Nm_00492] [SWS_Nm_00493]
[SWS_Nm_00494] [SWS_Nm_00495]
[SWS_Nm_00496] [SWS_Nm_00497]
[SWS_Nm_00498] [SWS_Nm_00499]
[SWS_Nm_00500] [SWS_Nm_00503]
[SWS_Nm_00505] [SWS_Nm_00508]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Nm_00020]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_Nm_00124] [SWS_Nm_00243]

[SRS_BSW_00385]

List possible error notifications

[SWS_Nm_00232] [SWS_Nm_91011]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Nm_00130] [SWS_Nm_00132]
[SWS_Nm_00232] [SWS_Nm_00286]
[SWS_Nm_00287] [SWS_Nm_00288]
[SWS_Nm_00289] [SWS_Nm_00488]
[SWS_Nm_00489] [SWS_Nm_00490]
[SWS_Nm_00491] [SWS_Nm_00492]
[SWS_Nm_00493] [SWS_Nm_00494]
[SWS_Nm_00495] [SWS_Nm_00496]
[SWS_Nm_00497] [SWS_Nm_00498]
[SWS_Nm_00499] [SWS_Nm_00500]
[SWS_Nm_00503] [SWS_Nm_00505]
[SWS_Nm_00508]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Nm_00030]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Nm_00044]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Nm_00030] [SWS_Nm_00282]
[SWS_Nm_00283]

[SRS_BSW_00419]

If a pre-compile time configuration
parameter is implemented as const
it should be placed into a separate
c-file

[SWS_Nm_00247]

[SRS_BSW_00424]

BSW module main processing
functions shall not be allowed to enter
a wait state

[SWS_Nm_00118]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_Nm_00118]

[SRS_BSW_00450]

A Main function of a un-initialized
module shall return immediately

[SWS_Nm_00121]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_Nm_91011]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00459]

It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_Nm_00037] [SWS_Nm_00484]
[SWS_Nm_00485] [SWS_Nm_00486]
[SWS_Nm_91003]

[SRS_BSW_00460]

Reentrancy Levels

[SWS_Nm_00037] [SWS_Nm_91003]

[SRS_BSW_00461]

Modules called by generic modules
shall satisfy all interfaces requested
by the generic module

[SWS_Nm_00037] [SWS_Nm_91003]

[SRS_BSW_00478]

Timing limits of main functions

[SWS_Nm_00292]

[SRS_BSW_00482]

Get version information function shall
follow a naming rule

[SWS_Nm_00044]

[SRS_BSW_00484]

Input parameters of scalar and enum
types shall be passed as a value.

[SWS_Nm_00037] [SWS_Nm_91003]

[SRS_ModeMgm_
09250]

PNC activation requests shall be
exchanged with the Network
Management via a PNC bit vector

[SWS_Nm_00317] [SWS_Nm_00321]
[SWS_Nm_00327] [SWS_Nm_91006]
[SWS_Nm_91008] [SWS_Nm_91010]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

The NM Interface functionality consists of three parts:

» The Base functionality necessary to run, together with the bus specific NM mod-
ules, AUTOSAR NM on an ECU.

» The NM Coordinator functionality used by gateway ECUs to synchronously shut
down one ore more busses.

» The Partial Network functionality is devided in 2 sub parts:

— The handling of PNC requests (filtering, aggregation and monitoring) is used
by any ECU which is member of an Partial Network.

— The PNC timer handling is used by any ECU which is member of an Partial
Network.

— The synchronized PNC shutdown functionality used by PNC gateway ECUs
in the role of a top-level PNC coordinator or intermediate PNC coordinator
to synchronously shutdown particular PNCs across the PN topology.

7.1 Base functionality

The Generic Network Management Interface module (Nm) shall act as a bus-
independent adaptation layer between the bus-specific Network Management modules
(such as CanNm, J1939Nm, FrNm and UdpNm) and the Communication Manager
module (ComM).

Note: The Nm does not provide interface functions beyond those specified in this
document. The Nm will provide an interface to the ComM, that does not contain specific
knowledge about the type of the underlying busses, and that nevertheless is sufficient
to accomplish the necessary network management functions. The algorithm handled
by the Nm is bus independent.

Note: It is also required that other service layer modules access network management
functions exclusively via Nm and that no bypasses to bus specific NM functions exist

[SWS_Nm_00006]
Upstream requirements: RS_Nm_00154, RS_Nm_02513
[The Nm shall convert generic function calls from the ComM to bus specific functions
of the bus specific NM layer. |
[SWS_Nm_00012]
Upstream requirements: RS_Nm_00154, RS_Nm_02513

[The Nm shall convert callback functions called by the bus specific NM layers to
generic callbacks to the ComM. |

AUTSSAR

[SWS_Nm_00091]
Upstream requirements: SRS_BSW_00330

[The Base functionality of Nm may be implemented completely or partly using
macros. |

7.2 NM Coordinator functionality

NM Coordinator functionality is a functionality of Nm that uses a coordination al-
gorithm to coordinate the shutdown of NM on all, or one or more independent subsets
of the busses that the ECU is connected to.

Dependent on configuration, the coordination algorithm can be configured to
achieve different levels of synchronization of the shutdown.

An ECU using an NM that actively performs the NM Coordinator functionality is com-
monly referred to as an NM Coordinator. However, in this specification this term is
synonymous with the NM Coordinator functionality when used in requirements.

Note: Consider that certain bus types have different nomenclature on the terms Net -
work, Channel, Cluster.

[SWS_Nm_00292]

Upstream requirements: SRS_BSW_00478
[If the NM Coordinator functionality is configured, the configuration parameter NmCy -
cletimeMainFunction shall be configured (see [SWS_Nm_00118]).]

Note: The NM Coordinator may use this to calculate the timeout status of internal
timers.

7.2.1 Applicability of the NM Coordinator functionality

[SWS_Nm_00001]
Upstream requirements: RS_Nm_02514

[The coordination algorithm shall be able to handle a topology where several
coordinated busses are connected to one NM Coordinator. |

[SWS_Nm_00256]
Upstream requirements: RS_Nm_02535

[The NM-Coordinator shall support two or more NM-Coordinators connected to the
same NM Cluster.|

AUTSSAR

[SWS_Nm_00051]
Upstream requirements: RS_Nm_00044, RS_Nm_02515

[The NM Coordinator shall be able to coordinate busses running the official
AUTOSAR bus specific NMs as well as all other generic bus NMs implementing the
required functionality, callbacks and interfaces. |

Note: The required functionality, callbacks and interfaces are specified in Chapter
7.5.2. Coordinator Support for J1939Nm is not needed as the J1939Nm does not
support shutdown handling.

[SWS_Nm_00055]
Upstream requirements: RS_Nm_00150

[The NM Interface configuration shall provide the parameter NmCoordinatorSup-
portEnabled to define if the support of the NM Coordinator functionality is present
or not. |

[SWS_Nm_00167]
Upstream requirements: RS_Nm_00045

[It shall be possible to configure multiple NM coordination clusters that shall be
coordinated independently. |

[SWS_Nm_00168]
Upstream requirements: RS_Nm_00045, RS_Nm_02511, RS_Nm_02514

[Each bus shall belong to zero or one NM coordination cluster. |

Rationale: The configuration parameter NmCoordClusterIndex is used for speci-
fying to which coordination cluster a bus belongs. If this parameter is undefined for a
channel, the corresponding bus does not belong to an NM coordination cluster.

[SWS_Nm_00169]
Upstream requirements: RS_Nm_02516

[Shutdown shall only be coordinated on the presently awake networks of a coordina-
tion cluster. Networks that are already in "bus-sleep mode* shall still be monitored but
not coordinated. |

Rationale: The NM Coordinator does not require all busses in a coordination clus-
ter to be awake, working with subsets of the coordination cluster resp. partial networks,
to perform coordinated shutdown. It always monitors the shutdown initiation con-
ditions and when these are met, it performs a coordinated shutdown of all the presently
awake buses in the coordination cluster.

Note: It is outside the scope of the Nm to provide synchronized wakeup for coordinated
busses. It is up to the application (-> vehicle mode management) to wake up the
required resp. all channels if one channel wake up occurs.

AUTSSAR

7.2.2 Keeping coordinated busses alive

[SWS_Nm_00002]
Upstream requirements: RS_Nm_00047

[As long as the node implementing the NM Coordinator is not ready to go to sleep
on at least one of the busses in a coordination cluster (i.e. that it has actively requested
the network), the N\M Coordinator shall ensure that the network is requested on all
currently active busses in that coordination cluster. |

[SWS_Nm_00003]
Upstream requirements: RS_Nm_00047

[As long as at least one bus in the coordination cluster is not ready to sleep (i.e.
because another node than the NM Coordinator is requesting that bus), the NM
Coordinator shall still ensure that the network is requested on all currently active
busses in that coordination cluster even if the local ECU itself is ready to go to sleep
on all busses of that coordination cluster. |

Rationale: The bus specific NMs will indicate to Nm if the bus is ready to go to
sleep or not by calling the callbacks Nm_RemoteSleepIndication and Nm_Re-
moteSleepCancellation. The local ECU will indicate if it is ready to go to sleep or
not on a network using the API functions Nm_NetworkRelease and Nm_NetworkRe—
quest.

Rationale: The Nm requests the network on a bus by calling the bus specific NM
function <Bus>Nm_NetworkRequest.

Since all AUTOSAR bus specific NMs are built on the principle that one AUTOSAR
node can keep the bus alive as long as it keeps the network requested, the NM
Coordinator will keep all busses of the coordination cluster awake by requesting
the network for the bus specific NMs.

The two requirements [SWS_Nm_00002] and [SWS_Nm_00003] above can be sum-
marized as follows: as long as at least one node (including the node implementing the
NM Coordinator) keeps any of the busses in the coordination cluster awake, the NM
Coordinator shall keep all busses of that coordination cluster awake.

[SWS_Nm_00228]

Upstream requirements: RS_Nm_02511

[If a bus of a coordination cluster has the parameter NmChannelSleepMaster setto
TRUE, the "M Coordinator shall consider that bus ready to sleep at all times and
shall not await an invocation of Nm_RemoteSleepIndication from that bus before
starting shutdown of that network. |

Rationale: This property shall be set for all bus specific NMs where the sleep of the
bus can be absolutely decided by the local node only and that no other nodes of that
bus can oppose that decision. An example of such a network is LIN where the local

AUTSSAR

AUTOSAR ECU will always be the LIN bus master and can always solely decide when
the network shall go to sleep.

7.2.3 Shutdown of coordinated busses

The level of synchronization achievable is dependent on the configuration. See Chap-
ter 7.2.5, Figure 7.1 shows an overview of the coordination algorithm. As de-
scribed in Section 7.2.1, the coordination algorithmand coordinated shut-
down shall be applied independently per NM coordination cluster.

OﬂG and
node itself

ready for sleep?,

e N

Coordinated shutdown

start all
shutdown
delay timers

wait vor valid

synchronization
indication

(optional step)

wait for
next timer
to expire

Start

Wait for all Networks to Call
@ go to sleep and calling all timers expired? <Bus>Nm_RequestBusSynchronization|

Nm_BusSleepMode followed by
<Bus>Nm_NetworkRelease of
Network related to timer

- J
Figure 7.1: Overview of the coordination algorithm with the coordinated shutdown as
part of it

Note: There is no limitation where the actions performed by the coordination al-
gorithm shall take place.

This can be done either by the Nm main function (Nm_MainFunction) or module
indication / callbacks.

[SWS_Nm_00171]
Upstream requirements: RS_Nm_00047, RS_Nm_02516, RS_Nm_00054

[When all networks of a coordination cluster are either ready to go to sleep or already
in "bus-sleep mode“ the NM Coordinator shall start the coordinated shutdown
on all awake networks. The NM Coordinator shall evaluate continuously if the
coordinated shutdown can be started. |

Rationale: Evaluation of shutdown conditions can be also done in other API calls then
the main function. The evaluation can be segmented then to check only the specific
conditions affected by the API calls there, hence it is not necessary to re-evaluate all
conditions in every main processing period and every API call.

AUTSSAR

[SWS_Nm_00172]
Upstream requirements: RS_Nm_00044

[If the configuration parameter NmSynchronizingNetwork is TRUE for any of the
busses in a coordination cluster, the coordination shutdown shall be delayed until a net-
work that is configured as synchronizing network for this coordination cluster invoked
Nm_SynchronizationPoint.|

[SWS_Nm_00293]
Upstream requirements: RS_Nm_02516

[If on a coordinated network the coordinator detects a mode change to NM_MODE_ -
SYNCHRONIZE,NM_MODE_PREPARE_BUS_SLEEP or NM_MODE_BUS_SLEEP AND the
coordinated cluster this network belongs to has not started the shutdown process AND
if there is no internal network mode request for that channel by ComM, the coordinator
shall treat this network as remote sleep and shall call <Bus>Nm_NetworkRelease for
this network. If additionally for this network the configuration parameter NmSynchro-
nizingNetwork is TRUE then the coordinator shall not wait for Nm_Synchroniza-
tionPoint on this network. |

Rationale: If one or more of the networks in the NM coordination clusters is cyclic
(such as FlexRay), a higher level of synchronized shutdown will be achieved if the
algorithm is synchronized with one of the included cyclic networks. If configured so, the
shutdown timers for all coordinated networks will not be started until the synchronizing
network has called the Nm_SynchronizationPoint.

Rationale: Although only one network per NM coordination cluster should be config-
ured to indicate synchronization points, this will allow the NM Coordinator functionality
to filter out all synchronization indications except those that is originate from the net-
work that is configured to be the synchronizing network of each coordination cluster.

[SWS_Nm_00173]

Upstream requirements: RS_Nm_02516

[If not all conditions to start the coordinated shutdown have been met, or if the
coordinated shutdown has already been started (but not aborted), calls to Nm_
SynchronizationPoint shall be ignored.]

Rationale: In some cases, non-synchronizing networks can take longer time to go to
sleep. If this happens, the coordinated shutdown will be started based on one
synchronization indication, but as the synchronizing network will not be released di-
rectly it will continue to invoke (several) more synchronization indications which can
safely be ignored.

[SWS_Nm_00174]

Upstream requirements: RS_Nm_02516

[If the configuration parameter NmSynchronizingNetwork is FALSE for all of the
presently awake busses in a coordination cluster, the timers shall be started after all

AUTSSAR

shutdown conditions have been met, without waiting for a call to Nm_Synchroniza-
tionPoint(). (see also [SWS_Nm_00172]).|

[SWS_Nm_00175]
Upstream requirements: RS_Nm_00149, RS_Nm_02516

[When the coordinated shutdown is started, a shutdown delay timer shall be ac-
tivated for each currently awake, actively coordinated channel in the coordination clus-
ter. Each timer shall be set to NmGlobalCoordinatorTime. In case NmBusType IS
not set to NM_BUSNM_LOCALNM additionally the shutdown time of the specific channel
TSHUTDOWN_CHANNEL shall be subtracted. |

[SWS Nm_00284]
Upstream requirements: RS_Nm_00149, RS _Nm_02516

[If the NmGlobalCoordinatorTime is zero the shutdown delay timer of all channels
shall also be zero. |

Note: The TSHUTDOWN_CHANNEL can be calculated as described in Chapter 7.2.5
or with following formulas:

CanNm: Ready Sleep Time + Prepare BusSleep Time

FrNm: Ready Sleep Time, e.g.: (FrNmReadySleepCnt+1) * FrNmRepetitionCycle *
"Duration of one Flexray Cycle®

GenericNm: NmGenericBusNmShutdownTime

[SWS_Nm_00176]
Upstream requirements: RS_Nm_02516

[When a shutdown timer expires for a network, Nm shall in case
Nm_BusNmType IS not set to NM_BUSNM_LOCALNM release the network
by calling the <Bus>Nm_RequestBusSynchronization followed by
<Bus>Nm_NetworkRelease. In case BusNmType is set to NM_BUSNM_LOCALNM
Nm shall inform ComM about shutdown by calling ComM_Nm_BusSleepMode. |

Note: In the AUTOSAR Classic Platform, CanNm_PassiveStartUp,
J1939Nm_PassiveStartUp, FrNm_PassiveStartUp and UdpNm_PassiveStartUp
have been specified as the predefined interfaces corresponding to
<Bus>Nm_PassiveStartUp.

[SWS_Nm_00177]
Upstream requirements: RS_Nm_02516

[Nm shall keep track of all networks that have been released but have not yet reported
"bus-sleep mode*. If the shutdown is aborted, these networks shall still be considered
active networks. |

Note: See Section Chapter 7.3.3.

Definition: When all networks have been released and all networks are in "bus-sleep
mode*, the coordinated shutdown is completed.

AUTSSAR

7.2.4 Coordination of nested sub-busses

To support the coordination of nested sub-busses the Nm-Coordinators need be con-
figured to build up a coordination hierarchy. The top most NM Coordinator has only
actively coordinated channels (NmActiveCoordinator == TRUE) per coordination
cluster. This NM Coordinator has to initiate the coordinated shutdown for all
other coordinators. An nested NM Coordinator receive his shutdown indication in-
formation from his passively configured channel (NmActiveCoordinator == FALSE)
and provides this information to following NM Coordinators via his actively coordinated
channels (NmActiveCoordinator == TRUE).

The Figure 7.2 will explain this as an example.

Network 1

Network 2

Network 3

Network 4

Figure 7.2: Use Case Nested Gateways

The exemplary topology shown in Figure 7.2 has the following coordination approach.
GW 1 have configured the channel onto Network 1 and Network 2 as actively coordi-
nating channels. Where GW 2 is configured with Network 2 connection as passively
coordinated channel, but with actively coordinated channel on Network 3. GW 3 than
needs to be configured on Network 3 as passively coordinated channel but as actively
coordinated channel for his connection to the Network 4.

AUTSSAR

[SWS_Nm_00280]
Upstream requirements: RS_Nm_02535

[The functionality of coordinating nested sub busses shall be available if the NmCoor-
dinatorSyncSupport parameter is set to TRUE. |

Note: All requirements within this chapter are valid “per Nm Coordination Clus-—
ter” (see [SWS_Nm_00167]).

The NmActiveCoordinator parameter indicates, if an NM Coordinator behaves
on this channel in actively manner

(Actively coordinated channel) [NmActiveCoordinator = TRUE]

or behave in a passively manner

(Passively coordinated channel) [NmActiveCoordinator = FALSE].

[SWS_Nm_00257]
Upstream requirements: RS_Nm_02535

[On its passively coordinated channels a NM-Coordinator shall send Nm messages
only if the node has a network management request pending or a connected network
which is coordinated actively by that N\M Coordinator is not ready to sleep. |

Rationale: This prevents that 2 N\M Coordinators at the same channel, send NM
messages when they are ready to sleep and therefore keep the bus awake. Without
this mechanism it would not be possible to detect if there is at least one other node
active.

Note: The described behavior in this requirement extends [SWS_Nm_00003] for
passively coordinated channels.

[SWS_Nm_00259]
Upstream requirements: RS_Nm_02535

[The NM Coordinator shall set the NMcoordinatorSleepReady bit in the NM mes-
sage via <Bus>Nm_SetSleepReadyBit to the value 1 at his actively coordinated
channels,

that have their NmBusType not configured to NM_BUSNM_LOCALNM,

IF

coordinated shutdown has started (according to [SWS_Nm_00171],
[SWS_Nm_00172], [SWS_Nm_00174])

AND

If all channels of this N\M Coordination cluster are configured as NmActiveCo-
ordinator == TRUE. |

Note: For Position of Coordinator Bits in CBV see according <Bus>Nm specifications.

Note: This applies to the top most coordinator (no passively coordinated channel).
Nodes which contain a passively coordinated channel will set the bit according to the
requirement in [SWS_Nm_00261].

AUTSSAR

Rationale: Nodes which contain passively coordinated channels do not need a syn-
chronization point as they are synchronized by the sleep ready bit of their active
coordinator already.

[SWS_Nm_00261]
Upstream requirements: RS_Nm_02535

[If Nm_CoordReadyToSleepIndication is received on a passively coordinated
channel the NmCoordinator shall set the NMCoordinatorSleepReady bit to SET (1)
via APl call to <Bus>Nm_SetSleepReadyBit on all actively coordinated channels. |

[SWS_Nm_00271]
Upstream requirements: RS_Nm_02535

[If Nm_CoordReadyToSleepCancellation is received on a passively coordinated
channel the NmCoordinator shall set the NMCoordinatorSleepReady bit to UNSET (0)
via APl call to <Bus>Nm_SetSleepReadyBit on all actively coordinated channels. |

Note: On its passively coordinated channel a NM Coordinator would not set the
Sleep Ready bit ever (via <Bus>Nm function call) but forward a received status change
of Sleep ready bit onto its actively coordinated channels.

Note: On its actively coordinated channel(s) a NM Coordinator a call of Nm_Coor-
dReadyToSleepIndication and Nm_CoordReadyToSleepCancellationis not
expected.

[SWS_Nm_00262]

Upstream requirements: RS_Nm_02535
[NM Coordinators with passively coordinated channels shall start coordinated
shutdown after the Sleep Ready Bit with SET status has been requested. |

[SWS_Nm_00281]
Upstream requirements: RS_Nm_00149

[NmGlobalCoordinatorTime shall be set at least to the maximum time needed to
shut down all Networks coordinated. |

Note:This includes all nested connections.(for example see Figure 7.3)

AUTSSAR

[ready to shutdown on all channels)

{set SleepReady bit, start Shutdown}

Metwark silent

la st M vote
‘7 Shutdown Delay Time 7
Sl Natwark] Shutdown MM-Netwark
actively coord. chnl {set
SleepReady bit,
start Shutdown} _ last N vote
7 Shutdown Delay Time —
GWy1 NetwaorkZ2 e e ———y

actively coord. chnl .
[receive

SleepReady bit]
{forward to actively Chnl}

Shutd own MMM etwork

/

GW2 Metwork?2 i o e e ———p

passively coord. chnl

{set
SleepReady bit,
start Shutdown}

last MM vote

Shutdown Delay Time
7 _—

GYY2 Metwark3 —— e ———— ————— — i — - ,___*
actively coord. chnl

[receive

SleepR eady bit] Shutdown N MNetwork

{forward to actively Chnl} \
GWSINetWQrkS ———--ﬁ -- ———*
passively coord. chnl {sst

SleepReady bit,

start Shutd own}

last Nmvote

GWW3 Metwarkd I Z _____ g _______________ S b o TN i o e s s e s s >

actively coord. chnl

Shutdown Delay Time

NrmGlobalCoordinatorTime

Figure 7.3: Shutdown with Nm_GlobalCoordinatorTime

[SWS_Nm_00267]

Upstream requirements: RS_Nm_02535, RS_Nm_02537

[NM Coordinator shall set the NMCoordinatorSleepReady bit to UNSET (0) via
APl call to <Bus>Nm_SetSleepReadyBit on all actively coordinated channels if the
coordinated shutdown has been aborted for any reason. |

Note: Details about aborted shutdown can be found in Chapter 7.3.3.

7.2.5 Calculation of shutdown timers

The coordination algorithm is quite flexible since the level of synchronization
achievable depends on the configuration of switches and timers. Depending on which
event or point in time that is the goal to synchronize on, the configuration shall be

AUTSSAR

done differently. This Chapter contains guide on how to achieve three different levels
of synchronization. It is up to the configuration to follow these guidelines or to achieve
a separate order of synchronization by choosing his/her own particular configuration.
Therefore, this Section will not contain any requirement, only recommendations.

Note that absolute synchronization will never be possible to achieve. The jitter factors
that determine the preciseness of the synchronization involve the processing period
of the Nm, the exactness of the timers and the busload for non-deterministic busses.
Correctly configured, the Use Cases described below will give the best possible syn-
chronization that is achievable considering these circumstances.

Previous version of the NM Coordinator included the possibility for the coordinator
algorithm to delay the start of the coordinated shutdown "a number of rounds®.
This specific delay has been removed but a similar behavior can still be obtained
by increasing all shutdown timers (configuration parameter NmGlobalCoordinator—
Time). Special care must be taken when cyclic networks (such as FlexRay) are used
when this increased delay time should be quantified to the synchronization indication
periodicity of those networks.

7.2.6 Synchronization Use Case 1 - Synchronous command

This Use Case focuses on how to synchronize the point in time where the different
networks are released.

This results in the fastest possible total shutdown of all networks, but with the downside
that the networks will not enter "bus-sleep mode* at the same time.

Rationale: One example of this Use Case is when several CAN networks shall be kept
alive as long as any CAN-node is requesting one of the networks; but when all nodes
are ready to go to sleep it does not matter if "bus-sleep mode* is entered at the same
time for the different networks.

Since the Use Case does not consider any cyclic behavior of the networks, the syn-
chronization parameter NmSynchronizingNetwork shall be set to FALSE for all net-
works and no bus specific NM shall be configured to invoke the Nm_Synchroniza-
tionPoint callback.

To achieve the fastest possible shutdown, the shutdown timer parameter NmGlobal-
CoordinatorTime needs to be setto 0.0.

7.2.7 Synchronization Use Case 2 - Synchronous initiation

This Use Case is an extension of Use Case 1, but here consideration is taken to the
fact that for some networks the request to release the network will only be acted upon
at specific points in time. This Use Case will command a simultaneous shutdown like
in Use Case 1, but will wait until a point in time suitable for the synchronizing network.

AUTSSAR

Rationale: One example of this Use Case is when one FlexRay network and several
CAN networks where the time when all networks are active shall be maximized, but the
networks shall still be put to sleep as fast as possible.

Since this Use Case shall consider the cyclic behavior of a selected network, one of
the networks shall have its synchronization parameter NmSynchronizingNetwork
set to TRUE while the other networks shall have this parameter set to FALSE. The
synchronizing network’s bus specific NM shall also be configured to invoke the Nm__
SynchronizationPoint callback at suitable points in time where the shutdown shall
be initiated.

To achieve the fastest possible shutdown, the shutdown timer parameter NmGlobal-
CoordinatorTime needs to be setto 0.0.

7.2.8 Synchronization Use Case 3 - Synchronous network sleep

This Use Case will focus on synchronizing the point in time where the different net-
works enters "bus-sleep mode*. It will wait for indication from a synchronizing network,
and then delay the network releases of all networks based on timing values so that the
transition from "network mode*® (or "prepare bus-sleep mode*) into “bus-sleep mode* is
as synchronized as possible.

Rationale: One example of this Use Case is when one FlexRay network and several
CAN networks shall stop communicating at the same time.

Since this Use Case shall consider the cyclic behavior of a selected network, of the
networks - preferably the cyclic one - shall have its synchronization parameter NmSyn—
chronizingNetwork setto TRUE while the other networks shall have this parameter
set to FALSE. The synchronizing network’s bus specific NM shall also be configured
to invoke the Nm_SynchronizationPoint callback at suitable points in time where
the shutdown shall be initiated.

To calculate the shutdown timer TSHUTDOWN_CHANNEL of each network, specific
knowledge of each networks timing behavior must be obtained.

For all networks, TSHUTDOWN_CHANNEL must be calculated, this is the minimum
time it will take the network to enter "bus-sleep mode“. For non-cyclic networks (such
as CAN), the time shall be measured from the point in time when the network is re-
leased until it enters "bus-sleep mode*. For cyclic networks (such as FlexRay) the time
shall also include the full range from the synchronization indication made just before
the network is released. For Generic BusNms the time is given by the configuration
parameter NmGenericBusNmShutdownTime.

For the synchronizing network, TSYNCHRONIZATION_INDICATION must be deter-
mined. This is the time between any two consecutive calls made by that bus specific
NM to Nm_SynchronizationPoint.

AUTSSAR

The NmGlobalCoordinatorTime shall be the total time that is needed for the co-
ordination algorithm. This includes the shutdown time of nested sub-busses.
Start with setting NmGlobalCoordinatorTime to the same value as TSHUT-
DOWN_CHANNEL for the synchronizing network. If the TSHUTDOWN_CHANNEL
for any other network is greater than NmGlobalCoordinatorTime, extend NmGlob—
alCoordinatorTime with TSYNCHRONIZATION_INDICATION repeatedly until Nm—
GlobalCoordinatorTime is equal to, or larger than any TSHUTDOWN_CHANNEL.

The shutdown delay timer for each network shall be calculated as NmGlobalCoordi-
natorTime - TSHUTDOWN_CHANNEL for that network.

For the cyclic networks this parameter must then be increased slightly in order to make
sure that the network release will occur between to synchronization indications, slightly
after Nm_SynchronizationPoint (would) have been called. The amount of time to
extend the timer depends on the implementation and configuration of the bus specific
NM but should be far smaller than TSYNCHRONIZATION_INDICATION.

7.2.8.1 Examples

In the first case (Figure 7.4), the synchronizing network holds the largest TSHUT-
DOWN_CHANNEL, which will therefore equal the NmGlobalCoordinatorTime. For
the synchronizing network, the shutdown delay timer will be NmGlobalCoordina-
torTime - TSHUTDOWN_CHANNEL, which is zero, but then a small amount of time
is added to make sure that the Nm will wait to release the network between the two
synchronization points.

For the Non-cyclic network, the shutdown delay timer will simply be NmGlobalCoor-
dinatorTime - TSHUTDOWN_CHANNEL.

TNmGlobalCoordinatoTime
TSYNCHRONIZATION_INDICATION TSHUTDOWN_CHANNEL
Synchronizing | Bus-sleep
cyclic network - mode
Shutdown Timer |
Non-cyclic Prepare bus-sleep WENGREEE
network) mode mode
etwo Shutdown Timer P
[
Synchronization TNmGenericBusNmShuldownTime

indication

Figure 7.4: Timing example one

In the second case (Figure 7.5), the non-cyclic network takes very long time
to shut down and therefore holds the largest TSHUTDOWN_CHANNEL. The

AUTSSAR

NmGlobalCoordinatorTime has now been obtained by taking the synchroniz-
ing network’s (slightly shorter) TSHUTDOWN_CHANNEL adding TSYNCHRONIZA-
TION_INDICATION once to this value.

For the synchronizing network, the shutdown timer will be NmGlobalCoordinator-
Time - TSHUTDOWN_CHANNEL, with a small amount of time added to make sure
that the Nm will wait to release the network between the two synchronization points.
For the Non-cyclic network, the shutdown timer will simply be NmGlobalCoordina-
torTime - TSHUTDOWN_CHANNEL.

TNmGlobalCoordinataTime

TsYNCHRONIZATION_INDICATION TSHUTDOWN CHANNEL

Synchronizing |
cyclic network - |

Bus-sleep
’
Shutdown Timer
Non-cycli g
on-cyclic | Prepare bus-sleep mode 2
network mode
_’

Shutdown _
Timer

ThmGenericBusNmShutdownTime

Synchronization
indication

Figure 7.5: Timing example two

7.3 Wakeup and abortion of the coordinated shutdown

Nm is not responsible for normal wakeup of the node or the networks this will be done
by the COM Manager (ComM).

7.3.1 External network wakeup

For both Basic functionality and NM Coordination functionality, Nm will for-
ward wakeup indications from the networks (indicated by the bus specific NMs
calling the callback Nm_NetworkStartIndication) to the ComM by calling
ComM_Nm_NetworkStartIndication(). ComM will then call Nm_Passives-
tartUp, which will be forwarded by Nm to the corresponding interface of the bus
specific NM.

Processing of wake-up events for channels in bus-sleep (related to transceiver and
controller state) will be handled by EcuM and ComM. No interaction of the Nm apply
here. Nm will get the network request from ComM as statet above, depending on the
wake-up validation and the respective communication needs.

AUTSSAR

[SWS_Nm_00245]
Upstream requirements: RS_Nm_02536

[If the ComM calls Nm_PassiveStartUp() for a network that is part of a coordinated
cluster of networks, the Nm coordinator functionality shall treat this call as if the ComM
had called Nm_NetworkRequest(). In case BusNmType is not set to NM_BUSNM_ -
LoCALNM the Nm shall forward a call of <Bus>Nm_NetworkRequest to the lower layer
and accordingly, the network shall be counted as requested by the NM coordinator. |

Note: In other words: Calls of Nm_PassiveStartUp for networks that are part of
a cluster of coordinated networks shall be "translated" to / handled as calls of Nm_
NetworkRequest.

7.3.2 Coordinated wakeup

Depending on the configuration, ComM can start multiple networks based on the indi-
cation from one network. It is recommended to configure the ComM to automatically
start all network of a NM Coordination Cluster if one of the networks indicates
network start, but this is not always necessary. Since the wakeup of network is outside
the scope of Nm, this is independent of if the NM Coordination functionality is used or
not.

7.3.3 Abortion of the coordinated shutdown

If the NM Coordination functionality is activated and coordinated shutdown has
been initiated on an NM Coordination Cluster, dependent on the coordinator al-
gorithm configuration it might take time before each included bus is actually released.
If any node on one of the coordinated buses changes its state and starts requesting
the network before all networks are released, race conditions can occur in the coor-
dination algorithm. This can happen in four ways:

1. A node on a network that has not yet been released and is still in 'network mode’
starts requesting the network again. This will be detected by the bus specific NM
which will inform Nm by calling Nm_RemoteSleepCancellation

2. A node on a network that has already been released and has indicated "prepare
bus-sleep mode* but not "bus-sleep mode* starts requesting the network again. This
will be detected by the bus specific NM that will automatically change state to
"network mode* and inform Nm by calling Nm_NetworkMode.

3. The ComM requests the network on any of the networks in the NM Coordination
Cluster.

4. The coordinator which actively coordinates this network sends Nm message with
cleared Ready-Sleep Bit. This will be detected by the Bus spec NM (only on
passively coordinated channels) and forwarded to the NM by calling Nm_Coor-—
dReadyToSleepCancellation.

AUTSSAR

The generic approach is to abort the shutdown and start requesting the networks again.
However, networks that have already gone into "bus-sleep mode* shall not be automat-
ically woken up; this must be requested explicitly by ComM.

[SWS_Nm_00181]
Upstream requirements: RS_Nm_02537

[The coordinated shutdown shall be aborted if any network in that NM Coordi-
nation Cluster,

* indicates Nm_RemoteSleepCancellation Or
* indicates Nm_NetworkMode of
* indicates Nm_CoordReadyToSleepCancellation

» or the ComM request one of the networks with Nm_NetworkRequestor Nm_
PassiveStartUp.

]

Note: Nm_NetworkStartIndication is not a trigger to abort the coordinated
shutdown, as this is handled by the upper layer.

[SWS_Nm_00182]
Upstream requirements: RS_Nm_02537

[If the coordinated shutdown is aborted, NM Coordinator shall call
ComM_Nm_RestartIndication for all networks that already indicated "bus sleep®. |

Rationale: Since Nm cannot take decision to wake networks on its own, this must be
decided by ComM just as in the (external) wakeup case.

[SWS Nm_00183]
Upstream requirements: RS_Nm_02537

[If the coordinated shutdown is aborted, NM Coordinator shall in case Bus-
NmType is not set NM_BUSNM_LOCALNM request the network from the <Bus>Nm’s
for the networks that have not indicated "bus sleep®. In case BusNmType is set
to NM_BUSNM_LOCALNM Nm shall inform ComM about network startup by calling
ComM_Nm_NetworkMode. |

[SWS_Nm_00185]
Upstream requirements: RS_Nm_02537

[If the coordination algorithm has been aborted, all conditions that guard the
initiation of the coordinated shutdown shall be evaluated again. |

Rationale: When a coordinated shutdown has been aborted, in most cases there
are now networks in that NM Coordination Cluster that do not longer indicate
that network sleep is possible, and thus the NM Coordinator must keep all presently

AUTSSAR

non-sleeping networks awake. There can be cases where none of the conditions have
been changed, which will only lead to a re-initiation of the coordinated shutdown.

[SWS_Nm_00235]
Upstream requirements: RS_Nm_02537

[If a coordinated shutdown has been aborted and Nm receives E_NOT_OK on a
<Bus>Nm_NetworkRequest, that network shall not be considered awake when the
conditions for initiating a coordinated shutdown are evaluated again. |

Rationale: Any <Bus>Nm that needs to be re-requested during an aborted
coordinated shutdown have previously been released, both by ComM and by Nm.
It is the responsibility of the <Bus>Nm to inform the ComM (through Nm) that the net-
work really has been released and therefore the ComM will have knowledge of the net-
work state even though the error response on Nm_NetworkRequest never reached
the ComM directly.

[SWS_Nm_00236]
Upstream requirements: RS_Nm_02537

[If a coordinated shutdown has been initiated and Nm receives E_NOT_OK on
a <Bus>Nm_NetworkRelease, the shutdown shall be immediately aborted. For all
networks that have not entered "bus-sleep mode®, Nm shall request the networks. This
includes the network that indicated an error for <Bus>Nm_NetworkRelease. AS soon
as this has been done, the conditions for initiating coordinated shutdown can be eval-
uated again. This applies also to networks that were not actively participating in the
current coordinated shutdown. |

Rationale: If a network cannot be released, it shall immediately be requested again to
synchronize the states between the N\M Coordinator in the Nm and the <Bus>Nm.
The coordinated shutdown will eventually be initiated again as long as the problem
with the <Bus>Nm persists. It is up to the <Bus>Nm to report any problems directly to
the DEM and/or Default Error Tracer so the NM Coordinator shall only try to release
the networks until it is successful.

7.4 Partial Network functionality

An overview regarding the partial network cluster functionality can be found in docu-
ment Guide to Mode Management [9]

7.4.1 PNC bit vector filter algorithm

The intention of the PNC bit wvector filter algorithm is to include all PNC requests
that are relevant for the ECU for the PNC handling and to exclude all received PNC
requests that are not relevant for the ECU. Additionally the filter algorithm is used to

AUTSSAR

qualify relevant PNC request for transmission. PNC requests which are qualified to be
relevant (re-)start the corresponding PNC timer.

In order to distinguish between PNC requests that are relevant for the ECU and PNC
requests that are not relevant, the NM evaluates the PNC bit vector received by the
<Bus>Nm (passive PNC requests, initiated remotely by another ECU in the network)
and it evaluates the PNC bit vector transmitted by ComM (active request, initiated
by a local application). Every bit of the PNC bit vector represents one PNC.

PNCs are statically configured. One PNC denotes the participation of an ECU to a
specific partial network cluster (PNC).

[SWS_Nm_00308]
Upstream requirements: RS_Nm_02517, RS_Nm_02527

[The PNC bit vector filter algorithm shall evaluate the bytes of the given PNC bit
vector in the context of Nm_PncBitVectorRxIndication.]

Note: If <Bus>NmAllNmMessagesKeepAwake> is enabled, ECU might still be kept
alive, even if no relevant PNC request was received.

[SWS_Nm_00312]
Upstream requirements: RS_Nm_02517, RS_Nm_02527

[If Nm_PncBitVectorRxIndication is called, NmPnEiraCalcEnabled Of NmPn-
EraCalcEnabled is set to TRUE and at least one PNC bit is detected as relevant
PNC request in the given PNC bit vector, the OUT parameter RelevantPncRe-
questDetectedPtr shall be setto TRUE. Otherwise the value of RelevantPncRe-
questDetectedPtr shall be set to FALSE. |

Note: The value of RelevantPncRequestDetectedPtr is used by the caller
<Bus>Nm to qualify if the received NMPDU shall be considered for further Rx Indi-
cation handling.

Example: The given PNC bit vector has a length of 2 bytes (NmPncBitVector—

Length):
Byte 0 | Byte 1
PNC bit vector
0x12 | Ox8E

Table 7.1: Example of PNC bit vector

For this example two NmPnFilterMaskBytes would be defined, e.g
* NmPnFilterMaskByteIndex =0 with NmPnFilterMaskByteValue = 0x01
* NmPnFilterMaskByteIndex =1 with NmPnFilterMaskByteValue = 0x97

The filter algorithm actions and result would then be:

AUTSSAR

Filter Mask Value (Byte) | Compared to received | Resulting in
PNC bit wvector
0x01 (Byte 0) 0x12 (NM PDU Byte 4) 0x00 (no relevant PNC re-
quest)
0x97 (Byte 1) 0x8E (NM PDU Byte 5) 0x86 (relevant PNC re-
quest)

Table 7.2: Example PN Filter Algorithm

As one byte contains relevant information, the value of the boolean parameter Rele-
vantPncRequestDetectedPtr is setto TRUE.

[SWS_Nm_CONSTR_00001] [The length of all configured NmPnFilterMaskBytes
shall have the same length (in bytes) as the NmPncBitvVectorLength of the corre-
sponding NM-channel. A configuration tool shall reject a configuration as invalid (er-
ror), if the length of the configured NmPnFilterMaskBytes differ from the configured
NmPncBitVectorLength of the corresponding NM-channel. |

7.4.2 Aggregation of PNC requests

7.4.2.1 Aggregation of internal and external Partial Network Cluster

[SWS_Nm_00302]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[If NmPnEiraCalcEnabled is set to TRUE, then Nm shall provide the possibility to
store external and internal requested PNCs combined over all NM-channels where
NmPnEnabled is set to TRUE. At initialization the values of all PNCs within EIRA shall
be set to 0 (PNC released). |

[SWS_Nm_00313]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[If
e NmPnEiraCalcEnabledis TRUE

e and a PNC bit vector is received via Nm_PncBitVectorRxIndica-
tion(<Nm-channel>, <PNC bit vector of external PNC requests>) or
Nm_ForwardSynchronizedPncShutdown(<NM-channel>, <PNC bit vec-
tor PNCs indicated for a synchronized shutdown>)

» and PNCs are requested within this message (bits setto 1)
+ and the requested PNCs are set to 1 within the configured PN filter mask

then NM shall store the request information (value 1) for these PNCs as "PNC re-
quested". |

AUTSSAR

[SWS_Nm_00534]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

rlf

then

NmPnEiraCalcEnabled is setto TRUE

and a transmission of a PNC bit vector is indicated via Nm_PncBitVec-
torTxIndication(<NM-channel>, <buffer to provide the unfiltered PNC bit
vector of aggregated internal PNC requests >)

and no requests for a synchronized PNC shutdown are pending on the given
NM-channel

and PNCs are requested within the stored unfiltered PNC bit vector (bits set
to 1)

and the requested PNCs of the stored unfiltered PNC bit vector for internal
PNC requests are set to 1 within the configured PN filter mask

NM shall store the request information (value 1) for these PNCs as "PNC re-

quested". |

[SWS_Nm_00535]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[If NmPnEiraCalcEnabled is TRUE, Nm_PncBitVectorTxIndication(<NM-
channel>, PncBitVectorPtr <buffer to provide the unfiltered PNC bit vector>) is called
and no requests for synchronized PNC shutdown are pending on the given NM-
channel, then Nm shall copy the unfiltered PNC bit vector for internal PNC re-
quests of the given NM-channel to the buffer indicated by PncBitVvectorPtr.]

[SWS Nm_00536]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

rif

NmPnEiraCalcEnabled is setto TRUE

and requests for a synchronized PNC shutdown are pending on the given NM-
channel

and a transmission of a PNC bit vector is indicated via Nm_PncBitVec-—
torTxIndication(<NM-channel>, <buffer to provide the PNC bit vector of
the aggregated synchronized PNC requests >),

and PNCs are requested for a synchronized PNC shutdown within the PNC bit
vector (bits setto 1)

and the aggregated synchronized PNC requests of the PNC bit vector are
set to 1 within the configured PN filter mask,

AUTSSAR

then Nm shall store the request information (value 1) for these PNCs as "PNC re-
quested". |

[SWS_Nm_00537]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[If NmPnEiraCalcEnabled is set to TRUE, Nm_PncBitVectorTxIndica-
tion(NetworkHandle <NM-channel>, PncBitVectorPtr <buffer to provide the aggre-
gated synchronized PNC requests as bit vector>) is called and requests for synchro-
nized PNC shutdown are pending on the given NM-channel, then Nm shall set the
buffer indicated by PncBitVectorPtr as follows :

+ set all according bits to 1 that relate to a PNC requested for synchronized PNC
shutdown of the given NM-channel

» set all other bits to 0
]

Note: The Nm module has to aggregate all PNCs which were indicated for a syn-
chronized PNC shutdown and transfer the pncld’s to a byte array (PNC bit vector).
Each bit (PNC bit) of the PNC bit vector represent a particular PNC. The byteIn-
dex and bitindex within the PNC bit vector of PNC bit can be determined as
follows:

* bytelndex = (Pncld div 8)
* bitindex = (Pncld mod 8)

[SWS Nm_00330]
Upstream requirements: RS_Nm_02517, RS_Nm_02562

[For all configured NM-channel where NmPartialNetworkSupportEnabled is set
TRUE, Nm shall provide the possibility to store external and internal requested PNCs
combined over all NM-channels where NmPnEnabled is set to TRUE. At initialization
the values of all PNCs within EIRA shall be set to 0 (PNC released). |

[SWS_Nm_00317]
Upstream requirements: RS_Nm_02517, RS_Nm_02563, SRS_ModeMgm_09250

[If Nm_UpdateIRA(<NM-channel>, <PncBitVector of aggregated internal PNC re-
quests>) is called, the NM shall store the received unfilterred PncBitVector per given
NM-channel. Therefore, the NM module shall copy the amount of bytes with respect of
the configured length (see NmPncBitVectorLength) of the given NM-Channel. |

Note: NM stores unfilterred internal PNC requests in order to support the possibility of
requesting a PNC on a specific channel even if the PNC is not assigned to the channel.

AUTSSAR

[SWS_Nm_00318]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[If NmPnEiraCalcEnabled is TRUE, then NM shall provide a possibility to monitor
each relevant PNC in the context of Nm_MainFunction. The monitoring shall con-
sider the PNC state, if the PNC is still externally or internally requested on at least one
of the relevant NM-channels. |

Note: This means, only one timer is required to handle one PNC on multiple connected
physical channels. For example: only 8 EIRA reset timers are required to handle the
requests of a Gateway with 6 physical channels and 8 partial network clusters. This is
possible because the switch of PNC related PDU-Groups is done global for the ECU
and independent of the physical channel.

[SWS_Nm_00319]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[If NmPnEiraCalcEnabled is TRUE and every time a PNC is stored as "PNC re-
quested" (see [SWS_Nm_00313]), then the monitoring for this PNC shall be restarted
with respect to NmPnResetTime in the context of Nm_MainFunction.|

Note: NmPnResetTime has to be configured to a value greater than <Bus>NmMsgCy—
cleTime. If NmPnResetTime is configured to a value smaller than <Bus>NmMsgCy—
cleTime and only one ECU requests the PNC, the request state toggles in the EIRA,
because the request state reset before the requesting ECU is able to transmit the pNC
bit vector within the next NM message.

Note: NmPnResetTime has to be configured to a value smaller than <Bus>NmTime—
out Time to avoid that the timer elapses after <Bus>Nm already changed to a state
where it is expected that application communication is disabled (e.g. change to Prepare
Bus Sleep (UdpNm, CanNm) or Bus Sleep (FrNm)).

[SWS_Nm_00320]
Upstream requirements: RS_Nm_02517, RS_Nm_02563

[lf NmPnEiraCalcEnabled is TRUE and a PNC is not requested again within Nmpn-
ResetTime the corresponding stored value for this PNC shall be set to PNC released
(value 0) in the context of Nm_MainFunction.]

[SWS Nm_00321]
Upstream requirements: RS_Nm_02517, RS_Nm_02565, SRS_ModeMgm_09250

[If NmPnEiraCalcEnabled is TRUE and the stored value for a PNC is
set to PNC requested or back to PNC released (see [SWS_Nm_00313] and
[SWS_Nm_00320]), then nM shall forward the changed state of EIRA to comM by calling
ComM_Nm_UpdateEIRA (<PncBitVector of EIRA>)).J

Note: If a PN shutdown message is received (PNSR is set to 1), no special
handling is needed, because the according PNC state machines need to stay in

AUTSSAR

COMM_PNC_READY_SLEEP. Only the ERA PDU is handled in a different way (see
[SWS_Nm_00305])

7.4.2.2 Aggregation of external Partial Network Cluster

[SWS_Nm_00322]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

[If NmPnEraCalcEnabled is TRUE, then NM shall provide the possibility to store rel-
evant external PNCs request per channel. At initialization the values of all PNCs shall
be set to 0 (PNC released). |

[SWS_Nm_00323]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

rlf

e NmPnEraCalcEnabledis TRUE

* and a PNC bit vector is received via Nm_PncBitVectorRxIndication(<NM-
channel>, <PncBitVector of external PNC requests>)

« and PNCs are requested within this message (bits set to 1)
+ and the requested PNCs are set to 1 within the configured PN filter mask

then NM shall store the PNC request information (value 1) for these PNCs as "PNC
requested" per given channel. |

[SWS_Nm_00324]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

[lf NmPnEraCalcEnabled is TRUE, then NM shall provide a possibility to monitor each
relevant PNC per channel in the context of Nm_MainFunction. The monitoring shall
consider the PNC state, if the PNC is still externally requested on the corresponding
NM-channels. |

Note: This means, a separate timer is required to handle one PNC on multiple physical
channels. For example: 48 ERA PNC reset timers are required to handle the exter-
nal PNC requests of a PNC gateway with 6 physical channels and 8 partial network
clusters. It is not possible to combine the PNC reset timer as it is possible for EIRA
PNC timers, because the external PNC request mustn’t be mirrored back to the bus /
network from where the PNC request was received. Thus, it is required to detect the
physical channel that is the source of the PNC request.

AUTSSAR

[SWS_Nm_00325]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

[If NmPnEraCalcEnabled is TRUE, then every time a PNC is stored as "PNC re-
quested" (see [SWS_Nm_00323]), the monitoring for this PNC shall be restarted with
respect to NmPnResetTime in the context of Nm_MainFunction. |

Note: NmPnResetTime has to be configured to a value greater than <Bus>NmMsgCy—
cleTime. If NmPnResetTime is configured to a value smaller than <Bus>NmMsgCy—
cleTime and only one ECU requests the PNC, the request state toggles in the EIRA
because the request state is rested before the requesting ECU is able to transmit the
PNC bit vector within the next NM message.

Note: NmPnReset Time has to be configured to a value smaller than <Bus>NmTime-
out Time to avoid that the timer elapses after <Bus>Nm already changed to a state
where it is expected that application communication is disabled (e.g. change to Prepare
Bus Sleep (UdpNm, CanNm) or Bus Sleep (FrNm)).

[SWS_Nm_00326]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

[If NmPnEraCalcEnabled is TRUE and a PNC is not requested again within NmPn-
ResetTime the corresponding stored value for this PN shall be set to PNC released
(value 0).]

[SWS_Nm_00327]
Upstream requirements: RS_Nm_02517, RS_Nm_02565, SRS_ModeMgm_09250

[If NmPnEraCalcEnabled is TRUE and the stored value for a PNC is set to PNC
requested or back to PNC released (see [SWS_Nm_00323] and [SWS_Nm_00326]),
then NM shall forward the changed state of ERA of the affected NM-channel to comM by
calling ComM_Nm_UpdateERA (<ComMChannel>, <PncBitVector of ERA>).]

[SWS_Nm_00331]

Upstream requirements: RS_Nm_02517

[If NmPnEiraCalcEnabledis TRUE and NmPnEraCalcEnabledis TRUE , the PNC
status information has to be stored separately for both, the EIRA and ERA information
(compare [SWS_Nm_00302] and [SWS_Nm_00322)). |

7.4.3 EIRA / ERA state and PNC reset timer handling

PNC reset timers for ERA and EIRA are handeled in the context of Nm_Mainfunction.
PNC reset timers are used for the monitoring of PNC requests. Based on the current
available PNC requests and the current state of the corresponding PNC reset timers,
particular actions have to be performed (e.g. re-start PNC timer, set requested PNC to
PNC released)

AUTSSAR

[SWS_Nm_00328]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

[If NmPartialNetworkSupportEnabled is set to TRUE, then all PNC reset timers
shall be stopped at initialization. |

[SWS_Nm_00329]
Upstream requirements: RS_Nm_02517, RS_Nm_02564

[If NmPartialNetworkSupportEnabled is setto TRUE, then the evaluation of the
PNC states in combination with PNC reset timers shall consider at least the following
order:

» Update PNC reset timers
+ Evaluate the PNC states

» Perform actions based on the current state of PNC reset timer and PNC requests

]

The monitoring of PNC requests and the PNC reset timer handling is kept as imple-
mentation specific. The following section shows an example, how the EIRA / ERA
evaluation and PNC reset timer could be handeled in the main function of NM. This is
descriped to support the understanding of the overall mechanism of the PNC handling
in NM.

Example: The following example is based on the following assumptions:
» each PNC reset timer has 3 states(stopped, elasped, running)

« if a PNC reset timer is started, the PNC reset timer is loaded with NmPnReset-
Time

» arunning PNC reset timer is decremented in each call of the main function, until
it reaches value '0’

» PNC gateway functionality is enabled:
— One ERA as PNC bit vector exists per channel
— One EIRA as PNC bit vector exist

At initialization the PNC reset timers are in state "stopped" and the EIRA / ERA pnC
bit vectors are set value '0’ (PNC released). The PNC reset timers are started if
a relevant PNC (PNC that pass the PN filter mask) is received where the value is set
to’1’ (e.g. [SWS_Nm_00325]). In each main function all PNC timers are decremented
as first step. Afterwards the current PNC requests are evaluated in combination with
the state of the according PNC reset timer. Particiular actions are performed based
on the evaluation result. As final step the EIRA/ERA PNC bit vectors are erased
(set to '0’). This is needed to refresh the current state of PNC requests until the next
main function call and to detect changes from PNC requested to PNC released and
vice versa. (Please note: EIRA is always updated if a PNC bit vector with relevant

AUTSSAR

PNC requests is received or if a PNC bit vector with relevant PNC requests is
transmitted. ERA is always updated if a PNC bit vector with relevant PNC request
of the according channel is received.) Based on this example EIRA and ERA is used to
store a snapshot of PNC requests between 2 main function calls. In each main function
call PNC requests conveyed from the EIRA / ERA storage to either PNC reset timer
and/or as change to ComM.

Table 7.3 shows the evaluation details of the example. Column "EIRA / ERA PNC state"
and "PNC reset timer state" is the input and column "Evalution result" is the output of
the evaluation. The output describes which action has to be performed.

AUTSSAR

EIRA / ERA PNC state) PNC reset timer state Evaluation result

PNC requested Stopped Start PNC reset timer,
set PNC reset timer state
to "running" and inform
ComM regarding the PNC
state change

PNC requested Elapsed Restart PNC reset timer,
set PNC reset timer state
to "running" and inform
ComM regarding the PNC
state change

PNC requested Running Restart PNC reset timer
PNC released Stopped Do nothing
PNC released Elapsed Set PNC reset timer to

"stopped” and inform
ComM regarding the PNC
state change

PNC released Running Do nothing (Please note:
time of the PNC reset
timer was already decre-
ment as very first action in
the main function)

Table 7.3: Example for EIRA / ERA PNC state handling in combination with PNC reset
timer state.

7.4.4 Synchronized PNC shutdown functionality

The synchronized PNC shutdown is a functionality which is a cooperation of ComM,
Nm and <Bus>Nm to ensure a synchronized PNC shutdown at almost the same
point in time across the whole PN topology. A synchronized PNC shutdown is han-
dled by ECUs in role of a top-level PNC coordinator or intermediate PNC coordinator
and where the PNC gateway is enabled. If ComM of an ECU in the role of a top-
level PNC coordinator detects that a PNC is released, the ComM requests a syn-
chronized PNC shutdown by calling Nm_RequestSynchronizedPncShutdown per
ComMChannel and ComMPnc. The Nm module store all requests and handle them in
the context of the Nm_Mainfunction. The Nm module indicate the affected <Bus>Nms
regarding an activated PNC shutdown process. The <Bus>Nms call the Nm mod-
ule to provide the aggregated requests for a synchronized PNC shutdown as PNC
bit vector per given NM-channel. The <Bus>Nms use the provided PNC bit
vector to assemble a NM-PDU as PN shutdown message and transmit this NM
message on the according NM channel. If a PN shutdown message is received
by an ECU in the role of an intermediate PNC coordinator, the <Bus>Nms extract
the PNC bit vector from the received PN shutdown message and forward the in-
formation by calling the callback function Nm_ForwardSynchronizedPncShutdown.
The callback function will immediately forward the indication to ComM by calling
ComM_Nm_ForwardSynchronizedPncShutdown. ComM will immediately request
a synchronized PNC shutdown of all actively PNC coordinated (coordinated by a PNC

AUTSSAR

gateway) ComMChannels. The requests for a synchronized PNC shutdown are for-
warded to Nm module per NM-channel and handled in the same way as described in
the previous section.

If a PNC leaf node receives a top-level PNC coordinator Nm frame, then it will handle
the frame as a usual NM message (update the local PNC bit vector and reset PN
reset time).

[SWS_Nm_00533]
Upstream requirements: RS_Nm_02517, RS_Nm_02571

[If NmPartialNetworkSupportEnabled is set to TRUE, then PNC shutdown han-
dling shall be considered as deactivated at initialization. |

[SWS_Nm_00521]

Upstream requirements: RS_Nm_02571

[If function Nm_RequestSynchronizedPncShutdown is called, NmSynchro-
nizedPncShutdownEnabledis setto TRUE and NmStandardBusType of the given
NM-channel is set to a type other than NM_BUSNM_LOCALNM, the Nm module shall
store the given PNC (Pncld) per given NM-channel (NetworkHandle) as a pending
request for a synchronized PNC shutdown. |

[SWS_Nm_00305]
Upstream requirements: RS_Nm_02548

[If the reception of PN shutdown message via callback function Nm_ForwardSyn-
chronizedPncShutdown is indicated, then NM shall stop the ERA related moni-
toring of external PNC requests of the PNCs (see [SWS_Nm_00324])) which are
indicated for an PNC shutdown (PNC bit set to ’1’) in the given PNC bit vec-—
tor, set the corresponding ERA bits to '0’ in the ERA of the indicated NM-
channel and forward the indication to comM with the corresponding ComMChan-
nel by calling ComM_Nm_ForwardSynchronizedPncShutdown (<ComMChannel>,
<PncBitVector>).]

Note:

« The PNC bit vector of a received PN shutdown message shall be used to
release the PNCs for a synchronized shutdown. Explicitly clear the affected ERA
bits of the indication NM-channel, stop the ERA monitoring for the indicated PNCs
of the indicated NM-channel and pass the indication for a synchronized PNC shut-
down to the comM module. The synchronized PNC shutdown has to be handled
as fast as possible. Therefore, the comM module is informed immediately.

» Stopping the ERA related monitoring should not result in a call of
ComM_UpdateERA. ComM ensure a proper handling of the comM internal ERA bits
within the context of ComM_Nm_ForwardSynchronizedPncShutdown. This
should support an unambiguous handling of the PNC state machine for a syn-
chronized PNC shutdown

AUTSSAR

[SWS_Nm_00525]

Upstream requirements: RS_Nm_02571

[If NmPnShutdownMessageRetransmissionDuration is configured and Nm_Re-
questSynchronizedPncShutdown is called (refer to [SWS_Nm_00523]), then the
corresponding retransmission timer for PN shutdown messages shall be started with
NmPnShutdownMessageRetransmissionDuration on all affected NM-channels. |

[SWS_Nm_00523]
Upstream requirements: RS_Nm_02571

[If NmSynchronizedPncShutdownEnabled is set to TRUE, requests for syn-
chronized PNC shutdown are pending and PNC shutdown handling has been de-
actived, then Nm shall activate the PNC shutdown handling by calling <Bus>
Nm_ActivateTxPnShutdownMng

[SWS_Nm_00524]
Upstream requirements: RS_Nm_02571

[If NmSynchronizedPncShutdownEnabled is set to TRUE, no requests for syn-
chronized PNC shutdown are pending, PNC shutdown handling has been acti-
vated, then Nm shall deactivate the PNC shutdown handling by calling <Bus>
Nm_DeactivateTxPnShutdownMsg. |

[SWS _Nm_00527]
Upstream requirements: RS_Nm_02571

[If NmSynchronizedPncShutdownEnabled is set to TRUE, PNC shutdown han-
dling has been activated (refer to [SWS_Nm_00523]) and Nm_PncBitVectorTxCon-—
firmation is called with E_OK, then the Nm module shall consider those PNC IDs,
stored as pending request for a synchronized PNC shutdown of the given NM-channel,
as completed which were indicated by the given PNC bit vector (PNC bit set ’1’)
and remove them from storage. Additionally, if NmPnShutdownMessageRetrans-—
missionDuration isconfigured, then the Nm module shall cancel the retransmission
timer for PN shutdown messages of the affected NM-channel. |

Note:

* Nm has to ensure that new request for a synchronized PNC shutdown (indicated
via Nm_RequestSynchronizedPncShutdown) are not lost, during an ongoing
PNC shutdown process.

* The <Bus>Nm has to handle the re-transmission of the NM-PDU as PN shut-
down message as long as Nm_PncBitVectorTxConfirmation is called with
E_NOT_OK or the re-transmission timer for PN shutdown messages is running.

AUTSSAR

[SWS_Nm_00529]

Upstream requirements: RS_Nm_02571

[If NmSynchronizedPncShutdownEnabled is set to TRUE and the Nm module has
stored PNC IDs as pending request for a synchronized PNC shutdown, then Nm shall
remove those PNC IDs from storage which are either externally or internally requested
again:

* Nm shall check on reception of an PNC bit vector via call of Nm_-
PncBitVectorRxIndication, if externally requested PNCs are received.

* Nm shall check on update of an PNC bit vector via call of Nm_UpdateIRA, if
internal PNC requests are available .

]

[SWS_Nm_00530]
Upstream requirements: RS_Nm_02571

[If NmSynchronizedPncShutdownEnabled is set to TRUE, NmPnShutdownMes-
sageRetransmissionDuration is not configured, the corresponding <Bus>Nm
module of this NM-channel has indicated transmission request via call of Nm_-
PncBitVectorTxIndication and Nm_PncBitVectorTxConfirmation is called
with result E_NOT_OK (transmission of the given PNC bit vector failed), then
the Nm shall remove the PNC IDs stored as pending request for a synchro-
nized PNC shutdown of the corresponding NM-channel and report the runtime error
NM_E_TRANSMISSION_OF_PN_SHUTDOWN_MESSAGE_FAILED to DET.|

[SWS_Nm_00532]

Upstream requirements: RS_Nm_02571

[If NmSynchronizedPncShutdownEnabled is set to TRUE and a retransmission
timer for a PN shutdown message (see NmPnShutdownMessageRetransmission—
Duration) expires, then Nm shall remove the pending request for a synchronized
PNC shutdown of the corresponding NM-channel from the storage and report the run-
time error NM_E_TRANSMISSION_OF_PN_SHUTDOWN_MESSAGE_FAILED to DET.]

Note: If a retransmission timer for PN shutdown messages is configured and the NM
message was not transmitted successfully (Nm_PncBitVectorTxConfirmation is
called with result E_NOT_OK), then the duration of PNC shutdown process continue.
In the worst case the PN shutdown process coincide with a post poned NM message
transmitted with <Bus>NmMsgCycleTime. But in any case, if the capability to trans-
mitted NM messages is not re-covered within the PN reset time (EIRA), the PNCs will
shutdown not synchronized, which might lead to timeout errors on application level.

AUTSSAR

7.5 Prerequisites of bus specific Network Management modules

This chapter gives an overview of the API calls that are used for the Basic functionality,
the NM Coordination functionality and synchronized PNC shutdown functionality as
well as information on the expected behavior of the bus specific NM for both function-
alities.

For specific requirements of the interfaces and the configuration parameters for en-
abling/disabling the API’s, refer to chapter 8.

7.5.1 Prerequisites for basic functionality

The Nm only acts as a forwarding layer between the ComM and the bus specific NM
for the basic functionality.

All API calls made from the upper layer shall be forwarded to the corresponding API
call of the lower layer. All callbacks of Nm invoked by the lower layer shall be forwarded
to the corresponding callback of the upper layer.

The Basic functionality provides the following API calls to the ComM:
* Nm_NetworkRequest - [SWS_Nm_00032]
* Nm_NetworkRelease - [SWS_Nm_00046]
* Nm_PassiveStartUp - [SWS_Nm_00031]

Note: This implies that the bus specific NM provides the correspond-
ing functions <Bus>Nm_NetworkRequest, <Bus>Nm_NetworkRelease and
<Bus>Nm_PassiveStartUp.

The Basic functionality forwards the following API callbacks to the ComM:
* Nm_NetworkStartIndication - [SWS_Nm_00154]
* Nm_NetworkMode - [SWS_Nm_00156]
* Nm_BusSleepMode - [SWS_Nm_00162]
* Nm_PrepareBusSleepMode - [SWS_Nm_00159]

Note: This implies that the ComM provides the corresponding callback
functions ComM_Nm_NetworkStartIndication, ComM_Nm_NetworkMode,
ComM_Nm_BusSleepMode and ComM_Nm_PrepareBusSleepMode.

The Nm provides a number of API calls to the upper layers that are not used by ComM.
These are provided for OEM specific extensions of the NM stack and are not required
by any AUTOSAR module. They shall be forwarded to the corresponding API calls
provided by the bus specific NMs.

The Basic functionality provides the following API calls to any OEM extension of an
upper layer:

AUTSSAR

* Nm_DisableCommunication - [SWS_Nm_00033]

* Nm_EnableCommunication - [SWS_Nm_00034]

* Nm_SetUserData - [SWS_Nm_00035]

* Nm_GetUserData - [SWS_Nm_00036]

* Nm_GetPduData - [SWS_Nm_00037]

* Nm_RepeatMessageRequest - [SWS_Nm_00038]

* Nm_GetNodeIdentifier - [SWS_Nm_00039]

* Nm_GetLocalNodeIdentifier - [SWS_Nm_00040]

* Nm_CheckRemoteSleepIndication - [SWS_Nm_00042]
* Nm_GetState - [SWS_Nm_00043]

Note: This implies that the bus specific NM optionally provides the corresponding
functions.

7.5.2 Prerequisites for NM Coordinator functionality

The coordination algorithm makes use of the following interfaces of the bus
specific NM:

* <Bus>Nm_NetworkRequest - [SWS_Nm_00119]

* <Bus>Nm_NetworkRelease - [SWS_Nm_00119]

* <Bus>Nm_RequestBusSynchronization - [SWS_Nm_00166]
* <Bus>Nm_CheckRemoteSleepIndication - [SWS Nm_00166]

Note: All NM networks configured to be part of a coordinated cluster of the NM
coordinator functionality must have the corresponding Bus NM configured to be able to
actively send out NM messages (e.g. CANNM_PASSIVE_MODE_ENABLED = false).

As a result of this configuration restriction, all <Bus>Nm used by the coordinator func-
tionality of the Nm module must provide the APl <Bus>Nm_NetworkRequest.

Note: Any configuration where a network is part of a coordinated cluster of networks
where the corresponding <Bus>Nm is configured as passive is invalid.

Note: The <Bus>Nm_RequestBusSynchronization is called by Nm immediately
before <Bus>Nm_NetworkRelease in order to allow non-synchronous networks to
synchronize before the network is released. For some networks, this call has no
meaning. The bus specific NM shall still provide this interface in order to support
the generality of the NM Coordinator functionality, but can choose to provide an empty
implementation.

AUTSSAR

Rationale: The <Bus>Nm_CheckRemoteSleepIndication is never explicitly men-
tioned in the coordination algorithm. Its use is dependent on the implementa-
tion.

The coordination algorithm requires that the following callbacks of the Nm can
be invoked by the bus specific NM:

* Nm_NetworkStartIndication - [SWS_Nm_00154]
* Nm_NetworkMode - [SWS_Nm_00156]

* Nm_BusSleepMode - [SWS_Nm_00162]

* Nm_PrepareBusSleepMode - [SWS_Nm_00159]

* Nm_SynchronizeMode - [SWS_Nm_91002]

* Nm_RemoteSleepIndication - [SWS_Nm_00192]

* Nm_RemoteSleepCancellation - [SWS _Nm_00193]
* Nm_SynchronizationPoint - [SWS_Nm_00194]

Note: The Nm_NetworkStartIndication, Nm_NetworkMode, Nm_BusSleep—
Mode and Nm_PrepareBusSleepMode are used by the coordination algo-
rithm to keep track of the status of the different networks and to handle aborted
shutdown (see Chapter 7.3.3).

Note: The Nm_RemoteSleepIndication and Nm_RemoteSleepCancellation
are used by the coordination algorithm to determine when all conditions for
initiating the coordinated shutdown are met. The indication will be called by the
bus specific NM when it detects that all other nodes on the network (except for itself)
is ready to go to "bus-sleep mode“. Some implementations will also make use of the
API call <Bus>Nm_CheckRemoteSleepIndication.

Note: A bus specific NM which is included in a coordination cluster must monitor its
bus to identify when all other nodes on the network is ready to go to sleep. When this
occurs, the bus specific NM shall call the callback Nm_RemoteSleepIndication of
Nm. (See [SWS_Nm_00192)).

Note: After a bus specific NM which is included in a coordination cluster has
signaled to Nm that all other nodes on the network is ready to go to sleep (See
[SWS_Nm_00192]), it must continue monitoring its bus to identify if any node starts
requesting the network again, implying that the bus is no longer ready to go to sleep.
When this occurs, the bus specific NM shall call the callback Nm_RemoteSleepCan-—
cellation of Nm. (See [SWS_Nm_00193]).

Note: The Remote Sleep Indication and Cancellation functionality is further specified
in the respective bus specific NM.

Rationale: The Nm_SynchronizationPoint shall be called by the bus specific
NM in order to inform the coordination algorithm of a suitable point in time to
initiate the coordinated shutdown. For cyclic networks this is typically at cycle

AUTSSAR

boundaries. For non-cyclic networks this must be defined by other means. Each NM
Coordination Cluster can be configured to make use of synchronization indications or
not (See [SWS_Nm_00172]), and if they are used, the coordination algorithm filters
indications and only acts on indications from networks that are configured as synchro-
nizing networks.

Note: Please note for implementation of <bus>Nm: Cyclic networks invoke the Nm__
SynchronizationPoint repeatedly when no other nodes request the network. The
invocation is typically made at boundaries in the bus specific NM protocol when
changes in the NM voting will occur.

It is assumed that any call to <Bus>Nm_ReleaseNetwork made between two of these
Nm_SynchronizationPoint will be acted upon at the same point in time as the next
Nm_SynchronizationPoint would have been invoked.

Rationale: The synchronization indication shall start when Nm_RemoteSleepIndi-
cation has been notified and continue until either the network has been released
(<Bus>Nm_NetworkRelease) or the Nm_RemoteSleepCancellation is called.

Note:: For the use case of coordinating Flexray-channel A + B if there is no other
Network inside the NM Cluster, hence,if an NM Coordinator contains only one
NM Channel, the NmActiveCoordinator for this NmChannelConfig needs to be
set to TRUE and the NmChannelSleepMaster needs be set to FALSE to allow the
channel to coordinate itself . Note: The Value of "NmSynchronizingNetwork" is
only relevant if this network is in the same coordination cluster with other networks.

7.5.3 Prerequisites of Partial Network functionality
7.5.3.1 Prerequisite for aggregation of PNC requests

The aggregation of PNC requests, requires that the following callback function of the
Nm can be invoked by the bus specific NM:

* Nm_PncBitVectorRxIndication
* Nm_PncBitVectorTxIndication

The aggregation of PNC requests functionality provides the following API, to be called
by the ComM:

* Nm_UpdateIRA

7.5.3.2 Prerequisites for synchronized PNC shutdown functionality

The synchronized PNC shutdown functionality makes use of the following interface of
the bus specific NM:

* <Bus>Nm_RequestSynchronizedPncShutdown -

[SWS_Nm_00166][SWS_Nm_00521]

AUTSSAR

The synchronized PNC shutdown functionality requires that the following callback of
the Nm can be invoked by the bus specific NM:

* Nm_ForwardSynchronizedPncShutdown - [SWS_Nm_91007]

The synchronized PNC shutdown functionality provides the following API, to be called
by the ComM:

* Nm_RequestSynchronizedPncShutdown - [SWS_Nm_91005]

7.5.4 Configuration of global parameters for bus specific networks

The Nm’s configuration contains parameters that regulate support of optional features
found in the bus specific NMs. Since Nm is only a pass-through interface layer re-
garding features that are not used by the NM Coordinator functionality, enabling these
in Nm’s configuration will in many cases only enable the pass-through of the controlling
API functions and the callback indications from the bus specific layers.

Many of the parameters defined for NM are used only as a source for global configu-
ration of all bus specific NM modules. Corresponding parameters of the bus specific
NMs are derived from these parameters.

7.6 NM_BUSNM_LOCALNM

[SWS_Nm_00483]
Upstream requirements: RS_Nm_00044

[If BusNmType is NM_BUSNM_LOCALNM and ComM requests Nm_PassiveStartUp
or Nm_NetworkRequest then Nm shall inform ComM about start of network by calling
ComM_Nm_NetworkMode.

Rationale : Buses of type NM_BUSNM_LOCALNM which are coordinated do not have a
network management message but are synchronized e.g. by a master - slave concept
like LIN). These Bus-Types are always directly started on request by ComM but the
shutdown will be done by coordinator algorithm. |

7.7 Multicore Distribution

In its role as central module dealing with different network types the Nm interaction
spans across partitions in case the Com-Stack is distributed and so shall provide re-
quired multi-core features to ensure a clean architecture and keep the network depen-
dent clusters free of multi-partition (multi-core) addons.

AUTSSAR

[SWS_Nm_00484]
Upstream requirements: SRS_BSW_00459

[The Nm module shall apply appropriate mechanisms to allow calls of its APIs from
other partitions than its main function, e.g. by providing a Nm satellite. |

[SWS_Nm_00485]
Upstream requirements: SRS_BSW_00459

[Nm shall interact with <Bus>Nm (i.e. call <Bus>Nm APIs) only in the partition, where
the respective <Bus>Nm module is assigned to. |

[SWS Nm_00486]
Upstream requirements: SRS _BSW_00459

[The Nm kernel shall be assigned to the same partition as ComM kernel in order to
keep the interaction between these two modules on an intra-partition basis. |

Note: Even though the basic software (and the Com-Stack in particular) is distributed
across several partitions, ComM [10] and Nm Masters should reside in the same par-
tition in order to keep mode interfaces between the two modules simple (for further
information see chapter Master/Satellite-approach in [11, Guide to BSW Distribution]).

7.8 Additional Functionality

7.8.1 Nm_CarWakeUpIndication

[SWS_Nm_00252]
Upstream requirements: RS_Nm_02503

[If the <bus>Nm calls Nm_CarWakeUpIndication and NmCarWakeUpCallout is
defined, the NM Interface shall call the callout function defined by NmCarWakeUp—
Callout with nmNetworkHandle as parameter. |

[SWS_Nm_00285]
Upstream requirements: RS_Nm_02503

[If the <bus>Nm calls Nm_CarWakeUpIndication and NmCarWakeUpCallout is
not defined, the NM Interface shall call the function BswM_Nm_CarWakeUplIndication
with nmNetworkHandle as parameter. |

Note: The application, called by NmCarWakeUpCallout, is responsible to manage
the Car Wake Up (CWU) request and distribute the Request to other Nm channels by
setting the CWU bit in its own Nm message. This application drops the CWU request
if the request is not repeated within a specific time.

Note: The callout is declared as specified within SWS_BSW_00039 and
SWS BSW _00135.

AUTSSAR

7.8.2 Nm_StateChangeNotification

[SWS_Nm_00249]
Upstream requirements: RS_Nm_00051

[If NmStateReportEnabled is set to TRUE and NmStateReportSignalRef
is configured, when one of the state transitions mentioned in [SWS_Nm_00509]
occur, Nm_StateChangeNotification shall call Com_SendSignal (uint$§,
Com_SignalIdType, const voidx) for the signal referenced by NmStateRe-
portSignalRef with the value according to [SWS_Nm_00509]. |

Note: The transmitted signal has to be at least a 6 bit signal in Com that should be
part of the NM message.

[SWS_Nm_00487]

Upstream requirements: RS_Nm_00051

[When Nm_sStateChangeNotificationiscalledto reportachange of the Nm state,
Nm shall call BswM_Nm_StateChangeNotification () with the reported current
state. |

[SWS_Nm_00509] Definiton of network management states in Nm module
Upstream requirements: RS_Nm_00051

[
Bit Value | Name Description
0 1 NM_RM_BSM NM in state RepeatMessage
(transition from BusSleepMode)
1 2 NM_RM_PBSM NM in state RepeatMessage
(transition from
PrepareBusSleepMode)
2 4 NM_NO_RM NM in state NormalOperation
(transition from RepeatMessage)
3 8 NM_NO_RS NM in state NormalOperation
(transition from ReadySleep)
4 16 NM_RM_RS NM in state RepeatMessage
(transition from ReadySleep)
5 32 NM_RM_NO NM in state RepeatMessage
(transition from NormalOperation)
]

[SWS_Nm_00501]
Upstream requirements: RS_Nm_02547

[If NmDynamicPncToChannelMappingEnabled is set to
TRUE and Nm_StateChangeNotification is called, then
ComM_Nm_RepeatMessageLeftIndication() shall be called when nmPre-
viousState is set to NM_STATE_REPEAT MESSAGE and nmCurrentState IS
different from NM_STATE_REPEAT_MESSAGE. |

AUTSSAR

7.9 Error classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.9.1 Development Errors

[SWS_Nm_00232] Definition of development errors in module Nm

Upstream requirements: SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385, SRS_BSW _

00386
[
Type of error Related error code Error value
API service used without Nm interface initialization | NM_E_UNINIT 0x00
API Service called with wrong parameter but not NM_E_INVALID_CHANNEL 0x01
with NULL-pointer
API service called with a NULL pointer NM_E_PARAM_POINTER 0x02

7.9.2 Runtime Errors

[SWS_Nm_91011] Definition of runtime errors in module Nm
Upstream requirements: SRS_BSW_00385, SRS_BSW_00452

Type of error

Related error code

Error value

Retransmission timer for a PN shutdown message
has expired, because a PN shutdown message
could not be transmitted on the network within the
configured duration of re-transmission.

NM_E_TRANSMISSION_OF PN_SHUTDOWN _
MESSAGE_FAILED

0x10

7.9.3 Production Errors

There are no production errors.

7.9.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed.

[SWS_Nm_00117] Definition of imported datatypes of module Nm

Upstream requirements: SRS_BSW_00301

[
Module Header File Imported Type
Com Com.h Com_SignalldType
Comtype ComStack_Types.h NetworkHandleType
ComStack_Types.h PNCHandleType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Nm_ModeType

[SWS_Nm_00274] Definition of datatype Nm_ModeType
Upstream requirements: RS_Nm_00044

Name

Nm_ModeType

Kind

Enumeration

Range

NM_MODE_BUS SLEEP

- Bus-Sleep Mode

NM_MODE_PREPARE_
BUS_SLEEP

- Prepare-Bus Sleep Mode

NM_MODE_
SYNCHRONIZE

- Synchronize Mode

NM_MODE_NETWORK

- Network Mode

Description

Operational modes of the network management.

Available via

NmStack_types.h

AUTSSAR

8.2.2 Nm_StateType

[SWS_Nm_00275] Definition of datatype Nm_StateType
Upstream requirements: RS_Nm_00050

Name Nm_StateType

Kind Enumeration

Range NM_STATE_UNINIT 0x00 Uninitialized State
NM_STATE_BUS_SLEEP 0x01 Bus-Sleep State
NM_STATE_PREPARE_ 0x02 Prepare-Bus State
BUS_SLEEP
NM_STATE_READY_ 0x03 Ready Sleep State
SLEEP
NM_STATE_NORMAL _ 0x04 Normal Operation State
OPERATION
NM_STATE_REPEAT_ 0x05 Repeat Message State
MESSAGE
NM_STATE_ 0x06 Synchronize State
SYNCHRONIZE
NM_STATE_OFFLINE 0x07 Offline State

Description States of the network management state machine.

Available via

NmStack_types.h

8.2.3 Nm_BusNmType

[SWS_Nm_00276] Definition of datatype Nm_BusNmType
Upstream requirements: RS_Nm_00044, RS_Nm_00154, RS_Nm_02515

Name Nm_BusNmType

Kind Enumeration

Range NM_BUSNM_CANNM - CAN NM type
NM_BUSNM_FRNM - FR NM type
NM_BUSNM_UDPNM - UDP NM type
NM_BUSNM_GENERICNM — Generic NM type
NM_BUSNM_UNDEF - NM type undefined; it shall be defined as FFh
NM_BUSNM_J1939NM - SAE J1939 NM type (address claiming)
NM_BUSNM_LOCALNM - Local NM Type

Description BusNm Type

Available via NmStack_types.h

AUTSSAR

8.2.4 Nm_ConfigType

[SWS_Nm_00282] Definition of datatype Nm_ConfigType
Upstream requirements: SRS_BSW_00414

[

Name Nm_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the Nm module.
Available via Nm.h

8.3 Function definitions

8.3.1 Standard services provided by NM Interface

8.3.1.1 Nm_lInit

[SWS Nm_00030] Definition of API function Nm_Init

Upstream requirements: SRS_BSW_00101, SRS_BSW_00344, SRS_BSW 00358, SRS_BSW _

[

00405, SRS_BSW_00414

Service Name

Nm_Init

Syntax void Nm_Init (
const Nm_ConfigTypex ConfigPtr

)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initializes the NM Interface.

Available via

Nm.h

]

Note: Caveats of Nm_Init: This service function has to be called after the initialization
of the respective bus interface.

AUTSSAR

[SWS_Nm_00283]

Upstream requirements: SRS_BSW_00414

[The Configuration pointer ConfigPtr shall always have a NULL_PTR value. |

Note: The Configuration pointer ConfigPtr is currently not used and shall therefore be

set NULL PTR value.

8.3.1.2 Nm_PassiveStartUp

[SWS_Nm_00031] Definition of API function Nm_PassiveStartUp

Upstream requirements: RS_Nm_00046, RS_Nm_00051, RS_Nm_00151, RS_Nm_02513, RS_-

[

Nm_02536

Service Name

Nm_PassiveStartUp

Syntax Std_ReturnType Nm_PassiveStartUp (
NetworkHandleType NetworkHandle
)
Service ID [hex] 0x01
Sync/Async Asynchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

None

Return value

E_OK: No error

E_NOT_OK: Passive start of network management has failed
NetworkHandle does not exist (development only)

Module not yet initialized (development only)

Std_ReturnType

Description

This function calls the <Bus>Nm_PassiveStartUp function in case NmBusType is not set to
NM_BUSNM_LOCALNM (e.g. CanNm_PassiveStartUp function is called for NM_BUSNM_
CANNM).

Available via

Nm.h

]

Note: Caveats of Nm_PassiveStartUp: The <Bus>Nm and the Nm itself are initial-
ized correctly.

[SWS_Nm_00488]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_ -

PassiveStartUp shall raise the error NM_E_INVALID_CHANNEL if the parameter
NetworkHandle is not a configured network handle. |

AUTSSAR

8.3.1.3 Nm_NetworkRequest

[SWS_Nm_00032] Definition of API function Nm_NetworkRequest
Upstream requirements: RS_Nm_00046, RS_Nm_00047, RS_Nm_00051, RS_Nm_02513, RS_-

Nm_00151
Service Name Nm_NetworkRequest
Syntax Std_ReturnType Nm_NetworkRequest (
NetworkHandleType NetworkHandle
)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Requesting of bus communication has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description This function calls the <Bus>Nm_NetworkRequest (e.g. CanNm_NetworkRequest function is
called if channel is configured as CAN) function in case NmBusType is not set to NM_BUSNM_
LOCALNM.
Available via Nm.h

]

Note: Caveats of Nm_NetworkRequest: The <Bus>Nm and the Nm itself are initial-
ized correctly.

[SWS_Nm_00130]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If Nm_NetworkRequest is called with a network handle where NmPassiveModeEn-
abled is set to TRUE it shall not execute any functionality and return with E_NOT_OK.
If NmDevErrorDetect is set to TRUE then it shall raise the error N\M_E_INVALID
CHANNEL in this case. |

[SWS_Nm_00489]
Upstream requirements: SRS_BSW_00323, SRS _BSW_00369, SRS BSW_ 00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_ -

NetworkRequest shall raise the error NM_E_INVALID_CHANNEL if the parameter
NetworkHandle is not a configured network handle. |

AUTSSAR

8.3.1.4 Nm_NetworkRelease

[SWS_Nm_00046] Definition of API function Nm_NetworkRelease
Upstream requirements: RS_Nm_00047, RS_Nm_00048, RS_Nm_00051

Service Name Nm_NetworkRelease
Syntax Std_ReturnType Nm_NetworkRelease (
NetworkHandleType NetworkHandle
)

Service ID [hex] 0x03

Sync/Async Asynchronous

Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in) NetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: No error

E_NOT_OK: Releasing of bus communication has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)

Description This function calls the <Bus>Nm_NetworkRelease bus specific function in case NmBusType is
not set to NM_BUSNM_LOCALNM (e.g. CanNm_NetworkRelease function is called if channel
is configured as CAN).

Available via Nm.h

Note: Caveats of Nm_NetworkRelease: The <Bus>Nm and the Nm itself are initial-
ized correctly.

[SWS _Nm_00132]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If Nm_NetworkRelease is called with a network handle whereNmPassiveModeEn-
abledis set to TRUE it shall not execute any functionality and return with E_NOT_OK.

If NmDevErrorDetect is set to TRUE then it shall raise the error NM_E_INVALID
CHANNEL in this case. |

[SWS Nm_00490]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS BSW_00386

[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_ -
NetworkRelease shall raise the error NM_E_TINVALID_CHANNEL if the parameter
NetworkHandle is not a configured network handle. |

8.3.2 Communication control services provided by NM Interface

The following services are provided by NM Interface to allow the Diagnostic Communi-
cation Manager (DCM) to control the transmission of NM Messages.

AUTSSAR

Note: To run the coordination algorithm correctly, it has to be ensured
that NM PDU transmission ability is enabled before the ECU is shut down. If
<Bus>Nm_NetworkRelease is called while NM PDU transmission ability is disabled,
the ECU will shut down after NM PDU transmission ability has been re-enabled again.
Therefore the ECU can also shut down in case of race conditions (e.g. diagnostic ses-
sion left shortly before enabling communication) or a wrong usage of communication
control.

8.3.2.1 Nm_DisableCommunication

[SWS Nm_00033] Definition of API function Nm_DisableCommunication
Upstream requirements: RS_Nm_02513, RS_Nm_02512

Service Name Nm_DisableCommunication
Syntax Std_ReturnType Nm_DisableCommunication (
NetworkHandleType NetworkHandle
)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Disabling of NM PDU transmission ability has failed.
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description Disables the NM PDU transmission ability. For that purpose <Bus>Nm_DisableCommunication
shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM (e.g. CanNm_Disable
Communication function is called if channel is configured as CAN).
Available via Nm.h

Note: Caveats of Nm_DisableCommunication: The <Bus>Nm and the Nm itself
are initialized correctly.

[SWS_Nm_00134]

Upstream requirements: RS_Nm_00150
[Configuration of Nm_DisableCommunication: This function is only available if Nm-
ComControlEnabled is set to TRUE. |

[SWS_Nm_00286]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If Nm_DisableCommunication is called with a network handle whereNmPassive-
ModeEnabledis set to TRUE it shall not execute any functionality and return with

AUTSSAR

E_NOT _OK. If NmDevErrorDetect is set to TRUE then it shall raise the error NM_
E_INVALID_CHANNEL in this case. |

[SWS_Nm_00491]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_
DisableCommunication shall raise the error NM_E_INVALID_CHANNEL if the pa-
rameter NetworkHandle is not a configured network handle. |

8.3.2.2 Nm_EnableCommunication

[SWS_Nm_00034] Definition of API function Nm_EnableCommunication
Upstream requirements: RS_Nm_02512

[

Service Name Nm_EnableCommunication
Syntax Std_ReturnType Nm_EnableCommunication (
NetworkHandleType NetworkHandle
)
Service ID [hex] 0x05
Sync/Async Asynchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Enabling of NM PDU transmission ability has failed.
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description Enables the NM PDU transmission ability. For that purpose <Bus>Nm_EnableCommunication
shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM. (e.g. CanNm_Enable
Communication function is called if channel is configured as CAN).
Available via Nm.h

]

Note: Caveats of Nm_EnableCommunication: The <Bus>Nm and the Nm itself are
initialized correctly.

[SWS_Nm_00136]

Upstream requirements: RS_Nm_00150
[Configuration of Nm_EnableCommunication: This function is only available if Nm-
ComControlEnabled is set to TRUE. |

[SWS_Nm_00287]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If Nm_EnableCommunication is called with a network handle whereNmPassive-
ModeEnabledis set to TRUE it shall not execute any functionality and return with

AUTSSAR

E_NOT _OK. If NmDevErrorDetect is set to TRUE then it shall raise the error NM_
E_INVALID_CHANNEL in this case. |

[SWS_Nm_00492]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_En-
ableCommunication shall raise the error NM_E_INVALID_CHANNEL if the parame-
ter NetworkHandle is not a configured network handle. |

8.3.3 Partial Network services provided by NM Interface

8.3.3.1 Nm_RequestSynchronizedPncShutdown

[SWS_Nm_91005] Definition of API function Nm_RequestSynchronizedPncShut-
down

Upstream requirements: RS_Nm_02572, RS_Nm_02571

[

Service Name Nm_RequestSynchronizedPncShutdown

Syntax Std_ReturnType Nm_RequestSynchronizedPncShutdown (
NetworkHandleType NetworkHandle,
PNCHandleType PncId

)

Service ID [hex] 0x24
Sync/Async Synchronous
Reentrancy Non Reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle Identification of the NM-channel
Pncld Identification of the Pnc which is requested for a synchronized
shutdown across the PNC network topology
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Request for a synchronized PNC shutdown has
failed, e.g.
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description This function store the request for a synchronized PNC shutdown of a particular PNC given by

Pncld per given NM-Channel. The handling of the synchronized PNC shutdown process is
mainly done in the context of the Nm_Mainfunction.

The function call is only valid if NmStandardBusType is not set to NM_BUSNM_LOCALNM as a
<Bus>Nm like CanNm is needed to transmit the PNC shutdown requests.

Available via Nm.h

]

[SWS_Nm_00508]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS BSW_00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_Re-

questSynchronizedPncShutdown shall raise the error NM_E_INVALID_CHANNEL
if the parameter NetworkHandle is not a configured network handle. |

AUTSSAR

8.3.3.2 Nm_UpdatelRA

[SWS_Nm_91007] Definition of callback function Nm_UpdatelRA
Upstream requirements: RS_Nm_02544

[

Service Name

Nm_UpdatelRA

Syntax void Nm_UpdateIRA (
NetworkHandleType NetworkHandle,
const uint8x PncBitVectorPtr
)
Service ID [hex] 0x26
Sync/Async Synchronous
Reentrancy Non Reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle Identification of the NM-channel

PncBitVectorPtr Pointer to the bit vector with all PNC bits set to "1" of internal
requested PNCs (IRA)
Parameters (inout) None
Parameters (out) None
Return value None

Description

Indication by ComM of internal PNC requests. This is used to aggregate the internal PNC
requests.

Available via

Nm.h

8.3.4 Extra services provided by NM Interface

The following services are provided by NM Interface for OEM specific extensions of the

NM stack and are not required by any AUTOSAR module.

8.3.4.1 Nm_SetUserData

[SWS_Nm_00035] Definition of API function Nm_SetUserData
Upstream requirements: RS_Nm_02503

[

Service Name

Nm_SetUserData

Sﬂnﬂax Std_ReturnType Nm_SetUserData (
NetworkHandleType NetworkHandle,
const uint8+ nmUserDataPtr
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle | Identification of the NM-channel

V

AUTSSAR

A
nmUserDataPtr ‘ User data for the next transmitted NM message
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Setting of user data has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description Set user data for NM messages transmitted next on the bus. For that purpose <Bus>Nm_Set
UserData shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM. (e.g. Can
Nm_SetUserData function is called if channel is configured as CAN).
Available via Nm.h

Note: Caveats of Nm_SetUserData: The <Bus>Nm and the Nm itself are initialized
correctly.

[SWS_Nm_00138]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_SetUserData: This function is only available if NmUser-
DataEnabled is set to TRUE. |

[SWS_Nm_00288]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If Nm_SetUserData is called with a network handle whereNmPassiveModeEn-
abledis set to TRUE it shall not execute any functionality and return with E_NOT_OK.

If NmDevErrorDetect is set to TRUE then it shall raise the error NM_E_INVALID
CHANNEL in this case. |

[SWS_Nm_00241]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_SetUserData: If NmComUserDataSupport iS TRUE the API
Nm_SetUserData shall not be available. |

[SWS_Nm_00493]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If the pre-processor switch NmbDevErrorDetect is set to TRUE, the function Nm_

SetUserData shall raise the error NM_E_INVALID_CHANNEL if the parameter Net -
workHandle is not a configured network handle. |

AUTSSAR

8.3.4.2 Nm_GetUserData

[SWS_Nm_00036] Definition of API function Nm_GetUserData
Upstream requirements: RS_Nm_02504

[

Service Name Nm_GetUserData
Syntax Std_ReturnType Nm_GetUserData (
NetworkHandleType NetworkHandle,
uint8+ nmUserDataPtr
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) NetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) nmUserDataPtr Pointer where user data out of the last successfully received NM
message shall be copied to
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Getting of user data has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description Get user data out of the last successfully received NM message. For that purpose <Bus>Nm_
GetUserData shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM. (e.g.
CanNm_GetUserData function is called if channel is configured as CAN).
Available via Nm.h

]

Note: Caveats of Nm_GetUserData: The <Bus>Nm and the Nm itself are initialized
correctly.

[SWS_Nm_00140]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_GetUserData: This function is only available if NmUser-
DataEnabled is set to TRUE. |

[SWS_Nm_00494]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If the pre-processor switch NmbevErrorDetect is set to TRUE, the function Nm_

GetUserData shall raise the error NM_E_INVALID_CHANNEL if the parameter Net -
workHandle is not a configured network handle. |

AUTSSAR

8.3.4.3 Nm_GetPduData

[SWS_Nm_00037] Definition of API function Nm_GetPduData

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS BSW 00459

[

Service Name Nm_GetPduData

Syntax Std_ReturnType Nm_GetPduData (
NetworkHandleType NetworkHandle,
uint 8+ nmPduData

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) NetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) nmPduData Pointer where NM PDU shall be copied to.

Return value Std_ReturnType E_OK: No error
E_NOT_OK: Getting of NM PDU data has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)

Description Get the whole PDU data out of the most recently received NM message. For that purpose <Bus

Nm>_GetPduData shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM.
(e.g. CanNm_GetPduData function is called if channel is configured as CAN).

Available via Nm.h

]

Note: Caveats of Nm_GetPduData: The <Bus>Nm and the Nm itself are initialized
correctly.

[SWS_Nm_00495]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_

GetPduData shall raise the error NM_E_INVALID_CHANNEL if the parameter Net -
workHandle is not a configured network handle. |

AUTSSAR

8.3.4.4 Nm_RepeatMessageRequest

[SWS_Nm_00038] Definition of API function Nm_RepeatMessageRequest
Upstream requirements: RS_Nm_00153

[

Service Name Nm_RepeatMessageRequest

Syntax Std_ReturnType Nm_RepeatMessageRequest (
NetworkHandleType NetworkHandle
)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in) NetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: No error
E_NOT_OK: Setting of Repeat Message Request Bit has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)

Description Set Repeat Message Request Bit for NM messages transmitted next on the bus. For that

purpose <Bus>Nm_RepeatMessageRequest shall be called in case NmBusType is not set to
NM_BUSNM_LOCALNM. (e.g. CanNm_RepeatMessageRequest function is called if channel is
configured as CAN). This will force all nodes on the bus to transmit NM messages so that they
can be identified.

Available via Nm.h

]

Note: Caveats of Nm_RepeatMessageRequest: The <Bus>Nm and the Nm itself
are initialized correctly.

[SWS_Nm_00289]

Upstream requirements: SRS _BSW_00323, SRS BSW_ 00369, SRS BSW 00386
[If Nm_RepeatMessageRequest is called with a network handle whereNmPassive-
ModeEnabledis set to TRUE it shall not execute any functionality and return with

E_NOT _OK. If NmDevErrorDetect is set to TRUE then it shall raise the error NM_
E_INVALID_CHANNEL in this case. |

[SWS_Nm_00496]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If the pre-processor switch NmbDevErrorDetect is set to TRUE, the function Nm_

RepeatMessageRequest shall raise the error NM_E_INVALID_CHANNEL if the pa-
rameter NetworkHandle is not a configured network handle. |

AUTSSAR

8.3.4.5 Nm_GetNodeldentifier

[SWS_Nm_00039] Definition of API function Nm_GetNodeldentifier
Upstream requirements: RS_Nm_02506

[

Service Name Nm_GetNodeldentifier
Syntax Std_ReturnType Nm_GetNodeIdentifier (
NetworkHandleType NetworkHandle,
uint8+ nmNodeIdPtr
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) nmNodeldPtr Pointer where node identifier out of the last successfully received
NM-message shall be copied to
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Getting of the node identifier out of the last received
NM-message has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description Get node identifier out of the last successfully received NM-message. The function <Bus>Nm_
GetNodeldentifier shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM.
(e.g. CanNm_GetNodeldentifier function is called if channel is configured as CAN).
Available via Nm.h

]

Note: Caveats of Nm_GetNodeIdentifier: The <Bus>Nm and the Nm itself are
initialized correctly.

[SWS_Nm_00497]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS _BSW_ 00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_

GetNodeIdentifier shall raise the error NM_E_INVALID_CHANNEL if the parame-
ter NetworkHandle is not a configured network handle. |

AUTSSAR

8.3.4.6 Nm_GetLocalNodeldentifier

[SWS_Nm_00040] Definition of API function Nm_GetLocalNodeldentifier
Upstream requirements: RS_Nm_02508

[

Service Name Nm_GetLocalNodeldentifier
SynuM' Std_ReturnType Nm_GetLocalNodeIdentifier (
NetworkHandleType NetworkHandle,
uint8+ nmNodeIdPtr
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) nmNodeldPtr Pointer where node identifier of the local node shall be copied to
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Getting of the node identifier of the local node has
failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)
Description Get node identifier configured for the local node. For that purpose <Bus>Nm_GetLocalNode
Identifier shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM. (e.g. Can
Nm_GetLocalNodeldentifier function is called if channel is configured as CAN).
Available via Nm.h

]

Note: Caveats of Nm_GetLocalNodeIdentifier: The <Bus>Nm and the Nm itself
are initialized correctly.

[SWS_Nm_00498]
Upstream requirements: SRS_BSW_00323, SRS BSW_ 00369, SRS BSW 00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_ -

GetLocalNodeIdentifier shall raise the error NM_E_INVALID_CHANNEL if the
parameter NetworkHandle is not a configured network handle. |

AUTSSAR

8.3.4.7 Nm_CheckRemoteSleepindication

[SWS_Nm_00042] Definition of API function Nm_CheckRemoteSleeplindication
Upstream requirements: RS_Nm_02513

[

Service Name Nm_CheckRemoteSleepindication
SUﬂﬂaX Std_ReturnType Nm_CheckRemoteSleepIndication (
NetworkHandleType nmNetworkHandle,
boolean* nmRemoteSleepIndPtr
)

Service ID [hex] 0xod

Sync/Async Synchronous

Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in) nmNetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) nmRemoteSleepindPir Pointer where check result of remote sleep indication shall be

copied to

Return value Std_ReturnType E_OK: No error

E_NOT_OK: Checking of remote sleep indication bits has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)

Description Check if remote sleep indication takes place or not. For that purpose <Bus>Nm_CheckRemote
Sleeplndication shall be called in case NmBusType is not set to NM_BUSNM_LOCALNM. (e.g.
CanNm_CheckRemoteSleeplindication function is called if channel is configured as CAN).

Available via Nm.h

]

Note: Caveats of Nm_CheckRemoteSleepIndication: The <Bus>Nm and the Nm
itself are initialized correctly.

[SWS_Nm_00290]

Upstream requirements: RS_Nm_00150
[If Nm_CheckRemoteSleepIndication is called with a network handle whereNm-
PassiveModeEnabledis set to TRUE it shall not execute any functionality and return

with E_NOT_OK. If NmbevErrorDetect is set to TRUE then it shall raise the error
NM_E_INVALID_CHANNEL in this case. |

[SWS_Nm_00150]

Upstream requirements: RS_Nm_00150

[Configuration of Nm_CheckRemoteSleepIndication: This function is only avail-
able if NmRemoteSleepIndEnabled is set to TRUE. |

[SWS_Nm_00499]
Upstream requirements: SRS _BSW_00323, SRS BSW_ 00369, SRS BSW 00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_ -

CheckRemoteSleepIndication shall raise the error NM_E_INVALID_CHANNEL if
the parameter nmNetworkHandle is not a configured network handle. |

AUTSSAR

8.3.4.8 Nm_GetState

[SWS_Nm_00043] Definition of API function Nm_GetState
Upstream requirements: RS_Nm_00050

[

Service Name Nm_GetState
Syntax Std_ReturnType Nm_GetState (
NetworkHandleType nmNetworkHandle,
Nm_StateTypex nmStatePtr,
Nm_ModeType* nmModePtr
)

Service ID [hex] 0x0e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) nmNetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) nmStatePtr Pointer where state of the network management shall be copied

to
nmModePtr Pointer to the location where the mode of the network
management shall be copied to

Return value Std_ReturnType E_OK: No error

E_NOT_OK: Getting of NM state has failed
NetworkHandle does not exist (development only)
Module not yet initialized (development only)

Description Returns the state of the network management. The function <Bus>Nm_GetState shall be
called in case NmBusType is not set to NM_BUSNM_LOCALNM. (e.g. CanNm_GetState
function is called if channel is configured as CAN).

Available via Nm.h

]

Note: Caveats of Nm_GetState: The <Bus>Nm and the Nm itself are initialized cor-
rectly.

[SWS_Nm_00500]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386
[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_

GetState shall raise the error NM_E_INVALID_CHANNEL if the parameter nmNet -
workHandle is not a configured network handle. |

AUTSSAR

8.3.4.9 Nm_GetVersioninfo

[SWS_Nm_00044] Definition of API function Nm_GetVersioninfo
Upstream requirements: SRS_BSW_00003, SRS_BSW_00407, SRS_BSW_00482

Service Name

Nm_GetVersioninfo

Syntax void Nm_GetVersionInfo (
Std_VersionInfoTypex nmVerInfoPtr

)

Service ID [hex] 0xof

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out)

nmVerinfoPtr Pointer to where to store the version information of this module.

Return value None
Description This service returns the version information of this module.
Available via Nm.h

8.3.4.10 Nm_PnLearningRequest

[SWS_Nm_91003] Definition of API function Nm_PnLearningRequest
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_

00484, SRS_BSW_00459, RS_Nm_02547

Service Name

Nm_PnLearningRequest

Syntax Std_ReturnType Nm_PnLearningRequest (
NetworkHandleType NetworkHandle
)
Service ID [hex] 0x22
Sync/Async Asynchronous
Reentrancy Non Reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

None

Return value

E_OK: No error
E_NOT_OK: PN Learning Request has failed or is not configured
for the networkHandle

Std_ReturnType

Description

Set Repeat Message Request Bit and Partial Network Learning Bit for NM messages
transmitted next on the bus. For that purpose <Bus>Nm_PnLearningRequest shall be called
(e.g. CanNm_PnLearningRequest function if channel is configured as CAN). This will force all
nodes to enter the PNC Learning Phase and re-enter Repeat Message Stat. This is needed for
the optional Dynamic PNC-to-channel-mapping feature.

Available via

Nm.h

AUTSSAR

Note: Caveats of Nm_PnLearningRequest: The <Bus>Nm and the Nm itself are
initialized correctly.

[SWS_Nm_00502]

Upstream requirements: RS_Nm_00150

[Nm_PnLearningRequest shall only be available if NmDynamicPncToChan-
nelMappingSupport is set to TRUE. |

[SWS_Nm_00503]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If Nm_PnLearningRequest is called with a network handle for a bus system where
NmDynamicPncToChannelMappingEnabled is set to FALSE Nm shall not execute
any functionality and return with E_NOT_OK. If NmDevErrorDetect iS set {0 TRUE
then it shall raise the error NM_E_INVALID_CHANNEL in this case. |

[SWS_Nm_00505]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00369, SRS_BSW_00386

[If the pre-processor switch NmDevErrorDetect is set to TRUE, the function Nm_Pn-
LearningRequest shall raise the error NM_E_INVALID_CHANNEL if the parameter
NetworkHandle is not a configured network handle. |

8.4 Call-back notifications

Callback notifications are called by the lower layer's bus-specific Network Manage-
ment modules. For the Base functionality of Nm (Chapter 7.1) the call-backs shall be
forwarded to the upper layer's ComM. For the NM Coordinator functionality of Nm (
Chapter 7.2) the call-backs will provide indications used to control the NM Coordinator
and the optional Dynamic PNC-to-channel-mapping feature.

[SWS_Nm_00028]
Upstream requirements: SRS_BSW_00333

[All callbacks of the Nm shall assume that they can run either in task or in interrupt
context. |

AUTSSAR

8.4.1 Standard Call-back notifications

8.4.1.1 Nm_NetworkStartindication

[SWS_Nm_00154] Definition of callback function Nm_NetworkStartindication
Upstream requirements: SRS_BSW_00359, RS _Nm_02513

[

Service Name

Nm_NetworkStartindication

Syntax void Nm_NetworkStartIndication (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x11
Sync/Async Asynchronous
Reentrancy Reentrant

Parameters (in)

nmNetworkHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

Notification that a NM-message has been received in the Bus-Sleep Mode, what indicates that
some nodes in the network have already entered the Network Mode.

Available via

Nm.h

]

[SWS_Nm_00155]

Upstream requirements: RS_Nm_02513

[The indication through callback function Nm_NetworkStartIndication: shall be
forwarded to ComM by calling the ComM_Nm_NetworkStartIndication.|

8.4.1.2 Nm_NetworkMode

[SWS_Nm_00156] Definition of callback function Nm_NetworkMode
Upstream requirements: SRS_BSW_00359, RS_Nm_00051

[

Service Name

Nm_NetworkMode

Syntax void Nm_NetworkMode (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x12
Sync/Async Asynchronous
Reentrancy Reentrant

Parameters (in)

nmNetworkHandle | Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

None

Y%

AUTSSAR

A

Return value None
Description

Notification that the network management has entered Network Mode.
Available via Nm.h

]

[SWS_Nm_00158]
Upstream requirements: RS_Nm_00051

[The indication through callback function Nm_NetworkMode: shall be forwarded to
ComM by calling the ComM_Nm_NetworkMode. |

8.4.1.3 Nm_BusSleepMode

[SWS_Nm_00162] Definition of callback function Nm_BusSleepMode
Upstream requirements: SRS_BSW_00359, RS_Nm_00051

[

Service Name

Nm_BusSleepMode

Syntax void Nm_BusSleepMode (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x14
Sync/Async Asynchronous
Reentrancy Reentrant

Parameters (in)

nmNetworkHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None
Description Notification that the network management has entered Bus-Sleep Mode.
Available via Nm.h

]

[SWS_Nm_00163]

Upstream requirements: RS_Nm_00051

[The indication through callback function Nm_BussleepMode: shall be forwarded to
ComM by calling the ComM_Nm_BusSleepMode. |

AUTSSAR

8.4.1.4 Nm_PrepareBusSleepMode

[SWS_Nm_00159] Definition of callback function Nm_PrepareBusSleepMode
Upstream requirements: SRS_BSW_ 00359, RS_Nm_00051

[

Service Name

Nm_PrepareBusSleepMode

Syntax void Nm_PrepareBusSleepMode (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x13
Sync/Async Asynchronous
Reentrancy Reentrant

Parameters (in)

nmNetworkHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

Notification that the network management has entered Prepare Bus-Sleep Mode.

Available via

Nm.h

]

[SWS_Nm_00161]

[The indication through callback function Nm_PrepareBusSleepMode: shall be for-

Upstream requirements: RS_Nm_00051

warded to ComM by calling ComM_Nm_PrepareBusSleepMode. |

8.4.1.5 Nm_SynchronizeMode

[SWS_Nm_91002] Definition of callback function Nm_SynchronizeMode
Upstream requirements: RS_Nm_02516

[

Service Name

Nm_SynchronizeMode

Synum' void Nm_SynchronizeMode (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x21
Sync/Async Asynchronous
Reentrancy Reentrant but not for the same channel

Parameters (in)

nmNetworkHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

Notification that the network management has entered Synchronize Mode.

\Y

AUTSSAR

| Available via Nm.h

]

8.4.1.6 Nm_RemoteSleepindication

[SWS_Nm_00192] Definition of callback function Nm_RemoteSleeplindication
Upstream requirements: SRS_BSW_00359, RS _Nm_00052

[
Service Name Nm_RemoteSleepindication
Syntax void Nm_RemoteSleepIndication (
NetworkHandleType nmNetworkHandle

)

Service ID [hex] 0x17

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) nmNetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) None

Return value None

Description Notification that the network management has detected that all other nodes on the network are
ready to enter Bus-Sleep Mode.

Available via Nm.h

]

[SWS_Nm_00277]

Upstream requirements: RS_Nm_00150
[Configuration of Nm_RemoteSleepIndication: This function is only available if
NmRemoteSleepIndEnabled is set to TRUE. |

The notification that all other nodes on the network are ready to enter Bus-Sleep Mode
is only needed for internal purposes of the NM Coordinator.

Note: When NM Coordinator functionality is disabled Nm_RemoteSleepIndication
can be an empty function.

AUTSSAR

8.4.1.7 Nm_RemoteSleepCancellation

[SWS_Nm_00193] Definition of callback function Nm_RemoteSleepCancellation
Upstream requirements: SRS_BSW_00359, RS_Nm_02509

[

Service Name Nm_RemoteSleepCancellation

SUﬂﬂaX void Nm_RemoteSleepCancellation (
NetworkHandleType nmNetworkHandle
)

Service ID [hex] 0x18

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) nmNetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) None

Return value None

Description Notification that the network management has detected that not all other nodes on the network

are longer ready to enter Bus-Sleep Mode.

Available via Nm.h

]
[SWS_Nm_00278]

Upstream requirements: RS_Nm_00150

[Configuration of Nm_RemoteSleepCancellation: This function is only available if
NmRemoteSleepIndEnabled is set to TRUE. |

The notification that not all other nodes on the network are longer ready to enter Bus-
Sleep Mode is only needed for internal purposes of the NM Coordinator.

Note: When NM Coordinator functionality is disabled Nm_RemoteSleepCancella—
tion can be an empty function.

8.4.1.8 Nm_SynchronizationPoint

[SWS_Nm_00194] Definition of callback function Nm_SynchronizationPoint
Upstream requirements: SRS _BSW_ 00359, RS Nm_02516

[

Service Name Nm_SynchronizationPoint

Syntax void Nm_SynchronizationPoint (
NetworkHandleType nmNetworkHandle
)

Service ID [hex] 0x19
Sync/Async Asynchronous

AUTSSAR

A

Reentrancy

Reentrant

Parameters (in)

nmNetworkHandle | Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

Notification to the NM Coordinator functionality that this is a suitable point in time to initiate the
coordinated shutdown on.

Available via

Nm.h

]

The notification that this is a suitable point in time to initiate the coordinated shut-
down is only needed for internal purposes of the NM Coordinator.

8.4.1.9 Nm_CoordReadyToSleepindication

[SWS_Nm_00254] Definition of callback function Nm_CoordReadyToSleepindi-

cation

Upstream requirements: SRS_BSW_00359, RS_Nm_02535

[

Service Name

Nm_CoordReadyToSleeplndication

Syntax void Nm_CoordReadyToSleepIndication (
NetworkHandleType nmChannelHandle
)
Service ID [hex] Oxle
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

Sets an indication, when the NM Coordinator Sleep Ready bit in the Control Bit Vector is set

Available via

Nm.h

]

[SWS_Nm_00255]
Upstream requirements: RS_Nm_00150
[Configuration of Nm_CoordReadyToSleepIndication: Optional

If NmCoordinatorSyncSupport is set to TRUE , the Nm shall provide the APl Nm__
CoordReadyToSleepIndication.|

AUTSSAR

8.4.1.10 Nm_CoordReadyToSleepCancellation

[SWS_Nm_00272] Definition of callback function Nm_CoordReadyToSleepCan-
cellation

Upstream requirements: SRS_BSW_00359, RS _Nm_02535

[

Service Name Nm_CoordReadyToSleepCancellation
Syntax void Nm_CoordReadyToSleepCancellation (
NetworkHandleType nmChannelHandle

)

Service ID [hex] Ox1f

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) nmChannelHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) None

Return value None

Description Cancels an indication, when the NM Coordinator Sleep Ready bit in the Control Bit Vector is set
back to 0.

Available via Nm.h

]

[SWS_Nm_00273]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_CoordReadyToSleepCancellation: Optional
If NmCoordinatorSyncSupport is set to TRUE , the Nm shall provide the APl Nm__
CoordReadyToSleepCancellation.]|

8.4.1.11 Nm_ForwardSynchronizedPncShutdown

[SWS_Nm_91009] Definition of API function Nm_ForwardSynchronizedPncShut-
down

Upstream requirements: RS_Nm_02544

[

Service Name Nm_ForwardSynchronizedPncShutdown

Syntax void Nm_ForwardSynchronizedPncShutdown (
NetworkHandleType NetworkHandle,
const uint8+ PncBitVectorPtr

)

Service ID [hex] 0x28

Sync/Async Synchronous

Reentrancy Non Reentrant for the same NetworkHandle, reentrant otherwise
Parameters (in) NetworkHandle | Identification of the NM-channel

Y%

AUTSSAR

A
PncBitVectorPtr Pointer to the bit vector with all PNC bits set to "1" which are
indicated for a synchronized PNC shutdown
Parameters (inout) None
Parameters (out) None
Return value None

Description

Notification that the network management has received a PN shutdown message on a
particular NM-channel. This is used to grant a nearly synchronized PNC shutdown across the
entire PN topology.

Available via

Nm.h

8.4.1.12 Nm_PncBitVectorRxIndication

[SWS_Nm_91006] Definition of callback function Nm_PncBitVectorRxIndication
Upstream requirements: RS_Nm_02544, SRS_ModeMgm_09250

Service Name

Nm_PncBitVectorRxIndication

SynEM' void Nm_PncBitVectorRxIndication (
NetworkHandleType NetworkHandle,
const uint8x PncBitVectorPtr,
boolean* RelevantPncRequestDetectedPtr
)
Service ID [hex] 0x25
Sync/Async Synchronous
Reentrancy Non Reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle Identification of the NM-channel

PncBitVectorPtr Pointer to the bit vector with all PNC bits set to "1" of external

requested PNCs

Parameters (inout)

None

Parameters (out)

Pointer to a boolean variable which indicates, if a relevant PNC
request is available in the given PncBitVector

RelevantPncRequest
DetectedPtr

Return value

None

Description

Indication that a bus specific network management has received a NM message on a particular
NM-channel that contain a PNC bit vector. This is used to aggregate the external PNC requests.
The function evaluate if a relevant PNC request (PNC bit set to ’1’) is available in the given PNC
bit vector. If a relevant PNC request is available (PNC bit passes the PNC bit vector filter), then
the RelevantPncRequestDetectedPtr refers to a boolean with value set to TRUE. Otherwise
refer to booelan with value set to FALSE. RelevantPncRequestDetectedPtr is evaluated by the
callee <Bus>Nm module to qualify the further processing of the received NM-PDU.

Available via

Nm.h

AUTSSAR

8.4.1.13 Nm_PncBitVectorTxIndication

[SWS_Nm_91008] Definition of callback function Nm_PncBitVectorTxIndication

Upstream requirements: RS_Nm_02544, SRS_ModeMgm_09250

Service Name

Nm_PncBitVectorTxIndication

Syntax void Nm_PncBitVectorTIxIndication (
NetworkHandleType NetworkHandle,
uint8+ PncBitVectorPtr
)
Service ID [hex] 0x27
Sync/Async Synchronous
Reentrancy Non Reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle Identification of the NM-channel

Parameters (inout) None

Parameters (out) PncBitVectorPtr Pointer to the bit vector with all PNC bits set to "1" of internal
requested PNCs

Return value None

Description

Function called by <Bus>Nms to request the aggregated internal PNC requests for
transmission within the Nm message.

Available via

Nm.h

8.4.1.14 Nm_PncBitVectorTxConfirmation

[SWS _Nm_91010] Definition of callback function Nm_PncBitVectorTxConfirma-

tion

Upstream requirements: RS_Nm_02574, SRS_ModeMgm_09250

Service Name

Nm_PncBitVectorTxConfirmation

SynMM' void Nm_PncBitVectorTxConfirmation (
NetworkHandleType NetworkHandle,
const uint8x PncBitVectorPtr,
Std_ReturnType result
)
Service ID [hex] 0x29
Sync/Async Synchronous
Reentrancy Non-reentrant for the same NetworkHandle, reentrant otherwise

Parameters (in)

NetworkHandle Identification of the NM-channel

PncBitVectorPtr Pointer to the PNC bit vector which was considered for

transmission

result E_OK: The PNC bit vector has been transmitted
E_NOT_OK: The transmission of the PNC bit vector failed

Parameters (inout)

None

Parameters (out)

None

Y

AUTSSAR

JAN
Return value None
Description Function called by <Bus>Nms to confirm the state of the transmission for the given PNC bit
vector on the given NM-Channel.
Available via Nm.h
J

8.4.2 Extra Call-back notifications

The following call-back notifications are provided by NM Interface for OEM specific
extensions of bus specific NM components and are not required by any AUTOSAR
module. In the context of the Basic functionality and NM Coordinator functionality they
have no specific usage.

8.4.2.1 Nm_PduRxIndication

[SWS_Nm_00112] Definition of callback function Nm_PduRxIndication
Upstream requirements: SRS_BSW_00359

[

Service Name

Nm_PduRxIndication

Syntax void Nm_PduRxIndication (
NetworkHandleType nmNetworkHandle
)

Service ID [hex] 0x15
Sync/Async Asynchronous
Reentrancy Reentrant

Parameters (in)

nmNetworkHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None
Description Notification that a NM message has been received.
Available via Nm.h

]

The notification that an NM message has been received is only needed for OEM
specific extensions of the NM Coordinator.

[SWS_Nm_00164]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_PduRxIndication: This function is only available if Nmp-
duRxIndicationEnabled is setto TRUE. |

AUTSSAR

8.4.2.2 Nm_StateChangeNotification

[SWS_Nm_00114] Definition of callback function Nm_StateChangeNotification
Upstream requirements: SRS_BSW_00359, RS_Nm_00050, RS_Nm_00051

[

Service Name Nm_StateChangeNotification
Syntax void Nm_StateChangeNotification (
NetworkHandleType nmNetworkHandle,
Nm_StateType nmPreviousState,
Nm_StateType nmCurrentState
)
Service ID [hex] 0x16
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) nmNetworkHandle Identification of the NM-channel
nmPreviousState Previous state of the NM-channel
nmCurrentState Current (new) state of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value None
Description Notification that the state of the lower layer <Bus>Nm has changed.
Available via Nm.h

]

The notification that the state of the bus-specific NM has changed is only needed for
OEM specific extensions and for the optional Dynamic PNC-to-channel-mapping fea-
ture.

[SWS_Nm_00165]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_StateChangeNotification: This function is only available if
NmStateChangeIndEnabled is setto TRUE. |

8.4.2.3 Nm_RepeatMessagelndication

[SWS_Nm_00230] Definition of callback function Nm_RepeatMessagelndication
Upstream requirements: SRS_BSW_00359, RS_Nm_00153, RS_Nm_00051

[

Service Name Nm_RepeatMessagelndication

Syntax void Nm_RepeatMessageIndication (
NetworkHandleType nmNetworkHandle,
boolean pnLearningBitSet

)

Y

AUTSSAR

A
Service ID [hex] Ox1a
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) nmNetworkHandle Identification of the NM-channel
pnLearningBitSet TRUE if also the Partial Network Learning Bit was received,
FALSE otherwise
Parameters (inout) None
Parameters (out) None
Return value None

Description

Service to indicate that an NM message with set Repeat Message Re- quest Bit has been
received. This is needed for node detection and the Dynamic PNC-to-channel-mapping feature.

Available via

Nm.h

]

The notification that an NM message with the set Repeat Message Bit has been re-
ceived is only needed for OEM specific extensions and for the optional Dynamic PNC-
to-channel-mapping feature.

[SWS_Nm_00504]

Upstream requirements: RS_Nm_02547

[If Nm_RepeatMessageIndication is called with pnLearningBitSet setto TRUE
and NmDynamicPncToChannelMappingEnabled is set to TRUE for the provided

nmNetworkHandle Nm shall call ComM_Nm_PncLearningBitIndication withthe
corresponding network handle. |

8.4.2.4 Nm_TxTimeoutException

[SWS_Nm_00234] Definition of callback function Nm_TxTimeoutException
Upstream requirements: SRS_BSW_00359

[

Service Name

Nm_TxTimeoutException

Syntax void Nm_TxTimeoutException (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x1b
Sync/Async Asynchronous
Reentrancy Reentrant

Parameters (in)

nmNetworkHandle -

Parameters (inout) None
Parameters (out) None
Return value None
Description Service to indicate that an attempt to send an NM message failed.
Available via Nm.h

AUTSSAR

The notification that an attempt to send an NM message failed is only needed for OEM

specific extensions of the Nm.

8.4.2.5 Nm_CarWakeUpIndication

[SWS_Nm_00250] Definition of callback function Nm_CarWakeUplIndication

Upstream requirements: SRS_BSW_00359, RS_Nm_02503, RS _Nm_02536

[

Service Name

Nm_CarWakeUplndication

Syntax void Nm_CarWakeUpIndication (
NetworkHandleType nmChannelHandle
)
Service ID [hex] Ox1d
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

nmChannelHandle

Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description This function is called by a <Bus>Nm to indicate reception of a CWU request.

Available via Nm.h

]

[SWS_Nm_00251]
Upstream requirements: RS_Nm_00150

[Configuration of Nm_CarWakeUpIndication: Optional
If NmCarWakeUpRxEnabled is TRUE, The Nm shall provide the APl Nm_CarWake-
UpIndication.]|

8.5 Scheduled functions

Since the Base functionality (Chapter 7.1) does not contain any logic that needs to be
invoked outside the scope of call from the upper or lower layer, the main function is
only needed to implement the NM Coordinator functionality (Chapter 7.2).

[SWS_Nm_00020]
Upstream requirements: SRS_BSW_00373

[A scheduled main function shall only contain logic related to the NM Coordinator
functionality. |

AUTSSAR

[SWS_Nm_00121]
Upstream requirements: SRS_BSW_00450

[In case the main function is called before the Nm has been initialized, the main func-
tion shall immediately return without yielding an error. |

Rationale: In case the NM Coordinator functionality is not used and/or disabled, calling
the main function shall not yield in an error, but nothing should be performed.

8.5.1 Nm_MainFunction

[SWS_Nm_00118] Definition of scheduled function Nm_MainFunction
Upstream requirements: SRS_BSW_00424, SRS_BSW_00425

Service Name Nm_MainFunction
Syntax void Nm_MainFunction (
void
)
Service ID [hex] 0x10
Description This function implements the processes of the NM Interface, which need a fix cyclic scheduling.
Available via SchM_Nm.h

[SWS_Nm_00279]
Upstream requirements: RS_Nm_00150

[If NmCoordinatorSupportEnabled is set to TRUE, the Nm_MainFunction API
shall be available. |

8.6 Expected interfaces

This chapter lists all interfaces required from other modules.

8.6.1 Mandatory Interfaces

This chapter lists all interfaces required from other modules.

AUTSSAR

[SWS_Nm_00119] Definition of mandatory interfaces required by module Nm
Upstream requirements: RS_Nm_02515, RS_Nm_02536

API Function Header File Description

<Bus>Nm_GetState - Returns the state and the mode of the network
management.

<Bus>Nm_NetworkRelease - Release the network, since ECU doesn’t have to
communicate on the bus.

<Bus>Nm_NetworkRequest - Request the network, since ECU needs to
communicate on the bus.

<Bus>Nm_PassiveStartUp - Passive startup of the NM. It triggers the transition

from Bus-Sleep Mode to the Network Mode without
requesting the network.

ComM_Nm_BusSleepMode ComM_Nm.h Notification that the network management has
entered Bus-Sleep Mode. This callback function
should perform a transition of the hardware and
transceiver to bus-sleep mode.

ComM_Nm_NetworkMode ComM_Nm.h Notification that the network management has
entered Network Mode.
ComM_Nm_NetworkStartindication ComM_Nm.h Indication that a NM-message has been received in

the Bus Sleep Mode, what indicates that some
nodes in the network have already entered the
Network Mode.

ComM_Nm_PrepareBusSleepMode ComM_Nm.h Notification that the network management has
entered Prepare Bus-Sleep Mode. Reentrancy:
Reentrant (but not for the same NM-Channel)

ComM_Nm_RestartIndication ComM_Nm.h If Nmlf has started to shut down the coordinated
busses, AND not all coordinated busses have
indicated bus sleep state, AND on at least on one of
the coordinated busses NM is restarted, THEN the
NM Interface shall call the callback function ComM_
Nm_RestartIndication with the nmNetworkHandle of
the channels which have already indicated bus
sleep state.

8.6.2 Optional Interfaces

This chapter defines all interfaces that are required to fulfill an optional functionality of
the module.

[SWS_Nm_00166] Definition of optional interfaces requested by module Nm
Upstream requirements: RS_Nm_00150, RS_Nm_02515

[

API Function Header File Description

<Bus>Nm_ActivateTxPnShutdownMsg | — NM indicate to activate the transmission of PN
shutdown messages on the given NM-Channel. This
results in transmission of a NM-PDU with PNSR bit
set to 1 (PN shutdown message).

AUTSSAR

API Function Header File Description

<Bus>Nm_CheckRemoteSleep - Check if remote sleep indication takes place or not.

Indication

<Bus>Nm_DeactivateTxPnShutdown — NM indicate to deactive the transmission of PN

Msg shutdown messages on the given NM-Channel. This
result in transmission of a usual NM-PDUs with
PNSR bit set to 0.

<Bus>Nm_DisableCommunication - Disable the NM PDU transmission ability.

<Bus>Nm_EnableCommunication - Enable the NM PDU transmission ability.

<Bus>Nm_GetLocalNodeldentifier - Get node identifier configured for the local node.

<Bus>Nm_GetNodeldentifier - Get node identifier out of the last successfully
received NM-message.

<Bus>Nm_GetPduData - Pointer where NM PDU shall be copied to.

<Bus>Nm_GetUserData - Get user data out of the last successfully received
NM message.

<Bus>Nm_PnLearningRequest - -

<Bus>Nm_RepeatMessageRequest - Request a Repeat Message Request to be
transmitted next on the bus.

<Bus>Nm_RequestBus - Request bus synchronization.

Synchronization

<Bus>Nm_RequestSynchronizedPnc - -

Shutdown

<Bus>Nm_SetSleepReadyBit - Set the NM Coordinator Sleep Ready bit in the
Control Bit Vector

<Bus>Nm_SetUserData - Set user data for NM messages transmitted next on
the bus.

BswM_Nm_CarWakeUplIndication BswM_Nm.h Function called by Nm to indicate a CarWakeup.

Com_SendSignal Com.h The service Com_SendSignal updates the signal
object identified by Signalld with the signal
referenced by the SignalDataPtr parameter.

ComM_Nm_ForwardSynchronizedPnc ComM_Nm.h If an ECU in role of an intermediate PNC coordinator

Shutdown receives a PN shutdown message via a <Bus>Nm,
then ComM is immediately indicated via ComM_
Nm_ForwardSynchronizedPncShutdown to forward
the request for a synchronized PNC shutdown of the
affected PNCs given by PncBitVectorPtr. Therefore,
ComM will immediately release the affected PNC
state machines and forward the PNC bit vector to
the affected ComM Channels and the corresponding
NM channels, respectively. Note: This supports a
nearly synchronized PNC shutdown across the PN
topology from the top-level PNC coordinator down to
the subordinated PNC node.

ComM_Nm_PncLearningBitIndication ComM_Nm.h Service to indicate that an NM message with set
PNC Learning Bit has been received.

ComM_Nm_RepeatMessageleft ComM_Nm.h Notification that the state of all <Bus>Nm has left

Indication RepeatMessage. This interface is used to indicate
by the optional Dynamic PNC-to-channel-mapping
feature to indicate that learning phase ends.

ComM_Nm_UpdateEIRA ComM_Nm.h Function to indicate the current aggregated external
/ internal PNC request called by Nm.

ComM_Nm_UpdateERA ComM_Nm.h Function to indicate the current external PNC
request per channel called by Nm.

Det_ReportError Det.h Service to report development errors.

AUTSSAR

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kind of inter-
faces are not fixed because they are configurable.

8.6.3.1 NmCarWakeUpCallout

[SWS_Nm_00291] Definition of configurable interface <NmCarWakeUpCallout>
Upstream requirements: RS_Nm_02504

[
Service Name <NmCarWakeUpCallout>
Syntax void <NmCarWakeUpCallout> (
NetworkHandleType nmNetworkHandle
)
Service ID [hex] 0x20
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) nmNetworkHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value None
Description Callout function to be called by Nm_CarWakeUpIndication()
Available via Nm_Externals.h
J

8.7 Version Check

For details refer to [2] Chapter 5.1.8 “Version check”..

AUTSSAR

9 Sequence diagrams

9.1 Basic functionality

The role of the Basic functionality of the Nm is to act as a dispatcher of functions be-
tween the ComM and the Bus Specific NM modules. Therefore, no sequence diagram
is provided.

9.2 Seq of NM Coordinator functionality

Figure shows the sequence diagram for the shutdown of network of the NM
Coordinator functionality.

AUTSSAR

«module» «module» «module» «module» «module» «module»
ComM Nm FrNm CanNm FrSM CanSM

Network Mode
Normal

Network Mode

T T
| |
| |
| | Normal
| |
|
|

Operation Operation

Nm_NetworkReI:ease(std_ReturnType,

Netwo rkl-|a\ndleq—|ype)(%I-l—_| |
. I

| L Nm_RemoteSleepindication(NetworkHandleType)
The NM Coordinator ECU L= H
“ready to sleep” but cluster Nm_RemoteSleeplindication(NetworkHandleType
to be coordinated is not. e P (VP)
Thus NM must not "release I-|-|
bus communication” yet. | |
: 1 Repetition cycle
L . boundary()
Nm_SynchronlzatlonPoml(NetworH—iandIeType?
1

timers()

|
T
par synchronous PM shutdown / | Shutdown timer expires()

I
I
|
I
|
|
|
I
I
|
|
|
Start shutdown I
I
|
|
|
T
|
|
|
I
I
|
|
|
I
|
|
|
I
I
|
|
|
I
I
|
|
|
I
|
|

[FlexRay] :
I
| FrNm_RequestBusSynchronization(Std_RetumnType,
| Netw?rl?-iandIeType)
: FrNm_NetworkRelease(Std_RetumType,
| Netwom-landleType)
| I |
| | Repetition cycle
| | IFboundary()
I I
I I
| | Network Mode
| | Ready Sleep
| |
I I I
| | Last repetition
! ! cycle finished()
| Nm_BusSleepMode(NetworkHandleType) Y
|

_ComeNmiBusSI:eepMode Bus Sleep Mode
NetworkHandleType)= | No
| ISP PEEEEL Communication
| FrSM_RequestComMode(ComM_ModeType,----~~" "~ g
NetworkHandleType) T 'Lrl
| |

| | | |

"""""" e e e e e

CanNm_RequestBusSynchronization(Std_RetumType,

NetworkHandleType) i
ICanNm_NetworkRelease(Std_RetumType,
NetworkHandleType)

! Timer expires

'
Nm_PrepareBusSleepMode(NetworkHandleType)
|

ComM_Nm_PrepareBusSleepMode

-\ | Prepare Bus-Sleep Mode
NetworkHandleType)s——— |
I

AN
__________ Silent Communication

Al
g

| I |
|CanSM_RequestComMode(Std_RetumType, NetworkHandleType,
IComM_ModeType)]]
I I
I

I
< Nm_BusSleepMode(NetworkHandleType)
I
I
|

Timer expires

I I
| |
| |
ComM_Nm_BusSleepMode
NetworkHandleType)<

Bus-Sleep Mode N\
____________ No Communication
_ |-

1
|CanSM_RequestComMode(Std_RetumType, NetworkHandleType,
IComM_ModeType)
I

Figure 9.1: Nm Coordination

AUTSSAR

9.3 Sequence of Partial network functionality

The following sequence diagram shows the interaction between Nm and the Canlf
module as example. The following deviations has to be considered if using FlexRay
communincation stack

» FrNm has no ECUC parameter similar to CanNmA1l1NmMessagesKeepAwake

» FrNm needs to check ECUC parameter FrIfImmediate of the NM PDU config-
ured in Frif

* If using FrNm, the NM Pdu is always fechted via FrNm_TriggerTransmit.
There is no ECUC parameter similar to CanIfTxPduTriggerTransmit

The following deviations have to be considered if using an Ethernet communication
stack:

» The UdpNm module interacts with the SoAd (and NOT with the Ethlf). Therefore
UdpNm has to call SoAd_IfTransmit to trigger a transmission of a NM PDU.
The SoAd has to call UdpNm_SoAdIfRxIndication to indicate the reception
of NM PDU

* UpdNm needs to the check the ECUC parameter SoAdBswModules/-—
SoAdIfTriggerTransmit of the SoAd, to determine if the NM PDU is fetched
via call of UdpNm_SoAdIfTriggerTransmit

AUTSSAR

«module»
ComM

(from :ConM)
|

«module»
Nm

T
(from Nm)
|

| Nm_UpdatelRA(NetworkHandleType, const uint8*) !

- ComM aggregate all intemal requests as IRA
(internal request array) and provide the
information as PNC bit vector per NM Channel

- Nm stores the internal PNC requests as PNC
bit vector per channel. Stored PNC bit vector is
overwritten when Nm_UpdatelRA is called.

———e e ==

< ________

-
|
|
I
|
|
|

I Nm_PncBitVectorRxIndication

T
Network Mode Normal
Operation

«module» «module»
CanNm Canlf
T
(from Canlf)

<
| |

- CanNm extract the PNC bit vectolﬁ

: (NetworkHandleType, uint8*, boolean**)

<
| |

- Evaluate received Pnc bit vector

- Set RelevantPncRequestDetected to TRUE, if relevant PNC bits are set.

Otherwise to false
- Store the filtered PNC bit vector

alt Rel%vantfiltered PNC request detecled/

[Chang:e detected in EIRA]
1

| . ComM_Nm_UpdateEIRA(const uint8*)

[

____________________ >
..... [
[Change detected in ERA]
I
|
| ComM_Nm_UpdateERA(NetworkHandleType,
! const uint8*)
! <
<
____________________ >

-

CanNm_RxIndication(PduldType, const PdulnfoTYpe')

alt

[CanNmAJINmMessagesKeepAwake is set to TRUE]

[CanNmAJI

Process the NM message

mMessagesKeepAwake is set to FALSE]

- Nm_PncBitVectorRxIndication has set
DetectedRelevantPncRequest to FALSE, then discard the NM

<Bus>Nm statemachine)

message. Otherwise the NM message shall be processed (e.g.

_____________________ >

Figure 9.2: Partial Network functionality (part 1)

AUTSSAR

«module»
ComM

T
(from ComM)
|

«module» «module»
Nm CanNm
T T
(frorn_ Nm) (from C_an Nm)

Nm_MainFunction()

1
alt EIRA update detected)

ComM_Nm_UpdateEIRA(const uint8*)

Aggregate IRA/ERA/EIRA
Pn information()

EIRA evaluation()

(Re-)start EIRA RxTime!ﬁ

loop Iterate over all NM channels/

L
alt HRA update detected)

ERAn evaluation()

(Re-)start ERAn Timer of
the given NM-Channel

--------- 1]

«module»
Canlf

T
(from Canlf)

opt NmSynchronizedPncShutdownEnabled is set to TRUE/

loop over all NM channels/

Fan Nm_Activate TxPnShutdownMsg(NetworkHandleType, Std_ReturnType)

>l
11

- activate the transmission of PN shutdown messages on the given channel
- set the PNSR bit to '1* within the CBV

Figure 9.3: Partial Network functionality (part 2)

AUTSSAR

«module» «module» «module» «module»
ComM Nm CanNm Canlf
T T T T
(from ComM) (from Nm) (from CanNm) (from Canlf)

opt NmSynchronizedPncShutdownEnabled is set to TRUE/ |
[Transiission of PN shutdown messages has been activated] I-F CanNm_MainFunction()
| I

Transmit PN shutdown message and post pone the usual NM message to the sub sequential <Bus>Nm_Function Il|

T T
Nm_PncBitVectorT xIndication(NetworkHandle Type, u|nt|8*|*)

L
[T= 1

- Nm provide the PNC bit vector with PNC bit set to *1* which are requested for a synchronized PNC shutdown on the given channel
- Nm re-start the PN reset timer of the affected PNC(s)

_____________________ | Canlf_Transmit(Std_ReturnType, PduldType,
const PdulnfoType*)

CanNm transmit the NM message as PN shutdown message Ill

< i

assert | CanNm_TxConfirmation(PduldType, Std_RetumType)
1 1
[Transmission has been confirmed] <

INm_PncBitVectorT xConfirmation(NetworkHandleType, const uint8*, Std_ReturnType)
1

alt

[Request for hronized PNC shutdown of the given channel is still pepding]

[Request for synghronized PNC shutdown of the given channel is NOT| pending]

Nm remove request for synchronized PNC shutdown according the given PNC bit vector and given chann!.ll|

CanNm_DeactivateTxPnShutdownMsg(NetworkHandleType, Std_RetumType)

- de-activate the transmission of PN shutdown messages on the given channel
- set the PNSR bit to ‘0" within the CBV

-
I
I

[Re-transmission timre q]as been elapsed]
|

Nm remove request for synchronized PNC shutdown of the affected channel Ill

| T
|CanNm_DeactivateTxPnShutdownMsg(NetworkHandleType, Std_ReturnType)
»

Figure 9.4: Partial Network functionality (part 3)

AUTSSAR

«module»
ComM

T
(from ComM)
|
|

«module»
Nm

T
(from Nm)
|
|

«module» «module»
CanNm Canlf
T T
(from CanNm) (from Canlf)

opt NmSynchronizedPncShutdownEnabled is set to TRUE/

[NmMdgCycleTime expired AND transmission of PN shutdowin messages has been deactivated]

| Nm_PncBitVectorTxIndication(NetworkHandle Type, uintg8**)
|

-
I

- Nm provides to the <Bus>Nm the stored PNC bit vector
representing unfiltered intemal PNC requests.

alt

Canlf_Transmit(Std_ReturnType, PduldType,
const PduinfoType*)

The fetched intemal PNC requests from Nm are transmitted as

PNC bit vector within the NM-message

[CanIfoPdPTriggerTransmit set to TRUE]

Canlf_Transmit(Std_ReturnType, PduldType, const
PdulnfoType*)

- —— e e e = —

-
| CanNm_TriggerTransmit(Std_ReturnType,
| PduldType, PdulnfoType**)

| @
||

F——

The fetched internal PNC requests from Nm are transmitted as
PNC bit vector within the NM-message

e |

Figure 9.5: Partial Network functionality (part 4)

AUTSSAR

10 Configuration specification

The following chapter contains tables of all configuration parameters and switches
used to determine the functional units of the Generic Network Management Interface.
The default values of configuration parameters are denoted as bold.

In general, this chapter defines configuration parameters and their clustering into con-
tainers. Chapter 10.1 describes fundamentals. Chapter 10.2, Chapter 10.3 and
Chapter 10.4 specifies the structure (containers) and the parameters of the Nm. The
Chapter 10.5 specifies published information of the Nm.

AUTSSAR

AUTOSARParameterDefinition:

EcucDefinitionCollection

+module

CanNm: EcucModuleDef

+module

lowerMultiplicity = 0
upperMultiplicity = 1

FrNm: EcucModuleDef

+module

lowerMultiplicity = 0
upperMultiplicity = 1

UdpNm: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

+module

J1939Nm:
EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1: Network Management Overview

AUTSSAR

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Configuration parameters

The following Chapters summarize all configuration parameters for the Nm. The de-
tailed meanings of most parameters are described in Chapter 7 and Chapter 8.
Note that the behavior and configuration of Nm is closely dependent on the behavior
and configuration of the different bus specific NM modules used.

10.2.1 Nm

[ECUC_Nm_00243] Definition of EcucModuleDef Nm |

Module Name

Nm

Description

The Generic Network Management Interface module

Post-Build Variant Support

false

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Dependency

NmChannelConfig 1.* This container contains the configuration (parameters) of the bus
channel(s). The channel parameter shall be harmonized within
the whole communication stack.

NmGilobalConfig 1 This container contains all global configuration parameters of the

Nm Interface.

AUTSSAR

Nm: EcucModuleDef NmGlobalConfig: +subContainer NmGlobalConstants:
EcucParamConfContainerDef e T

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = 1
lowerMultiplicity = 1

+subContainer NmGlobalProperties:

EcucParamConfContainerDef

+container

+subContainer NmGlobalFeatures:
EcucParamConfContainerDef

NmEcucPartitionRef:
+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

+destination

EcucPatrtition:
+container EcucParamConfContainerDef

NmChannelConfig:
EcucParamConfContainerDef lowerMultiplicity = 0

upperMultiplicity = *

upperMultiplicity = *
lowerMultiplicity = 1

Figure 10.2: Nm configuration container overview

10.3 Global configurable parameters

10.3.1 NmGlobalConfig

[ECUC_Nm_00196] Definition of EcucParamConfContainerDef NmGlobalConfig
[

Container Name NmGilobalConfig

Parent Container Nm

Description This container contains all global configuration parameters of the Nm Interface.
Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUCID
NmEcucPartitionRef 0..1 [ECUC_Nm_00245]

AUTSSAR

Included Containers

Container Name Multiplicity Dependency
NmGilobalConstants 1 -
NmGilobalFeatures 1 -
NmGlobalProperties 1 -

]

[ECUC_Nm_00245] Definition of EcucReferenceDef NmEcucPartitionRef |

Parameter Name NmEcucPartitionRef

Parent Container NmGilobalConfig

Description Reference to EcucPartition, where Nm module is assigned to.
Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
NmNumberOfChannels:
NmGlobalConfig: +subContainer NmGlobalConstants: +parameter EcuclntegerParamDef
EcucParamConfContainerDef o— EcucParamConfContainerDef ——
in=
upperMultiplicity = 1 max = 255
lowerMultiplicity = 1
NmDevErrorDetect:
. EcucBooleanParamDef
+subContainer +parameter e ——
P defaultValue = false
NmGilobalProperties:
EcucParamConfContainerDef +parameter NmVersionInfoApi:
EcucBooleanParamDef
NmCycletimeMainFunction:
defaultValue = false EcucFloatParamDef
+parameter —
o min =0
max = INF
NmPnResetTime: lowerMultiplicity = 0
EcucFloatParamDef upperMultiplicity = 1
+parameter
min = 0.001
max = 65535
lowerMultiplicity = 0 NmPnEiraCalcEnabled:
upperMultiplicity = 1 EcucBooleanParamDef
P Parameter T Jefaultvalue = false
lowerMultiplicity = 0
NmPncBitVectorOffset: uprpeiipiely = i
EcuclntegerParamDef
+parameter in=o L)
min = NmPnShutdownMessageRetransmissionDuration:
max = 63 EcucFloatParamDef
defaultValue = 0
lowerMultiplicity = 0 min = 0.001
upperMultiplicity = 1 max = 65.535
+parameter lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.3: NmGlobalConfig overview

AUTSSAR

10.3.2 NmGlobalConstants

[ECUC_Nm_00198] Definition of EcucParamConfContainerDef NmGlobalCon-
stants |

Container Name NmGlobalConstants
Parent Container NmGlobalConfig
Description -

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
NmNumberOfChannels 1 [ECUC_Nm_00201]

| No Included Containers

]
[ECUC_Nm_00201] Definition of EcucintegerParamDef NmNumberOfChannels |
Parameter Name NmNumberOfChannels
Parent Container NmGlobalConstants
Description Number of NM channels allowed within one ECU.
Multiplicity 1
Type EcuclntegerParamDef
Range 1..255
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
]

10.3.3 NmGlobalProperties

[ECUC_Nm_00199] Definition of EcucParamConfContainerDef NmGlobalProper-
ties [

Container Name NmGilobalProperties
Parent Container NmGlobalConfig
Description -

Multiplicity 1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
NmCycletimeMainFunction 0..1 [ECUC_Nm_00205]
NmDevErrorDetect 1 [ECUC_Nm_00203]
NmPncBitVectorOffset 0..1 [ECUC_Nm_00252]
NmPnEiraCalcEnabled 0..1 [ECUC_Nm_00251]
NmPnResetTime 0..1 [ECUC_Nm_00250]
NmPnShutdownMessageRetransmissionDuration 0..1 [ECUC_Nm_00260]
NmVersionInfoApi 1 [ECUC_Nm_00204]

No Included Containers

]

[ECUC_Nm_00205] Definition of EcucFloatParamDef NmCycletimeMainFunction
[

Parameter Name NmCycletimeMainFunction

Parent Container NmGilobalProperties

Description The period between successive calls to the Main Function of the NM Interface in
seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Dependency If NmCoordinatorSupportEnabled is set to TRUE, then the NmCycletimeMainFunction

shall be configured.

]
[ECUC_Nm_00203] Definition of EcucBooleanParamDef NmDevErrorDetect |

Parameter Name NmDevErrorDetect
Parent Container NmGilobalProperties
Description Switches the development error detection and notification on or off.

« true: detection and notification is enabled.

« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_Nm_00252] Definition of EcucintegerParamDef NmPncBitVectorOffset |

Parameter Name

NmPncBitVectorOffset

Parent Container

NmGilobalProperties

Description Parameter to configure the offset in bytes of the PNC bit vector that contains the PNC
requests, which is transmitted within NM PDU by the corresponding <Bus>Nm.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..63
Default value 0
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE. Nm
PncBitVectorOffset == Number of <Bus>Nm Sytem Bytes OR NmPncBitVectorOffset +
NmPncBitVectorLength == NM PdulLength.

]

[ECUC_Nm_00251] Definition of EcucBooleanParamDef NmPnEiraCalcEnabled

[

Parameter Name

NmPnEiraCalcEnabled

Parent Container

NmGilobalProperties

Description

Specifies if Nmlf calculates the PNC request information for internal and external
requests (EIRA)

true: PN request are calculated

false: PN request are not calculated

Note: A PNC coordinator (NmPnEraCalcEnabled set to TRUE) has always set NmPn
EiraCalcEnabled to TRUE.

Multiplicity

0..1

Type

EcucBooleanParamDef

Default value

false

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

>

Link time VARIANT-LINK-TIME

Post-build time -

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

X
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

This parameter can only be set to TRUE if NmPartialNetworkSupportEnabled is set to
TRUE. If NmPnEraCalcEnabled is set to TRUE than this parameter shall be set to
TRUE.

AUTSSAR

[ECUC_Nm_00250] Definition of EcucFloatParamDef NmPnResetTime |

Parameter Name

NmPnResetTime

Parent Container

NmGlobalProperties

Description Specifies the runtime of the reset time in seconds. This reset time is valid for the reset
of PNC requests in the EIRA and in the ERA. The value shall be the same for every
channel. Thus it is a global config parameter.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 65535]

Default value -

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE. NmPn
ResetTime > <Can|Udp>NmMsgCycleTime NmPnResetTime > FrNmDataCycle * FR
Cycle Time

]

[ECUC_Nm_00260] Definition of EcucFloatParamDef NmPnShutdownMessage
RetransmissionDuration [

Parameter Name

NmPnShutdownMessageRetransmissionDuration

Parent Container

NmGilobalProperties

Description Specifies the duration in seconds of the retransmission phase of a PN shutdown
message. A retransmission shall be performed per affected NM channel, as long as the
PN shutdown message could not be successfully sent and the retransmission timer is
running. The value shall be a multiple integral NmMainFunctionPeriod.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 65.535]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

Only valid NmSynchronizedPncShutdownEnabled == TRUE. NmPnShutdownMessage
RetransmissionDuration <= NmPnResetTime.

AUTSSAR

[ECUC_Nm_00204] Definition of EcucBooleanParamDef NmVersioninfoApi [

Parameter Name

NmVersionInfoApi

Parent Container NmGilobalProperties

Description Pre-processor switch for enabling Version Info API support.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.3.4 NmGlobalFeatures

[ECUC_Nm_00200] Definition of EcucParamConfContainerDef NmGilobalFea-
tures |

Container Name

NmGlobalFeatures

Parent Container

NmGlobalConfig

Description

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

NmBusSynchronizationEnabled 1 [ECUC_Nm_00208]
NmCarWakeUpCallout 0..1 [ECUC_Nm_00234]
NmCarWakeUpRxEnabled 1 [ECUC_Nm_00235]
NmComControlEnabled 1 [ECUC_Nm_00210]
NmCoordinatorSupportEnabled 1 [ECUC_Nm_00206]
NmCoordinatorSyncSupport 1 [ECUC_Nm_00240]
NmDynamicPncToChannelMappingSupport 1 [ECUC_Nm_00246]
NmGilobalCoordinatorTime .1 [ECUC_Nm_00237]
NmPartialNetworkSupportEnabled .1 [ECUC_Nm_00253]
NmPduRxIndicationEnabled 1 [ECUC_Nm_00214]
NmRemoteSleeplndEnabled 1 [ECUC_Nm_00207]
NmStateChangelndEnabled 1 [ECUC_Nm_00215]
NmSynchronizedPncShutdownEnabled 0..1 [ECUC_Nm_00249]
NmUserDataEnabled 1 [ECUC_Nm_00211]

| No Included Containers

AUTSSAR

[ECUC_Nm_00208] Definition of EcucBooleanParamDef NmBusSynchronization

Enabled |

Parameter Name

NmBusSynchronizationEnabled

Parent Container

NmGlobalFeatures

Description Pre-processor switch for enabling bus synchronization support of the <Bus>Nms. This
feature is required for NM Coordinator nodes only.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

This parameter must be enabled if NmCoordinatorSupportEnabled is enabled.

]

[ECUC_Nm_00234] Definition of EcucFunctionNameDef NmCarWakeUpCallout |

Parameter Name

NmCarWakeUpCallout

Parent Container

NmGlobalFeatures

Description Name of the callout function to be called if Nm_CarWakeUplIndication() is called. If this
parameter is not configured, the Nm will call BswM_Nm_CarWakeUplndication.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

only available if NmCarWakeUpRxEnabled == TRUE

]

[ECUC_Nm_00235] Definition of EcucBooleanParamDef NmCarWakeUpRXxEn-

abled |

Parameter Name

NmCarWakeUpRxEnabled

Parent Container

NmGilobalFeatures

Description Enables or disables CWU detection. FALSE - CarWakeUp not supported TRUE - Car
WakeUp supported

Multiplicity 1

Type EcucBooleanParamDef

Default value

false

Y%

AUTSSAR

Post-Build Variant Value

Value Configuration Class

A
false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_Nm_00210] Definition of EcucBooleanParamDef NmComControlEnabled

[

Parameter Name

NmComControlEnabled

Parent Container

NmGlobalFeatures

Description Pre-processor switch for enabling the Communication Control support.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Nm_00206] Definition of EcucBooleanParamDef NmCoordinatorSupport

Enabled |

Parameter Name

NmCoordinatorSupportEnabled

Parent Container

NmGilobalFeatures

Description Pre-processor switch for enabling NM Coordinator support.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Only valid if at least one NM channel exists which has NmPassiveModeEnabled set to
FALSE.

]

[ECUC_Nm_00240] Definition of EcucBooleanParamDef NmCoordinatorSync

Support |

Parameter Name

NmCoordinatorSyncSupport

Parent Container

NmGlobalFeatures

Description

Enables/disables the coordinator synchronisation support.

V

AUTSSAR

A
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Dependency NmCoordinatorSyncSupport shall only be valid if NmCoordinatorSupportEnabled is
TRUE.

]

[ECUC_Nm_00246] Definition of EcucBooleanParamDef NmDynamicPncToChan-
nelMappingSupport

Status: DRAFT

Parameter Name NmDynamicPncToChannelMappingSupport
Parent Container NmGlobalFeatures
Description Precompile time switch to enable the dynamic PNC-to-channel-mapping handling.

False: Dynamic PNC-to-channel-mapping is disabled True: Dynamic
PNC-to-channel-mapping is enabled
Tags: atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Nm_00237] Definition of EcucFloatParamDef NmGlobalCoordinatorTime
[

Parameter Name NmGilobalCoordinatorTime

Parent Container NmGlobalFeatures

Description This parameter defines the maximum shutdown time of a connected and coordinated
NM-Cluster. Note:This includes nested connections.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

NmGilobalCoordinatorTime shall only be valid if NmCoordinatorSupportEnabled is
TRUE.

]

[ECUC_Nm_00253] Definition of EcucBooleanParamDef NmPartialNetworkSup-

portEnabled |

Parameter Name

NmPartialNetworkSupportEnabled

Parent Container

NmGilobalFeatures

Description Pre-processor switch for enabling the Nm Partial Network support.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

This parameter can only be set to TRUE if NmCoordinatorSupportEnabled is set to
FALSE.

]

[ECUC_Nm_00214] Definition of EcucBooleanParamDef NmPduRxIndicationEn-

abled |

Parameter Name

NmPduRxIndicationEnabled

Parent Container

NmGlobalFeatures

Description Pre-processor switch for enabling the PDU Rx Indication.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Nm_00207] Definition of EcucBooleanParamDef NmRemoteSleepIndEn-

abled |

Parameter Name

NmRemoteSleepIndEnabled

Parent Container

NmGlobalFeatures

Description Pre-processor switch for enabling Remote Sleep Indication support. This feature is
required for a Gateway or Nm Coordinator functionality.
Note that this feature should not be used if all NM channels have Passive Mode
enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

If NmCoordinatorSupportEnabled == TRUE then NmRemoteSleepindEnabled = TRUE

]

[ECUC_Nm_00215] Definition of EcucBooleanParamDef NmStateChangelndEn-

abled |

Parameter Name

NmStateChangelndEnabled

Parent Container

NmGlobalFeatures

Description Pre-processor switch for enabling the Network Management state change notification.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

NmStateChangelndEnabled = TRUE if NmDynamicPncToChannelMappingSupport ==
TRUE

]

[ECUC_Nm_00249] Definition of EcucBooleanParamDef NmSynchronizedPnc

ShutdownEnabled |

Parameter Name

NmSynchronizedPncShutdownEnabled

Parent Container

NmGlobalFeatures

Description Enables or disables support of synchronized PNC shutdown.
FALSE: synchronized PNC shutdown is disabled
TRUE: synchronized PNC shutdown is enabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

AUTSSAR

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Dependency This parameter can only be set to TRUE if NmPartialNetworkSupportEnabled is set to
TRUE.

]
[ECUC_Nm_00211] Definition of EcucBooleanParamDef NmUserDataEnabled |

Parameter Name NmUserDataEnabled

Parent Container NmGilobalFeatures

Description Pre-processor switch for enabling User Data support.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

NmGlobalConfig:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

+subContainer

NmuUserDataEnabled: +parameter NmGlobalFeatures: *+parameter \mcomControlEnabled:
EcucBooleanParamDef —— EcucParamConfContainerDef o> EcucBooleanParamDef
d bled :

N i : .
mCoordinatorSupportEnable +parameter +parameter NmStateChangelndEnabled:
EcucBooleanParamDef @ o] EcucBooleanParamDef

defaultValue = false

NmRemoteSleepIindEnabled: +parameter NmCarWakeUpCallout:
EcucBooleanParamDef +parameter EcucFunctionNameDef
- >

lowerMultiplicity = 0
upperMultiplicity = 1

NmBusSynchronizationEnabled: |+parameter
EcucBooleanParamDef

I
+parameter pynamicPncToChannelMappingSupport:

o> EcucBooleanParamDef
NmGlobalCoordinatorTime:
EcucFloatParamDef
+parameter .
min =0 o NmSynchronizedPncShutdownEnabled:
max = INF_ N +parameter EcucBooleanParamDef
lowerMultiplicity = 0 —
upperMultiplicity = 1 defauItVa!ug B false
lowerMultiplicity = 0
upperMultiplicity = 1
NmCoordinatorSyncSupport: +parameter
@ .
EcucBooleanParamDef NmPartialNetworkSupportEnabled:
+paramleter EcucBooleanParamDef
o defaultValue = false
NmPduRxIndicationEnabled: +parameter

lowerMultiplicity = 0

EcucBooleanParamDef upperMultiplicity = 1

NmCarWakeUpRxEnabled:
EcucBooleanParamDef

+parameter

defaultValue = false

Figure 10.4: NmGlobalFeatures overview

AUTSSAR

10.4 Channel configurable parameters

10.4.1

NmChannelConfig:

NmChannelConfig

ComMChannel:
EcucParamConfContainerDe

lowerMultiplicity = 1
upperMultiplicity = 256

NmPnEnabled: EcucBooleanParamDef

defaultvalue = false
lowerMultiplicity = 0
upperMultiplicity = 1

NmDynamicPncToChannelMappingEnabled:

EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 0
upperMultiplicity = 1
defaultvalue = false

NmPassiveModeEnabled:
EcucBooleanParamDef

EcucParamConfContainerDef +reference NmComMChannelRef: EcucReferenceDef +destination
upperMultiplicity = * requiresSymbolicNameValue = true
lowerMultiplicity = 1
NmCoordClusterindex: EcuclntegerParamDef
+parameter lowerMultiplicity = 0
upperMultiplicity = 1
min =0
max = 255
+parameter
>
NmActiveCoordinator. EcucBooleanParamDef
+parameter —
P lowerMultiplicity = 0
upperMultiplicity = 1
+parameter
>
+parameter NmSynchronizingNetwork
EcucBooleanParamDef
+parameter| NmChannelSleepMaster: EcucBooleanParamDef
+parameter
>
NmComUserDataSupport:
+parameter EcucBooleanParamDef

+subContainer

NmBusType: EcucChoiceContainerDef

+choi ce?

+choice?

NmGenericBusNmConfig: EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter +parameter

NmStandardBusNmConfig:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+paramete$

NmGenericBusNmPrefix:

NmGenericBusNmShutdownTime:

NmStandardBusT ype:

EcucStringParamDef

EcucFloatParamDef

EcucEnumerationParamDef

min =0

max = INF

+parameter

NmStateReportEnabled:
EcucBooleanParamDef

+reference

NmStateReportSignalRef:

EcucReferenceDef

NmPnFilterMaskByte:

EcucParamConfContainerDef +parameter

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

NmPnFilterMaskByteIndex:

EcuclntegerParamDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = 63

+parameter

+parameter

NmPncBitVectorLength:

EcuclntegerParamDef

min =0
max = 63
defaultvValue = 0

+parameter

min =0
max = 62

NmPnFilterMaskByteValue:
EcucintegerParamDef

min =0
max = 255

defaultvalue = 0

NmPnEraCalcEnabled:
EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.5: NmChannelConfig overview

AUTSSAR

[ECUC_Nm_00197] Definition of EcucParamConfContainerDef NmChannelCon-

fig [
Container Name NmChannelConfig
Parent Container Nm

Description

This container contains the configuration (parameters) of the bus channel(s). The
channel parameter shall be harmonized within the whole communication stack.

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
NmActiveCoordinator 0..1 [ECUC_Nm_00236]
NmChannelSleepMaster 1 [ECUC_Nm_00227]
NmComUserDataSupport 0..1 [ECUC_Nm_00241]
NmCoordClusterlndex 0..1 [ECUC_Nm_00221]
NmDynamicPncToChannelMappingEnabled 0..1 [ECUC_Nm_00248]
NmPassiveModeEnabled 1 [ECUC_Nm_00242]
NmPncBitVectorLength 1 [ECUC_Nm_00258]
NmPnEnabled 0..1 [ECUC_Nm_00254]
NmPnEraCalcEnabled 0..1 [ECUC_Nm_00259]
NmStateReportEnabled 1 [ECUC_Nm_00231]
NmSynchronizingNetwork 1 [ECUC_Nm_00223]
NmComMChannelRef 1 [ECUC_Nm_00217]
NmStateReportSignalRef 0..1 [ECUC_Nm_00232]
Included Containers

Container Name Multiplicity Dependency

NmBusType 1 -

NmPnFilterMaskByte 0..63 Information for the filter of the PNC bit vector.

]

[ECUC_Nm_00236] Definition of EcucBooleanParamDef NmActiveCoordinator |

Parameter Name

NmActiveCoordinator

Parent Container

NmChannelConfig

Description This parameter indicates whether a NM channel - part of a Nm Coordination cluster -
will be coordinated actively (NmActiveCoordinator = TRUE) or passively (NmActive
Coordinator = FALSE).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

AUTSSAR

A

Link time -

Post-build time -

Dependency

If the NmCoordinatorSyncSupport is set to true this feature is available. Only one
channel per Coordination cluster can have NmActiveCoordinator = FALSE. This
parameter is mandatory if this channel belongs to a Coordination cluster (see ECUC_
Nm_00221). Value cannot be set to FALSE in case BusNmType is set to NM_BUSNM_
LOCALNM (i.e. no passive coordination for this type).

]

[ECUC_Nm_00227] Definition of EcucBooleanParamDef NmChannelSleepMaster

[

Parameter Name

NmChannelSleepMaster

Parent Container

NmChannelConfig

Description This parameter shall be set to indicate if the sleep of this network can be absolutely
decided by the local node only and that no other nodes can oppose that decision.
If this parameter is set to TRUE, the Nm shall assume that the channel is always ready
to go to sleep and that no calls to Nm_RemoteSleeplndication or Nm_RemoteSleep
Cancellation will be made from the <Bus>Nm representing this channel.
If this parameter is set to FALSE, the Nm shall not assume that the network is ready to
sleep until a call has been made to Nm_RemoteSleepCancellation.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

If the parameter NmCoordClusterindex is not defined, this parameter is not valid.

]

[ECUC_Nm_00241] Definition of EcucBooleanParamDef NmComUserDataSup-

port |
Parameter Name NmComUserDataSupport
Parent Container NmChannelConfig

Description This parameter indicates whether on a NM channel user data is accessed via Com
signals or by SetUserData API.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

A

‘ Dependency NmComUserDataSupport shall be equal to <Bus>NmComUserDataSupport

]
[ECUC_Nm_00221] Definition of EcucintegerParamDef NmCoordClusterindex |

Parameter Name NmCoordClusterindex

Parent Container NmChannelConfig

Description If this parameter is undefined for a channel, the corresponding bus does not belong to
an NM coordination cluster.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 0..255

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Dependency If NmCoordClusterlndex is defined than NmPassiveModeEnabled has to be FALSE for
this channel.

]

[ECUC_Nm_00248] Definition of EcucBooleanParamDef NmDynamicPncToChan-
nelMappingEnabled

Status: DRAFT

Parameter Name NmDynamicPncToChannelMappingEnabled
Parent Container NmChannelConfig
Description Channel-specific parameter to enable the dynamic PNC-to-channel-mapping feature.

False: Dynamic PNC-to-channel-mapping is disabled True: Dynamic
PNC-to-channel-mapping is enabled
Tags: atp.Status=draft

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency Shall only be TRUE if NmDynamicPncToChannelMappingSupport is TRUE

AUTSSAR

[ECUC_Nm_00242]

abled |

Definition of EcucBooleanParamDef NmPassiveModeEn-

Parameter Name

NmPassiveModeEnabled

Parent Container

NmChannelConfig

Description This parameter indicates whether a NM channel is active,e.g. can request
communication and keep the bus awake, or passive, e.g. can just be woken up and
kept awake by other ECUs.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

if ComMNmVariant == FULL then NmPassiveModeEnabled = FALSE; NmPassiveMode
Enabled shall be equal to <Bus>NmPassiveModeEnabled

]

[ECUC_Nm_00258] Definition of EcuclntegerParamDef NmPncBitVectorLength |

Parameter Name

NmPncBitVectorLength

Parent Container

NmChannelConfig

Description Parameter to configure the length of the PNC bit request information in bytes, which is
transmitted within NM PDU by the corresponding <Bus>Nm.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..63

Default value 0

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE.

]

[ECUC_Nm_00254] Definition of EcucBooleanParamDef NmPnEnabled |

Parameter Name

NmPnEnabled

Parent Container

NmChannelConfig

Description If this parameter is true, then this NM channel supports Partial Networking.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

A

Post-build time B

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE.

]

[ECUC_Nm_00259] Definition of EcucBooleanParamDef NmPnEraCalcEnabled [

Parameter Name

NmPnEraCalcEnabled

Parent Container

NmChannelConfig

Description Specifies if Nmlf calculates the PN request information for external requests. (ERA)
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE.

]

[ECUC_Nm_00231] Definition of EcucBooleanParamDef NmStateReportEnabled

[

Parameter Name

NmStateReportEnabled

Parent Container

NmChannelConfig

Description Specifies if the NMS shall be set for the corresponding network. false: No NMS shall
be set true: The NMS shall be set

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

only available if NmStatChangelndEnabled and NmComUserDataSupport are
configured to TRUE.

AUTSSAR

[ECUC_Nm_00223] Definition of EcucBooleanParamDef NmSynchronizingNet-

work |

Parameter Name

NmSynchronizingNetwork

Parent Container

NmChannelConfig

Description If this parameter is true, then this network is a synchronizing network for the NM
coordination cluster which it belongs to. The network is expected to call Nm_
SynchronizationPoint() at regular intervals.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

If the parameter NmCoordClusterindex is not defined, this parameter is not valid. Only
one network can be configured as synchronizing network (NmSynchronizingNetwork =
TRUE) per coordination cluster (same NmCoordClusterindex value per channel). Nm
SynchronizingNetwork can only be set to true if NmActiveCoordinator is true for all
networks which have the same NmCoordClusterindex.

]

[ECUC_Nm_00217] Definition of EcucReferenceDef NmComMChannelRef |

Parameter Name

NmComMChannelRef

Parent Container

NmChannelConfig

Description Reference to the corresponding ComM Channel.

Multiplicity 1

Type Symbolic name reference to ComMChannel

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_Nm_00232] Definition of EcucReferenceDef NmStateReportSignalRef |

Parameter Name

NmStateReportSignalRef

Parent Container

NmChannelConfig

Description Reference to the signal for setting the NMS by calling Com_SendSignal for the
respective channel.

Multiplicity 0..1

Type Symbolic name reference to ComSignal

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

AUTSSAR

A

Link time -

Post-build time -

Dependency

Signal must be configured in COM. Only available if NmStateReportEnabled == true

10.4.2 NmPnFilterMaskByte

[ECUC_Nm_00255] Definition of EcucParamConfContainerDef NmPnFilterMask

Byte |

Container Name

NmPnFilterMaskByte

Parent Container

NmChannelConfig

Description Information for the filter of the PNC bit vector.

Multiplicity 0..63

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
NmPnFilterMaskBytelndex 1 [ECUC_Nm_00256]
NmPnFilterMaskByteValue 1 [ECUC_Nm_00257]

| No Included Containers

]

[ECUC_Nm_00256] Definition of EcucintegerParamDef NmPnFilterMaskByteln-

dex |

Parameter Name

NmPnFilterMaskBytelndex

Parent Container

NmPnFilterMaskByte

Description Index of the filter mask byte. Specifies the position within the filter mask byte array.
Multiplicity 1
Type EcuclntegerParamDef
Range 0. 62
Default value -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE, NmPn
FilterMaskBytelndex < NmPncBitVectorLength.

AUTSSAR

[ECUC_Nm_00257]

Value |

Definition of EcuclntegerParamDef NmPnFilterMaskByte

Parameter Name

NmPnFilterMaskByteValue

Parent Container

NmPnFilterMaskByte

Description Parameter to configure the filter mask byte.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value 0

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

This parameter is only valid if NmPartialNetworkSupportEnabled is set to TRUE.

10.4.3 NmBusType

[ECUC_Nm_00218] Definition of EcucChoiceContainerDef NmBusType |

Choice Container Name NmBusType

Parent Container NmChannelConfig

Description -

Multiplicity 1

No Included Parameters

Container Choices

Container Name Multiplicity Dependency
NmGenericBusNmConfig 0..1 -
NmStandardBusNmConfig 0..1 -

AUTSSAR

NmBusType: NmGenericBusNmConfig: i i
EcucChoiceContainerDef EcucParamConfContainerDef NmGenericBusNmShutdownTime:
+parameter EcucFloatParamDef
lowerMultiplicity = 0 o=
S min =
+choice upperMultiplicity = 1 oo [NE

+parameter| NmGenericBusNmPrefix:
EcucStringParamDef

) NmStandardBusNmConfig:
+choice [EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

+literal| _NM_BUSNM_J1939NM:

NmStandardBusType: o EcucEnumerationLiteral Def
EcucEnumerationParam Def

o Hiteral NM_BUSNM_CANNM:
EcucEnumerationLiteral Def
+literal
NM_BUSNM_FRNM:
EcucEnumerationLiteral Def

+literal NM_BUSNM_LOCALNM:
EcucEnumerationLiteral Def

+literal
NM_BUSNM_UDPNM:

EcucEnumerationLiteralDef

Figure 10.6: NmBusType overview

10.4.4 NmGenericBusNmConfig

[ECUC_Nm_00225] Definition of EcucParamConfContainerDef NmGenericBus
NmConfig |

Container Name NmGenericBusNmConfig
Parent Container NmBusType

Description -

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
NmGenericBusNmPrefix 1 [ECUC_Nm_00219]
NmGenericBusNmShutdownTime 1 [ECUC_Nm_00239]

No Included Containers

]

[ECUC_Nm_00219] Definition of EcucStringParamDef NmGenericBusNmPrefix [

AUTSSAR

Parameter Name

NmGenericBusNmPrefix

Parent Container

NmGenericBusNmConfig

Description The prefix which identifies the generic <Bus>Nm. This will be used to determine the
API name to be called by Nm for the provided interfaces of the <Bus>Nm. This string
will used for the module prefix before the "_" character in the API call name.

Multiplicity 1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_Nm_00239]
downTime |

Definition of EcucFloatParamDef NmGenericBusNmShut-

Parameter Name

NmGenericBusNmShutdownTime

Parent Container

NmGenericBusNmConfig

Description This parameter shall be used to calculate shutdown delay time.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

10.4.5 NmStandardBusNmConfig

[ECUC_Nm_00226] Definition of EcucParamConfContainerDef NmStandardBus

NmConfig |

Container Name NmStandardBusNmConfig
Parent Container NmBusType

Description -

Multiplicity 0..1

Configuration Parameters

AUTSSAR

Included Parameters
Parameter Name Multiplicity ECUC ID

NmStandardBusType 1 [ECUC_Nm_00220]

| No Included Containers

]

[ECUC_Nm_00220] Definition of EcucEnumerationParamDef NmStandardBus
Type [

Parameter Name NmStandardBusType

Parent Container NmStandardBusNmConfig

Description Identifies the bus type of the channel for standard AUTOSAR <Bus>Nms and is used to
determine which set of API calls to be called by Nm for the <Bus>Nms. Note: The
Ethernet bus’ NM is UdpNm !

Multiplicity 1

Type EcucEnumerationParamDef

Range NM_BUSNM_CANNM CAN bus
NM_BUSNM_FRNM FlexRay bus
NM_BUSNM_J1939NM J1939 bus (address claiming)
NM_BUSNM_LOCALNM Local Bus (e.g. LIN bus)
NM_BUSNM_UDPNM Ethernet bus (using UDP)

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency Configuring value to NM_BUSNM_LOCALNM is only allowed if NmCoordClusterindex
for the corresponding channel is defined (i.e channel is coordinated).

10.5 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_Nm_NA_00999] Not applicable requirements

Upstream requirements: RS_Nm_00043, RS_Nm_00137, RS_Nm_00142, RS_Nm_00144, RS_
Nm_00145, RS Nm 00146, RS Nm 00152, RS Nm_ 02550, RS _
Nm_02519, SRS_BSW_00004, SRS_BSW_00167, SRS_BSW_00168,
SRS_BSW_00170, SRS_BSW_00336, SRS_BSW_00339, SRS_BSW_
00375, SRS _BSW_00380, SRS BSW_00383, SRS _BSW_00388,
SRS _BSW_00389, SRS _BSW_00390, SRS _BSW_00392, SRS_BSW _
00393, SRS_BSW_00395, SRS_BSW_00396, SRS_BSW_00397,
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_
00402, SRS_BSW_00403, SRS_BSW_00404, SRS_BSW_00406,
SRS_BSW_00409, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW _
00422, SRS _BSW 00423, SRS _BSW _ 00426, SRS BSW_00427,
SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_
00433, SRS_BSW_00437, SRS_BSW_00438, SRS_BSW_00451,
SRS_BSW_00458, SRS_BSW_00466, SRS_BSW_00467, SRS_BSW_
00469, SRS_BSW_00470, SRS_BSW_00471, SRS_BSW_00472,
SRS _BSW_00490, SRS BSW_00491

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R22-11

B.1.1 Added Specification Iltems in R22-11

Number Heading

[SWS_Nm_00521]

[SWS_Nm_00523]

[SWS_Nm_00524]

[SWS_Nm_00525]

[SWS_Nm_00527]

[SWS_Nm_00529]

[SWS_Nm_00530]

[SWS_Nm_00532]

[SWS_Nm_00533]

[SWS_Nm_00534]

[SWS_Nm_00535]

[SWS_Nm_00536]

[SWS_Nm_00537]

[SWS_Nm_91010]

[SWS_Nm_91011]

[SWS_Nm_NA_

00999] Not applicable requirements

Table B.1: Added Specification Iltems in R22-11

B.1.2 Changed Specification Items in R22-11

Number Heading

[SWS_Nm_00030]

[SWS_Nm_00031]

[SWS_Nm_00032]

[SWS_Nm_00033]

AUTSSAR

Number Heading

[SWS_Nm_00034]

[SWS_Nm_00035]

[SWS_Nm_00036]

[SWS_Nm_00037]

[SWS_Nm_00038]

[SWS_Nm_00039]

[SWS_Nm_00040]

[SWS_Nm_00042]

[SWS_Nm_00043]

[SWS_Nm_00044]

[SWS_Nm_00046]

[SWS_Nm_00112]

[SWS_Nm_00114]

[SWS_Nm_00117]

[SWS_Nm_00118]

[SWS_Nm_00119]

[SWS_Nm_00124]

[SWS_Nm_00154]

[SWS_Nm_00156]

[SWS_Nm_00159]

[SWS_Nm_00162]

[SWS_Nm_00166]

[SWS_Nm_00176]

[SWS_Nm_00183]

[SWS_Nm_00192]

[SWS_Nm_00193]

[SWS_Nm_00194]

[SWS_Nm_00230]

[SWS_Nm_00232]

[SWS_Nm_00234]

[SWS_Nm_00235]

[SWS_Nm_00236]

[SWS_Nm_00245]

[SWS_Nm_00250]

[SWS_Nm_00254]

[SWS_Nm_00259]

[SWS_Nm_00261]

[SWS_Nm_00267]

AUTSSAR

Number Heading

[SWS_Nm_00271]

[SWS_Nm_00272]

[SWS_Nm_00274]

[SWS_Nm_00275]

[SWS_Nm_00276]

[SWS_Nm_00282]

[SWS_Nm_00291]

[SWS_Nm_00293]

[SWS_Nm_00302]

[SWS_Nm_00305]

[SWS_Nm_00308]

[SWS_Nm_00310]

[SWS_Nm_00311]

[SWS_Nm_00312]

[SWS_Nm_00313]

[SWS_Nm_00317]

[SWS_Nm_00318]

[SWS_Nm_00319]

[SWS_Nm_00320]

[SWS_Nm_00321]

[SWS_Nm_00322]

[SWS_Nm_00323]

[SWS_Nm_00324]

[SWS_Nm_00325]

[SWS_Nm_00326]

[SWS_Nm_00327]

[SWS_Nm_00328]

[SWS_Nm_00329]

[SWS_Nm_00330]

[SWS_Nm_00331]

[SWS_Nm_00501]

[SWS_Nm_00502]

[SWS_Nm_00503]

[SWS_Nm_00504]

[SWS_Nm_00505]

[SWS_Nm_00508]

[SWS_Nm_91002]

[SWS_Nm_91003]

AUTSSAR

Number Heading

[SWS_Nm_91005]

[SWS_Nm_91006]

[SWS_Nm_91007]

[SWS_Nm_91008]

[SWS_Nm_91009]

[SWS_Nm_
CONSTR_00001]

Table B.2: Changed Specification Items in R22-11

B.1.3 Deleted Specification Items in R22-11

Number Heading

[SWS_Nm_00314]

[SWS_Nm_00332]

[SWS_Nm_005086]

[SWS_Nm_00507]

[SWS_Nm_00999] Not applicable requirements

Table B.3: Deleted Specification Items in R22-11

B.1.4 Added Constraints in R22-11

none

B.1.5 Changed Constraints in R22-11

none

B.1.6 Deleted Constraints in R22-11

none

AUTSSAR

B.2 Traceable item history of this document according to
AUTOSAR Release R23-11

B.2.1 Added Specification Items in R23-11

Number Heading

[SWS_Nm_00509] Definiton of network management states in Nm module

Table B.4: Added Specification Iltems in R23-11

B.2.2 Changed Specification Items in R23-11

Number Heading

[SWS_Nm_00312]

[SWS_Nm_91003] Definition of API function Nm_PnLearningRequest
[SWS_Nm_91005] Definition of API function Nm_RequestSynchronizedPncShutdown

Table B.5: Changed Specification Iltems in R23-11

B.2.3 Deleted Specification Items in R23-11

Number Heading

[SWS_Nm_00310]

[SWS_Nm_00311]

Table B.6: Deleted Specification Items in R23-11

B.2.4 Added Constraints in R23-11

none

B.2.5 Changed Constraints in R23-11

none

B.2.6 Deleted Constraints in R23-11

none

AUTSSAR

B.3

B.3.1

none

B.3.2

none

B.3.3

none

B.3.4

none

B.3.5

none

B.3.6

none

B.4

B.4.1

none

B.4.2

none

Traceable item history of this document according to
AUTOSAR Release R24-11

Added Constraints in R24-11

Changed Constraints in R24-11

Deleted Constraints in R24-11

Added Specification Items in R24-11

Changed Specification Items in R24-11

Deleted Specification Items in R24-11

Traceable item history of this document according to
AUTOSAR Release R25-11

Added Constraints in R25-11

Changed Constraints in R25-11

AUTSSAR

B.4.3 Deleted Constraints in R25-11

none

B.4.4 Added Specification Iltems in R25-11

none

B.4.5 Changed Specification ltems in R25-11

Number Heading

[SWS_Nm_00175]

[SWS_Nm_00259]

[SWS_Nm_00262]

Table B.7: Changed Specification Iltems in R25-11

B.4.6 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Specific limitations of the current release
	4.3 Applicability to automotive domains

	5 Dependencies to other modules
	5.1 Interfaces to modules
	5.1.1 ComM, CanNm, J1939Nm, FrNm, UdpNm, generic bus specific NM layers and CDD
	5.1.2 Error handling modules
	5.1.3 BSW Scheduler

	5.2 File structure
	5.2.1 Code file structure
	5.2.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Base functionality
	7.2 NM Coordinator functionality
	7.2.1 Applicability of the NM Coordinator functionality
	7.2.2 Keeping coordinated busses alive
	7.2.3 Shutdown of coordinated busses
	7.2.4 Coordination of nested sub-busses
	7.2.5 Calculation of shutdown timers
	7.2.6 Synchronization Use Case 1 - Synchronous command
	7.2.7 Synchronization Use Case 2 - Synchronous initiation
	7.2.8 Synchronization Use Case 3 - Synchronous network sleep
	7.2.8.1 Examples

	7.3 Wakeup and abortion of the coordinated shutdown
	7.3.1 External network wakeup
	7.3.2 Coordinated wakeup
	7.3.3 Abortion of the coordinated shutdown

	7.4 Partial Network functionality
	7.4.1 PNC bit vector filter algorithm
	7.4.2 Aggregation of PNC requests
	7.4.2.1 Aggregation of internal and external Partial Network Cluster
	7.4.2.2 Aggregation of external Partial Network Cluster

	7.4.3 EIRA / ERA state and PNC reset timer handling
	7.4.4 Synchronized PNC shutdown functionality

	7.5 Prerequisites of bus specific Network Management modules
	7.5.1 Prerequisites for basic functionality
	7.5.2 Prerequisites for NM Coordinator functionality
	7.5.3 Prerequisites of Partial Network functionality
	7.5.3.1 Prerequisite for aggregation of PNC requests
	7.5.3.2 Prerequisites for synchronized PNC shutdown functionality

	7.5.4 Configuration of global parameters for bus specific networks

	7.6 NM_BUSNM_LOCALNM
	7.7 Multicore Distribution
	7.8 Additional Functionality
	7.8.1 Nm_CarWakeUpIndication
	7.8.2 Nm_StateChangeNotification

	7.9 Error classification
	7.9.1 Development Errors
	7.9.2 Runtime Errors
	7.9.3 Production Errors
	7.9.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Nm_ModeType
	8.2.2 Nm_StateType
	8.2.3 Nm_BusNmType
	8.2.4 Nm_ConfigType

	8.3 Function definitions
	8.3.1 Standard services provided by NM Interface
	8.3.1.1 Nm_Init
	8.3.1.2 Nm_PassiveStartUp
	8.3.1.3 Nm_NetworkRequest
	8.3.1.4 Nm_NetworkRelease

	8.3.2 Communication control services provided by NM Interface
	8.3.2.1 Nm_DisableCommunication
	8.3.2.2 Nm_EnableCommunication

	8.3.3 Partial Network services provided by NM Interface
	8.3.3.1 Nm_RequestSynchronizedPncShutdown
	8.3.3.2 Nm_UpdateIRA

	8.3.4 Extra services provided by NM Interface
	8.3.4.1 Nm_SetUserData
	8.3.4.2 Nm_GetUserData
	8.3.4.3 Nm_GetPduData
	8.3.4.4 Nm_RepeatMessageRequest
	8.3.4.5 Nm_GetNodeIdentifier
	8.3.4.6 Nm_GetLocalNodeIdentifier
	8.3.4.7 Nm_CheckRemoteSleepIndication
	8.3.4.8 Nm_GetState
	8.3.4.9 Nm_GetVersionInfo
	8.3.4.10 Nm_PnLearningRequest

	8.4 Call-back notifications
	8.4.1 Standard Call-back notifications
	8.4.1.1 Nm_NetworkStartIndication
	8.4.1.2 Nm_NetworkMode
	8.4.1.3 Nm_BusSleepMode
	8.4.1.4 Nm_PrepareBusSleepMode
	8.4.1.5 Nm_SynchronizeMode
	8.4.1.6 Nm_RemoteSleepIndication
	8.4.1.7 Nm_RemoteSleepCancellation
	8.4.1.8 Nm_SynchronizationPoint
	8.4.1.9 Nm_CoordReadyToSleepIndication
	8.4.1.10 Nm_CoordReadyToSleepCancellation
	8.4.1.11 Nm_ForwardSynchronizedPncShutdown
	8.4.1.12 Nm_PncBitVectorRxIndication
	8.4.1.13 Nm_PncBitVectorTxIndication
	8.4.1.14 Nm_PncBitVectorTxConfirmation

	8.4.2 Extra Call-back notifications
	8.4.2.1 Nm_PduRxIndication
	8.4.2.2 Nm_StateChangeNotification
	8.4.2.3 Nm_RepeatMessageIndication
	8.4.2.4 Nm_TxTimeoutException
	8.4.2.5 Nm_CarWakeUpIndication

	8.5 Scheduled functions
	8.5.1 Nm_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces
	8.6.3.1 NmCarWakeUpCallout

	8.7 Version Check

	9 Sequence diagrams
	9.1 Basic functionality
	9.2 Seq of NM Coordinator functionality
	9.3 Sequence of Partial network functionality

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Configuration parameters
	10.2.1 Nm

	10.3 Global configurable parameters
	10.3.1 NmGlobalConfig
	10.3.2 NmGlobalConstants
	10.3.3 NmGlobalProperties
	10.3.4 NmGlobalFeatures

	10.4 Channel configurable parameters
	10.4.1 NmChannelConfig
	10.4.2 NmPnFilterMaskByte
	10.4.3 NmBusType
	10.4.4 NmGenericBusNmConfig
	10.4.5 NmStandardBusNmConfig

	10.5 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R22-11
	B.1.1 Added Specification Items in R22-11
	B.1.2 Changed Specification Items in R22-11
	B.1.3 Deleted Specification Items in R22-11
	B.1.4 Added Constraints in R22-11
	B.1.5 Changed Constraints in R22-11
	B.1.6 Deleted Constraints in R22-11

	B.2 Traceable item history of this document according to AUTOSAR Release R23-11
	B.2.1 Added Specification Items in R23-11
	B.2.2 Changed Specification Items in R23-11
	B.2.3 Deleted Specification Items in R23-11
	B.2.4 Added Constraints in R23-11
	B.2.5 Changed Constraints in R23-11
	B.2.6 Deleted Constraints in R23-11

	B.3 Traceable item history of this document according to AUTOSAR Release R24-11
	B.3.1 Added Constraints in R24-11
	B.3.2 Changed Constraints in R24-11
	B.3.3 Deleted Constraints in R24-11
	B.3.4 Added Specification Items in R24-11
	B.3.5 Changed Specification Items in R24-11
	B.3.6 Deleted Specification Items in R24-11

	B.4 Traceable item history of this document according to AUTOSAR Release R25-11
	B.4.1 Added Constraints in R25-11
	B.4.2 Changed Constraints in R25-11
	B.4.3 Deleted Constraints in R25-11
	B.4.4 Added Specification Items in R25-11
	B.4.5 Changed Specification Items in R25-11
	B.4.6 Deleted Specification Items in R25-11

