
Specification of Memory Mapping
AUTOSAR CP R25-11

Document Title Specification of Memory Mapping
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 128

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Mandatory MAKW building rules

• Clarify usage of CoreScope

• Removal of deprecated MemMap values

2024-11-27 R24-11
AUTOSAR
Release
Management

• Simplify MemMap header
implementation

• Add and rework examples

• Add requirements for function level
tracing

2023-11-23 R23-11
AUTOSAR
Release
Management

• Clarify usage of GLOBAL and LOCAL
coreScope

• Improve document readability

2022-11-24 R22-11
AUTOSAR
Release
Management

• Correction of inconsistent MAKW
patterns and examples

• Resolve incompatibility to [constr_4103]

• Add 64bit alignment support

• Deprecate compiler abstraction

2021-11-25 R21-11
AUTOSAR
Release
Management

• POWER_ON_INIT behaviour does not
match ComputerRuntimeInitialization

• Deprecate compiler abstraction

• Description regarding alignment is too
strict for some targets

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

▽

1 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△

2019-11-28 R19-11
AUTOSAR
Release
Management

• Clarify NO-INIT policy

• Clarify caseness of VendorApiInfix

• Clarify usage of core scope

• Update of referenced pictures

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Support splitting of modules in
allocatable memory parts

• Clarify handling of configuration data

• Additional minor corrections /
clarifications / editorial changes; For
details please refer to the Change
Documentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Amend explanatory text

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Support dedicated allocation of pointer
variables

• Remove obsolete specification content

• Amend examples

• Editorial changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Support core scope specific memory
allocation

• Clean up requirement tracing

• editorial changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Support partitioning of BSW for safety
systems

• Remove obsolete memory sections in
Recommendation A

• Clarifications about the handling of SIZE
and ALIGNMENT

• editorial changes
▽

2 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Clarify usage of <X> in recovery and
saved data zone

• editorial changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Clarify usage of default section

2013-03-15 4.1.1 AUTOSAR
Administration

• Consistent naming pattern for memory
allocation keywords

• pre-define M1 values for the option
attribute of MemorySection and
SwAddrMethod

• added configuration for Compiler
Abstraction

• support BSW module specific MemMap
header files

• recommended memory allocation
keywords are reworked

2011-12-22 4.0.3 AUTOSAR
Administration

• Consistent naming pattern for memory
allocation keywords is introduced

• Refine definition the <PREFIX> part in
memory allocation keywords

2009-12-18 4.0.1 AUTOSAR
Administration

• ECU Configuration Parameters for
MemMap defined

• Define generation of MemMap header
files

• New standardised Memory Allocation
Keywords for new initialisation policy
CLEARED added

• Refinement of <SIZE> suffix of Memory
Allocation Keywords to <ALIGNMENT>
suffix,

• Clarify link MetaModel attribute values,

– Define MemorySectionType and
SectionInitializationPolicy for the
standardised Memory Allocation
Keywords

▽
▽

3 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
△

– Define that <NAME> used for Memory
Allocation Keywords is the
MemorySection shortName

• Application hint for usage of INLINE and
LOCAL_INLINE added

• Handling structs, arrays and unions
redefined

2010-02-02 3.1.4 AUTOSAR
Administration

• Typo errors are corrected throughout the
document

• Memory Mapping section has been
extended for application SWC

• Common Published information has
been updated

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2006-11-28 2.1 AUTOSAR
Administration

• In MEMMAP004,all size postfixes for
memory segment names were listed, the
keyword ’BOOLEAN was added, taking
into account the particular cases where
boolean data need to be mapped in a
particular segment.

• In MEMMAP004 and
SWS_MemMap_00021,tables are
defining the mapping segments
associated to #pragmas instructions,
adding some new segments to take into
account some implementation cases

• Document meta information extended

• Small layout adaptations made

2006-05-16 2.0 AUTOSAR
Administration

• Initial Release

4 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 8

2 Acronyms and Abbreviations 9

3 Related documentation 10
3.1 Input documents . 10
3.2 Related standards and norms . 11
3.3 Related specification . 11

4 Constraints and assumptions 12
4.1 Limitations . 12
4.2 Applicability to car domains . 12

5 Dependencies to other modules 13
5.1 File structure . 13

5.1.1 Code file structure . 13
5.1.2 Header file structure . 13

6 Requirements traceability 16

7 Functional specification 19
7.1 General issues . 19
7.2 Mapping of Variables and Code . 20

7.2.1 Splitting of Modules in allocatable Memory Parts 28
7.2.2 Config Constants versus non-config Constants 28
7.2.3 Variable Sections . 29
7.2.4 Constant and Calibration Sections 32
7.2.5 Code Sections . 34

7.3 Requirements on Memory Mapping Header Files 39
7.4 Usage Examples . 44

7.4.1 Code Section . 44
7.4.2 Fast Variable Section . 47
7.4.3 Code Section in ICC2 cluster . 52
7.4.4 Callout sections . 54
7.4.5 Allocatable Memory Parts . 56

8 API specification 59

9 Sequence diagrams 60

10 Configuration specification 61
10.1How to read this chapter . 61
10.2Containers and configuration parameters 61

10.2.1 MemMap . 61
10.2.2 MemMapAddressingModeSet . 62
10.2.3 MemMapAddressingMode . 67

6 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10.2.4 MemMapAllocation . 69
10.2.5 MemMapGenericMapping . 71
10.2.6 MemMapSectionSpecificMapping 73
10.2.7 MemMapMappingSelector . 75

10.3Published Information . 75

A Appendix 76
A.1 Referenced Meta Classes . 76
A.2 Source Code Example for ADC . 104
A.3 Memory Mapping Header File Example for ADC 105
A.4 Specification Items . 108

A.4.1 Added Specification Items in R25-11 108
A.4.2 Changed Specification Items in R25-11 108
A.4.3 Deleted Specification Items in R25-11 108

A.5 Trace Items not relevant for this document 108

7 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

1 Introduction and functional overview

This document specifies mechanisms for the mapping of code and data to specific
memory sections via memory mapping files. For many ECUs and microcontroller plat-
forms it is of utmost necessity to be able to map code, variables and constants module
wise to specific memory sections. Selection of important use cases:

Avoidance of waste of RAM
Besides symbols with defined alignment (e.g. code) further symbols of different align-
ment (e.g. 8, 16 and 64 bit) and size have to be allocated. If unsorted, the linker will
leave gaps in the memory in between those symbols. This is because the microcon-
troller platform requires a specific alignment of those symbols and the linkers usually
do not offer an optimization of variable allocation. This wastage of memory can be cir-
cumvented if the symbol are mapped to specific memory sections depending on their
alignment. So an according mean is provided where required.

Usage of specific RAM properties
Some variables (e.g. the RAM mirrors of the NVRAM Manager) must not be initialized
after a non cold-power-on resets. It shall be possible to map them to a RAM section
that is not initialized at any reset except cold-power-on-reset. For some variables (e.g.
variables that are accessed via bit masks) it improves both performance and code size
if these are located within a RAM section that allows bit manipulation instructions of
the compiler.

Usage of specific ROM properties
In large ECUs with external flash memory there is the requirement to map modules
with functions that are called very often to the internal flash memory that allows for fast
access and thus higher performance. Modules with functions that are called rarely or
that have lower performance requirements are mapped to external flash memory that
has slower access.

Usage of the same source code of a module for boot loader and application
If a module shall be used both in different contexts (e.g. boot loader and applica-
tion), it is necessary to allow the mapping of symbols to different memory sections. A
mechanism for mapping of code and data to memory sections that is supported by all
compilers listed in chapter 3.1 is the usage of pragmas. As #pragmas are very com-
piler specific, a mechanism that makes use of those #pragmas in a standardized way
has to be specified.

Support of Memory Protection and Partitioning
The usage of hardware memory protection requires an assignment of symbols to par-
titions. Therefore an additional separation of symbols into different memory (partition)
areas is needed. Such shall be realized by identifying the BSW module or SWC MSN
or additional feature prefixes as well as related software addressing methods.

8 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Memory Map-
ping specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
MAKW Memory Allocation Key Word

Table 2.1: Abbreviations and Acronyms

9 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[3] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[4] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[5] Basic Software Module Description Template
AUTOSAR_CP_TPS_BSWModuleDescriptionTemplate

[6] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[7] Guide to BSW Distribution
AUTOSAR_CP_EXP_BSWDistributionGuide

[8] Requirements on Debugging, Tracing and Profiling support of AUTOSAR Compo-
nents
AUTOSAR_CP_RS_DebugTraceProfile

[9] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

10 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for SWS Memory Mapping.

11 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

The user interface of the memory allocation mechanisms is assumed to be supported
by any ANSI-C compiler. Instead the implementation of the abstraction inside the
memory mapping header files is hardware, compiler and compiler version specific and
results in specific #pragmas. So the mode sets made available to the mechanism
need to reflect this limitation to be able to map to it accordingly.

A dedicated pack-control of structures is not supported. Hence global set-up
passed via compiler / linker parameters has to be used. A dedicated alignment
control of code, variables and constants is not supported. Hence affected objects
shall be assigned to different sections or a global setting passed via compiler / linker
parameters has to be used.

Originally during specification of abstraction and validation of concept the com-
pilers listed in chapter 3.1 have been considered. The mechanism is limited to those
and other compilers supporting the user interface and according #pragma abstraction.

4.2 Applicability to car domains

No restrictions.

12 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

5 Dependencies to other modules

[SWS_MemMap_00020]
Upstream requirements: SRS_BSW_00384, SRS_BSW_00351

⌈The SWS Memory Mapping is applicable for each AUTOSAR basic software module
and software component. Therefore the implementation of memory mapping files shall
fulfill the implementation and configuration specific needs of each software module in
a specific build scenario. See also [SWS_MemMap_00038], [SWS_MemMap_00003],
[SWS_MemMap_00018] and [SWS_MemMap_00001].⌋

5.1 File structure

5.1.1 Code file structure

Not applicable.

5.1.2 Header file structure

[SWS_MemMap_00028]
Upstream requirements: SRS_BSW_00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_

00464

⌈The Memory Mapping shall provide a BSW memory mapping header file if any
of the BSW Module Descriptions is describing a DependencyOnArtifact as re-
quiredArtifact.DependencyOnArtifact.category = MEMMAP In this case the
file name of the BSW memory mapping header file name is defined by the at-
tribute value requiredArtifact.DependencyOnArtifact.artifactDescrip-
tor.shortLabel in the BSW Module Description.⌋

Please note that [SWS_MemMap_00028] does support that either several BSW Mod-
ule Descriptions contributing to the same file (e.g MemMap.h for legacy code) or that
the same BSW Module Description specifies a set of memory mapping header files
with differnt names for example in case of a BSW Module Description of an ICC2 clus-
ter.

For instance:
<REQUIRED-ARTIFACTS>

<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>MemMap</SHORT-NAME>
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>

<SHORT-LABEL>MemMap.h</SHORT-LABEL>
<CATEGORY>SWHDR</CATEGORY>

</ARTIFACT-DESCRIPTOR>
</DEPENDENCY-ON-ARTIFACT>

13 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

</REQUIRED-ARTIFACTS>

Results in the generation of the requested Memory Allocation Key Words in the file
MemMap.h

[SWS_MemMap_00032]
Upstream requirements: SRS_BSW_00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_

00464

⌈For each basic software module description which is part of the input configuration a
basic software module specific memory mapping header file {Mip}_MemMap.h shall
be provided by the Memory Mapping if the BSW Module Descriptions is NOT describing
a DependencyOnArtifact as requiredArtifact.DependencyOnArtifact.
category = MEMMAP. Hereby {Mip} is composed according <Msn>[_<vi>_<ai>]
for basic software modules where

• <Msn> is the shortName (case sensitive) of the BswModuleDescription

• <vi> is the vendorId of the BSW module

• <ai> is the vendorApiInfix of the BSW module

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module which indicates that it does not use multiple
instantiation.⌋

«header»

{Mip}_MemMap.h
BSW module

«includes»

Figure 5.1: Basic Software Module specific memory mapping header file

Please note:
The approach of basic software module specific memory mapping header files imple-
ments the pattern of a user specific file split as specified in [SRS_BSW_00415]. The
concrete name pattern defined in [SWS_MemMap_00032] is deviating from the naming
scheme of [SRS_BSW_00415] since the module and user relationship is interpreted
from the opposite way around.

[SWS_MemMap_00029]
Upstream requirements: SRS_BSW_00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_

00464

⌈For each software component type which is part of the input configuration a soft-
ware component type specific memory mapping header file {componentType-
Name}_MemMap.h shall be provided by the Memory Mapping.⌋

14 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

SWC«header»

{componentTypeName}

_MemMap.h «includes»

Figure 5.2: Software Component type specific memory mapping header file

15 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

6 Requirements traceability

The following tables references the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column ’Satisfied by’ is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_Arti_00028] Grouping of Traceables [SWS_MemMap_00047]

[SRS_BSW_00006] The source code of software modules
above the µC Abstraction Layer
(MCAL) shall not be processor and
compiler dependent.

[SWS_MemMap_00003] [SWS_MemMap_00005]
[SWS_MemMap_00010] [SWS_MemMap_00036]

[SRS_BSW_00168] SW components shall be tested by a
function defined in a common API in
the Basis-SW

[SWS_MemMap_99999]

[SRS_BSW_00170] The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

[SWS_MemMap_99999]

[SRS_BSW_00306] AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_MemMap_00003] [SWS_MemMap_00005]
[SWS_MemMap_00006] [SWS_MemMap_00010]
[SWS_MemMap_00015] [SWS_MemMap_00016]
[SWS_MemMap_00018] [SWS_MemMap_00023]
[SWS_MemMap_00036]

[SRS_BSW_00328] All AUTOSAR Basic Software
Modules shall avoid the duplication of
code

[SWS_MemMap_00001] [SWS_MemMap_00005]

[SRS_BSW_00345] BSW Modules shall support
pre-compile configuration

[SWS_MemMap_00003]

[SRS_BSW_00351] Encapsulation of compiler specific
methods to map objects

[SWS_MemMap_00002] [SWS_MemMap_00003]
[SWS_MemMap_00005] [SWS_MemMap_00006]
[SWS_MemMap_00007] [SWS_MemMap_00010]
[SWS_MemMap_00011] [SWS_MemMap_00013]
[SWS_MemMap_00015] [SWS_MemMap_00016]
[SWS_MemMap_00018] [SWS_MemMap_00020]
[SWS_MemMap_00022] [SWS_MemMap_00023]
[SWS_MemMap_00026] [SWS_MemMap_00027]
[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032] [SWS_MemMap_00033]
[SWS_MemMap_00034] [SWS_MemMap_00035]
[SWS_MemMap_00036] [SWS_MemMap_00037]
[SWS_MemMap_00038] [SWS_MemMap_00039]
[SWS_MemMap_00040] [SWS_MemMap_00041]
[SWS_MemMap_00042] [SWS_MemMap_00043]
[SWS_MemMap_00044] [SWS_MemMap_00045]
[SWS_MemMap_00046] [SWS_MemMap_00060]
[SWS_MemMap_00061] [SWS_MemMap_00062]
[SWS_MemMap_00063] [SWS_MemMap_00064]
[SWS_MemMap_00070] [SWS_MemMap_00071]
[SWS_MemMap_00072] [SWS_MemMap_00073]
[SWS_MemMap_00080] [SWS_MemMap_00081]
[SWS_MemMap_00082] [SWS_MemMap_00083]

[SRS_BSW_00369] All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_MemMap_99999]

[SRS_BSW_00375] Basic Software Modules shall report
wake-up reasons

[SWS_MemMap_99999]

▽

16 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_BSW_00383] The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

[SWS_MemMap_99999]

[SRS_BSW_00384] The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_MemMap_00020]

[SRS_BSW_00386] The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_MemMap_99999]

[SRS_BSW_00388] Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_MemMap_99999]

[SRS_BSW_00389] Containers shall have names [SWS_MemMap_99999]

[SRS_BSW_00390] Parameter content shall be unique
within the module

[SWS_MemMap_99999]

[SRS_BSW_00392] Parameters shall have a type [SWS_MemMap_99999]

[SRS_BSW_00393] Parameters shall have a range [SWS_MemMap_99999]

[SRS_BSW_00395] The Basic Software Module
specifications shall list all
configuration parameter
dependencies

[SWS_MemMap_99999]

[SRS_BSW_00403] The Basic Software Module
specifications shall specify for each
parameter/container whether it
supports different values or
multiplicity in different configuration
sets

[SWS_MemMap_99999]

[SRS_BSW_00415] Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00416] The sequence of modules to be
initialized shall be configurable

[SWS_MemMap_99999]

[SRS_BSW_00417] Software which is not part of the
SW-C shall report error events only
after the Dem is fully operational.

[SWS_MemMap_99999]

[SRS_BSW_00419] If a pre-compile time configuration
parameter is implemented as const
it should be placed into a separate
c-file

[SWS_MemMap_99999]

[SRS_BSW_00422] Pre-de-bouncing of error status
information is done within the Dem

[SWS_MemMap_99999]

[SRS_BSW_00425] The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_MemMap_99999]

[SRS_BSW_00432] Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_MemMap_99999]

▽

17 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_BSW_00437] Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_MemMap_00038] [SWS_MemMap_00043]
[SWS_MemMap_00044] [SWS_MemMap_00060]
[SWS_MemMap_00061] [SWS_MemMap_00062]
[SWS_MemMap_00063] [SWS_MemMap_00064]
[SWS_MemMap_00070] [SWS_MemMap_00071]
[SWS_MemMap_00072] [SWS_MemMap_00073]
[SWS_MemMap_00080] [SWS_MemMap_00081]
[SWS_MemMap_00082] [SWS_MemMap_00083]

[SRS_BSW_00441] Naming convention for type, macro
and function

[SWS_MemMap_00022]

[SRS_BSW_00461] Modules called by generic modules
shall satisfy all interfaces requested
by the generic module

[SWS_MemMap_99999]

[SRS_BSW_00464] File names shall be considered case
sensitive regardless of the filesystem
in which they are used

[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00465] It shall not be allowed to name any
two files so that they only differ by the
cases of their letters

[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00469] Fault detection and healing of
production errors and extended
production errors

[SWS_MemMap_99999]

[SRS_BSW_00471] Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_MemMap_99999]

[SRS_BSW_00472] Avoid detection of two production
errors with the same root cause.

[SWS_MemMap_99999]

[SRS_BSW_00477] The functional interfaces of
AUTOSAR BSW modules shall be
specified in C99

[SWS_MemMap_00003] [SWS_MemMap_00018]
[SWS_MemMap_00023]

[SRS_BSW_00478] Timing limits of main functions [SWS_MemMap_99999]

[SRS_BSW_00490] List possible security events [SWS_MemMap_99999]

[SRS_BSW_00491] Specification of trigger conditions and
context data

[SWS_MemMap_99999]

Table 6.1: Requirements Tracing

18 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

7 Functional specification

7.1 General issues

The memory mapping files include the compiler and linker specific keywords for mem-
ory allocation into header and source files. These keywords control the assignment of
variables and functions to specific sections. Thereby implementations are independent
from compiler and microcontroller specific properties. The assignment of the sections
to dedicated memory areas / address ranges is not the scope of the memory mapping
file and is typically done via linker control files.

[SWS_MemMap_00001]
Upstream requirements: SRS_BSW_00328

⌈For each build scenario (e.g. Boot loader, ECU Application) an own set of memory
mapping files has to be provided.⌋

[SWS_MemMap_00002]
Upstream requirements: SRS_BSW_00351

⌈The memory mapping file name shall be {Mip}_MemMap.h for basic software mod-
ules and {componentTypeName}_MemMap.h for software components where {Mip}
is the Module implementation prefix and {componentTypeName} is the name of the
software component type.⌋

Please note that the information of {Mip} is taken from the Basic Software Module
Description of the related BSW module as described in [SWS_MemMap_00028] and
[SWS_MemMap_00032].

[SWS_MemMap_00010]
Upstream requirements: SRS_BSW_00006, SRS_BSW_00306, SRS_BSW_00351

⌈If a compiler/linker does not require specific commands to implement the functionality
of SWS Memory Mapping, the Memory Allocation Keyword defines might be undefined
without further effect.⌋

19 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00036]
Upstream requirements: SRS_BSW_00006, SRS_BSW_00306, SRS_BSW_00351

⌈If a compiler/linker does not support mandatory functionality for the kind of Memo-
rySection used by the BSW module or software component the Memory Allocation
Keyword shall be defined to raise an error.⌋

Example 7.1

1 #ifdef EEP_START_SEC_VAR_CLEARED_16
2 #undef EEP_START_SEC_VAR_CLEARED_16
3 #endif

As described in [SWS_MemMap_00029] the number of files depends on the number
of SwComponentTypes in the input configuration. To determine the number of Mem-
orySections the applicable SwcImplementations have to be known. These are
described in an AUTOSAR environment with the SwcToImplMapping in the Sys-
temMapping and / or via ECU Configuration values RteImplementationRef in a
RteSwComponentType container.
Knowing the SwcImplementations provides as well the number of MemorySec-
tions which have to be identified for [SWS_MemMap_00027]. For more details about
the content of a SwcImplementation see document [4] and [5].

Further on the total number of used MemorySections depends as well on the num-
ber of used BSW modules. These can be determined by the M1 instance of the
EcucValueCollection which refers to the MemMap’s EcucModuleConfigura-
tionValues. This EcucValueCollection refers as well to EcucModuleCon-
figurationValues of other Bsw Modules which refer again to BswImplementa-
tions via moduleDescription references. Knowing the BswImplementations
provides as well the number of MemorySections which have to be identified for
[SWS_MemMap_00026]. For more details about the content of a BswImplementa-
tion see document [5].

In [6] further information is provided how Memory Mapping is used in the AUTOSAR
Methodology.

7.2 Mapping of Variables and Code

[SWS_MemMap_00038] gives a recommendation to the granularity in which the differ-
ent types of variables and code should be allocated in a C implementation. The ref-
erenced subsection 7.2.3, 7.2.4 and subsection 7.2.5 defines the standardized names
for those memory allocation keywords. If an implementation needs to extend the defi-
nition of a memory allocation keyword it shall use the refinement possibility for <NAME>
as specified in [SWS_MemMap_00042]. Additionally, the <PREFIX> of the memory
allocation keyword can be adapted conform to [SWS_MemMap_00040].

20 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00038]
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈

Each AUTOSAR basic software module and software component shall support the
configuration of the following different Section Types:

• VAR as described in [SWS_MemMap_00060].

• VAR_FAST as described in [SWS_MemMap_00061].

• VAR_SLOW as described in [SWS_MemMap_00062].

• INTERNAL_VAR as described in [SWS_MemMap_00063].

• VAR_SAVED_ZONE as described in [SWS_MemMap_00064].

• CONST as described in [SWS_MemMap_00070].

• CONST_SAVED_RECOVERY_ZONE as described in [SWS_MemMap_00071].

• CONFIG_DATA as described in [SWS_MemMap_00072].

• CALIB as described in [SWS_MemMap_00073].

• CODE as described in [SWS_MemMap_00080].

• CODE_FAST as described in [SWS_MemMap_00081].

• CODE_SLOW as described in [SWS_MemMap_00082].

• CALLOUT_CODE as described in [SWS_MemMap_00083].

The shortcut {ALIGNMENT} means the typical variable alignment which shall be se-
lected according to the standard definition. In order to avoid memory gaps variables
are allocated separately according their size for the kind of memory sections where a
high amount of variables is expected, e.g. VAR. Hereby it is the task of the implementer
to ensure the proper granularity by defining memory sections with different {ALIGN-
MENT} postfixes for variables of different element sizes as described below.

It is the integrator’s job to ensure via appropriate memory mapping configuration (i.e.
using the proper alignment #pragmas or omitting them at all to let the compiler decide)
that the platform specific alignment requirements of objects of the respective size are
honored. Thereby the effective alignment can deviate from the {ALIGNMENT} post-fix.

BOOLEAN, used for variables and constants of size 1 bit

8, used for variables and constants which typically have to be aligned to 8 bit. For
instance used for variables and constants of size 8 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 8 bits.

16, used for variables and constants which typically have to be aligned to 16 bit. For
instance used for variables and constants of size 16 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 16 bits.

21 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

32, used for variables and constants which typically have to be aligned to 32 bit. For
instance used for variables and constants of size 32 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 32 bits.

64, used for variables and constants which typically have to be aligned to 64 bit. For
instance used for variables and constants of size 64 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 64 bits.

PTR, used for variables and constants whose value is the address of another variable,
so called pointers.

UNSPECIFIED, used for variables, constants, structure, array and unions when size
(alignment) does not fit the criteria of 8,16, 32, 64 bit or PTR. For instance used for
variables and constants of unknown size

In case structures and unions, it shall be allowed to use an alignment larger than the
bit size of the elements. For instance to facilitate copy instruction a structure may have
minimum 2 byte alignment, even if members are byte aligned. In this case, it should be
possible to use alignment 16 bit instead of 8 bit for this structure.

Note: The (embedded) application binary interface ((E)ABI) of some target architec-
tures (e.g., TriCore) imposes additional alignment requirements on aggregate types
type (e.g., structs) depending on the size of the structure. Those additional constraints
do not need to be taken in consideration when selecting the {ALIGNMENT} post-fix of
the Memory Allocation Keyword for variables and constants of those aggregate types.

The shortcut {INIT_POLICY} means the initialization policy of variables. Possible
INIT_POLICY postfixes are:

• CLEARED, used for not explicitly initialized variables.

• INIT, used for initialized variables. This are typically explicitly initialized vari-
ables, but it can be also used for not explicitly initialized variables to be able to
mix up both types to deal with legacy code.

• POWER_ON_CLEARED, used for variables that are not explicitly initialized (cleared)
during normal start-up. Instead these are cleared only after either a power on
reset of the microcontroller or a power on reset of a battery backup memory itself
after battery loss.

For more details and examples please refer to the table below.

Use INIT or CLEARED also for those variables which might be initialized at a later time
in the program flow, e.g. by an initialization routine. POWER_ON_CLEARED shall be
used for variables which shall survive resets only.

For optimizing the initialization at start-up, it is possible for any software vendor to apply
an initialization policy refinement inside the SwAddrMethod name, e.g.:

• <PREFIX>_SEC_VAR_POWER_ON_CLEARED_RSTSAFE_QM_8, used to express
reset safe variables.

22 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

• <PREFIX>_SEC_VAR_POWER_ON_CLEARED_NVRAM_QM_8, used to express
that the section contains NVRAM buffers.

• <PREFIX>_SEC_VAR_POWER_ON_CLEARED_BATTERY_BACKUP_QM_8, used
to express that the memory is a special battery backup device.

• <PREFIX>_SEC_VAR_INIT_INDETERMINATE_QM_8, used to express that the
section contains NVRAM buffers.

• <PREFIX>_SEC_VAR_INIT_SELFINIT_QM_8, used to express that the mem-
ory is a special battery backup device.

Depending on the used SwAddrMethod one can derive options to map to individual
ModeSets and so to different memory devices in the target project.

Note 1: For microcontrollers / processors which are equipped with Error Correction
Codes (ECC), the hardware needs to initialize the according memory in case of under
voltage due to lost ECC. This includes:

• Any ’normal’ system RAM without external supply, which needs to be initialized
when the microcontroller voltage drops below a threshold as the ECC codes be-
come invalid. This usually happens in case of a cold power on reset.

• Any ’standby’ supplied RAM, which needs to be initialized when the standby volt-
age drops below a threshold and the ECC codes become invalid.

As a consequence POWER_ON_CLEARED symbols cannot be stored inside of those
memory areas.

Note 2: Please consider that microcontrollers / processors with embedded LBIST (Log-
ical Build In Self Test), MBIST (Memory Build In Self Test) will initialize a specified
amount of memory when those tests are executed. So these memory devices shall not
be used for POWER_ON_CLEARED.⌋

Init Policy Allowed for Type Example Initializa-
tion Time

Behavior Note

CLEARED Not explicitly
initialized
variables

BSS uint8 my_bss; /* =0 */ any reset All objects are initialized to
0 or null pointer as per C
standard (6.7.8
Initialization clause 10).

This is typically used for
not explicitly initialized
objects with a static
storage duration.

DATA uint8 my_data=5; All objects are initialized
according to their
initializer.

INIT Initialized
variables

BSS uint8 my_bss; /* =0 */

any reset,
copytable
execution

All objects are initialized to
0 or null pointer as per C
standard (6.7.8
Initialization clause 10).

This is typically used for
either initialized or not
explicitly initialized objects
with a static storage
duration.

Note: Depending on the
used compiler it might not
be possible to combine
DATA and BSS
initialization due to limited
#pragmas.

▽

23 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
POWER_ON_
CLEARED

Power-on
cleared
variables

BSS uint8 my_bss; Cold
PowerOn
reset

All objects are initialized to
0 or null pointer, but only
on Cold PowerOn reset or
brownout reset. They are
not overwritten on a
regular warm reset (e.g.
software reset, watchdog
reset, external reset).

This deviates from the C
standard as all objects
with a static storage
duration shall be initialized
before program startup
(5.1.2 Execution
environments).

Table 7.1: Summary of Init Behavior

24 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00022]
Upstream requirements: SRS_BSW_00441, SRS_BSW_00351

⌈The keywords to be used before inclusion of the memory mapping header
file shall use the templates <PREFIX>_START_SEC_<NAME> or <PRE-
FIX>_STOP_SEC_<NAME>

Where:

• <PREFIX> is the <MIP> for BSW modules, if no SectionNamePrefix is de-
fined for the MemorySection. <MIP> is the capitalized module implementation
prefix built according to [SWS_BSW_00102].

OR

• <PREFIX> is the symbol (case sensitive) of the SectionNamePrefix for BSW
modules, if a SectionNamePrefix is defined for the MemorySection.

OR

• <PREFIX> is the shortName (case sensitive) of the AtomicSwComponentType
for software components.

AND

• <NAME> is the shortName of the MemorySection described in Basic Software
Module Description or a Software Component Description (case sensitive) if the
MemorySection has no symbol attribute defined.

OR

• <NAME> is the symbol of the MemorySection described in Basic Software Mod-
ule Description or a Software Component Description (case sensitive) if the Mem-
orySection has a symbol attribute defined.

⌋

Please note if the Memory Allocation Keywords shall appear in capital letters in the
code the related MemorySections in the Basic Software Module Description or Soft-
ware Component Description have to be named with capital letters.

[SWS_MemMap_00037]
Upstream requirements: SRS_BSW_00351

⌈The part <NAME> from [SWS_MemMap_00022] may contain the following ASIL key-
words to indicate the restriction/qualifications: {safety} = QM, ASIL_A, ASIL_B,
ASIL_C, ASIL_D

The {safety} tag is optional and indicates the maximum possible safety level. Down-
scaling in the project is possible inside memory mapping header files. If no {safety}
keyword is added the default shall be treated as QM (without any ASIL qualification).⌋

25 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00039]
Upstream requirements: SRS_BSW_00351

⌈The part <NAME> from [SWS_MemMap_00022] shall contain the following
{coreScope} keywords with the values GLOBAL as optional default without re-
strictions in memory access and LOCAL as mandatory alternative setting with
restrictions in memory access to one desired core.

Consequently, the {coreScope} value GLOBAL shall not be written in the MAKW as
well as SwAddrMethod name.

The usage of {coreScope} LOCAL is limited to the section types it is specified
for. In addition for section types VAR, VAR_FAST, VAR_SLOW, INTERNAL_VAR the
usage of {coreScope} is only permitted for {INIT_POLICY} equal to CLEARED or
INIT. This restriction shall reduce the complexity of memory layouts and reduce the
amount of memory holes due to typical allocation restrictions valid for non initialized
memory sections.⌋

A detailed summary can be found in the following table. Further examples and usage
hints are mentioned below.

Core
Scope in
MAKW or
SwAd-
drMethod

Valid for Rationale Useful
for

unset or
GLOBAL

variables
code
constants
config data
calibration
constants

A symbol can be accessed (read, write, execute)
by any core in global address space. Any
ModeSet with GLOBAL core scope can be used as
allocation target. Thus, a symbol can be allocated
close to a certain core using its GLOBAL
ModeSets.
GLOBAL scope shall be used for any user API
which shall be available to other BSW modules,
SWC or the RTE.

SWC
BSW
RTE
CDD

LOCAL variables
code
constants

A local symbol can be accessed (read, write,
execute) by the core it is mapped to only. Only
ModeSets with LOCAL core scope of the desired
core can be used as allocation target.

BSW
CDD

Table 7.2: Summary of Core Scope Behavior

In this regard the [constr_1402] in the document [4] is defined.

Examples:

• ADC_START_SEC_CODE - is allocated to GLOBAL scope, as GLOBAL is default

26 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

• PWM_KERNEL_START_SEC_CODE_LOCAL - is allocated to LOCAL scope and can
be mapped to a dedicated core using the unique prefix

Finally, it is an integrator decision to map memory section with the GLOBAL as well as
LOCAL property to a core specific memory section. For GLOBAL the allocation target
can be utilized to optimize the performance if the majority of memory accesses will
occur from a specific core.

When using LOCAL, one shall be aware that the call tree accessing the symbol
needs to be executed within at least the right core or at most the right partition on the
right core. This is because otherwise memory protection errors or access violations
might occur which usually lead to exceptional behaviour of the hardware.

More detailled recommendations on how to use the {coreScope} in an appro-
priate way can be found in the document [7].

[SWS_MemMap_00042]
Upstream requirements: SRS_BSW_00351

⌈For all section types, the part <NAME> from [SWS_MemMap_00022] may contain an
optional vendor specific {refinement} tag. It shall be used to refine the allocation or
initialization behavior (variables only). The used values are vendor specific and free of
choice.⌋

Please note that the name part <NAME> according [SWS_MemMap_00022] is pro-
vided either by MemorySection.shortName or MemorySection.symbol. In order
to provide the safety information the name part according [SWS_MemMap_00037]
needs to be part of the MemorySection.shortName or MemorySection.sym-
bol respectively. To provide the core scope qualification the name part according
[SWS_MemMap_00039] needs to be part of the MemorySection.shortName or
MemorySection.symbol.

Therefore the mandatory patterns for Memory Allocation Keywords are
{PREFIX}_START_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}

{PREFIX}_START_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]

{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{refinement}][_{safety}]_{ALIGNMENT}

{PREFIX}_START_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

{PREFIX}_START_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

Those are applied in the recommendations provided in subsection 7.2.3, 7.2.4 and
subsection 7.2.5.

27 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

7.2.1 Splitting of Modules in allocatable Memory Parts

To increase the performance some multi core architectures work with core local mem-
ory areas. As a consequence the access speed to specific memory areas depends
on the core where the code is executed. For instance a BSW module which is multi
core capable by implementation of the Master/Satellite-approach is usually beneficial
to split the interface of the BSW module from the "Master" functionality implemen-
tation. Another use case is to split a BSW module with several distinct features in
different memory parts. Those memory parts are typically composed out of a set of
sections (CODE, CONST, VAR) used or the implementation of the feature. This sup-
port that those memory parts can be assigned to set of physical controller memories
being close to the main user of the feature.

[SWS_MemMap_00040]
Upstream requirements: SRS_BSW_00351

⌈When a BSW module is split into allocatable memory parts the <PREFIX> as de-
scribed in [SWS_MemMap_00022] shall be build up according to [constr_4103] of [5].⌋

[SWS_MemMap_00041]
Upstream requirements: SRS_BSW_00351

⌈When a BSW module is split into allocatable memory parts all belonging Memory-
Sections.prefix needs to reference a SectionNamePrefix.⌋

Please note the example given in 7.4.5.

<Msn> <vi> <ai> SectionNamePre-
fix.Symbol
(if SectionNamePrefix is
defined)

Resulting Prefix

Fls 142 Ext FLS_142_EXT_FEATURE FLS_142_EXT_FEATURE
Fls 142 Ext undefined FLS_142_EXT
Adc don’t care undefined ADC_FEATURE ADC_FEATURE
Adc don’t care undefined undefined ADC

Table 7.3: Summary of Section Name Prefix for BSW Modules

7.2.2 Config Constants versus non-config Constants

There are basically two different kinds of constants in the implementation of an
AUTOSAR BSW Module.

1. Constants which are used to implement a configurable behavior. For the different
config classes of config data (i.e. everything that is placed in <Mip>_Lcfg.c
and <Mip>_PBcfg.c) the syntax of Memory Allocation Keywords are:
{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{refinement}][_ {safety}]_{ALIGNMENT}

28 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Note: {configClass} may only be PREBUILD or POSTBUILD. Thereby PRE-
BUILD represents both Pre-Compile time and Link time configuration
data.

See table in [SWS_MemMap_00072].

2. Constants which are used to implement a fixed value which is not related to
the configuration methodology of AUTOSAR. For non-config constants (i.e. ev-
erything that is placed in <Mip>.[ch] or <Mip>_<Implementation Exten-
sion>.[ch]) the Syntax of Memory Allocation Keywords are:
{PREFIX}_START_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

See table in [SWS_MemMap_00070].

7.2.3 Variable Sections

The following tables define keywords for variable sections:

[SWS_MemMap_00060] Section Type VAR
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{core
Scope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{core
Scope}]_{ALIGNMENT}

Description To be used for all global or static variables.
The name part _{refinement} shall be used to refine the allocation or initialization behavior.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type VAR

Section Initialization
Policy

{INIT_POLICY}

Status --

⌋

29 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00061] Section Type VAR_FAST
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_FAST_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_FAST_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description To be used for all global or static variables.
To be used for all global or static variables that have at least one of the following properties:
• accessed bitwise

• frequently used

• high number of accesses in source code

Some platforms allow the use of bit instructions for variables located in this specific RAM area as
well as shorter addressing instructions. This saves code and runtime.

The name part _{refinement} shall be used to refine the allocation or initialization behavior.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type VAR

Section Initialization
Policy

{INIT_POLICY}

Status --

⌋

[SWS_MemMap_00062] Section Type VAR_SLOW
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_SLOW_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_SLOW_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description To be used for all infrequently accessed global or static variables.
The name part _{refinement} shall be used to refine the allocation or initialization behavior.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type VAR

▽

30 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Section Initialization
Policy

{INIT_POLICY}

Status --

⌋

[SWS_MemMap_00063] Section Type INTERNAL_VAR
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_INTERNAL_VAR_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_INTERNAL_VAR_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description To be used for global or static variables those are accessible from a calibration tool.
The name part _{refinement} shall be used to refine the allocation or initialization behavior.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type VAR

Section Initialization
Policy

{INIT_POLICY}

Status --

⌋

[SWS_MemMap_00064] Section Type VAR_SAVED_ZONE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_SAVED_ZONE_{refinement}[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_SAVED_ZONE_{refinement}[_{safety}]_{ALIGNMENT}

Description To be used for RAM buffers of variables saved in non volatile memory.
The name part _{refinement} shall denote at least the specific content of the saved zone.
In the related SwAddrMethod the sectionInitializationPolicy attribute shall be set to
POWER-ON-CLEARED.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
Note: As the SectionType is considered coreGlobal, the attribute {coreScope} does not need to
be specified and is not part of the MAKW syntax.

Memory Section Type VAR

Section Initialization
Policy

POWER-ON-CLEARED

Status --

⌋

31 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

7.2.4 Constant and Calibration Sections

The following tables define keywords for constant and calibration sections.

[SWS_MemMap_00070] Section Type CONST
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CONST[_{refinement}][_{safety}][_{core
Scope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST[_{refinement}][_{safety}][_{core
Scope}]_{ALIGNMENT}

Description To be used for global or static constants.
The name part _{refinement} is the typical period time value and unit of the ExecutableEntitys in
this MemorySection. The name part _{refinement} is optional. Units are:
• US microseconds

• MS milli second

• S second

For example: 100US, 400US, 1MS, 5MS, 10MS, 20MS, 100MS, 1S

Please note that deviations from this typical period time are possible due to integration decisions
(e.g. RTEEvent To Task Mapping). Further on in special modes of the ECU the code may be
scheduled with a higher or lower period.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type CONST

Section Initialization
Policy

--

Status --

⌋

[SWS_MemMap_00071] Section Type CONST_SAVED_RECOVERY_ZONE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CONST_SAVED_RECOVERY_
ZONE_{refinement}[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST_SAVED_RECOVERY_
ZONE_{refinement}[_{safety}]_{ALIGNMENT}

▽

32 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Description To be used for ROM buffers of variables saved in non volatile memory.

The name part _{refinement} shall denote at least the specific content of the recovery zone.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
Note: As the SectionType is considered coreGlobal, the attribute {coreScope} does not need to
be specified and is not part of the MAKW syntax.

Memory Section Type CONST

Section Initialization
Policy

--

Status --

⌋

[SWS_MemMap_00072] Section Type CONFIG_DATA
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{refinement}]
[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{refinement}]
[_{safety}]_{ALIGNMENT}

Description Constants with attributes that show that they reside in one segment for module configuration.
The name part _{configClass} shall contain the configClass with one of the strings PREBUILD or
POSTBUILD.
The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the configClass with the possible
values {configClassPreBuild, configClassPostBuild}.
Note: As the SectionType is considered coreGlobal, the attribute {coreScope} does not need to
be specified and is not part of the MAKW syntax.

Memory Section Type CONFIG-DATA

Section Initialization
Policy

--

Status --

⌋

33 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00073] Section Type CALIB
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}

Description To be used for calibration constants.
The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
Note: As the SectionType is considered coreGlobal, the attribute {coreScope} does not need to
be specified and is not part of the MAKW syntax.

Memory Section Type CALPRM

Section Initialization
Policy

--

Status --

⌋

7.2.5 Code Sections

There are different kinds of execution code sections. This code sections shall be iden-
tified with dedicated keywords. If a section is not supported by the integrator and micro
controller then be aware that the keyword is ignored. The table below defines recom-
mended keywords for code sections:

[SWS_MemMap_00080] Section Type CODE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]

Description To be used for mapping code to application block, boot block, external flash etc.
The name part _{refinement} is the typical period time value and unit of the ExecutableEntitys in
this MemorySection. The name part _{refinement} is optional. Units are:
• US microseconds

• MS milli second

• S second

For example: 100US, 400US, 1MS, 5MS, 10MS, 20MS, 100MS, 1S

Please note that deviations from this typical period time are possible due to integration decisions
(e.g. RTEEvent To Task Mapping). Further on in special modes of the ECU the code may be
scheduled with a higher or lower period.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

▽

▽

34 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
△

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type CODE

Section Initialization
Policy

--

Status --

⌋

[SWS_MemMap_00081] Section Type CODE_FAST
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CODE_FAST[_{refinement}][_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE_FAST[_{refinement}][_{safety}][_{coreScope}]

Description To be used for code that shall go into fast code memory segments.
The FAST sections should be used when the execution does not happen in a well defined period
times but with the knowledge of high frequent access and /or high execution time. For example, a
callback for a frequent notification.
The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type CODE

Section Initialization
Policy

--

Status --

⌋

35 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00082] Section Type CODE_SLOW
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CODE_SLOW[_{refinement}][_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE_SLOW[_{refinement}][_{safety}][_{coreScope}]

Description To be used for code that shall go into slow code memory segments.
The SLOW sections should be used when the execution does not happen in a well defined period
times but with the knowledge of low frequent access. For example, a callback in case of seldom
error.
The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type CODE

Section Initialization
Policy

--

Status --

⌋

[SWS_MemMap_00083] Section Type CALLOUT_CODE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈
Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CALLOUT_CODE[_{refinement}][_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CALLOUT_CODE[_{refinement}][_{safety}][_{coreScope}]

Description To be used for mapping callouts of the BSW Modules which shall typically use the global linker
settings for callouts.
The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.
The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type CODE

Section Initialization
Policy

--

Status --

⌋

36 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00003]
Upstream requirements: SRS_BSW_00006, SRS_BSW_00306, SRS_BSW_00345, SRS_BSW_

00351, SRS_BSW_00477

⌈Each AUTOSAR basic software module and software component shall wrap declara-
tion and definition of code, variables and constants using the following mechanism:

1. Definition of start symbol for module memory section

2. Inclusion of the memory mapping header file

3. Declaration/definition of code, variables or constants belonging to the specified
section

4. Definition of stop symbol for module memory section

5. Inclusion of the memory mapping header file

Note: In between 1 to 5 there shall be no other preprocessor code added. This would
prevent correct interpretation of source code and cause later preprocessor errors.

Note: For code which is invariably implemented as inline function the wrapping
with Memory Allocation Keywords is not required.⌋

Application hint:
The implementations of AUTOSAR basic software modules or AUTOSAR software
components are not allowed to rely on an implicit assignment of objects to default sec-
tions because properties of default sections are platform and tool dependent. There-
fore this style of code implementation is not platform independent.

The inclusion of the memory mapping header files within the code is a MISRA violation.
As neither executable code nor symbols are included (only pragmas) this violation is
an approved exception without side effects.

The start and stop symbols for section control are configured with section identifiers
defined in the inclusion of memory mapping header file. For details on configuring
sections see " Configuration specification".

Example 7.2

For example (BSW Module):
1 #define EEP_START_SEC_VAR_INIT_16
2 #include "Eep_MemMap.h"
3 static uint16 EepTimer = 100;
4 static uint16 EepRemainingBytes = 16;
5 #define EEP_STOP_SEC_VAR_INIT_16
6 #include "Eep_MemMap.h"

Example 7.3

For example (SWC):
1 #define Abc_START_SEC_CODE

37 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

2 #include "Abc_MemMap.h"
3 /* --- Write a Code here */
4 #define Abc_STOP_SEC_CODE
5 #include "Abc_MemMap.h"

[SWS_MemMap_00018]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351, SRS_BSW_00477

⌈Each AUTOSAR basic software module and software component shall support, for
all C-objects, the configuration of the assignation to one of the memory types (code,
variables and constants).⌋

[SWS_MemMap_00023]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351, SRS_BSW_00477

⌈Memory mapping header files shall not be included inside the body of a function.⌋

The goal of this requirement is to support compiler which do not support #pragma
inside the body of a function. To force a special memory mapping of a function’s static
variable, this variable must be moved to file static scope.

Application hint concerning callout sections:

According [SWS_MemMap_00083] an individual set of memory allocation keywords
per callout function shall be used. This provides on one hand a high flexibility for the
configuration of memory allocation. On the other hand this bears the risk of high con-
figuration effort for the MemMap module because all individual memory sections have to
be configured for the MemMap header file generation. To ease the integration of such
callout sections it is recommended that in the Basic Software Module Description all
MemorySections which are describing callouts and which typically are treated with
the same linker properties should refer to the identical SwAddrMethod. According the
recommended memory sections in section 7.2.5 "code sections" the SwAddrMethod
defined by AUTOSAR would have the reference path:

/AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE

For instance:
<MEMORY-SECTION>

<SHORT-NAME>COM_SOMECALLOUT_CODE</SHORT-NAME>
<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">/

AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE</SW-
ADDRMETHOD-REF>

</MEMORY-SECTION>

This enables the integrater either to configer all of the memory sections identical with
the means of the MemMapGenericMapping and additionally to handle the special
cases individually with the means of the MemMapSectionSpecificMapping. See
as well the example 7.4.4 Callout sections

38 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

7.3 Requirements on Memory Mapping Header Files

[SWS_MemMap_00005]
Upstream requirements: SRS_BSW_00328, SRS_BSW_00006, SRS_BSW_00306, SRS_BSW_

00351

⌈The memory mapping header files shall provide a mechanism to select different code,
variable or constant sections by checking the definition of the module specific Memory
Allocation Key Words for starting a section (see [SWS_MemMap_00038]). Code, vari-
ables or constants declared after this selection shall be mapped to this section.⌋

[SWS_MemMap_00026]
Upstream requirements: SRS_BSW_00351

⌈Each BSW memory mapping header file shall support the Memory Allocation Key-
words to start and to stop a section for each belonging MemorySection defined in a
BswImplementation which is part of the input configuration.⌋

[SWS_MemMap_00033]
Upstream requirements: SRS_BSW_00351

⌈All MemorySections defined in a BswImplementation belong to the
{Mip}_MemMap.h memory mapping header file if the BswImplementation does NOT
contain a DependencyOnArtifact as requiredArtifact.DependencyOnArti-
fact.category = MEMMAP⌋

Please note also [SWS_MemMap_00032].

[SWS_MemMap_00034]
Upstream requirements: SRS_BSW_00351

⌈All MemorySection defined in a BswImplementation belong to the memory map-
ping header file defined by the attribute requiredArtifact.artifactDescrip-
tor.shortLabel if the BswImplementation does contain exactly one Depen-
dencyOnArtifact as requiredArtifact.DependencyOnArtifact.category
= MEMMAP⌋

Please note also [SWS_MemMap_00028].

[SWS_MemMap_00035]
Upstream requirements: SRS_BSW_00351

⌈All MemorySection defined in a BswImplementation and associated with the
identical SectionNamePrefix belong to the memory mapping header file defined
by the attribute requiredArtifact.artifactDescriptor.shortLabel of the
DependencyOnArtifact which is referenced by the SectionNamePrefix with a
implementedIn reference.⌋

In this case the if the BswImplementation may contain several DependencyOnArti-
fact as with requiredArtifact. DependencyOnArtifact.category = MEMMAP

39 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

This will be used to describe an ICC2 cluster with one BswModuleDescription.
Please note also [SWS_MemMap_00028].

[SWS_MemMap_00027]
Upstream requirements: SRS_BSW_00351

⌈The software component type specific memory mapping header file {component-

TypeName}_MemMap.h shall support the Memory Allocation Keywords to start and to
stop a section for each MemorySection defined in a SwcImplementation associ-
ated of this software component type.⌋

[SWS_MemMap_00015]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351

⌈The selected section shall be activated, if the section start macro is defined before
including of the memory mapping header file.⌋

Assumption of use:
Before first usage of a memory mapping header file in a compilation unit it shall be
ensured that all symbols are redirected to either default sections or special sections to
collect those symbols if supported by the compiler / linker. This ensures that symbols
with missing or wrong memory allocation can be detected.

[SWS_MemMap_00043]
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈If a section is selected, pragmas shall be set in a way to control the compiler / linker
so that the intended symbol types are allocated properly.⌋

Please note that after selecting a section all symbols not covered by the selection are
treated by the default settings (see Assumption of Use).

[SWS_MemMap_00006]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351

⌈The selected section shall be deactivated, if the section stop macro is defined before
including of the memory mapping header file.⌋

[SWS_MemMap_00044]
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

⌈If a section is deselected the settings used before starting the section shall be restored
if supported by the compiler / linker.⌋

[SWS_MemMap_00016]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351

⌈The selection of a section shall not be nested and only influence one of the three
different symbol types of code, variables, or constants concurrently.⌋

40 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Application hint:
The used pragmas behind a section shall be selected according to the manual of the
used compiler / linker. In addition, the following hints might be considered:

• According to [SWS_MemMap_00043] the combination of code and constant
pragmas below the same code section might be required to allow allocation of
constants created by the compiler according to its optimization strategy.

• Setting combined pragmas for data as well as bss for allocation of variables under
the same section might be useful to support initialized and uninitialized variables
using the same initialization policy setting inside a section e.g., INIT can be used
to initialize data to value and bss to zero similarly.

• Setting #pragmas for unused symbol types to undefined values shall be done to
handle inaccurate non-handled symbols.

[SWS_MemMap_00047]
Upstream requirements: RS_Arti_00028

⌈To support the function level tracing according to RS_DebugTraceProfile [8] it shall
be possible to extend or replace the section name by the symbol and object file name.
This allows a grouping of those symbols (functions, tasks, runnables) to one and the
same memory group for tracing inside the linker invocation file (locator file).⌋

Rationale:
For the purpose of function level tracing it is required to group all relevant symbols into a
contiguous memory area regardless of the previously used memory allocation keyword
applied to it. But due to the fact, that usually several symbols share the same memory
allocation keyword the section names need to be altered when generating the memory
allocation header files to catch those in the locator file or by additional postprocessing
tools tuning the memory allocation.

Usage hint:
Adding the symbol name to the section will cause significant build time impact depend-
ing on the used compiler. So it should be applied only when function level tracing is
used.

[SWS_MemMap_00007]
Upstream requirements: SRS_BSW_00351

⌈The memory mapping header files shall check if they have been included with a valid
Memory Allocation Keyword and in a valid - not nested - sequence (no START preceded
by a START, no STOP without the corresponding START). This shall be done by a
preprocessor check.⌋

[SWS_MemMap_00011]
Upstream requirements: SRS_BSW_00351

⌈The memory mapping header files shall undefine the module or software component
specific Memory Allocation Key Words for starting or stopping a section.⌋

41 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[SWS_MemMap_00013]
Upstream requirements: SRS_BSW_00351

⌈The memory mapping header files shall use if-else structures to reduce the compila-
tion effort.⌋

[SWS_MemMap_00045]
Upstream requirements: SRS_BSW_00351

⌈The memory mapping header shall not contain sections of other BSW modules or
software components.⌋

[SWS_MemMap_00046]
Upstream requirements: SRS_BSW_00351

⌈The memory mapping header files shall be used for memory allocation purpose only.⌋

Rationale:
As the memory mapping header files are usually generated or hand coded by the inte-
gration responsible party one can not assume that specific definitions will be provided.

According to previous requirements, the memory mapping header can be implemented
as shown in the following example:

Example 7.4

1 /* Initialization of overall error handling */
2 #define MEMMAP_ERROR
3

4 /* Keyword evaluation */
5 #if defined {START_MAKW}
6 #undef MEMMAP_ERROR
7 #undef {START_MAKW}
8 #ifndef MEMMAP_SEQUENCE_OPEN
9 /* pragma start */

10 {PRAGMAS}
11 /* pragma end */
12 #define MEMMAP_SEQUENCE_OPEN
13 #define MEMMAP_SEQUENCE_OPEN_{SEQUENCE_MAKW}
14 #else
15 #error "{FileName}: {SEQUENCE_MAKW}: Please STOP the sequence

before, START must not be followed by START!"
16 #endif
17 #elif defined {STOP_MAKW}
18 #undef MEMMAP_ERROR
19 #undef {STOP_MAKW}
20 #ifdef MEMMAP_SEQUENCE_OPEN
21 #ifdef MEMMAP_SEQUENCE_OPEN_{SEQUENCE_MAKW}
22 /* unhandled pragma start */
23 {RESTORE_PRAGMAS}
24 /* unhandled pragma end */
25 #undef MEMMAP_SEQUENCE_OPEN
26 #undef MEMMAP_SEQUENCE_OPEN_{SEQUENCE_MAKW}

42 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

27 #else
28 #error "{FileName}: {SEQUENCE_MAKW}: START section is followed by

wrong STOP section statement!"
29 #endif
30 #else
31 #error "{FileName}: {SEQUENCE_MAKW}: No START statement given

before STOP statement! STOP must not be followed by STOP!"
32 #endif
33 #endif
34

35 #if defined {START_MAKW} /* Next MAKW */
36 ...
37 #elif defined {STOP_MAKW}
38 ...
39 #endif
40

41 ...
42

43 /* Error evaluation */
44 #ifdef MEMMAP_ERROR
45 #undef MEMMAP_ERROR
46 #error "{FileName}: Undefined or missing START / STOP statement,

please check your source code or re-generate the MemMap Header
file!"

47 #endif

The used wildcards shall have the following meaning:

Wildcard Explanation Example

{START_MAKW} Start MAKW ADC_START_SEC_VAR_INIT_ASIL_B_32

{STOP_MAKW} Stop MAKW ADC_STOP_SEC_VAR_INIT_ASIL_B_32

{SEQUENCE_MAKW} Keyword without
START/STOP

ADC_SEC_VAR_INIT_ASIL_B_32

{FileName} Name of the
Memory Mapping
Header File

Adc_MemMap.h

{PRAGMAS} Pragmas used for
allocation

/* Example Altium CTC */
#pragma section fardata
"ram.partition_asil_b.32"
#pragma section farbss
"ram.partition_asil_b.32"
#pragma clear

#pragma section code "unhandled"
#pragma section rodata "unhandled"

{RESTORE_PRAGMAS} Pragmas for
unhandled
sections

/* Example Altium CTC */
#pragma section fardata "unhandled"
#pragma section farbss "unhandled"
#pragma section code "unhandled"
#pragma section rodata "unhandled"

Table 7.4: MemMap Wildcards

43 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Note:
Since its error prone to determine expected properties for memory which is not explic-
itly handled by Memory Allocation Key Words usually those symbols are treated in a
way to cause linker errors. The unhandled or default sections might be used to catch
those non-handled objects.

7.4 Usage Examples

The examples in this section shall illustrate the relationship between the Basic Software
Module Descriptions, Software Component Descriptions, the ECU configuration of the
Memory Mapping and the Memory Mapping header files.

7.4.1 Code Section

The following example shows ApplicationSwComponentType "MySwc" which con-
tains in its SwcInternalBehavior a RunnableEntity "Run1". The RunnableEn-
tity "Run1" references the SwAddrMethod "CODE" which sectionType attribute
is set to code. This expresses the request to allocate the RunnableEntity code into
a code section with the name "CODE".

MemMap relevant

RTE contract relevant

IB_MySwc:

SwcInternalBehavior

MySwc:

ApplicationSwComponentType

Impl_MySwc:

SwcImplementation

CODE: SwAddrMethod

sectionType = code

Run1:

RunnableEntity

symbol = Run1

MySwcResources:

ResourceConsumption

CODE:

MemorySection

+memorySection

+swAddrmethod

+runnable

+swAddrmethod

+resourceConsumption

+internalBehavior

+behavior

Figure 7.1: Example of ApplicationSwComponentType with code section

44 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

According the SWS RTE [9] the Runnable Entity prototype in the Application Header
File of the software component is emitted as:

Example 7.5

Runnable Entity prototype in Application Header File Rte_MySwc.h according
SWS_Rte_7194

1 #define MySwc_START_SEC_CODE
2 #include "MySwc_MemMap.h"
3

4 void MySwc_Run1(void);
5

6 #define MySwc_STOP_SEC_CODE
7 #include "MySwc_MemMap.h"

Please note that the same Memory Allocation Keywords have to be used for the func-
tion definition of "MySwc_Run1" and all other functions of the Software Component
which shall be located to same MemorySection.

The SwcImplementation "Impl_MySwc" associated with the ApplicationSwCom-
ponentType "MySwc" defines that it uses a MemorySection named CODE. The
MemorySection "CODE" refers to SwAddrMethod "CODE". This indicates that the
module specific (abstract) memory section CODE share a common addressing strat-
egy defined by SwAddrMethod "CODE".

45 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

SWC / BSWM Description

MemMap Ecuc Parameter Value Description

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingModeSet

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = #pragma section code "fls_code" CR LF #pragma

definition = MemMapAddressingModeStart

CNF_SEC_CODE: EcucContainerValue

definition = MemMapGenericMapping

CNF_DEFAULT: EcucContainerValue

definition = MemMapAllocation

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

:EcucTextualParamValue

value = #pragma section code "i l legal" CR LF #pragma

definition = MemMapAddressingModeStop

MemMap: EcucModuleDef

lowerMultipl icity = 0

upperMultiplicity = 1

(from MemMap)

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

CODE: SwAddrMethod

sectionType = code

+definition

+value

+referenceValue

+container

+parameterValue

+referenceValue

+parameterValue

+subContainer

+subContainer

+container

+value

Figure 7.2: Example of MemMap configuration for a code section

46 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

With the means of the MemMapGenericMapping "CNF_SEC_CODE" Memory
Mapping is configured that all module specific (abstract) memory sections re-
ferring to SwAddrMethod "CODE" are using the MemMapAddressingModeSet
"CODE_INTERNAL". MemMapAddressingModeSet "CODE_INTERNAL" defines the
proper statements to start and to stop the mapping of code to the specific linker sec-
tions by the usage of the related Memory Allocation Keywords.

With this information the Memory Allocation Header for the Software Component shall
implement the following MAKW:

• MySwc_START_SEC_CODE

• MySwc_STOP_SEC_CODE

7.4.2 Fast Variable Section

The following example shows ApplicationSwComponentType "MySwc" which
contains in its SwcInternalBehavior two VariableDataPrototypes "FooBar"
and "EngSpd"’.
The VariableDataPrototype "FooBar" references a ImplementationDataType
which is associated to a SwBaseType defining baseTypeSize = 8. This denotes a
variable size of 8 bit for the data implementing "FooBar".
The VariableDataPrototype "EngSpd" references a Implementation-
DataType which is associated to a SwBaseType defining baseTypeSize = 16. This
denotes a variable size of 16 bit for the data implementing "EngSpd".

Both VariableDataPrototypes references the SwAddrMethod "VAR_FAST_INIT"
which sectionType attribute is set to "var" and the memoryAllocationKeyword-
Policy is set to addrMethodShortNameAndAlignment.

This denotes that the variables implementing the associated VariableDataProto-
types have to be sorted according their size into different MemorySections.

47 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

SWC Description

VAR_FAST_INIT: SwAddrMethod

sectionType = var

sectionInitial izationPolicy = init

memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

FooBar:

VariableDataPrototype

uint8: ImplementationDataType

uint8: BaseType

baseTypeSize = 8

«atpVariation»

:SwDataDefProps

«atpVariation»

:SwDataDefProps

IB_MySwc:

SwcInternalBehavior

MySwc:

ApplicationSwComponentType

Impl_MySwc:

SwcImplementation

uint16: ImplementationDataType

«atpVariation»

:SwDataDefProps

uint16: BaseType

baseTypeSize = 16

EngSpd:

VariableDataPrototype

«atpVariation»

:SwDataDefProps

+baseType

+internalBehavior

+swDataDefProps

+swAddrMethod

+swDataDefProps

+implicitInterRunnableVariable

+swDataDefProps

+type

+explicitInterRunnableVariable

+swDataDefProps

+swAddrMethod

+baseType

+behavior

+type

Figure 7.3: Example of ApplicationSwComponentType with VariableDataProto-
types

Please note that in this example both VariableDataPrototypes have to be im-
plemented by RTE. The RTE again has to provide a BSW Module description defin-
ing the used MemorySections. Further on the RTE might allocate additional buffer
for instance to implement implicit communication behavior. In this example the RTE
uses four different MemorySections "VAR_FAST_INIT_8", "VAR_FAST_INIT_16"’,
"VAR_FAST_INIT_TASK_BUF_8" and "VAR_FAST_INIT_TASK_BUF_16" to sort vari-
ables according their size and to allocate additional buffers.

48 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

SWC Description

RTE BSWM Description

VAR_FAST_INIT: SwAddrMethod

sectionType = var

sectionInitial izationPolicy = init

memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

RTE:

BswModuleDescription

RTE_xyz:

BswInternalBehavior

RTE_xyz:

BswImplementation

VAR_FAST_INIT_8:

MemorySection

alignment = 8

RTE_xyz_resources:

ResourceConsumption

VAR_FAST_INIT_16:

MemorySection

alignment = 16

VAR_FAST_INIT_TASK_BUF_16:

MemorySection

alignment = 16

VAR_FAST_INIT_TASK_BUF_8:

MemorySection

alignment = 8

+behavior

+memorySection

+resourceConsumption

+memorySection

+memorySection

+swAddrmethod

+memorySection
+internalBehavior

+swAddrmethod+swAddrmethod+swAddrmethod

Figure 7.4: Example of Basic Software Module Description of RTE

All of these MemorySections are associated with the SwAddrMethod
"VAR_FAST_INIT" This indicates that the module specific (abstract) memory sections
"VAR_FAST_INIT_8", "VAR_FAST_INIT_16", "VAR_FAST_INIT_TASK_BUF_8" and
"VAR_FAST_INIT_TASK_BUF_16" share a common addressing strategy defined by
SwAddrMethod "VAR_FAST_INIT".

49 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

MemMap Ecuc Parameter Value Description

VAR_NEAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

:EcucTextualParamValue

value = #pragma section nearbss "data_near_fast_8" CR LF #pragma section neardata "data_near_fast_8"

definition = MemMapAddressingModeStart

:EcucTextualParamValue

value = #pragma section nearbss "i llegal" CR LF #pragma section neardata "il legal"

definition = MemMapAddressingModeStop

:EcucTextualParamValue

value = var

definition = MemMapSectionType

:EcucTextualParamValue

value = init

definition = MemMapSupportedSectionInitializationPolicy

VAR_INIT_NEAR_8: EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = 8

definition = MemMapAlignmentSelector

VAR_INIT_NEAR_16:

EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = #pragma section nearbss "data_near_fast_16" CR LF #pragma section neardata "data_near_fast_16"

definition = MemMapAddressingModeStart

:EcucTextualParamValue

value = #pragma section nearbss "i llegal" CR LF #pragma section neardata "il legal"

definition = MemMapAddressingModeStop

:EcucTextualParamValue

value = 16

definition = MemMapAlignmentSelector

MemMap: EcucModuleDef

lowerMultipl icity = 0

upperMultipl icity = 1

(from MemMap)

:EcucTextualParamValue

value = AddrMethodShortNameAndAlignment

definition = MemMapSupportedMemoryAllocationKeywordPolicy

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

+container

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+subContainer

+parameterValue

+subContainer

+definition

+parameterValue

Figure 7.5: Example of MemMap configuration for a data section

50 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

The ECU Configuration of Memory Mapping defines a MemMapAddressingModeSet
"VAR_NEAR_INIT" This supports the sectionType = var, sectionInitializa-
tionPolicy = "INIT" and memoryAllocationKeywordPolicy = addrMethod-
ShortNameAndAlignment. In this example MemMapAddressingModes are shown
for the alignment 8 and 16 (MemMapAlignmentSelector = 8 and MemMapAlign-
mentSelector = 16).

MemMap Ecuc Parameter Value Description

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

VAR_NEAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

CNF_VAR_FAST_INIT: EcucContainerValue

definition = MemMapGenericMapping

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

VAR_FAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

CNF_DEFAULT: EcucContainerValue

definition = MemMapAllocation

MemMap: EcucModuleDef

lowerMultipl icity = 0

upperMultiplicity = 1

(from MemMap)

SWC Description

VAR_FAST_INIT: SwAddrMethod

sectionType = var

sectionInitial izationPolicy = init

memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

+value

+referenceValue

+container

+definition

+container

+container

+referenceValue

+container

+value

Figure 7.6: Example of MemMap configuration for a MemMapGenericMapping

With the means of the MemMapGenericMapping "CNF_VAR_FAST_INIT" Memory
Mapping is configured that all module specific (abstract) memory sections referring
to SwAddrMethod "VAR_FAST_INIT" are using the MemMapAddressingModeSet
"VAR_NEAR_INIT". MemMapAddressingModeSet "VAR_NEAR_INIT" defines the
proper statements to start and to stop the mapping of variables with different align-
ments (in this example 8 and 16) to the specific linker sections by the usage of the
related Memory Allocation Keywords.

51 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

With this information the Memory Allocation Header for the BSW shall implement the
following MAKW:

• RTE_START_SEC_VAR_FAST_INIT_8

• RTE_STOP_SEC_VAR_FAST_INIT_8

• RTE_START_SEC_VAR_FAST_INIT_16

• RTE_STOP_SEC_VAR_FAST_INIT_16

• RTE_START_SEC_VAR_FAST_INIT_TASK_BUF_8

• RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_8

• RTE_START_SEC_VAR_FAST_INIT_TASK_BUF_16

• RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_16

7.4.3 Code Section in ICC2 cluster

The following examples shows a Basic Software Module description of a Code Section
in ICC2 cluster:

52 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

MEM: BswModuleDescription

category = BSW_CLUSTER

NvM_MainFunction:

BswSchedulableEntity

MemIf_SetMode:

BswCalledEntity

MEM:

BswInternalBehavior

MemIf:

BswSchedulerNamePrefix

symbol = MemIf

NvM:

BswSchedulerNamePrefix

symbol = NvM

NvM_WriteBlock:

BswCalledEntity

NvM_MainFunction:

BswModuleEntry

NvM_WriteBlock:

BswModuleEntry

MemIf_SetMode:

BswModuleEntry

CODE: SwAddrMethod

sectionType = code

MEM:

BswImplementation

MEM:

ResourceConsumption

CODE_MEMIF:

MemorySection

symbol = CODE

CODE_NVM:

MemorySection

symbol = CODE

MEMIF_PART:

SectionNamePrefix

symbol = MEMIF

NVM_PART:

SectionNamePrefix

symbol = NVM

�����������	
�
��	

�������
��	
�
��	

�	�����������	
�
��	

�	�������
��	
�
��	

+implementedEntry

+executableEntity

+memorySection

+implementedEntry

+schedulerNamePrefix

+implementedEntry

+swAddrMethod

+schedulerNamePrefix

+swAddrMethod

+entity

+prefix+sectionNamePrefix

+swAddrmethod

+behavior

+swAddrmethod

+entity

+implementedEntry

+internalBehavior

+entity

+swAddrMethod

+schedulerNamePrefix

+executableEntity

+memorySection

+executableEntity

+sectionNamePrefix

+implementedEntry

+schedulerNamePrefix

+implementedEntry

+resourceConsumption

+prefix

+schedulerNamePrefix

Figure 7.7: Example of BSW Module Description of an ICC2 cluster

With this information the Memory Allocation Header shall implement the following
MAKW:

53 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

• MEMIF_START_SEC_CODE

• MEMIF_STOP_SEC_CODE

• NVM_START_SEC_CODE

• NVM_STOP_SEC_CODE

7.4.4 Callout sections

The following Basic Software Module Description would result in the support of the
Memory Allocation Keywords in the MemMap header file:

54 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

COM: BswModuleDescription

category = BSW_MODULE

Com_TxIpduCallout:

BswModuleEntry

Com_RxIpduCallout:

BswModuleEntry

COM: BswInternalBehavior

COM:

BswImplementation

COM:

ResourceConsumption

COM_TXIPDUCALLOUT_CODE:

MemorySection

COM_RXIPDUCALLOUT_CODE:

MemorySection

CALLOUT_CODE:

SwAddrMethod

sectionType = code

CNF_SEC_CALLOUT_CODE:

EcucContainerValue

definition = MemMapGenericMapping

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

CNF_DEFAULT:

EcucContainerValue

definition = MemMapAllocation

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingModeSet

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingMode

Bsw Module Description

MemMap Ecu Configuration Values

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

+value

+value

+behavior

+subContainer

+outgoingCallback

+referenceValue

+memorySection

+container

+referenceValue

+subContainer

+swAddrMethod

+container

+outgoingCallback

+resourceConsumption

+memorySection +swAddrMethod

+internalBehavior

Figure 7.8: Example of description and configuration for callout code

With this information the Memory Allocation Header shall implement the following
MAKW. These are build according to SEC_CALLOUT_CODE_... which is derived from
BswModuleEntry.ShortName defined on Figure 7.8:

• COM_START_SEC_CALLOUT_CODE_COM_RXIPDUCALLOUT

55 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

• COM_STOP_SEC_CALLOUT_CODE_COM_RXIPDUCALLOUT

• COM_START_SEC_CALLOUT_CODE_COM_TXIPDUCALLOUT

• COM_STOP_SEC_CALLOUT_CODE_COM_TXIPDUCALLOUT

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical SwAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

7.4.5 Allocatable Memory Parts

The following example shows an Adc driver which is internally split into an interface part
and a kernel part. Usually the kernel part is allocated to memory with high performance
for the micro controller core handling the interrupts. In opposite the interface part is
usually allocated to memory with a good average performance for all micro controller
cores using the Adc module.

56 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

VAR_INIT_QM_LOCAL_16:

MemorySection

symbol = VAR_INIT_QM_LOCAL_16

Adc: BswModuleDescription

category = BSW_MODULE

Adc_ReadGroup:

BswCalledEntity
IbAdc:

BswInternalBehavior

CODE_QM_LOCAL:

SwAddrMethod

sectionType = code

option = safetyQM,coreLocal

Adc:

BswImplementation

rcAdc:

ResourceConsumption
CODE_QM_GLOBAL: MemorySection

symbol = CODE_QM_LOCAL

CODE_QM_LOCAL: MemorySection

symbol = CODE_QM_LOCAL

ADC_USERIF: SectionNamePrefix

symbol = ADC_USERIF

ADC_AUTOSCANKERNEL: SectionNamePrefix

symbol = ADC_AUTOSCANKERNEL

Adc_IsrGroupScanCompleted:

BswInterruptEntity

CODE_QM_GLOBAL:

SwAddrMethod

sectionType = code

option = safetyQM,coreGlobal

VAR_INIT_QM_LOCAL: SwAddrMethod

sectionType = var

option = safetyQM,coreLocal

memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

VAR_INIT_QM_GLOBAL_8:

MemorySection

symbol = VAR_INIT_QM_GLOBAL_8

VAR_INIT_QM_GLOBAL: SwAddrMethod

sectionType = var

option = safetyQM,coreGlobal

memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

VAR_INIT_QM_LOCAL_8:

MemorySection

symbol = VAR_INIT_QM_LOCAL_8

+prefix

+swAddrmethod+swAddrmethod

+memorySection

+sectionNamePrefix

+executableEntity

+swAddrmethod

+internalBehavior

+memorySection

+prefix

+memorySection

+swAddrmethod

+memorySection

+memorySection

+swAddrmethod

+sectionNamePrefix

+prefix

+behavior

+entity

+swAddrMethod

+executableEntity

+prefix

+swAddrmethod

+entity

+resourceConsumption

+prefix

Figure 7.9: Example of description and configuration for allocatable memory parts

The shown configuration would result in the support of following Memory Allocation
Keywords in the Adc_MemMap.h header file:

57 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

• ADC_AUTOSCANKERNEL_START_SEC_CODE_QM_LOCAL

• ADC_AUTOSCANKERNEL_STOP_SEC_CODE_QM_LOCAL

• ADC_AUTOSCANKERNEL_START_SEC_VAR_INIT_QM_LOCAL_8

• ADC_AUTOSCANKERNEL_STOP_SEC_VAR_INIT_QM_LOCAL_8

• ADC_AUTOSCANKERNEL_START_SEC_VAR_INIT_QM_LOCAL_16

• ADC_AUTOSCANKERNEL_STOP_SEC_VAR_INIT_QM_LOCAL_16

• ADC_USERIF_START_SEC_CODE_QM_GLOBAL

• ADC_USERIF_STOP_SEC_CODE_QM_GLOBAL

• ADC_USERIF_START_SEC_VAR_INIT_QM_GLOBAL_8

• ADC_USERIF_STOP_SEC_VAR_INIT_QM_GLOBAL_8

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical SwAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

58 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

8 API specification

Not applicable.

59 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

9 Sequence diagrams

Not applicable.

60 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MemMap.

Chapter 10.3 specifies published information of the module MemMap.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification” .

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 Functional specification.

10.2.1 MemMap

[ECUC_MemMap_00001] Definition of EcucModuleDef MemMap ⌈

Module Name MemMap

Description Configuration of the Memory Mapping module.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

MemMapAddressingModeSet 0..* Defines a set of addressing modes which might apply to a Sw
AddrMethod.

MemMapAllocation 0..* Defines which MemorySection of a BSW Module or a Software
Component is implemented with which MemMapAddressing
ModeSet.
This can either be specified for a set of MemorySections which
refer to an identical SwAddrMethod (MemMapGenericMapping)
or for individual MemorySections (MemMapSectionSpecific
Mapping). If both are defined for the same MemorySection the
MemMapSectionSpecificMapping overrules the MemMap
GenericMapping.

⌋

61 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

MemMap: EcucModuleDef

lowerMultipl icity = 0
upperMultipl icity = 1

MemMapAddressingModeSet:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

MemMapAllocation:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

+container

+container

Figure 10.1: Overview about MemMap

10.2.2 MemMapAddressingModeSet

[ECUC_MemMap_00002] Definition of EcucParamConfContainerDef MemMapAd-
dressingModeSet ⌈

Container Name MemMapAddressingModeSet

Parent Container MemMap

Description Defines a set of addressing modes which might apply to a SwAddrMethod.

Multiplicity 0..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemMapSupportedAddressingMethodOption 0..* [ECUC_MemMap_00009]

MemMapSupportedMemoryAllocationKeywordPolicy 0..* [ECUC_MemMap_00017]

MemMapSupportedSectionInitializationPolicy 0..* [ECUC_MemMap_00008]

MemMapSupportedSectionType 0..* [ECUC_MemMap_00007]

Included Containers
Container Name Multiplicity Dependency

MemMapAddressingMode 1..* Defines a addressing mode with a set of #pragma statements
implementing the start and the stop of a section.

⌋

62 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[ECUC_MemMap_00009] Definition of EcucStringParamDef MemMapSupported
AddressingMethodOption ⌈

Parameter Name MemMapSupportedAddressingMethodOption

Parent Container MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.
The attribute option of a swAddrMethod mapped via MemMapGenericMapping to this
MemMapAddressingModeSet shall be equal to one of the configured MemMap
SupportedAddressMethodOption’s

Multiplicity 0..*

Type EcucStringParamDef

Default value –

Regular Expression [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_?

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00017] Definition of EcucEnumerationParamDef MemMapSup-
portedMemoryAllocationKeywordPolicy ⌈

Parameter Name MemMapSupportedMemoryAllocationKeywordPolicy

Parent Container MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.
The attribute MemoryAllocationKeywordPolicy of a swAddrMethod mapped via Mem
MapGenericMapping to this MemMapAddressingModeSet shall be equal to one of the
configured MemMapSupportedMemoryAllocationKeywordPolicy’s

Multiplicity 0..*

Type EcucEnumerationParamDef

MEMMAP_ALLOCATION_
KEYWORD_POLICY_ADDR_
METHOD_SHORT_NAME

The Memory Allocation Keyword is build with the
short name of the SwAddrMethod. This is the
default value if the atttribute does not exist in the
SwAddrMethod.

Range

MEMMAP_ALLOCATION_
KEYWORD_POLICY_ADDR_
METHOD_SHORT_NAME_AND_
ALIGNMENT

The Memory Allocation Keyword is build with the
the short name of the SwAddrMethod and the
alignment attribute of the MemorySection. This
requests a separation of objects in memory
dependent from the alignment and is not
applicable for RunnableEntitys and Bsw
SchedulableEntitys.

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –
▽

63 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00008] Definition of EcucStringParamDef MemMapSupported
SectionInitializationPolicy ⌈

Parameter Name MemMapSupportedSectionInitializationPolicy

Parent Container MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.
The sectionIntializationPolicy attribute value of a swAddrMethod mapped via MemMap
GenericMapping to this MemMapAddressingModeSet shall be equal to one of the
configured MemMapSupportedSectionIntializationPolicy’s.
Please note that SectionInitializationPolicyType describes the intended initialization of
MemorySections.
The following values are standardized in AUTOSAR Methodology (see chapter 7.2.1):
• INIT

• CLEARED

• POWER-ON-CLEARED

Note: The values are defined similar to the representation of enumeration types in the
XML schema to ensure backward compatibility.

Multiplicity 0..*

Type EcucStringParamDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00007] Definition of EcucEnumerationParamDef MemMapSup-
portedSectionType ⌈

Parameter Name MemMapSupportedSectionType

Parent Container MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.
The attribute sectionType of a swAddrMethod mapped via MemMapGenericMapping or
MemMapSectionSpecificMapping to this MemMapAddressingModeSet shall be equal
to one of the configured MemMapSupportedSectionType’s.

▽

64 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Multiplicity 0..*

Type EcucEnumerationParamDef

MEMMAP_SECTION_TYPE_
CAL_PRM

To be used for calibratable constants of
ECU-functions.

MEMMAP_SECTION_TYPE_
CODE

To be used for mapping code to application
block, boot block, external flash etc.

MEMMAP_SECTION_TYPE_
CONFIG_DATA

Constants with attributes that show that they
reside in one segment for module configuration.

MEMMAP_SECTION_TYPE_
CONST

To be used for global or static constants.

MEMMAP_SECTION_TYPE_
EXCLUDE_FROM_FLASH

Values existing in the ECU but not dropped down
in the binary file. No upload should be needed to
obtain access to the ECU data. The ECU will
never be touched by the instrumentation tool,
with the exception of upload. These are memory
areas which are not overwritten by downloading
the executable.

Range

MEMMAP_SECTION_TYPE_
VAR

To be used for global or static variables. The
expected initialization is specified with the
attribute sectionInitializationPolicy.

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

65 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

MemMapAddressingModeSet:

EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultiplicity = *

MemMapAddressingMode:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultipl icity = *

MemMapAddressingModeStart: EcucMulti lineStringParamDef

upperMultipl icity = 1

lowerMultipl icity = 1

MemMapAddressingModeStop: EcucMulti lineStringParamDef

upperMultipl icity = 1

lowerMultipl icity = 1

MemMapAlignmentSelector: EcucStringParamDef

upperMultipl icity = *

lowerMultipl icity = 1

regularExpression = [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

MemMapSupportedSectionType:

EcucEnumerationParamDef

upperMultipl icity = *

lowerMultiplicity = 0

MemMapSupportedSectionInitial izationPolicy:

EcucStringParamDef

upperMultiplicity = *

lowerMultipl icity = 0

MemMapSupportedAddressingMethodOption:

EcucStringParamDef

upperMultipl icity = *

lowerMultipl icity = 0

regularExpression = [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_?

MemMapSupportedMemoryAllocationKeywordPolicy:

EcucEnumerationParamDef

upperMultiplicity = *

lowerMultipl icity = 0

Software Component Template, BSW Module

Description Template, Generic Structure Template

Software Component Template, BSW Module

Description Template, Generic Structure Template

Generic Structure Template

«enumeration»

MemorySectionType

l i terals

 var

 code

 const

 calprm

 configData

 excludeFromFlash

 calibrationVariables

 varFast

 varNoInit

 varPowerOnInit

 calibrationOffl ine

 calibrationOnline

 userDefined

«primitive»

SectionInitial izationPolicyType

«primitive»

Identifier

+ blueprintValue: String [0..1]

+ namePattern: String [0..1]

«enumeration»

MemoryAllocationKeywordPolicyType

l i terals

 addrMethodShortName

 addrMethodShortNameAndAlignment

«primitive»

AlignmentType

tags

xml.xsd.customType = ALIGNMENT-TYPE

xml.xsd.pattern = [1-9][0-9]*|0[xX][0-9a-fA-F]*|0[bB][0-1]+|0[0-7]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

xml.xsd.type = string

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+subContainer

+parameter

Figure 10.2: Overview about MemMapAddressingModeSet

66 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10.2.3 MemMapAddressingMode

[ECUC_MemMap_00003] Definition of EcucParamConfContainerDef MemMapAd-
dressingMode ⌈

Container Name MemMapAddressingMode

Parent Container MemMapAddressingModeSet

Description Defines a addressing mode with a set of #pragma statements implementing the start
and the stop of a section.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemMapAddressingModeStart 1 [ECUC_MemMap_00004]

MemMapAddressingModeStop 1 [ECUC_MemMap_00005]

MemMapAlignmentSelector 1..* [ECUC_MemMap_00006]

No Included Containers

⌋

[ECUC_MemMap_00004] Definition of EcucMultilineStringParamDef MemMapAd-
dressingModeStart ⌈

Parameter Name MemMapAddressingModeStart

Parent Container MemMapAddressingMode

Description Defines a set of #pragma statements implementing the start of a section.

Multiplicity 1

Type EcucMultilineStringParamDef

Default value –

Regular Expression –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00005] Definition of EcucMultilineStringParamDef MemMapAd-
dressingModeStop ⌈

Parameter Name MemMapAddressingModeStop

Parent Container MemMapAddressingMode

Description Defines a set of #pragma statements implementing the start of a section.

Multiplicity 1

Type EcucMultilineStringParamDef

▽

67 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Default value –

Regular Expression –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00006] Definition of EcucStringParamDef MemMapAlignment
Selector ⌈

Parameter Name MemMapAlignmentSelector

Parent Container MemMapAddressingMode

Description Defines a the alignments for which the MemMapAddressingMode applies. The to be
used alignment is defined in the alignment attribute of the MemorySection. If the Mem
MapAlignmentSelector fits to alignment attribute of the MemorySection the set of
#pragmas of the related MemMapAddressingMode shall be used to implement the start
and the stop of a section.
Please note that the same MemMapAddressingMode can be applicable for several
alignments, e.g. "8" bit and "UNSPECIFIED".

Multiplicity 1..*

Type EcucStringParamDef

Default value –

Regular Expression [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

68 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10.2.4 MemMapAllocation

[ECUC_MemMap_00010] Definition of EcucParamConfContainerDef MemMapAl-
location ⌈

Container Name MemMapAllocation

Parent Container MemMap

Description Defines which MemorySection of a BSW Module or a Software Component is
implemented with which MemMapAddressingModeSet.
This can either be specified for a set of MemorySections which refer to an identical Sw
AddrMethod (MemMapGenericMapping) or for individual MemorySections (MemMap
SectionSpecificMapping). If both are defined for the same MemorySection the Mem
MapSectionSpecificMapping overrules the MemMapGenericMapping.

Multiplicity 0..*

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

MemMapGenericMapping 0..* Defines which SwAddrMethod is implemented with which Mem
MapAddressingModeSet.
The pragmas for the implementation of the MemorySelector
Keywords are taken from the MemMapAddressingModeStart
and MemMapAddressingModeStop parameters of the MemMap
AddressingModeSet for the individual alignments.
That this mapping becomes valid requires matching MemMap
SupportedSectionType’s, MemMapSupportedSection
InitializationPolicy’s and MemMapSupportedAddressingMethod
Option’s.
The MemMapGenericMapping applies only if it is not overruled
by an MemMapSectionSpecificMapping

MemMapMappingSelector 0..* The container holds a section criteria reusable for MemMap
GenericMappings.

MemMapSectionSpecificMapping 0..* Defines which MemorySection of a BSW Module or a Software
Component is implemented with which MemMapAddressing
ModeSet.
The pragmas for the implementation of the MemorySelector
Keywords are taken from the MemMapAddressingModeStart
and MemMapAddressingModeStop parameters of the MemMap
AddressingModeSet for the specific alignment of the Memory
Section.
The MemMapSectionSpecificMapping precedes a mapping
defined by MemMapGenericMapping.

⌋

69 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

MemMapAllocation:

EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultiplicity = *

MemMapGenericMapping:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultipl icity = *

MemMapSectionSpecificMapping:

EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultipl icity = *

Identifiable

MemorySection

+ alignment: AlignmentType [0..1]

+ memClassSymbol: CIdentifier [0..1]

+ option: Identifier [0..*]

+ size: PositiveInteger [0..1]

+ symbol: Identifier [0..1]

ARElement

AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]

+ sectionInitial izationPolicy: SectionInitial izationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

MemMapAddressingModeSetRef:

EcucReferenceDef

upperMultipl icity = 1

lowerMultiplicity = 1

MemMapSwAddressMethodRef:

EcucForeignReferenceDef

upperMultipl icity = 1

lowerMultipl icity = 1

destinationType = SW-ADDR-METHOD

MemMapAddressingModeSetRef:

EcucReferenceDef

upperMultipl icity = 1

lowerMultipl icity = 1

MemMapMemorySectionRef:

EcucForeignReferenceDef

upperMultipl icity = 1

lowerMultipl icity = 1

destinationType = MEMORY-SECTION

MemMapMappingSelector:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultipl icity = *

MemMapPrefixSelector:

EcucStringParamDef

lowerMultipl icity = 0

upperMultiplicity = 1

MemMapMappingSelectorRef:

EcucReferenceDef

lowerMultipl icity = 0

upperMultipl icity = 1

+subContainer

+reference

+swAddrmethod 0..1

+subContainer

+subContainer
+reference

+destination

+parameter

+reference

+reference

+reference

Figure 10.3: Overview about MemMapAllocation

70 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10.2.5 MemMapGenericMapping

[ECUC_MemMap_00011] Definition of EcucParamConfContainerDef MemMap
GenericMapping ⌈

Container Name MemMapGenericMapping

Parent Container MemMapAllocation

Description Defines which SwAddrMethod is implemented with which MemMapAddressingMode
Set.
The pragmas for the implementation of the MemorySelectorKeywords are taken from
the MemMapAddressingModeStart and MemMapAddressingModeStop parameters of
the MemMapAddressingModeSet for the individual alignments.
That this mapping becomes valid requires matching MemMapSupportedSectionType’s,
MemMapSupportedSectionInitializationPolicy’s and MemMapSupportedAddressing
MethodOption’s.
The MemMapGenericMapping applies only if it is not overruled by an MemMapSection
SpecificMapping

Multiplicity 0..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemMapAddressingModeSetRef 1 [ECUC_MemMap_00012]

MemMapMappingSelectorRef 0..1 [ECUC_MemMap_00023]

MemMapSwAddressMethodRef 1 [ECUC_MemMap_00013]

No Included Containers

⌋

[ECUC_MemMap_00012] Definition of EcucReferenceDef MemMapAddressing
ModeSetRef ⌈

Parameter Name MemMapAddressingModeSetRef

Parent Container MemMapGenericMapping

Description Reference to the MemMapAddressingModeSet which applies to the MemMapGeneric
Mapping.

Multiplicity 1

Type Reference to MemMapAddressingModeSet

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

71 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

[ECUC_MemMap_00023] Definition of EcucReferenceDef MemMapMappingSe-
lectorRef ⌈

Parameter Name MemMapMappingSelectorRef

Parent Container MemMapGenericMapping

Description Reference to a MemMapPrefixSelector. The owning MemMapGenericMapping is only
effective for those memories where the MemMapMappingSelector matches.

Multiplicity 0..1

Type Reference to MemMapMappingSelector

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00013] Definition of EcucForeignReferenceDef MemMapSwAd-
dressMethodRef ⌈

Parameter Name MemMapSwAddressMethodRef

Parent Container MemMapGenericMapping

Description Reference to the SwAddrMethod which applies to the MemMapGenericMapping.

Multiplicity 1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

72 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10.2.6 MemMapSectionSpecificMapping

[ECUC_MemMap_00014] Definition of EcucParamConfContainerDef MemMap
SectionSpecificMapping ⌈

Container Name MemMapSectionSpecificMapping

Parent Container MemMapAllocation

Description Defines which MemorySection of a BSW Module or a Software Component is
implemented with which MemMapAddressingModeSet.
The pragmas for the implementation of the MemorySelectorKeywords are taken from
the MemMapAddressingModeStart and MemMapAddressingModeStop parameters of
the MemMapAddressingModeSet for the specific alignment of the MemorySection.
The MemMapSectionSpecificMapping precedes a mapping defined by MemMap
GenericMapping.

Multiplicity 0..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemMapAddressingModeSetRef 1 [ECUC_MemMap_00015]

MemMapMemorySectionRef 1 [ECUC_MemMap_00016]

No Included Containers

⌋

[ECUC_MemMap_00015] Definition of EcucReferenceDef MemMapAddressing
ModeSetRef ⌈

Parameter Name MemMapAddressingModeSetRef

Parent Container MemMapSectionSpecificMapping

Description Reference to the MemMapAddressingModeSet which applies to the MemMapModule
SectionSpecificMapping.

Multiplicity 1

Type Reference to MemMapAddressingModeSet

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemMap_00016] Definition of EcucForeignReferenceDef MemMapMem-
orySectionRef ⌈

Parameter Name MemMapMemorySectionRef

Parent Container MemMapSectionSpecificMapping

Description Reference to the MemorySection which applies to the MemMapSectionSpecific
Mapping.

▽

73 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Multiplicity 1

Type Foreign reference to MEMORY-SECTION

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

74 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

10.2.7 MemMapMappingSelector

[ECUC_MemMap_00021] Definition of EcucParamConfContainerDef MemMap
MappingSelector ⌈

Container Name MemMapMappingSelector

Parent Container MemMapAllocation

Description The container holds a section criteria reusable for MemMapGenericMappings.

Multiplicity 0..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemMapPrefixSelector 0..1 [ECUC_MemMap_00022]

No Included Containers

⌋

[ECUC_MemMap_00022] Definition of EcucStringParamDef MemMapPrefixSelec-
tor ⌈

Parameter Name MemMapPrefixSelector

Parent Container MemMapMappingSelector

Description The parameter MemMapPrefixSelector defines a regular expression which shall be
applied to the <PREFIX> part of the memory allocation keywords. The mapping using
this selector is only effective for those memories where the <PREFIX> part of the
memory allocation keyword matches the regular expression.
Note: This is in particular intended the restrict the usage of of a MemMapAddressing
ModeSet for a sub set of BSW Modules or Software Components or a subset of
allocatable memory parts inside BSW Modules or Software Components.

Multiplicity 0..1

Type EcucStringParamDef

Default value –

Regular Expression –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information” .

75 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

A Appendix

A.1 Referenced Meta Classes

Class ApplicationSwComponentType

Note The ApplicationSwComponentType is used to represent the application software.
Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table A.1: ApplicationSwComponentType

Class AtomicSwComponentType (abstract)

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an
AtomicSwComponentType can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the
AtomicSwComponentType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

Table A.2: AtomicSwComponentType

Class BaseTypeDirectDefinition

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Aggregated by BaseType.baseTypeDefinition

Attribute Type Mult. Kind Note

baseType
Encoding

BaseTypeEncoding
String

0..1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.
Tags: xml.sequenceOffset=90

▽

76 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class BaseTypeDirectDefinition

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.
Tags: xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.
Tags: xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".
Tags: xml.sequenceOffset=100

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example
BaseType with shortName: "MyUnsignedInt" native
Declaration: "unsigned short"
Results in
typedef unsigned short MyUnsignedInt;
If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.
If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.
This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.
Tags: xml.sequenceOffset=120

Table A.3: BaseTypeDirectDefinition

Class BswImplementation

Note Contains the implementation specific information in addition to the generic specification (BswModule
Description and BswBehavior). It is possible to have several different BswImplementations referring to
the same BswBehavior.
Tags: atp.recommendedPackage=BswImplementations
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

arRelease
Version

RevisionLabelString 0..1 attr Version of the AUTOSAR Release on which this
implementation is based. The numbering contains three
levels (major, minor, revision) which are defined by
AUTOSAR.

behavior BswInternalBehavior 0..1 ref The behavior of this implementation.
This relation is made as an association because
• it follows the pattern of the SWCT

• since ARElement cannot be split, but we want supply
the implementation later, the BswImplementation is not
aggregated in BswBehavior

▽

77 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class BswImplementation

preconfigured
Configuration

EcucModule
ConfigurationValues

* ref Reference to the set of preconfigured (i.e. fixed)
configuration values for this BswImplementation.
If the BswImplementation represents a cluster of several
modules, more than one EcucModuleConfigurationValues
element can be referred (at most one per module),
otherwise at most one such element can be referred.
Tags: xml.roleWrapperElement=true

recommended
Configuration

EcucModule
ConfigurationValues

* ref Reference to one or more sets of recommended
configuration values for this module or module cluster.

vendorApiInfix Identifier 0..1 attr In driver modules which can be instantiated several times
on a single ECU, SRS_BSW_00347 requires that the
names of files, APIs, published parameters and memory
allocation keywords are extended by the vendorId and a
vendor specific name. This parameter is used to specify
the vendor specific name. In total, the implementation
specific API name is generated as follows: <Module
Name>_<vendorId>_ <vendorApiInfix>_<API name from
SWS>.
E.g. assuming that the vendorId of the implementer is
123 and the implementer chose a vendorApiInfix of
"v11r456" an API name Can_Write defined in the SWS
will translate to Can_123_v11r456_Write.
This attribute is mandatory for all modules with upper
multiplicity > 1. It shall not be used for modules with
upper multiplicity =1.
See also SWS_BSW_00102.

vendorSpecific
ModuleDef

EcucModuleDef * ref Reference to
• the vendor specific EcucModuleDef used in this Bsw

Implementation if it represents a single module

• several EcucModuleDefs used in this Bsw
Implementation if it represents a cluster of modules

• one or no EcucModuleDefs used in this Bsw
Implementation if it represents a library

Tags: xml.roleWrapperElement=true

Table A.4: BswImplementation

Class BswModuleDescription

Note Root element for the description of a single BSW module or BSW cluster. In case it describes a BSW
module, the short name of this element equals the name of the BSW module.
Tags: atp.recommendedPackage=BswModuleDescriptions
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AtpStructureElement ,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Aggregated by ARPackage.element, AtpClassifier .atpFeature

Attribute Type Mult. Kind Note

bswModule
Dependency

BswModuleDependency * aggr Describes the dependency to another BSW module.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDependency.shortName, bsw
ModuleDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

▽

78 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class BswModuleDescription

bswModule
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the BSW module.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDocumentation, bswModule
Documentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

expectedEntry BswModuleEntry * ref Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=expectedEntry.bswModuleEntry, expected
Entry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

implemented
Entry

BswModuleEntry * ref Specifies an entry provided by this module which can be
called by other modules. This includes "main" functions,
interrupt routines, and callbacks. Replacement of
providedEntry / expectedCallback.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implementedEntry.bswModuleEntry,
implementedEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internalBehavior BswInternalBehavior * aggr The various BswInternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=internalBehavior.shortName
xml.sequenceOffset=65

moduleId PositiveInteger 0..1 attr Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.
Tags: xml.sequenceOffset=5

providedClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module provides a client server entry
which can be called from another partition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedClientServerEntry.shortName,
providedClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

providedData VariableDataPrototype * aggr Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedData.shortName, provided
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

▽

79 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class BswModuleDescription

providedMode
Group

ModeDeclarationGroup
Prototype

* aggr A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedModeGroup.shortName, provided
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTrigger Trigger * aggr A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=releasedTrigger.shortName, released
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module requires a client server entry
which can be implemented on another partition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredClientServerEntry.shortName,
requiredClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredData VariableDataPrototype * aggr Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredData.shortName, required
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

requiredMode
Group

ModeDeclarationGroup
Prototype

* aggr Specifies that this module or cluster depends on a certain
mode group. The requiredModeGroup is local to this
context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredModeGroup.shortName, required
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

▽

80 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class BswModuleDescription

requiredTrigger Trigger * aggr Specifies that this module or cluster reacts upon an
external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredTrigger.shortName, required
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table A.5: BswModuleDescription

Class DependencyOnArtifact

Note Dependency on the existence of another artifact, e.g. a library.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by Implementation.generatedArtifact, Implementation.requiredArtifact, Implementation.requiredGenerator
Tool

Attribute Type Mult. Kind Note

artifact
Descriptor

AutosarEngineering
Object

0..1 aggr The specified artifact needs to exist.

usage DependencyUsage
Enum

* attr Specification for which process step(s) this dependency is
required.

Table A.6: DependencyOnArtifact

Class EcucModuleConfigurationValues

Note Head of the configuration of one Module. A Module can be a BSW module as well as the RTE and ECU
Infrastructure.
As part of the BSW module description, the EcucModuleConfigurationValues element has two different
roles:
The recommendedConfiguration contains parameter values recommended by the BSW module vendor.
The preconfiguredConfiguration contains values for those parameters which are fixed by the
implementation and cannot be changed.
These two EcucModuleConfigurationValues are used when the base EcucModuleConfigurationValues
(as part of the base ECU configuration) is created to fill parameters with initial values.
Tags: atp.recommendedPackage=EcucModuleConfigurationValuess
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

container EcucContainerValue * aggr Aggregates all containers that belong to this module
configuration.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=container.shortName, container.variation
Point.shortLabel
vh.latestBindingTime=postBuild
xml.sequenceOffset=10

definition EcucModuleDef 0..1 ref Reference to the definition of this EcucModule
ConfigurationValues element. Typically, this is a vendor
specific module configuration.
Tags: xml.sequenceOffset=-10

▽

81 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class EcucModuleConfigurationValues

ecucDefEdition RevisionLabelString 0..1 attr This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform to / are
based on.
For the Definition of ModuleDef ECUC Parameters the
AdminData shall be used to express the semantic
changes. The compatibility rules between the definition
and value revision labels is up to the module’s vendor.

implementation
ConfigVariant

EcucConfiguration
VariantEnum

0..1 attr Specifies the kind of deliverable this EcucModule
ConfigurationValues element provides. If this element is
not used in a particular role (e.g. preconfigured
Configuration or recommendedConfiguration) then the
value shall be one of VariantPreCompile, VariantLink
Time, VariantPostBuild.

module
Description

BswImplementation 0..1 ref Referencing the BSW module description, which this
EcucModuleConfigurationValues element is configuring.
This is optional because the EcucModuleConfiguration
Values element is also used to configure the ECU
infrastructure (memory map) or Application SW-Cs.
However in case the EcucModuleConfigurationValues are
used to configure the module, the reference is mandatory
in order to fetch module specific "common" published
information.

postBuildVariant
Used

Boolean 0..1 attr Indicates whether a module implementation has or plans
to have (i.e., introduced at link or post-build time) new
post-build variation points. TRUE means yes, FALSE
means no. If the attribute is not defined, FALSE
semantics shall be assumed.

Table A.7: EcucModuleConfigurationValues

Class EcucValueCollection
Note This represents the anchor point of the ECU configuration description.

Tags: atp.recommendedPackage=EcucValueCollections
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

ecucValue EcucModule
ConfigurationValues

* ref References to the configuration of individual software
modules that are present on this ECU.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=ecucValue.ecucModuleConfigurationValues,
ecucValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

ecuExtract System 0..1 ref Represents the extract of the System Configuration that is
relevant for the ECU configured with that ECU
Configuration Description.

Table A.8: EcucValueCollection

Class EngineeringObject (abstract)

Note This class specifies an engineering object. Usually such an object is represented by a file artifact. The
properties of engineering object are such that the artifact can be found by querying an ASAM catalog file.
The engineering object is uniquely identified by domain+category+shortLabel+revisionLabel.

Base ARObject

▽

82 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class EngineeringObject (abstract)

Subclasses AutosarEngineeringObject, BuildEngineeringObject, Graphic

Attribute Type Mult. Kind Note

category NameToken 1 attr This denotes the role of the engineering object in the
development cycle. Categories are such as
• SWSRC for source code

• SWOBJ for object code

• SWHDR for a C-header file

Further roles need to be defined via Methodology.

Tags: xml.sequenceOffset=20

domain NameToken 0..1 attr This denotes the domain in which the engineering object
is stored. This allows to indicate various segments in the
repository keeping the engineering objects. The domain
may segregate companies, as well as automotive
domains. Details need to be defined by the Methodology.
Attribute is optional to support a default domain.
Tags: xml.sequenceOffset=40

revisionLabel RevisionLabelString * attr This is a revision label denoting a particular version of the
engineering object.
Tags: xml.sequenceOffset=30

shortLabel NameToken 1 attr This is the short name of the engineering object. Note
that it is modeled as NameToken and not as Identifier
since in ASAM-CC it is also a NameToken.
Tags: xml.sequenceOffset=10

Table A.9: EngineeringObject

Class Identifiable (abstract)

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AppliedStandard, AsynchronousServerCallResultPoint, AtpBlueprint , AtpBlueprintable, Atp
Classifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariableInstance, BinaryManifest
AddressableObject , BinaryManifestItemDefinition, BinaryManifestResource, BinaryManifestResource
Definition, BlockState, BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , Build
ActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClientIdDefinition, Client
ServerOperation, Code, CollectableElement , ComManagementMapping, CommConnectorPort ,
CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingElementAbstractDetails, CouplingPort, CouplingPortAbstractShaper , CouplingPort
StructuralElement , CpSoftwareClusterResource, CpSoftwareClusterResourceToApplicationPartition
Mapping, CpSoftwareClusterToApplicationPartitionMapping, CpSoftwareClusterToEcuInstanceMapping,
CpSoftwareClusterToResourceMapping, CryptoServiceMapping, CyclicHandlingComDataToOsTask
ProxyMapping, DataPrototypeGroup, DataPrototypeTransformationPropsIdent, DataTransformation, Dds
AbstractServiceInstanceElementCp, DdsCpDomain, DdsCpPartition, DdsCpQosProfile, DdsCpTopic,
DependencyOnArtifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmitCertificateEvaluation,
DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, Diagnostic
ExtendedDataRecordElement, DiagnosticFunctionInhibitSource, DiagnosticParameterElement,
DiagnosticRoutineSubfunction, DltApplication, DltArgument, DltArgumentProps, DltLogChannel, Dlt
Message, DoIpInterface, DoIpLogicAddress, DoIpRoutingActivation, ECUMapping, EOCExecutableEntity
RefAbstract , EcuPartition, EcuPartitionToCoreMapping, EcucContainerValue, EcucDefinitionElement ,
EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, Ethernet
WakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea, ExecutableEntity , ExecutionTime,
FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeature

▽

▽

83 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class Identifiable (abstract)

△
Relation, FMFeatureRestriction, FMFeatureSelection, FlatInstanceDescriptor, FlexrayArTpNode, Flexray
TpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, FrameTriggering, GeneralParameter, Global
TimeGateway, GlobalTimeMaster , GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteral
Def, HwPin, HwPinGroup, IEEE1722TpAcfBus, IEEE1722TpAcfBusPart , IPSecRule, IPv6ExtHeader
FilterList, ISignalToIPduMapping, ISignalTriggering, IdentCaption, ImpositionTime, InternalTriggering
Point, J1939Node, J1939SharedAddressCluster, J1939TpNode, Keyword, LifeCycleState, LinSchedule
Table, LinTpNode, Linker, MacAddressVlanMembership, MacMulticastGroup, MacSecKayParticipant, Mc
DataInstance, MemorySection, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Mode
SwitchSenderComSpecProps, NetworkEndpoint, NmCluster , NmEcu, NmNode, NvBlockDescriptor,
PackageableElement , ParameterAccess, PduActivationRoutingGroup, PduToFrameMapping, Pdu
Triggering, PerInstanceMemory, PhysicalChannel , PortElementToCommunicationResourceMapping,
PortGroup, PortInterfaceMapping, QueuedReceiverComSpecProps, ResourceConsumption, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RteEventInCompositionSeparation, RteEventIn
CompositionToOsTaskProxyMapping, RteEventInSystemSeparation, RteEventInSystemToOsTaskProxy
Mapping, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobRequirement, SecureCommunication
AuthenticationProps, SecureCommunicationFreshnessProps, SecurityEventContextDataElement,
SecurityEventContextProps, ServerCallPoint , ServerComSpecProps, ServiceNeeds, SignalService
TranslationElementProps, SignalServiceTranslationEventProps, SignalServiceTranslationProps, Socket
Address, SomeipTpChannel, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxis
ParamType, SwServiceArg, SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcu
Mapping, SwcToImplMapping, SwitchAsynchronousTrafficShaperGroupEntry, SwitchAtsInstanceEntry,
SwitchFlowMeteringEntry, SwitchStreamFilterActionDestPortModification, SwitchStreamFilterEntry,
SwitchStreamFilterRule, SwitchStreamGateEntry, SwitchStreamIdentification, SystemMapping, System
SignalGroupToCommunicationResourceMapping, SystemSignalToCommunicationResourceMapping,
TDCpSoftwareClusterMapping, TDCpSoftwareClusterResourceMapping, TcpOptionFilterList, Timing
Clock , TimingClockSyncAccuracy, TimingCondition, TimingConstraint , TimingDescription, Timing
ExtensionResource, TimingModeInstance, TlsCryptoCipherSuite, TlsCryptoCipherSuiteProps, Topic1,
TpAddress, TraceableTable, TraceableText, TracedFailure, TransformationISignalPropsIdent,
TransformationProps, TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, View
Map, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.
Tags: xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.
Tags: xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.
More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".
Tags: xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.
Tags: xml.sequenceOffset=-30

▽

84 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class Identifiable (abstract)

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.
Tags: xml.attribute=true

Table A.10: Identifiable

Class Implementation (abstract)

Note Description of an implementation a single software component or module.
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses BswImplementation, SwcImplementation

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

buildAction
Manifest

BuildActionManifest 0..1 ref A manifest specifying the intended build actions for the
software delivered with this implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=buildActionManifest.buildActionManifest,
buildActionManifest.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

codeDescriptor Code * aggr Specifies the provided implementation code.

compiler Compiler * aggr Specifies the compiler for which this implementation has
been released

generated
Artifact

DependencyOnArtifact * aggr Relates to an artifact that will be generated during the
integration of this Implementation by an associated
generator tool. Note that this is an optional information
since it might not always be in the scope of a single
module or component to provide this information.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=generatedArtifact.shortName, generated
Artifact.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor) required for
this implementation.

linker Linker * aggr Specifies the linker for which this implementation has
been released.

▽

85 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class Implementation (abstract)

mcSupport McSupportData 0..1 aggr The measurement & calibration support data belonging to
this implementation. The measurement & calibration
support data belonging to this implementation. The
aggregation is <<atpSplitable>> because in case of an
already existing BSW Implementation model, this
description will be added later in the process, namely at
code generation time.
Stereotypes: atpSplitable
Tags: atp.Splitkey=mcSupport

programming
Language

Programminglanguage
Enum

0..1 attr Programming language the implementation was created
in.

requiredArtifact DependencyOnArtifact * aggr Specifies that this Implementation depends on the
existence of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in the
implementations. Different algorithms in the
implementation might cause different dependencies, e.g.
the number of used libraries.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredArtifact.shortName, required
Artifact.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

required
GeneratorTool

DependencyOnArtifact * aggr Relates this Implementation to a generator tool in order to
generate additional artifacts during integration.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredGeneratorTool.shortName, required
GeneratorTool.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

resource
Consumption

ResourceConsumption 0..1 aggr All static and dynamic resources for each implementation
are described within the ResourceConsumption class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=resourceConsumption.shortName

swcBsw
Mapping

SwcBswMapping 0..1 ref This allows a mapping between an SWC and a BSW
behavior to be attached to an implementation description
(for AUTOSAR Service, ECU Abstraction and Complex
Driver Components). It is up to the methodology to define
whether this reference has to be set for the Swc- or Bsw
Implementtion or for both.

swVersion RevisionLabelString 0..1 attr Software version of this implementation. The numbering
contains three levels (like major, minor, patch), its values
are vendor specific.

usedCode
Generator

String 0..1 attr Optional: code generator used.

vendorId PositiveInteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table A.11: Implementation

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

▽

86 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class ImplementationDataType

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.
If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.12: ImplementationDataType

Enumeration MemoryAllocationKeywordPolicyType

Note Enumeration to specify the name pattern of the Memory Allocation Keyword.

Aggregated by SwAddrMethod.memoryAllocationKeywordPolicy

Literal Description

addrMethodShort
Name

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod. This is the
default value if the attribute does not exist.
Tags: atp.EnumerationLiteralIndex=0

addrMethodShort
NameAndAlignment

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod and a variable
alignment postfix.
Thereby the alignment postfix needs to be consistent with the alignment attribute of the related
MemorySection.
Tags: atp.EnumerationLiteralIndex=1

Table A.13: MemoryAllocationKeywordPolicyType

87 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Class MemorySection

Note Provides a description of an abstract memory section used in the Implementation for code or data. It shall
be declared by the Implementation Description of the module or component, which actually allocates the
memory in its code. This means in case of data prototypes which are allocated by the RTE, that the
generated Implementation Description of the RTE shall contain the corresponding MemorySections.
The attribute "symbol" (if symbol is missing: "shortName") defines the module or component specific
section name used in the code. For details see the document "Specification of Memory Mapping".
Typically the section name is build according the pattern:
<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]
where
• [<SwAddrMethod shortName>] is the shortName of the referenced SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the specialization in the case
that several MemorySections for different purpose of the same Implementation Description referring to
the same or equally named SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the case that the memory
AllocationKeywordPolicy value of the referenced SwAddrMethod is set to addrMethodShortNameAnd
Alignment

MemorySection used to Implement the code of RunnableEntitys and BswSchedulableEntitys shall have a
symbol (if missing: shortName) identical to the referred SwAddrMethod to conform to the generated RTE
header files.

In addition to the section name described above, a prefix is used in the corresponding macro code in
order to define a name space. This prefix is by default given by the shortName of the BswModule
Description resp. the SwComponentType. It can be superseded by the prefix attribute.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by ResourceConsumption.memorySection

Attribute Type Mult. Kind Note

alignment AlignmentType 0..1 attr The attribute describes the typical alignment of objects
within this memory section.

executableEntity ExecutableEntity * ref Reference to the ExecutableEntitites located in this
section. This allows to locate different Executable
Entitities in different sections even if the associated Sw
Addrmethod is the same.
This is applicable to code sections only.

prefix SectionNamePrefix 0..1 ref The prefix used to set the memory section’s namespace
in the code. The existence of a prefix element
supersedes rules for a default prefix (such as the Bsw
ModuleDescription’s shortName). This allows the user to
define several name spaces for memory sections within
the scope of one module, cluster or SWC.

size PositiveInteger 0..1 attr The size in bytes of the section.

swAddrmethod SwAddrMethod 0..1 ref This association indicates that this module specific
(abstract) memory section is part of an overall SwAddr
Method, referred by the upstream declarations (e.g.
calibration parameters, data element prototypes, code
entities) which share a common addressing strategy. This
can be evaluated for the ECU configuration of the build
support.
This association shall always be declared by the
Implementation description of the module or component,
which allocates the memory in its code. This means in
case of data prototypes which are allocated by the RTE,
that the software components only declare the grouping
of its data prototypes to SwAddrMethods, and the
generated Implementation Description of the RTE actually
sets up this association.

▽

88 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class MemorySection

symbol Identifier 0..1 attr Defines the section name as explained in the main
description. By using this attribute for code generation
(instead of the shortName) it is possible to define several
different MemorySections having the same name - e.g.
symbol = CODE - but using different sectionName
Prefixes.

Table A.14: MemorySection

Enumeration MemorySectionType

Note Enumeration to specify the essential nature of the data which can be allocated in a common memory
class by the means of the AUTOSAR Memory Mapping.

Aggregated by SwAddrMethod.sectionType

Literal Description

calibrationVariables This memory section is reserved for "virtual variables" that are computed by an MCD system during a
measurement session but do not exist in the ECU memory.
Tags: atp.EnumerationLiteralIndex=2

calprm To be used for calibratable constants of ECU-functions.
Tags: atp.EnumerationLiteralIndex=3

code To be used for mapping code to application block, boot block, external flash etc.
Tags: atp.EnumerationLiteralIndex=4

configData Constants with attributes that show that they reside in one segment for module configuration.
Tags: atp.EnumerationLiteralIndex=5

const To be used for global or static constants.
Tags: atp.EnumerationLiteralIndex=6

excludeFromFlash This memory section is reserved for "virtual parameters" that are taken for computing the values of
so-called dependent parameter of an MCD system. Dependent Parameters that are not at the same
time "virtual parameters" are allocated in the ECU memory.
Virtual parameters, on the other hand, are not allocated in the ECU memory. Virtual parameters exist
in the ECU Hex file for the purpose of being considered (for computing the values of dependent
parameters) during an offline-calibration session.
Tags: atp.EnumerationLiteralIndex=7

var To be used for global or static variables. The expected initialization is specified with the attribute
sectionInitializationPolicy.
Tags: atp.EnumerationLiteralIndex=9

Table A.15: MemorySectionType

Class Referrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement , EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingIdent, SingleLanguageReferrable, SoCon
IPduIdentifier, TpConnectionIdent

Attribute Type Mult. Kind Note

▽

89 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class Referrable (abstract)

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90

Table A.16: Referrable

Class RunnableEntity

Note A RunnableEntity represents the smallest code-fragment that is provided by an
AtomicSwComponentType and are executed under control of the RTE. RunnableEntitys are for
instance set up to respond to data reception or operation invocation on a server.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , ExecutableEntity , Identifiable, Multilanguage
Referrable, Referrable

Aggregated by AtpClassifier .atpFeature, SwcInternalBehavior.runnable

Attribute Type Mult. Kind Note

argument
(ordered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an argument to
a RunnableEntity.

asynchronous
ServerCall
ResultPoint

AsynchronousServer
CallResultPoint

* aggr The server call result point admits a runnable to fetch the
result of an asynchronous server call.
The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

canBeInvoked
Concurrently

Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for
one instance of the corresponding
AtomicSwComponentType). This implies that it is the
responsibility of the implementation of the
RunnableEntity to take care of this form of
concurrency.

dataRead
Access

VariableAccess * aggr RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

90 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class RunnableEntity

dataReceive
PointBy
Argument

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.
The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointByValue

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess * aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataWrite
Access

VariableAccess * aggr RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint * aggr The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

91 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class RunnableEntity

internal
TriggeringPoint

InternalTriggeringPoint * aggr The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeAccess
Point

ModeAccessPoint * aggr The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint * aggr The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

parameter
Access

ParameterAccess * aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.
The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that a
RunnableEntity needs read access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.
The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

92 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class RunnableEntity

serverCallPoint ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

symbol CIdentifier 0..1 attr The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

writtenLocal
Variable

VariableAccess * aggr The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.
The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.17: RunnableEntity

Class SectionNamePrefix
Note A prefix to be used for generated code artifacts defining a memory section name in the source code of

the using module or SWC.

Base ARObject , ImplementationProps, Referrable

Aggregated by ResourceConsumption.sectionNamePrefix

Attribute Type Mult. Kind Note

implementedIn DependencyOnArtifact 0..1 ref Optional reference that allows to Indicate the code artifact
(header file) containing the preprocessor implementation
of memory sections with this prefix.
The usage of this link supersedes the usage of a memory
mapping header with the default name (derived from the
BswModuleDescription’s shortName).

Table A.18: SectionNamePrefix

Class SwAddrMethod
Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.

These objects could actually live in different modules or components.
Tags: atp.recommendedPackage=SwAddrMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Aggregated by ARPackage.element

▽

93 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SwAddrMethod
Attribute Type Mult. Kind Note

memory
Allocation
KeywordPolicy

MemoryAllocation
KeywordPolicyType

0..1 attr Enumeration to specify the name pattern of the Memory
Allocation Keyword.

option Identifier * attr This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.
These properties are handled as to be selected. The
intended options are mentioned in the list.
In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.

section
Initialization
Policy

SectionInitialization
PolicyType

0..1 attr Specifies the expected initialization of the variables
(inclusive those which are implementing VariableData
Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.
If the attribute is not defined it has the identical semantic
as the attribute value "INIT"

sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addressing method.

Table A.19: SwAddrMethod

Class SwBaseType

Note This meta-class represents a base type used within ECU software.
Tags: atp.recommendedPackage=BaseTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table A.20: SwBaseType

Class SwComponentType (abstract)

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

94 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SwComponentType (abstract)

port PortPrototype * aggr The PortPrototypes through which this
SwComponentType can communicate.
The aggregation of PortPrototype is subject to
variability with the purpose to support the conditional
existence of PortPrototypes.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

swcMapping
Constraint

SwComponentMapping
Constraints

* ref Reference to constraints that are valid for this Sw
ComponentType.
This Attribute is only used by the AUTOSAR Classic
Platform.

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.21: SwComponentType

Class SwcImplementation

Note This meta-class represents a specialization of the general Implementation meta-class with respect to the
usage in application software.
Tags: atp.recommendedPackage=SwcImplementations
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

behavior SwcInternalBehavior 0..1 ref The internal behavior implemented by this
Implementation.

perInstance
MemorySize

PerInstanceMemory
Size

* aggr Allows a definition of the size of the per-instance memory
for this implementation. The aggregation of PerInstance
MemorySize is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects, in this case PerInstanceMemory.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceMemorySize, perInstance
MemorySize.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

95 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SwcImplementation

required
RTEVendor

String 0..1 attr Identify a specific RTE vendor. This information is
potentially important at the time of integrating (in
particular: linking) the application code with the RTE. The
semantics is that (if the association exists) the
corresponding code has been created to fit to the
vendor-mode RTE provided by this specific vendor.
Attempting to integrate the code with another RTE
generated in vendor mode is in general not possible.

Table A.22: SwcImplementation

Class SwcInternalBehavior
Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the

software-component with respect to the RTE, i.e. the RunnableEntitys and the RTEEvents they
respond to.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Aggregated by AtomicSwComponentType.internalBehavior, AtpClassifier .atpFeature

Attribute Type Mult. Kind Note

arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the SW-component.
This is typically only useful if
supportsMultipleInstantiation is set to "true" or
if the component defines NVRAM access via permanent
blocks.
The aggregation of arTypedPerInstanceMemory is
subject to variability with the purpose to support variability
in the software component’s implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arTypedPerInstanceMemory.shortName, ar
TypedPerInstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular
SwcInternalBehavior.
The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of
RTEEvents. Note: the number of RTEEvents might vary
due to the conditional existence of PortPrototypes
using DataReceivedEvents or due to different
scheduling needs of algorithms.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

exclusiveArea
Policy

SwcExclusiveArea
Policy

* aggr Options how to generate the ExclusiveArea related APIs.
When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

96 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SwcInternalBehavior
explicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of explicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=explicitInterRunnableVariable.shortName,
explicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

implicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of implicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implicitInterRunnableVariable.shortName,
implicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a software
component for its implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

* aggr This aggregation represents the included Mode
DeclarationGroups
Stereotypes: atpSplitable
Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerInstanceMemory".
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Memory

PerInstanceMemory * aggr Defines a per-instance memory object needed by this
software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceMemory.shortName, perInstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

97 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SwcInternalBehavior
perInstance
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) that needs
to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portAPIOption PortAPIOption * aggr Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portAPIOption.port, portAPIOption.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

runnable RunnableEntity * aggr This is a RunnableEntity specified for the particular
SwcInternalBehavior.
The aggregation of RunnableEntity is subject to
variability with the purpose to support the conditional
existence of RunnableEntitys. Note: the number of
RunnableEntitys might vary due to the conditional
existence of PortPrototypes using
DataReceivedEvents or due to different scheduling
needs of algorithms.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.
The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.
The SwcServiceDependency owned by an SwcInternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

98 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SwcInternalBehavior
shared
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean 0..1 attr Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component API on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=variationPointProxy.shortName

Table A.23: SwcInternalBehavior

Class SwcToImplMapping

Note Map instances of an AtomicSwComponentType to a specific Implementation.
This Class is only used by the AUTOSAR Classic Platform.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by SystemMapping.swImplMapping

Attribute Type Mult. Kind Note

component SwComponent
Prototype

* iref Reference to the software component instances that are
being mapped to the specified Implementation. The
targeted SwComponentPrototype needs be of the Atomic
SwComponentType being implemented by the referenced
Implementation.
InstanceRef implemented by: ComponentInSystem
InstanceRef

component
Implementation

SwcImplementation 0..1 ref Reference to a specific Implementation description.
Implementation to be used by the specified SW
component instance. This allows to achieve more precise
estimates for the resource consumption that results from
mapping the instance of an atomic SW component onto
an ECU.

Table A.24: SwcToImplMapping

Class SystemMapping

Note The system mapping aggregates all mapping aspects (mapping of SW components to ECUs, mapping of
data elements to signals, and mapping constraints).

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by System.mapping

Attribute Type Mult. Kind Note

▽

99 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SystemMapping

application
PartitionToEcu
Partition
Mapping

ApplicationPartitionTo
EcuPartitionMapping

* aggr Mapping of ApplicationPartitions to EcuPartitions
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=applicationPartitionToEcuPartition
Mapping.shortName, applicationPartitionToEcuPartition
Mapping.variationPoint.shortLabel
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.

appOsTask
ProxyToEcu
TaskProxy
Mapping

AppOsTaskProxyToEcu
TaskProxyMapping

* aggr Mapping of an OsTaskProxy that was created in the
context of a SwComponent to an OsTaskProxy that was
created in the context of an Ecu.
This Attribute is only used by the AUTOSAR Classic
Platform.

com
Management
Mapping

ComManagement
Mapping

* aggr Mappings between Mode Management PortGroups and
communication channels.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=comManagementMapping.shortName, com
ManagementMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

cryptoService
Mapping

CryptoServiceMapping * aggr This aggregation represents the collection of crypto
service mappings in the context of the enclosing System
Mapping.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=cryptoServiceMapping.shortName, crypto
ServiceMapping.variationPoint.shortLabel
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.

cyclicHandling
ComDataToOs
TaskProxy
Mapping

CyclicHandlingCom
DataToOsTaskProxy
Mapping

* aggr Mapping of VariableDataPrototypes to an OsTaskProxy
for the Cyclic Handling of Communication Data in the
RTE.
This Attribute is only used by the AUTOSAR Classic
Platform.

dataMapping DataMapping * aggr The data mappings defined.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataMapping, dataMapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.

ddsISignalTo
TopicMapping

DdsCpISignalToDds
TopicMapping

* aggr Collection of DdsISignalToDdsTopicMappings.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=ddsISignalToTopicMapping, ddsISignalTo
TopicMapping.variationPoint.shortLabel
atp.Status=candidate
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

100 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SystemMapping

ecuPartitionTo
CoreMapping

EcuPartitionToCore
Mapping

* aggr Mapping of EcuPartions to a Cores.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=ecuPartitionToCoreMapping.shortName, ecu
PartitionToCoreMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

ecuResource
Mapping

ECUMapping * aggr Mapping of hardware related topology elements onto their
counterpart definitions in the ECU Resource Template.
atpVariation: The ECU Resource type might be variable.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=ecuResourceMapping.shortName, ecu
ResourceMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

j1939Controller
ApplicationTo
J1939NmNode
Mapping

J1939Controller
ApplicationToJ1939Nm
NodeMapping

* aggr Mapping of a J1939ControllerApplication to a J1939Nm
Node.
Tags: atp.Status=obsolete
This Attribute is only used by the AUTOSAR Classic
Platform.

j1939Controller
ApplicationTo
J1939Node
Mapping

J1939Controller
ApplicationToJ1939
NodeMapping

* aggr Mapping of a J1939ControllerApplication to a J1939Node.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=j1939ControllerApplicationToJ1939Node
Mapping, j1939ControllerApplicationToJ1939Node
Mapping.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

mapping
Constraint

MappingConstraint * aggr Constraints that limit the mapping freedom for the
mapping of SW components to ECUs.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mappingConstraint, mapping
Constraint.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

pncMapping PncMapping * aggr Mappings between Virtual Function Clusters and Partial
Network Clusters.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=pncMapping, pncMapping.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime

portElementTo
ComResource
Mapping

PortElementTo
Communication
ResourceMapping

* aggr maps a communication resource to CP Software Clusters
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portElementToComResourceMapping.short
Name, portElementToComResourceMapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

101 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SystemMapping

resource
Estimation

EcuResourceEstimation * aggr Resource estimations for this set of mappings, zero or
one per ECU instance.
atpVariation: Used ECUs are variable.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=resourceEstimation, resource
Estimation.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

resourceTo
Application
Partition
Mapping

CpSoftwareCluster
ResourceToApplication
PartitionMapping

* aggr Maps a Software Cluster resource to an Application
Partition to restrict the usage.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=resourceToApplicationPartition
Mapping.shortName, resourceToApplicationPartition
Mapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

rteEvent
Separation

RteEventInSystem
Separation

* aggr Separation constraint that limits the mapping freedom for
the mapping of RteEvents to OsTasks in the System
context.
This Attribute is only used by the AUTOSAR Classic
Platform.

rteEventToOs
TaskProxy
Mapping

RteEventInSystemToOs
TaskProxyMapping

* aggr Constraint that enforces a mapping of RteEvent to a
particular OsTask in the System context.
This Attribute is only used by the AUTOSAR Classic
Platform.

signalPath
Constraint

SignalPathConstraint * aggr Constraints that limit the mapping freedom for the
mapping of data elements to signals.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=signalPathConstraint, signalPath
Constraint.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

softwareCluster
ToApplication
Partition
Mapping

CpSoftwareClusterTo
ApplicationPartition
Mapping

* aggr The mapping of ApplicationPartitions to a CpSoftware
Cluster.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=softwareClusterToApplicationPartition
Mapping.shortName, softwareClusterToApplication
PartitionMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

softwareCluster
ToResource
Mapping

CpSoftwareClusterTo
ResourceMapping

* aggr maps a service resource to CP Software Clusters
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=softwareClusterToResourceMapping.short
Name, softwareClusterToResourceMapping.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

102 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

△
Class SystemMapping

swCluster
Mapping

CpSoftwareClusterTo
EcuInstanceMapping

* aggr The mappings of SW cluster to ECUs.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swClusterMapping.shortName, swCluster
Mapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

swcTo
Application
Partition
Mapping

SwcToApplication
PartitionMapping

* aggr Allows to map a given SwComponentPrototype to a
formally defined partition at a point in time when the
corresponding EcuInstance is not yet known or defined.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swcToApplicationPartitionMapping.short
Name, swcToApplicationPartitionMapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.

swImplMapping SwcToImplMapping * aggr The mappings of AtomicSoftwareComponent Instances to
Implementations.
atpVariation: Derived, because SwcToEcuMapping is
variable.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swImplMapping.shortName, swImpl
Mapping.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

swMapping SwcToEcuMapping * aggr The mappings of SW components to ECUs.
atpVariation: SWC shall be mapped to other ECUs.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swMapping.shortName, swMapping.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

systemSignal
GroupToCom
Resource
Mapping

SystemSignalGroupTo
Communication
ResourceMapping

* aggr Mapping of a communication resource to a SystemSignal
Group.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=systemSignalGroupToComResource
Mapping.shortName, systemSignalGroupToCom
ResourceMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

systemSignalTo
ComResource
Mapping

SystemSignalTo
Communication
ResourceMapping

* aggr Mapping of a communication resource to a SystemSignal.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=systemSignalToComResourceMapping.short
Name, systemSignalToComResourceMapping.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.25: SystemMapping

103 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

Class VariableDataPrototype

Note A VariableDataPrototype represents a formalized generic piece of information that is typically
mutable by the application software layer. VariableDataPrototype is used in various contexts and
the specific context gives the otherwise generic VariableDataPrototype a dedicated semantics.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by ApplicationInterface.indication, AtpClassifier .atpFeature, BswInternalBehavior.arTypedPerInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, DiagnosticSovdAccessArgument.contentObject, InternalBehavior .staticMemory,
NvBlockDescriptor.ramBlock, NvDataInterface.nvData, SenderReceiverInterface.dataElement, Service
Interface.event, SwcInternalBehavior.arTypedPerInstanceMemory, SwcInternalBehavior.explicitInter
RunnableVariable, SwcInternalBehavior.implicitInterRunnableVariable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.26: VariableDataPrototype

A.2 Source Code Example for ADC

The chapter shall show an example of MemMap usage in source code for an ADC
implementation:

1 #define ADC_START_SEC_VAR_INIT_ASIL_B_32
2 #include <Adc_MemMap.h>
3

4 uint32 Adc_ResultBuffer[128];
5

6 #define ADC_STOP_SEC_VAR_INIT_ASIL_B_32
7 #include <Adc_MemMap.h>
8

9 #define ADC_CFG_START_SEC_CONST_ASIL_B_32
10 #include <Adc_MemMap.h>
11

12 const Adc_ConfigType AdcCfg[2] = INIT_VALUES;
13

14 #define ADC_CFG_STOP_SEC_CONST_ASIL_B_32
15 #include <Adc_MemMap.h>
16

17 #define ADC_START_SEC_CODE_SLOW_ASIL_B
18 #include <Adc_MemMap.h>
19

20 void Adc_Init(const Adc_ConfigType* ConfigPtr) { ; }
21

22 #define ADC_STOP_SEC_CODE_SLOW_ASIL_B
23 #include <Adc_MemMap.h>
24

25 #define ADC_START_SEC_CODE_SLOW_ASIL_B
26 #include <Adc_MemMap.h>
27

28 void Adc_DeInit(void) { ; }
29

30 #define ADC_STOP_SEC_CODE_SLOW_ASIL_B
31 #include <Adc_MemMap.h>
32

33 #define ADC_START_SEC_CODE_FAST_ASIL_B

104 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

34 #include <Adc_MemMap.h>
35

36 void Adc_StartGroupConversion (Adc_GroupType Group) { ; }
37

38 #define ADC_STOP_SEC_CODE_FAST_ASIL_B
39 #include <Adc_MemMap.h>

A.3 Memory Mapping Header File Example for ADC

The Memory Allocation Header file Adc_MemMap.h related to the usage in chapter A.2 is
shown below. The included file MemMap_RestoreUnhandledDefaults.h is assumed
to be vendor specific and used to set the unhandled default sections for robustness
handling. The detailed content has to be defined according to the used compiler/linker.

1 /* Initialization of overall error handling */
2 #define MEMMAP_ERROR
3

4 /* Keyword evaluation */
5 #if defined ADC_START_SEC_VAR_INIT_ASIL_B_32
6 #undef MEMMAP_ERROR
7 #undef ADC_START_SEC_VAR_INIT_ASIL_B_32
8 #ifndef MEMMAP_SEQUENCE_OPEN
9 /* pragma start */

10 #include "MemMap_RestoreUnhandledDefaults.h"
11 #pragma section fardata "ram.partition_asil_b.32"
12 #pragma section farbss "ram.partition_asil_b.32"
13 #pragma clear
14 /* pragma end */
15 #define MEMMAP_SEQUENCE_OPEN
16 #define MEMMAP_SEQUENCE_OPEN_ADC_SEC_VAR_INIT_ASIL_B_32
17 #else
18 #error "Adc_MemMap.h: ADC_SEC_VAR_INIT_ASIL_B_32: Please STOP the

sequence before, START must not be followed by START!"
19 #endif
20 #elif defined ADC_STOP_SEC_VAR_INIT_ASIL_B_32
21 #undef MEMMAP_ERROR
22 #undef ADC_STOP_SEC_VAR_INIT_ASIL_B_32
23 #ifdef MEMMAP_SEQUENCE_OPEN
24 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_SEC_VAR_INIT_ASIL_B_32
25 /* pragma start */
26 #include "MemMap_RestoreUnhandledDefaults.h"
27 /* pragma end */
28 #undef MEMMAP_SEQUENCE_OPEN
29 #undef MEMMAP_SEQUENCE_OPEN_ADC_SEC_VAR_INIT_ASIL_B_32
30 #else
31 #error "Adc_MemMap.h: ADC_SEC_VAR_INIT_ASIL_B_32: START section

is followed by wrong STOP section statement!"
32 #endif
33 #else
34 #error "Adc_MemMap.h: ADC_SEC_VAR_INIT_ASIL_B_32: No START

statement given before STOP statement! STOP must not be
followed by STOP!"

35 #endif

105 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

36 #endif
37

38 #if defined ADC_START_SEC_CODE_FAST_ASIL_B
39 #undef MEMMAP_ERROR
40 #undef ADC_START_SEC_CODE_FAST_ASIL_B
41 #ifndef MEMMAP_SEQUENCE_OPEN
42 /* pragma start */
43 #include "MemMap_RestoreUnhandledDefaults.h"
44 #pragma section text "rom.fast.partition_asil_b"
45 /* pragma end */
46 #define MEMMAP_SEQUENCE_OPEN
47 #define MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_FAST_ASIL_B
48 #else
49 #error "Adc_MemMap.h: ADC_SEC_CODE_FAST_ASIL_B: Please STOP the

sequence before, START must not be followed by START!"
50 #endif
51 #elif defined ADC_STOP_SEC_CODE_FAST_ASIL_B
52 #undef MEMMAP_ERROR
53 #undef ADC_STOP_SEC_CODE_FAST_ASIL_B
54 #ifdef MEMMAP_SEQUENCE_OPEN
55 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_FAST_ASIL_B
56 /* pragma start */
57 #include "MemMap_RestoreUnhandledDefaults.h"
58 /* pragma end */
59 #undef MEMMAP_SEQUENCE_OPEN
60 #undef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_FAST_ASIL_B
61 #else
62 #error "Adc_MemMap.h: ADC_SEC_CODE_FAST_ASIL_B: START section is

followed by wrong STOP section statement!"
63 #endif
64 #else
65 #error "Adc_MemMap.h: ADC_SEC_CODE_FAST_ASIL_B: No START statement

given before STOP statement! STOP must not be followed by STOP!
"

66 #endif
67 #endif
68

69 #if defined ADC_START_SEC_CODE_SLOW_ASIL_B
70 #undef MEMMAP_ERROR
71 #undef ADC_START_SEC_CODE_SLOW_ASIL_B
72 #ifndef MEMMAP_SEQUENCE_OPEN
73 /* pragma start */
74 #include "MemMap_RestoreUnhandledDefaults.h"
75 #pragma section text "rom.slow.partition_asil_b"
76 /* pragma end */
77 #define MEMMAP_SEQUENCE_OPEN
78 #define MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_SLOW_ASIL_B
79 #else
80 #error "Adc_MemMap.h: ADC_SEC_CODE_SLOW_ASIL_B: Please STOP the

sequence before, START must not be followed by START!"
81 #endif
82

83 #elif defined ADC_STOP_SEC_CODE_SLOW_ASIL_B
84 #undef MEMMAP_ERROR
85 #undef ADC_STOP_SEC_CODE_SLOW_ASIL_B
86 #ifdef MEMMAP_SEQUENCE_OPEN

106 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

87 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_SLOW_ASIL_B
88 /* pragma start */
89 #include "MemMap_RestoreUnhandledDefaults.h"
90 /* pragma end */
91 #undef MEMMAP_SEQUENCE_OPEN
92 #undef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_SLOW_ASIL_B
93 #else
94 #error "Adc_MemMap.h: ADC_SEC_CODE_SLOW_ASIL_B: START section is

followed by wrong STOP section statement!"
95 #endif
96 #else
97 #error "Adc_MemMap.h: ADC_SEC_CODE_SLOW_ASIL_B: No START

statement given before STOP statement! STOP must not be
followed by STOP!"

98 #endif
99 #endif

100

101 #if defined ADC_CFG_START_SEC_CONST_ASIL_B_32
102 #undef MEMMAP_ERROR
103 #undef ADC_CFG_START_SEC_CONST_ASIL_B_32
104 #ifndef MEMMAP_SEQUENCE_OPEN
105 /* pragma start */
106 #include "MemMap_RestoreUnhandledDefaults.h"
107 #pragma section rodata "rom.partition_asil_b.32"
108 /* pragma end */
109 #define MEMMAP_SEQUENCE_OPEN
110 #define MEMMAP_SEQUENCE_OPEN_ADC_CFG_SEC_CONST_ASIL_B_32
111 #else
112 #error "Adc_MemMap.h: ADC_CFG_SEC_CONST_ASIL_B_32: Please STOP the

sequence before, START must not be followed by START!"
113 #endif
114 #elif defined ADC_CFG_STOP_SEC_CONST_ASIL_B_32
115 #undef MEMMAP_ERROR
116 #undef ADC_CFG_STOP_SEC_CONST_ASIL_B_32
117 #ifdef MEMMAP_SEQUENCE_OPEN
118 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_CFG_SEC_CONST_ASIL_B_32
119 /* pragma start */
120 #include "MemMap_RestoreUnhandledDefaults.h"
121 /* pragma end */
122 #undef MEMMAP_SEQUENCE_OPEN
123 #undef MEMMAP_SEQUENCE_OPEN_ADC_CFG_SEC_CONST_ASIL_B_32
124 #else
125 #error "Adc_MemMap.h: ADC_CFG_SEC_CONST_ASIL_B_32: START section

is followed by wrong STOP section statement!"
126 #endif
127 #else
128 #error "Adc_MemMap.h: ADC_CFG_SEC_CONST_ASIL_B_32: No START

statement given before STOP statement! STOP must not be
followed by STOP!"

129 #endif
130 #endif
131

132 /* Error evaluation */
133 #ifdef MEMMAP_ERROR
134 #undef MEMMAP_ERROR

107 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R25-11

135 #error "Adc_MemMap.h: Undefined or missing START / STOP statement,
please check your source code or re-generate the MemMap Header
file!"

136 #endif

A.4 Specification Items

A.4.1 Added Specification Items in R25-11

[SWS_MemMap_99999]

A.4.2 Changed Specification Items in R25-11

[ECUC_MemMap_00001] [ECUC_MemMap_00002] [ECUC_MemMap_00003]
[ECUC_MemMap_00004] [ECUC_MemMap_00005] [ECUC_MemMap_00006]
[ECUC_MemMap_00007] [ECUC_MemMap_00008] [ECUC_MemMap_00009]
[ECUC_MemMap_00010] [ECUC_MemMap_00011] [ECUC_MemMap_00012]
[ECUC_MemMap_00013] [ECUC_MemMap_00014] [ECUC_MemMap_00015]
[ECUC_MemMap_00016] [ECUC_MemMap_00017] [ECUC_MemMap_00021]
[ECUC_MemMap_00022] [ECUC_MemMap_00023] [SWS_MemMap_00038]
[SWS_MemMap_00064] [SWS_MemMap_00070] [SWS_MemMap_00071] [SWS_
MemMap_00072] [SWS_MemMap_00073]

A.4.3 Deleted Specification Items in R25-11

none

A.5 Trace Items not relevant for this document

[SWS_MemMap_99999] Unreferenced Reqirements
Upstream requirements: SRS_BSW_00170, SRS_BSW_00168, SRS_BSW_00369, SRS_BSW_

00375, SRS_BSW_00383, SRS_BSW_00386, SRS_BSW_00388,
SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_
00393, SRS_BSW_00395, SRS_BSW_00403, SRS_BSW_00416,
SRS_BSW_00417, SRS_BSW_00419, SRS_BSW_00422, SRS_BSW_
00425, SRS_BSW_00432, SRS_BSW_00461, SRS_BSW_00469,
SRS_BSW_00471, SRS_BSW_00472, SRS_BSW_00478, SRS_BSW_
00490, SRS_BSW_00491

⌈Incoming requirements are checked, but not relevant for this document.⌋

108 of 108 Document ID 128: AUTOSAR_CP_SWS_MemoryMapping

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General issues
	7.2 Mapping of Variables and Code
	7.2.1 Splitting of Modules in allocatable Memory Parts
	7.2.2 Config Constants versus non-config Constants
	7.2.3 Variable Sections
	7.2.4 Constant and Calibration Sections
	7.2.5 Code Sections

	7.3 Requirements on Memory Mapping Header Files
	7.4 Usage Examples
	7.4.1 Code Section
	7.4.2 Fast Variable Section
	7.4.3 Code Section in ICC2 cluster
	7.4.4 Callout sections
	7.4.5 Allocatable Memory Parts

	8 API specification
	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 MemMap
	10.2.2 MemMapAddressingModeSet
	10.2.3 MemMapAddressingMode
	10.2.4 MemMapAllocation
	10.2.5 MemMapGenericMapping
	10.2.6 MemMapSectionSpecificMapping
	10.2.7 MemMapMappingSelector

	10.3 Published Information

	A Appendix
	A.1 Referenced Meta Classes
	A.2 Source Code Example for ADC
	A.3 Memory Mapping Header File Example for ADC
	A.4 Specification Items
	A.4.1 Added Specification Items in R25-11
	A.4.2 Changed Specification Items in R25-11
	A.4.3 Deleted Specification Items in R25-11

	A.5 Trace Items not relevant for this document

