AUTSSAR

Document Title Specification of NVRAM Manager
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 33

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Changes in read & write processing
related to verification
AUTOSAR . , .
» Changes in configuration items related
2025-11-27 | R25-11 'I?/Ielease to block configuration
anagement
* Deletion of specification items (see Table
B.3)
* NvMBIlockEcucPartitionRef multiplicity
AUTOSAR changed to 1
2024-11-27 | R24-11 Release
Management + Corresponding API mentioned for each
Client-Server operation
AUTOSAR « NvM_SetBlockLockStatus removed
2023-11-23 | R23-11 Release
Management * NvM_Externals.h provided conditionally
» Obsolete requirements related to Mode
AUTOSAR Switch are removed
2022-11-24 | R22-11 Release
Management * Immediate block with CRC condition was
transitioned to recommendation
» Changes related to the concept 691
MemoryStackRework
AUTOSAR
2021-11-25 | R21-11 Release « Clarification regarding validation in Nv
Management M_WriteBlock

* Migration from doc to latex

AUTSSAR

* InitBlockCallback and ROM block are
mutually exclusive

AUTOSAR
2020-11-30 R20-11 Release * Removal for DET error NVM_E_
Management PARAM_BLOCK_TYPE
* NvM partitioning for multi-core
» Changes related to NVM_E_WRITE_
PROTECTED
AUTOSAR
2019-11-28 R19-11 Release Port Erototypes are generated for block
only if needed
Management
» Changed Document Status from Final to
published
+ Removed NvM_GetActiveService API
* Remove EcuMfixed completely
AUTOSAR » Changed single and multi block
Management
» minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
» Correction for write protection and erase
requests for NvMWriteBlockOnce blocks
AUTOSAR « Clarification regarding implicit recovery
2017-12-08 | 4.3.1 Release of dataset blocks
Management)) o
» minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
* Added NvM_FirstInitAll and NvM_
GetActiveService functionalities
AUTOSAR . Nvl\/.I_ISetRamBIc.)ckS.tatus works also for
2016-11-30 | 4.3.0 Release explicit synchronization blocks
Management « The interaction between NvM and BswM

is clarified.

* Other small clarifications and updates.

AUTSSAR

« Clarified behavior related to restoring
default data for blocks and for handling
of MEMIF_BLOCK_INVALID job result

« Added additional information related to

AUTOSAR :
2015-07-31 420 Release the block states in chapter 7.2.2.14 and
Management related subchapters
» Updated NvM_Init and NvM_ ValidateAll
function prototypes
» Debugging support marked as obsolete
* Detailed pass/fail conditions for
production errors
AUTOSAR - Added the NvM_ValidateAll functionality
2014-10-31 4.21 Release
Management * Updated return values for Init and
SingleBlock callbacks
* Other small clarifications
* Removed job postpone in case of explicit
synchronization failed after configured
number of retries
AUTOSAR « Updated Service Interfaces tables
2014-03-31 4.1.3 Release _ _
Management * Renamed configuration parameter
NvMRamBlockHeaderInclude to
NvMBlockHeaderInclude
« Editorial changes
* Added NvMRamBlockHeaderInclude
and NvMMainFunctionPeriod
configuration parameters
» Corrected bugs for
AUTOSAR NvMWriteVerificationDataSize and
2013-10-31 41.2 Release NvMNvramBlockldentifier parameters
Management

+ Other small clarifications in requirement
« Editorial changes

* Removed chapter(s) on change
documentation

AUTSSAR

AUTOSAR

2013-03-15 | 4.1.1 Release
Management

» Added NvM_ReadPRAMBIock, NvM_
WritePRAMBIock and NvM_
RestorePRAMBIockDefaults APIs

 Production Errors and Extended
Production Errors classification

» Clarifications for explicit synchronization
mechanism

» Modeling of Services: introduction of
formal descriptions of service interfaces

» Changes regarding NvM_CancelJobs
API, NvmSetRamBlockStatus API, Init
callback, handling of redundant
blocks,queue sizes and usage of
MemoryMapping

» Reworked according to the new SWS_
BSWGeneral

AUTOSAR

2011-12-22 | 4.0.3 Release
Management

« Added NvM_CancelJobs behaviour
» Added NvM and BswM interaction

» Added NvM_ SetBlockLockStatus API
functional description

* Corrected inconsistency between
C-interface and port interface

* Updated Include structure

» Updated configuration parameters
description and range

AUTOSAR

2010-09-30 | 3.1.5 Release
Management

» Behavior specified to prevent possible
loss of data during shutdown

* References to DEM for production
errors, new config container
NvmDemEventParameterRefs

* NvMMaxNoOfWriteRetries renamed to
NvMMaxNumOfWriteRetries

* Note in chapter 7.1.4.5 completed
* Null pointer handling changed

» Chapter "Version check" updated
v

AUTSSAR

A
* New DET error NVM_E_PARAM _
POINTER

» Chapter 10 updated,
NvMMainFunctionCycleTime moved,
NvMSelectBlockForWriteAll added,
some ranges corrected

* Behavior specified when NVRAM block
ID 1 shall be written

* Chapter 12 updated

» Handling of single-block callbacks during
asynchronous multi-block specified.

» Some minor changes, typos corrected

* The following features had impact on
this document:

* Debugging concept
* Error handler concept

* Memory related concepts

AUTOSAR « The following major features were
2010-02-02 | 3.1.4 Release necessary to implement these concepts:
Management
« Static Block Id Check
» Write Verification
* Read Retry
* buffered read/write-operations
* Legal disclaimer revised
» Technical Office SWS Improvements are
incorporated.
* Requirement IDs for configuration
parameters (chapter 10) added.
AUTOSAR
2008-08-13 | 3.1.1 Release « Management of the RAM block state
Management specified more precisely.

» The NVRAM Manager doesn’t support
non-sequential NVRAM block IDs any

longer.
v

AUTSSAR

A
« Document meta information extended

» Small layout adaptations made

AUTOSAR
2007-12-21 3.0.1 Release * Legal disclaimer revised
Management
» AUTOSAR service description added in
chapter 11
* Reentrancy of callback functions
specified
AUTOSAR _ .
2007-01-24 | 2.1.15 Release » Details regarding memory hardware
Management abstraction addressing scheme added
* Legal disclaimer revised
* "Advice for users" revised
* "Revision Information" added
» Document structure adapted to common
AUTOSAR Release 2.0 SWS Template.
2006-05-16 | 2.0 Release « Major changes in chapter 10
Management
» Structure of document changed partly
AUTOSAR
2005-05-31 | 1.0 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 13
2 Acronyms and Abbreviations 15
3 Related documentation 16
3.1 Input documents & related standardsandnorms 16
3.2 Related specification 16

4 Constraints and assumptions 17
4.1 Limitations 17
4.2 Applicabilitytocardomains o oo 17
4.3 Conflicts e 17

5 Dependencies to other modules 18
51 Filestructure 18
5.1.1 Headerfilestructure 18

5.2 Memory abstractionmodules, 18
53 CRCmodule 18

6 Requirements Tracing 19
7 Functional specification 23
7.1 Basic architecture guidelines Lo 23
7.1.1 Layerstructure 23
7.1.2 Addressing scheme for the memory hardware abstraction 23
7121 Examples 24

7.1.3 Basicstorageobjects 25
7.1.83.1 NVblock e 25

7.1.83.2 RAMDbIock e 26

7.1.83.3 ROMDbIlock. 27

7.1.3.4 Administrativeblock 28

7.1.35 NVBlockHeader 29

7.1.4 Block managementtypes 29
7.1.4.1 Block management types overview 29

7.1.42 NVRAMblock structure 30

7.1.4.3 NVRAM block descriptortable 31

7.1.4.4 Native NVRAMDblock, 31

7.1.45 Redundant NVRAM®block 31

7.1.46 Dataset NVRAMblock 33

7.1.4.7 NVRAM Manager API configurationclasses 34

7.1.5 Scan order/priority scheme 37

7.2 Generalbehavior 38
7.2.1 Functionalrequirements L 38

7.22 Designnotes 40

AUTSSAR

8

7.221 NVRAM managerstartup
7.2.2.2 NVRAM manager shutdown
7.2.2.3 (Quasi) parallel write access to the NvM module
7.2.2.4 NVRAM block consistency check
7.225 Errorrecovery
7.2.2.6 Recovery of a RAM block with ROMdata.
7.2.2.7 Implicit recovery of a RAM block with ROM defaultdata
7.2.2.8 Explicit recovery of a RAM block with ROM default data
7.2.2.9 Detection of an incomplete write operation to a NV block
7.2.2.10 Termination of a single block request
7.2.2.11 Termination of a multiblockrequest
7.2.2.12 General handling of asynchronous requests/ job processing . .
7.2.2.13 NVRAM block write protection
7.2.2.14 Validation and modification of RAM blockdata
7.2.2.15 Communication and implicit synchronization between applica-
tionand NVRAM manager
7.2.2.16 Normal and extended runtime preparation of NVRAM blocks . .
7.2.2.17 Communication and explicit synchronization between applica-
tionand NVRAM manager
7.2.2.18 StaticBlock IDCheck
72219 ReadRetry
7.2.2.20 Write Verification
7.2.2.21 Comparing NV datainNvM
7.2.2.22 NvM and BswM interaction
7.2.2.23 Block Compression o
7.2.2.24 Block Ciphering
7.3 Error Classification,
7.3.1 DevelopmentErrors
7.3.2 Runtime Errors
7.3.3 ProductionErrors
7.3.3.1 NVM_E_LOSS_OF _REDUNDANCY

API specification

8.1 Importedtypes
8.2 Typedefinitions
8.2.1 NvM_ConfigType o
8.2.2 NvM_MultiBlockRequestType
8.3 Function definitions
8.3.1 Synchronousrequests
83.1.1 NvM Init
8.3.1.2 NvM SetDatalndex
8.3.1.3 NvM GetDatalndex
8.3.1.4 NvM _SetBlockProtection
8.3.1.5 NvM GetErrorStatus

AUTSSAR

8.3.1.6 NvM GetVersioninfo 81
8.3.1.7 NvM _SetRamBlockStatus 82
8.3.1.8 NvM Canceldobs 85
8.3.2 Asynchronous single block requests 86
8.3.21 NvM ReadBlock 86
8.3.22 NvM WriteBlock 90
8.3.2.3 NvM_RestoreBlockDefaults 93
8.3.24 NvM EraseNvBlock 96
8.3.2.5 NvM InvalidateNvBlock 97
8.3.2.6 NvM_ReadPRAMBlock 98
8.3.2.7 NvM_WritePRAMBIlock 102
8.3.2.8 NvM_RestorePRAMBIlockDefaults 105
8.3.3 Asynchronous multi blockrequests, 106
8.3.3.1 NvM_ReadAll 106
8.3.3.2 NvM_WriteAll 114
8.3.3.3 NvM CancelWriteAll 117
8.3.3.4 NvM ValidateAll. 118
8.3.3.5 NvM FirstnitAll 120
8.3.3.6 Callback notifications 123
8.4 Scheduled functions 125
8.5 Expectedinterfaces 127
8.5.1 Mandatory Interfaceso 127
8.5.2 Optional Interfaces 128
8.5.3 Configurable interfaces, 128
8.5.3.1 Single block job end notification 129
8.5.3.2 Multi block job end notification 130
8.5.3.3 Callback function for block initialization 130
8.5.3.4 Callback function for RAMto NvMcopy 131
8.5.3.5 Callback function for NvMto RAMcopy 132
8.6 APIOverview e 133
8.7 Servicelnterfaces 133
8.7.1 Client-Server-Interfaces 133
8.71.1 NvM_Admin 133
8.7.1.2 NvM Mirror e 134
8.7.1.3 NvM_NotifylnitBlock 135
8.7.1.4 NvM_NotifyJobFinished 135
8.7.1.5 NvM Service 136
8.7.2 Implementation Data Types 141
8.7.2.1 ImplementationDataType NvM_RequestResultType 141
8.7.2.2 ImplementationDataType NvM_BlockldType 142
8.7.2.3 ImplementationDataType NvM_InitBlockRequestType 142
8.7.2.4 ImplementationDataType NvM_BlockRequestType 143

8.7.3 Ports 144

AUTSSAR

8.7.3.1 NvM_PAdmMIn_{BIOCK} . .« v o v o
8.7.3.2 NVM PM_{BIOCK} . « « v o oo e
8.7.3.3 NVM _PNIB {BIOCK} .« « v oo e
8.7.34 NVM PNJF_{BIOCK} . « .« « v oo
8.7.35 NVM PS {BIOCK} . « « v o oo

9 Sequence diagrams
9.1 Synchronouscalls.

9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6

NVvM_Init e
NvM_SetDatalndex
NvM_GetDatalndex,
NvM_SetBlockProtection
NvM_GetErrorStatus. o
NvM_GetVersioninfo oo

9.2 Asynchronouscalls

9.2.1
9.2.2
9.2.3
9.2.4

Asynchronous call withpolling
Asynchronous call withcallback
Cancellation of a Multi Block Request
BswM Interraction L

10 Configuration specification
10.1How toread thischapter
10.2Containers and configuration parameters
10.21NVM . L . e
10.2.2NvMCommon o e
10.2.3 NvMBlockDescriptor
10.2.4 NvMInitBlockCallback
10.2.5 NvMSingleBlockCallback,
10.2.6 NvMTargetBlockReference
10.2.7NvMEaRef
10.2.8NvMFeeRef L
10.2.9 NvmDemEventParameterRefs
10.2.10 NvMBlockCiphering
10.3Published Information oL

A Not applicable requirements

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6

Added Specification Itemsin R25-11
Changed Specification Itemsin R25-11
Deleted Specification ltemsin R25-11
Added Constraints in R25-11
Changed Constraints in R25-11
Deleted Constraints in R25-11

AUTSSAR

B.2 Traceable item history of this document according to AUTOSAR Release

R24-11 . . . e 200
B.2.1 Added Specification Itemsin R24-11 200
B.2.2 Changed Specification ltemsin R24-11 200
B.2.3 Deleted Specification Itemsin R24-11 200
B.2.4 Added ConstraintsinR24-11 200
B.2.5 Changed Constraintsin R24-11 200
B.2.6 Deleted ConstraintsinR24-11 200

B.3 Traceable item history of this document according to AUTOSAR Release

R23-11 . . e 200
B.3.1 Added Specification ltemsin R23-11 200
B.3.2 Changed Specification ltemsin R23-11 201
B.3.3 Deleted Specification ltemsin R23-11 201
B.3.4 Added Constraintsin R23-11 202
B.3.5 Changed Constraintsin R23-11 202
B.3.6 Deleted Constraints in R23-11 202

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration of the
AUTOSAR Basic Software module NVRAM Manager (NvM).

The NvM module shall provide services to ensure the data storage and maintenance of
NV (non volatile) data according to their individual requirements in an automotive en-
vironment. The NvM module shall be able to administrate the NV data of an EEPROM
and/or a FLASH EEPROM emulation device.

The NvM module shall provide the required synchronous/asynchronous services for
the management and the maintenance of NV data (init/read/write/control).

The relationship between the different blocks can be visualized in the following picture:

MYRAM-Block #hvM TOTAL NUM OF NvRAM BLOCKS

[Akl Block #2

s DR AM Block #1
Aomini strative-| |
Block| |
Data indey ———— e e e e e = =
| ______
o i \ NVBlogk#n | N, | EOM-Block #in |
Applicaion access (YW 130) R ol e o
I T T T T bl Block #2 _|ROM Block #2, |
i RAM-Enad?*E I R Block, ! MyBlock| | M Block #1]| L - |ROM Biock#) | |
gt«tempnrawxj i I(«penﬂanerrt»)| ! | » I | :__I
i B L]! - - | [
______ _t I -_______—1 | |
______ i CRC i

MyManacger access

R &b

| 1Y [+ROM]

Dataszet | 2,255 elemerts

Figure 1.1: Memory Structure of Different Block Types

AUTSSAR

id Component Model

«abstract»
NVRAM Block

- BlockManagement Type:

constraints
{exact composition depends on Management type}
{handling depends on Block Management Type}

NV Block RAM Block

ROM Block Administrative Block

«realize» «realize»
.

N N
N N
~ \

RN \\\ ’
AV P
«user data» Basic Storage Object
NV Data

.
.
’

.
.

Figure 1.2: Logical Structure of Different Block Types

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the NvM module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

+ Basic Storage Object + A "Basic Storage Object" is the smallest entity of a
"NVRAM block". Several "Basic Storage Objects" can be
used to build a NVRAM Block. A "Basic Storage Object"
can reside in different memory locations (RAM/ROM/NV
memory).

The "NVRAM Block" is the entire structure, which is
needed to administrate and to store a block of NV data.

The data to be stored in Non-Volatile memory.

Type of the NVRAM Block. It depends on the
(configurable) individual composition of a NVRAM Block in
chunks of different mandatory/optional Basic Storage
Objects and the subsequent handling of this NVRAM
block.

+ NVRAM Block

* NV data
* Block Management Type

* RAM Block » The "RAM Block" is a "Basic Storage Object". It
represents the part of a "NVRAM Block" which resides in
the RAM.

» See [SWS_NvM_00126]

* ROM Block » The "ROM Block" is a "Basic Storage Object". It
represents the part of a "NVRAM Block" which resides in
the ROM. The "ROM Block" is an optional part of a
"NVRAM Block". [SWS_NvM_00020]

» NV Block » The "NV Block" is a "Basic Storage Object". It represents

the part of a "NVRAM Block" which resides in the NV
memory. The "NV Block" is a mandatory part of a
"NVRAM Block". [SWS_NvM_00125]

Additional information included in the NV Block if the
mechanism "Static Block ID" is enabled.

The "Administrative Block" is a "Basic Storage Object". It
resides in RAM. The "Administrative Block" is a
mandatory part of a "NVRAM Block". [SWS_NvM_00135]

* DET » Default Error Tracer - module to which development errors
are reported.

* NV Block Header

» Administrative Block

* DEM + Diagnostic Event Manager - module to which production
relevant errors are reported

* NV * Non volatile

* FEE » Flash EEPROM Emulation

*EA + EEPROM Abstraction

* FCFS « First come first served

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] Specification of EEPROM Abstraction
AUTOSAR_CP_SWS EEPROMADbstraction

[5] Specification of Flash EEPROM Emulation
AUTOSAR_CP_SWS_ FlashEEPROMEmulation

[6] Specification of Memory Abstraction Interface
AUTOSAR_CP_SWS_MemoryAbstractioninterface

[7] Specification of CRC Library
AUTOSAR_CP_SWS_CRCLibrary

[8] Requirements on I/O Hardware Abstraction
AUTOSAR_CP_RS_IOHWADbstraction

[9] Requirements on Memory Services
AUTOSAR_CP_RS_MemoryServices

[10] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[11] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[12] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for NVRAMManager.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for NVRAMManager.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

Limitations are given mainly by the finite number of "Block Management Types" and
their individual treatment of NV data. These limits can be reduced by an enhanced
user defined management information, which can be stored as a structured part of
the real NV data. In this case the user defined management information has to be
interpreted and handled by the application at least.

4.2 Applicability to car domains

No restrictions.

4.3 Conflicts

The NvM can be configured to use functionality from other modules or integrator code.
Examples include the en/decryption of block data using Csm or the compression of
block data. It is the responsibility of the integrator to ensure that:

* the required functionality is available at the time NvM uses it (e.g. the called
Csm is already initialized [or not yet de-initialized]; needed main functions in
called modules are executed; ...)

* the required time is available (e.g. cryptographic algorithms may need some
time and therefore the read/write functionality of the NvM may take much longer
for blocks which need an en/decryption)

AUTSSAR

5 Dependencies to other modules

This section describes the relations to other modules within the basic software.

5.1 File structure

5.1.1 Header file structure

The include file structure shall be as follows:

[SWS_NvM_00554] [NvM module shall include NvM.h, Dem.h, Memlf.h. |
[SWS_NvM_00691] [Only NvM.h shall be included by the upper layer. |

5.2 Memory abstraction modules

The memory abstraction modules abstract the NvM module from the subordinated
drivers which are hardware dependent [ref. to doc. [3]]. The memory abstraction
modules provide a runtime translation of each block access initiated by the NvM mod-
ule to select the corresponding driver functions which are unique for all configured
EEPROM or FLASH storage devices. The memory abstraction module is chosen via
the NVRAM block device ID which is configured for each NVRAM block. NvM access
the memory abstraction modules through memory abstraction interface module, Mem
If. [ref. to doc. [4], [5], [6]]

5.3 CRC module

The NvM module uses CRC generation routines (8/16/32 bit) to check and to gener-
ate CRC for NVRAM blocks as a configurable option. The CRC routines have to be
provided externally [ref. to ch. 8.5.2].[ref. to doc. [7]]

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [8], [9], [10] and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_NvM_00399] [SWS_NvM_00400]
[SWS_NvM_00447]

[SRS_BSW_00172]

The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

[SWS_NvM_00464]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_NvM_00027]

[SRS_BSW_00327]

Error values naming convention

[SWS_NvM_00027] [SWS_NvM_91004]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_NvM_00027] [SWS_NvM_91004]

[SRS_BSW_00333]

For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_NvM_00467] [SWS_NvM_00468]
[SWS_NvM_00469]

[SRS_BSW_00337]

Classification of development errors

[SWS_NvM_91004]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_NvM_00467] [SWS_NvM_00468]
[SWS_NvM_00469]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_NvM_00464]

[SRS_BSW_00383]

The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

[SWS_NvM_00465] [SWS_NvM_00466]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_NvM_00465] [SWS_NvM_00466]

[SRS_BSW_00385]

List possible error notifications

[SWS_NvM_00027] [SWS_NvM_91004]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_NvM_00027] [SWS_NvM_91004]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_NvM_00027] [SWS_NvM_00399]
[SWS_NvM_00400] [SWS_NvM_91004]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_NvM_00447]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_NvM_00464]

[SRS_BSW_00429]

Access to OS is restricted

[SWS_NvM_00332]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00457]

Callback functions of Application
software components shall be
invoked by the Basis SW

[SWS_NvM_00467] [SWS_NvM_00468]
[SWS_NvM_00469] [SWS_NvM_00539]
[SWS_NvM_00540]

[SRS_BSW_00458]

Classification of production errors

[SWS_NvM_00835] [SWS_NvM_00986]
[SWS_NvM_00987] [SWS_NvM_00988]
[SWS_NvM_00989]

[SRS_Mem_00011]

The NVRAM manager shall be
independent from its underlying
memory hardware.

[SWS_NvM_00157]

[SRS_Mem_00013]

The NVRAM manager shall provide a
mechanism to handle multiple,
concurrent read / write requests

[SWS_NvM_00162]

[SRS_Mem_00016]

The NVRAM manager shall provide
functionality to read out data
associated with an NVRAM block
from the non-volatile memory

[SWS_NvM_00010] [SWS_NvM_00051]
[SWS_NvM_00122] [SWS_NvM_00195]
[SWS_NvM_00196] [SWS_NvM_00454]
[SWS_NvM_00629] [SWS_NvM_00764]
[SWS_NvM_00765] [SWS_NvM_00766]
[SWS_NvM_00825] [SWS_NvM_00898]
[SWS_NvM_00899]

[SRS_Mem_00017]

The NVRAM manager shall provide
functionality to store data associated
with an NVRAM block in the
non-volatile memory

[SWS_NvM_00051] [SWS_NvM_00122]
[SWS_NvM_00210] [SWS_NvM_00410]
[SWS_NvM_00455] [SWS_NvM_00622]
[SWS_NvM_00793] [SWS_NvM_00794]
[SWS_NvM_00897] [SWS_NvM_00900]
[SWS_NvM_00901]

[SRS_Mem_00018]

The NVRAM manager shall provide
functionality to restore an NVRAM
block’s associated data from ROM
defaults

[SWS_NvM_00012] [SWS_NvM_00051]
[SWS_NvM_00122] [SWS_NvM_00266]
[SWS_NvM_00267] [SWS_NvM_00435]
[SWS_NvM_00456] [SWS_NvM_00813]
[SWS_NvM_00814] [SWS_NvM_00816]
[SWS_NvM_00817] [SWS_NvM_00893]
[SWS_NvM_00894] [SWS_NvM_00902]
[SWS_NvM_00903] [SWS_NvM_00951]

[SRS_Mem_00020]

The NVRAM manager shall provide
functionality to read out the status of
read/write operations

[SWS_NvM_00015] [SWS_NvM_00451]
[SWS_NvM_00895] [SWS_NvM_00896]

[SRS_Mem_00027]

The NVRAM manager shall provide
an implicit way of accessing blocks in
the NVRAM and in the shared
memory (RAM).

[SWS_NvM_00442]

[SRS_Mem_00030]

The NVRAM manager shall
implement mechanisms for
consistency/integrity checks of data
saved in NVRAM

[SWS_NvM_00164] [SWS_NvM_00897]

[SRS_Mem_00034]

Write accesses of the NVRAM
manager to persistent memory shall
be executed quasi-parallel to normal
operation of the ECU

[SWS_NvM_00162]

[SRS_Mem_00038]

Treatable errors shall not affect other
software components

[SWS_NvM_00825] [SWS_NvM_00910]
[SWS_NvM_00911] [SWS_NvM_00948]

[SRS_Mem_00041]

Each application shall be enabled to
declare the memory requirements at
configuration time

[SWS_NvM_00051] [SWS_NvM_00122]

[SRS_Mem_00125]

For each block a notification shall be
configurable

[SWS_NvM_00463]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Mem_00127]

The NVRAM manager shall allow
enabling/disabling a write protection
for each NVRAM block individually

[SWS_NvM_00016] [SWS_NvM_00450]

[SRS_Mem_00129]

The NVRAM manager shall repair
data in blocks of management type
'NVRAM redundant’

[SWS_NvM_00165] [SWS_NvM_00582]

[SRS_Mem_00135]

The NVRAM manager shall have an
unique configuration identifier

[SWS_NvM_00034]

[SRS_Mem_00136]

The NVRAM manager shall provide
functionality for determining updates
of data associated with an NVRAM
Block during runtime

[SWS_NvM_00849] [SWS_NvM_00850]
[SWS_NvM_00852] [SWS_NvM_00853]
[SWS_NvM_00854] [SWS_NvM_00906]
[SWS_NvM_00909]

[SRS_Mem_00137]

The NVRAM manager shall provide a
service for auto-validating NVRAM
blocks

[SWS_NvM_00855] [SWS_NvM_00856]
[SWS_NvM_00857] [SWS_NvM_00858]
[SWS_NvM_00859] [SWS_NvM_00860]
[SWS_NvM_00861] [SWS_NvM_00862]
[SWS_NvM_00863]

[SRS_Mem_08000]

The NVRAM manager shall be able
to access multiple non-volatile
memory devices

[SWS_NvM_00051] [SWS_NvM_00123]
[SWS_NvM_00442]

[SRS_Mem_08007]

The NVRAM manager shall provide a
service for the selection of valid
dataset NV blocks

[SWS_NvM_00448]

[SRS_Mem_08009]

The NVRAM Manager shall allow a
static configuration of a default write
protection (on/off) for each NVRAM
block

[SWS_NvM_00325] [SWS_NvM_00326]
[SWS_NvM_00577]

[SRS_Mem_08010]

The NVRAM manager shall copy the
ROM default data to the data area of
the corresponding RAM block if it can
not read data from NV into RAM

[SWS_NvM_00171] [SWS_NvM_00172]

[SRS_Mem_08011]

The NVRAM manager shall provide a
service to invalidate a block of data in
the non-volatile memory

[SWS_NvM_00421] [SWS_NvM_00459]

[SRS_Mem_08014]

The NVRAM manager shall allow a
non-continuous RAM block allocation
in the global RAM area

[SWS_NvM_00051] [SWS_NvM_00122]
[SWS_NvM_00442]

[SRS_Mem_08015]

Some of the NV Blocks in the
NVRAM shall never be erased nor be
replaced with the default ROM data
after first initialization

[SWS_NvM_00397]

[SRS_Mem_08533]

The NVRAM manager shall provide a
service to check and load those
NVRAM blocks, configured to have a
permanent RAM data block to RAM

[SWS_NvM_00454] [SWS_NvM_00460]
[SWS_NvM_00540] [SWS_NvM_00764]

[SRS_Mem_08534]

The NVRAM manager shall support
two classes of RAM data blocks

[SWS_NvM_00904]

[SRS_Mem_08535]

The NVRAM manager shall provide a
function, which triggers update of
integrity information and saving of
RAM data blocks to NV memory

[SWS_NvM_00461]

[SRS_Mem_08540]

The NVRAM manager shall provide a
function for aborting the shutdown
process

[SWS_NvM_00019] [SWS_NvM_00458]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Mem_08541]

The NVRAM manager shall
guarantee that an accepted write
request will be processed

[SWS_NvM_00208] [SWS_NvM_00384]
[SWS_NvM_00472] [SWS_NvM_00622]
[SWS_NvM_00798]

[SRS_Mem_08542]

The NVRAM manager shall provide a
prioritization for job processing order

[SWS_NvM_00032] [SWS_NvM_00378]
[SWS_NvM_00564]

[SRS_Mem_08544]

The NVRAM manager shall provide a
service to erase the NV block(s)
associated with an NVRAM block

[SWS_NvM_00415] [SWS_NvM_00457]

[SRS_Mem_08545]

The NVRAM Manager shall provide a
service for marking the permanent
RAM data block of an NVRAM block
valid

[SWS_NvM_00241] [SWS_NvM_00405]
[SWS_NvM_00453] [SWS_NvM_00906]
[SWS_NvM_00909]

[SRS_Mem_08546]

It shall be possible to protect
permanent RAM data blocks against
data loss due to reset

[SWS_NvM_00240]

[SRS_Mem_08547]

The NVRAM Manager shall be able
to distinguish between explicitly
invalidated and inconsistent data

[SWS_NvM_00132] [SWS_NvM_00164]
[SWS_NvM_00165] [SWS_NvM_00174]
[SWS_NvM_00571]

[SRS_Mem_08548]

The NVRAM Manager shall request
default data from the application

[SWS_NvM_00629] [SWS_NvM_00893]
[SWS_NvM_00894]

[SRS_Mem_08549]

The NVRAM manager shall provide
functionality to automatically initialize
RAM data blocks after a software
update

[SWS_NvM_00171]

[SRS_Mem_08550]

The NVRAM Manager shall provide a
service for marking permanent RAM
data blocks as modified/unmodified

[SWS_NvM_00344] [SWS_NvM_00345]
[SWS_NvM_00696] [SWS_NvM_00906]
[SWS_NvM_00909]

[SRS_Mem_08554]

The NVRAM manager shall retry
read and write operations on NVRAM
blocks if they have not succeeded up
to a configurable number of times

[SWS_NvM_00213] [SWS_NvM_00526]
[SWS_NvM_00527] [SWS_NvM_00529]
[SWS_NvM_00581] [SWS_NvM_00804]
[SWS_NvM_00897] [SWS_NvM_00907]
[SWS_NvM_00908]

[SRS_Mem_08555]

The NVRAM manager shall provide
mechanisms for static verification of
the block identifier when reading an
NVRAM block

[SWS_NvM_00523] [SWS_NvM_00524]
[SWS_NvM_00593]

[SRS_Mem_08556]

The NVRAM manager shall provide a
mechanism for verification of the
written block data by again reading
and comparing it

[SWS_NvM_00527] [SWS_NvM_00528]
[SWS_NvM_00529] [SWS_NvM_00897]

[SRS_Mem_08558]

The NVRAM manager shall provide a
mechanism to remove all
unprocessed requests associated
with a NVRAM block

[SWS_NvM_00458]

[SRS_Mem_08560]

Each NVRAM block shall be
configurable for shared access

[SWS_NvM_00535] [SWS_NvM_00536]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Basic architecture guidelines

7.1.1 Layer structure

The figure below shows the communication interaction of module NvM.

sd NVM
RTE
«comrunicate»
S E:l CRC Library
W gl W
NVM
gl «communi »
BswM
SchM
«communicate» «communicate»
DET Memlf

Figure 7.1: NVRAM Manager interactions overview

7.1.2 Addressing scheme for the memory hardware abstraction

[SWS_NvM_00051]
Upstream requirements: SRS_Mem_00041, SRS_Mem_08000, SRS_Mem_08014, SRS_Mem_-
00016, SRS_Mem_00017, SRS_Mem_00018

[The Memory Abstraction Interface, the underlying Flash EEPROM Emulation and
EEPROM Abstraction Layer provide the NvM module with a virtual linear 32bit address
space which is composed of a 16bit block number and a 16bit block address offset. |

AUTSSAR

Hint: According to [SWS_NvM_00051], the NvM module allows for a (theoretical) max-
imum of 65536 logical blocks, each logical block having a (theoretical) maximum size
of 64 Kbytes.

[SWS_NvM_00122]

Upstream requirements: SRS_Mem_00041, SRS_Mem_08014, SRS_Mem_00016, SRS_Mem_-
00017, SRS _Mem 00018

[The NvM module shall further subdivide the 16bit Fee/Ea block number into the fol-
lowing parts:

* NV block base number (NVM_NV_BLOCK_BASE_NUMBER) with a bit width of
(16 -NVM_DATASET_SELECTION_BITS)

+ Data index with a bit width of (NVM_DATASET_SELECTION_BITS)

]

[SWS_NvM_00343] [Handling/addressing of redundant NVRAM blocks shall be done
towards the memory hardware abstraction in the same way like for dataset NVRAM
blocks, i.e. the redundant NV blocks shall be managed by usage of the configuration
parameter NvMDatasetSelectionBits. |

[SWS_NvM_00123]
Upstream requirements: SRS_Mem_08000

[The NV block base number (NVM_NV_BLOCK_BASE_NUMBER) shall be located in
the most significant bits of the Fee/Ea block number. |

[SWS_NvM_00442]
Upstream requirements: SRS_Mem_08000, SRS_Mem_00027, SRS_Mem_08014

[The configuration tool shall configure the block identifiers. |

[SWS_NvM_00443] [The NvM module shall not modify the configured block identi-
fiers. |

7.1.2.1 Examples

To clarify the previously described addressing scheme which is used for NVRAM man-
ager «+» memory hardware abstraction interaction, the following examples shall help to
understand the correlations between the configuration parameters NvMNvBIlockBase
Number, NvMDatasetSelectionBits on NVRAM manager side and EA_ BLOCK_NUM-
BER / FEE_BLOCK_NUMBER on memory hardware abstraction side (see 10.2.3).

For the given examples A and B a simple formula is used:

FEE/EA_BLOCK_NUMBER = (NvMNvBlockBaseNumber << NvMDatasetSelection
Bits) + Datalndex.

AUTSSAR

Example A:

» The configuration parameter NvMDatasetSelectionBits is configured to be 2. This
leads to the result that 14 bits are available as range for the configuration param-
eter NvMNvBIlockBaseNumber.

» Range of NvMNvBIlockBaseNumber: 0x1..0x3FFE
+ Range of data index: 0x0..0x3(=2"NvMDatasetSelectionBits-1)
» Range of FEE_BLOCK_NUMBER/EA_BLOCK_NUMBER: 0x4..0xFFFB

With this configuration the FEE/EA_BLOCK _NUMBER computes using the formula
mentioned before should look like in the examples below:

For a native NVRAM block with NvMNvBIlockBaseNumber = 2:
* NV block is accessed with FEE/EA_BLOCK_NUMBER = 8
For a redundant NVRAM block with NvMNvBlockBaseNumber = 3:
* 1st NV block with data index 0 is accessed with FEE/EA_BLOCK_NUMBER = 12

« 2nd NV block with data index 1 is accessed with FEE/EA_BLOCK_NUMBER =
13

For a dataset NVRAM block with NvMNvBlockBaseNumber = 4, NvMNvBlockNum = 3:
* NV block #0 with data index 0 is accessed with FEE/EA_BLOCK_NUMBER = 16
* NV block #1 with data index 1 is accessed with FEE/EA_ BLOCK_NUMBER = 17
* NV block #2 with data index 2 is accessed with FEE/EA_ BLOCK _NUMBER = 18
Example B:

» The configuration parameter NvMDatasetSelectionBits is configured to be 4. This
leads to the result that 12 bits are available as range for the configuration param-
eter N\vMNvBlockBaseNumber.

» Range of NvMNvBIlockBaseNumber: 0x1..0xFFE
» Range of data index: 0x0..0xF(=2"NvMDatasetSelectionBits-1)
» Range of FEE/EA Block Number: 0x10..0xFFEF

7.1.3 Basic storage objects

7.1.3.1 NV block

[SWS_NvM_00125] [The NV block is a basic storage object and represents a memory
area consisting of NV user data and (optionally) a CRC value and (optionally) a NV
block header. |

AUTSSAR

NV Block

NV block Header
(optional)

NV block data

NV block CRC
(optional)

Figure 7.2: NV Block layout

Note: This figure does not show the physical memory layout of an NV block. Only the
logical clustering is shown.

7.1.3.2 RAM block

[SWS_NvM_00126] [The RAM block is a basic storage object and represents an area
in RAM consisting of user data and (optionally) a CRC value and (optionally) a NV
block header. |

[SWS_NvM_00127] [Restrictions on CRC usage on RAM blocks. CRC is only avail-
able if the corresponding NV block(s) also have a CRC. CRC has to be of the same
type as that of the corresponding NV block(s). |

Note: For more information on Crc configuration, see chapter 10.2.3.

[SWS_NvM_00129] [The user data area of a RAM block can reside in a different RAM
address location (global data section) than the state of the RAM block. |

[SWS_NvM_00130] [The data area of a RAM block shall be accessible from NVRAM
Manager and from the application side (data passing from/to the corresponding NV
block). |

AUTSSAR

RAM Block
NV block Header RAM block
(optional) _ Header Field

I o P,
| I A
| |
| |
| |
: RAM block data : RAM Block
: (permanent/ | Data Field
| temporary) :
I |
| RAM block CRC I RAM block
: (optional) | CRC Field

Figure 7.3: RAM Block layout

Note: This figure does not show the physical memory layout of a RAM block. Only the
logical clustering is shown.

As the NvM module doesn’t support alignment, this could be managed by configu-
ration, i.e. the block length could be enlarged by adding padding to meet alignment
requirements.

[SWS_NvM_00373] [The RAM block data shall contain the permanently or temporarily
assigned user data. |

[SWS_NvM_00370] [In case of permanently assigned user data, the address of the
RAM block data is known during configuration time. |

[SWS_NvM_00372] [In case of temporarily assigned user data, the address of the
RAM block data is not known during configuration time and will be passed to the NvM
module during runtime. |

[SWS_NvM_00088] [It shall be possible to allocate each RAM block without address
constraints in the global RAM area. The whole number of configured RAM blocks
needs not be located in a continuous address space. |

7.1.3.3 ROM block

[SWS_NvM_00020] [The ROM block is a basic storage object, resides in the ROM
(FLASH) and is used to provide default data in case of an empty or damaged NV
block. |

AUTSSAR

ROM Block

ROM block data
(default data)

Figure 7.4: ROM block layout

7.1.3.4 Administrative block

[SWS_NvM_00134] [The Administrative block shall be located in RAM and shall con-
tain a block index which is used in association with Dataset NV blocks. Additionally, at-
tribute/error/status information of the corresponding NVRAM block shall be contained. |

[SWS_NvM_00128] [The NvM module shall use state information of the permanent
RAM block or of the RAM mirror in the NvM module in case of explicit syncronization
(invalid/valid) to determine the validity of the permanent RAM block user data. |

[SWS_NvM_00132]
Upstream requirements: SRS_Mem_08547

[The RAM block state "invalid" indicates that the data area of the respective RAM block
is invalid. The RAM block state "valid" indicates that the data area of the respective
RAM block is valid. |

[SWS_NvM_00133] [The value of "invalid" shall be represented by all other values
except "valid". |

[SWS_NvM_00135] [The Administrative block shall be invisible for the application and
is used exclusively by the NvM module for security and administrative purposes of the
RAM block and the NVRAM block itself. |

[SWS_NvM_00054] [The NvM module shall use an attribute field to manage the NV
block write protection in order to protect/unprotect a NV block data field. |

[SWS_NvM_00136] [The NvM module shall use an error/status field to manage the
error/status value of the last request. |

AUTSSAR

7.1.3.5 NV Block Header

[SWS_NvM_00522] [The NV Block header shall be included first in the NV Block, if
the mechanism Static Block ID is enabled. |

NV Block

NV block header

NV block data

NV block CRC
(optional)
Figure 7.5: NV block layout with Static Block ID enabled

7.1.4 Block management types

7.1.4.1 Block management types overview
[SWS_NvM_00137] [The following types of NVRAM storage shall be supported by the
NvM module implementation:

« NVM_BLOCK_NATIVE

« NVM_BLOCK_REDUNDANT

* NVM_BLOCK_DATASET

]

[SWS_NvM_00557] [NVM_BLOCK_NATIVE type of NVRAM storage shall consist of
the following basic storage objects:

* NV Blocks: 1
» RAM Blocks: 1
+ ROM Blocks: 0..1

» Administrative Blocks:1

AUTSSAR

]

[SWS_NvM_00558] [NVM_BLOCK_REDUNDANT type of NVRAM storage shall con-
sist of the following basic storage objects:

* NV Blocks: 2
« RAM Blocks: 1
« ROM Blocks: 0..1

« Administrative Blocks:1

]

[SWS_NvM_00559] [NVM_BLOCK_DATASET type of NVRAM storage shall consist
of the following basic storage objects:

* NV Blocks: 1..(m<256)*
RAM Blocks: 1
ROM Blocks: 0..n

Administrative Blocks:1

* The number of possible datasets depends on the configuration parameter Nv
MDatasetSelectionBits.

7.1.4.2 NVRAM block structure

[SWS_NvM_00138] [The NVRAM block shall consist of the mandatory basic storage
objects NV block, RAM block and Administrative block. |

[SWS_NvM_00139] [The basic storage object ROM block is optional. |

[SWS_NvM_00140] [The composition of any NVRAM block is fixed during configura-
tion by the corresponding NVRAM block descriptor. |

[SWS_NvM_00141] [All address offsets are given relatively to the start addresses of
RAM or ROM in the NVRAM block descriptor. The start address is assumed to be
zero. |

Hint: A device specific base address or offset will be added by the respective device
driver if needed.

For details of the NVRAM block descriptor see chapter 7.1.4.3.

AUTSSAR

7.1.4.3 NVRAM block descriptor table

[SWS_NvM_00069] [A single NVRAM block to deal with will be selected via the NvM
module API by providing a subsequently assigned Block ID. |

[SWS_NvM_00143] [All structures related to the NVRAM block descriptor table and
their addresses in ROM (FLASH) have to be generated during configuration of the Nv
M module. |

7.1.4.4 Native NVRAM block

The Native NVRAM block is the simplest block management type. It allows storage to/
retrieval from NV memory with a minimum of overhead.

[SWS_NvM_00000] [The Native NVRAM block consists of a single NV block, RAM
block and Administrative block. |

7.1.4.5 Redundant NVRAM block

In addition to the Native NVRAM block, the Redundant NVRAM block provides en-
hanced fault tolerance, reliability and availability. It increases resistance against data
corruption.

[SWS_NvM_00001] [The Redundant NVRAM block consists of two NV blocks, a RAM
block and an Administrative block. |

The following figure reflects the internal structure of a redundant NV block:

AUTSSAR

NV Block

NV block header
(optional)

NV block data

NV block CRC
(optional)

NV Block

NV block header
(optional)

NV block data

NV block CRC
(optional)
Figure 7.6: Redundant NVRAM block layout

Note: This figure does not show the physical NV memory layout of a redundant NVRAM
block. Only the logical clustering is shown.

[SWS_NvM_00531] [In case one NV Block associated with a Redundant NVRAM
block is deemed invalid (e.g. during read), an attempt shall be made to recover the NV
Block using data from the incorrupt NV Block. |

[SWS_NvM_00546] [In case the recovery fails then this shall be reported to the DEM
using the code NVM_E_LOSS_OF_REDUNDANCY. |

Note: "Recovery" denotes the re-establishment of redundancy. This usually means
writing the recovered data back to the NV Block.

AUTSSAR

7.1.4.6 Dataset NVRAM block

The Dataset NVRAM block is an array of equally sized data blocks (NV/ROM). The
application can at one time access exactly one of these elements.

[SWS_NvM_00006] [The Dataset NVRAM block consists of multiple NV user data,
(optionally) CRC areas, (optional) NV block headers, a RAM block and an Administra-
tive block. |

[SWS_NvM_00144] [The index position of the dataset is noticed via a separated field
in the corresponding Administrative block. |

[SWS_NvM_00374] [The NvM module shall be able to read all assigned NV blocks. |

[SWS_NvM_00375] [The NvM module shall only be able to write to all assigned NV
blocks if (and only if) write protection is disabled. |

[SWS_NvM_00146] [If the basic storage object ROM block is selected as optional
part, the index range which normally selects a dataset is extended to the ROM to make
it possible to select a ROM block instead of a NV block. The index covers all NV/ROM
blocks which may build up the NVRAM Dataset block. |

[SWS_NvM_00376] [The NvM module shall be able to only read optional ROM blocks
(default datasets). |

[SWS_NvM_00377] [The NvM module shall treat a write to a ROM block like a write
to a protected NV block. |

[SWS_NvM_00444] [The total number of configured datasets (NV+ROM blocks) shall
be in the range of 1..255. |

[SWS_NvM_00445] [In case of optional ROM blocks, data areas with an index from 0
up to NvMNvBIlockNum - 1 represent the NV blocks with their CRC in the NV memory.
Data areas with an index from NvMNvBIockNum up to NvMNvBIockNum + NvMRom
BlockNum - 1 represent the ROM blocks. |

AUTSSAR

NV memory

NV block data
area 0

NV block CRC
of data area 0 (opt)

index
0to
NVM_NV_BLOCK_NUM -1

NV block data
area
(NVM_NV_BLOCK_NUM-1)

NV block CRC
of data area

(NVM_NV_BLOCK_NUM-1) (opt)

ROM block data area
NVM_NV_BLOCK_NUM (opt)

index
NVM_NV_BLOCK_NUM to
NVM_NV_BLOCK_NUM+NVM_ROM_BLOCK_NUM-1

ROM block data area
NVM_NV_BLOCK_NUM+NVM_RO
M_BLOCK_NUM-1) (opt)

L a

Figure 7.7: Dataset NVRAM block layout

Note: This figure does not show the physical NV memory layout of a Dataset NVRAM
block. Only the logical clustering is shown.

7.1.4.7 NVRAM Manager API configuration classes
[SWS_NvM_00149] [To have the possibility to adapt the NvM module to limited hard-
ware resources, three different API configuration classes shall be defined:

» API configuration class 3: All specified API calls are available. A maximum of
functionality is supported.

AUTSSAR

 API configuration class 2: An intermediate set of API calls is available.

» API configuration class 1: Especially for matching systems with very limited hard-
ware resources this API configuration class offers only a minimum set of API calls
which are required in any case.

]
[SWS_NvM_00560] [API configuration class 3 shall consist of the following API:
* Type 1:
* NvM_SetDatalndex(...)
* NvM_GetDatalndex(...)
* NvM_SetBlockProtection(...)
* NvM_GetErrorStatus(...)
* NvM_SetRamBlockStatus(...)
 Type 2:
* NvM_ReadBlock(...)
* NvM_WriteBlock(...)
* NvM_RestoreBlockDefaults(...)
* NvM_EraseNvBlock(...)
* NvM_InvalidateNvBlock(...)
* NvM_CancelJobs(...)
« NvM_ReadPRAMBIock(...)
* NvM_WritePRAMBIock(...)
* NvM_RestorePRAMBIockDefaults(...)
 Type 3:
« NvM_ReadAll(...)
« NvM_WriteAll(...)
* NvM_CancelWriteAll(...)
« NvM_ValidateAll(...)
« NvM_FirstinitAll(...)
* Type 4:
« NvM_lInit(...)

AUTSSAR

|
[SWS_NvM_00561] [API configuration class 2 shall consist of the following API:
* Type 1:
* NvM_SetDatalndex(...)
* NvM_GetDatalndex(...)
* NvM_GetErrorStatus(...)
* NvM_SetRamBlockStatus(...)
* Type 2:
* NvM_ReadBlock(...)
* NvM_WriteBlock(...)
* NvM_RestoreBlockDefaults(...)
* NvM_CancelJobs(...)
* NvM_ReadPRAMBIock(...)
* NvM_WritePRAMBIock(...)
* NvM_RestorePRAMBIockDefaults(...)
» Type 3:
* NvM_ReadAll(...)
« NvM_WriteAll(...)
* NvM_CancelWriteAll(...)
« NvM_ValidatedAll(...)
 Type 4:
« NvM_lInit(...)
]
[SWS_NvM_00562] [API configuration class 1 shall consist of the following API:
* Type 1:
NvM_GetErrorStatus(...)
NvM_SetRamBlockStatus(...)

» Type 2:

* Type 3:

AUTSSAR

* NvM_ReadAll(...)

« NvM_WriteAll(...)

* NvM_CancelWriteAll(...)
* Type 4:

* NvM_Init(...)

* Note: For API configuration class 1 no queues are needed, no immediate data
can be written. Furthermore the API call NvM_SetRamBlockStatus is only avail-
able if configured by NvMSetRamBlockStatusApi.

]

[SWS_NvM_00365] [Within API configuration class 1, the block management type
NVM_BLOCK_DATASET is not supported. |

For information regarding the definition of Type 1. .. 4 refer to chapter 8.6.

[SWS_NvM_00150] [The NvM module shall only contain that code that is needed to
handle the configured block types. |

7.1.5 Scan order / priority scheme

[SWS_NvM_00032]
Upstream requirements: SRS_Mem_08542

[The NvM module shall support a priority based job processing. |

[SWS_NvM_00564]
Upstream requirements: SRS_Mem_08542

[By configuration parameter NvMJobPrioritization priority based job processing shall
be enabled/disabled. |

Note: For more information on parameter NvMJobPrioritization, see chapter 10.2.2.

[SWS_NvM_00378]
Upstream requirements: SRS_Mem_08542

[In case of priority based job processing order, the NvM module shall use two queues,
one for immediate write jobs (crash data) another for all other jobs (including immediate
read/erase jobs). |

[SWS_NvM_00379] [If priority based job processing is disabled via configuration, the
NvM module shall not support immediate write jobs. In this case, the NvM module
processes all jobs in FCFS order. |

AUTSSAR

[SWS_NvM_00380] [The job queue length for multi block requests originating from
any of the NvM_ReadAll, NvM_ValidateAll, NvM_FirstInitAll and NvM_WriteAll APls
shall be one (only one multi block job is queued). |

[SWS_NvM_00381] [The NvM module shall not interrupt jobs originating from the Nv
M_ReadAll request by other requests. |

Note: The only exception to the rule given in [SWS_NvM_00381], [SWS_NvM_00567]
is a write job with immediate priority which shall preempt the running read / write job
[SWS_NvM_00182]. The preempted job shall subsequently be resumed / restarted by
the NvM module.

[SWS_NvM_00567] [The NvM module shall not interrupt jobs originating from the Nv
M_WriteAll request by other requests. |

[SWS_NvM_00568] [The NvM module shall rather queue read jobs that are requested
during an ongoing NvM_ReadAll request and executed them subsequently. |

[SWS_NvM_00569] [The NvM module shall rather queue write jobs that are requested
during an ongoing NvM_WriteAll request and executed them subsequently. |

[SWS_NvM_00725] [The NvM module shall rather queue write jobs that are requested
during an ongoing NvM_ReadAll request and executed them subsequently. |

[SWS_NvM_00726] [The NvM module shall rather queue read jobs that are requested
during an ongoing NvM_WriteAll request and executed them subsequently. |

Note: The NvM_WriteAll request can be aborted by calling NvM_CancelWriteAll. In
this case, the current block is processed completely but no further blocks are written
[SWS_NvM_00238].

Hint: It shall be allowed to dequeue requests, if they became obsolete by completion
of the regarding NVRAM block.

[SWS_NvM_00570] [The preempted job shall subsequently be resumed / restarted
by the NvM module. This behavior shall apply for single block requests as well as for
multi block requests. |

7.2 General behavior

7.2.1 Functional requirements

[SWS_NvM_00383] [For each asynchronous request, a notification of the caller after
completion of the job shall be a configurable option. |

AUTSSAR

[SWS_NvM_00384]
Upstream requirements: SRS_Mem_08541

[The NvM module shall provide a callback interface [SWS_NvM_00113]. |

Hint: The NvM module’s environment shall access the non-volatile memory via the Nv
M module only. It shall not be allowed for any module (except for the NvM module) to
access the non-volatile memory directly.

[SWS_NvM_00038] [The NvM module only provides an implicit way of accessing
blocks in the NVRAM and in the shared memory (RAM). This means, the NvM module
copies one or more blocks from NVRAM to the RAM and the other way round. |

[SWS_NvM_00692] [The application accesses the RAM data directly, with respect to
given restrictions (e.g. synchronization). |

[SWS_NvM_00385] [The NvM module shall queue all asynchronous "single block"
read/write/control requests if the block with its specific ID is not already queued or
currently in progress (multitasking restrictions). |

[SWS_NvM_00386] [The NvM module shall accept multiple asynchronous "single
block" requests as long as no queue overflow occurs. |

[SWS_NvM_00155] [The highest priority request shall be fetched from the queues by
the NvM module and processed in a serialized order. |

[SWS_NvM_00040] [The NvM module shall implement implicit mechanisms for con-
sistency / integrity checks of data saved in NV memory [SWS_NvM_00165]. |

Depending on implementation of the memory stack, callback routines provided and/or
invoked by the NvM module may be called in interrupt context.

Hint: The NvM module providing routines called in interrupt context has therefore to
make sure that their runtime is reasonably short.

[SWS_NvM_00085] [If there is no default ROM data available at configuration time or
no callback defined by NvMInitBlockCallback then the application shall be responsible
for providing the default initialization data. |

Note: In this case, the application has to use NvM_GetErrorStatus() to be able to
distinguish between first initialization and corrupted data (see 10.2.3).

[SWS_NvM_00387] [During processing of NvM_ReadAll, the NvM module shall be
able to detect corrupted RAM data by performing a checksum calculation. [ECUC_Nv
M_00476]. |

[SWS_NvM_00226] [During processing of NvM_ReadAll, the NvM module shall be
able to detect invalid RAM data by testing the validity of a data within the administrative
block [ECUC_NvM_00476]. |

AUTSSAR

[SWS_NvM_00388] [During startup phase and normal operation of NvM_ReadAll and
if the NvM module has detected an unrecoverable error within the NV block, the NvM
module shall copy default data (if configured) to the corresponding RAM block. |

[SWS_NvM_00332]
Upstream requirements: SRS_BSW_00429

[To make use of the OS services, the NvM module shall only use the BSW scheduler
instead of directly making use of OS objects and/or related OS services. |

[SWS_NvM_00985] [The NvM module shall use the internal mirror as a buffer for all
operations that read and write the RAM block of the NVRAM blocks with configured
permanent RAM (or RAM passed by API parameter) for which the RAM (start) is not
aligned to the NvMBufferAlignmentValue. |

7.2.2 Design notes
7.2.2.1 NVRAM manager startup

[SWS_NvM_00693] [NvM_Init shall be invoked by the BSW Mode Manager exclu-
sively. |

[SWS_NvM_00091] [Due to strong constraints concerning the ECU startup time, the
NvM_Init request shall not contain the initialization of the configured NVRAM blocks. |

[SWS_NvM_00157]
Upstream requirements: SRS_Mem_00011

[The NvM_Init request shall not be responsible to trigger the initialization of underlying
drivers and memory hardware abstraction. This shall also be handled by the BSW
Mode Manager. |

[SWS_NvM_00158] [The initialization of the RAM data blocks shall be done by another
request, namely NvM_ReadAll. |

NvM_ReadAll shall be called exclusively by BSW Mode Manager.

[SWS_NvM_00694] [Software components which use the NvM module shall be re-
sponsible for checking global error/status information resulting from the NvM mod-
ule startup. The BSW Mode Manager shall use polling by using NvM_GetErrorSta-
tus [SWS_NvM_00015] (reserved block ID 0) or callback notification (configurable op-
tion NvM_MultiBlockCallback) to derive global error/status information resulting from
startup. If polling is used, the end of the NVRAM startup procedure shall be detected
by the global error/status NVM_REQ_OK or NVM_REQ_NOT_OK (during startup
NVM_REQ_PENDING). If callbacks are chosen for notification, software components
shall be notified automatically if an assigned NVRAM block has been processed
[SWS_NvM_00281].

AUTSSAR

Note 1: If callbacks are configured for each NVRAM block which is processed within
NvM_ReadAll, they can be used by the RTE to start e.g. SW-Cs at an early point of
time.

Note 2: To ensure that the DEM is fully operational at an early point of time, i.e. its NV
data is restored to RAM, DEM related NVRAM blocks should be configured to have a
low ID to be processed first within NvM_ReadAll.

Note 3: For more information on NvM_MultiBlockCallback, see chapter 10.2.2.

[SWS_NvM_00160] [The NvM module shall not store the currently used Dataset index
automatically in a persistent way.

Software components shall check the specific error/status of all blocks they are respon-
sible for by using NvM_GetErrorStatus [SWS_NvM_00015] with specific block IDs to
determine the validity of the corresponding RAM blocks. |

[SWS_NvM_00695] [For all blocks of the block management type "NVRAM Dataset"
[SWS_NvM_00006] the software component shall be responsible to set the proper
index position by NvM_SetDatalndex [SWS_NvM_00014]. E.g. the current index po-
sition can be stored/maintained by the software component in a unique NVRAM block.
To get the current index position of a "Dataset Block", the software component shall
use the NvM_GetDatalndex [SWS_NvM_00021] API call. |

7.2.2.2 NVRAM manager shutdown

[SWS_NvM_00092] [The basic shutdown procedure shall be done by the request Nv
M_WriteAll [SWS_NvM_00018]. |

Hint: NvM_WriteAll shall be invoked by the BSW Mode Manager.

7.2.2.3 (Quasi) parallel write access to the NvM module

[SWS_NvM_00162]
Upstream requirements: SRS_Mem_00013, SRS_Mem_00034
[The NvM module shall receive the requests via an asynchronous interface using a

queuing mechanism. The NvM module shall process all requests serially depending
on their priority. |

AUTSSAR

7.2.2.4 NVRAM block consistency check

[SWS_NvM_00164]
Upstream requirements: SRS_Mem_08547, SRS_Mem_00030

[The NvM module shall provide implicit techniques to check the data consistency of
NVRAM blocks [ECUC_NvM_00476], [SWS_NvM_00040]. |

[SWS_NvM _00571]
Upstream requirements: SRS_Mem_08547

[The data consistency check of a NVRAM block shall be done by CRC recalculations
of its corresponding NV block(s). |

[SWS_NvM_00165]
Upstream requirements: SRS_Mem_08547, SRS_Mem_00129

[The implicit way of a data consistency check shall be provided by configurable options
of the internal functions. The implicit consistency check shall be configurable for each
NVRAM block and depends on the configurable parameters NvMBlockUseCrc and Nv
MCalcRamBlockCrec. |

Note: For more information on NvMBlockUseCrc and NvMCalcRamBlockCrc, see
chapter 10.2.3.

[SWS_NvM_00724] [NvMBlockUseCrc should be enabled for NVRAM blocks where
NvMWriteBlockOnce = TRUE. NvMBlockWriteProt should be disabled for NVRAM
blocks where NvMWriteBlockOnce = TRUE, to enable the user to write data to the
NVRAM block in case of CRC check is failed. |

[SWS_NvM_00544] [Depending on the configurable parameters NvMBlockUseCrc
and NvMCalcRamBlockCrc, NvM module shall allocate memory for the largest CRC
used. |

Hint: NvM users should not know anything about CRC memory (e.g. size, location) for
their data in a RAM block.

7.2.2.5 Errorrecovery

[SWS_NvM_00047] [The NvM module shall provide techniques for error recovery. The
error recovery depends on the NVRAM block management type [SWS_NvM_00001]. |

[SWS_NvM_00389] [The NvM module shall provide error recovery on read for every
kind of NVRAM block management type by loading of default values. |

[SWS_NvM_00390] [The NvM module shall provide error recovery on read for
NVRAM blocks of block management type NVM_BLOCK_REDUNDANT by loading
the RAM block with default values. |

AUTSSAR

[SWS_NvM_00168] [The NvM module shall provide error recovery on write by per-
forming write retries regardless of the NVRAM block management type. |

[SWS_NvM_00169] [The NvM module shall provide read error recovery on startup for
all NVRAM blocks with configured RAM block CRC in case of RAM block revalidation
failure. |

7.2.2.6 Recovery of a RAM block with ROM data

[SWS_NvM_00171]
Upstream requirements: SRS _Mem_08549, SRS _Mem_08010

[The NvM module shall provide implicit and explicit recovery techniques to restore
ROM data to its corresponding RAM block in case of unrecoverable data inconsistency
of a NV block [SWS_NvM_00387], [SWS_NvM_00226], [SWS_NvM_00388]. |

7.2.2.7 Implicit recovery of a RAM block with ROM default data

[SWS_NvM_00172]
Upstream requirements: SRS_Mem_08010

[The data content of the corresponding NV block shall remain unmodified during the
implicit recovery. |

[SWS_NvM_00572] [The implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBIock for each
NVRAM block when no default data is configured (by the parameter NvMRomBlock
DataAddress or NvMInitBlockCallback). |

[SWS_NvM_00573] [The implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBIock for each
NVRAM block for the following conditions:

» The default data is configured (by the parameter NvMRomBlockDataAddress or
the parameter NvMInitBlockCallback).

» The permanent RAM block or the content of the RAM mirror in the NvM module (
in case of explicit synchronization) state is valid and CRC (data) is consistent.

]

[SWS_NvM_00574] [The implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBIock for each
NVRAM block for the following conditions:

» The default data is configured (by the parameter NvMRomBlockDataAddress or
the parameter NvMInitBlockCallback).

AUTSSAR

» The permanent RAM block or the content of the RAM mirror in the NvM module (
in case of explicit synchronization) state is invalid and CRC (data) is inconsistent.

» Read attempt from NV succeeds.

]

[SWS_NvM_00575] [The implicit recovery shall be provided during startup (part of Nv
M_ReadAll) and by NvM_ReadBlock or NvM_ReadPRAMBIock for each NVRAM block
for the following conditions:

» The default data is configured (by the parameter NvMRomBlockDataAddress or
the parameter NvMInitBlockCallback).

» The permanent RAM block state or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) is invalid and CRC (data) is incon-
sistent.

* Read attempt from NV fails.

]

[SWS NvM _00951]
Upstream requirements: SRS_Mem_00018

[Implicit recovery shall be provided during NvM_ReadBlock() or NvM_ReadPRAM-
Block() requests for NVRAM blocks of type NVM_BLOCK_NATIVE and NVM_BLOCK _
REDUNDANT. |

7.2.2.8 Explicit recovery of a RAM block with ROM default data

[SWS_NvM_00391] [For explicit recovery with ROM block data the NvM module shall
provide functions NvM_RestoreBlockDefaults and NvM_RestorePRAMBIockDefaults
[SWS_NvM_00012] to restore ROM data to its corresponding RAM block. |

[SWS_NvM_00392] [The function NvM_RestoreBlockDefaults and NvM_Restore
PRAMBIockDefaults shall remain unmodified the data content of the corresponding
NV block.

Hint: The function NvM_RestoreBlockDefaults or NvM_RestorePRAMBIlockDefaults
shall be used by the application to restore ROM data to the corresponding RAM block
every time it is needed. |

AUTSSAR

7.2.2.9 Detection of an incomplete write operation to a NV block

[SWS_NvM_00174]
Upstream requirements: SRS_Mem_08547

[The detection of an incomplete write operation to a NV block is out of scope of the
NvM module. This is handled and detected by the memory hardware abstraction. The
NvM module expects to get information from the memory hardware abstraction if a
referenced NV block is invalid or inconsistent and cannot be read when requested.
SW-Cs may use NvM_InvalidateNvBlock to prevent lower layers from delivering old
data. |

7.2.2.10 Termination of a single block request

[SWS_NvM_00175] [All asynchronous requests provided by the NvM module (except
for NvM_CancelWriteAll) shall indicate their result in the designated error/status field
of the corresponding Administrative block [SWS_NvM_00000]. |

[SWS_NvM_00176] [The optional configuration parameter NvMSingleBlockCallback
configures the notification via callback on the termination of an asynchronous block
request (and for NvM_ReadAll). |

Note 1: In communication with application SW-C, the ECUC configuration parame-
ter NvMSingleBlockCallback (ECUC_NvM_00506) should be configured to the corre-
sponding Rte_call_<p>_<o> API.

Note 2: For more information on NvMSingleBlockCallback, see chapter 10.2.3.

7.2.2.11 Termination of a multi block request

[SWS_NvM_00393] [The NvM module shall use a separate variable to store the result
of an asynchronous multi block request (NvM_ReadAll, NvM_WriteAll including NvM_
CancelWriteAll, NvM_ValidateAll). |

[SWS_NvM_00394] [The function NvM_GetErrorStatus [SWS_NvM_00015] shall re-
turn the most recent error/status information of an asynchronous multi block request
(including NvM_CancelWriteAll) in conjunction with a reserved block ID value of 0. |

[SWS_NvM_00395] [The result of a multi block request shall represent only a common
error/status information. |

[SWS_NvM_00396] [The multi block requests provided by the NvM module shall indi-
cate their detailed error/status information in the designated error/status field of each
affected Administrative block. |

AUTSSAR

[SWS_NvM_00179] [The optional configuration parameter NvMMultiBlockCallback
configures the notification via callback on the termination of an asynchronous multi
block request. |

Note: For more information on NvMMultiBlockCallback, see chapter 10.2.2.

7.2.2.12 General handling of asynchronous requests/ job processing

[SWS_NvM_00180] [Every time when CRC calculation is processed within a request,
the NvM module shall calculate the CRC in multiple steps if the referenced NVRAM
block length exceeds the number of bytes configured by the parameter NvMCrcNumOf
Bytes. |

[SWS_NvM_00351] [For CRC calculation, the NvM module shall use initial values
which are published by the CRC module. |

[SWS_NvM_00181] [Multiple concurrent single block requests shall be queueable. |

[SWS_NvM_00182] [The NvM module shall interrupt asynchronous request/job pro-
cessing in favor of jobs with immediate priority (crash data). |

[SWS_NvM_00184] [If the invocation of an asynchronous function on the NvM module
leads to a job queue overflow, the function shall return with E_NOT_OK. |

[SWS_NvM_00185] [On successful enqueuing a request, the NvM module shall set
the request result of the corresponding NVRAM block to NVM_REQ_PENDING. |

[SWS_NvM_00270] [If the NvM module has successfully processed a job, it shall
return NVM_REQ_OK as request result. |

7.2.2.13 NVRAM block write protection

The NvM module shall offer different kinds of write protection which shall be config-
urable. Every kind of write protection is only related to the NV part of NVRAM block,
i.e. the RAM block data can be modified but not be written to NV memory.

[SWS_NvM_00325]
Upstream requirements: SRS_Mem_08009
[Enabling/Disabling of the write protection is allowed using NvM_SetBlockProtection

function when the NvMWriteBlockOnce is FALSE regardless of the value (True/False)
configured for NvMBlockWriteProt. |

AUTSSAR

[SWS_NvM_00577]
Upstream requirements: SRS_Mem_08009

[Enabling/Disabling of the write protection is not allowed using NvM_SetBlockProtec-
tion function when the NvMWriteBlockOnce is TRUE regardless of the value (True/
False) configured for NvMBlockWriteProt. |

[SWS_NvM_00326]
Upstream requirements: SRS_Mem_08009

[For all NVRAM blocks configured with NvMBlockWriteProt = TRUE, the NvM module
shall enable a default write protection. |

[SWS_NvM_00578] [The NvM module’s environment can explicitly disable the write
protection using the NvM_SetBlockProtection function. |

[SWS_NvM_00397]
Upstream requirements: SRS_Mem_08015

[For NVRAM blocks configured with NvMWriteBlockOnce == TRUE [ECUC_Nv
M_00072], the NvM module shall only write once to the associated NV memory, i.e
in case of a blank NV device. |

[SWS_NvM_00398] [For NVRAM blocks configured with NvMWriteBlockOnce ==
TRUE, the NvM module shall not allow disabling the write protection explicitly using
the NvM_SetBlockProtection function.[SWS_NvM_00450] |

[SWS_NvM_00952] [For a block configured with NVM_WRITE_BLOCK_ONCE
(TRUE), NvM shall reject any Write/Erase/Invalidate request made prior to the first
read request. |

Note: In case of a reset, the write protection flag of a block configured with NVM_
WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is cleared. In
order to reactivate the protection, the block has to be read prior to a first Write/Erase/
Invalidate request being processed, in order to set the write proctection only for a block
that is valid and consistent. The first read request can be done either as a single block
request or as part of NvM_ReadAll.

7.2.2.14 Validation and modification of RAM block data

This chapter shall give summarized information regarding the internal handling of
NVRAM Manager status bits. Depending on different API calls, the influence on the
status of RAM blocks shall be described in addition to the specification items located
in chapter 8.3. The following figures depict the state transitions of RAM blocks.

AUTSSAR

I&N

Power-On

Reset

Erase/Invalidate successful OR
Read/ReadAll for block not successful OR
Write/WriteAll for block not successful OR
RamBlockStatus == FALSE

UNINITIALIZED

NvM_ Init

INVALID /
UNCHANGED

/ INVALID / CHANGED "\

constraints
{it can never occur}

Erase/Invalidate successful OR
Read/ReadAll for block not successful OR
Write/WriteAll for block not successful OR
RamBlockStatus == FALSE

responsibilities
must not WriteAll

Read/ReadAll for block successful OR
Write/WriteAll for block successful

\f/

State is preserved until at
least one exit condition is
met

Write/WriteAll ongoing for block OR

Read/ReadAll gives default data OR
RestoreBlockDefaults perfformed OR

RamBlockStatus == TRUE

/" VALID / UNCHANGED "\ o

responsibilities

Write/WriteAll ongoing for block OR

Read/ReadAll gives default data OR
RestoreBlockDefaults perfformed OR

RamBlockStatus == TRUE

S._ /7 VALID/CHANGED O\

responsibilities

may ReadAll
must not WriteAll

constraints

must not ReadAll
must WriteAll

constraints

{RAM==NV}

{RAM 1= NV}

Read/ReadAll for block successful OR
Write/WriteAll for block successful

-/ A /

Figure 7.8: RAM Block States

Since entering and preserving a state can be done based on multiple conditions and
placing them all in the above figure would make it difficult to understand, more detailed
explanations are provided in the following subchapters. The INVALID / CHANGED
state is not detailed as it can never be reached (as mentioned in the figure above).

After the Initialization the RAM Block is in state INVALID/UNCHANGED until it is up-
dated via NvM_ReadAll, which causes a transition to state VALID/UNCHANGED. In
this state WriteAll is not allowed. This state is left, if the NvM_SetRamBlockStatus is
invoked. If there occurs a CRC error the RAM Block changes to state INVALID again,
which than can be left via the implicit or explicit error recovery mechanisms. After error
recovery the block is in state VALID/CHANGED as the content of the RAM differs from
the NVRAM content.

AUTSSAR

[SWS_NvM_00344]
Upstream requirements: SRS_Mem_08550

[If the API for modifying the RAM block status has been disabled in configuration
(via NvMSetRamBlockStatusApi or NvMBlockUseSetRamBlockStatus) the NvM mod-
ule shall treat a RAM block or the RAM mirror in the NvM module (in case of explicit syn-
chronization) as valid and changed when writing data in the corresponding NV block,
i.e. during NvM_WriteAll, the NvM module shall write each permanent RAM block to
NV memory. |

[SWS NvM 00345]
Upstream requirements: SRS_Mem_08550

[If the API for modifying the RAM block status has been disabled in configuration
(via NvMSetRamBlockStatusApi or NvMBlockUseSetRamBlockStatus) the NvM mod-
ule shall treat a RAM block as invalid when reading data from NV block, i.e. during
NvM_ReadAll, the NvM module shall copy each NVRAM block to RAM if configured
accordingly. |

[SWS_NvM_00696]
Upstream requirements: SRS_Mem_08550

[In case of an unsuccessful block read attempt, it is the responsibility of the application
to provide valid data before the next write attempt. |

[SWS_NvM_00472]
Upstream requirements: SRS _Mem_08541

[In case a RAM block is successfully copied to NV memory the RAM block state shall
be set to "valid/unmodified" afterwards. |

7.2.2.14.1 The VALID / UNCHANGED state

This state implies that the contents of the RAM Block are either identical to the contents
of the corresponding NV Block or - if the application has accessed the RAM Block - a
potential change was not yet indicated. For a DATASET block these conditions apply to
he RAM contents of the instance that was last processed. Also, the last block operation
was successful and the block was not invalidated by request.

To enter the VALID / UNCHANGED state, at least of the following has to occur:

—

. NvM_ReadAll() read successfully the block
2. NvM_ReadBlock finished successfully for the block
3. NvM_WriteBlock finished successfully for the block
4. NvM_WriteAll() wrote successfully the block

The VALID / UNCHANGED state is preserved while:

AUTSSAR

« the last read or write for a BlocklD was successful (no error and no retrieval of
default data)

AND

« the application has not indicated a potential change of RAM block since last read
or write

7.2.2.14.2 The VALID / CHANGED state

This state implies that the contents of the RAM Block potentially differ from the contents
of the corresponding NV Block. For a DATASET block this condition applies to the
RAM contents of the instance that was last processed. Also, the last operation for the
block was successsful and the block was not invalidated by request. The block owner
can signal a potential RAM contents changed for the block causing the block state to
become VALID / CHANGED.

To enter the VALID / CHANGED state, at least one of the following has to occur:
1. NvM_SetRamBlockStatus called with TRUE for the block

NvM_WriteBlock is called for the block

NvM_WriteAll will also process the block

NvM_ReadBlock called for the block gives default data

NvM_RestoreBlockDefaults called for the block finishes successfully

2

NvM_ReadAll gives default data when processign the block
7. NvM_\ValidateAll processed successfully the block
The VALID / CHANGED state is preserved while:
* a block owner has indicated a potential change of RAM block
OR

+ default data was retrieved (implicitly or explicitly) for the block upon last read

7.2.2.14.3 The INVALID / UNCHANGED state

This state implies that the NV Block is invalid. For a DATASET block this means that
the NV Block contents are invalid for the last instance that was processed.

To enter the INVALID / UNCHANGED state, at least one of the following has to occur:
1. NvM_SetRamBlockStatus called with FALSE for the block

2. NvM_ReadBlock indicates invalidation by user request for the block

AUTSSAR

NvM_ReadBlock indicates corrupted data (if CRC configured) for the block
NvM_ReadBlock indicates wrong StaticID (if configured) for the block
NvM_WriteBlock finished non-successfully for the block

NvM_ WriteAll non-successful write for the block

N o o op W

NvM_InvalidateNvBIlock finished successfully for the block
8. NvM_EraseNvBlock finished successfully for the block
The INVALID / UNCHANGED state is preserved while:

« the block state is unknown at the time (early init, until ReadAll or first operation
requested for a given block)

OR

« the block was detected as corrupted or with wrong StaticID
OR

* the last successful operation on the block was an invalidation
OR

* the current read failed and no default data
OR

* the last successful operation on the block was an erase

7.2.2.15 Communication and implicit synchronization between application and
NVRAM manager

To minimize locking/unlocking overhead or the use of other synchronization methods,
the communication between applications and the NvM module has to follow a strict
sequence of steps which is described below. This ensures a reliable communication
between applications and the NvM module and avoids data corruption in RAM blocks
and a proper synchronization is guaranteed.

This access model assumes that two parties are involved in communication with a RAM
block: The application and the NvM module.

[SWS_NvM_00697] [If several applications are using the same RAM block it is not
the job of the NvM module to ensure the data integrity of the RAM block. In this case,
the applications have to synchronize their accesses to the RAM block and have to
guarantee that no unsuitable accesses to the RAM block take place during NVRAM
operations (details see below). Especially if several applications are sharing a NVRAM
block by using (different) temporary RAM blocks, synchronization between applications
becomes more complex and this is not handled by the NvM module, too. In case of

AUTSSAR

using callbacks as notification method, it could happen that e.g. an application gets a
notification although the request has not been initiated by this application.

All applications have to adhere to the following rules. |

7.2.2.15.1 User guidelines for Write requests (NVM_WriteBlock or NvM_Write

PRAMBIock)

Applications have to adhere to the following rules during write request for implicit syn-
chronization between application and NVRAM manager:

1.

The application fills a RAM block with the data that has to be written by the NvM
module

. The application issues the NvM_WriteBlock or NvM_WritePRAMBIock request

which transfers control to the NvM module.

From now on the application should not modify the RAM block until success or
failure of the request is signaled or derived via polling. In the meantime the
contents of the RAM block may be read.

. An application can use polling to get the status of the request or can be informed

via a callback function asynchronously.

. After completion of the NvM module operation, the RAM block is reusable for

modifications.

7.2.2.15.2 User guidelines for Read requests (NvM_ReadBlock or NvM_Read

PRAMBIock)

Applications have to adhere to the following rules during read request for implicit syn-
chronization between application and NVRAM manager:

1.

The application provides a RAM block that has to be filled with NVRAM data from
the NvM module’s side.

. The application issues the NvM_ReadBlock request which transfers control to the

NvM module.

From now on the application should not read or write to the RAM block until
success or failure of the request is signaled or derived via polling.

. An application can use polling to get the status of the request or can be informed

via a callback function.

. After completion of the NvM module operation, the RAM block is available with

new data for use by the application.

AUTSSAR

7.2.2.15.3 User guidelines for Restore default requests (NvM_RestoreBlockDe-
faults and NvM_RestorePRAMBIlockDefaults)

Applications have to adhere to the following rules during restore default requests for
implicit synchronization between application and NVRAM manager:

1. The application provides a RAM block, which has to be filled with ROM data from
the NvM modules side.

2. The application issues the NvM_RestoreBlockDefaults or NvM_RestorePRAM-
BlockDefaults request which transfers control to the NvM module.

3. From now on the application should not read or write to the RAM block until
success or failure of the request is signaled or derived via polling.

4. An application can use polling to get the status of the request or can be informed
via a callback function.

5. After completion of the NvM module operation, the RAM block is available with
the ROM data for use by the application.

7.2.2.15.4 User guidelines for Multi-block read requests (NvM_ReadAll)

This request may be triggered only by the BSW Mode Manager at system startup.
This request fills all configured permanent RAM blocks with necessary data for startup.

If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the BSW Mode
Manager. The DEM and the BSW Mode Manager have to decide about further mea-
sures that have to be taken. These steps are beyond the scope of the NvM module
and are handled in the specifications of DEM and BSW Mode Manager.

Applications have to adhere to the following rules during multi block read requests for
implicit synchronization between application and NVRAM manager:

The BSW Mode Manager issues the NvM_ReadAll.

1. The BSW Mode Manager can use polling to get the status of the request or can
be informed via a callback function.

2. During NvM_ReadAll, a single block callback (if configured) will be invoked after
having completely processed a NVRAM block. These callbacks enable the RTE
to start each SW-C individually.

7.2.2.15.5 User guidelines for Multi-block write requests (NvM_WriteAll)

This request should only be triggered by the BSW Mode Manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV

AUTSSAR

memory. By calling this request only during ECU shutdown, the BSW Mode Manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the BSW Mode Manager.

Applications have to adhere to the following rules during multi block write requests for
implicit synchronization between application and NVRAM manager:

1. The BSW Mode Manager issues the NvM_WriteAll request which transfers con-
trol to the NvM module.

2. The BSW Mode Manager can use polling to get the status of the request or can
be informed via a callback function.

7.2.2.15.6 User guidelines for Cancel Operation (NvM_CancelWriteAll)

This request cancels a pending NvM_WriteAll request. This is an asynchronous re-
quest and can be called to terminate a pending NvM_WriteAll request.

NvM_CancelWriteAll request shall only be used by the BSW Mode Manager.

7.2.2.15.7 User guidelines for modification of administrative blocks

For administrative purposes an administrative block is part of each configured NVRAM
block (ref. to ch. 7.1.3.4).

If there is a pending single-block operation for a NVRAM block, the application is not
allowed to call any operation that modifies the administrative block, like NvM_SetData
Index, NvM_SetBlockProtection, NvM_SetRamBlockStatus, until the pending job has
finished.

7.2.2.16 Normal and extended runtime preparation of NVRAM blocks

This subchapter is supposed to provide a short summary of normal and extended
runtime preparation of NVRAM blocks. The detailed behavior regarding the handling
of NVRAM blocks during start-up is specified in chapter 8.3.3.1.

Depending on the two configuration parameters NvMDynamicConfiguration and Nv
MResistantToChangedSw the NVRAM Manager shall behave in different ways during
start-up, i.e. while processing the request NvM_ReadAll().

If NvMDynamicConfiguration is set to FALSE, the NVRAM Manager shall ignore the
stored configuration ID (see SWS_NvM_00034) and continue with the normal runtime
preparation of NVRAM blocks. In this case the RAM block shall be checked for its
validity. If the RAM block content is detected to be invalid the NV block shall be checked

AUTSSAR

for its validity. A NV block which is detected to be valid shall be copied to its assigned
RAM block. If an invalid NV Block is detected default data shall be loaded.

If NvMDynamicConfiguration is set to TRUE and a configuration ID mismatch is de-
tected, the extended runtime preparation shall be performed for those NVRAM blocks
which are configured with NvMResistantToChangedSw(FALSE). In this case default
data shall be loaded independent of the validity of an assigned RAM or NV block.

7.2.2.17 Communication and explicit synchronization between application and
NVRAM manager

In contrast to the implicit synchronization between the application and the NvM module
(see section 7.2.2.15) an optional (i.e. configurable) explicit synchronization mech-
anism is available. It is realized by a RAM mirror in the NvM module. The data is
transferred by the application in both directions via callback routines, called by the Nv
M module.

Here is a short analysis of this mechanism:

The advantage is that applications can control their data in a better way. They are
responsible for copying consistent data to and from the NvM module’s RAM mirror, so
they know the point in time. The RAM block is never in an inconsistent state due to
concurrent accesses.

The drawbacks are the additional RAM which needs to have the same size as the
largest NVRAM block that uses this mechanism and the necessity of an additional
copy between two RAM locations for every operation.

This mechanism especially enables the sharing of NVRAM blocks by different applica-
tions, if there is a module that synchronizes these applications and is the owner of the
NVRAM block from the NvM module’s perspective.

[SWS_NvM_00511] [For every NVRAM block there shall be the possibility to configure
the usage of an explicit synchronization mechanism by the parameter NvMBlockUse
SyncMechanism. |

[SWS_NvM_00512] [The NvM module shall not allocate a RAM mirror if no block is
configured to use the explicit synchronization mechanism. |

[SWS_NvM_00513] [The NvM module shall allocate only one RAM mirror if at least
one block is configured to use the explicit synchronization mechanism. This RAM mirror
should not exceed the size of the longest NVRAM block configured to use the explicit
synchronization mechanism. |

[SWS_NvM_00514] [The NvM module shall use the internal mirror as buffer for all
operations that read and write the RAM block of those NVRAM blocks with NvMBlock
UseSyncMechanism == TRUE. The buffer should not be used for the other NVRAM
blocks. |

AUTSSAR

[SWS_NvM_00515] [The NvM module shall call the routine NvMWriteRamBlockToNv
Callback in order to copy the data from the RAM block to the mirror for all NVRAM
blocks with NvMBlockUseSyncMechanism == TRUE. This routine shall not be used for
the other NVRAM blocks. |

[SWS_NvM_00516] [The NvM module shall call the routine NvMReadRamBlockFrom
NvCallback in order to copy the data from the mirror to the RAM block for all NVRAM
blocks with NvMBlockUseSyncMechanism == TRUE. This routine shall not be used for
the other NVRAM blocks. |

[SWS_NvM_00517] [During a single block request if the routines NvMReadRamBlock
FromNvCallback return E_NOT_OK, then the NvM module shall retry the routine call
NvMRepeatMirrorOperations times. Thereafter the single block read job shall set the
block specific request result to NVM_REQ_NOT_OK and shall report NVM_E_REQ
FAILED to the DEM. |

[SWS_NvM_00839] [In the case the NvMReadRamBlockFromNvCallback routine re-
turns E_NOT_OK, the NvM module shall retry the routine call in the next call of the Nv
M_MainFunction. |

[SWS_NvM_00579] [During a single block request if the routines NvMWriteRamBlock
ToNvCallback return E_NOT_OK, then the NvM module shall retry the routine call Nv
MRepeatMirrorOperations times. Thereafter the single block write job shall set the
block specific request result to NVM_REQ_NOT_OK and shall report NVM_E_REQ_
FAILED to the DEM. |

[SWS_NvM_00840] [In the case the NvMWriteRamBlockToNvCallback routine returns
E_NOT_OK, the NvM module shall retry the routine call in the next call of the NvM_
MainFunction. |

[SWS_NvM_00837] [During a multi block request (NvM_WriteAll) if the routines Nv
MWriteRamBlockToNvCallback return E_NOT_OK, then the NvM module shall retry
the routine call NvMRepeatMirrorOperations times. Thereafter the job of the function
NvM_WriteAll shall set the block specific request result to NVM_REQ_NOT_OK and
shall report NVM_E_REQ_FAILED to the DEM. |

[SWS_NvM_00838] [During a multi block request (NvM_ReadAll) if the routines Nv
MReadRamBlockFromNvCallback return E_NOT_OK, then the NvM module shall retry
the routine call NvMRepeatMirrorOperations times. Thereafter the job of the function
NvM_ReadAll shall set the block specific request result to NVM_REQ_NOT_OK and
shall report NVM_E_REQ_FAILED to the DEM. |

[SWS_NvM_00904]
Upstream requirements: SRS_Mem_08534

[If a block has explicit synchronization configured for it then it shall not have a perma-
nent RAM image configured. |

AUTSSAR

The following two sections clarify the differences when using the explicit synchroniza-
tion mechanism, compare to 7.2.2.17.1 and 7.2.2.17.2.

7.2.2.17.1 Write requests (NVM_WriteBlock or NvM_WritePRAMBIock)
[SWS_NvM_00705] [Applications have to adhere to the following rules during write
request for explicit synchronization between application and NVRAM manager:

1. The application fills a RAM block with the data that has to be written by the NvM
module.

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBIock request.

3. The application might modify the RAM block until the routine NvMWriteRamBlock
ToNvCallback is called by the NvM module.

4. If the routine NvMWriteRamBlockToNvCallback is called by the NvM module, then
the application has to provide a consistent copy of the RAM block to the destina-
tion requested by the NvM module.

The application can use the return value E_NOT_OK in order to signal that data
was not consistent. The NvM module will accept this NvMRepeatMirrorOpera-
tions times and then postpones the request and continues with its next request.

5. Continuation only if data was copied to the NvM module:
6. From now on the application can read and write the RAM block again.

7. An application can use polling to get the status of the request or can be informed
via a callback routine asynchronously.

Note: The application may combine several write requests to different positions in one
RAM block, if NvM_WriteBlock or NvM_WritePRAMBIock was requested, but not yet
processed by the NvM module. The request was not processed, if the callback routine
NvMWriteRamBlockToNvCallback was not called. |

7.2.2.17.2 Read requests (NvM_ReadBlock or NvM_ReadPRAMBIock)
[SWS_NvM_00706] [Applications have to adhere to the following rules during read
request for explicit synchronization between application and NVRAM manager:

1. The application provides a RAM block that has to be filled with NVRAM data from
the NvM module’s side.

2. The application issues the NvM_ReadBlock or NvM_ReadPRAMBIlock request.

3. The application might modify the RAM block until the routine NvMReadRamBlock
FromNvCallback is called by the NvM module.

AUTSSAR

4. If the routine NvMReadRamBlockFromNvCallback is called by the NvM module,
then the application copy the data from the destination given by the NvM module
to the RAM block.The application can use the return value E_NOT_OK in order
to signal that data was not copied. The NvM module will accept this NvMRepeat
MirrorOperations times and then postpones the request and continues with its
next request.

5. Continuation only if data was copied from the NvM module:
6. Now the application finds the NV block values in the RAM block.

7. The application can use polling to get the status of the request or can be informed
via a callback routine.

Note: The application may combine several read requests to different positions in one
NV block, if NvM_ReadBlock or NvM_ReadPRAMBIock was requested, but not yet
processed by the NvM module. The request was not processed, if the callback routine
NvMReadRamBlockFromNvCallback was not called.

Note: NvM_RestoreBlockDefaults and NvM_RestorePRAMBIlockDefaults works simi-
larly to NvM_ReadBlock. |

7.2.2.17.3 Multi block read requests (NvM_ReadAll)

This request may be triggered only by the BSW Mode Manager at system startup. This
request fills all configured permanent RAM blocks with necessary data for startup.

If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the BSW Mode
Manager. The DEM and the BSW Mode Manager have to decide about further mea-
sures that have to be taken. These steps are beyond the scope of the NvM module
and are handled in the specifications of DEM and BSW Mode Manager.

Normal operation:
1. The BSW Mode Manager issues the NvM_ReadAll.

2. The BSW Mode Manager can use polling to get the status of the request or can
be informed via a callback function.

3. During NvM_ReadAll job, if a synchronization callback (NvM_ReadRamBlock
FromNvm) is configured for a block it will be called by the NvM module. In this
callback the application shall copy the data from the destination given by the Nv
M module to the RAM block.The application can use the return value E_NOT_OK
in order to signal that data was not copied. The NvM module will accept this Nv
MRepeatMirrorOperations times and then report the read operation as failed.

4. Now the application finds the NV block values in the RAM block if the read oper-
ation was successful.

AUTSSAR

5. During NvM_ReadAll, a single block callback (if configured) will be invoked after
having completely processed a NVRAM block. These callbacks enable the RTE
to start each SW-C individually.

6. After processing of the last block and calling its single block callback (if config-
ured), the multi block callback (if configured) will be invoked.

7.2.2.17.4 Multi block write requests (NvM_WriteAll)

This request should only be triggered by the BSW Mode Manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV
memory. By calling this request only during ECU shutdown, the BSW Mode Manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the BSW Mode Manager.

Normal operation:

1. The BSW Mode Manager issues the NvM_WriteAll request which transfers con-
trol to the NvM module.

2. During NvM_WriteAll job, if a synchronization callback (NvM_WriteRamBlockTo
NvM) is configured for a block it will be called by the NvM module. In this call-
back the application has to provide a consistent copy of the RAM block to the
destination requested by the NvM module.

The application can use the return value E_NOT_OK in order to signal that data
was not consistent. The NvM module will accept this NvMRepeatMirrorOpera-
tions times and then report the write operation as failed.

3. Now the application can read and write the RAM block again.

4. The BSW Mode Manager can use polling to get the status of the request or can
be informed via a callback function.

7.2.2.18 Static Block ID Check

Note: NVRAM Manager stores the NV Block Header including the Static Block ID in
the NV Block each time the block is written to NV memory. When a block is read, its
Static Block ID is compared to the requested block ID. This permits to detect hardware
failures which cause a wrong block to be read.

[SWS_NvM_00523]
Upstream requirements: SRS_Mem_08555

[The NVRAM Manager shall store the Static Block ID field of the Block Header each
time the block is written to NV memory. |

AUTSSAR

[SWS_NvM_00524]
Upstream requirements: SRS_Mem_08555

[The NVRAM Manager shall check the Block Header each time the block is read from
NV memory. |

[SWS_NvM_00525] [If the Static Block ID check fails then the failure NVM_E_
WRONG_BLOCK_ID is reported to DEM. |

[SWS_NvM_00580] [If the Static Block ID check fails then the read error recovery is
initiated. Hint: A check shall be made during configuration to ensure that all Static
Block IDs are unique. |

7.2.2.19 Read Retry

[SWS_NvM_00526]
Upstream requirements: SRS_Mem_08554

[If the NVRAM manager detects a failure during a read operation from NV memory, a
CRC error then one or more additional read attempts shall be made, as configured by
NVM_MAX_NUM_OF_READ_RETRIES, before continuing to read the redundant NV
Block. |

[SWS_NvM_00581]
Upstream requirements: SRS_Mem_08554

[1f the NVRAM manager detects a failure during a read operation from NV memory, a
CRC error then one or more additional read attempts shall be made, as configured by
NVM_MAX_NUM_OF_READ_RETRIES, before continuing to read the ROM Block. |

[SWS NvM 00582]
Upstream requirements: SRS_Mem_00129

[If the NVRAM manager detects a failure during a read operation from NV memory,
a Static Block ID check then one or more additional read attempts shall be made, as
configured by NVM_MAX_NUM_OF_READ_RETRIES, before continuing to read the
redundant NV Block. |

[SWS_NvM_00583] [If the NVRAM manager detects a failure during a read operation
from NV memory, a Static Block ID check then one or more additional read attempts
shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES, before con-
tinuing to read the ROM Block. |

AUTSSAR

7.2.2.20 Write Verification

When a RAM Block is written to NV memory the NV block shall be immediately read
back and compared with the original content in RAM Block if the behaviour is enabled
by NVM_WRITE_VERIFICATION.

[SWS_NvM_00527]

Upstream requirements: SRS_Mem_08554, SRS_Mem_08556
[Comparison between original content in RAM Block and the block read back shall be
performed in steps so that the number of bytes read and compared is not greater than

as specified by the configuration parameter NVM_WRITE_VERIFICATION_DATA _
SIZE. |

[SWS_NvM_00528]
Upstream requirements: SRS_Mem_08556

[If the original content in RAM Block is not the same as read back then the production
code error NVM_E_VERIFY_FAILED shall be reported to DEM. |

[SWS_NvM_00529]
Upstream requirements: SRS_Mem_08554, SRS_Mem_08556

[If the original content in RAM Block is not the same as read back then write retries
shall be performed as specified in this document. |

[SWS_NvM_00530] [If the read back operation fails then no read retries shall be per-
formed. |

[SWS_NvM_00897]

Upstream requirements: SRS_Mem_00017, SRS_Mem_08554, SRS_Mem_00030, SRS_Mem_-
08556

[If the original content in RAM Block is not the same as read back, for the initial write
attempt as well as for all the configured retries, then NvM shall set as request result
NVM_REQ_NOT_OK. |

7.2.2.21 Comparing NV data in NvM

In order to avoid unnecessary write operations in NV memory, if the NV data of a
specific RAM Block was not updated during runtime, the NvM module offers a CRC
based compare mechanism which can be applied while processing a write job.

[SWS_NvM_00849]
Upstream requirements: SRS_Mem_00136

[The NvM module shall provide an option to skip writing of unchanged data by imple-
menting a CRC based compare mechanism. |

AUTSSAR

Note: In general, there is a risk that some changed content of an RAM Block leads
to the same CRC as the initial content so that an update might be lost if this option
is used. Therefore this option should be used only for blocks where this risk can be
tolerated.

[SWS NvM _00850]
Upstream requirements: SRS_Mem_00136

[For every NVRAM Block there shall be the possibility to configure the usage of the
CRC based compare mechanism by the parameter NvMBlockUseCRCCompMecha-
nism if the parameter NvMBlockUseCrc is set to true. |

7.2.2.22 NvM and BswM interaction

[SWS_NvM_00745] [The NvM shall use the BswM API BswM_NvM_CurrentJob
Mode() when it needs to inform the BswM about a multiblock request state change. |

[SWS_NvM_00950] [If NvMBswMMultiBlockJobStatusinformation is true, the NvM
shall not call the configured multiblock callback. |

[SWS_NvM_00746] [The NvM shall use the BswM APl BswM_NvM_CurrentBlock
Mode() when it needs to inform the BswM about a single block request acceptance
(as being pending) and result. |

[SWS_NvM_00888] [If NvMBswMMultiBlockJobStatusinformation is true, when NvM
accepts a multiblock operation the NvM shall inform the BswM about the accepted
multiblock operation as being pending, by calling the BswM_NvM_CurrentJobMode
with the related multiblock request type and, as mode, NVM_REQ_PENDING. |

[SWS_NvM_00889] [If NvMBswMMultiBlockJobStatusinformation is true, when a
multiblock operation finishes or is canceled the NvM shall inform the BswM about the
result of the multiblock operation, by calling the BswM_NvM_CurrentJobMode with the
related multiblock request type and, as mode, the outcome of the multiblock operation. |

[SWS_NvM_00890] [If NvMBswMBlockStatusIinformation is true, when NvM accepts
a single block operation the NvM shall inform the BswM about the accepted single
block operation as being pending, by calling the BswM_NvM_CurrentBlockMode with
the related Block ID and, as mode, NVM_REQ_PENDING. |

[SWS_NvM_00891] [If NvMBswMBlockStatusIinformation is true, when a single block
operation finishes or is canceled the NvM shall inform the BswM about the result of the
single block operation, by calling the BswM_NvM_CurrentBlockMode with the related
Block ID and, as mode, the outcome of the singleblock operation. |

[SWS_NvM_00892] [If NvMBswMBlockStatusInformation is true and NvM has a multi-
block operation ongoing, for each block processed due to the multiblock operation, Nv

AUTSSAR

M shall inform the BswM when it starts to process the block, as being pending, by call-
ing the BswM_NvM_ CurrentBlockMode with the related Block ID and, as mode, NVM_
REQ_PENDING. |

[SWS_NvM_00949] [If NvMBswMBlockStatusInformation is true and NvM has a multi-
block operation ongoing, for each block processed due to the multiblock operation, Nv
M shall inform the BswM about the result of the processing of the block when the block
is finished processing, by calling the BswM_NvM_CurrentBlockMode with the related
Block ID and, as mode, the outcome of the singleblock operation. |

7.2.2.23 Block Compression

The block data is compressed before it is written to NV memory. The type of compres-
sion (block split, compression, delta) is vendor-specific.

The use-case is for larger data blocks with changes of only smaller junks (like drive-
cycle logging). The goal is that not the whole block needs to be written to NV memory
to reduce the overall write-cycles.

The block split would divide the block in multiple sub-blocks and only the changed sub-
blocks would be written. Alternatively, only the changed delta could be written. Anyway,
any data compression algorithm could be used.

The drawback is always a higher runtime for writing or reading the data.

NvM block compression

App MW Memlf
| |
: Write }:
:{ MirrorCallback !

COMpression I}]

|
| Memlf Write () >
S — [
:.{ : :
App MV Memlf

Figure 7.9: NvM block compression

AUTSSAR

[SWS_NvM_00966] [DRAFT In case the NvMBlockUseCompression is set to true, the
NvM shall compress the stored data in NV memory. |

7.2.2.24 Block Ciphering

For security purposes NvM supports synchronous encryption and decryption via CSM
module using symmetric 16 byte aligned algorithms, e.g. AES128.

The user always works with plain data, the NV RAM stores the ciphered data:

> Write data: NvM encrypts the plain user data and then forwards the ciphered data to
the device.

> Read data: NvM reads the ciphered data from device, decrypts the data and finally
provides the plain data to the user.

To check the integrity of the ciphered data a CRC can be configured (as usual). NvM
will then calculate the CRC over encrypted data and recalculate and check the CRC
before decryption: the CRC always matches the ciphered data.

[SWS_NvM_00976] [In case NvMBlockCipheringRef is given, the NvM shall before
forwarding the write request to Memlf encrypt the plain data using Csm_Encrypt() with
the CSM job given in NvMCsmEncryptiondJobReference.

The CRC calculation (if configured) shall be done over the encrypted data. |

[SWS_NvM_00977] [In case Csm_Encrypt() returns a CRYPTO_E_BUSY, the NvM
shall retry to redo the job. After NvMCsmRetryCounter times of retry the NvM shall
abort the write job and set the NvM result to NVM_REQ_NOT_OK and signal an error
via NvM_JobErrorNotification().

[SWS_NvM_00978] [In case Csm_Encrypt() returns any other error than CRYPTO_
E_BUSY or CRYPTO_E_OK, the NvM shall abort the write job and set the NvM result
to NVM_REQ_NOT_OK and signal an error via NvM_JobErrorNotification(). |

[SWS_NvM_00979] [In case Csm_Encrypt() returns successfully with CRYPTO_E_
OK, the NvM shall continue the write job (e.g. with the CRC calculation) with the new
length given in NvMNvBlockNVRAMDatalength.

In case of the returned length in resultLengthPtr is different to the NvMNvBIlock
NVRAMDatalLength the development error NVM_E_BLOCK_CHIPHER_LENGTH_
MISSMATCH shall be triggerd. |

[SWS_NvM_00980] [In case NvMBlockCipheringRef is given, the NvM shall before
forwarding the read request to application decrypt the stored data using Csm_Decrypt()
with the CSM job given in NvMCsmDecryptionJobReference. The CRC check (if con-
figured) shall be done over the encrypted data. If the CRC does not match, NvM will
not decrypt the data but abort the job with NVM_REQ_INTEGRITY_FAILED. |

AUTSSAR

[SWS_NvM_00981] [In case Csm_Decrypt() returns a CRYPTO_E_BUSY, the NvM
shall retry to redo the job. After NvMCsmRetryCounter times of retry the NvM shall
abort the read job and set the NvM result to NVM_REQ_NOT_OK and signal an error
via NvM_JobErrorNotification(). |

[SWS_NvM_00982] [In case Csm_Decrypt() returns any other error than CRYPTO_
E_BUSY or CRYPTO_E_OK, the NvM shall abort the read job and set the NvM result
to NVM_REQ_NOT_OK and signal an error via NvM_JobErrorNotification(). |

[SWS_NvM_00983] [In case Csm_Decrypt() returns successfully with CRYPTO_E_
OK, the NvM shall continue the read job with the new length given in NvMNvBIlock
Length.

In case of the returned length in resultLengthPtr is different to the NvMNvBIlockLength
the development error NVM_E_BLOCK_CHIPHER_LENGTH_MISSMATCH shall be
triggerd. |

7.3 Error Classification

7.3.1 Development Errors

[SWS_NvM_91004] Definition of development errors in module NvM

Upstream requirements: SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00406, SRS_BSW_
00337, SRS_BSW_00327, SRS_BSW_00331

[
Type of error Related error code Error value
APl is called with wrong parameter block ID NVM_E_PARAM_BLOCK_ID 0x0A
APl is called with wrong parameter block data NVM_E_PARAM_BLOCK_DATA IDX 0x0C
APl is called with wrong parameter address NVM_E_PARAM_ADDRESS 0x0D
APl is called with wrong parameter data NVM_E_PARAM_DATA 0x0E
APl is called with wrong parameter pointer NVM_E_PARAM_POINTER O0xOF
APl is called for a block without defaults when NVM_E_BLOCK_WITHOUT_DEFAULTS 0x11

either the NvM_RestoreBlockDeafults or NvM_
RestorePRAMBIockDefaults is called for a valid
block ID that has no default data and no NvMInit
BlockCallback configured for the block

APl is called when NVRAM manager is not NVM_E_UNINIT 0x14
initialized yet

read/write/control APl is called for a block which is NVM_E_BLOCK_PENDING 0x15
already listed or in progress

Service is not possible with this block configuration | NVM_E_BLOCK_CONFIG 0x18
write/erase/invalidate API is called for a block with NVM_E_WRITE_ONCE_STATUS_UNKNOWN Ox1A

MVM_WRITE_BLOCK_ONCE (TRUE) prior to the
first read request for that block

\Y

AUTSSAR

JAN
Type of error Related error code Error value
The length resulting from encryption or decription NVM_E_BLOCK_CHIPHER_LENGTH_ 0x1B
do not match with the given length in the MISSMATCH
configuration.

]

(SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00406, SRS_BSW_00337, SRS_
BSW_00327)

[SWS_NvM_00961] [The development error NVM_E_WRITE_PROTECTED (0x1B)
shall be detectable by the NvM module when a write attempt to a NVRAM block with
write protection (which write protection can be either configured or set by explicit re-
quest) occurs. |

[SWS_NvM_00027]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00385, SRS_BSW_00386, SRS_BSW _
00406, SRS_BSW_00327, SRS_BSW_00331

[If development error detection is enabled for NvM module, the function NvM_SetData
Index shall report the DET error NVM_E_UNINIT when NVM is not yet initialized. |

[SWS_NvM_00598] [If development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error NVM_E_BLOCK_ PENDING
when NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00599] [If development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error NVM_E_PARAM_BLOCK _
DATA_IDX when Datalndex parameter exceeds the total number of configured datasets
(Check: [SWS_NvM_00444], [SWS_NvM_00445]). |

[SWS_NvM_00601] [If development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

[SWS_NvM_00602] [If development error detection is enabled for NvM module, the
function NvM_GetDatalndex shall report the DET error NVM_E_UNINIT when NVM
not yet initialized. |

[SWS_NvM_00604] [If development error detection is enabled for NvM module, the
function NvM_GetDatalndex shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

[SWS_NvM_00605] [If development error detection is enabled for NvM module, the
function NvM_GetDatalndex shall report the DET error NVM_E_PARAM_DATA when
a NULL pointer is passed via the parameter DatalndexPtr. |

AUTSSAR

[SWS_NvM_00606] [If development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. |

[SWS_NvM_00607] [If development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error NVM_E_BLOCK_PEND-
ING when NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00608] [If development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error NVM_E_BLOCK_CON-
FIG when the NVRAM block is configured with NvMWriteBlockOnce = TRUE. |

[SWS_NvM_00609] [If development error detection is enabled for NvM module,
the function NvM_SetBlockProtection shall report the DET error NVM_E_PARAM _
BLOCK_ID when the passed BlockID is out of range. |

[SWS_NvM_00610] [If development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_UNINIT when NVM
is not yet initialized. |

[SWS_NvM_00611] [If development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

[SWS_NvM_00612] [If development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_PARAM_DATA when
a NULL pointer is passed via the parameter RequestResultPtr. |

[SWS_NvM_00613] [If development error detection is enabled for NvM module, the
function NvM_GetVersionInfo shall report the DET error NVM_E_PARAM_POINTER
when a NULL pointer is passed via the parameter versioninfo. |

[SWS_NvM_00614] [If development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. |

[SWS_NvM_00615] [If development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_BLOCK_PENDING when
NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00616] [If development error detection is enabled for NvM module,
the function NvM_ReadBIlock shall report the DET error NVM_E_PARAM_ADDRESS
when no permanent RAM block and no explicit synchronization are configured and a
NULL pointer is passed via the parameter NvM_DstPtr. |

[SWS_NvM_00618] [If development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

AUTSSAR

[SWS_NvM_00823] [If development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error NVM_E_UNINIT when NVM
is not yet initialized. |

[SWS_NvM_00824] [If development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error NVM_E_BLOCK_PEND-
ING when NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00825]
Upstream requirements: SRS_Mem_00016, SRS_Mem_00038

[If development error detection is enabled for NvM module, the function NvM_Read
PRAMBIock shall report the DET error NVM_E_PARAM_ADDRESS when no perma-
nent RAM block and no explicit synchronization are configured, for the received block
ID. |

[SWS_NvM_00826] [If development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error NVM_E_PARAM_BLOCK _
ID when the passed BlockID is out of range. |

[SWS_NvM_00619] [If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_UNINIT when NVM not
yet initialized. |

[SWS_NvM_00620] [If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_BLOCK_PENDING when
NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00622]
Upstream requirements: SRS_Mem_00017, SRS_Mem_08541

[If development error detection is enabled for NvM module, the function NvM_Write
Block shall report the DET error NVM_E_PARAM_ADDRESS when no permanent
RAM block and no explicit synchronization are configured and a NULL pointer is passed
via the parameter NvM_SrcPtr. |

[SWS_NvM_00624] [If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

[SWS_NvM_00827] [If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error NVM_E_UNINIT when NVM
not yet initialized. |

[SWS_NvM_00828] [If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error NVM_E_BLOCK_PEND-
ING when NVRAM block identifier is already queued or currently in progress. |

AUTSSAR

[SWS_NvM_00893]
Upstream requirements: SRS_Mem_00018, SRS_Mem_08548

[If development error detection is enabled for NvM module, the function NvM_Write
PRAMBIock shall report the DET error NVM_E_PARAM_ADDRESS when no perma-
nent RAM block and no explicit synchronization are configured. |

[SWS_NvM_00829] [If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error NVM_E_PARAM_BLOCK _
ID when the passed BlockID is out of range. |

[SWS_NvM_00625] [If development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. |

[SWS_NvM_00626] [If development error detection is enabled for NvM module,
the function NvM_RestoreBlockDefaults shall report the DET error NVM_E_BLOCK _
PENDING when NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00894]
Upstream requirements: SRS_Mem_00018, SRS_Mem_08548

[If development error detection is enabled for NvM module, the function NvM_Restore
PRAMBIlockDefaults shall report the DET error NVM_E_PARAM_ADDRESS when no
permanent RAM block and no explicit synchronization are configured. |

[SWS_NvM_00629]
Upstream requirements: SRS_Mem_00016, SRS_Mem_08548

[If development error detection is enabled for NvM module, the function NvM_Restore
BlockDefaults shall report the DET error NVM_E_PARAM_ADDRESS when no perma-
nent RAM block and no explicit synchronization are configured and a NULL pointer is
passed via the parameter NvM_DstPir. |

[SWS_NvM_00630] [If development error detection is enabled for NvM module,
the function NvM_RestoreBlockDefaults shall report the DET error NVM_E_PARAM _
BLOCK_ID when the passed BlockID is out of range. |

[SWS_NvM_00831] [If development error detection is enabled for NvM module, the
function NvM_RestorePRAMBIlockDefaults shall report the DET error NVM_E_UNINIT
when NVM is not yet initialized. |

[SWS_NvM_00832] [If development error detection is enabled for NvM module,
the function NvM_RestorePRAMBIlockDefaults shall report the DET error NVM_E_
BLOCK_PENDING when NVRAM block identifier is already queued or currently in
progress. |

AUTSSAR

[SWS_NvM_00834] [If development error detection is enabled for NvM module,
the function NvM_RestorePRAMBIlockDefaults shall report the DET error NVM_E__
PARAM_BLOCK_ID when the passed BlockID is out of range. |

[SWS_NvM_00631] [If development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_UNINIT when the
NVM is not yet initialized. |

[SWS_NvM_00632] [If development error detection is enabled for NvM module, the
function NvM_EraseNvBIlock shall report the DET error NVM_E_BLOCK_PENDING
when the NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00635] [If development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

[SWS_NvM_00636] [If development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E BLOCK_ CONFIG
when the NVRAM block has not immediate priority. |

[SWS_NvM_00637] [If development error detection is enabled for NvM module, the
function NvM_CancelWriteAll shall report the DET error NVM_E_UNINIT when NVM
is not yet initialized. |

[SWS_NvM_00638] [If development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. |

[SWS_NvM_00639] [If development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error NVM_E_BLOCK_PEND-
ING when NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00642] [If development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error NVM_E_PARAM_BLOCK _
ID when the passed BlockID is out of range. |

[SWS_NvM_00643] [If development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error NVM_E_UNINIT when
NVM not yet initialized. |

[SWS_NvM_00644] [If development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error NVM_E_BLOCK_PEND-
ING when NVRAM block identifier is already queued or currently in progress. |

[SWS_NvM_00645] [If development error detection is enabled for NvM module,
the function NvM_SetRamBlockStatus shall report the DET error NVM_E_PARAM _
BLOCK_ID when the passed BlockID is out of range. |

AUTSSAR

[SWS_NvM_00646] [If development error detection is enabled for NvM module, the
function NvM_ReadAll shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. |

[SWS_NvM_00647] [If development error detection is enabled for NvM module, the
function NvM_WriteAll shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. |

[SWS_NvM_00648] [If development error detection is enabled for NvM module, the
function NvM_CancelJobs shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. |

[SWS_NvM_00649] [If development error detection is enabled for NvM module, the
function NvM_CancelJobs shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlocklID is out of range. |

[SWS NvM _00863]
Upstream requirements: SRS_Mem_00137

[If development error detection is enabled for NvM module, the function NvM_Validate
All shall report the DET error NVM_E_UNINIT when NVM is not yet initialized. |

[SWS_NvM_00954] [If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_WRITE_ONCE_STA-
TUS_UNKNOWN when a write request is made for a block configured with NVM_
WRITE_BLOCK_ONCE (TRUE) for which no read request was made prior to this. |

[SWS_NvM_00955] [If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error NVM_E_WRITE_ONCE_
STATUS_UNKNOWN when a write request is made for a block configured with NVM_
WRITE_BLOCK_ONCE (TRUE) for which no read request was made prior to this. |

[SWS_NvM_00956] [If development error detection is enabled for NvM module, the
job of the function NvM_WriteAll shall report the DET error NVM_E_WRITE_ONCE_
STATUS_UNKNOWN when the processing of a block configured with NVM_WRITE_
BLOCK_ONCE (TRUE) for which no read request was made prior to this. |

[SWS_NvM_00957] [If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error NVM_E_WRITE_
ONCE_STATUS_UNKNOWN when a write request is made for a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request was made prior to
this. |

[SWS_NvM_00958] [If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error NVM_E_WRITE_
ONCE_STATUS_UNKNOWN when a write request is made for a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request was made prior to
this. |

AUTSSAR

[SWS_NvM_00962] [If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_WRITE_PROTECTED
when the block is write protected. |

[SWS_NvM_00963] [If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error NVM_E_WRITE_PRO-
TECTED when the block is write protected. |

[SWS_NvM_00964] [If development error detection is enabled for NvM module,
the function NvM_EraseNvBlock shall report the DET error NVM_E_WRITE_PRO-
TECTED when the block is write protected. |

[SWS_NvM_00965] [If development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error NVM_E_WRITE_PRO-
TECTED when the block is write protected. |

7.3.2 Runtime Errors

[SWS_NvM_00947] Definition of runtime errors in module NvM |

Type of error Related error code Error value
NvM queue is full so the request cannot be NVM_E_QUEUE_FULL 0xA0
queued, be the request either standard or

immediate.

]

[SWS_NvM_00948]
Upstream requirements: SRS_Mem_00038

[The run-time error NVM_E_QUEUE_FULL shall be reported to Det, by the NvM mod-
ule, each time a request cannot be queued because the related queue is full. |

7.3.3 Production Errors

[SWS_NvM_00871] [Each time a request is made to the NvM, the job of that request,
if encountering an error situation, shall report the corresponding production error. |

AUTSSAR

[SWS_NvM_00835] Reading from or writing to non volatile memory failed.
Upstream requirements: SRS_BSW_00458

[

Diagnostic Event (Error Name)

NVM_E_HARDWARE

Description

If read job (multi job or single job read) fails either because the Memlf reports MEMIF_
JOB_FAILED, MEMIF_BLOCK_INCONSISTENT or a CRC mismatch occurs or if a
write/invalidate/erase job fails because the Memlf reports MEMIF_JOB_FAILED, NvM
shall report NVM_E_HARDWARE to the DEM.

Failed condition

Memlf reports MEMIF_JOB_FAILED, MEMIF_BLOCK_INCONSISTENT or a CRC
mismatch occurs during read / write / invalidate / erase operation.

Passed condition

Read / write / invalidate / erase is successfull. (Memlf does not report MEMIF_JOB_
FAILED , MEMIF_BLOCK_INCONSISTENT and no CRC mismatch occurs).

]

[SWS_NvM_00986] Processin of the read service detects an inconsistency.
Upstream requirements: SRS_BSW_00458

[

Diagnostic Event (Error Name)

NVM_E_INTEGRITY_FAILED

Description

If the read for a block detects that the data and/or CRC are corrupted based on the
CRC check performed after the read was finished successfully (JobEndNotification
from underlyinh memory module). This only applies for blocks configured with CRC.

Failed condition

Fail condition: NVM_E_INTEGRITY_FAILED is reported by the NvM module if the
processing of a read request will detect, via the CRC checking, corruption of the data
and/or CRC of the block that was subject to the read operation.

Passed condition

Pass condition: when requirement SWS_NvM_00864 does not apply, meaning the
data of the block is not corrupted in terms of CRC checking.

]

[SWS_NvM_00591] [The production error NVM_E_INTEGRITY_FAILED (value as-
signed by DEM, see container NvmDemEventParameterRefs) shall be detectable by
the NvM module when API request integrity failed, depending on whether the build
version mode is in production mode. |

[SWS_NvM_00987] Processin of the read service failed at a lower layer in the
MemStack architecture, including all retries.

Upstream requirements: SRS _BSW_00458

[

Diagnostic Event (Error Name)

NVM_E_REQ_FAILED

Description If the underlying layer reports JobErrorNotification, indicating that the request failed,
either after it was accepted by the underlying memory module or because the module
refused the request. This is done after all retries also failed.

Failed condition Fail condition: NVM_E_REQ_FAILED is reported by the NvM module if a user request

is either rejected and the number of configured retries expired or if it was accepted
and then failed, while being processed by the underlying memory stack module.

Y%

AUTSSAR

A

Passed condition Pass condition: when requirement SWS_NvM_00865 does not apply, meaning that
the user request was accepted by the undelying layer, either from the first attempt or
from one of the retries, and that it finished successfully, from the point of view of the
underlying layer (request result is MEMIF_JOB_OK).

]

[SWS_NvM_00592] [The production error NVM_E_REQ_FAILED (value assigned by
DEM, see container NvmDemEventParameterRefs) shall be detectable by the NvM
module when API request failed, depending on whether the build version mode is in
production mode. |

[SWS_NvM_00989] Static block ID check, during read, indicates failure.
Upstream requirements: SRS _BSW_00458

[

Diagnostic Event (Error Name) NVM_E_WRONG_BLOCK_ID

Description If the read was successfully finished by the underlying memory module but the Static
ID check failed (meaning the block ID that was read is not the same as the block ID for
which the read was requested).

Failed condition Fail condition: NVM_E_WRONG_BLOCK_ID is reported by the NvM module if, after
the block data is successfully read from the non-volatile memory, the Static ID that was
retrieved is not the same as the current one, for the block the read was requested for.

Passed condition Pass condition: when requirement SWS_NvM_00866 does not apply, meaning that
the block ID that was read from the non-volatile memory is the same as the block ID
for which the read was requested.

]

[SWS_NvM_00593]

Upstream requirements: SRS_Mem_08555
[The production error NVM_E_WRONG_BLOCK_ID (value assigned by DEM, see
container NvmDemEventParameterRefs) shall be detectable by the NvM module when

Static Block ID check failed, depending on whether the build version mode is in pro-
duction mode. |

[SWS NvM _00988] The write verification failed.
Upstream requirements: SRS_BSW_00458

Diagnostic Event (Error Name) NVM_E_VERIFY_FAILED

Description If, after a successfully finished write, the verification for the written data fails.

Failed condition Fail condition: NVM_E_VERIFY_FAILED is reported by the NvM module if, after a
successful write, the write verification indicates failure and the configured number of
retries has expired.

Passed condition Pass condition: when requirement SWS_NvM_00867 does not apply, meaning that
the write verification indicates success, the latest for the last retry attempt.

AUTSSAR

[SWS_NvM_00594] [The production error NVM_E_VERIFY_FAILED (value assigned
by DEM, see container NvmDemEventParameterRefs) shall be detectable by the NvM
module when write Verification failed, depending on whether the build version mode is
in production mode. |

7.3.3.1 NVM_E_LOSS_OF REDUNDANCY

Error Name: NVM_E_LOSS_OF_REDUNDANCY
Short Description: A redundant block has lost the redundancy.
Long Description: A redundant block has the same contents written in two different block instances -

hence the redundancy. If the contents are different, if the first instance becomes
corrupted or if the first instance cannot be read then NvM will report this fault.

Detection Criteria: Fail See SWS_NvM_00868

Pass See SWS_NvM_00876
Secondary Parameters: The condition under which the FAIL or PASS detection is active:

checks are performed whenever a reading is requested for a redundant block.
Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.
Monitor Frequency continous

[SWS_NvM_00595] [The production error NVM_E_LOSS_OF_REDUNDANCY (value
assigned by DEM, see container NvmDemEventParameterRefs) shall be detectable
by the NvM module when loss of redundancy, depending on whether the build version
mode is in production mode. |

AUTSSAR

8 API specification

8.1 Imported types
« In this chapter all types included from the following modules are listed:

[SWS_NvM_00446] Definition of imported datatypes of module NvM |

Module Header File Imported Type

Csm Rte_Csm_Type.h Crypto_OperationModeType

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

Memlf Memlf.h Memlf_JobResultType
Memlf.h Memlf_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

]

8.2 Type definitions

8.2.1 NvM_ConfigType

[SWS_NvM_00880] Definition of datatype NvM_ConfigType |

Name NvM_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the NvM module.
Available via NvM.h
]

Since this type is used for compliance purposes only (meaning that NvM_ Init will now
have a pointer to this type as parameter, based on SWS_BSW_00050) it will be left
to the developer to chose how to implement it, considering it has no use for the NvM
module in any way.

AUTSSAR

8.2.2 NvM_MultiBlockRequestType

[SWS_NvM_91003] Definition of datatype NvM_MultiBlockRequestType |

Name NvM_MultiBlockRequestType

Kind Enumeration

Range NVM_READ_ALL 0x00 NvM_ReadAll was performed
NVM_WRITE_ALL 0x01 NvM_WriteAll was performed
NVM_VALIDATE_ALL 0x02 NvM_ ValidateAll was performed
NVM_FIRST_INIT_ALL 0x03 NvM_FirstInitAll was performed
NVM_CANCEL_WRITE_ 0x04 NvM_CancelWriteAll was performed
ALL

Description Identifies the type of request performed on multi block when signaled via the callback function or
when reporting to BswM

Available via NvM.h

8.3 Function definitions

8.3.1 Synchronous requests

8.3.1.1 NvM_Init

[SWS_NvM_00447] Definition of API function NvM_Init
Upstream requirements: SRS_BSW_00414, SRS_BSW_00101

[

Service Name NvM_Init
Syntax void NvM_Init (
const NvM_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for resetting all internal variables.
Available via NvM.h

]

[SWS_NvM_00881] [The Configuration pointer ConfigPtr shall always have a NULL_
PTR value. |

The Configuration pointer ConfigPtr is currently not used and shall therefore be set to
a NULL_PTR value when calling the NvM_Init API.

AUTSSAR

[SWS_NvM_00399]
Upstream requirements: SRS_BSW_00101, SRS_BSW_00406

[The function NvM_Init shall reset all internal variables, e.g. the queues, request flags,
state machines, to their initial values. It shall signal "INIT DONE" internally, e.g. to
enable job processing and queue management. |

[SWS_NvM_00400]
Upstream requirements: SRS_BSW_00101, SRS_BSW_00406

[The function NvM_Init shall not modify the permanent RAM block contents or call
explicit synchronization callback, as this shall be done on NvM_ReadAll. |

[SWS_NvM_00192] [The function NvM_lInit shall set the dataset index of all NVRAM
blocks of type NVM_BLOCK_DATASET to zero. |

[SWS_NvM_00193] [The function NvM_Init shall not initialize other modules (it is as-
sumed that the underlying layers are already initialized). |

The function NvM_Init is affected by the common 10.2.2 and published configuration
parameter.

Hint: The time consuming NVRAM block initialization and setup according to the block
descriptor 10.2.3 shall be done by the NvM_ReadAll request.

8.3.1.2 NvM_SetDatalndex

[SWS_NvM_00448] Definition of API function NvM_SetDatalndex
Upstream requirements: SRS_Mem_08007

Service Name NvM_SetDatalndex
Syntax Std_ReturnType NvM_SetDatalndex (
NvM_BlockIdType BlockId,
uint8 Datalndex
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Datalndex Index position (association) of a NV/ROM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The index position was set successfully.
E_NOT_OK: An error occurred.

Y%

AUTSSAR

A
Description Service for setting the Datalndex of a dataset NVRAM block.
Available via NvM.h

]

[SWS_NvM_00014] [The function NvM_SetDatalndex shall set the index to access a
certain dataset of a NVRAM block (with/without ROM blocks). |

[SWS_NvM_00263] [The function NvM_SetDatalndex shall leave the content of the
corresponding RAM block unmodified. |

[SWS_NvM_00264] [For blocks with block management different from NVM_BLOCK_
DATASET, NvM_SetDatalndex shall return without any effect in production mode. Fur-
ther, E_NOT_OK shall be returned. |

[SWS_NvM_00707] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_SetDatalndex. |

8.3.1.3 NvM_GetDatalndex

[SWS_NvM_00449] Definition of APl function NvM_GetDatalndex |

Service Name NvM_GetDatalndex
Syntax Std_ReturnType NvM_GetDatalIndex (
NvM_BlockIdType BlockId,
uint8+ DatalndexPtr
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) DatalndexPtr Pointer to where to store the current dataset index (0..255)
Return value Std_ReturnType E_OK: The index position has been retrieved successfully.
E_NOT_OK: An error occurred.
Description Service for getting the currently set Datalndex of a dataset NVRAM block
Available via NvM.h

[SWS_NvM_00021] [The function NvM_GetDatalndex shall get the current index (as-
sociation) of a dataset NVRAM block (with/without ROM blocks). |

[SWS_NvM_00265] [For blocks with block management different from NVM_BLOCK_
DATASET, NvM_GetDatalndex shall set the index pointed by DatalndexPtr to zero.
Further, E_NOT_OK shall be returned. |

AUTSSAR

[SWS_NvM_00708] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_GetDatalndex. |

8.3.1.4 NvM_SetBlockProtection

[SWS_NvM_00450] Definition of API function NvM_SetBlockProtection
Upstream requirements: SRS_Mem_00127

[

Service Name NvM_SetBlockProtection
Syntax Std_ReturnType NvM_SetBlockProtection (
NvM_BlockIdType BlockId,
boolean ProtectionEnabled
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
ProtectionEnabled TRUE: Write protection shall be enabled FALSE: Write protection
shall be disabled
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The block was enabled/disabled as requested
E_NOT_OK: An error occured.
Description Service for setting/resetting the write protection for a NV block.
Available via NvM.h

]

[SWS_NvM_00016]
Upstream requirements: SRS_Mem_00127
[The function NvM_SetBlockProtection shall set/reset the write protection for the cor-

responding NV block by setting the write protection attribute in the administrative part
of the corresponding NVRAM block. |

[SWS_NvM_00709] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_SetBlockProtection. |

AUTSSAR

8.3.1.5 NvM_GetErrorStatus

[SWS_NvM_00451] Definition of API function NvM_GetErrorStatus

Upstream requirements: SRS_Mem_00020

[

Service Name

NvM_GetErrorStatus

Syntax Std_ReturnType NvM_GetErrorStatus (
NvM_BlockIdType BlockId,
NvM_RequestResultType* RequestResultPtr
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) RequestResultPtr Pointer to where to store the request result. See NvM_Request

ResultType .

Return value

Std_ReturnType

E_OK: The block dependent error/status information was read
successfully.
E_NOT_OK: An error occured.

Description

Service to read the block dependent error/status information.

Available via

NvM.h

]

[SWS_NvM_00015]
Upstream requirements: SRS_Mem_00020

[The function NvM_GetErrorStatus shall read the block dependent error/status infor-
mation in the administrative part of a NVRAM block. The status/error information of a

NVRAM block shall be set by a former or current asynchronous request. |

[SWS_NvM_00710] [The NvM module’s environment shall have initialized the NvM

module before it calls the function NvM_GetErrorStatus. |

8.3.1.6 NvM_GetVersioninfo

[SWS_NvM_00452] Definition of API function NvM_GetVersioninfo |

Service Name

NvM_GetVersionInfo

Syntax void NvM_GetVersionInfo (
Std_VersionInfoType* versioninfo
)
Service ID [hex] 0xOf
Sync/Async Synchronous
Reentrancy Reentrant

AUTSSAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo | Pointer to where to store the version information of this module.
Return value None

Description

Service to get the version information of the NvM module.

Available via

NvM.h

8.3.1.7 NvM_SetRamBlockStatus

[SWS_NvM_00453] Definition of API function NvM_SetRamBlockStatus
Upstream requirements: SRS _Mem_08545

Service Name

NvM_SetRamBlockStatus

Syntax Std_ReturnType NvM_SetRamBlockStatus (
NvM_BlockIdType BlockId,
boolean BlockChanged
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

BlockChanged TRUE: Validate the permanent RAM block or the explicit
synchronization and mark block as changed. FALSE: Invalidate
the permanent RAM block or the explicit synchronization and
mark block as unchanged.

Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The status of the permanent RAM block or the explicit
synchronization was changed as requested.

E_NOT_OK: An error occurred.

Description

Service for setting the RAM block status of a permanent RAM block or the status of the explicit
synchronization of a NVRAM block.

Available via

NvM.h

]

[SWS_NvM_00240]
Upstream requirements: SRS_Mem_08546

[The function NvM_SetRamBlockStatus shall only work on NVRAM blocks with a per-
manently configured RAM block or on NVRAM blocks configured to support explicit
synchronization, that have NvMBlockUseSetRamBlockStatus enabled and shall have
no effect to other NVRAM blocks. |

AUTSSAR

[SWS_NvM_00241]
Upstream requirements: SRS_Mem_08545

[The function NvM_SetRamBlockStatus shall assume that a changed permanent RAM
block or the content of the RAM mirror in the NvM module (in case of explicit synchro-
nization) is valid (basic assumption). |

[SWS_NvM_00405]
Upstream requirements: SRS_Mem_08545

[When the "BlockChanged" parameter passed to the function NvM_SetRamBlockSta-
tus is FALSE the corresponding RAM block is either invalid or unchanged (or both). |

[SWS_NvM_00406] [When the "BlockChanged" parameter passed to the function Nv
M_SetRamBlockStatus is TRUE, the corresponding permanent RAM block or the con-
tent of the RAM mirror in the NvM module (in case of explicit synchronization) is valid
and changed. |

[SWS_NvM_00121] [For blocks with a permanently configured RAM, the function Nv
M_SetRamBlockStatus shall request the recalculation of CRC in the background, i.e.
the CRC recalculation shall be processed by the NvM_MainFunction, if the given "Block
Changed" parameter is TRUE and CRC calculation in RAM is configured (i.e. NvMCalc
RamBlockCrc == TRUE). |

Note: If a block processed by the job of the function NvM_SetRamBlockStatus has
explicit synchronization configured for it then the block owner should provide the related
RAM data for the comparison. The call made by NvM to the explicit synchronization
‘write’ callback should be successful.

Hint: In some cases, a permanent RAM block cannot be validated neither by a reload
of its NV data, nor by a load of its ROM data during the execution of a NvM_ReadAll
command (startup). The application is responsible to fill in proper data to the RAM
block and to validate the block via the function NvM_SetRamBlockStatus before this
RAM block can be written to its corresponding NV block by NvM_WriteAll.

It is expected that the function NvM_SetRamBlockStatus will be called frequently for
NVRAM blocks which are configured to be protected in RAM via CRC. Otherwise this
function only needs to be called once to mark a block as "changed" and to be processed
during NvM_ WriteAll.

[SWS_NvM_00906]
Upstream requirements: SRS_Mem_08550, SRS_Mem_08545, SRS_Mem_00136

[If the function NvM_SetRamBlockStatus is called for a block that does not have per-
manent RAM but it does have explicit synchronization and the "BlockChanged" pa-
rameter is TRUE then the job of the function NvM_SetRamBlockStatus shall use the
explicit synchronization callback for data storage (write) in order to obtain the data over
which to calculate the CRC for the block. |

AUTSSAR

[SWS_NvM_00907]
Upstream requirements: SRS_Mem_08554

[If the explicit synchronization callback that is called by the job of the function NvM_
SetRamBlockStatus returns E_NOT_OK then NvM shall retry to call the callback for
the number of retries that are configured for the explicit synchronization. |

[SWS_NvM_00908]
Upstream requirements: SRS_Mem_08554

[If the explicit synchronization callback that is called by the job of the function NvM_
SetRamBlockStatus returns E_NOT_OK then NvM shall perform the configured retries,
one per NvM_MainFunction call. |

[SWS_NvM_00909]
Upstream requirements: SRS_Mem_08550, SRS_Mem_08545, SRS_Mem_00136

[If the explicit synchronization callback that is called by the job of the function NvM_Set
RamBlockStatus returns E_NOT_OK for the initial call and for all retry attempts then
NvM will consider the job completed, keep the block marked as "BlockChanged" and
continue as though it finished successfully. |

[SWS_NvM_00910]

Upstream requirements: SRS_Mem_00038
[The function NvM_SetRamBlockStatus shall not change the request result for the
block ID received as parameter. |

[SWS_NvM_00911]
Upstream requirements: SRS_Mem_00038

[A queued background CRC calculation done by the function NvM_SetRamBlockSta-
tus shall not change the request result for the received block ID. |

[SWS_NvM_00711] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_SetRamBlockStatus. |

[SWS_NvM_00408] [The NvM module shall provide the function NvM_SetRamBlock
Status only if it is configured via NvMSetRamBlockStatusApi. |

Note: For more information on NvMSetRamBlockStatusApi, see chapter 10.2.2.

AUTSSAR

8.3.1.8 NvM_ CancelJobs

[SWS_NvM_00535] Definition of API function NvM_CancelJobs
Upstream requirements: SRS_Mem_08560

Service Name NvM_CancelJobs
Syntax Std_ReturnType NvM_CancelJobs (
NvM_BlockIdType BlockId
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The job was successfully removed from queue.
E_NOT_OK: The job could not be found in the queue.
Description Service to cancel all jobs pending for a NV block.
Available via NvM.h

[SWS_NvM_00536]
Upstream requirements: SRS_Mem_08560

[The function NvM_Canceldobs shall cancel all jobs pending in the queue for the spec-
ified NV Block. If requested the result type for the canceled blocks is NVM_REQ
CANCELED. |

[SWS_NvM_00537] [A currently processed job is not canceled, and shall continue
even after the call of NvM_CancelJobs. |

[SWS_NvM_00225] [The function NvM_CancelJobs shall set the block specific re-
quest result for the specified NVRAM block to NVM_REQ_CANCELED if the request
is accepted. |

Hint: The intent is just to empty the queue during the cleanup phase in case of termi-
nation or restart of a partition, to avoid later end of job notification.

[SWS_NvM_00984] [The function NvM_CancelJobs shall set the canceled block’s
RAM block state to INVALID/UNCHANGED. |

AUTSSAR

8.3.2 Asynchronous single block requests

8.3.2.1 NvM_ReadBlock

[SWS_NvM _00454] Definition of API function NvM_ReadBlock
Upstream requirements: SRS_Mem_08533, SRS_Mem_00016

Service Name NvM_ReadBlock
Syntax Std_ReturnType NvM_ReadBlock (
NvM_BlockIdType BlockId,
void+ NvM_DstPtr
)
Service ID [hex] 0x06
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) NvM_DstPtr Pointer to the RAM data block.
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to copy the data of the NV block to its corresponding RAM block.
Available via NvM.h

[SWS_NvM_00010]
Upstream requirements: SRS_Mem_00016

[The job of the function NvM_ReadBlock shall copy the data of the NV block to the
corresponding RAM block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

[SWS_NvM_00195]

Upstream requirements: SRS_Mem_00016
[The function NvM_ReadBlock shall take over the given parameters, queue the read
request in the job queue and return. |

[SWS_NvM_00196]
Upstream requirements: SRS_Mem_00016

[If the function NvM_ReadBlock is provided with a valid RAM block address then it is
used. |

AUTSSAR

[SWS_NvM_00898]
Upstream requirements: SRS_Mem_00016

[If the function NvM_ReadBlock is provided with NULL_PTR as a RAM block address
and it has a permanent RAM block configured then the permanent RAM block is used. |

[SWS_NvM_00899]
Upstream requirements: SRS_Mem_00016

[If the function NvM_ReadBlock is provided with NULL_PTR as a RAM block address
and it has the explicit synchronization configured then the explicit synchronization is
used. |

[SWS_NvM_00278] [The job of the function NvM_ReadBlock shall provide the possi-
bility to copy NV data to a temporary RAM block although the NVRAM block is config-
ured with a permanent RAM block or explicit synchronization callbacks. In this case,
the parameter NvM_DstPtr has to be unequal to the NULL pointer. Otherwise a DET-
Parameter error (see Section 7.3) shall be emitted. |

[SWS_NvM_00198] [The function NvM_ReadBlock shall set the RAM block state to
INVALID/UNCHANGED immediately when the block is successfully enqueued. |

[SWS_NvM_00199] [The job of the function NvM_ReadBlock shall initiate a read at-
tempt on the second NV block if the passed Blockld references a NVRAM block of type
NVM_BLOCK_REDUNDANT and the read attempts on the first NV block fail. |

[SWS_NvM_00340] [In case of NVRAM block management type NVM_BLOCK_
DATASET, the job of the function NvM_ReadBlock shall copy only that NV block to
the corresponding RAM block which is selected via the data index in the administrative
block. |

[SWS_NvM_00355] [The job of the function NvM_ReadBlock shall not copy the NV
block to the corresponding RAM block if the NVRAM block management type is NVM_
BLOCK_DATASET and the NV block selected by the dataset index is invalidate. |

[SWS_NvM_00651] [The job of the function NvM_ReadBlock shall not copy the NV
block to the corresponding RAM block if the NVRAM block management type is NVM_
BLOCK_DATASET and the NV block selected by the dataset index is inconsistent. |

[SWS_NvM_00354] [The job of the function NvM_ReadBlock shall copy the ROM
block to RAM and set the request result to NVM_REQ_OK if the NVRAM block man-
agement type is NVM_BLOCK_DATASET and the dataset index points at a ROM
block. |

[SWS_NvM_00200] [The job of the function NvM_ReadBlock shall set the RAM block
to valid and assume it to be unchanged after a successful copy process of the NV block
to RAM. |

AUTSSAR

[SWS_NvM_00366] [The job of the function NvM_ReadBlock shall set the RAM block
to valid and assume it to be changed if the default values are copied to the RAM
successfully. |

[SWS_NvM_00206] [The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_OK if the NV block was copied successfully from NV memory to
RAM. |

[SWS_NvM_00341] [The job of the function NvM_ReadBlock shall set the request re-
sult to NVM_REQ_NV_INVALIDATED if the Memlf reports MEMIF_BLOCK_INVALID. |

[SWS_NvM_00652] [The job of the function NvM_ReadBlock shall report no error to
the DEM if the Memlf reports MEMIF_BLOCK_INVALID. |

[SWS_NvM_00358] [The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_INTEGRITY_FAILED if:

 the Memlf reports MEMIF_BLOCK_INCONSISTENT and

* NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

» NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00653] [The job of the function NvM_ReadBlock shall report NVM_E_
INTEGRITY_FAILED to the DEM if the Memlf reports MEMIF_BLOCK _INCONSIS-
TENT. |

Note: After the production of an ECU / a car, on the production line all blocks shall have
been written with valid data (may be default data) and all diagnostic events (errors)
shall have been deleted. If the process does not allow to write all NV blocks during
production than the NvM will report diagnostic events (errors) because of blocks that
were never written and reported as MEMIF_BLOCK_INCONSISTENT by Memlf.

[SWS_NvM_00359] [The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_NOT_OK if:

+ the Memlf reports MEMIF_JOB_FAILED and

* NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

» NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00654] [The job of the function NvM_ReadBlock shall report NVM_E_
REQ_FAILED to the DEM if the Memlf reports MEMIF_JOB_FAILED. |

AUTSSAR

[SWS_NvM_00279] [The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_OK if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from
NV memory to RAM. |

[SWS_NvM_00655] [The job of the function NvM_ReadBlock shall report no error to
the DEM if the block management type of the given NVRAM block is NVM_BLOCK _
REDUNDANT and one of the NV blocks was copied successfully from NV memory to
RAM. |

[SWS_NvM_00316] [The job of the function NvM_ReadBlock shall mark every
NVRAM block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE)
as write protected if that block is valid and with consistent data. This write protection
cannot be cleared by NvM_SetBlockProtection. |

[SWS_NvM_00317] [The job of the function NvM_ReadBlock shall invalidate a
NVRAM block of management type redundant if both NV blocks have been invali-
dated. |

[SWS_NvM_00201] [The job of the function NvM_ReadBlock shall request a CRC
recalculation over the RAM block data after the copy process [SWS_NvM_00180] if
the NV block is configured with CRC, i.e. if NvMCalRamBlockCrC == TRUE for the NV
block. |

[SWS_NvM_00202] [The job of the function NvM_ReadBlock shall load the default
values according to processing of NvM_RestoreBlockDefaults (also set the request
result to NVM_REQ_RESTORED_DEFAULTY) if the recalculated CRC is not equal to
the CRC stored in NV memory. |

[SWS_NvM_00658] [NvM_ReadBlock: If there are no default values available, the
RAM blocks shall remain invalid. |

[SWS_NvM_00657] [The job of the function NvM_ReadBlock shall load the default val-
ues according to processing of NvM_RestoreBlockDefaults (also set the request result
to NVM_REQ_RESTORED_DEFAULTS) if the read request passed to the underlying
layer fails (Memlf reports MEMIF_JOB_FAILED or MEMIF_BLOCK_INCONSISTENT)
and if the default values are available. |

[SWS_NvM_00203] [The job of the function NvM_ReadBlock shall report NVM_E_
INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. |

[SWS_NvM_00204] [The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_INTEGRITY_FAILED if:

* a CRC mismatch occurs and

* NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

AUTSSAR

» NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00712] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_ReadBlock. |

8.3.2.2 NvM_WriteBlock

[SWS_NvM_00455] Definition of API function NvM_WriteBlock
Upstream requirements: SRS_Mem_00017

[

Service Name

NvM_WriteBlock

Syntax Std_ReturnType NvM_WriteBlock (
NvM_BlockIdType BlockId,
const voidx NvM_SrcPtr

)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.

NvM_SrcPtr Pointer to the RAM data block.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: request has been accepted

E_NOT_OK: request has not been accepted

Description

Service to copy the data of the RAM block to its corresponding NV block.

Available via

NvM.h

]

[SWS_NvM_00410]

Upstream requirements: SRS_Mem_00017

[The job of the function NvM_WriteBlock shall copy the data of the RAM block to its

corresponding NV block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv

M_00270)

[SWS_NvM_00208]

Upstream requirements: SRS_Mem_08541

[The function NvM_WriteBlock shall take over the given parameters, queue the write

request in the job queue and return. |

[SWS_NvM_00209] [The function NvM_WriteBlock shall check the NVRAM block pro-
tection when the request is enqueued but not again before the request is executed. |

AUTSSAR

[SWS_NvM_00300] [The function NvM_WriteBlock shall cancel a pending job imme-
diately in a destructive way if the passed Blockld references a NVRAM block configured
to have immediate priority. The immediate job shall be the next active job to be pro-
cessed. |

[SWS_NvM_00210]
Upstream requirements: SRS_Mem_00017

[If the function NvM_WriteBlock is provided with a valid RAM block address then it is
used. |

[SWS_NvM_00900]
Upstream requirements: SRS_Mem_00017

[If the function NvM_WriteBlock is provided with NULL_PTR as a RAM block address
and it has a permanent RAM block configured then the permanent RAM block is used. |

[SWS_NvM_00901]
Upstream requirements: SRS_Mem_00017

[If the function NvM_WriteBlock is provided with NULL_PTR as a RAM block address
and it has the explicit synchronization configured then the explicit synchronization is
used. |

[SWS_NvM_00280] [The job of the function NvM_WriteBlock shall provide the pos-
sibility to copy a temporary RAM block to a NV block although the NVRAM block is
configured with a permanent RAM block or explicit synchronization callbacks. In this
case, the parameter NvM_SrcPtr has to be unequal to a NULL pointer. Otherwise a
DET-Parameter error (see Section 7.3) shall be emitted |

[SWS_NvM_00212] [The job of the function NvM_WriteBlock shall request a CRC
recalculation before the RAM block will be copied to NV memory if the NV block is
configured with CRC [SWS_NvM_00180]. |

[SWS_NvM_00852]
Upstream requirements: SRS_Mem_00136

[The job of the function NvM_WriteBlock shall skip writing and consider the job as suc-
cessfully finished if the NvMBlockUseCRCCompMechanism attribute of the NVRAM
Block is set to true and the RAM block CRC calculated by the write job is equal to the
CRC calculated during the last successful read or write job. This mechanism shall not
be applied to blocks for which a loss of redundancy has been detected. |

[SWS_NvM_00338] [The job of the function NvM_WriteBlock shall copy the RAM
block to the corresponding NV block which is selected via the data index in the ad-
ministrative block if the NVRAM block management type of the given NVRAM block is
NVM_BLOCK_DATASET. |

AUTSSAR

[SWS_NvM_00303] [If the block is successfully enqueued and if the RAM block state
is VALID/UNCHANGED or INVALID/UNCHANGED, the function NvM_WriteBlock shall
set the RAM block state to VALID/CHANGED. |

Note: If the block has an explicit synchronization callback (NvM_WriteRamBlockTo
Nvm) configured the validation will be done just after NvM_WriteRamBlockToNvm is
successfully processed.

Note/Hint: The job of the function NvM_WriteBlock shall assume a referenced perma-
nent RAM block or the RAM mirror in the NvM module in case of explicit synchroniza-
tion to be valid when the request is passed to the NvM module.

[SWS_NvM_00213]
Upstream requirements: SRS_Mem_08554

[The job of the function NvM_WriteBlock shall check the number of write retries using a
write retry counter to avoid infinite loops. Each negative result reported by the memory
interface shall be followed by an increment of the retry counter. In case of a retry
counter overrun, the job of the function NvM_WriteBlock shall set the request result to
NVM_REQ_NOT_OK. |

[SWS_NvM_00659] [The job of the function NvM_WriteBlock shall check the number
of write retries using a write retry counter to avoid infinite loops. Each negative result
reported by the memory interface shall be followed by an increment of the retry counter.
In case of a retry counter overrun, the job of the function NvM_WriteBlock shall report
NVM_E_REQ_FAILED to the DEM. |

[SWS_NvM_00216] [The configuration parameter NVM_MAX_NUM_OF_WRITE_
RETRIES shall prescribe the maximum number of write retries for the job of the func-
tion NvM_WriteBlock when RAM block data cannot be written successfully to the cor-
responding NV block. |

Note: For more information on NvMMaxNumOfWriteRetries, see chapter 10.2.2.

[SWS_NvM_00760] [The job of the function NvM_WriteBlock shall copy the data con-
tent of the RAM block to both corresponding NV blocks if the NVRAM block manage-
ment type of the processed NVRAM block is NVM_BLOCK_REDUNDANT. |

[SWS_NvM_00761] [If the processed NVRAM block is of type NVM_BLOCK_REDUN-
DANT the job of the function NvM_WriteBlock shall start to copy the data of the RAM
block to NV block which has not been read during the jobs started by NvM_ReadBlock,
NvM_ReadPRAMBIock or NvM_ReadAll then continue to copy the other NV block. |

[SWS_NvM_00284] [The job of the function NvM_WriteBlock shall set NVM_REQ_
OK as request result if the passed Blockld references a NVRAM block of type NVM_
BLOCK REDUNDANT and at least one of the NV blocks has been written success-

fully. |

AUTSSAR

[SWS_NvM_00328] [The job of the function NvM_WriteBlock shall set the write pro-
tection flag in the administrative block immediately if the NVRAM block is configured
with NvMWriteBlockOnce == TRUE and the data has been written successfully to the
NV block. |

[SWS_NvM_00713] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_WriteBlock. |

Hint: To avoid the situation that in case of redundant NVRAM blocks two different
NV blocks are containing different but valid data at the same time, each client of the
function NvM_WriteBlock may call NvM_InvalidateNvBlock in advance.

[SWS_NvM_00547] [The job of the function NvM_WriteBlock with Block ID 1 shall
write the compiled NVRAM configuration ID to the stored NVRAM configuration 1D
(block 1).]

Hint: If a pristine ECU is flashed for the first time, such a call invoked by will ensure
that after a power-off without a proper shutdown, everything is as expected at the next
start-up. Otherwise, the new configuration ID would not be stored in NV RAM and all
ROM defaultd would be used. A macro scan be used to indicate this usage.

8.3.2.3 NvM_RestoreBlockDefaults

[SWS_NvM_00456] Definition of API function NvM_RestoreBlockDefaults
Upstream requirements: SRS_Mem_00018

Service Name NvM_ RestoreBlockDefaults
Syntax Std_ReturnType NvM_RestoreBlockDefaults (
NvM_BlockIdType BlockId,
void* NvM_DestPtr
)
Service ID [hex] 0x08
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) NvM_DestPtr Pointer to the RAM data block.
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to restore the default data to its corresponding RAM block.
Available via NvM.h

AUTSSAR

[SWS_NvM_00012]
Upstream requirements: SRS_Mem_00018

[The job of the function NvM_RestoreBlockDefaults shall restore the default data to its
corresponding RAM block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

[SWS_NvM_00224] [The function NvM_RestoreBlockDefaults shall take over the
given parameters, queue the request in the job queue and return. |

[SWS_NvM _00267]
Upstream requirements: SRS_Mem_00018

[The job of the function NvM_RestoreBlockDefaults shall load the default data from a
ROM block if a ROM block is configured. |

[SWS_NvM_00266]
Upstream requirements: SRS_Mem_00018

[The NvM module’s environment shall call the function NvM_RestoreBlockDefaults to
obtain the default data if no ROM block is configured for a NVRAM block and an appli-
cation callback routine is configured via the parameter NvMInitBlockCallback. |

[SWS_NvM_00353] [The function NvM_RestoreBlockDefaults shall return with E_
NOT_OK if the block management type of the given NVRAM block is NVM_BLOCK _
DATASET, at least one ROM block is configured and the data index points at a NV
block. |

[SWS NvM _00435]
Upstream requirements: SRS_Mem_00018

[If the function NvM_RestoreBlockDefaults is provided with a valid RAM block address
then it is used. |

[SWS_NvM_00902]
Upstream requirements: SRS_Mem_00018
[If the function NvM_RestoreBlockDefaults is provided with NULL_PTR as a RAM

block address and it has a permanent RAM block configured then the permanent RAM
block is used. |

[SWS_NvM_00903]
Upstream requirements: SRS_Mem_00018
[If the function NvM_RestoreBlockDefaults is provided with NULL_PTR as a RAM

block address and it has the explicit synchronization configured then the explicit syn-
chronization is used. |

AUTSSAR

[SWS_NvM_00436] [The NvM module’s environment shall pass a pointer unequal
to NULL via the parameter NvM_DstPtr to the function NvM_RestoreBlockDefaults in
order to copy ROM data to a temporary RAM block although the NVRAM block is con-
figured with a permanent RAM block or explicit synchronization callbacks. Otherwise a
DET-Parameter error (see Section 7.3) shall be emitted |

[SWS_NvM_00227] [The function NvM_RestoreBlockDefaults shall set the RAM
block state to INVALID/UNCHANGED immediately when the block is successfully en-
queued. |

[SWS_NvM_00228] [The job of the function NvM_RestoreBlockDefaults shall validate
and assume a RAM block to be changed if the requested RAM block is permanent
or after explicit synchronization callback (NvMReadRamBlockFromNvCallback) that is
called returns E_OK and the copy process of the default data to RAM was successful

]

[SWS_NvM_00229] [The job of the function NvM_RestoreBlockDefaults shall request
a recalculation of CRC from a RAM block after the copy process/validation if a CRC is
configured for this RAM block. |

[SWS_NvM_00714] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_RestoreBlockDefaults. |

Hint: For the block management type NVM_BLOCK_ DATASET, the application has to
ensure that a valid dataset index is selected (pointing to ROM data).

[SWS_NvM_00883] [If the block has no ROM default data and no NvMiInitBlockCall-
back configured for it then the function NvM_RestoreBlockDefaults shall leave the block
status unchanged and return E_NOT_OK as result. |

[SWS_NvM_00885] [If the block has no default data, it has no InitBlockCallbackFunc-
tion configured and the development error detection is enabled then the NvM_Restore
BlockDefaults API shall report the error NVM_E_BLOCK_WITHOUT_DEFAULTS error
to the Det module. |

AUTSSAR

8.3.2.4 NvM_EraseNvBlock

[SWS_NvM _00457] Definition of API function NvM_EraseNvBlock
Upstream requirements: SRS_Mem_08544

Service Name NvM_EraseNvBlock
Syntax Std_ReturnType NvM_EraseNvBlock (
NvM_BlockIdType BlockId
)
Service ID [hex] 0x09
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to erase a NV block.
Available via NvM.h

[SWS_NvM_00415]
Upstream requirements: SRS_Mem_08544

[The job of the function NvM_EraseNvBlock shall erase a NV block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

[SWS_NvM_00231] [The function NvM_EraseNvBlock shall take over the given pa-
rameters, queue the request and return. |

[SWS_NvM_00418] [The function NvM_EraseNvBlock shall queue the request to
erase in case of disabled write protection. |

[SWS_NvM_00416] [The job of the function NvM_EraseNvBlock shall leave the con-
tent of the RAM block unmodified. |

[SWS_NvM_00959] [The job of the function NvM_EraseNvBIlock shall leave the write
protection unchanged for the blocks configured with NVM_WRITE_BLOCK_ONCE
(TRUE). |

[SWS_NvM_00661] [The function NvM_EraseNvBlock shall return with E_NOT_OK if
a ROM block of a dataset NVRAM block is referenced. |

[SWS_NvM_00662] [NvM_EraseNvBlock: The NvM module shall not re-check the
write protection before fetching the job from the job queue. |

AUTSSAR

[SWS_NvM_00269] [If the referenced NVRAM block is of type NVM_BLOCK_RE-
DUNDANT, the function NvM_EraseNvBlock shall only succeed when both NV blocks
have been erased. |

[SWS_NvM_00271] [The job of the function NvM_EraseNvBlock shall set the request
result to NVM_REQ_NOT_OK if the processing of the service fails. |

[SWS_NvM_00663] [The job of the function NvM_EraseNvBlock shall report NVM_
E_REQ_FAILED to the DEM if the processing of the service fails. |

[SWS_NvM_00357] [The function NvM_EraseNvBlock shall return with E_NOT_OK,
when development error detection is enabled and the referenced NVRAM block is con-
figured with standard priority. |

[SWS_NvM_00715] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_EraseNvBlock. |

8.3.2.5 NvM_InvalidateNvBlock

[SWS_NvM _00459] Definition of API function NvM_InvalidateNvBlock
Upstream requirements: SRS_Mem_08011

Service Name NvM_ InvalidateNvBlock
Syntax Std_ReturnType NvM_InvalidateNvBlock (
NvM_BlockIdType BlockId
)
Service ID [hex] 0x0b
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to invalidate a NV block.
Available via NvM.h

[SWS_NvM_00421]
Upstream requirements: SRS_Mem_08011

[The job of the function NvM_InvalidateNvBlock shall invalidate a NV block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

AUTSSAR

[SWS_NvM_00422] [The job of the function NvM_InvalidateNvBlock shall leave the
RAM block unmodified. |

[SWS_NvM_00960] [The job of the function NvM_InvalidateNvBlock shall leave the
write protection unchanged for the blocks configured with NVM_WRITE_BLOCK _
ONCE (TRUE). |

[SWS_NvM_00424] [The function NvM_InvalidateNvBlock shall queue the request if
the write protection of the corresponding NV block is disabled. |

[SWS_NvM_00239] [The function NvM_InvalidateNvBlock shall take over the given
parameters, queue the request and return. |

[SWS_NvM_00664] [The function NvM_InvalidateNvBlock shall return with E_NOT_
OK if a ROM block of a dataset NVRAM block is referenced by the Blockld parameter. |

[SWS_NvM_00665] [The NvM module shall not recheck write protection before fetch-
ing the job from the job queue. |

[SWS_NvM_00274] [If the referenced NVRAM block is of type NVM_BLOCK_RE-
DUNDANT, the function NvM_InvalidateNvBlock shall only set the request result NvM_
RequestResultType to NVM_REQ_OK when both NV blocks have been invalidated. |

[SWS_NvM_00275] [The function NvM_InvalidateNvBlock shall set the request result
to NVM_REQ_NOT_OK if the processing of this service fails. |

[SWS_NvM_00666] [The function NvM_InvalidateNvBlock shall report NVM_E_REQ_
FAILED to the DEM if the processing of this service fails. |

[SWS_NvM_00717] [The NvM module’s environment shall have initialized the NvM
module before it calls the function function NvM_InvalidateNvBlock. |

8.3.2.6 NvM_ReadPRAMBIlock

[SWS_NvM _00764] Definition of API function NvM_ReadPRAMBIlock
Upstream requirements: SRS_Mem_08533, SRS_Mem_00016

[
Service Name NvM_ReadPRAMBIock
Syntax Std_ReturnType NvM_ReadPRAMBlock (
NvM_BlockIdType BlockId
)
Service ID [hex] 0x16
Sync/Async Asynchronous
Reentrancy Reentrant

AUTSSAR

A
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to copy the data of the NV block to its corresponding permanent RAM block.
Available via NvM.h

]

[SWS NvM _00765]
Upstream requirements: SRS_Mem_00016

[The job of the function NvM_ReadPRAMBIock shall copy the data of the NV block to
the permanent RAM block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

[SWS NvM _00766]
Upstream requirements: SRS_Mem_00016

[The function NvM_ReadPRAMBIock shall take over the given parameters, queue the
read request in the job queue and return. |

[SWS_NvM_00767] [If the block is successfully enqueued, the function NvM_Read
PRAMBIock shall set the RAM block state to INVALID/UNCHANGED. |

[SWS_NvM_00768] [The job of the function NvM_ReadPRAMBIock shall initiate a
read attempt on the second NV block if the passed Blockld references a NVRAM block
of type NVM_BLOCK_REDUNDANT and the read attempts on the first NV block falil. |

[SWS_NvM_00769] [In case of NVRAM block management type NVM_BLOCK_
DATASET, the job of the function NvM_ReadPRAMBIock shall copy only that NV block
to the corresponding RAM block which is selected via the data index in the administra-
tive block. |

[SWS_NvM_00770] [The job of the function NvM_ReadPRAMBIock shall not copy
the NV block to the corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is invalidate. |

[SWS_NvM_00771] [The job of the function NvM_ReadPRAMBIock shall not copy the
NV block to the corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is inconsis-
tent. |

[SWS_NvM_00772] [The job of the function NvM_ReadPRAMBIock shall copy the
ROM block to RAM and set the request result to NVM_REQ_OK if the NVRAM block

AUTSSAR

management type is NVM_BLOCK_DATASET and the dataset index points at a ROM
block. |

[SWS_NvM_00773] [The job of the function NvM_ReadPRAMBIock shall set the RAM
block to valid and assume it to be unchanged after a successful copy process of the
NV block to RAM. |

[SWS_NvM_00774] [The job of the function NvM_ReadPRAMBIock shall set the RAM
block to valid and assume it to be changed if the default values are copied to the RAM
successfully. |

[SWS_NvM_00775] [The job of the function NvM_ReadPRAMBIock shall set the re-
quest result to NVM_REQ_OK if the NV block was copied successfully from NV mem-
ory to RAM. |

[SWS_NvM_00776] [The job of the function NvM_ReadPRAMBIock shall set the re-
quest result to NVM_REQ_NV_INVALIDATED if the Memlf reports MEMIF_BLOCK _
INVALID. |

[SWS_NvM_00777] [The job of the function NvM_ReadPRAMBIock shall report no
error to the DEM if the Memlf reports MEMIF_BLOCK_INVALID. |

[SWS_NvM_00778] [The job of the function NvM_ReadPRAMBIock shall set the re-
quest result to NVM_REQ_INTEGRITY_FAILED if the Memlf reports MEMIF_BLOCK _
INCONSISTENT. |

[SWS_NvM_00779] [The job of the function NvM_ReadPRAMBIlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if the Memlf reports MEMIF_BLOCK _IN-
CONSISTENT. |

[SWS_NvM_00780] [The job of the function NvM_ReadPRAMBIock shall set the re-
quest result to NVM_REQ_NOT_OK if the Memlf reports MEMIF_JOB_FAILED. |

[SWS_NvM_00781] [The job of the function NvM_ReadPRAMBIock shall report
NVM_E_REQ_FAILED to the DEM if the Memlf reports MEMIF_JOB_FAILED. |

[SWS_NvM_00782] [The job of the function NvM_ReadPRAMBIock shall set the re-
quest result to NVM_REQ_OK if the block management type of the given NVRAM block
is NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from
NV memory to RAM. |

[SWS_NvM_00783] [The job of the function NvM_ReadPRAMBIock shall report no
error to the DEM if the block management type of the given NVRAM block is NVM_
BLOCK_REDUNDANT and one of the NV blocks was copied successfully from NV
memory to RAM. |

[SWS_NvM_00784] [The job of the function NvM_ReadPRAMBIock shall mark every
NVRAM block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE)

AUTSSAR

as write protected if that block is valid and with consistent data. This write protection
cannot be cleared by NvM_SetBlockProtection. |

[SWS_NvM_00785] [The job of the function NvM_ReadPRAMBIock shall invalidate
a NVRAM block of management type redundant if both NV blocks have been invali-
dated. |

[SWS_NvM_00786] [The job of the function NvM_ReadPRAMBIock shall request a
CRC recalculation over the RAM block data after the copy process [SWS_NvM_00180]
if the NV block is configured with CRC, i.e. if NvMCalRamBlockCrC == TRUE for the
NV block. |

[SWS_NvM_00787] [The job of the function NvM_ ReadPRAMBIock shall load the
default values according to processing of NvM_RestorePRAMBIlockDefaults if the re-
calculated CRC is not equal to the CRC stored in NV memory. |

[SWS_NvM_00788] [NvM_ReadPRAMBIock: If there are no default values available,
the RAM blocks shall remain invalid. |

[SWS_NvM_00789] [The job of the function NvM_ReadPRAMBIock shall load the de-
fault values according to processing of NvM_RestorePRAMBIlockDefaults if the read
request passed to the underlying layer fails. |

[SWS_NvM_00790] [The job of the function NvM_ReadPRAMBIlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. |

[SWS_NvM_00791] [The job of the function NvM_ReadPRAMBIock shall set the re-
quest result NVM_REQ_INTEGRITY_FAILED if a CRC mismatch occurs. |

[SWS_NvM_00792] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_ReadPRAMBIock. |

[SWS_NvM_00882] [The job of the function NvM_ReadPRAMBIock shall load the de-
fault values according to processing of NvM_RestorePRAMBIlockDefaults (also set the
request result to NVM_REQ_RESTORED_DEFAULTS) if the read request passed to
the underlying layer fails (Memlf reports MEMIF_JOB_FAILED or MEMIF_BLOCK_IN-
CONSISTENT) and if the default values are available. |

AUTSSAR

8.3.2.7 NvM_WritePRAMBIlock

[SWS_NvM _00793] Definition of API function NvM_WritePRAMBIlock
Upstream requirements: SRS_Mem_00017

Service Name NvM_WritePRAMBIock
Syntax Std_ReturnType NvM_WritePRAMBlock (
NvM_BlockIdType BlockId
)
Service ID [hex] 0x17
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to copy the data of the permanent RAM block to its corresponding NV block.
Available via NvM.h

[SWS_NvM_00794]
Upstream requirements: SRS_Mem_00017

[The job of the function NvM_WritePRAMBIock shall copy the data of the permanent
RAM block to its corresponding NV block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

[SWS_NvM_00798]
Upstream requirements: SRS_Mem_08541

[The function NvM_WritePRAMBIock shall take over the given parameters, queue the
write request in the job queue and return. |

[SWS_NvM_00799] [The function NvM_WritePRAMBIock shall check the NVRAM
block protection when the request is enqueued but not again before the request is
executed. |

[SWS_NvM_00800] [The function NvM_WritePRAMBIock shall cancel a pending job
immediately in a destructive way if the passed Blockld references a NVRAM block
configured to have immediate priority. The immediate job shall be the next active job
to be processed. |

[SWS_NvM_00801] [The job of the function NvM_WritePRAMBIlock shall request a
CRC recalculation before the RAM block will be copied to NV memory if the NV block
is configured with CRC [SWS_NvM_00180]. |

AUTSSAR

[SWS_NvM_00853]
Upstream requirements: SRS_Mem_00136

[The job of the function NvM_WritePRAMBIock shall skip writing and consider the
job as successfully finished if the NvMBlockUseCRCCompMechanism attribute of the
NVRAM Block is set to true and the RAM block CRC calculated by the write job is equal
to the CRC calculated during the last successful read or write job. This mechanism
shall not be applied to blocks for which a loss of redundancy has been detected. |

[SWS_NvM_00802] [The job of the function NvM_WritePRAMBIock shall copy the
RAM block to the corresponding NV block which is selected via the data index in the

administrative block if the NVRAM block management type of the given NVRAM block
is NVM_BLOCK_DATASET. |

[SWS_NvM_00803] [If the block is successfully enqueued and if the RAM block state
is VALID/UNCHANGED or INVALID/UNCHANGED, the function NvM_WritePRAM
Block shall set the RAM block state to VALID/CHANGED. |

Note: If the block has an explicit synchronization callback (NvM_WriteRamBlockTo
Nvm) configured the validation will be done just after NvM_WriteRamBlockToNvm is
successfully processed.

Note/Hint: The job of the function NvM_WritePRAMBIock shall assume a referenced
permanent RAM block or the RAM mirror in the NvM module in case of explicit syn-
chronization to be valid when the request is passed to the NvM module.

[SWS_NvM_00804]
Upstream requirements: SRS_Mem_08554

[The job of the function NvM_WritePRAMBIock shall check the number of write retries
using a write retry counter to avoid infinite loops. Each negative result reported by
the memory interface shall be followed by an increment of the retry counter. In case
of a retry counter overrun, the job of the function NvM_WritePRAMBIock shall set the
request result to NVM_REQ_NOT_OK. |

[SWS_NvM_00805] [The job of the function NvM_WritePRAMBIock shall check the
number of write retries using a write retry counter to avoid infinite loops. Each nega-
tive result reported by the memory interface shall be followed by an increment of the
retry counter. In case of a retry counter overrun, the job of the function NvM_Write
PRAMBIock shall report NVM_E_REQ_FAILED to the DEM. |

[SWS_NvM_00806] [The configuration parameter NVM_MAX_NUM_OF_WRITE_
RETRIES shall prescribe the maximum number of write retries for the job of the func-
tion NvM_WritePRAMBIlock when RAM block data cannot be written successfully to
the corresponding NV block. |

Note: For more information on NvMMaxNumOfWriteRetries, see chapter 10.2.2.

AUTSSAR

[SWS_NvM_00807] [The job of the function NvM_WritePRAMBIock shall copy the
data content of the RAM block to both corresponding NV blocks if the NVRAM block
management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT. |

[SWS_NvM_00808] [If the processed NVRAM block is of type NVM_BLOCK_REDUN-
DANT the job of the function NvM_WritePRAMBIock shall start to copy the data of the
RAM block to NV block which has not been read during the jobs started by NvM_Read
Block, NvM_ReadPRAMBIlock or NvM_ReadAll then continue to copy the other NV
block. |

[SWS_NvM_00809] [The job of the function NvM_WritePRAMBIock shall set NVM_
REQ_OK as request result if the passed Blockld references a NVRAM block of type
NVM_BLOCK_ REDUNDANT and at least one of the NV blocks have been written suc-
cessfully. |

[SWS_NvM_00810] [The job of the function NvM_WritePRAMBIock shall set the write
protection flag in the administrative block immediately if the NVRAM block is configured
with NvMWriteBlockOnce == TRUE and the data has been written successfully to the
NV block. |

[SWS_NvM_00811] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_WritePRAMBIock. |

Hint: To avoid the situation that in case of redundant NVRAM blocks two different
NV blocks are containing different but valid data at the same time, each client of the
function NvM_WritePRAMBIlock may call NvM_InvalidateNvBlock in advance.

[SWS_NvM_00812] [The job of the function NvM_WritePRAMBIock with Block ID 1
shall write the compiled NVRAM configuration ID to the stored NVRAM configuration
ID (block 1). |

Hint: If a pristine ECU is flashed for the first time, such a call invoked by will ensure
that after a power-off without a proper shutdown, everything is as expected at the next
start-up. Otherwise, the new configuration ID would not be stored in NV RAM and all
ROM defaultd would be used. A macro scan be used to indicate this usage.

AUTSSAR

8.3.2.8 NvM_RestorePRAMBIlockDefaults

[SWS_NvM_00813] Definition of API function NvM_RestorePRAMBIlockDefaults
Upstream requirements: SRS_Mem_00018

Service Name NvM_RestorePRAMBIlockDefaults
Syntax Std_ReturnType NvM_RestorePRAMBlockDefaults (
NvM_BlockIdType BlockId
)
Service ID [hex] 0x18
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) Blockld The block identifier uniquely identifies one NVRAM block
descriptor. A NVRAM block descriptor contains all needed
information about a single NVRAM block.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: request has been accepted
E_NOT_OK: request has not been accepted
Description Service to restore the default data to its corresponding permanent RAM block.
Available via NvM.h

[SWS_NvM _00814]
Upstream requirements: SRS_Mem_00018

[The job of the function NvM_RestorePRAMBIockDefaults shall restore the default
data to its corresponding permanent RAM block. |

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See SWS_Nv
M_00270)

[SWS_NvM_00815] [The function NvM_RestorePRAMBIlockDefaults shall take over
the given parameters, queue the request in the job queue and return. |

[SWS_NvM_00816]
Upstream requirements: SRS_Mem_00018

[The job of the function NvM_RestorePRAMBIockDefaults shall load the default data
from a ROM block if a ROM block is configured. |

[SWS_NvM 00817]
Upstream requirements: SRS_Mem_00018

[The NvM module’s environment shall call the function NvM_RestorePRAMBIlockDe-
faults to obtain the default data if no ROM block is configured for a NVRAM block and
an application callback routine is configured via the parameter NvMInitBlockCallback. |

[SWS_NvM_00818] [The function NvM_RestorePRAMBIlockDefaults shall return with
E_NOT_OK if the block management type of the given NVRAM block is NVM_BLOCK _

AUTSSAR

DATASET, at least one ROM block is configured and the data index points at a NV
block. |

[SWS_NvM_00819] [The function NvM_RestorePRAMBIlockDefaults shall set the
RAM block state to INVALID/UNCHANGED immediately when the block is success-
fully enqueued. |

[SWS_NvM_00820] [The job of the function NvM_RestorePRAMBIockDefaults shall
validate and assume a RAM block to be changed if the requested RAM block is perma-
nent or after explicit synchronization callback (NvMReadRamBlockFromNvCallback)
that is called returns E_OK and the copy process of the default data to RAM was suc-
cessful .|

[SWS_NvM_00821] [The job of the function NvM_RestorePRAMBIockDefaults shall
request a recalculation of CRC from a RAM block after the copy process/validation if a
CRC is configured for this RAM block. |

[SWS_NvM_00822] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_RestorePRAMBIlockDefaults. |

Hint: For the block management type NVM_BLOCK_DATASET, the application has to
ensure that a valid dataset index is selected (pointing to ROM data).

[SWS_NvM_00884] [If the block has no ROM default data and no NvMInitBlockCall-
back configured for it then the function NvM_RestorePRAMBIlockDefaults shall leave
the block status unchanged and return E_NOT_OK as result. |

[SWS_NvM_00886] [If the block has no default data, it has no InitBlockCallbackFunc-
tion configured and the development error detection is enabled then the NvM_Re-
storePRAMBIlockDefaults API shall report the error NVM_E_BLOCK_WITHOUT_DE-
FAULTS error to the Det module. |

8.3.3 Asynchronous multi block requests

8.3.3.1 NvM_ReadAll

[SWS_NvM_00460] Definition of API function NvM_ReadAll
Upstream requirements: SRS_Mem_08533

Service Name NvM_ReadAll
Syntax void NvM_ReadAll (
void
)
Service ID [hex] 0x0c

AUTSSAR

A
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Initiates a multi block read request.
Available via NvM.h

]

[SWS_NvM_00356] [The multi block service NvM_ReadAll shall provide two distinct
functionalities.

* Initialize the management data for all NVRAM blocks (see SWS_NvM_00304 ff)

» Copy data to the permanent RAM blocks or call explicit synchronization call-
back(NvM_ReadRamBlockFromNvm) for those NVRAM blocks which are con-
figured accordingly.

Note: The two functionalities can be implemented in one loop. |

[SWS_NvM_00243] [The function NvM_ReadAll shall signal the request to the NvM
module and return. The NVRAM Manager shall defer the processing of the requested
ReadAll until all single block job queues are empty. |

[SWS_NvM_00304] [The job of the function NvM_ReadAll shall set each proceeding
block specific request result for NVRAM blocks in advance. |

[SWS_NvM_00667] [The job of the function NvM_ReadAll shall set the multi block
request result to NVM_REQ_PENDING in advance. |

[SWS_NvM_00895]
Upstream requirements: SRS_Mem_00020

[The job of the function NvM_ReadAll shall set the multi block request result to NVM_
REQ_OK if no NVRAM block processing fails. |

Note: When the result of an individual block processing (in the context of a multi-block
job) is different than NVM_REQ_OK, the individual block processing is considered as
failed.

[SWS_NvM_00244] [The job of the function NvM_ReadAll shall iterate over all user
NVRAM blocks, i.e. except for reserved Block lds 0 (multi block request result) and 1
(NV configuration ID), beginning with the lowest Block Id. |

[SWS_NvM_00245] [Blocks of management type NVM_BLOCK_DATASET shall not
be loaded automatically upon start-up. Thus the selection of blocks, which belong to
block management type NVM_BLOCK_DATASET, shall not be possible for the service
NvM_ReadAll. |

AUTSSAR

[SWS_NvM_00362] [The NvM module shall initiate the recalculation of the RAM CRC
for every NVRAM block with a valid permanent RAM block or explicit synchronization
callback configured and NvmCalcRamBlockCrc == TRUE during the processing of Nv
M_ReadAll. |

Note:

If a block processed by the job of the function NvM_ReadAll has explicit synchroniza-
tion configured for it then the block owner should provide the related RAM data for
the comparison. The call made by NvM to the explicit synchronization 'write’ callback
should be successful.

[SWS_NvM_00364] [The job of the function NvM_ReadAll shall treat the data for every
recalculated RAM CRC which matches the stored RAM CRC as valid and set the block
specific request result to NVM_REQ_OK. |

Note: This mechanism enables the NVRAM Manager to avoid overwriting of maybe
still valid RAM data with outdated NV data.

[SWS_NvM_00246] [The job of the function NvM_ReadAll shall validate the configu-
ration ID by comparing the stored NVRAM configuration ID vs. the compiled NVRAM
configuration ID. |

[SWS_NvM_00669] [NvM_ReadAll: The NVRAM block with the block ID 1 (redundant
type with CRC) shall be reserved to contain the stored NVRAM configuration ID. |

[SWS_NvM_00247] [The job of the function NvM_ReadAll shall process the nor-
mal runtime preparation for all configured NVRAM blocks in case of configuration 1D
match. |

[SWS_NvM_00670] [The job of the function NvM_ReadAll shall set the error/status
information field of the corresponding NVRAM block’s administrative block to NVM_
REQ_OK in case of configuration ID match. |

[SWS_NvM_00305] [The job of the function NvM_ReadAll shall report the extended
production error NVM_E_REQ_FAILED to the DEM if the configuration ID cannot be
read because of an error detected by one of the subsequent SW layers. |

[SWS_NvM_00671] [The job of the function NvM_ReadAll shall set the error status
field of the reserved NVRAM block to NVM_REQ_INTEGRITY_FAILED if the configu-
ration ID cannot be read because of an error detected by one of the subsequent SW
layers. The NvM module shall behave in the same way as if a configuration ID mis-
match was detected. |

[SWS_NvM_00307] [The job of the function NvM_ReadAll shall set the error/status
information field of the reserved NVRAM block with ID 1 to NVM_REQ_NOT_OKin the
case of configuration ID mismatch. |

AUTSSAR

[SWS_NvM_00306] [In case the NvM module can not read the configuration ID be-
cause the corresponding NV blocks are empty or invalidated, the job of the function Nv
M_ReadAll shall not report an extended production error or a production error to the
DEM. |

[SWS_NvM_00672] [In case the NvM module can not read the configuration ID be-
cause the corresponding NV blocks are empty or invalidated, the job of the function Nv
M_ReadAll shall set the error/status information field in this NVRAM block’s adminis-
trative block to NVM_REQ_NV_INVALIDATED. |

[SWS_NvM_00673] [NvM_ReadAll: In case the NvM module can not read the config-
uration ID because the corresponding NV blocks are empty or invalidated, NVM module
shall update the configuration ID from the RAM block assigned to the reserved NVRAM
block with ID 1 according to the new (compiled) configuration ID. The NvM module shall
behave the same way as if the configuration ID matched. |

[SWS_NvM_00248] [The job of the function NvM_ReadAll shall ignore a configuration
ID mismatch and behave normal if NvMDynamicConfiguration == FALSE. |

Note: For more information on NvMDynamicConfiguration, see chapter 10.2.2.

[SWS_NvM_00249] [The job of the function NvM_ReadAll shall process an extended
runtime preparation for all blocks which are configured with NvMResistantToChanged
Sw == FALSE and NvMDynamicConfiguration == TRUE and configuration ID mismatch
occurs. |

[SWS_NvM_00674] [The job of the function NvM_ReadAll shall process the normal
runtime preparation of all NVRAM blocks when they are configured with NvMResistant
ToChangedSw == TRUE and NvMDynamicConfiguration == TRUE and if a configura-
tion ID mismatch occurs. |

[SWS_NvM_00314] [The job of the function NvM_ReadAll shall mark every NVRAM
block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write
protected if that block is valid and with consistent data. This write protection cannot be
cleared by NvM_SetBlockProtection. |

[SWS_NvM_00315] [The job of the function NvM_ReadAll shall only invalidate a
NVRAM block of management type NVM_BLOCK_REDUNDANT if both NV blocks
have been invalidated. |

[SWS_NvM_00718] [The NvM module’s environment shall use the multi block request
NvM_ReadAll to load and validate the content of configured permanent RAM or to do
the explicit synchronization for configured blocks during start-up [SWS_NvM_00091]. |

[SWS_NvM_00118] [The job of the function NvM_ReadAll shall process only the per-
manent RAM blocks or call explicit synchronization callback (NvM_ReadRamBlock
FromNvm) for blocks which are configured with NvmSelectBlockForReadall == TRUE. |

AUTSSAR

[SWS_NvM_00287] [The job of the function NvM_ReadAll shall set the request result
to NVM_REQ_BLOCK_SKIPPED for each NVRAM block configured to be processed
by the job of the function NvM_ReadAll (NvMSelectBlockForReadAll is checked) and
which has not been read during processing of the NvM_ReadAll job. |

[SWS_NvM_00308] [The job of the function NvM_ReadAll shall restore the default
data to the corresponding RAM blocks either if configured by the parameter NvMRom
BlockDataAddress or by the parameter NvMInitBlockCallback, and set the error/status
field in the administrative block to NVM_REQ_RESTORED_DEFAULTS when process-
ing the extended runtime preparation. |

[SWS_NvM_00309] [When executing the extended runtime preparation, the job of
the function NvM_ReadAll shall treat the affected NVRAM blocks as invalid or blank
in order to allow rewriting of blocks configured with NVM_BLOCK_WRITE_ONCE ==
TRUE. |

[SWS_NvM_00310] [The job of the function NvM_ReadAll shall update the configura-
tion ID from the RAM block assigned to the reserved NVRAM block with ID 1 according
to the new (compiled) configuration ID, mark the NVRAM block to be written during Nv
M_WriteAll and request a CRC recalculation if a configuration ID mismatch occurs and
if the NVRAM block is configured with NvMDynamicConfiguration == TRUE. |

[SWS_NvM_00311] [The NvM module shall allow applications to send any request
for the reserved NVRAM Block ID 1 if (and only if) NvMDynamicConfiguration is set to
TRUE, including NvM_WriteBlock and NvM_WritePRAMBIock. |

[SWS_NvM_00312] [The NvM module shall not send a request for invalidation of the
reserved configuration ID NVRAM block to the underlying layer, unless requested so
by the application. This shall ensure that the NvM module’s environment can rely on
this block to be only invalidated at the first start-up of the ECU or if desired by the
application. |

[SWS_NvM_00313] [In case of a Configuration ID match, the job of the function Nv
M_ReadAll shall not automatically write to the Configuration ID block stored in the
reserved NVRAM block 1. |

[SWS_NvM_00288] [The job of the function NvM_ReadAll shall initiate a read attempt
on the second NV block for each NVRAM block of type NVM_BLOCK_REDUNDANT
[SWS_NvM_00118], where the read attempt of the first block fails (see also SWS_Nv
M_00531). |

[SWS_NvM_00290] [The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_OK if the job has successfully copied the corresponding
NV block from NV memory to RAM. |

[SWS_NvM_00342] [The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_NV_INVALIDATED if the Memlf reports MEMIF_BLOCK _
INVALID. |

AUTSSAR

[SWS_NvM_00676] [The job of the function NvM_ReadAll shall report no error to the
DEM if the Memlf reports MEMIF_BLOCK_INVALID. |

[SWS_NvM_00360] | The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_INTEGRITY_FAILED if:

+ - the Memlf reports MEMIF_BLOCK_INCONSISTENT and

» - NvMRomBlockDataAddress is not configured (no ROM block with default data
is available) for the block and

» - NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00677] [The job of the function NvM_ReadAll shall report NVM_E_
INTEGRITY_FAILED to the DEM if the Memlf reports MEMIF_BLOCK_INCONSIS-
TENT. |

Note: After the production of an ECU / a car, on the production line all blocks shall have
been written with valid data (may be default data) and all diagnostic events (errors)
shall have been deleted. If the process does not allow to write all NV blocks during
production than the NvM will report diagnostic events (errors) because of blocks that
were never written and reported as MEMIF_BLOCK_INCONSISTENT by Memlf.

[SWS_NvM_00361] [The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_NOT_OK if:

* - the Memlf reports MEMIF_JOB_FAILED and

» - NvMRomBlockDataAddress is not configured (no ROM block with default data
is available) for the block and

» - NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00678] [The job of the function NvM_ReadAll shall report NVM_E_REQ_
FAILED to the DEM, if the Memlf reports MEMIF_JOB_FAILED. |

[SWS_NvM_00291] [The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_OK if the corresponding block management type is NVM_
BLOCK_REDUNDANT and the function has successfully copied one of the NV blocks
from NV memory to RAM. |

[SWS_NvM_00292] [The job of the function NvM_ReadAll shall request a CRC re-
calculation over the RAM block data after the copy process SWS_NvM_00180 if the
NV block is configured with CRC, , i.e. if NvMCalRamBlockCrC == TRUE for the NV
block. |

AUTSSAR

[SWS_NvM_00293] [The job of the function NvM_ReadAll shall load the default values
to the RAM blocks according to the processing of NvM_RestoreBlockDefaults (also set
the corresponding request result to NVM_REQ_RESTORED_DEFAULTS):

« - if the recalculated CRC is not equal to the CRC stored in NV memory and if the
« default values are available, or

+ - if the blocks are marked as invalid (Memlf reports MEMIF_BLOCK_INVALID)
and the default values are available.

]

[SWS_NvM_00679] [The job of the function NvM_ReadAll shall load the default values
to the RAM blocks according to the processing of NvM_RestoreBlockDefaults (also set
the request result to NVM_REQ_RESTORED_DEFAULTS) if the read request passed
to the underlying layer fails (Memlf reports MEMIF_JOB_FAILED or MEMIF_BLOCK _
INCONSISTENT) and if the default values are available. |

[SWS_NvM_00680] [NvM_ReadAll: If the read request passed to the underlying layer
fails and there are no default values available, the job shall leave the RAM blocks
invalid. |

[SWS_NvM_00294] [The job of the function NvM_ReadAll shall report NVM_E_IN-
TEGRITY_FAILED to the DEM if a CRC mismatch occurs. |

[SWS_NvM_00295] [The job of the function NvM_ReadAll shall set a block specific
request result to NVM_REQ_INTEGRITY_FAILED if:

* - a CRC mismatch occurs and

* - NvMRomBlockDataAddress is not configured (no ROM block with default data
is available) for the block and

* - NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00302] [The job of the function NvM_ReadAll shall report NVM_E_REQ_
FAILED to the DEM if the referenced NVRAM Block is not configured with CRC and
the corresponding job process has failed. |

[SWS_NvM_00301] [The job of the function NvM_ReadAll shall set the multi block
request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block
fails. |

Note: When the result of an individual block processing (in the context of a multi-block
job) is different than NVM_REQ_OK, the individual block processing (or individual job)
is considered as failed.

AUTSSAR

[SWS_NvM_00281] [If configured by NvMSingleBlockCallback, the job of the function
NvM_ReadAll shall call the single block callback after having completely processed
a NVRAM block. For the last block, NvMSingleBlockCallback (if configured) is called
before MultiBlockCallback. |

Note: The idea behind using the single block callbacks also for NvM_ReadAll is to
speed up the software initialization process:

A single-block callback issued from an NvM_ReadAll will result in an RTE event.

If the RTE is initialized after or during the asynchronous NvM_ReadAll, all or some of
these RTE events will get lost because they are overwritten during the RTE initialization
(see SWS_Rte 2536).

After its initialization, the RTE can use the "surviving" RTE events to start software
components even before the complete NvM_ReadAll has been finished.

For those RTE events that got lost during the initialization: the RTE will start those
software components and the software components either query the status of the NV
block they want to access or request that NV block to be read. This is exactly the same
behavior if the single-block callbacks would not be used in NvM_ReadAll.

[SWS_NvM_00251] [The job of the function NvM_ReadAll shall mark a NVRAM block
as "valid/unmodified" if NV data has been successfully loaded to the RAM Block. |

[SWS_NvM_00367] [The job of the function NvM_ReadAll shall set a RAM block to
valid and assume it to be changed if the job has successfully copied default values to
the corresponding RAM. |

[SWS_NvM_00719] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_ReadAll. |

The DEM shall already be able to accept error notifications.

[SWS_NvM_00968] [The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_INTEGRITY_FAILED if:

* the extended runtime preparation is executed for the block

* NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

» NvMInitBlockCallback is not configured (no init callback) for the block.

]

[SWS_NvM_00970] [The multi block service NvM_ReadAll shall only be provided by
the NvM master. |

AUTSSAR

8.3.3.2 NvM_WriteAll

[SWS_NvM _00461] Definition of API function NvM_WriteAll
Upstream requirements: SRS_Mem_08535

[

Service Name

NvM_WriteAll

Syntax void NvM_WriteAll (
void
)

Service ID [hex] 0x0d

Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description

Initiates a multi block write request.

Available via

NvM.h

]

[SWS_NvM_00018] [The job of the function NvM_WriteAll shall synchronize the con-
tents of permanent RAM blocks to their corresponding NV blocks or call explicit syn-
chronization callback (NvM_WriteRamBlockToNvm) on shutdown. |

[SWS_NvM_00733] [If NVRAM block ID 1 (which holds the configuration ID of the
memory layout) is marked as "to be written during NvM_WriteAll", the job of the func-
tion NvM_WriteAll shall write this block in a final step (last write operation) to prevent
memory layout mismatch in case of a power loss failure during write operation. |

[SWS_NvM_00254] [The function NvM_WriteAll shall signal the request to the NvM
module and return. The NVRAM Manager shall defer the processing of the requested
WriteAll until all single block job queues are empty. |

[SWS_NvM_00549] [The job of the function NvM_ WriteAll shall set each proceeding
block specific request result for NVRAM blocks and the multi block request result to
NVM_REQ_PENDING in advance. |

[SWS_NvM_00896]
Upstream requirements: SRS_Mem_00020

[The job of the function NvM_WriteAll shall set the multi block request result to NVM_
REQ_OK if no NVRAM block processing fails. |

Note: When the result of an individual block processing (in the context of a multi-block
job) is different than NVM_REQ_OK, the individual block processing is considered as
failed.

AUTSSAR

[SWS_NvM_00252] [The job of the function NvM_WriteAll shall process only the per-
manent RAM blocks or call explicit synchronization callback (NvM_WriteRamBlockTo
Nvm) for all blocks for which the corresponding NVRAM block parameter NvMSelect
BlockForWriteAll is configured to true. |

[SWS_NvM_00432] [The job of the function NvM_WriteAll shall check the write-
protection for each RAM block in advance. |

[SWS_NvM_00682] [The job of the function NvM_WriteAll shall check the "valid/mod-
ified" state for each RAM block in advance. |

[SWS_NvM_00433] [The job of the function NvM_WriteAll shall only write the content
of a RAM block to its corresponding NV block for non write-protected NVRAM blocks. |

[SWS_NvM_00474] [The job of the function NvM_WriteAll shall correct the redundant
data (if configured) if the redundancy has been lost. In this case the job of the function
NvM_WriteAll shall ignore write protection for this block in order to be able to repair it. |

Note: If NvM implementation detects loss of redundancy during read operation the user
(application) should ensure that redundant block is read (e.g. during NvM_ReadAll by
configuring the block to be read during NvM_ReadAll). If the block is not read then the
NVM will not be able to correct the redundant block’s data.

[SWS_NvM_00434] [The job of the function NvM_WriteAll shall skip every write-
protected NVRAM block without error notification. |

[SWS_NvM_00854]
Upstream requirements: SRS_Mem_00136

[The job of the function NvM_WriteAll shall skip an NVRAM block if the NvMBlockUse
CRCCompMechanism attribute is set to true and the RAM block CRC calculated by
the write job is equal to the CRC calculated during the last successful read or write
job. This mechanism shall not be applied to blocks for which a loss of redundancy has
been detected. |

[SWS_NvM_00298] [The job of the function NvM_WriteAll shall set the request result
to NVM_REQ_BLOCK_SKIPPED for each NVRAM block configured to be processed
by the job of the function NvM_WriteAll (NvMSelectBlockForWriteAll is checked) and
which has not been written during processing of the NvM_WriteAll job. |

[SWS_NvM_00339] [In case of NVRAM block management type NVM_BLOCK_
DATASET, the job of the function NvM_WriteAll shall copy only the RAM block to
the corresponding NV block which is selected via the data index in the administrative
block. |

[SWS_NvM_00253] [The job of the function NvM_WriteAll shall request a CRC recal-
culation and renew the CRC from a NVRAM block before writing the data if a CRC is
configured for this NVRAM block. |

AUTSSAR

[SWS_NvM_00296] [The job of the function NvM_WriteAll shall check the number of
write retries by a write retry counter to avoid infinite loops. Each unsuccessful result
reported by the Memlf module shall be followed by an increment of the retry counter. |

[SWS_NvM_00683] [The job of the function NvM_WriteAll shall set the block specific
request result to NVM_REQ_NOT_OK if the write retry counter becomes greater than
the configured NVM_MAX_NUM_OF_WRITE_RETRIES. |

[SWS_NvM_00684] [The job of the function NvM_WriteAll shall report NVM_E_REQ_
FAILED to the DEM if the write retry counter becomes greater than the configured
NVM_MAX_NUM_OF_WRITE_RETRIES. |

[SWS_NvM_00762] [The job of the function NvM_WriteAll shall copy the data content
of the RAM block to both corresponding NV blocks if the NVRAM block management
type of the processed NVRAM block is NVM_BLOCK_REDUNDANT. |

[SWS_NvM_00763] [If the processed NVRAM block is of type NVM_BLOCK_REDUN-
DANT the job of the function NvM_ WriteAll shall start to copy the data of the RAM block
to NV block which has _not_ been read during the jobs started by NvM_ReadBlock, Nv
M_ReadPRAMBIlock or NvM_ReadAll then continue to copy the other NV block. |

[SWS_NvM_00337] [The job of the function NvM_WriteAll shall set the single block re-
quest result to NVM_REQ_OK if the processed NVRAM block is of type NVM_BLOCK_
REDUNDANT and at least one of the NV blocks has been written successfully. |

[SWS_NvM_00238] [The job of the function NvM_WriteAll shall complete the job in a
non-destructive way for the NVRAM block currently being processed if a cancellation
of NvM_WriteAll is signaled by a call of NvM_CancelWriteAll. |

[SWS_NvM_00237] [The NvM module shall set the multi block request result to NVM_
REQ_CANCELED in case of cancellation of NvM_WriteAll. |

[SWS_NvM_00685] [NvM_WriteAll: The NvM module shall anyway report the error
code condition, due to a failed NVRAM block write, to the DEM. |

[SWS_NvM_00318] [The job of the function NvM_WriteAll shall set the multi block
request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block
fails. |

Note: When the result of an individual block processing (in the context of a multi-block
job) is different than NVM_REQ_OK, the individual block processing is considered as
failed.

[SWS_NvM_00329] [If the job of the function NvM_WriteAll has successfully written
data to NV memory for a NVRAM block configured with NvMWriteBlockOnce == TRUE,
the job shall immediately set the corresponding write protection flag in the administra-
tive block. |

AUTSSAR

[SWS_NvM_00720] [The NvM module’s environment shall have initialized the NvM
module before it calls the function NvM_WriteAll. |

No other multiblock request shall be pending when the NvM module’s environment calls
the function NvM_ WriteAll.

Note: To avoid the situation that in case of redundant NVRAM blocks two different NV
blocks are containing different but valid data at the same time, each client of the NvM_
WriteAll service may call NvM_InvalidateNvBlock in advance.

[SWS_NvM_00971] [The multi block service NvM_WriteAll shall only be provided by
the NvM master. |

8.3.3.3 NvM_CancelWriteAll

[SWS_NvM _00458] Definition of API function NvM_CancelWriteAll
Upstream requirements: SRS_Mem_08558, SRS_Mem_08540

[

Service Name

NvM_CancelWriteAll

Syntax void NvM_CancelWriteAll (
void
)

Service ID [hex] 0x0a

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description

Service to cancel a running NvM_WriteAll request.

Available via

NvM.h

]

[SWS_NvM_00019]
Upstream requirements: SRS_Mem_08540

[The function NvM_CancelWriteAll shall cancel a running NvM_WriteAll request. It
shall terminate the NvM_WriteAll request in a way that the data consistency during
processing of a single NVRAM block is not compromised |

[SWS_NvM_00232] [The function NvM_CancelWriteAll shall signal the request to the
NvM module and return. |

[SWS_NvM_00233] [The function NvM_CancelWriteAll shall be without any effect if
no NvM_WriteAll request is pending. |

AUTSSAR

[SWS_NvM_00234] [The function NvM_CancelWriteAll shall treat multiple requests to
cancel a running NvM_WriteAll request as one request, i.e. subsequent requests will
be ignored. |

[SWS_NvM_00235] [The request result of the function NvM_CancelWriteAll shall be
implicitly given by the result of the NvM_WriteAll request to be canceled. |

[SWS_NvM_00236] [The function NvM_CancelWriteAll shall only modify the error/sta-
tus attribute field of the pending blocks to NVM_REQ_CANCELED and for the currently
written block after the processing of a single NVRAM block is finished to NVM_REQ _
OK or NVM_REQ_NOT_OK depending on the success of the write operation. |

[SWS_NvM_00716] [The NvM module’s environment shall have initialized the NvM
module before it calls the function function NvM_CancelWriteAll. |

[SWS_NvM_00420] [The function NvM_CancelWriteAll shall signal the NvM module
and shall not be queued, i.e. there can be only one pending request of this type. |

8.3.3.4 NvM_ValidateAll

[SWS_NvM_00855] Definition of API function NvM_ValidateAll
Upstream requirements: SRS_Mem_00137

[

Service Name NvM_ValidateAll
Syntax void NvM_ValidateAll (
void

)
Service ID [hex] 0x19
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initiates a multi block validation request.

Available via

NvM.h

]
[SWS_NvM_00856]

Upstream requirements: SRS_Mem_00137

[If auto validation is configured for an NVRAM Block (NvMBlockUseAutoValidation
== TRUE), the function NvM_ValidateAll shall set the RAM Block status to "VALID /
CHANGED". |

AUTSSAR

[SWS_NvM_00857]

Upstream requirements: SRS_Mem_00137
[For blocks which meet the conditions of SWS_NvM_00856 and in addition have CRC
calculation in RAM configured the function NvM_ValidateAll shall request the recalcu-

lation of CRC in the background, i.e. the CRC recalculation shall be processed by the
NvM_MainFunction. |

[SWS_NvM_00858]
Upstream requirements: SRS_Mem_00137

[The function NvM_ValidateAll shall signal the request to the NvM module and return.
The NVRAM Manager shall defer the processing of the requested NvM_ValidateAll
function until all single block job queues are empty. |

[SWS_NvM_00859]

Upstream requirements: SRS_Mem_00137
[The NvM module’s environment shall have initialized the NvM module before it calls
the function NvM_ValidateAll. |

[SWS_NvM_00860]

Upstream requirements: SRS_Mem_00137
[The job of the function NvM_ValidateAll shall process only the permanent RAM blocks
or call explicit synchronization callback (NvM_WriteRamBlockToNvm) for all blocks for

which the corresponding NVRAM Block parameter NvMBlockUseAutoValidation is con-
figured to true. |

[SWS_NvM_00861]
Upstream requirements: SRS_Mem_00137

[The job of the function NvM_ValidateAll shall set each proceeding block specific re-
quest result for NVRAM blocks and the multi block request result to NVM_REQ_PEND-
ING in advance. |

[SWS_NvM_00862]
Upstream requirements: SRS_Mem_00137

[The job of the function NvM_ValidateAll shall set the block specific request result to
NVM_REQ_OK if the RAM block was successfully validated. |

AUTSSAR

8.3.3.5 NvM_FirstInitAll

[SWS_NvM_91001] Definition of API function NvM_FirstinitAll |

Service Name NvM_FirstInitAll
Syntax void NvM_FirstInitAll (
void

)

Service ID [hex] 0x14

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The function initiates a multi block first initialization request. The job of the function does not
care if a block exists in the non-volatile memory or not OR if it is valid (i.e. not corrupted) or not,
when processing it.

Available via NvM.h

]

For each processed block, the job of the function will either write it with default data (if
it is not of type DATASET and it has default data) or invalidate the block (if it is of type
DATASET or without default data).

The term "default data" means the data from the ROM block (if any) or the one provided
inside the InitBlockCallback (if any) by the related block owner.

If NvM_FirstInitAll is called after NvM_ReadAll, then an inconsistency between the Nv
M user’s expectation of RAM block contents and the actual RAM block contents can
occur. Even worse, also concurrent writes to the RAM block content from NvM user
side and NvM_ FirstInitAll could occur. Hence, calling NvM_FirstlInitAll after NvM_Read
All should generally be avoided.

In light of the above, the following requirements apply:

[SWS_NvM_00912] [The job of the function NvM_FirstInitAll shall also process the
block with ID 1 (which holds the configuration ID of the NvM module), if this block has
been configured to be processed by it and dynamic configuration is enabled. |

[SWS_NvM_00913] [If a block of type NATIVE that is processed by the NvM_FirstInit
All has default data, the NV block shall be written with its default data. |

[SWS_NvM_00914] [If a NATIVE block that is processed by the NvM_FirstInitAll has
neither permanent RAM nor explicit synchronization then that block shall be processed
by using the internal NvM buffer as its RAM and, upon processing, its RAM block state
shall be left untouched. |

[SWS_NvM_00915] [If a NATIVE block that has either permanent RAM or explicit
synchronization is processed by the NvM_FirstInitAll and the block has default data

AUTSSAR

(ROM or Init Callback) then the blocks RAM will be updated with the default data, just
like for the processing of a NvM_RestoreBlockDefaults request. |

[SWS_NvM_00916] [If a block of type REDUNDANT that is processed by the NvM_
FirstInitAll has default data, both block instances shall be written with that default data. |

[SWS_NvM_00917] [If a REDUNDANT block that is processed by the NvM_FirstInit
All has neither permanent RAM nor explicit synchronization then that block shall be
processed by using the internal NvM buffer as its RAM and, upon processing, its RAM
block state shall be left untouched. |

[SWS_NvM_00918] [If a REDUNDANT block that has either permanent RAM or ex-
plicit synchronization is processed by the NvM_FirstInitAll and the block has default
data (ROM or Init Callback) then the blocks RAM will be updated with the default data,
just like for the processing of a NvM_RestoreBlockDefaults request. |

[SWS_NvM_00919] [If a block of type NATIVE that is processed by the NvM_FirstInit
All does not have default data, the block shall be invalidated using the same mechanism
as for NvM_InvalidateNvBIlock. |

[SWS_NvM_00920] [If a block of type REDUNDANT that is processed by the NvM_
FirstInitAll does not have default data, both block instances shall be invalidated using
the same mechanism as for NvM_InvalidateNvBlock. |

[SWS_NvM_00921] [If a NATIVE block that is processed by the NvM_FirstInitAll has
only the Init Callback configured and the return value of the callback is not E_OK then
the job of the function NvM_FirstInitAll shall invalidate the block. |

[SWS_NvM_00922] [If a REDUNDANT block that is processed by the NvM_FirstInit
All has only the Init Callback configured and the return value of the callback is not E_
OK then the job of the function NvM_FirstInitAll shall invalidate both instances of the
block. |

Note: An Init Callback returning something else than E_OK is interpreted as a runtime
decision of the block owner not to provide default data via this callback. In this case, in
order for the state of the block not to remain ambiguous, it is invalidated.

[SWS_NvM_00923] [The job of the function NvM_FirstInitAll shall invalidate all blocks
that are of type DATASET and that have been configured to be processed by it. |

[SWS_NvM_00924] [The job of the function NvM_FirstInitAll shall invalidate all NV
block instances of a block of type DATASET, if the block was configured to be processed

by it. |

[SWS_NvM_00925] [If the writing of a block of type NATIVE with its default data fails,
the job of the function NvM_ FirstInitAll shall set the request result to NVM_REQ_NOT _
OK.|

AUTSSAR

[SWS_NvM_00926] [If the writing of a block of type REDUNDANT with its default data
fails for both instances, the job of the function NvM_FirstInitAll shall set the request
result to NVM_REQ_NOT_OK. |

[SWS_NvM_00927] [If the invalidation of a block of type NATIVE fails, the job of the
function NvM_FirstInitAll shall set the request result to NVM_REQ_NOT_OK. |

[SWS_NvM_00928] [If the invalidation of a block of type REDUNDANT fails for at
least one of the two block instances, the job of the function NvM_FirstlInitAll shall set
the request result to NVM_REQ_NOT_OK. |

Note: Since the purpose of the FirstInitAll is to have all selected NvM blocks in a well
defined state (either written successfully with the default data or invalidated), if one of
the two duplicates of the REDUNDANT block was not invalidated successfully, this has
to be known. This is not like the "write" case (see requirements SWS_NvM_00284 and
SWS_NvM_00274 for more details).

[SWS_NvM_00929] [If the invalidation of a block of type DATASET fails for at least
one of its NV block instances then the job of the function NvM_FirstInitAll shall set the
request result to NVM_REQ_NOT_OK |

Note: Since the purpose of the FirstInitAll is to have all selected NvM blocks in a
well defined state if at least one of the NV block instances of the DATASET block was
not invalidated successfully, this has to be known. The NvM_FirstInitAll processing of
blocks of type DATASET implies invalidating all NV block instances of all processed
blocks of type DATASET.

[SWS_NvM_00930] [Blocks without permanent RAM block and without explicit syn-
chronization can be configured to be processed by the NvM_FirstinitAll. |

[SWS_NvM_00931] [The write protection status of a block shall be completely ignored
by the NvM_FirstInitAll functionality. |

Note: The block write protection needs to be handled by the caller of the NvM_FirstInit
All or by the block owner (which should know about the execution of the NvM_FirstInit
All function and related job). This is due to the fact that, upon successful completion of
the job of the NvM_FirstInitAll, all selected blocks should have a well known and well
defined state.

[SWS_NvM_00932] [The write block once functionality shall not be triggered by NvM_
FirstInitAll. |

Note: The reason behind this is to allow the blocks that are Write Once Only to be
written via the NvM_WriteBlock API with valid values, after being initialized by the job
of the function NvM_ FirstInitAll.

AUTSSAR

[SWS_NvM_00934] [If a block that has either permanent RAM or explicit synchroniza-
tion has been successfully written into the non-volatile memory by the job of the func-
tion NvM_FirstInitAll then its RAM block state shall be set to VALID / UNCHANGED. |

[SWS_NvM_00935] [If a block that has either permanent RAM or explicit synchroniza-
tion has been successfully invalidated by the job of the function NvM_FirstInitAll then
its RAM block state shall be left untouched. |

[SWS_NvM_00936] [The job of the function NvM_FirstInitAll shall not be started while
there are single block requests that need to be processed by the NvM module. |

[SWS_NvM_00937] [The job of the function NvM_FirstInitAll, once started, shall
not be interrupted by any single block requests except write requests for immediate
blocks. |

[SWS_NvM_00938] [If the NvM module is not initialized and the function NvM_FirstInit
All is called, it shall report the Det error NVM_E_UNINIT and return without performing
any other activities. |

[SWS_NvM_00939] [If a multi block operation is PENDING and the function NvM_
FirstInitAll is called, it shall report the Det error NVM_E_BLOCK_PENDING and return
without performing any other activities. |

Note: The error NVM_E_BLOCK_ PENDING is used to indicate that another multiblock
operation is accepted but not completed by NvM. This is due to the fact that the NvM
module can only accept and process one multiblock operation at a time.

[SWS_NvM_00940] [The job of the function NvM_FirstInitAll shall set the multi block
request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block
fails. |

Note: When the result of an individual block processing (in the context of a multi-block
job) is different than NVM_REQ_OK, the individual block processing is considered as
failed.

8.3.3.6 Callback notifications

[SWS_NvM_00438] [The NvM module shall provide callback functions to be used by
the underlying memory abstraction (EEPROM abstraction / FLASH EEPROM Emula-
tion) to signal end of job state with or without error. |

AUTSSAR

8.3.3.6.1 NVRAM Manager job end notification without error

[SWS_NvM_00462] Definition of callback function NvM_JobEndNotification [

Service Name

NvM_JobEndNotification

Syntax void NvM_JobEndNotification (
void
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Function to be used by the underlying memory abstraction to signal end of job without error.
Available via NvM_Memlf.h
|

[SWS_NvM_00111] [The callback function NvM_JobEndNoatification is used by the
underlying memory abstraction to signal end of job without error.

Note: Successful job end notification of the memory abstraction:
* Read finished & OK
* Write finished & OK
* Erase finished & OK

This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode (callback/

polling). |

[SWS_NvM_00440] [The NvM module shall only provide the callback function NvM_
JobEndNoatification if polling mode is disabled via NvMPollingMode. |

Note: The function NvM_JobEndNotification is affected by the common 10.2.2 config-
uration parameters.

AUTSSAR

8.3.3.6.2 NVRAM Manager job end notification with error

[SWS_NvM _00463] Definition of callback function NvM_JobErrorNotification
Upstream requirements: SRS_Mem_00125

[
Service Name NvM_JobErrorNotification
Syntax void NvM_JobErrorNotification (
void
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Function to be used by the underlying memory abstraction to signal end of job with error.

Available via

NvM_Memlf.h

]

[SWS_NvM_00112] [The callback function NvM_JobErrorNotification is to be used by
the underlying memory abstraction to signal end of job with error.

» Note: Unsuccessful job end notification of the memory abstraction:
* Read aborted or failed
» Write aborted or failed
+ Erase aborted or failed

This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode (callback/

polling).
]

[SWS_NvM_00441] [The NvM module shall only provide the callback function NvM_
JobErrorNotification if polling mode is disabled via NvMPollingMode. |

Note: The function NvM_Job ErrorNotification is affected by the common 10.2.2 con-
figuration parameters.

8.4 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

AUTSSAR

[SWS_NvM_00464] Definition of scheduled function NvM_MainFunction
Upstream requirements: SRS_BSW_00425, SRS_BSW_00373, SRS_BSW_00172

Service Name NvM_MainFunction
Syntax void NvM_MainFunction (
void
)
Service ID [hex] 0x0e
Description Service for performing the processing of the NvM jobs.
Available via SchM_NvM.h

[SWS_NvM_00256] [The function NvM_MainFunction shall perform the processing of
the NvM module jobs. |

[SWS_NvM_00333] [The function NvM_MainFunction shall perform the CRC recalcu-
lation if requested for a NVRAM block in addition to SWS_NvM_00256. |

[SWS_NvM_00334] [The NvM module shall only start writing of a block (i.e. hand over
the job to the lower layers) after CRC calculation for this block has been finished. |

[SWS_NvM_00257] [The NvM module shall only do/start job processing, queue man-
agement and CRC recalculation if the NvM_Init function has internally set an "INIT
DONE" signal. |

[SWS_NvM_00258] [The function NvM_MainFunction shall restart a destructively
canceled request caused by an immediate priority request after the NvM module has
processed the immediate priority request [SWS_NvM_00182]. |

[SWS_NvM_00259] [The function NvM_MainFunction shall supervise the immediate
priority queue (if configured) regarding the existence of immediate priority requests. |

[SWS_NvM_00346] [If polling mode is enabled, the function NvM_MainFunction shall
check the status of the requested job sent to the lower layer. |

[SWS_NvM_00347] [If callback routines are configured, the function NvM_MainFunc-
tion shall call callback routines to the upper layer after completion of an asynchronous
service. |

[SWS_NvM_00350] [In case of processing an NvM_WriteAll multi block request, the
function NvM_MainFunction shall not call callback routines to the upper layer as long
as the service Memlf GetStatus returns MEMIF_BUSY_ INTERNAL for the reserved
device ID MEMIF_BROADCAST_ID [6]. For this purpose (status is MEMIF_BUSY_IN-
TERNAL), the function NvM_MainFunction shall cyclically poll the status of the Memory
Hardware Abstraction independent of being configured for polling or callback mode. |

[SWS_NvM_00349] [The function NvM_MainFunction shall return immediately if no
further job processing is possible. |

AUTSSAR

8.5 Expected interfaces
In this chapter all interfaces required from other modules are listed.

[SWS_NvM_00969] [The NvM shall call the expected interface in the same partition
context to which its functionality is mapped:

» The master partition for all general functionality, not directly related to an individ-
ual NV block

» The corresponding satellite partition for all functionality directly related to an indi-
vidual NV block

8.5.1 Mandatory Interfaces

The following table defines all interfaces which are required to fulfill the core function-
ality of the module.

[SWS_NvM_00465] Definition of mandatory interfaces required by module NvM
Upstream requirements: SRS_BSW_00383, SRS_BSW_00384

[

API Function Header File Description

Memlf_Cancel Memlf.h Invokes the "Cancel" function of the underlying
memory abstraction module selected by the
parameter Devicelndex.

Memlf_EraselmmediateBlock Memlf.h Invokes the "EraselmmediateBlock" function of the
underlying memory abstraction module selected by
the parameter Devicelndex.

Memlf_GetJobResult Memlf.h Invokes the "GetJobResult" function of the
underlying memory abstraction module selected by
the parameter Devicelndex.

Memlf_GetStatus Memif.h Invokes the "GetStatus" function of the underlying
memory abstraction module selected by the
parameter Devicelndex.

Memlf_InvalidateBlock Memlf.h Invokes the "InvalidateBlock" function of the
underlying memory abstraction module selected by
the parameter Devicelndex.

Memlf_Read Memlf.h Invokes the "Read" function of the underlying
memory abstraction module selected by the
parameter Devicelndex.

Memlf_Write Memlf.h Invokes the "Write" function of the underlying
memory abstraction module selected by the
parameter Devicelndex.

AUTSSAR

8.5.2 Optional Interfaces

The following table defines all interfaces which are required to fulfill an optional func-
tionality of the module.

[SWS_NvM_00466] Definition of optional interfaces requested by module NvM
Upstream requirements: SRS_BSW_00383, SRS_BSW_00384

API Function Header File Description

Crc_CalculateCRC16 Crc.h This service makes a CRC16 calculation on Crc_
Length data bytes.

Crc_CalculateCRC32 Crc.h This service makes a CRC32 calculation on Crc_
Length data bytes.

Crc_CalculateCRC8 Crc.h This service makes a CRC8 calculation on Crc_
Length data bytes, with SAE J1850 parameters

Csm_Decrypt Csm.h Decrypts the given encrypted data and store the
decrypted plaintext in the memory location pointed
by the result pointer.

Csm_Encrypt Csm.h Encrypts the given data and store the ciphertext in
the memory location pointed by the result pointer.

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError Det.h Service to report development errors.

8.5.3 Configurable interfaces

In this chapter, all interfaces are listed for which the target function can be configured.
The target function is usually a callback function. The names of these interfaces are
not fixed because they are configurable.

[SWS_NvM_00113] [The notification of a caller via an asynchronous callback routine
(NvMSingleBlockCallback) shall be optionally configurable for all NV blocks. |

Note: For more information on NvMSingleBlockCallback, see chapter 10.2.3.

[SWS_NvM_00740] [If a callback is configured for a NVRAM block, every asyn-
chronous block request to the block itself shall be terminated with an invocation of
the callback routine. |

[SWS_NvM_00742] [If no callback is configured for a NVRAM block, there shall be no
asynchronous notification of the caller in case of an asynchronous block request. |

AUTSSAR

[SWS_NvM_00260] [A common callback entry (NvMMultiBlockCallback) which is not
bound to any NVRAM block shall be optionally configurable for all asynchronous multi

block requests (including NvM_CancelWriteAll). |

8.5.3.1 Single block job end notification

[SWS_NvM_00467] Definition of configurable interface NvM_SingleBlockCall-

backFunction
Upstream requirements: SRS_BSW_00457, SRS _BSW_ 00360, SRS BSW_ 00333
Service Name NvM_SingleBlockCallbackFunction
Syntax Std_ReturnType NvM_SingleBlockCallbackFunction (
NvM_BlockRequestType BlockRequest,
NvM_RequestResultType JobResult
)
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) BlockRequest The request type (read, write, ... etc.) of the previous processed
block job
JobResult The request result of the previous processed block job.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: callback function has been processed successfully
any other: callback function has been processed unsuccessfully

Description

Per block callback routine to notify the upper layer that an asynchronous single block request
has been finished.

Available via

If NvMBlockHeaderInclude is configured NvM will include this to get the prototype, otherwise Nv
M provides NvM_Externals.h

]

Note: The following requirements are related to the above mentioned callback SWS_
NVM_00176, SWS_NVM_00281, SWS_NvM_00113 and ECUC_NvM_00506.

Note: Please refer to NvMSingleBlockCallback in chapter 10. The Single block job end
notification might be called in interrupt context only if there is no callback configured in
NvM that belongs to a SW-C.

AUTSSAR

8.5.3.2 Multi block job end notification

[SWS_NvM_00468] Definition of configurable interface NvM_MultiBlockCallback
Function

Upstream requirements: SRS_BSW_00457, SRS _BSW_ 00360, SRS BSW_ 00333

[

Service Name NvM_MultiBlockCallbackFunction
Syntax Std_ReturnType NvM_MultiBlockCallbackFunction (
NvM_MultiBlockRequestType MultiBlockRequest,
NvM_RequestResultType JobResult
)
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) MultiBlockRequest The request type (read, write, ... etc.) of the previous processed
multi block job
JobResult The request result of the previous processed multi block job.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: callback function has been processed successfully
any other: callback function has been processed unsuccessfully
Description Common callback routine to notify the upper layer that an asynchronous multi block request has
been finished.
Available via NvM_Externals.h

]

Note: The following requirements are related to the above mentioned callback SWS_
NVM_00179, SWS_NVM_00260 and ECUC_NvM_00500.

Note: Please refer to NvMMultiBlockCallback in chapter 10. The Multi block job end
notification might be called in interrupt context, depending on the calling function.

8.5.3.3 Callback function for block initialization

[SWS_NvM_00469] Definition of configurable interface NvM_InitBlockCallback
Function

Upstream requirements: SRS_BSW_00457, SRS_BSW_00360, SRS _BSW_00333

[

Service Name NvM_InitBlockCallbackFunction

Synuu' Std_ReturnType NvM_InitBlockCallbackFunction (
NvM_TInitBlockRequestType InitBlockRequest
)

Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) InitBlockRequest The request type (read, restore, ... etc.) of the currently

processed block

\Y

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: callback function has been processed successfully
any other: callback function has been processed unsuccessfully
Description Per block callback routine which shall be called by the NvM module when default data needs to
be restored in RAM, and a ROM block is not configured.
Available via If NvMBlockHeaderInclude is configured NvM will include this to get the prototype, otherwise Nv
M provides NvM_Externals.h

]

Note: The following requirements are related to the above mentioned callback: SWS_
NVM_00085, SWS_NVM_00266, SWS_NvM_00817 and ECUC_NvM_00116.

[SWS_NvM_00369] [If the Init block callback returns a value different than E_OK
then the request result shall be set to NVM_REQ_NOT_OK.

Note: The Init block callback is called either if a read request for a block failed in
retrieving the data from the non-volatile memory or if explicit default data recovery is
requested. Either way, if the Init block callback does not indicate E_OK,

the read/restore default operation has failed completely and the request result needs
to reflect this. |

Note: Please refer to NvMInitBlockCallback in chapter 10. The init block callback func-
tion might be called in interrupt context only if there is no callback configured in NvM
that belongs to a SW-C.

[SWS_NvM_00967] [If the block is configured with CalcRamBlockCrc and if the return
value for NvMInitBlockCallback is E_OK then NvM shall synchronize the data with the
NvM mirror before calculating the CRC over it. (SRS_Mem_08538, SRS_LIBS_08533,
SRS_Mem_00016, SRS_Mem_00018) |

8.5.3.4 Callback function for RAM to NvM copy

[SWS_NvM_00539] Definition of configurable interface NvM_WriteRamBlockTo
Nvm

Upstream requirements: SRS _BSW_00457

[

Service Name NvM_WriteRamBlockToNvm

Syntax Std_ReturnType NvM_WriteRamBlockToNvm (
voidx NvMBuffer
)

Y%

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) NvMBuffer the address of the buffer where the data shall be written to

Return value

Std_ReturnType E_OK: callback function has been processed successfully

any other: callback function has been processed unsuccessfully

Description

Block specific callback routine which shall be called in order to let the application copy data
from RAM block to NvM module’s mirror.

Available via

If NvMBlockHeaderInclude is configured NvM will include this to get the prototype, otherwise Nv
M provides NvM_Externals.h

]

[SWS_NvM_00541] [The RAM to NvM copy callback shall be a function pointer. |

Note: Please refer to NvMWriteRamBlockToNvCallback in chapter 10.

8.5.3.5 Callback function for NvM to RAM copy

[SWS_NvM_00540] Definition of configurable interface NvM_ReadRamBlock

FromNvm

Upstream requirements: SRS _Mem_08533, SRS_BSW_00457

Service Name

NvM_ReadRamBlockFromNvm

Syntax Std_ReturnType NvM_ReadRamBlockFromNvm (
const voidx NvMBuffer

)
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) NvMBuffer the address of the buffer where the data can be read from
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: callback function has been processed successfully

any other: callback function has been processed unsuccessfully

Description

Block specific callback routine which shall be called in order to let the application copy data
from NvM module’s mirror to RAM block.

Available via

If NvMBlockHeaderInclude is configured NvM will include this to get the prototype, otherwise Nv
M provides NvM_Externals.h

]

[SWS_NvM_00542] [The NvM to RAM copy callback shall be a function pointer. |

Note: Please refer to NvMReadRamBlockFromNvCallback in chapter 10.

AUTSSAR

8.6 API Overview

Request Types

Characteristics of Request Types

Type 1:

- NvM_SetDatalndex (...)

- NvM_GetDatalndex (...)

- NvM_SetBlockProtection (...)
- NvM_GetErrorStatusy...)

- NvM_SetRamBlockStatusy...)

- synchronous request
- affects one RAM block
- available for all SW-Cs

Type 2:

- NvM_ReadBlock(...)

- NvM_WriteBlock(...)

- NvM_RestoreBlockDefaultsy...)

- NvM_EraseNvBlock(...)

- NvM_InvalidateNvBlock(...)

- NvM_CancelJobsy(...)

- NvM_ReadPRAMBIock(...)

- NvM_WritePRAMBIock(...)

- NvM_RestorePRAMBIlockDefaultsy...)

- asynchronous request (result via callback or polling)
- affects one NVRAM block

- handled by NVRAM manager task via request list

- available for all SW-Cs

Type 3:
- NvM_ReadAll(...)
- NvM_WriteAll(...)

- NvM_CancelWriteAll(...)
- NvM_ValidateAll(...)

- asynchronous request (result via callback or polling)
- affects all NVRAM blocks with permanent RAM data

Type 4:
- NvM_Init(...)

- synchronous request

- basic initialization

- success signaled to the task via command interface
inside the function itself

8.7 Service Interfaces

This chapter is an addition to the specification of the NvM module. Whereas the other
parts of the specification define the behavior and the C-interfaces of the corresponding
basic software module, this chapter formally specifies the corresponding AUTOSAR
service in terms of the SWC template. The interfaces described here will be visible on
the VFB and are used to generate the RTE between application software and the NvM

module. [ref. to doc. [11], [12]]

8.7.1 Client-Server-Interfaces

8.7.1.1 NvM_Admin

[SWS_NvM_00737] Definition of ClientServerinterface NvMAdmin |

Name NvMAdmin

Comment -

IsService true

Variation -

Possible Errors 0 E OK H Operation successful

\Y

AUTSSAR

A
1 E_NOT_OK H Operation failed
Operation SetBlockProtection
Comment Service for setting/resetting the write protection for a NV block.
Relates to NvM_SetBlockProtection
Variation FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass3;
Parameters ProtectionEnabled
Type boolean
Direction IN
Comment -
Variation -
Possible Errors E_OK
E_NOT_OK

8.7.1.2 NvM_Mirror

[SWS_NvM_00738] Definition of ClientServerinterface NvMMirror |

Name NvMMirror
Comment -
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation ReadRamBlockFromNvM
Comment Block specific callback routine which shall be called in order to let the application copy data
from NvM module’s mirror to RAM block.
Relates to NvM_ReadRamBlockFromNvm
Variation -
Parameters SrcPtr
Type ConstVoidPtr
Direction IN
Comment The parameter "SrcPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an address
(pointer) to the RAM Block.
Variation -
Possible Errors E OK
E_NOT_OK

AUTSSAR

Operation WriteRamBlockToNvM
Comment Block specific callback routine which shall be called in order to let the application copy data
from RAM block to NvM module’s mirror.
Relates to NvM_WriteRamBlockToNvm
Variation -
Parameters DstPtr
Type VoidPtr
Direction IN
Comment The parameter "DstPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an address
(pointer) to the RAM Block.
Variation -
Possible Errors E_OK
E_NOT_OK

8.7.1.3 NvM_NotifylnitBlock

[SWS_NvM_00736] Definition of ClientServerinterface NvMNotifylnitBlock [

Name NvMNotifyInitBlock
Comment Callback that is called by the NvM module when default data needs to be restored to the RAM
image
IsService true
Variation -
Possible Errors 0 E_OK RAM block content was updated
1 RTE_E_RAM_ RAM block content was not changed
UNCHANGED
Operation InitBlock
Comment This callback is called if the initialization of a block has completed.
Relates to -
Variation -
Parameters InitBlockRequest
Type NvM_InitBlockRequestType
Direction IN
Comment -
Variation -

Possible Errors

8.7.1.4 NvM_NotifyJobFinished

[SWS_NvM_00735] Definition of ClientServerinterface NvMNotifyJobFinished |

AUTSSAR

Name NvMNotifyJobFinished
Comment Callback that is called when a job has finished
IsService true
Variation -
Possible Errors 0 E_OK H Operation successful
Operation JobFinished
Comment Callback that gets called if a job has finished
Relates to -
Variation -
Parameters BlockRequest
Type NvM_BlockRequestType
Direction IN
Comment -
Variation —
JobResult
Type NvM_RequestResultType
Direction IN
Comment -
Variation -
Possible Errors E_OK

8.7.1.5 NvVM Service

[SWS_NvM_00734] Definition of ClientServerinterface NvMService |

Name NvMService
Comment -
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation EraseBlock
Comment Service to erase a NV block.
Relates to NvM_EraseNvBlock
Variation FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass3;
Possible Errors E_OK
E_NOT_OK

AUTSSAR

Operation GetDatalndex
Comment Service for getting the currently set Datalndex of a dataset NVRAM block
Relates to NvM_GetDatalndex
Variation FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
WHERE
isConfigClass2;
Parameters Datalndex
Type uint8
Direction ouT
Comment -
Variation —
Possible Errors E OK
E_NOT_OK
Operation GetErrorStatus
Comment Service to read the block dependent error/status information.
Relates to NvM_GetErrorStatus
Variation -
Parameters ReqUeStReSUIt
Type NvM_RequestResultType
Direction ouT
Comment -
Variation —
Possible Errors E OK
E_NOT_OK
Operation InvalidateNvBlock
Comment Service to invalidate a NV block.
Relates to NvM_InvalidateNvBlock
Variation FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass3;
Possible Errors E_OK
E_NOT_OK
Operation ReadBlock
Comment Service to copy the data of the NV block to its corresponding RAM block.
Relates to NvM_ReadBlock

V

AUTSSAR

Variation FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass™");
LET
isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
Parameters DstPtr
Type VoidPtr
Direction IN
Comment The parameter "DstPtr" shall be typed by an ImplementationDataType of

category DATA_REFERENCE with the pointer target void to pass an address
(pointer) to the RAM Block.

Variation -
Possible Errors E OK
E_NOT_OK
Operation ReadPRAMBIock
Comment Service to copy the data of the NV block to its corresponding RAM block.
Relates to NvM_ReadPRAMBIock
Variation

FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET

isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
Possible Errors E_OK
E_NOT_OK
Operation RestoreBlockDefaults
Comment Service to restore the default data to its corresponding RAM block.
Relates to NvM_RestoreBlockDefaults
Variation FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
Parameters DstPtr
Type VoidPtr
Direction IN
Comment The parameter "DstPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an address
(pointer) to the RAM Block.
Variation —

Y%

AUTSSAR

A
Possible Errors E_OK
E_NOT_OK
Operation RestorePRAMBIockDefaults
Comment Service to restore the default data to its corresponding RAM block.
Relates to NvM_RestorePRAMBIlockDefaults
Variation

FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;

Possible Errors

E_OK
E_NOT_OK

Operation

SetDatalndex

Comment

Service for setting the Datalndex of a dataset NVRAM block.

Relates to

NvM_SetDatalndex

Variation

FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
blockMgmTypes
= ECV.subEltList ("NvM/NvMBlockDescriptor/NvMBlockManagementType") ;
isMgd (mgmtType)
= mgmtType.value() == "NVM_BLOCK_DATASET";
datasetMgdCount
= blockMgmTypes.filter(isMgd) .count () ;
WHERE
(isConfigClass2 OR isConfigClass3) AND (datasetMgdCount GT 0);

Parameters

Datalndex

Type uint8

Direction IN

Comment -

Variation -

Possible Errors

E_OK
E_NOT_OK

Operation

SetRamBlockStatus

Comment

Service for setting the RAM block status of an NVRAM block.

Relates to

NvM_SetRamBlockStatus

Y

AUTSSAR

A

Variation

LET
nvmBlockUseSetRamBlockStatus
= ECV.subEltList ("NvM/NvMBlockDescriptor/
NvMBlockUseSetRamBlockStatus");
useSetRamBlockStatus (useApi)
= uselApi.value() == true;
useSetRamBlockStatusCount
= nvmBlockUseSetRamBlockStatus.filter(useSetRamBlockStatus) .count (
)i
WHERE
(useSetRamBlockStatusCount GT 0);

Parameters

BlockChanged

Type boolean

Direction IN

Comment -

Variation —

Possible Errors

E OK
E_NOT_OK

Operation

WriteBlock

Comment

Service to copy the data of the RAM block to its corresponding NV block.

Relates to

NvM_ WriteBlock

Variation

FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;

Parameters

SrcPtr

Type ConstVoidPtr

Direction IN

Comment The parameter "SrcPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an address
(pointer) to the RAM Block.

Variation -
Possible Errors E_OK
E_NOT_OK
Operation WritePRAMBIock
Comment Service to copy the data of the RAM block to its corresponding NV block.
Relates to NvM_WritePRAMBIock
Variation

FOR
configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass™");
LET

isConfigClass2
= configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3
= configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
Possible Errors E_OK

E_NOT_OK

AUTSSAR

8.7.2 Implementation Data Types

Note: The header Rte_NvM_Type.h is only available in case there is a SwComponent
Type with ShortName or component type symbol 'NvM’ (see [SWS_Rte _07122]). This
SwComponent has to use the needed types (see [SWS_Rte_08802]). This means that
especially in systems where only NvBlockSwComponents are present, there needs to
be an additional, minimalistic SwComponentType named NvM referencing the required

data types by an IncludedDataTypeSet.

8.7.2.1 ImplementationDataType NvM_RequestResultType

[SWS_NvM_00470] Definition of ImplementationDataType NvM_RequestResult

Type |

Name

NvM_RequestResultType

Kind

Type

Derived from

uint8

Range

NVM_REQ_OK

0x00

The last asynchronous request
has been finished successfully.
This shall be the default value
after reset. This status shall have
the value 0.

NVM_REQ_NOT_OK

0x01

The last asynchronous read/write/
control request has been finished
unsuccessfully.

NVM_REQ_PENDING

0x02

An asynchronous read/write/
control request is currently
pending.

NVM_REQ_INTEGRITY
FAILED

0x03

The result of the last
asynchronous request
NvM_ReadBlock or NvM_ReadAll
is a data integrity failure.

Note: In case of

NvM_ReadBlock

the content of the RAM block has
changed but has become invalid.
The application is responsible to
renew and validate the RAM block
content.

NVM_REQ_BLOCK_
SKIPPED

0x04

The referenced block was skipped
during execution of NvM_ReadAll
or NvM_WriteAll, e.g. Dataset
NVRAM blocks (NvM_ReadAll) or
NVRAM blocks without a
permanently configured RAM
block.

NVM_REQ_NV_
INVALIDATED

0x05

The referenced NV block is
invalidated.

AUTSSAR

NVM_REQ_CANCELED 0x06 The multi block request NvM_
WriteAll was canceled by calling
NvM_CancelWriteAll. Or Any
single block job request (NVM_
ReadBlock, NvM_WriteBlock, Nv
M_EraseNvBlock, NvM_Invalidate
NvBlock and NvM_RestoreBlock
Defaults) was canceled by calling
NvM_CancelJobs.

NVM_REQ_RESTORED_ 0x08 The referenced NV block had the
DEFAULTS default values copied to the RAM
image.

Description This is an asynchronous request result returned by the API service NvM_GetErrorStatus. The
availability of an asynchronous request result can be additionally signaled via a callback function.

Variation -
Available via Rte_NvM_Type.h

8.7.2.2 ImplementationDataType NvM_BlockldType

[SWS_NvM_00471] Definition of ImplementationDataType NvM_BlockldType |

Name NvM_BlockldType

Kind Type

Derived from uint16

Range 0..2°(16- NvMDataset - -

SelectionBits)-1

Description Identification of a NVRAM block via a unique block identifier.
Reserved NVRAM block IDs: 0 -> to derive multi block request results via NvM_GetErrorStatus 1
-> redundant NVRAM block which holds the configuration ID

Variation -
Available via Rte_NvM_Type.h

8.7.2.3 ImplementationDataType NvM_InitBlockRequestType

[SWS_NvM_91123] Definition of ImplementationDataType NvM_InitBlockRequest
Type [

Name NvM_InitBlockRequestType

Kind Type

Derived from uint8

Range NVM_INIT_READ_BLOCK 0x00 NvM_ReadBlock/ NvM_Read
PRAMBIlock is requested on the
block

AUTSSAR

A
NVM_INIT_RESTORE_ 0x01 NvM_RestoreBlockDefaults/ Nv
BLOCK_DEFAULTS M_RestorePRAMBIlockDefaults is
requested on the block

NVM_INIT_READ_ALL_ 0x02 NvM_ReadAll is processing this
BLOCK block

NVM_INIT_FIRST_INIT_ 0x03 NvM_FirstInitAll is processing this
ALL block

Description

Identifies the type of request performed on a block when signaled via the callback function

Variation

Available via

Rte_NvM_Type.h

8.7.2.4 ImplementationDataType NvM_BlockRequestType

[SWS_NvM_91002] Definition of ImplementationDataType NvM_BlockRequest

Type [
Name NvM_BlockRequestType
Kind Type
Derived from uint8
Range NVM_READ_BLOCK 0x00 NvM_ReadBlock/ NvM_Read
PRAMBIock was performed on
the block
NVM_WRITE_BLOCK 0x01 NvM_WriteBlock/ NvM_Write
PRAMBIock was performed on
the block
NVM_RESTORE_BLOCK_ 0x02 NvM_RestoreBlockDefaults/ Nv
DEFAULTS M_RestorePRAMBIockDefaults
was performed on the block
NVM_ERASE_NV_BLOCK 0x03 NvM_EraseNvBlock was
performed on the block
NVM_INVALIDATE_NV_ 0x04 NvM_ InvalidateNvBlock was
BLOCK performed on the block
NVM_READ_ALL_BLOCK 0x05 NvM_ReadAll has finished
processing this block
Description Identifies the type of request performed on a block when signaled via the callback function
Variation -
Available via Rte_NvM_Type.h

]

Note: Calling the single block callback with NVM_READ_ALL_BLOCK can be used to
trigger an RTE Event that initializes a SW-C (see note below SWS NvM_00281) as
opposed to calling the single block callback with NVM_READ_BLOCK which is used to
notify an already initialized SW-C of the result of a pending read block job. Therefore
separate literals/values are specified.

AUTSSAR

8.7.3 Ports
8.7.3.1 NvM_PAdmin_{Block}

[SWS_NvM_00843] Definition of Port PAdmin_{Block} provided by module NvM |

Name PAdmin_{Block}
Kind ProvidedPort | Interface | NvMAdmin
Description -
Port Defined Type NvM_BlockldType
Argument Value(s) Value {Blockld}
Variation FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block
= nvBlockDescriptor.shortname();
BlockId
= nvBlockDescriptor.subEIlt ("NvMNvramBlockIdentifier") .value();
UsePort
= nvBlockDescriptor.subEIlt ("NvMBlockUsePort") .value() == true;
WHERE
UsePort;

8.7.3.2 NvM_PM_{Block}

[SWS_NvM_00844] Definition of Port PM_{Block} required by module NvM |

Name PM_{Block}
Kind RequiredPort | Interface | NvMMirror

Description -

Variation FOR

nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block
= nvBlockDescriptor.shortname();
UsePort
= nvBlockDescriptor.subEIlt ("NvMBlockUsePort") .value() == true;
UsePortSyncMech
= nvBlockDescriptor.subEIlt ("NvMBlockUseSyncMechanism") .value() ==
true;
WHERE
UsePort AND UsePortSyncMech;

AUTSSAR

8.7.3.3 NvM_PNIB_{Block}

[SWS_NvM_00845] Definition of Port PNIB_{Block} required by module NvM |

Name PNIB_{Block}

Kind RequiredPort \ Interface \ NvMNotifyInitBlock

Description -

Variation FOR

nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block
= nvBlockDescriptor.shortname() ;
UsePort
= nvBlockDescriptor.subElt ("NvMBlockUsePort") .value() == true;
InitBlockCallbackDef
= nvBlockDescriptor.subElt ("NvMInitBlockCallback") .isDefined();
InitBlockCallbackFncDef
= nvBlockDescriptor.subEIlt ("NvMInitBlockCallback/
NvMInitBlockCallbackFnc") .isDefined();
WHERE
UsePort AND InitBlockCallbackDef AND NOT InitBlockCallbackFncDef;

8.7.3.4 NvVM_PNJF_{Block}

[SWS_NvM_00846] Definition of Port PNJF_{Block} required by module NvM |

Name PNJF_{Block}
Kind RequiredPort | Interface | NvMNotifyJobFinished
Description -
Variation FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block
= nvBlockDescriptor.shortname() ;
UsePort
= nvBlockDescriptor.subEIlt ("NvMBlockUsePort") .value() == true;

SingleBlockCallbackDef
= nvBlockDescriptor.subEIlt ("NvMSingleBlockCallback") .isDefined();
SingleBlockCallbackFncDef
= nvBlockDescriptor.subEIlt ("NvMSingleBlockCallback/
NvMSingleBlockCallbackFnc") .isDefined();
WHERE
UsePort AND SingleBlockCallbackDef AND NOT SingleBlockCallbackFncDef;

AUTSSAR

8.7.3.5 NvM_PS_{Block}

[SWS_NvM_00847] Definition of Port PS_{Block} provided by module NvM |

Name PS_{Block}
Kind ProvidedPort | Interface | NvMService
Description -
Port Defined Type NvM_BlockldType
Argument Value(s) Value {Blockld}
Variation FOR
nvBlockDescriptor : ECV.subEltList ("NvM/NvMBlockDescriptor");
LET
Block
= nvBlockDescriptor.shortname();
BlockId
= nvBlockDescriptor.subElt ("NvMNvramBlockIdentifier") .value();
UsePort
= nvBlockDescriptor.subEIlt ("NvMBlockUsePort") .value() == true;
WHERE
UsePort;

AUTSSAR

9 Sequence diagrams

9.1 Synchronous calls

9.1.1 NvM_Init

N
maodule module Camment
" * " * Inftilzation of NURAL
Bz Mt manager is performead
e 4 synchronousky
I __oablee-mT
Mvhd_Init{zonst Nﬁ.rl'-.ﬂ_l:n:-nfigTﬁ,rpe"j' |
I |
I |
Figure 9.1: UML sequence diagram NvM_lInit
9.1.2 NvM_SetDatalndex
NvM User «module»
NvM
O

NvM SetDatalndex(Std ReturnType,

NvM_BlockldType, uint8)

NvM_SetDatalndex

Figure 9.2: UML sequence diagram NvM_SetDatalndex

AUTSSAR

9.1.3 NvM_GetDatalndex

NvM User

NvM_GetDatalndex(Std_RetunType,
NvM_BlockldType, uint8**)

«module»
NvM

O

NvM__GetDatalndex

Figure 9.3: UML sequence diagram NvM_GetDatalndex

9.1.4 NvM_SetBlockProtection

NvM User

NvM_SetBlockProtection(Std_ReturnType,
NvM_BlockldType, boolean)

«module»
NvM

O

NvM_SetBlockProtection

Figure 9.4: UML sequence diagram NvM_SetBlockProtection

AUTSSAR

9.1.5 NvM_GetErrorStatus

NvM User «module»

NvM
O

I NvM_GetErmorStatus(Std_RetumnType, |
NvM_BlockdType, !
NvM_RequestResultType**)

NvM_GetErrorStatus()

Figure 9.5: UML sequence diagram NvM_GetErrorStatus

9.1.6 NvM_GetVersioninfo

NvM User «module»

NvM
O

| NvM_GetVersionInfo |
(Std_VersionInfoType**)

NvM_GetVersionlInfo

Figure 9.6: UML sequence diagram NvM_GetVersioninfo

9.2 Asynchronous calls

The following sequence diagrams concentrate on the interaction between the NvM
module and SW-C’s or the BSW Mode Manager. For interaction regarding the Memory
Interface please ref. to [4] or [5].

9.2.1 Asynchronous call with polling

The following diagram shows the function NvM_WriteBlock as an example of a request
that is performed asynchronously. The sequence for all other asynchronous functions
is the same, only the processed number of blocks and the block types may vary. The

AUTSSAR

result of the asynchronous function is obtained by polling requests to the error/status
information.

NvM User «module»
NvM
(e o)

BSW Task (OS task T T
or cyclic call) | |
| I NvM_WriteBlock(Std_ReturnType, |

Comment:

| e e ey
| NvM_BlockidType, const void*) - - ------ . B -
: ____________ NvM_WiteBlock Set job result to NVM_REQ_PENDING
| 0
| | |
loop Job processing i i B
| |
[repeat until writing of blockis completed] | Comment:
| | | Job processing (writing NVRAM) is done
I NvM_MainFunction() I asynchronously.

|

T

| Data unit by data unit is written to NVRAM

| NvM_MainFunction (e.g. 1 byte every 10 ms, both depending
““““ L on NVRAM hardware).

During writing of data job result is still

|
: NvM_GetErrorStatus(Std_RetumType,
| NVM_REQ_PENDING

NvM_BlockidType, NvM_RequestResultType**)

-

NvM_GetErrorStatus
e m——————— - e ittty

NvM_GetErrorStatus(Std_RetumnType,
NvM_BlockidType, NvM_RequestResultType**)

L
|
|
|
|
|
NvM_GetErrorStatus
K—————————— == i ikl e
- () B -~
| S

| comment:
Writing of Block completed successfully.
Job result will be NVM_REQ_OK

Figure 9.7: UML sequence diagram for asynchronous call with polling

9.2.2 Asynchronous call with callback

The following diagram shows the function NvM_WriteBlock as an example of a request
that is performed asynchronously. The sequence for all other asynchronous functions
is the same, only the processed number of blocks and the block types may vary. The
result of the asynchronous function is obtained after an asynchronous notification (call-
back) by requesting the error/status information.

AUTSSAR

NvM User «module»
NvM
O

BSW Task (OS task T T

or cyclic call) | |
| I NvM_WriteBlock(Std_ReturnType, | CORIETE
: NvM_BlockidType, const void*) R EREra I S Check and store request.
I X Callback address is stored in the NVRAM block
I ==y NvM_WrteBlock __ __ _ __ _ __ descriptor.
| 0 Set job result to NVM_REQ_PENDING.
1 ! 1
1 | |
: I [
loop Job processing) | | B
[repeélt until writing of block 15 completed] : Comment:
| | | Job processing (writing NVRAM) is done
| | NvM_MainFunction() o | asynchronously.
[
| Data unit by data unit is written to NVRAM (e.g. 1
| NvM_MainFunction [~ ~{ byte every 10 ms, both depending on NVRAM
<K—————=== | o -~ TTTTTTTTTT Tt T T T T hardware).
|
! ! During writing of data job result is still
: : NVM_REQ_PENDING
| |
| NvM_MainFunction() |
|
|
NvM_SingleBlockCallbackFunction(Std_RetumType,
NvM_BlockRequestType, NvM_RequestResultType) AR
_______ <SingleBlocklobEndNotification> _ _ _ " st N
0 Comment:
Writing of Block completed.
<-—-—-—-—-—-=-- :— ————— :\;XM -Mainfunction_ __ __ __ _ _______ | Call Job End Notification
an | T
| ! |
| | NvM_GetErrorStatus(Std_ReturnType, | B
| bl |
i ! NvM_BlockldType, NvM_RequestResultType**) ! Comment:
| Writing of Block completed successfully.
| |-l ------1Job result wil be N\VM_REQ_OK
I [= NvM_GetErrorStatus - - - - - -~~~ -7" "7~
I 0
| I

Figure 9.8: UML sequence diagram for asynchronous call with callback

9.2.3 Cancellation of a Multi Block Request

The following diagram shows the effect of a cancel operation applied to a running NvM_
WriteAll multi block request. The running NvM_ WriteAll function completes the actual
NVRAM block and stops further writes.

AUTSSAR

«module» «module»
EcuM NvM
(e o] SO

BSW Task (OS task T T

or cyclic call) I
| NvM_WriteAll() |

|
|
|
! o __NeMwiteAN) |
| L
! INvM_MainFunction() :
|
| . . _ AN
INVM_MainFunction Comment:
_________________]() ___________________________ A currently pending NVRAM
) T block will be processed until its
| | NvM_Cancel WriteAll()] end non-destructively.
| o Processing a next NVRAM
| . block resulting from
N NvM_CancelWriteAll _ _ _ _ _ _ _ A NvM_WriteAll will not be started.
| 0 e
| PP T
| INVM_MainFunction()- -~~~ |
I
|
| _EcuM_CB_NfyNvMJobEnd(uint8,
NvM_RequestResultType) AR ‘
_______ EcuM_CB_NfyNvMJobEnd_ _ _ _ _ _ 'S 1-~~-] comment
0 Call Job End Notification if
e L(l\)lv_M=M_ai_nF_un_ctloE ___________________ CORHOREC
|

Figure 9.9: UML sequence diagram for cancellation of asynchronous call

9.2.4 BswM Interraction

The following diagrams show the interractions between NvM and BswM in terms of
single block operation and multiblock operation.

AUTSSAR

BSW Task (OS task
or cyclic call)
|

Single block request()

NvM User

«module» «module»
BswM NvM
(el e)

T T

| |

| |

| [

|

|

|

BswM_NvM_CurrentBlockMode(Block,
NVM_REQ_PENDING)

__________________ >
55 [
|
| |
| |
| |
loop While block s still being processed/ : :
| | |
! NvM_MainFunction() !
|
|
e —m - —— e
| L
| |
] |
| |
| |
NvM_MainFunction() |
[l
: Multi block operation
| BswM_NvM_CurrentBlockMode(Block, finishes in this call
[JobResult)
H? —————————————————— >
|
| SingleBlockCallback(JobResult)
I Ll
|
| s
|
|
<-——————————=—==—=—-- Tt —
| L

Figure 9.10: NvM interraction with BswM in case of a single block operation

AUTSSAR

«modulex amodules MNuhd User
Banhd Kb
oo
BEW Task (OF tas I I I
or cyclic call) : : :
|
| | [hulti Black Request) |
: : Bawubd_Nwhd_Currentlobhbode i
| i (MultiBlockRequest, MWVW_REQ_PEMNDING)
| -t
|
Tl e =
X el [A S
| |
| | | |
| | | |
loop For each blodk to be proceszed / : : :
| | | |
! Hutd_tdainFunctiont) ! :
T Ll
| |
: Bznmbd_Hvhd_CurrentBlockiode(Blod, :
| NYM_REQ_PENDING) |
- |
|
————————————————— = |
|
| |
e — e — — r] |
| |
| T |
| | |
loop While blod is still being processed / : : :
| | |
. . I I
MHuhd_MainFunction) - | |
| = |
| |
e - - —_—_ — — —— g |
| |
| | |
i i |
| | |
| | |
I_) | |
Hvhd_MainFunction() — | |
T = |
| i |
| Black processing |
| Bawhd_MNvh_CurrentBlockhloderBlod, finishas in this call |
| JabResulf) |
- |
|
_________________ |
e SingleBlockCallback |
(BlockRequest, JobResulf) |
| |
[! o
| et - — -
I L}
|
[e<-—-—-——————-"—————- +--—-— === — |
| L Oty for Mvh_Reacall |
| | |
1 1 1
| | |
| | |
Mvhd_MainFunctiony) - | |
T = |
| .) |
I Bzt _Mwhd_Currentlobhlode r:ll-m] m?:k .?IHH‘D“ l
| . - - ' finishes in this call |
| (MultiBlodkRequest, MultiBloddobResult) |
-t
|
————————————————— = :
|
| |
- ——————= e |
L | L |
|

Figure 9.11: NvM interraction with BswM for a multiblock operation

AUTSSAR

amodules amodules NwMd U=er
B ol Mkl
Lo S
BSW T ask [0S task T T T
orcydic call : : :
I
| H L N _Wiite Al !
| BawM_NvlM_CurrentlobM ode{NVM_WRITE_ALL,
: : NVM_REQ_FENDING)
I
|
e e - =
I
| N [ottt =
I I
| 1 |
al i i
[N _[Writ=1l scoeptes but not yet startes] | !
| i bl _CancalWriteAlI])
I Bawhl_NvM_CumentlobM ode{NVM_WRITE_ALL,
: H NVM_REQ_CANCELELD)
I
|
| _________________
I
I [[L LT T T T SRR >
I 1
| I I
B R R e e e e e |
[N'.'M_I\."J'ri'ha!.II started but not finished] : :
I 1 I Ml _CancelWriteal
| i - - 0
| 1
I 1
| | [ittt o
I I
I I T T
| 1 | |
| Nubd _M ainFunction () | |
T I
1 I
Bowhd _Nwd _CurrentJobMode{NVIM_WRITE_ALL, |
] MVM_REQ CANCELED) :
I
I
————————————————— == |
I
1 I
e ——————————————— re— }
I
|
T
I

T
|
|
|

o
|
I
|

Figure 9.12: NvM interraction with BswM in case of a WriteAll cancellation

AUTSSAR

«module» «module» NvM User
BswM NvM
O
BSW Task (OS task T T T
or cyclic call) : : :
|
: : ! Single block request() |
| | BswM_NvM_CurrentBlockMode(Block,
I | NVM_REQ_PENDING)
|
|
|
N B itttk e
= e
| | =
| |
| | |
| 1 1
I alt !
| - | . |
| [Single block request just queued] | NvM_CancelJobs(Blockid)
| | =
| | BswM_NvM_CurrentBlockMode(Block,
: ! NVM_REQ_CANCELED)
|
|
N B B R
|
| T I el =
| |
| | |
| [i | e b Salindieieiiei el il et
| [Single block request processing is ongoing] |
| | |
| ! ! NvM_CancelJobs(Blockid)
| |
| |
I I ____ TetumE NOT_OK) _ _ _ .
| | >
| | T
| T

Figure 9.13: NvM interraction with BswM in case of a single block cancellation

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
NvM.

Chapter 10.3 specifies published information of the module NvM.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”. [ref. to
doc. [2]]

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

AUT OSARParameterDefinition:
EcucDefinitionCollection

+module

NvM: EcucModuleDef NvMCommon:
+container| EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

NvMBIlockDescriptor:
+container| EcucParamConfContainerDef

upperMultiplicity = 65536
lowerMultiplicity = 1

NvMBlockCiphering:
+container(EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 65535

Figure 10.1: Containers and configuration parameters

AUTSSAR

10.2.1 NvM

[ECUC_NvM_00539] Definition of EcucModuleDef NvM |

Module Name

NvM

Description

Configuration of the NvM (NvRam Manager) module.

Post-Build Variant Support

false

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

NvMBlockCiphering 0..65535 Container for a chiphering of the Block.
Tags: atp.Status=draft

NvMBlockDescriptor 1..65536 Container for a management structure to configure the
composition of a given NVRAM Block Management Type. Its
multiplicity describes the number of configured NVRAM blocks,
one block is required to be configured. The NVRAM block
descriptors are condensed in the NVRAM block descriptor table.

NvMCommon 1 Container for common configuration options.

NvmDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements

which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter’s DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

10.2.2 NvMCommon

[ECUC_NvM_00028] Definition of EcucParamConfContainerDef NvMCommon |

Container Name

NvMCommon

Parent Container

NvM

Description

Container for common configuration options.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

NvMApiConfigClass 1 [ECUC_NvM_00491]
NvMBswMMultiBlockJobStatusInformation 1 [ECUC_NvM_00550]
NvMCompiledConfigld 1 [ECUC_NvM_00492]
NvMCrcNumOfBytes 1 [ECUC_NvM_00493]
NvMCsmRetryCounter 0..1 [ECUC_NvM_00572]
NvMDatasetSelectionBits 1 [ECUC_NvM_00494]
NvMDevErrorDetect 1 [ECUC_NvM_00495]
NvMDynamicConfiguration 1 [ECUC_NvM_00497]

AUTSSAR

JAN

Included Parameters

Parameter Name Multiplicity ECUC ID
NvMJobPrioritization 1 [ECUC_NvM_00498]
NvMMainFunctionPeriod 1 [ECUC_NvM_00555]
NvMMultiBlockCallback 0..1 [ECUC_NvM_00500]
NvMPollingMode 1 [ECUC_NvM_00501]
NvMRepeatMirrorOperations 1 [ECUC_NvM_00518]
NvMSetRamBlockStatusApi 1 [ECUC_NvM_00502]
NvMSizelmmediateJobQueue 0..1 [ECUC_NvM_00503]
NvMSizeStandardJobQueue 1 [ECUC_NvM_00504]
NvMVersionInfoApi 1 [ECUC_NvM_00505]
NvMBufferAlignmentValue 1 [ECUC_NvM_00573]
NvMEcucPartitionRef 1.7 [ECUC_NvM_00565]
NvMMasterEcucPartitionRef 0..1 [ECUC_NvM_00566]

No Included Containers

]

[ECUC_NvM_00491]
Class |

Definition of EcucEnumerationParamDef NvMApiConfig

Parameter Name

NvMApiConfigClass

Parent Container

NvMCommon

Description Preprocessor switch to enable some API calls which are related to NVM API
configuration classes.

Multiplicity 1

Type EcucEnumerationParamDef

Range NVM_API_CONFIG_CLASS 1 All API calls belonging to configuration class 1

are available.

NVM_AP|_CONFIG_CLASS_2

All API calls belonging to configuration class 2
are available.

NVM_API_CONFIG_CLASS_3

All API calls belonging to configuration class 3
are available.

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_NvM_00550] Definition of EcucBooleanParamDef NvMBswMMultiBlock
JobStatusinformation |

Parameter Name NvMBswMMultiBlockJobStatusinformation

Parent Container NvMCommon
Description This parameter specifies whether BswM is informed about the current status of the
multiblock job.

True: call BswM_NvM_CurrentJobMode if ReadAll and WriteAll are started, finished,
canceled False: do not inform BswM at all

Multiplicity 1

Type EcucBooleanParamDef
Default value true

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00492] Definition of EcuclntegerParamDef NvMCompiledConfigld |

Parameter Name

NvMCompiledConfigld

Parent Container

NvMCommon

Description Configuration ID regarding the NV memory layout. This configuration ID shall be
published as e.g. a SW-C shall have the possibility to write it to NV memory.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_NvM_00493] Definition of EcuclntegerParamDef NvMCrcNumOfBytes |

Parameter Name

NvMCrcNumOfBytes

Parent Container

NvMCommon

Description If CRC is configured for at least one NVRAM block, this parameter defines the
maximum number of bytes which shall be processed within one cycle of job processing.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

AUTSSAR

| Dependency

]

[ECUC_NvM_00572] Definition of EcucintegerParambDef NvMCsmRetryCounter

Status: DRAFT

Parameter Name

NvMCsmRetryCounter

Parent Container

NvMCommon

Description This value specifies the number of CSM encryption/decryption job retry attempts.
CSM jobs for block reading and writing may fail (e.g. module busy, queue full, ...). To
not directly abort the read/write with an error status, the NvM will retry the CSM job for
the configured NvMCsmRetryCounter times.

Configuring 0 means: no retry behavior; job will be aborted directly.
Tags: atp.Status=draft

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..255

Default value 0

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_NvM_00494]
Bits |

Definition of EcuclntegerParamDef NvMDatasetSelection

Parameter Name

NvMDatasetSelectionBits

Parent Container

NvMCommon

Description Defines the number of least significant bits which shall be used to address a certain
dataset of a NVRAM block within the interface to the memory hardware abstraction.
0..8: Number of bits which are used for dataset or redundant block addressing.
0: No dataset or redundant NVRAM blocks are configured at all, no selection bits
required.
1: In case of redundant NVRAM blocks are configured, but no dataset NVRAM blocks.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.8

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

MemHwA, NVM_NVRAM_BLOCK_IDENTIFIER, NVM_BLOCK_MANAGEMENT _
TYPE

AUTSSAR

[ECUC_NvM_00495] Definition of EcucBooleanParamDef NvMDevErrorDetect |

Parameter Name

NvMDevErrorDetect

Parent Container

NvMCommon

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and natification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_NvM_00497] Definition of EcucBooleanParamDef NvMDynamicConfigu-

ration |

Parameter Name

NvMDynamicConfiguration

Parent Container

NvMCommon

Description Preprocessor switch to enable the dynamic configuration management handling by the
NvM_ReadAll request.
true: Dynamic configuration management handling enabled. false: Dynamic
configuration management handling disabled.
This parameter affects all NvM processing related to Block with ID 1 and all processing
related to Resistant to Changed Software. If the Dynamic Configuration is disabled,
Block 1 cannot be used by NvM.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_NvM_00498] Definition of EcucBooleanParamDef NvMJobPrioritization [

Parameter Name

NvMJobPrioritization

Parent Container

NvMCommon

Description Preprocessor switch to enable job prioritization handling
true: Job prioritization handling enabled. false: Job prioritization handling disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time

Dependency

]

[ECUC_NvM_00555] Definition of EcucFloatParamDef NvMMainFunctionPeriod |

Parameter Name

NvMMainFunctionPeriod

Parent Container

NvMCommon

Description The period between successive calls to the main function in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_NvM 00500] Definition of EcucFunctionNameDef NvMMultiBlockCall-

back |

Parameter Name

NvMMultiBlockCallback

Parent Container NvMCommon

Description Entry address of the common callback routine which shall be invoked on termination of
each asynchronous multi block request

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00501] Definition of EcucBooleanParamDef NvMPollingMode |

Parameter Name

NvMPollingMode

Parent Container

NvMCommon

Description Preprocessor switch to enable/disable the polling mode in the NVRAM Manager and at
the same time disable/enable the callback functions useable by lower layers
true: Polling mode enabled, callback function usage disabled. false: Polling mode
disabled, callback function usage enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00518] Definition of EcuclntegerParamDef NvMRepeatMirrorOpera-

tions |

Parameter Name

NvMRepeatMirrorOperations

Parent Container

NvMCommon

Description Defines the number of retries to let the application copy data to or from the NvM
module’s mirror before postponing the current job.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..7

Default value 0

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00502] Definition of EcucBooleanParamDef NvMSetRamBlockSta-

tusApi |

Parameter Name

NvMSetRamBlockStatusApi

Parent Container

NvMCommon

Description Preprocessor switch to enable the APl NvM_SetRamBlockStatus.
true: API NvM_SetRamBlockStatus enabled. false: APl NvM_SetRamBlockStatus
disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

AUTSSAR

Post-build time B

Dependency

]

[ECUC_NvM_00503] Definition of EcucintegerParamDef NvMSizelmmediateJob
Queue |

Parameter Name NvMSizelmmediateJobQueue

Parent Container NvMCommon

Description Defines the number of queue entries for the immediate priority job queue. If NVM_
JOB_PRIORITIZATION is switched OFF this parameter shall be out of scope.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency NVM_JOB_PRIORITIZATION

]

[ECUC_NvM_00504] Definition of EcuclntegerParamDef NvMSizeStandardJob
Queue |

Parameter Name NvMSizeStandardJobQueue

Parent Container NvMCommon

Description Defines the number of queue entries for the standard job queue.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00505] Definition of EcucBooleanParamDef NvMVersioninfoApi |

Parameter Name

NvMVersionInfoApi

Parent Container

NvMCommon

Description Pre-processor switch to enable / disable the API to read out the modules version
information].
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_NvM_00573] Definition of EcucChoiceReferenceDef NvMBufferAlignment

Value
Status: DRAFT

Parameter Name

NvMBufferAlignmentValue

Parent Container

NvMCommon

Description Parameter determines the alignment of the start address that NvM buffers need to
have.
Value shall be inherited from EaBufferAlignmentValue or FeeBufferAlignmentValue.
Tags: atp.Status=draft

Multiplicity 1

Type Choice reference to [EaGeneral, FeeGeneral]

Value Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

]

[ECUC_NvM_00565] Definition of EcucReferenceDef NvVMEcucPartitionRef |

Parameter Name

NvMEcucPartitionRef

Parent Container

NvMCommon

Description Maps the NvM to one or multiple ECUC partitions to make its C-APIs available in the
according partition.

Multiplicity 1.7

Type Reference to EcucPartition

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00566] Definition of EcucReferenceDef NvMMasterEcucPartition

Ref |

Parameter Name NvMMasterEcucPartitionRef

Parent Container NvMCommon

Description Maps the NvM master to zero or one ECUC partition to assign the master functionality
to a certain core. The ECUC partition referenced is a subset of the ECUC partitions
where the NvM is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[SWS_NvM_CONSTR_00974] [The ECUC partition referenced by NvMMasterEcuc
PartitionRef shall be within the subset of the ECUC partitions referenced by NvMEcuc
PartitionRef. |

[SWS_NvM_CONSTR_00975] [If NvMEcucPartitionRef references one or more
ECUC partitions, NvMMasterEcucPartitionRef shall have a multiplicity of one and ref-
erence one of these ECUC partitions as well. |

10.2.3 NvMBlockDescriptor

[ECUC_NvM 00061] Definition of EcucParamConfContainerDef NviMBlockDe-
scriptor |

Container Name NvMBlockDescriptor
Parent Container NvM
Description Container for a management structure to configure the composition of a given NVRAM

Block Management Type. Its multiplicity describes the number of configured NVRAM
blocks, one block is required to be configured. The NVRAM block descriptors are
condensed in the NVRAM block descriptor table.

Multiplicity 1..65536
Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

NvMBlockCrcType 0..1 [ECUC_NvVM_00476]
NvMBlockHeaderInclude 0..1 [ECUC_NvM_00554]
NvMBlockJobPriority 1 [ECUC_NvM_00477]

[ECUC_NvM_00062]
[ECUC_NvM_00557]
[ECUC_NvM_00563]
[ECUC_NvM_00036]

NvMBlockManagementType
NvMBlockUseAutoValidation
NvMBlockUseCompression
NvMBlockUseCrc

]
]
]
]
\Y

AUTSSAR

JAN
Included Parameters
Parameter Name Multiplicity ECUC ID
NvMBIlockUseCRCCompMechanism 1 [ECUC_NvM_00556]

NvMBlockUsePort

[ECUC_NvM_00559]

NvMBIlockUseSetRamBlockStatus

[ECUC_NvM_00552]

NvMBlockUseSyncMechanism

[ECUC_NvM_00519]

NvMBIlockWriteProt [ECUC_NvM_00033]
NvMBswMBlockStatusInformation [ECUC_NvM_00551]
NvMCalcRamBlockCrc

NvMMaxNumOfReadRetries

[ECUC_NvM_00533]

NvMMaxNumOfWriteRetries

[ECUC_NvM_00499]

1
1
1
1
1
0..1 [ECUC_NvM_00119]
1
1
1
1
1
1

NvMNvBIlockBaseNumber [ECUC_NvM_00478]
NvMNvBlockLength [ECUC_NvM_00479]
NvMNvBlockNum [ECUC_NvM_00480]
NvMNvramBlockldentifier [ECUC_NvM_00481]
NvMNvramDeviceld 1 [ECUC_NvM_00035]
NvMRamBlockDataAddress 0..1 [ECUC_NvM_00482]
NvMReadRamBlockFromNvCallback 0..1 [ECUC_NvM_00521]
NvMResistantToChangedSw 1 [ECUC_NvM_00483]
NvMRomBlockDataAddress 0..1 [ECUC_NvM_00484]
NvMRomBlockNum 1 [ECUC_NvM_00485]
NvMSelectBlockForFirstInitAll 0..1 [ECUC_NvM_00558]
NvMSelectBlockForReadAll 0..1 [ECUC_NvM_00117]
NvMSelectBlockForWriteAll 0..1 [ECUC_NvM_00549]
NvMStaticBlockIDCheck 1 [ECUC_NvM_00532]
NvMWriteBlockOnce 1 [ECUC_NvVM_00072]
NvMWriteRamBlockToNvCallback 0..1 [ECUC_NvM_00520]
NvMWriteVerification 1 [ECUC_NvM_00534]
NvMWriteVerificationDataSize 1 [ECUC_NvM_00538]
NvMBlockCipheringRef 0..1 [ECUC_NvM_00567]
NvMBlockEcucPartitionRef 1 [ECUC_NvM_00564]
Included Containers

Container Name Multiplicity Dependency

NvMInitBlockCallback 0..1 The presence of this container indicates, that a block specific

callback routine is called if no ROM data is available for
initialization of the NVRAM block. If the container is not present,
no callback routine is called for initialization of the NVRAM block
with default data.

In case the container has a NvMInitBlockCallbackFnc, the NvM
will call this function.

In case there is no NvMInitBlockCallbackFnc, the NvM will have
an port PNIB_{Block}.

\Y%

AUTSSAR

A
Included Containers
Container Name Multiplicity Dependency
NvMSingleBlockCallback 0..1 The presence of this container indicates, that the block specific

callback routine which shall be invoked on termination of each
asynchronous single block request [SWS_NvM_00113] If the
container is not present, no callback routine is called..

In case the container has a NvMSingleBlockCallbackFnc, the Nv
M will call this function.

In case there is no NvMSingleBlockCallbackFnc, the NvM will
have an port PNJF_{Block}.

NvMTargetBlockReference

This parameter is just a container for the parameters for EA and
FEE

]

[ECUC_NvM_00476] Definition of EcucEnumerationParamDef NvMBlockCrcType

[

Parameter Name

NvMBlockCrcType

Parent Container

NvMBlockDescriptor

Description Defines CRC data width for the NVRAM block. Default: NVM_CRC16, i.e. CRC16 will
be used if NVM_BLOCK_USE_CRC==true
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NVM_CRC16 (Default) CRC16 will be used if NVM_BLOCK _
USE_CRC==true.
NVM_CRC32 CRC32 is selected for this NVRAM block if NVM_
BLOCK_USE_CRC==true.
NVM_CRC8 CRCS8 is selected for this NVRAM block if NVM_
BLOCK_USE_CRC==true.
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

x| X

VARIANT-LINK-TIME

Post-build time

Dependency

NVM_BLOCK_USE_CRC, NVM_CALC_RAM_BLOCK_CRC

]

[ECUC_NvM_00554] Definition of EcucStringParamDef NvMBIlockHeaderInclude

[

Parameter Name

NvMBlockHeaderInclude

Parent Container

NvMBIlockDescriptor

Description

Defines the header file where the owner of the NVRAM block has the declarations of
the permanent RAM data block, ROM data block (if configured) and the callback
function prototype for each configured callback. If no permanent RAM block, ROM
block or callback functions are configured then this configuration parameter shall be

ignored.

\Y%

AUTSSAR

A

Multiplicity 0..1

Type EcucStringParamDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]
[ECUC_NvM_00477] Definition of EcucintegerParamDef NvMBlockJobPriority [

Parameter Name NvMBlockJobPriority

Parent Container NvMBIlockDescriptor

Description Defines the job priority for a NVRAM block (0 = Immediate priority).

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_NvM_00062] Definition of EcucEnumerationParamDef NvMBlockManage-
mentType |

Parameter Name NvMBlockManagementType

Parent Container NvMBIlockDescriptor

Description Defines the block management type for the NVRAM block.[SWS_NvM_00137]

Multiplicity 1

Type EcucEnumerationParamDef

Range NVM_BLOCK_DATASET NVRAM block is configured to be of dataset type.
NVM_BLOCK_NATIVE NVRAM block is configured to be of native type.
NVM_BLOCK_REDUNDANT NVRAM block is configured to be of redundant

type.

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time

Dependency

]

[ECUC_NvM_00557] Definition of EcucBooleanParamDef NvMBlockUseAutoVal-

idation [

Parameter Name NvMBlockUseAutoValidation

Parent Container NvMBlockDescriptor

Description Defines whether the RAM Block shall be auto validated during shutdown phase.
true: if auto validation mechanism is used, false: otherwise

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00563] Definition of EcucBooleanParamDef NvMBlockUseCom-

pression
Status: DRAFT

Parameter Name

NvMBlockUseCompression

Parent Container

NvMBlockDescriptor

Description Defines whether the data is compressed before written. true: data compression
activated (takes more time to read and write) false: no compression
Tags: atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

AUTSSAR

[ECUC_NvM_00036] Definition of EcucBooleanParamDef NvMBlockUseCrc |

Parameter Name NvMBlockUseCrc
Parent Container NvMBIlockDescriptor
Description Defines CRC usage for the NVRAM block, i.e. memory space for CRC is reserved in

RAM and NV memory.

true: CRC will be used for this NVRAM block. false: CRC will not be used for this
NVRAM block.

Note: Configuring CRC for a block with immediate priority is not recommended, since
the CRC calculation may extend over more than one NvM main function and this could
increase the time of writing the immediate data significantly, thus defeating the purpose
of immediate priority.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_NvM_00556] Definition of EcucBooleanParamDef NvMBlockUseCRC-
CompMechanism [

Parameter Name NvMBlockUseCRCCompMechanism
Parent Container NvMBlockDescriptor
Description Defines whether the CRC of the RAM Block shall be compared during a write job with

the CRC which was calculated during the last successful read or write job.
true: if compare mechanism is used, false: otherwise

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency False if NvMBlockUseCrc = False

AUTSSAR

[ECUC_NvM_00559] Definition of EcucBooleanParamDef NvMBlockUsePort |

Parameter Name

NvMBIlockUsePort

Parent Container

NvMBlockDescriptor

Description

If this parameter is true it defines whether:
« the port with interface 'NvMMirror’ for synchronization mechanism callbacks are
generated if the parameter NvMBlockUseSyncMechanism is configured TRUE;

« the port with interface '"NvMNotifyInitBlock’ for initialization block callback is
generated if NvMInitBlockCallback parameter is configured (independent of the
content);

« the port with interface '"NvMNotifyJobFinished’ for single block callback is generated
if NvMSingleBlockCallback parameter is configured (independent of the content);

« the port with interface 'NvVMAdmin’ for SetBlockProtection operation is generated.

Multiplicity

1

Type

EcucBooleanParamDef

Default value

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

x

Link time VARIANT-LINK-TIME

Post-build time —

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

x| X

Link time VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_NvM_00552] Definition of EcucBooleanParamDef NvMBlockUseSetRam

BlockStatus |

Parameter Name

NvMBlockUseSetRamBlockStatus

Parent Container

NvMBlockDescriptor

Description Defines if N\vMSetRamBlockStatusApi shall be used for this block or not.
Note: If NvMSetRamBlockStatusApi is disabled this configuration parameter shall be
ignored.
true: calling of NvMSetRamBlockStatus for this RAM block shall set the status of the
RAM block.
false: calling of NvMSetRamBlockStatus for this RAM block shall be ignored.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00519]
Mechanism |

Definition of EcucBooleanParamDef NvMBlockUseSync

Parameter Name

NvMBlockUseSyncMechanism

Parent Container

NvMBIlockDescriptor

Description Defines whether an explicit synchronization mechanism with a RAM mirror and callback
routines for transferring data to and from NvM module’s RAM mirror is used for NV
block. true if synchronization mechanism is used, false otherwise.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_NvM_00033] Definition of EcucBooleanParamDef NvMBlockWriteProt |

Parameter Name

NvMBIlockWriteProt

Parent Container

NvMBIlockDescriptor

Description Defines an initial write protection of the NV block
true: Initial block write protection is enabled. false: Initial block write protection is
disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_NvM _00551] Definition of EcucBooleanParamDef NvMBswMBIlockStatus

Information |

Parameter Name

NvMBswMBlockStatusinformation

Parent Container

NvMBIlockDescriptor

Description This parameter specifies whether BswM is informed about the current status of the
specified block.
True: Call BswM_NvM_CurrentBlockMode on changes False: Don’t inform BswM at all
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

AUTSSAR

| Dependency

]

[ECUC_NvM _00119] Definition of EcucBooleanParamDef NvMCalcRamBlockCrc
[

Parameter Name NvMCalcRamBlockCrc
Parent Container NvMBIlockDescriptor
Description Defines CRC (re)calculation for the permanent RAM block or NVRAM blocks which are

configured to use explicit synchronization mechanism.
true: CRC will be (re)calculated for this permanent RAM block. false: CRC will not be
(re)calculated for this permanent RAM block.

Multiplicity 0..1
Type EcucBooleanParamDef

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency NVM_BLOCK_USE_CRC

]

[ECUC_NvM_00533] Definition of EcucintegerParamDef NvMMaxNumOfReadRe-
tries |

Parameter Name NvMMaxNumOfReadRetries

Parent Container NvMBlockDescriptor

Description Defines the maximum number of read retries.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..7

Default value 0

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00499] Definition of EcucintegerParambDef NvMMaxNumOfWriteRe-
tries |

Parameter Name NvMMaxNumOfWriteRetries
Parent Container NvMBIlockDescriptor
Description Defines the maximum number of write retries for a NVRAM block with [ECUC_NvM_

00061]. Regardless of configuration a consistency check (and maybe write retries) are
always forced for each block which is processed by the request NvM_WriteAll and Nv

M_WriteBlock.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.7

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00478] Definition of EcucintegerParambDef NVMNvBlockBaseNum-
ber [

Parameter Name NvMNvBlockBaseNumber
Parent Container NvMBlockDescriptor
Description Configuration parameter to perform the link between the NVM_NVRAM_BLOCK_

IDENTIFIER used by the SW-Cs and the FEE_BLOCK_NUMBER expected by the
memory abstraction modules. The parameter value equals the FEE_BLOCK_
NUMBER or EA_BLOCK_NUMBER shifted to the right by NvMDatasetSelectionBits
bits. (ref. to chapter 7.1.2.1).

Calculation Formula: value = TargetBlockReference.[Ea/Fee]BlockConfiguration.[Ea/
Fee]BlockNumber >> NvMDatasetSelectionBits

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65534

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency FEE_BLOCK_NUMBER, EA_BLOCK_NUMBER

AUTSSAR

[ECUC_NvM_00479] Definition of EcucintegerParamDef NvMNvBIlockLength |

Parameter Name

NvMNvBlockLength

Parent Container

NvMBlockDescriptor

Description Defines the NV block data length in bytes.
Note: The implementer can add the attribute 'withAuto’ to the parameter definition
which indicates that the length can be calculated by the generator automatically (e.g.
by using a parser that searches and analyzes the data structure corresponding to the
block). When 'withAuto’ is set to 'true’ for this parameter definition the 'isAutoValue’ can
be set to 'true’. If ’isAutoValue’ is set to ‘true’ the actual value will not be considered
during ECU Configuration but will be (re-)calculated by the code generator and stored
in the value attribute afterwards.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

]

[ECUC_NvM_00480] Definition of EcucintegerParamDef NvMNvBlockNum |

Parameter Name

NvMNvBlockNum

Parent Container

NvMBIlockDescriptor

Description Defines the number of multiple NV blocks in a contiguous area according to the given
block management type.
1-255 For NVRAM blocks to be configured of block management type NVM_BLOCK _
DATASET. The actual range is limited according to SWS_NvM_00444.
1 For NVRAM blocks to be configured of block management type NVM_BLOCK_
NATIVE
2 For NVRAM blocks to be configured of block management type NVM_BLOCK _
REDUNDANT

Multiplicity 1

Type EcuclntegerParamDef

Range 1..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

NVM_BLOCK_MANAGEMENT_TYPE

AUTSSAR

[ECUC_NvM_00481] Definition of EcucintegerParambDef NvMNvramBlockldenti-
fier [

Parameter Name NvMNvramBlockldentifier
Parent Container NvMBlockDescriptor
Description Identification of a NVRAM block via a unique block identifier.

Implementation Type: NvM_BlockldType.

min = 2 max = 2°(16- NVM_DATASET_SELECTION_BITS)-1

Reserved NVRAM block IDs: 0 -> to derive multi block request results via NvM_Get
ErrorStatus 1 -> redundant NVRAM block which holds the configuration ID (generation
tool should check that this block is correctly configured from type,CRC and size point of

view)
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 2 ..65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency NVM_DATASET_SELECTION_BITS

]
[ECUC_NvM_00035] Definition of EcucintegerParamDef NvMNvramDeviceld |

Parameter Name NvMNvramDeviceld

Parent Container NvMBlockDescriptor

Description Defines the NVRAM device ID where the NVRAM block is located.
Calculation Formula: value = TargetBlockReference.[Ea/Fee]Devicelndex

Multiplicity 1

Type EcuclntegerParamDef

Range 0..1

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency EA_DEVICE_INDEX, FEE_DEVICE_INDEX

]

[ECUC_NvM_00482] Definition of EcucStringParamDef NvMRamBlockDataAd-
dress |

Parameter Name NvMRamBlockDataAddress
Parent Container NvMBlockDescriptor
Description Defines the start address of the RAM block data.

If this is not configured, no permanent RAM data block is available for the selected
block management type.

Multiplicity 0..1

Type EcucStringParamDef

V

AUTSSAR

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_NvM 00521] Definition of EcucFunctionNameDef NvMReadRamBlock
FromNvCallback |

Parameter Name

NvMReadRamBlockFromNvCallback

Parent Container NvMBIlockDescriptor

Description Entry address of a block specific callback routine which shall be called in order to let
the application copy data from the NvM module’s mirror to RAM block. Implementation
type: Std_ReturnType
E_OK: copy was successful E_NOT_OK: copy was not successful, callback routine to
be called again

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -
Pre-compile time

VARIANT-PRE-COMPILE
VARIANT-LINK-TIME

Value Configuration Class

x| X

Link time

Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00483]
ChangedSw |

Definition of EcucBooleanParamDef NvMResistantTo

Parameter Name

NvMResistantToChangedSw

Parent Container

NvMBIlockDescriptor

Description Defines whether a NVRAM block shall be treated resistant to configuration changes or
not. If there is no default data available at configuration time then the application shall
be responsible for providing the default initialization data. In this case the application
has to use NvM_GetErrorStatus()to be able to distinguish between first initialization
and corrupted data.
true: NVRAM block is resistant to changed software. false: NVRAM block is not
resistant to changed software.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00484] Definition of EcucStringParamDef NvMRomBlockDataAd-

dress |

Parameter Name

NvMRomBIlockDataAddress

Parent Container

NvMBlockDescriptor

Description Defines the start address of the ROM block data.

If not configured, no ROM block is available for the selected block management type.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00485] Definition of EcucintegerParamDef NvMRomBlockNum |

Parameter Name NvMRomBlockNum

Parent Container NvMBIlockDescriptor

Description Defines the number of multiple ROM blocks in a contiguous area according to the given
block management type.
0-254 For NVRAM blocks to be configured of block management type NVM_BLOCK_
DATASET. The actual range is limited according to SWS_NvM_00444.
0-1 For NVRAM blocks to be configured of block management type NVM_BLOCK_
NATIVE
0-1 For NVRAM blocks to be configured of block management type NVM_BLOCK _
REDUNDANT

Multiplicity 1

Type EcuclntegerParamDef

Range 0..254

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Dependency NVM_BLOCK_MANAGEMENT_TYPE, NVM_NV_BLOCK_NUM

]

[ECUC_NvM_00558] Definition of EcucBooleanParamDef NvMSelectBlockFor
FirstinitAll |

Parameter Name NvMSelectBlockForFirstinitAll
Parent Container NvMBIlockDescriptor
Description Defines whether a block will be processed or not by NvM_FirstInitAll. A block can be

configured to be processed even if it doesn’t have permanent RAM and/or explicit
synchronization.

TRUE: block will be processed by NvM_FirstInitAll

FALSE: block will not be processed by NvM_FirstInitAll

Multiplicity 0..1
Type EcucBooleanParamDef
Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00117] Definition of EcucBooleanParamDef NvMSelectBlockFor
ReadAll |

Parameter Name

NvMSelectBlockForReadAll

Parent Container

NvMBlockDescriptor

Description Defines whether a NVRAM block shall be processed during NvM_ReadAll or not. This
configuration parameter has only influence on those NVRAM blocks which are
configured to have a permanent RAM block or which are configured to use explicit
synchronization mechanism.
true: NVRAM block shall be processed by NvM_ReadAll false: NVRAM block shall not
be processed by NvM_ReadAll

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Dependency

NVM_RAM_BLOCK_DATA_ADDRESS

]

[ECUC_NvM_00549] Definition of EcucBooleanParamDef NvMSelectBlockFor
WriteAll |

Parameter Name

NvMSelectBlockForWriteAll

Parent Container

NvMBlockDescriptor

Description Defines whether a NVRAM block shall be processed during NvM_WriteAll or not. This
configuration parameter has only influence on those NVRAM blocks which are
configured to have a permanent RAM block or which are configured to use explicit
synchronization mechanism.
true: NVRAM block shall be processed by NvM_WriteAll false: NVRAM block shall not
be processed by NvM_ WriteAll

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Dependency

NVM_RAM_BLOCK_DATA_ADDRESS

AUTSSAR

[ECUC_NvVM_00532]

Check |

Definition of EcucBooleanParamDef NvMStaticBlockID-

Parameter Name

NvMStaticBlockIDCheck

Parent Container

NvMBlockDescriptor

Description Defines if the Static Block ID check is enabled.
false: Static Block ID check is disabled. true: Static Block ID check is enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_NvM_00072] Definition of EcucBooleanParamDef NvMWriteBlockOnce |

Parameter Name

NvMWriteBlockOnce

Parent Container

NvMBIlockDescriptor

Description Defines write protection after first write. The NVRAM manager sets the write protection
bit either after the NV block was written the first time or if the block was already written
and it is detected as valid and consistent during a read for it.
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Dependency

]

[ECUC_NvM_00520] Definition of EcucFunctionNameDef NvMWriteRamBlockTo

NvCallback |

Parameter Name

NvMWriteRamBlockToNvCallback

Parent Container

NvMBlockDescriptor

Description

Entry address of a block specific callback routine which shall be called in order to let
the application copy data from RAM block to NvM module’s mirror. Implementation
type: Std_ReturnType

E_OK: copy was successful E_NOT_OK: copy was not successful, callback routine to
be called again

Multiplicity

0..1

Type

EcucFunctionNameDef

Default value

Regular Expression

V

AUTSSAR

A

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_NvM_00534] Definition of EcucBooleanParamDef NvMWriteVerification |

Parameter Name

NvMWrite Verification

Parent Container

NvMBlockDescriptor

Description Defines if Write Verification is enabled.
false: Write verification is disabled. true: Write Verification is enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_NvM_00538]
DataSize |

Definition of EcuclntegerParamDef NvMWriteVerification

Parameter Name

NvMWrite VerificationDataSize

Parent Container NvMBIlockDescriptor

Description Defines the number of bytes to compare in each step when comparing the content of a
RAM Block and a block read back.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

AUTSSAR

[ECUC_NvM_00567] Definition of EcucReferenceDef NvMBlockCipheringRef

Status: DRAFT

Parameter Name

NvMBlockCipheringRef

Parent Container

NvMBlockDescriptor

Description Reference to ciphering container.
If configured, NvM encrypt the data before storage and decrypt the data after restoring.
If empty, the NvM stores and restore the original user data.
Tags: atp.Status=draft

Multiplicity 0..1

Type Reference to NvMBlockCiphering

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Key will be located in RAM if this configuration item is not present.

]

[ECUC_NvM_00564] Definition of EcucReferenceDef NvMBlockEcucPartitionRef

[

Parameter Name

NvMBIlockEcucPartitionRef

Parent Container

NvMBIlockDescriptor

Description Maps the NV block to zero or one ECUC partition to limit the access to this NV block.
The ECUC partition referenced is within the subset of the ECUC partitions where the
NvM is mapped to.

Multiplicity 1

Type Reference to EcucPartition

Value Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

]

[SWS_NvM_CONSTR_00972] [The ECUC partition referenced by NvMBIlockEcuc
PartitionRef shall be within the subset of the ECUC partitions referenced by NvMEcuc
PartitionRef. |

[SWS_NvM_CONSTR_00973] [If NvMEcucPartitionRef references two or more
ECUC partitions, NvMBlockEcucPartitionRef shall have a multiplicity one and refer-
ence one of these ECUC partitions as well. |

AUTSSAR

10.2.4 NvMinitBlockCallback

[ECUC_NvM 00561] Definition of EcucParamConfContainerDef NvMInitBlock
Callback |

Container Name NvMInitBlockCallback
Parent Container NvMBIlockDescriptor
Description The presence of this container indicates, that a block specific callback routine is called

if no ROM data is available for initialization of the NVRAM block. If the container is not
present, no callback routine is called for initialization of the NVRAM block with default
data.

In case the container has a NvMInitBlockCallbackFnc, the NvM will call this function.
In case there is no NvMInitBlockCallbackFnc, the NvM will have an port PNIB_{Block}.

Multiplicity 0..1
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

NvMinitBlockCallbackFnc 0..1 [ECUC_NvM_00116]

No Included Containers

]

[ECUC_NvM_00116] Definition of EcucFunctionNameDef NvMInitBlockCallback
Fnc |

Parameter Name NvMInitBlockCallbackFnc
Parent Container NvMinitBlockCallback
Description Entry address of a block specific callback routine which shall be called if no ROM data

is available for initialization of the NVRAM block.
If not configured, no specific callback routine shall be called for initialization of the
NVRAM block with default data.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -
Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

10.2.5 NvMSingleBlockCallback

[ECUC_NvM_00562] Definition of EcucParamConfContainerDef NvMSingleBlock
Callback |

Container Name NvMSingleBlockCallback
Parent Container NvMBIlockDescriptor
Description The presence of this container indicates, that the block specific callback routine which

shall be invoked on termination of each asynchronous single block request [SWS_
NvM_00113] If the container is not present, no callback routine is called..

In case the container has a NvMSingleBlockCallbackFnc, the NvM will call this function.
In case there is no NvMSingleBlockCallbackFnc, the NvM will have an port
PNJF_{Block}.

Multiplicity 0..1
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
NvMSingleBlockCallbackFnc 0..1 [ECUC_NvM_00506]

No Included Containers

]

[ECUC_NvM_00506] Definition of EcucFunctionNameDef NvMSingleBlockCall-
backFnc |

Parameter Name NvMSingleBlockCallbackFnc

Parent Container NvMSingleBlockCallback

Description Entry address of the block specific callback routine which shall be invoked on
termination of each asynchronous single block request [SWS_NvM_00113].

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -
Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

10.2.6 NvMTargetBlockReference

[ECUC_NvM_00486] Definition of EcucChoiceContainerDef NvMTargetBlockRef-

erence |

Choice Container Name

NvMTargetBlockReference

Parent Container

NvMBlockDescriptor

Description

This parameter is just a container for the parameters for EA and FEE

Multiplicity

1

No Included Parameters

Container Choices

Container Name Multiplicity Dependency
NvMEaRef 0..1 EEPROM Abstraction
NvMFeeRef 0..1 Flash EEPROM Emulation

10.2.7 NvMEaRef

[ECUC_NvM_00487] Definition of EcucParamConfContainerDef NvMEaRef |

Container Name

NvMEaRef

Parent Container

NvMTargetBlockReference

Description

EEPROM Abstraction

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

NvMNameOfEaBlock

1 [ECUC_NvM_00488]

| No Included Containers

]

[ECUC_NvM_00488] Definition of EcucReferenceDef NvMNameOfEaBlock |

Parameter Name

NvMNameOfEaBlock

Parent Container

NvMEaRef

Description reference to EaBlock
Multiplicity 1
Type Symbolic name reference to EaBlockConfiguration

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

\ X \ VARIANT-PRE-COMPILE

V

AUTSSAR

Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.2.8 NvMFeeRef

[ECUC_NvM_00489] Definition of EcucParamConfContainerDef NvMFeeRef |

Container Name NvMFeeRef

Parent Container NvMTargetBlockReference
Description Flash EEPROM Emulation
Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
NvMNameOfFeeBlock 1 [ECUC_NvM_00490]

| No Included Containers

]
[ECUC_NvM_00490] Definition of EcucReferenceDef NvMNameOfFeeBlock |

Parameter Name NvMNameOfFeeBlock

Parent Container NvMFeeRef

Description reference to FeeBlock

Multiplicity 1

Type Symbolic name reference to FeeBlockConfiguration

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.2.9 NvmDemEventParameterRefs

[ECUC_NvM _00541] Definition of EcucParamConfContainerDef NvmDemEvent
ParameterRefs |

AUTSSAR

Container Name NvmDemEventParameterRefs

Parent Container NvM

Description Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

NVM_E_HARDWARE 0..1 [ECUC_NvM_00553]
NVM_E_INTEGRITY_FAILED 0..1 [ECUC_NvM_00542]
NVM_E_LOSS_OF_REDUNDANCY 0..1 [ECUC_NvM_00546]
NVM_E_REQ_FAILED 0..1 [ECUC_NvM_00543]
NVM_E_VERIFY_FAILED 0..1 [ECUC_NvM_00545]
NVM_E_WRITE_PROTECTED 0..1 [ECUC_NvM_00548]
NVM_E_WRONG_BLOCK_ID 0..1 [ECUC_NvM_00544]

No Included Containers

]

[ECUC_NvM_00553] Definition of EcucReferenceDef NVM_E_HARDWARE |

Parameter Name

NVM_E_HARDWARE

Parent Container

NvmDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the hardware error
has occured.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_NVM_00542]
FAILED [

Definition of EcucReferenceDef NVM_E INTEGRITY_

Parameter Name

NVM_E_INTEGRITY_FAILED

Parent Container

NvmDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "API
request integrity failed" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_NvM_00546] Definition of EcucReferenceDef NVM_E_LOSS OF_REDUN-
DANCY |

Parameter Name

NVM_E_LOSS_OF_REDUNDANCY

Parent Container

NvmDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "loss of
redundancy" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_NvM_00543] Definition of EcucReferenceDef NVM_E_REQ_FAILED |

Parameter Name

NVM_E_REQ_FAILED

Parent Container

NvmDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "API
request failed" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

V

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time
Post-build time

Dependency

]

[ECUC_NvM_00545] Definition of EcucReferenceDef NVM_E_VERIFY_FAILED |

Parameter Name

NVM_E_VERIFY_FAILED

Parent Container

NvmDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "Write
Verification failed" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time
Post-build time

Dependency

]

[ECUC_NvM_00548]
TECTED [

Definition of EcucReferenceDef NVM_E WRITE_ PRO-

Parameter Name

NVM_E_WRITE_PROTECTED

Parent Container

NvmDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "write
attempt to NVRAM block with write protection" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time
Post-build time

AUTSSAR

| Dependency

]
[ECUC_NvM_00544] Definition of EcucReferenceDef NVM_E_WRONG_BLOCK _

ID [
Parameter Name NVM_E_WRONG_BLOCK_ID
Parent Container NvmDemEventParameterRefs
Description Reference to the DemEventParameter which shall be issued when the error "Static
Block ID check failed" has occurred.
Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

10.2.10 NvMBlockCiphering

[ECUC_NvM_00568] Definition of EcucParamConfContainerDef NvMBlockCi-
phering
Status: DRAFT

Container Name NvMBIlockCiphering

Parent Container NvM

Description Container for a chiphering of the Block.
Tags: atp.Status=draft

Multiplicity 0..65535

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
NvMNvBlockNVRAMDatalLength 1 [ECUC_NvM_00569]
NvMCsmDecryptionJobReference 1 [ECUC_NvVM_00571]
NvMCsmEncryptionJobReference 1 [ECUC_NvM_00570]

| No Included Containers

]

[ECUC_NvM_00569] Definition of EcuclntegerParamDef NVMNvBlockNVRAM-
DatalLength

Status: DRAFT

Parameter Name NvMNvBlockNVRAMDatalength
Parent Container NvMBlockCiphering
Description This value specified the block length in case ciphered data is stored in NV RAM - in that

case the plain data length may not match the ciphered data length.

This value needs be filled out, if the ciphering, encryption and decryption, of the data is
enabled for this block. It will be used instead of the NvMNvBIlockLength to access the
NV RAM.

Hint: This value can be equal or bigger than '"NvMNvBIlockLength’ depending on the
characteristics of the referenced CSM Job inside '"NvMNameOfEncryptiondJob’ (e.g.
CSM job adds padding information).

Tags: atp.Status=draft

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value 16

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_NvM_00571] Definition of EcucReferenceDef NvMCsmDecryptionJobRef-
erence

Status: DRAFT

Parameter Name NvMCsmDecryptionJobReference
Parent Container NvMBIlockCiphering
Description This parameter references a CSM decrypt job used to decrypt ciphered data after

reading it from NV RAM.
Tags: atp.Status=draft

Multiplicity 1

Type Symbolic name reference to CsmJob

Y%

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_NvM_00570] Definition of EcucReferenceDef NvMCsmEncryptionJobRef-
erence

Status: DRAFT

Parameter Name NvMCsmEncryptionJobReference

Parent Container NvMBIlockCiphering

Description This parameter references a CSM encrypt job used to encrypt plain data before writing
it to the NV RAM.
Tags: atp.Status=draft

Multiplicity 1

Type Symbolic name reference to CsmJob

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[SWS_NvM_00030] [By use of configuration techniques, each application shall be en-
abled to declare the memory requirements at configuration time. This information shall
be useable to assign memory areas and to generate the appropriate interfaces. Wrong
memory assignments and conflicts in requirements (sufficient memory not available)
shall be detected at configuration time. |

[SWS_NvM_00034]
Upstream requirements: SRS_Mem_00135

[The NVRAM memory layout configuration shall have a unique ID. The NvM module
shall have a configuration identifier that is a unique property of the memory layout con-
figuration. The ID can be either statically assigned to the configuration or it can be
calculated from the configuration properties. This should be supported by a config-

AUTSSAR

uration tool. The ID should be changed if the block configuration changes, i.e. if a
block is added or removed, or if its size or type is changed. The ID shall be stored
together with the data and shall be used in addition to the data checksum to determine
the consistency of the NVRAM contents. |

[SWS_NvM_00073] [The comparison between the stored configuration ID and the
compiled configuration ID shall be done as the first step within the function NvM_Read
All during startup. |

[SWS_NvM_00688] [In case of a detected configuration ID mismatch, the behavior of
the NvM module shall be defined by a configurable option. |

[SWS_NvM_00052] [Provide information about used memory resources. The NvM
module configuration shall provide information on how many resources of RAM, ROM
and NVRAM are used. The configuration tool shall be responsible to provide detailed
information about all reserved resources. The format of this information shall be com-
monly used (e.g. MAP file format). |

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”. [ref. to doc. [2]]

AUTSSAR

A Not applicable requirements

[SWS_NvM_NA_00744]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW _
00170, SRS_BSW_00398, SRS _BSW_00399, SRS _BSW_00400,
SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_
00426, SRS_BSW_00427, SRS_BSW_00432, SRS_BSW_00375,
SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00336, SRS_BSW_
00161, SRS _BSW_00162, SRS BSW_00005, SRS _BSW_00415,
SRS _BSW_00164, SRS _BSW_00325, SRS_BSW_00342, SRS_BSW _
00343, SRS_BSW_00160, SRS_BSW_00007, SRS_BSW_00347,
SRS_BSW_00307, SRS_BSW_00335, SRS_BSW_00314, SRS_BSW_
00348, SRS_BSW_00353, SRS _BSW_00302, SRS_BSW_00328,
SRS BSW_00312, SRS BSW_00006, SRS BSW 00304, SRS BSW _
00378, SRS_BSW _ 00306, SRS _BSW 00308, SRS BSW_00309,
SRS_BSW_00330, SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_
00321, SRS_BSW_00341

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-

links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R25-11

B.1.1

Added Specification Items in R25-11

Number

Heading

[SWS_NvM_00986]

Processin of the read service detects an inconsistency.

[SWS_NvM_00987]

Processin of the read service failed at a lower layer in the MemStack
architecture, including all retries.

[SWS_NvM_00988]

The write verification failed.

[SWS_NvM_00989]

Static block ID check, during read, indicates failure.

Table B.1: Added Specification Items in R25-11

B.1.2 Changed Specification Items in R25-11

Number

Heading

[ECUC_NvM_00028]

Definition of EcucParamConfContainerDef NvMCommon

[ECUC_NvM_00061]

Definition of EcucParamConfContainerDef NvMBIlockDescriptor

[ECUC_NvM_00486]

Definition of EcucChoiceContainerDef NvMTargetBlockReference

[ECUC_NvM_00487]

Definition of EcucParamConfContainerDef NvMEaRef

[ECUC_NvM_00489]

Definition of EcucParamConfContainerDef NvMFeeRef

[ECUC_NvM_00541]

Definition of EcucParamConfContainerDef NvmDemEventParameterRefs

[ECUC_NvVM_00561]

Definition of EcucParamConfContainerDef NvMInitBlockCallback

[ECUC_NvM_00562]

Definition of EcucParamConfContainerDef NvMSingleBlockCallback

[ECUC_NvM_00568]

Definition of EcucParamConfContainerDef NvMBlockCiphering

[SWS_NvM_00446]

Definition of imported datatypes of module NvM

[SWS_NvM_00466]

Definition of optional interfaces requested by module NvM

[SWS_NvM_00734]

Definition of ClientServerinterface NvMService

[SWS_NvM_00835]

Reading from or writing to non volatile memory failed.

[SWS_NvM_00843]

Definition of Port PAdmin_{Block} provided by module NvM

\Y%

AUTSSAR

A

Number

Heading

[SWS_NvM_00847]

Definition of Port PS_{Block} provided by module NvM

Table B.2: Changed Specification Items in R25-11

B.1.3 Deleted Specification Iltems in R25-11

Number

Heading

[SWS_NvM_00698]

[SWS_NvM_00699]

[SWS_NvM_00700]

[SWS_NvM_00701]

[SWS_NvM_00702]

[SWS_NvM_00703]

[SWS_NvM_00704]

[SWS_NvM_00864]

[SWS_NvM_00865]

[SWS_NvM_00866]

[SWS_NvM_00867]

[SWS_NvM_00868]

[SWS_NvM_00872]

[SWS_NvM_00873]

[SWS_NvM_00874]

[SWS_NvM_00875]

[SWS_NvM_00876]

Table B.3: Deleted Specification Items in R25-11

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

AUTSSAR

B.2 Traceable item history of this document according to

B.2.1

none

B.2.2

AUTOSAR Release R24-11

Added Specification Items in R24-11

Changed Specification Items in R24-11

Number Heading

[SWS_NvM_00734] Definition of ClientServerInterface NvMService

B.2.3

none

B.2.4

none

B.2.5

none

B.2.6

none

B.3

B.3.1

none

Table B.4: Changed Specification Items in R24-11

Deleted Specification Items in R24-11

Added Constraints in R24-11

Changed Constraints in R24-11

Deleted Constraints in R24-11

Traceable item history of this document according to
AUTOSAR Release R23-11

Added Specification Items in R23-11

AUTSSAR

B.3.2 Changed Specification ltems in R23-11

Number Heading

[SWS_NvM_00467] Definition of configurable interface NvM_SingleBlockCallbackFunction

[SWS_NvM_00469] Definition of configurable interface NvM_InitBlockCallbackFunction

[SWS_NvM_00539] Definition of configurable interface NvM_WriteRamBlockToNvm

[SWS_NvM_00540] Definition of configurable interface NvM_ReadRamBlockFromNvm

[SWS_NvM_00560]

[SWS_NvM_00561]

[SWS_NvM_00562]

[SWS_NvM_91004] Definiton of development errors in module NvM

Table B.5: Changed Specification Items in R23-11

B.3.3 Deleted Specification Iltems in R23-11

Number Heading

[SWS_NvM_00548]

[SWS_NvM_00728]

[SWS_NvM_00729]

[SWS_NvM_00730]

[SWS_NvM_00731]

[SWS_NvM_00732]

[SWS_NvM_00748]

[SWS_NvM_00749]

[SWS_NvM_00750]

[SWS_NvM_00751]

[SWS_NvM_00752]

[SWS_NvM_00753]

[SWS_NvM_00754]

[SWS_NvM_00756]

[SWS_NvM_00757]

[SWS_NvM_00758]

[SWS_NvM_00759]

[SWS_NvM_00797]

[SWS_NvM_00830]

[SWS_NvM_00933]

Table B.6: Deleted Specification Items in R23-11

AUTSSAR

B.3.4 Added Constraints in R23-11

none

B.3.5 Changed Constraints in R23-11

none

B.3.6 Deleted Constraints in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Conflicts

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Header file structure

	5.2 Memory abstraction modules
	5.3 CRC module

	6 Requirements Tracing
	7 Functional specification
	7.1 Basic architecture guidelines
	7.1.1 Layer structure
	7.1.2 Addressing scheme for the memory hardware abstraction
	7.1.2.1 Examples

	7.1.3 Basic storage objects
	7.1.3.1 NV block
	7.1.3.2 RAM block
	7.1.3.3 ROM block
	7.1.3.4 Administrative block
	7.1.3.5 NV Block Header

	7.1.4 Block management types
	7.1.4.1 Block management types overview
	7.1.4.2 NVRAM block structure
	7.1.4.3 NVRAM block descriptor table
	7.1.4.4 Native NVRAM block
	7.1.4.5 Redundant NVRAM block
	7.1.4.6 Dataset NVRAM block
	7.1.4.7 NVRAM Manager API configuration classes

	7.1.5 Scan order / priority scheme

	7.2 General behavior
	7.2.1 Functional requirements
	7.2.2 Design notes
	7.2.2.1 NVRAM manager startup
	7.2.2.2 NVRAM manager shutdown
	7.2.2.3 (Quasi) parallel write access to the NvM module
	7.2.2.4 NVRAM block consistency check
	7.2.2.5 Error recovery
	7.2.2.6 Recovery of a RAM block with ROM data
	7.2.2.7 Implicit recovery of a RAM block with ROM default data
	7.2.2.8 Explicit recovery of a RAM block with ROM default data
	7.2.2.9 Detection of an incomplete write operation to a NV block
	7.2.2.10 Termination of a single block request
	7.2.2.11 Termination of a multi block request
	7.2.2.12 General handling of asynchronous requests/ job processing
	7.2.2.13 NVRAM block write protection
	7.2.2.14 Validation and modification of RAM block data
	7.2.2.15 Communication and implicit synchronization between application and NVRAM manager
	7.2.2.16 Normal and extended runtime preparation of NVRAM blocks
	7.2.2.17 Communication and explicit synchronization between application and NVRAM manager
	7.2.2.18 Static Block ID Check
	7.2.2.19 Read Retry
	7.2.2.20 Write Verification
	7.2.2.21 Comparing NV data in NvM
	7.2.2.22 NvM and BswM interaction
	7.2.2.23 Block Compression
	7.2.2.24 Block Ciphering

	7.3 Error Classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Production Errors
	7.3.3.1 NVM_E_LOSS_OF_REDUNDANCY

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 NvM_ConfigType
	8.2.2 NvM_MultiBlockRequestType

	8.3 Function definitions
	8.3.1 Synchronous requests
	8.3.1.1 NvM_Init
	8.3.1.2 NvM_SetDataIndex
	8.3.1.3 NvM_GetDataIndex
	8.3.1.4 NvM_SetBlockProtection
	8.3.1.5 NvM_GetErrorStatus
	8.3.1.6 NvM_GetVersionInfo
	8.3.1.7 NvM_SetRamBlockStatus
	8.3.1.8 NvM_CancelJobs

	8.3.2 Asynchronous single block requests
	8.3.2.1 NvM_ReadBlock
	8.3.2.2 NvM_WriteBlock
	8.3.2.3 NvM_RestoreBlockDefaults
	8.3.2.4 NvM_EraseNvBlock
	8.3.2.5 NvM_InvalidateNvBlock
	8.3.2.6 NvM_ReadPRAMBlock
	8.3.2.7 NvM_WritePRAMBlock
	8.3.2.8 NvM_RestorePRAMBlockDefaults

	8.3.3 Asynchronous multi block requests
	8.3.3.1 NvM_ReadAll
	8.3.3.2 NvM_WriteAll
	8.3.3.3 NvM_CancelWriteAll
	8.3.3.4 NvM_ValidateAll
	8.3.3.5 NvM_FirstInitAll
	8.3.3.6 Callback notifications

	8.4 Scheduled functions
	8.5 Expected interfaces
	8.5.1 Mandatory Interfaces
	8.5.2 Optional Interfaces
	8.5.3 Configurable interfaces
	8.5.3.1 Single block job end notification
	8.5.3.2 Multi block job end notification
	8.5.3.3 Callback function for block initialization
	8.5.3.4 Callback function for RAM to NvM copy
	8.5.3.5 Callback function for NvM to RAM copy

	8.6 API Overview
	8.7 Service Interfaces
	8.7.1 Client-Server-Interfaces
	8.7.1.1 NvM_Admin
	8.7.1.2 NvM_Mirror
	8.7.1.3 NvM_NotifyInitBlock
	8.7.1.4 NvM_NotifyJobFinished
	8.7.1.5 NvM_Service

	8.7.2 Implementation Data Types
	8.7.2.1 ImplementationDataType NvM_RequestResultType
	8.7.2.2 ImplementationDataType NvM_BlockIdType
	8.7.2.3 ImplementationDataType NvM_InitBlockRequestType
	8.7.2.4 ImplementationDataType NvM_BlockRequestType

	8.7.3 Ports
	8.7.3.1 NvM_PAdmin_{Block}
	8.7.3.2 NvM_PM_{Block}
	8.7.3.3 NvM_PNIB_{Block}
	8.7.3.4 NvM_PNJF_{Block}
	8.7.3.5 NvM_PS_{Block}

	9 Sequence diagrams
	9.1 Synchronous calls
	9.1.1 NvM_Init
	9.1.2 NvM_SetDataIndex
	9.1.3 NvM_GetDataIndex
	9.1.4 NvM_SetBlockProtection
	9.1.5 NvM_GetErrorStatus
	9.1.6 NvM_GetVersionInfo

	9.2 Asynchronous calls
	9.2.1 Asynchronous call with polling
	9.2.2 Asynchronous call with callback
	9.2.3 Cancellation of a Multi Block Request
	9.2.4 BswM Interraction

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 NvM
	10.2.2 NvMCommon
	10.2.3 NvMBlockDescriptor
	10.2.4 NvMInitBlockCallback
	10.2.5 NvMSingleBlockCallback
	10.2.6 NvMTargetBlockReference
	10.2.7 NvMEaRef
	10.2.8 NvMFeeRef
	10.2.9 NvmDemEventParameterRefs
	10.2.10 NvMBlockCiphering

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11
	B.3.4 Added Constraints in R23-11
	B.3.5 Changed Constraints in R23-11
	B.3.6 Deleted Constraints in R23-11

