AUTSSAR

Document Title Specification of Memory Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 1018

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR Clarificati f th fthe t
2025-11-27 | R25-11 | Release oot and Mindraa o
Management irect" and "indirec
* Removed all draft markings
2024-11-27 Ro4-11 QELSS:R * Added MemUseFuncPtrTable,
o i MemNamePrefix and MemInvocation
Management
* Minor corrections and bugfixes
AUTOSAR
2023-11-23 R23-11 Release « Fixed inconsistencies
Management
* Renamed MEM_JOB_PENDING into
MEM_E_JOB_PENDING for DET errors
AUTOSAR N
2022-11-24 | R22-11 Release + Additional DET checks added
Management « Minor corrections and bugfixes
« Editorial changes
AUTOSAR
2021-11-25 | R21-11 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and Functional Overview 6
2 Acronyms and Abbreviations 7
2.1 Physical Segmentation oo 8

3 Related Documentation 9
3.1 Input Documents & Related Standards and Norms 9
3.2 Related Specification 9

4 Constraints and Assumptions 10
4.1 Limitations e 10
411 General Limitations 10
4.1.2 Implementation Limitations 10
4.1.3 Memory Test Capabilities 10

4.2 Applicability to Car Domains 10

5 Dependencies to Other Modules 11
5.1 SPIDriver e 11

6 Requirements Tracing 12
7 Functional Specification 14
7.1 OVEIVIEW o e e e 14
711 Key Aspects o e 14

7.2 Functional Elements Lo 14
7.21 JobManagement 14
7.2.1.1 Job Status/JobResults L. 15

7.2.1.2 Job Suspend/Resume 16

7.2.2 Hardware Specific Services oo 17
7.2.3 Multi Memory Device Instance Support 17
7.2.4 Dynamic Driver Activation L. 17
7.2.5 Service Invocation Lo 18
7.2.5.1 DirectInvocation 18

7.2.5.2 IndirectInvocation o L. 18

7.2.6 Binarylmage Format 18
7.26.1 Header. 19

7.2.6.2 Service Function Pointer Table 22

7.2.6.3 Delimiter 23

7.2.7 Optional Services 23

7.3 Module Handling 23
7.3.1 Initialization 23
7.3.2 Scheduling 23

7.3.3 ECCHandling 24

AUTSSAR

7.4 General DesignRules 24
7.4.1 Address Alignment L 24
7.4.2 64-BitSupport 25

7.5 Error Classification 25
7.5.1 DevelopmentErrors 25
7.5.2 RuntimeErrors e 25
7.5.3 Production Errors 26
7.5.4 Extended ProductionErrorso o oo 26

8 API Specification 27

8.1 Imported Types 27

8.2 Type Definitions 27
8.2.1 Mem_AddressType 27
8.2.2 Mem_ConfigType 28
8.2.3 Mem_DataType 28
8.2.4 Mem_InstanceldType 28
8.25 Mem_LengthType 29
8.2.6 Mem_HwServiceldType 29

8.3 Function Definitions 29
8.3.1 Synchronous Functions 29

83.1.1 Mem_Init. 29
8.3.1.2 Mem Delnit 30
8.3.1.3 Mem GetVersioninfo 31
8.3.1.4 Mem GetdJobResult. 32
8.3.1.5 Mem_Suspend 32
8.3.1.6 Mem Resume. 33
8.3.1.7 Mem_PropagateError. o o oL 34
8.3.2 Asynchronous Functions, 35
8321 Mem Read 35
8.3.22 Mem Write 37
8.3.23 Mem Erase 38
8.3.24 Mem BlankCheck 40
8.3.2.5 Mem_HwSpecificService L. 41

8.4 Callback Notifications 42

8.5 Scheduled Functions 42
8.5.1 Mem_MainFunction 42

8.6 ExpectedInterfaces 42
8.6.1 Mandatory Interfaces 42
8.6.2 OptionallInterfaces, 43
8.6.3 Configurable Interfaces 43

9 Sequence Diagrams 44

9.1 Hardware Specific ErrorHandling 44

9.2 ECC Handling Example Sequence 45

AUTSSAR

10 Configuration Specification 46
10.1How to Read this Chapter 46
10.2Containers and Configuration Parameters 46

10.21Mem e e 47
10.2.2Memlinstance 52
10.3Published Information., 59

A Change history of AUTOSAR traceable items 60

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 60
A.1.1 Added Specification ltemsin R25-11 60
A.1.2 Changed Specification Itemsin R25-11 60
A.1.3 Deleted Specification ltemsin R25-11 60

A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 60
A.2.1 Added Specification ltemsin R24-11 60
A.2.2 Changed Specification ltemsin R24-11 61
A.2.3 Deleted Specification ltemsinR24-11 61

A.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e 61
A.3.1 Added Specification ltemsin R23-11 61
A.3.2 Changed Specification ltemsin R23-11 61
A.3.3 Deleted Specification Itemsin R23-11 61

B Not applicable requirements 62

AUT<TSAR Specification of Memory Driver

AUTOSAR CP R25-11

1 Introduction and Functional Overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Basic Software module Memory Driver (Mem).

The Memory Driver provides the basic services for accessing different kinds of memory
devices like reading, writing, erasing and blank checking.

Although flash memory is still the most common non-volatile memory technology, the
Memory Driver specification considers all relevant memory device technologies like
EEPROM, phase change memory (PCM) and ferro electric RAM.

To harmonize the memory access for the upper layers, the Memory Driver specification
also covers access of RAM. Aside from microcontroller internal memory devices, the
Memory Device specification can also be applied to external memory devices attached,
e.g. via a serial peripheral interface.

In contrast to the Flash and EEPROM Driver specification, the Memory Driver specifi-
cation explicitly covers also code memory access to support new use cases like back-
ground OTA software update which require code memory access.

Figure 1.1 shows an example architectural overview with different Memory Drivers and
upper layers:

Figure 1.1: MemAcc Architecture Example

6 of 62 Document ID 1018: AUTOSAR_CP_SWS MemoryDriver

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Mem driver
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym Description

ABI Application Binary Interface

BndM Bulk Non-Volatile Data Manager

ECC Error Correction Code

FOTA Firmware Over The Air - remote firmware update using wireless
communication

HSM Hardware Security Module - dedicated security MCU core

OTA Over The Air - general term for wireless communication between
OEM backend and vehicle

RWW Read While Write - capability of a memory device to perform a
read operation in one memory bank while at the same time a
write/erase operation takes place in another bank

SOTA Software Over The Air - remote software update using wireless
communication

Terms Description

Address Area Contiguous memory area in the logical address space

Typically multiple physical memory sectors are combined to one
logical address area.

Bank Group of sector batches

In case a memory technology is segmented in sectors, a bank is
an instance of a sector batch group in which no read-while-write
operation is permitted. In case of a flash memory device, this
typically maps to an individual flash controller.

Job Request Memory access request by an upper layer module for an address
area.

Memory Device Group of banks

Page Burst Aggregated access of memory pages for improved performance

In case a memory device technology has a physical segmenta-
tion, some memory devices provide an optimized access method
to read or write multiple pages at a time. Page burst denotes the
aggregation of memory pages used for the access optimization.
Sector Smallest erasable memory unit (in bytes)

Some memory device technologies require an explicit physical
erase operation before the memory can be written. A sector de-
fines the minimum size of such an erase unit. Depending on the
memory device, sectors can be either uniform- or variable-sized.

Sector Batch Aggregation of sectors with uniform size
Logical aggregation of contiguous sectors with the same size.
Sector Burst Aggregation of sectors for improved erase performance

In case a memory technology needs a physical erase opera-
tion, some devices provide an erase performance optimization
by erasing an aggregation of sectors in one step.

Sub Address Area Contiguous memory area in the logical address space mapped
to a sector batch of one memory device.

AUTSSAR

Terms Description

Write Page Smallest writeable unit of a memory device (in bytes)

Some memory device technologies must be accessed consider-
ing a physical segmentation. Hence a byte-wise access is not
possible for all memory device technologies. This term defines
the minimum size that needs to be written in one access.

2.1 Physical Segmentation

Figure 2.1 gives an overview of the physical segmentation and the according technical
terms:

Page Burst

Byte/Word

Sector Bank Device

Figure 2.1: Overview of Physical Segmentation

AUTSSAR

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_CP_RS_ MemoryHWADbstractionLayer

[4] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

3.2 Related Specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for Mem driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Mem driver.

AUTSSAR

4 Constraints and Assumptions

The following constraints apply for the Mem driver:

« The Mem driver only works on physical segments, i.e. pages/page bursts and
sectors/sector bursts for flash memory.

» The Mem driver expects any requests to be aligned to the physical segmentation,
i.e. pages and sectors for flash memory.

Due to this constraints, Mem drivers can only be used in combination with the Memory
Access Module.

4.1 Limitations

4.1.1 General Limitations

Block based memory devices like NAND flash devices are out of scope of this specifi-
cation.

4.1.2 Implementation Limitations

The following implementation limitations apply for the Mem driver:

» The Mem driver does not provide any strategy for write accesses smaller than
the physical segmentation, i.e. pages and sectors for flash memory since it does
not use any internal buffers.

» The Mem driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).

» The size of Mem driver service requests is limited to 32-Bits to avoid a resource
overhead for 32-Bit microcontroller.

4.1.3 Memory Test Capabilities

The Mem driver does not provide any general APIs for performing background memory
tests since the memory test capabilities are very hardware dependent. To implement
memory tests, the Mem driver’s hardware specific request service API can be used.

4.2 Applicability to Car Domains

The Mem driver can be used in any domain application that needs memory access to
either store data or perform a software update.

AUTSSAR

5 Dependencies to Other Modules

5.1 SPI Driver

Typically, external memory devices are connected via a serial bus like SPI (serial pe-
ripheral interface). To access such devices, a driver for the SPI peripheral in the mi-
crocontroller is needed to access the external memory device. Depending on the im-
plementation of the Mem driver, the SPI driver might be part of the Mem driver or the
Mem driver uses an existing MCAL SPI handler/driver.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [3], [4] and [2] and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Mem_10009]

[SRS_BSW_00004]

All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_Mem_00033]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Mem_00033]

[SRS_BSW_00172]

The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

[SWS_Mem_00066]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Mem_00002] [SWS_Mem_00004]
[SWS_Mem_00005] [SWS_Mem_00006]
[SWS_Mem_00007] [SWS_Mem_00009]
[SWS_Mem_00010] [SWS_Mem_00011]
[SWS_Mem_00012] [SWS_Mem_00013]
[SWS_Mem_00015] [SWS_Mem_00016]
[SWS_Mem_00017] [SWS_Mem_00018]
[SWS_Mem_00020] [SWS_Mem_00022]
[SWS_Mem_00023] [SWS_Mem_00024]
[SWS_Mem_00025] [SWS_Mem_00026]
[SWS_Mem_00027] [SWS_Mem_00033]
[SWS_Mem_00072] [SWS_Mem_00090]
[SWS_Mem_00091] [SWS_Mem_00092]

[SRS_BSW_00385]

List possible error notifications

[SWS_Mem_00052]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Mem_10000]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_Mem_10020] [SWS_Mem_10021]
[SWS_Mem_10022]

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_Mem_00079] [SWS_Mem_00080]
[SWS_Mem_00081] [SWS_Mem_00082]
[SWS_Mem_00083] [SWS_Mem_00084]

[SRS_MemHwAb__
14034]

MemAcc module shall allow the
configuration of the priority for
different logical address areas

[SWS_Mem_10024] [SWS_Mem_10025]

[SRS_MemHwAb_
14036]

Mem driver shall be statically
configurable

[SWS_Mem_00035]

[SRS_MemHwAb_
14037]

MemAcc module and Mem driver
shall provide an interface for
initialization

[SWS_Mem_00001] [SWS_Mem_10008]
[SWS_Mem_10018]

[SRS_MemHwAb_
14038]

MemAcc module and Mem driver
shall provide asynchronous memory
access functions

[SWS_Mem_10010] [SWS_Mem_10012]
[SWS_Mem_10013] [SWS_Mem_10014]
[SWS_Mem_10016] [SWS_Mem_10017]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_MemHwAb_
14039]

MemAcc module and Mem driver
shall support optional services

[SWS_Mem_00070] [SWS_Mem_10012]
[SWS_Mem_10013] [SWS_Mem_10014]
[SWS_Mem_10016] [SWS_Mem_10017]

[SRS_MemHwAb_
14040]

MemAcc module and Mem driver
shall provide a synchronous status
function

[SWS_Mem_00029] [SWS_Mem_00030]
[SWS_Mem_00031] [SWS_Mem_00063]
[SWS_Mem_00067] [SWS_Mem_00076]
[SWS_Mem_00077] [SWS_Mem_00078]
[SWS_Mem_10011]

[SRS_MemHwAb_
14042]

MemAcc module shall support
multiple Mem drivers for different
types of memory

[SWS_Mem_10026]

[SRS_MemHwAb_
14043]

Mem driver and shall support multiple
instances of the same memory device

[SWS_Mem_00060] [SWS_Mem_10004]

[SRS_MemHwAb_
14045]

MemAcc module and Mem driver
shall provide measures for dynamic
driver activation

[SWS_Mem_00038] [SWS_Mem_00039]
[SWS_Mem_00040] [SWS_Mem_00041]
[SWS_Mem_00042] [SWS_Mem_00043]
[SWS_Mem_00044] [SWS_Mem_00045]
[SWS_Mem_00046] [SWS_Mem_00048]
[SWS_Mem_00051] [SWS_Mem_00073]
[SWS_Mem_00093] [SWS_Mem_00094]
[SWS_Mem_00095] [SWS_Mem_00096]

[SRS_MemHwAb_
14046]

MemAcc module and Mem driver
shall provide support for 64-Bit
address range

[SWS_Mem_00036] [SWS_Mem_00037]
[SWS_Mem_10002] [SWS_Mem_10007]

[SRS_MemHwAb_
14047]

MemAcc module shall provide
optional support for the initialization
and main function triggering of
memory drivers

[SWS_Mem_00001]

[SRS_MemHwAb_
14049]

Mem driver shall use a standard
binary format for dynamic driver
activation

[SWS_Mem_00038] [SWS_Mem_00041]
[SWS_Mem_00042] [SWS_Mem_00043]
[SWS_Mem_00044] [SWS_Mem_00045]
[SWS_Mem_00046] [SWS_Mem_00048]
[SWS_Mem_00051] [SWS_Mem_00073]
[SWS_Mem_00093] [SWS_Mem_00094]
[SWS_Mem_00095] [SWS_Mem_00096]

[SRS_MemHwAb_
14050]

Mem driver shall handle only one job
at one time

[SWS_Mem_00057] [SWS_Mem_00059]

[SRS_MemHwAb_
14051]

Mem driver shall not buffer data

[SWS_Mem_10003]

[SRS_MemHwAb_
14053]

Mem driver shall provide a function to
a system ECC handle to propagate
ECC errors

[SWS_Mem_00061] [SWS_Mem_10015]

[SRS_MemHwAb_
14056]

MemAcc module and Mem driver
shall provide a generic function to
access the hardware specific
functionalities

[SWS_Mem_00053] [SWS_Mem_10017]

[SWS_BSW_00050]

No description

[SWS_Mem_00087]

[SWS_BSW_00101]

No description

[SWS_Mem_00074]

[SWS_BSW_00102]

No description

[SWS_Mem_00074]

[SWS_BSW_00103]

No description

[SWS_Mem_00074]

[SWS_BSW_00171]

No description

[SWS_Mem_00074]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional Specification

This chapter defines the behavior of the Mem driver.
The API of the module is defined in chapter 8, while the configuration is defined in 10.

7.1 Overview

The Mem driver’s task is the low level memory access based on the physical segmen-
tation of the underlying memory device technology.

The API of the Mem driver is memory device technology independent and thus provides
a memory device agnostic interface to the Memory Access Module upper layer.

All high level functionality like cross-segment operations are handled by the Memory
Access Module to keep the complexity and the footprint of the Mem drivers as small as
possible.

7.1.1 Key Aspects

» Harmonized, memory device agnostic upper layer interface

» Support of code memories

Multi instance support

» Dynamic activation of Mem drivers

64-Bit device support

Support of optional memory services

» Generic interface for providing memory device specific services

7.2 Functional Elements

7.2.1 Job Management

[SWS_Mem_00057]
Upstream requirements: SRS_MemHwAb_14050

[A Mem driver instance shall allow only one job request at a time. |

Note: Since the MemAcc module takes care about the job management of the upper
layer, there is no need to implement a job queue in the Mem driver.

AUTSSAR

[SWS_Mem_00059]
Upstream requirements: SRS_MemHwAb_14050

[If the Mem driver is not able to process a job request, e.g. due to a pending request or
due to an invalid parameter, the job request shall be rejected by an E_NOT_OK return
code. |

[SWS_Mem_00066]
Upstream requirements: SRS_BSW_00172

[All job requests triggered by asynchronous Mem driver services shall be executed
within the Mem_MainFunction.]

[SWS_Mem_00063]
Upstream requirements: SRS_MemHwAb_14040

[If the memory hardware provides ECC information, the Mem driver shall check for
uncorrectable ECC errors and set the job result code to MEM_ECC_UNCORRECTED and
abort the current job processing. |

7.2.1.1 Job Status/Job Results

The Mem driver provides the Mem_GetJobResult service to retrieve the current job
processing status as well as the result of the last processed job. Once a new job is
processed, the result of the last processed job gets overwritten by the current status/re-
sult.

[SWS_Mem_00029]
Upstream requirements: SRS_MemHwAb_14040

[The Mem driver shall keep track of the job processing and the result of the last pro-
cessed job. |

[SWS_Mem_00030]
Upstream requirements: SRS_MemHwAb_ 14040

[Once a job request is accepted, the job processing status shall be set to
MEM_JOB_PENDING.

[SWS_Mem_00067]
Upstream requirements: SRS_MemHwAb_ 14040

[After a job was successfully processed, the job processing status shall be set to
MEM_JOB_OK. |

AUTSSAR

[SWS_Mem_00031]
Upstream requirements: SRS_MemHwAb_14040

[In case a pending job was not able to complete, the job processing status shall be set
to MEM_JOB_FAILED.

[SWS_Mem_00076]
Upstream requirements: SRS_MemHwAb_14040

[In case the job processing was completed but the results of the last Mem job didn’t
meet the expected result, e.g. a blank check operation was applied on a non-blank
memory area, the job result shall be set to MEM_INCONSISTENT.]

[SWS_Mem_00077]
Upstream requirements: SRS_MemHwAb_14040

[If the memory hardware supplies ECC information, the Mem driver shall check
for correctable ECC errors and, in the case of correctable ECC errors, continue
with the job processing. After completion of the job, the job result shall be set to
MEM_ECC_CORRECTED. |

[SWS_Mem_00078]
Upstream requirements: SRS_MemHwAb_14040

[In case the last memory operation didn’t complete due to an uncorrectable ECC error,
the job result shall be set to MEM_ECC_UNCORRECTED. |

7.2.1.2 Job Suspend/Resume

To reduce delays for prioritizing memory accesses, the Mem driver provides services
for suspending/resuming memory operations.

[SWS_Mem_00082]
Upstream requirements: SRS_MemHwAb_14031

[In case a memory device provides a hardware-based suspend/resume mecha-
nism, the Mem driver shall utilize the hardware capabilities to implement the
Mem_Suspend and Mem_Resume Services. If no hardware suspend/resume
support is available, the Mem_Suspend and Mem_Resume services shall return
E_MEM_SERVICE_NOT_AVAIL.]

Note: For the hardware-based suspend/resume operation, it is expected, that the sus-
pend/resume operation is completely handled by the memory hardware (no persis-
tance of any state information needed in software, etc.) and there is no restriction re-
garding the intermediate operation that is issued while the device is in suspend state.
If the hardware does not provide such features, prioritization is only possible based on
the physical memory segmentation.

AUTSSAR

7.2.2 Hardware Specific Services

To support memory device specific services, Mem driver implementations can provide
hardware specific services.

Figure 9.1 shows a typical use case for using a hardware specific service to implement
a hardware specific error handling.

[SWS_Mem_00053]
Upstream requirements: SRS_MemHwAb_ 14056

[All hardware specific routines shall be accessed by the
Mem_HwSpecificService () service.]

7.2.3 Multi Memory Device Instance Support

[SWS_Mem_00060]
Upstream requirements: SRS_MemHwAb_14043

[The Mem driver implementation shall support multiple instances of the same memory
device. |

Note: For the OTA software update use case, multiple memory devices of the same
type are used to expand the memory resources.

7.2.4 Dynamic Driver Activation

To support use cases where the Mem driver shall not be permanently available, i.e.
to prevent accidental overwriting of memory areas, the Mem driver shall provide mea-
sures that allow dynamic activation or download of Mem drivers.

There are two options to support this use case:
» Download of a Mem driver binary image into RAM
» Copy/decrypt a Mem driver ROM binary image into RAM

Both options require that the Mem driver is compiled as a separate binary. In case the
Mem driver binary is part of the application image, the Mem driver binary image should
to be encrypted, e.g. by a XOR operation and only be decrypted in RAM if the Mem
driver shall be activated. The download or decryption operation of the Mem driver must
be implemented as a CDD and is not covered by this specification.

To provide interoperability of different Mem driver implementations, the Mem drivers
need to build according to standardized binary image format. The Mem driver binary
image format is defined in chapter 7.2.6.

AUTSSAR

[SWS_Mem_00039]
Upstream requirements: SRS_MemHwAb_14045

[If built as a separate image, the Mem driver shall be completely self contained, i.e. it
must not call any library or any other external functions. |

Note: Since the Mem driver is running in a different context than it was built, it must
not depend on any external functions or libraries. Therefore, the development error
detection mechanisms is not available in case the Mem driver is built as a separate
binary.

7.2.5 Service Invocation

[SWS_Mem_00038]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[The Mem driver shall provide two ways for the service function invocation:
+ Direct service invocation

* Indirect service invocation by a function pointer table

]

Note: Some use cases like OTA background software update might require dynamic
Mem driver activation using the indirect service invocation while simple use cases like
NVM data storage want to use direct service invocation.

7.2.5.1 Direct Invocation

In case the Mem driver service functions are directly invoked, the Mem driver is linked
with the application software and the Mem driver service functions are directly called
by the MemAcc module.

7.2.5.2 Indirect Invocation

The indirect service invocation is needed for the dynamic driver activation feature de-
scribed in chapter 7.2.4.

7.2.6 Binary Image Format

This chapter specifies the Mem driver binary image format. The binary image format
is split into five parts:

» Header, containing management information

AUTSSAR

« Service function pointer table
« Service function implementation
* Delimiter

Figure 7.1 shows an overview of the Mem driver binary image:

Header Service Function Pointer Table

Unique ID . Mem_Init Service Function Ptr
Binary Image
Header Address [------~- Mem_MainFunction Service Function Ptr
Header
Flags Mem_GetJobResult Service Function Ptr
S e Service Function Pointer Table
Delimiter Address - ===~~~ " | Mem_Read Service Function Ptr

Mem_HwSpecificService Function Ptr

Delimiter

Delimiter Pattern

Service Implementation

Delimiter

Figure 7.1: Binary Image Format Overview

[SWS_Mem_00040]
Upstream requirements: SRS_MemHwAb_14045

[Since Mem drivers are always hardware/CPU specific, the byte order of data fields
and address information within the Mem driver binary shall follow the standard CPU
byte order. |

Note: Avoid unnecessary address/data format conversions.

7.2.6.1 Header

[SWS_Mem_00041]
Upstream requirements: SRS _MemHwAb_ 14045, SRS_MemHwAb_ 14049
[The header part of the Mem driver binary shall follow the structure defined in

[SWS_Mem_00093]. The size of the address information depends on the configured
MemAcc_AddressType (see [SWS_MemAcc_10000] - 32 or 64 bit). |

AUTSSAR

[SWS_Mem_00093]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

Offset Size Name Description

[bytes] [bytes]

0 8 Unique ID Mem driver unique identifier - used to validate Mem driver version
information, etc.

8 8 Flags Flags used for additional development error detection.

16 4/8 Header address Start address of Mem driver image header - used to verify consistency of
Mem driver RAM buffer/ROM image location.

20/24 4/8 Delimiter address Address of Mem driver binary image delimiter pattern - used to validate if the

binary is complete.

Header Binary Format

7.2.6.1.1 Unique ID

[SWS_ Mem_00042]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[The unique identifier is used for unique identification of Mem drivers. The format of
the unique identifier shall follow the structure defined in [SWS_Mem_00094]. |

[SWS_Mem_00094]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[

Offset Size Name Description

[bytes] [bytes]

0 2 ABI version BCD-encoded Mem driver binary interface version. Any change of the
interface version will also require an update of the MemAcc module.

2 2 Vendor ID Standard AUTOSAR vendor identification.

4 4 Driver ID Vendor specific driver identification.

Unique ID Format

]

[SWS_Mem_00043]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[The ABI version of a Mem driver following this specification shall be 0001. |

AUTSSAR

7.2.6.1.2 Header Address

[SWS Mem_00044]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_ 14049

[The header address is used for development error checks to verify the consistency of
the linked Mem driver binary image with the location of the RAM buffer which is used
for execution of the Mem driver.

In case of a relocatable/position independent Mem driver binary, the header address
shall be set to zero, otherwise, the header address shall hold the physical start address
of the Mem driver binary. |

7.2.6.1.3 Flags

[SWS_Mem_00045]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[The flag part of the Mem driver header is a bit-field which holds additional information
for develop error checks.

The format of the flag bit-field shall follow the structure defined in [SWS_Mem_00095]. |

[SWS_Mem_00095]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

Offset Size Name Description
[bits] [bits]
0 1 Relocatable binary | If this bit is set, the Mem driver binary is relocatable and no address
consistency checks can be done.
1 31 Reserved Reserved by this specification - shall be 0.
32 32 Vendor specific Vendor specific flags.
Flag Format

7.2.6.1.4 Delimiter Address

[SWS_Mem_00046]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_ 14049

[The delimiter address part of the Mem driver header is used for development error
checks to verify that the Mem driver binary is complete by checking the delimiter pattern
linked to the end of the Mem driver binary.

In case of a relocatable/position independent Mem driver binary, the delimiter address

AUTSSAR

shall be set to zero, otherwise, the delimiter address shall hold the physical address of
the delimiter pattern. |

7.2.6.2 Service Function Pointer Table

[SWS_Mem_00073]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[The function pointer table is a standardized structure used to reference the Mem
driver service functions.

The format of function pointer table shall follow the structure defined in
[SWS_Mem_00096]. |

[SWS_Mem_00096]
Upstream requirements: SRS _MemHwAb_ 14045, SRS_MemHwAb_ 14049

[
Entry Name Description
1 Init service pointer Function pointer to Mem driver Init service.
2 Delnit service pointer Function pointer to Mem driver Delnit service.
3 MainFunction service pointer Function pointer to Mem driver MainFunction service.
4 GetJobResult service pointer Function pointer to Mem driver GetJobResult service.
5 Read service pointer Function pointer to Mem driver Read service.
6 Write service pointer Function pointer to Mem driver Write service.
7 Erase service pointer Function pointer to Mem driver Erase service.
8 PropagateError service pointer Function pointer to Mem driver PropagateError service.
9 BlankCheck service pointer Function pointer to Mem driver BlankCheck service.
10 Suspend service pointer Function pointer to Mem driver Suspend service.
11 Resume service pointer Function pointer to Mem driver Resume service.
12 HwSpecificService service pointer Function pointer to Mem driver HwSpecificService service.

Function Pointer Table

]

[SWS_Mem_00048]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049
[The size of the Mem driver function pointers shall be machine/CPU specific. |

Note: The system integrator has to ensure to use the same memory model for the
Mem driver and the MemAcc module.

AUTSSAR

7.2.6.3 Delimiter

The delimiter field marks the end of the Mem driver binary image. The format of the
delimiter field shall follow the unique identifier defined in paragraph 7.2.6.1.1.

[SWS_Mem_00051]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[The value of the delimiter field shall be the ones’ complement of the unique identifier
value. |

7.2.7 Optional Services

Since not all Mem driver services are relevant for all memory device technologies, the
Mem driver provides mechanisms to indicate to the MemAcc module which services
are available.

Independent, if a service is relevant, the Mem driver shall provide all standard services
as defined in chapter 8.3.

[SWS_Mem_00070]
Upstream requirements: SRS_MemHwAb_14039

[In case a service is not relevant for a specific memory device technology, the service
shall always return E_MEM_SERVICE_NOT_AVATIL.|

7.3 Module Handling

7.3.1 |Initialization

The Mem driver is initialized via Mem_TInit. Except for Mem_GetVersionInfo,
Mem_MainFunction and Mem_Init, the API functions of the Mem driver may only
be called after the module has been properly initialized.

7.3.2 Scheduling

Since most of the Mem driver services are asynchronous services, the Mem_Main-
Function needs to be cyclically triggered. Since Mem driver don’t need to measure
times or do any timing supervision, there is no need to call the Mem_MainFunction
with a fixed cycle.

AUTSSAR

7.3.3 ECC Handling

Handling ECC errors is very hardware specific but typically a non-maskable interrupt
is triggered by the ECC circuit. Dealing with ECC errors has to be done on a system
level as the error reaction needs to be handled on system level as well.

To propagate memory ECC errors to the upper layer, the Mem driver provides the
Mem_PropagateError APl which can be called by the system ECC error handler to
forward ECC errors.

Figure 9.2 shows an example ECC handling sequence to illustrate the usage of the
Mem_PropagateError API.

7.4 General Design Rules

[SWS_Mem_00033]

Upstream requirements: SRS _BSW_00323, SRS BSW 00167, SRS _BSW 00004
[The Mem driver shall check static configuration parameters statically (at the latest
during compile time) for correctness. |

[SWS_Mem_00088] [The Mem driver shall not verify the result of a write or erase
operation. |

Note: Consistency checks shall be implemented by the upper layers, e.g., by reading
back the data or performing an explicit blank check.

7.4.1 Address Alighment

[SWS_Mem_00035]

Upstream requirements: SRS_MemHwAb_14036
[The Mem driver shall not perform any sort of address or length alignment in case
physical segmentation needs to be considered, e.g. for flash memory. |

Note: The MemAcc module takes care about alignment/splitting Mem service requests
according to the configure physical segmentation.

AUTSSAR

7.4.2 64-Bit Support

[SWS_Mem_00036]
Upstream requirements: SRS_MemHwAb_14046

[The Mem driver shall inherit the size of Mem_AddressType from
MemAcc_AddressType (see [SWS_MemAcc_10000]) to support memories larger
than 4GBytes. |

Note: This requirement applies for all Mem drivers, independent if the physical memory
size is less than 4GBystes.

[SWS_Mem_00037]
Upstream requirements: SRS_MemHwAb_ 14046

[1f the maximum physical memory size of a device does not exceed 4GBytes, the Mem
driver shall perform an explicit cast and work internally with a 32-Bit address type. |

Note: Avoid resource overhead on 32-Bit microcontroller.

7.5 Error Classification

7.5.1 Development Errors

[SWS_Mem_00052] Definition of development errors in module Mem
Upstream requirements: SRS_BSW_00385

[
Type of error Related error code Error value
API service called without module initialization MEM_E_UNINIT 0x01
API service called with NULL pointer MEM_E_PARAM_POINTER 0x02
API service called with an invalid address MEM_E_PARAM_ADDRESS 0x03
API service called with an invalid length MEM_E_PARAM_LENGTH 0x04
API service called with an invalid driver instance ID | MEM_E_PARAM_INSTANCE_ID 0x05
API service called while a job request is still in MEM_E_JOB_PENDING 0x06
progress
]

7.5.2 Runtime Errors

There are no runtime errors.

Note: Simplify system design by just having one fault handling mechanism.

AUTSSAR

7.5.3 Production Errors

There are no production errors.

7.5.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API Specification

[SWS_Mem_00074]

Upstream requirements: SWS_BSW 00101,

BSW_00171

SWS_BSW_00102, SWS_BSW_00103, SWS_-

[The Mem driver APl names, type definitions and file naming scheme shall follow the
standard AUTOSAR BSW Module implementation prefix with vendor1d and vendo-

rApiInfix.|

8.1 Imported Types

In this chapter all types included from the following files are listed.

[SWS_Mem_10020] Definition of imported datatypes of module Mem

Upstream requirements: SRS_BSW_00415

[
Module Header File Imported Type
MemAcc MemAcc_GeneralTypes.h | MemAcc_AddressType
MemAcc_GeneralTypes.h | MemAcc_MemdJobResultType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

8.2 Type Definitions

8.2.1 Mem_AddressType

[SWS_Mem_10002] Definition of datatype Mem_AddressType
Upstream requirements: SRS_MemHwAb_14046

Name

Mem_AddressType

Kind

Type

Derived from

MemAcc_AddressType

Description

Physical memory device address type

Available via

Mem.h

AUTSSAR

8.2.2 Mem_ConfigType

[SWS_Mem_10000] Definition of datatype Mem_ConfigType
Upstream requirements: SRS_BSW_00414

Name Mem_ConfigType

Kind Structure

Description Postbuild configuration structure type
Available via Mem.h

8.2.3 Mem_DataType

[SWS_Mem_10003] Definition of datatype Mem_DataType
Upstream requirements: SRS_MemHwAb_14051

Name Mem_DataType

Kind Type

Derived from uint8

Description Read data user buffer type
Available via Mem.h

8.2.4 Mem_InstanceldType

[SWS_Mem_10004] Definition of datatype Mem_InstanceldType
Upstream requirements: SRS_MemHwAb_14043

[
Name Mem_InstanceldType
Kind Type
Derived from uint32
Description Memory driver instance ID type
Available via Mem.h

AUTSSAR

8.2.5 Mem_LengthType

[SWS_Mem_10007] Definition of datatype Mem_LengthType
Upstream requirements: SRS_MemHwAb_14046

Name Mem_LengthType

Kind Type

Derived from uint32

Description Physical memory device length type
Available via Mem.h

8.2.6 Mem_HwServiceldType

[SWS_Mem_10026] Definition of datatype Mem_HwServiceldType
Upstream requirements: SRS_MemHwAb_14042

Name Mem_HwServiceldType

Kind Type

Derived from uint32

Description Hardware specific service request identifier type
Available via Mem.h

8.3 Function Definitions

8.3.1 Synchronous Functions

8.3.1.1 Mem_lInit

[SWS_Mem_10008] Definition of API function Mem_Init
Upstream requirements: SRS_MemHwAb_14037

[

Service Name Mem_Init

Syntax void Mem_Init (
const Mem_ConfigTypex configPtr
)

Service ID [hex] 0x01

Sync/Async Synchronous

AUTSSAR

JAN
Reentrancy Non Reentrant
Parameters (in) configPtr Pointer to the configuration data structure - since Mem driver is a
precompile module this parameter is typically not used.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initialization function - initializes all variables and sets the module state to initialized.
Available via Mem.h

]
[SWS Mem_00001]
Upstream requirements: SRS_MemHwAb_14037, SRS_MemHwAb_14047

[The service Mem_Init shall initialize the Mem driver internal states and set the Mem
driver job processing state to MEM_JOB_OK. |

[SWS_Mem_00087]
Upstream requirements: SWS_BSW_00050

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Init shall raise the development error MEM_E_PARAM_POINTER if the config-
pPtr argument is not a NULL pointer. |

Note: The configuration pointer configPtr is currently not used and shall therefore
be set to a NULL pointer value.
8.3.1.2 Mem_Delnit

[SWS Mem_10018] Definition of API function Mem_Delnit
Upstream requirements: SRS_MemHwAb_ 14037

[
Service Name Mem_Delnit
Syntax void Mem_DelInit (
void
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A

Description De-initialize module. If there is still an access job pending, it is immediately terminated (using
hardware cancel operation) and the Mem driver module state is set to unitialized. Therefore,
Mem must be re-initialized before it will accept any new job requests after this service is
processed.

Available via Mem.h

]

[SWS_Mem_00079]
Upstream requirements: SRS_MemHwAb_ 14031

[The service Mem_DeInit shall cancel any ongoing flash operations in the hardware
and de-initialize the Mem driver internal states. |

8.3.1.3 Mem_GetVersioninfo

[SWS_Mem_10009] Definition of API function Mem_GetVersioninfo
Upstream requirements: SRS_BSW_00003

[

Service Name Mem_GetVersioninfo

Syntax void Mem_GetVersionInfo (
Std_VersionInfoType* versionInfoPtr

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfoPtr Pointer to standard version information structure.
Return value None

Description

Service to return the version information of the Mem module.

Available via

Mem.h

]
[SWS_Mem_00002]

Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_GetVersionInfo shall raise the development error MEM_E_PARAM POINTER
if the versionInfoPtr argumentis a NULL pointer. |

AUTSSAR

8.3.1.4 Mem_GetJobResult

[SWS_Mem_10011] Definition of API function Mem_GetJobResult

Upstream requirements: SRS_MemHwAb_ 14040

[

Service Name

Mem_GetJobResult

SynuM' MemAcc_MemJobResultType Mem_GetJobResult (
Mem_InstanceIdType instanceld
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) instanceld ID of the related memory driver instance.
Parameters (inout) None
Parameters (out) None

Return value

MemAcc_MemJobResult Most recent job result.

Type
Description Service to return results of the most recent job.
Available via Mem.h

]

[SWS_Mem_00090]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service

Mem_GetJobResult shall check that the provided instanceId is consistent with
the configuration. If this check fails, Mem_Get JobResult shall raise the development
error MEM_E_PARAM_INSTANCE_ID.|

8.3.1.5 Mem_Suspend

[SWS_Mem_10024] Definition of API function Mem_Suspend
Upstream requirements: SRS_MemHwAb_14034

[

Service Name

Mem_Suspend

Syntax Std_ReturnType Mem_Suspend (
Mem_InstanceIdType instanceld

)

Service ID [hex] 0x0c

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) instanceld | ID of the related memory driver instance.
Parameters (inout) None

\Y%

AUTSSAR

A

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK:The requested job has not been accepted by the
module.
E_MEM_SERVICE_NOT_AVAIL: The underlying Mem driver
service function is not available.

Description Suspend active memory operation using hardware mechanism.

Available via Mem.h

]

[SWS_Mem_00080]

Upstream requirements: SRS_MemHwAb_14031
[The service Mem_Suspend shall suspend any ongoing flash operations using an ac-
cording hardware mechanism. |

[SWS_Mem_00083]
Upstream requirements: SRS_MemHwAb_14031

[In case a suspend operation is already in pending, Mem_Suspend shall reject the
request by returning E_NOT_OK without further actions. |

[SWS_Mem_00091]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Suspend shall check that the provided instanceId is consistent with the
configuration. If this check fails, Mem_Suspend shall raise the development error
MEM_FE_PARAM_INSTANCE_ID.]

8.3.1.6 Mem_Resume

[SWS_Mem_10025] Definition of API function Mem_Resume
Upstream requirements: SRS_MemHwAb_14034

[

Service Name Mem_Resume

Syntax Std_ReturnType Mem_Resume (
Mem_InstanceldType instanceId

)

Service ID [hex] 0x0d

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) instanceld ‘ ID of the related memory driver instance.
Parameters (inout) None

Parameters (out) None

\Y

AUTSSAR

A

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK:The requested job has not been accepted by the
module.

E_MEM_SERVICE_NOT_AVAIL: The underlying Mem driver
service function is not available.

Description Resume suspended memory operation using hardware mechanism.

Available via Mem.h

]

[SWS_Mem_00081]

Upstream requirements: SRS_MemHwAb_14031
[The service Mem_Resume shall resume a flash operations that was suspended by the
service Mem_Suspend. |

[SWS_Mem_00084]
Upstream requirements: SRS_MemHwAb_ 14031

[In case no suspend operation is pending, Mem_Resume shall reject the request by
returning E_NOT_OK without further actions. |

[SWS_Mem_00092]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Resume shall check that the provided instanceId is consistent with the
configuration. If this check fails, Mem_Resume shall raise the development error
MEM_FE_PARAM_INSTANCE_ID.|

8.3.1.7 Mem_PropagateError

[SWS_Mem_10015] Definition of API function Mem_PropagateError
Upstream requirements: SRS_MemHwAb_14053

[

Service Name Mem_PropagateError
Syntax void Mem_PropagateError (
Mem_InstanceIdType instanceId

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) instanceld ID of the related memory driver instance.

Parameters (inout) None

Parameters (out) None

Return value None

AUTSSAR

A

This service can be used to report an access error in case the Mem driver cannot provide the
access error information - typically for ECC faults. It is called by the system ECC handler to
propagate an ECC error to the memory upper layers..

Mem.h

Description

Available via

]

[SWS_Mem_00020]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_PropagateError shall check that the provided instanceId is consistent with
the configuration. If this check fails, Mem_PropagateError shall raise the develop-
ment error MEM_E_PARAM_INSTANCE_ID. |

[SWS Mem 00061]
Upstream requirements: SRS _MemHwAb_14053

[If the Mem_PropagateError service is called, the Mem driver shall set the job result
code to MEM_ECC_UNCORRECTED and cancel the current job processing. |

8.3.2 Asynchronous Functions

8.3.2.1 Mem_Read

[SWS_Mem_10012] Definition of API function Mem_Read
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039

[

Service Name

Mem_Read

Syntax Std_ReturnType Mem_Read (
Mem_InstanceldType instanceld,
Mem_AddressType sourceAddress,
Mem_DataTypex destinationDataPtr,
Mem_LengthType length
)
Service ID [hex] 0x05
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) instanceld ID of the related memory driver instance.
sourceAddress Physical address to read data from.
length Read length in bytes.
Parameters (inout) None

Parameters (out)

destinationDataPtr

| Destination memory pointer to store the read data.

V

AUTSSAR

A
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
E_MEM_SERVICE_NOT_AVAIL: The service function is not
implemented.
Description Triggers a read job to copy the from the source address into the referenced destination data

buffer. The result of this service can be retrieved using the Mem_GetJobResult API. If the read
operation was successful, the result of the job is MEM_JOB_OK. If the read operation failed,
the result of the job is either MEM_JOB_FAILED in case of a general error or MEM_ECC_
CORRECTED/MEM_ECC_UNCORRECTED in case of a correctable/uncorrectable ECC error.

Available via Mem.h

]

[SWS_Mem_00004]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the ser-
vice Mem_Read shall check that the provided instanceId is consistent with the
configuration. If this check fails, Mem_Read shall raise the development error
MEM_FE_PARAM_INSTANCE_ID.|

[SWS_Mem_00005]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Read shall raise the development error MEM_E_PARAM_POINTER if the desti-
nationDataPtr argumentis a NULL pointer. |

[SWS_Mem_00006]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Read shall raise the development error MEM_E_PARAM_ADDRESS if the address
defined by sourceAddress is invalid. |

[SWS Mem_00072]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Read shall raise the development error MEM_E_PARAM_LENGTH if the read length
defined by 1length is invalid. |

[SWS_Mem_00007]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MembDevErrorDetect, the service

Mem_Read shall raise the development error MEM_E_ JOB_PENDING if a previous Mem
job is still being processed. |

AUTSSAR

8.3.2.2 Mem_Write

[SWS_Mem_10013] Definition of API function Mem_Write
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_ 14039

[

Service Name Mem_Write
Syntax Std_ReturnType Mem_Write (
Mem_InstanceIdType instanceld,
Mem_AddressType targetAddress,
const Mem_DataTypex sourceDataPtr,
Mem_LengthType length
)

Service ID [hex] 0x06

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) instanceld ID of the related memory driver instance.
targetAddress Physical write address (aligned to page size).
sourceDataPtr Source data pointer (aligned to page size).
length Write length in bytes (aligned to page size).

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the
module.

E_MEM_SERVICE_NOT_AVAIL: The service function is not
implemented.

Description Triggers a write job to store the passed data to the provided address area with given address
and length. The result of this service can be retrieved using the Mem_GetJobResult API. If the
write operation was successful, the job result is MEM_JOB_OK. If there was an issue writing
the data, the result is MEM_FAILED.

Available via Mem.h

]

[SWS_Mem_00009]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Write shall check that the provided instanceId is consistent with the
configuration. If this check fails, Mem_Write shall raise the development error
MEM_E_PARAM_INSTANCE_ID.|

[SWS_Mem_00010]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Write shall raise the development error MEM_E_PARAM POINTER if the
sourceDataPtr argument is a NULL pointer. |

AUTSSAR

[SWS_Mem_00011]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Write shall raise the development error MEM_E_PARAM_ADDRESS if the address
defined by targetaAddress is invalid. |

[SWS_Mem_00012]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Write shall raise the development error MEM_E_PARAM LENGTH if the write
length defined by 1ength is invalid. |

[SWS_Mem_00013]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Write shall raise the development error MEM_E_JOB_PENDING if a previous
Mem job is still being processed. |

8.3.2.3 Mem_Erase

[SWS_Mem_10014] Definition of APl function Mem_Erase
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039

[

Service Name Mem_Erase

Syntax Std_ReturnType Mem_Erase (
Mem_InstanceIdType instanceld,
Mem_AddressType targetAddress,
Mem_LengthType length

)

Service ID [hex] 0x07
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) instanceld ID of the related memory driver instance.
targetAddress Physical erase address (aligned to sector size).
length Erase length in bytes (aligned to sector size).
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
E_MEM_SERVICE_NOT_AVAIL: The service function is not
implemented.

Y%

AUTSSAR

A

Description Triggers an erase job of the given sector/sector batch defined by targetAddress and length. The
result of this service can be retrieved using the Mem_GetJobResult API. If the erase operation

was successful, the result of the job is MEM_JOB_OK. If the erase operation failed, e.g. due to
a hardware issue, the result of the job is MEM_JOB_FAILED.

Available via Mem.h

]

[SWS_Mem_00015]

Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service
Mem_Erase shall check that the provided instanceld is consistent with the

configuration. If this check fails, Mem_Erase shall raise the development error
MEM_E_PARAM_ INSTANCE_ID.]

[SWS_Mem_00016]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Erase shall raise the development error MEM_E_PARAM_ADDRESS if the address
defined by targetAddress is invalid. |

[SWS Mem_00017]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Erase shall raise the development error MEM_E_PARAM_LENGTH if the read
length defined by 1length is invalid. |

[SWS_Mem_00018]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_Erase shall raise the development error MEM_E_JOB_PENDING if a previous
Mem job is still being processed. |

AUTSSAR

8.3.2.4 Mem_BlankCheck

[SWS_Mem_10016] Definition of API function Mem_BlankCheck
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_ 14039

[

Service Name Mem_BlankCheck
Syntax Std_ReturnType Mem_BlankCheck (
Mem_InstanceldType instanceld,
Mem_AddressType targetAddress,
Mem_LengthType length
)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) instanceld ID of the related memory driver instance.
targetAddress Physical blank check address.
length Blank check length.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the
module.

E_MEM_SERVICE_NOT_AVAIL: The service function is not
implemented.

Description Triggers a job to check the erased state of the page which is referenced by targetAddress. The
result of this service can be retrieved using the Mem_GetJobResult API. If the checked page is
blank, the result of the job is MEM_JOB_OK. Otherwise, if the page is not blank, the result is
MEM_INCONSISTENT.

Available via Mem.h

]

[SWS Mem_00022]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_BlankCheck shall check that the provided instanceId is consistent with the
configuration. If this check fails, Mem_BlankCheck shall raise the development error
MEM_E_PARAM_INSTANCE_ID.|

[SWS_Mem_00023]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_BlankCheck shall raise the development error MEM_E_PARAM_ADDRESS if the
address defined by targetAddress is invalid. |

[SWS Mem_00024]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemDevErrorDetect, the service

Mem_BlankCheck shall raise the development error MEM_E_PARAM_LENGTH if the
read length defined by 1ength is invalid. |

AUTSSAR

[SWS_Mem_00025]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_BlankCheck shall raise the development error MEM_E_JOB_PENDING if a previ-
ous Mem job is still being processed. |

8.3.2.5 Mem_HwSpecificService

[SWS_Mem_10017] Definition of API function Mem_HwSpecificService
Upstream requirements: SRS_MemHwAb_ 14038, SRS_MemHwAb_ 14039, SRS _MemHwAb_ -

14056
Service Name Mem_HwSpecificService
Syntax Std_ReturnType Mem_HwSpecificService (

Mem_InstanceIdType instanceld,
Mem_HwServiceIdType hwServiceld,
Mem_DataTypex dataPtr,
Mem_LengthTypex lengthPtr

)

Service ID [hex] 0x0a
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) instanceld ID of the related memory driver instance.
hwServiceld Hardware specific service request identifier for dispatching the
request.
dataPtr Request specific data pointer.
lengthPtr Size pointer of the data passed by dataPtr.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
E_MEM_SERVICE_NOT_AVAIL: The service function is not
implemented.
Description Triggers a hardware specific memory driver job. dataPtr can be used to pass and return data to/

from this service. This service is just a dispatcher to the hardware specific service
implementation referenced by hwServiceld. The result of this service can be retrieved using the
Mem_GetJobResult API. If the hardware specific operation was successful, the result of the job
is MEM_JOB_OK. If the hardware specific operation failed, the result of the job is MEM_JOB_
FAILED.

Available via Mem.h

]

[SWS_Mem_00026]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect, the service
Mem_HwSpecificService shall check that the provided instanceId is consistent
with the configuration. If this check fails, Mem_HwSpecificService shall raise the
development error MEM_E_PARAM_INSTANCE_ID.|

AUTSSAR

[SWS_Mem_00027]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemDevErrorDetect,
the service Mem_HwSpecificService shall raise the development error
MEM_E_PARAM_POINTER if the dataPtr or lengthPtr argument is a NULL
pointer. |

8.4 Callback Notifications

There are no callback functions to lower layer modules provided by the Mem driver
since this module is at the lowest (software) layer.

8.5 Scheduled Functions

8.5.1 Mem_MainFunction

[SWS_Mem_10010] Definition of scheduled function Mem_MainFunction
Upstream requirements: SRS_MemHwAb_14038

Service Name Mem_MainFunction
Syntax void Mem_MainFunction (
void
)
Service ID [hex] 0x03
Description Service to handle the requested jobs and the internal management operations.
Available via SchM_Mem.h

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This section defines all interfaces, which are required to fulfill the core functionality of
the module.

AUTSSAR

[SWS_Mem_10022] Definition of mandatory interfaces required by module Mem
Upstream requirements: SRS_BSW_00415

[

API Function ‘ Header File Description

There are no mandatory interfaces.

8.6.2 Optional Interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Mem_10021] Definition of optional interfaces requested by module Mem
Upstream requirements: SRS_BSW_00415

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable Interfaces

The Mem driver does not have any configurable interfaces.

AUTSSAR

9 Sequence Diagrams

9.1 Hardware Specific Error Handling

«module» «module» «module»
:SchMm :MemAcc :Mem

Upper Layer

'
MemAcc_Erase()
|

1
MemAcc_Erase()

I
| |
loop Result Polling / | |
I I
| | |
| | |
: loop Sector / !
I
: ! MemAcc_MainFunction() !
|
| Mem_Erase()
I
I
| Mem_Erase()
| =PRI AL Al g A ——
| L
: Mem_MainFunction() |
|
: Mem_MainFunction()
< _______________________
I
| L
1 Mem_GetJobResult() :
|
I
| e Mem_GetJobResult(): MEM_JOB_FAILED
| h O [
MemAcc_MainFuncti
I |- MemAce_MainFunction) __| L
| 1
I |] I
| | | |
| t t t
| 1 1 1
! 1 1 1
| MemAcc_GetJobStatus() | 1
I |
| |
MemAcc_GetJobStatus(): MEMACC_JOB_IDLE |

T T T T
1 1 1
1
MemAcc_GetJobResult()
I
MemAcc_GetJobResult(): MEMACC_FAILED
e ———————— === T === —— === ===
L
: MemAcc_GetProcessedLength()
t
I I
MemAcc_GetProcessedLength() !
e - —
T ! T
MemAcc_GetMemoryinfo()
!
MemAcc_GetMemorylnfo() 1
<——————————————i ————————————————
na
MemAcc_HwSpecificService() I
T
I I
MemAcc_HwSpecificService()
<--——-—-—-—-—-——-—--= T —— 1
L
ifi
! Mem_HwSpecificReq() !
Mem_HwSpecificReq()
e e T T o

Figure 9.1: Hardware Specific Error Handling

AUTSSAR

9.2 ECC Handling Example Sequence

System ECC «module» «module» «module»
Handler :Fee :MemAcc :Mem

ECC Circuit

MemAcc_Read()

T T
! 1 1
| | |
! | |
! 1 1
! | |
: ! MemAcc_Read() !
I - ST I
! | < |
! 1 T 1
: | MemAcc_GetJobStatus() | |
| |
I | MemAcc_GetJobStatus(): |
| | MEMACC_JOB_PENDING |
1 | <-——————————————————— |
! 1 L 1
| 1 1 1 1
| | | | Mem_Read() - |
! 1 1 o
: I I M Read()
| | em_Rea
: | | < -—————m ===
I I
| lsue ECCEmo() _ | | H
| |
| |
| |
loop) : :
| MemAcc_GetJoblinfo() - !
T L
I
|

MemAcc_GetJoblInfo()
-

I MemAcc_GetJobStatus()

Mem_GetJobResult()

Mem_GetJobResult():

MEM_ECC_UNCORRECTED
MemAcc_GetJobStatus():

I sE

MEMACCM_JOB_IDLE L
<-——————— === ————— |
L |

| |

MemAcc_GetJobResult() 1 1

I

|

MemAcc_GetJobResult(): |
MEMACC_ECC_UNCORRECTED !

e - S e T T I
I

|

Figure 9.2: ECC Handling Example Sequence

AUTSSAR

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification chapter 10.1 describes fundamentals. It
also specifies a template (table) you shall use for the parameter specification. We
intend to leave chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MEM.

Chapter 10.3 specifies published information of the module MEM.

10.1 How to Read this Chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and Configuration Parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe chapter 7 and chapter 8.

AUTSSAR

10.2.1 Mem

Mem: EcucModuleDef

upperMultiplicity = *
lowerMultiplicity = 0

+container

MemGeneral:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

MemDevErorDetect:
+parameter | EcucBooleanParamDef
lowerMultiplicity = 1 MemMainFunctionPeriod:
upperMultiplicity = 1 EcucFloatParamDef
+parameter —
> min =
max = INF
Memindex: defaultvalue = 0.005
EcuclntegerParamDef lowerMultiplicity = 1
+parameter min =0 upperMultiplicity = 1
max = 254
lowerMultiplicity = 1
upperMultiplicity = 1
symbolicNameValue = true
MemNamePrefix:
+parameter| EcucStringParamDef

lowerMultiplicity = 1
upperMultiplicity = 1

MemInvocation:

EcucEnumerationParamDef

DIRECT_STATIC:
EcucEnumerationLiteralDef

+parameter

defaultValue = DIRECT_STATIC
lowerMultiplicity = 1
upperMultiplicity = 1

INDIRECT_STATIC:
EcucEnumerationLiteralDef

INDIRECT_DYNAMIC:
EcucEnumerationLiteralDef

+reference

MemEcucPartitionRef:

+destination

EcucPartition:
EcucParamConfContainerDef

EcucReferenceDef

+container | EcucParamConfContainerDef

MemPublishedInformation:

lowerMultiplicity = 1
upperMultiplicity = 1

+container

MemInstance:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 65535

lowerMultiplicity = 0
upperMultiplicity = *

+parameter

EcucintegerParamDef

MemErasedValue:

min =0

max = 4294967295
lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.1: Mem

[ECUC_Mem_00001] Definition of EcucModuleDef Mem |

lowerMultiplicity = 0
upperMultiplicity = *

(from EcucPartition)

Module Name

Mem

Description

Configuration of the Mem driver (internal or external memory driver) module.
Its multiplicity describes the actual number of Mem drivers. There will be one
container for each Mem driver.

Post-Build Variant Support

false

Supported Config Variants

VARIANT-PRE-COMPILE

AUTSSAR

Included Containers

Container Name Multiplicity Dependency

MemGeneral 1 Container for general configuration parameters of the Mem

driver. These parameters are always pre-compile.

Memlnstance 1..65535 This container includes the Mem driver instance specific
configuration parameters.

Its multiplicity describes the number of Mem driver instances of
this Mem driver. There will be one container for each Mem driver

instance.

MemPublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.
Note that these parameters do not have any configuration class

setting, since they are published information.

J
[ECUC_Mem_00002] Definition of EcucParamConfContainerDef MemGeneral |

Container Name MemGeneral

Parent Container Mem

Description Container for general configuration parameters of the Mem driver. These parameters
are always pre-compile.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemDevErrorDetect 1 [ECUC_Mem_00004]
MemIndex 1 [ECUC_Mem_00023]
Memlnvocation 1 [ECUC_Mem_00025]
MemMainFunctionPeriod 1 [ECUC_Mem_00029]
MemNamePrefix 1 [ECUC_Mem_00024]
MemEcucPartitionRef 0..* [ECUC_Mem_00027]

| No Included Containers

]

[ECUC_Mem_00004] Definition of EcucBooleanParamDef MemDevErrorDetect |

Parameter Name

MemDevErrorDetect

Parent Container

MemGeneral

Description Switches the development error detection and notification on or off.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Mem_00023] Definition of EcuclntegerParamDef MemIndex |

Parameter Name Memlindex
Parent Container MemGeneral
Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..254
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Mem_00025] Definition of EcucEnumerationParamDef Meminvocation |

Parameter Name Memlnvocation

Parent Container MemGeneral

Description Defines how the Mem driver services are accessed and how the Mem driver is
scheduled and activated/initialized.

Multiplicity 1

Type EcucEnumerationParamDef

Range DIRECT_STATIC Mem driver is linked with application. Mem_lInit is

called by EcuM and Mem_MainFunction is
triggered by SchM.

INDIRECT_DYNAMIC Mem driver is linked as a separate binary and is
dynamically activated. Call of Mem_Init and
Mem_MainFunction is handled by MemAcc.

INDIRECT_STATIC Mem driver is linked with application. Call of
Mem_Init and Mem_MainFunction is handled by
MemAcc. In contrast to INDIRECT_DYNAMIC
the Mem driver service functions can be called

anytime.
Default value DIRECT_STATIC
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Mem_00029] Definition of EcucFloatParamDef MemMainFunctionPeriod

[

Parameter Name

MemMainFunctionPeriod

Parent Container

MemGeneral

Description This value specifies the fixed call cycle for Mem_MainFunction().
In case of indirect invocation the Mem_MainFunction will be triggered directly by Mem
Acc.
Mem does not depend on a fixed cycle time; it can be triggered at arbitrary rates.
Allow to configure the time for the MainFunction (in seconds). Please note: This
configuration value shall be equal to the value in the ScheduleManager module.

Multiplicity 1

Type EcucFloatParamDef

Range [0.. INF[

Default value 0.005

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00024] Definition of EcucStringParamDef MemNamePrefix |

Parameter Name

MemNamePrefix

Parent Container

MemGeneral

Description Depending on the MemlInvocation configuration, this prefix is either used to reference
the Mem driver header structure or the according Mem API function.

Multiplicity 1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00027] Definition of EcucReferenceDef MemEcucPartitionRef |

Parameter Name MemEcucPartitionRef

Parent Container MemGeneral

Description Maps the Mem driver to zero or multiple ECUC partition(s) to make the driver API
available in these partition(s).

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time | X | All Variants

\Y%

AUTSSAR

Link time

Post-build time

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

10.2.2 Meminstance

Mem: EcucModuleDef

upperMultiplicity = *
lowerMultiplicity = 0

+conlaine$ Meminstanceld:
EcucintegerParamDef
Meminstance: it = ®
TamConfContai +parameter B
EcucParamConfContainerDef P max = 65535
lowerMultiplicity = 1 defaultvalue = 0
upperMultiplicity = 65535| lowerMultiplicity = 1
upperMultiplicity = 1
MemNumberOfSectors:
EcucintegerParamDef
+subContainer min =1
max = 4294967295
MemSectorBatch: +parameter defaultValue =1
EcucParamConfContainerDef [@—————— lowerMultiplicity = 1
— upperMultiplicity = 1 MemMinReadSize:
lowerMultiplicity = 1 EcuclintegerParambDef
upperMultiplicity = * +parameter
o min =1
max = 4294967295
MemWritePageSize: lowerMultiplicity = 1
EcucIntegerParamDef upperMultiplicity = 1
+parameter
min =1
max = 4294967295
lowerMultiplicity = 1
upperMultiplicity = 1 MemEraseSectorSize:
EcucintegerParamDef
+parameter
o min=1
max = 4294967295
MemStartAddress: Lowzrmnli:lt:iplllic(:li? ::11
EcuclntegerParamDef PP pliciy
+parameter
min =0
max = 18446744073709551615
lowerMultiplicity = 1
upperMultiplicity = 1
MemEraseBurstSize:
MemBurstSettings: EcuclintegerParamDef
EcucParamConfContainerDef +parameter min=1
lowerMultiplicity = 0 max = 4294967295
upperMultiplicity = 1 lowerMultiplicity = 1
R MemWriteBurstSize:
EcuclintegerParamDef
+parameter
+subContainer o min =1
max = 4294967295
lowerMultiplicity = 1
%{eadsize: upperMultiplicity = 1
EcucintegerParamDef
+parameter
min=1
max = 4294967295
lowerMultiplicity = 1
upperMultiplicity = 1
MemSpecifiedEraseCycles:
EcucintegerParamDef
+parameter
min =0
max = 4294967295
lowerMultiplicity = 1
upperMultiplicity = 1
MemSectorBatchEcucPartitionRef: o EcucPartition:
+reference EcucReferenceDef +destination | g cycparamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

(from EcucPartition)

Figure 10.2: Meminstance

[ECUC_Mem_00003] Definition of EcucParamConfContainerDef Meminstance |

AUTSSAR

Container Name Memlnstance
Parent Container Mem
Description This container includes the Mem driver instance specific configuration parameters.

Its multiplicity describes the number of Mem driver instances of this Mem driver. There
will be one container for each Mem driver instance.

Multiplicity 1..65535

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemlInstanceld 1 [ECUC_Mem_00007]

Included Containers
Container Name Multiplicity Dependency

MemSectorBatch 1.* Configuration description of a programmable sector or sector
batch. Sector batch means that homogenous and coherent
sectors can be configured as one MemSector element.

It is recommended to group as many identical sectors as
possible together.

]
[ECUC_Mem_00007] Definition of EcuclntegerParamDef Meminstanceld |

Parameter Name Meminstanceld
Parent Container Memlnstance
Description This value specifies the unique numeric identifier which is used to reference a Mem

driver instance in case multiple devices of the same type shall be addressed by one
Mem driver. This value will be assigned to the symbolic name derived of the Mem
Instance container short name.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 65535

Default value 0

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00009] Definition of EcucParamConfContainerDef MemSector
Batch |

AUTSSAR

Container Name

MemSectorBatch

Parent Container

Meminstance

Description Configuration description of a programmable sector or sector batch. Sector batch
means that homogenous and coherent sectors can be configured as one MemSector
element.

It is recommended to group as many identical sectors as possible together.

Multiplicity 1.7

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemEraseSectorSize

[ECUC_Mem_00013]

MemMinReadSize

[ECUC_Mem_00011]

MemNumberOfSectors

[ECUC_Mem_00010]

MemSpecifiedEraseCycles

[ECUC_Mem_00022]

1
1
1
1
1
1

MemStartAddress [ECUC_Mem_00014]
MemWritePageSize [ECUC_Mem_00012]
MemSectorBatchEcucPartitionRef 0..1 [ECUC_Mem_00028]

Included Containers

Container Name Multiplicity Dependency

MemBurstSettings 0..1 Container for burst setting configuration parameters of the Mem
driver.
A sector burst can be used for improved performance.

J
[ECUC_Mem_00013] Definition of EcuclntegerParamDef MemEraseSectorSize |

Parameter Name MemEraseSectorSize

Parent Container MemSectorBatch

Description Size of this sector in bytes.
A sector is the smallest erasable unit.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Mem_00011] Definition of EcucintegerParamDef MemMinReadSize |

Parameter Name

MemMinReadSize

Parent Container

MemSectorBatch

Description Smallest readable unit in bytes.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00010] Definition of EcucintegerParamDef MemNumberOfSectors

[

Parameter Name

MemNumberOfSectors

Parent Container

MemSectorBatch

Description Number of contiguous sectors with identical values for MemSectorSize and MemPage
ﬁltzhei"s parameter is configured to be greater than 1, the sectors are grouped in a sector
batch.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value 1

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00022] Definition of EcucintegerParamDef MemSpecifiedEraseCy-

cles |
Parameter Name MemSpecifiedEraseCycles
Parent Container MemSectorBatch
Description Number of erase cycles specified for the memory device (usually given in the device
data sheet).
Multiplicity 1
Type EcucintegerParamDef
Range 0 .. 4294967295 |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time | X | All Variants

\Y

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00014] Definition of EcucintegerParamDef MemStartAddress |

Parameter Name

MemStartAddress

Parent Container

MemSectorBatch

Description Physical start address of the sector (batch).
In case of a sector batch, the physical start address is the address of the first sector.
The physical start address of the other sectors can be calculated by the MemSector
Size parameter.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00012] Definition of EcuclntegerParamDef MemWritePageSize

Parameter Name

MemWritePageSize

Parent Container

MemSectorBatch

Description Size of a write page of this sector in bytes.
A write page is the smallest writeable unit.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Mem_00028] Definition of EcucReferenceDef MemSectorBatchEcucPar-

titionRef |

Parameter Name

MemSectorBatchEcucPartitionRef

Parent Container

MemSectorBatch

Description

Maps the memory area defined by the sector batch to zero or one ECUC partition.

Y%

AUTSSAR

A
Multiplicity 0..1
Type Reference to EcucPartition
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Mem_00015] Definition of EcucParamConfContainerDef MemBurstSet-
tings |

Container Name MemBurstSettings

Parent Container MemSectorBatch

Description Container for burst setting configuration parameters of the Mem driver.
A sector burst can be used for improved performance.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemEraseBurstSize 1 [ECUC_Mem_00016]
MemMaxReadSize 1 [ECUC_Mem_00018]
MemWriteBurstSize 1 [ECUC_Mem_00017]

‘ No Included Containers

]
[ECUC_Mem_00016] Definition of EcucintegerParamDef MemEraseBurstSize |

Parameter Name MemEraseBurstSize
Parent Container MemBurstSettings
Description Size of sector erase burst in bytes. A sector burst can be used for improved

performance and is typically (a subset of) a sector batch.
To make use of the sector erase burst feature, the physical start address of the sector
batch must be aligned to the sector erase burst size.

Multiplicity 1

Type EcuclntegerParamDef

V

AUTSSAR

A
Range 1 .. 4294967295 |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00018] Definition of EcucintegerParamDef MemMaxReadSize |

Parameter Name

MemMaxReadSize

Parent Container

MemBurstSettings

Description This value specifies the maximum number of bytes the MemAcc module requests
within one Mem read request.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Mem_00017] Definition of EcucintegerParamDef MemWriteBurstSize |

Parameter Name

MemWriteBurstSize

Parent Container

MemBurstSettings

Description Size of page write/program burst in bytes. A sector burst can be used for improved
performance and is typically (a subset of) a sector batch.
To make use of the write burst feature, the physical start address must be aligned to
the write burst size.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

10.3 Published Information

[ECUC_Mem_00020] Definition of EcucParamConfContainerDef MemPublished
Information |

Container Name MemPublishedInformation

Parent Container Mem

Description Additional published parameters not covered by CommonPublishedIinformation
container.

Note that these parameters do not have any configuration class setting, since they are
published information.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemErasedValue 1 [ECUC_Mem_00021]

| No Included Containers

J
[ECUC_Mem_00021] Definition of EcucintegerParamDef MemErasedValue |

Parameter Name MemErasedValue

Parent Container MemPublishedInformation

Description The contents of an erased memory cell.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Specification ltems in R25-11

none

A.1.2 Changed Specification Items in R25-11

Number Heading

[ECUC_Mem_00024] | Definition of EcucStringParamDef MemNamePrefix

Table A.1: Changed Specification Iltems in R25-11

A.1.3 Deleted Specification Items in R25-11

Number Heading

[ECUC_Mem_00026] | Definition of EcucBooleanParamDef MemUseFuncPtrTable

Table A.2: Deleted Specification Items in R25-11

A.2 Traceable item history of this document according to
AUTOSAR Release R24-11

A.2.1 Added Specification Items in R24-11

Number Heading

[ECUC_Mem_00024] Definition of EcucStringParamDef MemNamePrefix

[ECUC_Mem_00025] Definition of EcucEnumerationParamDef MemInvocation

[ECUC_Mem_00026] Definition of EcucBooleanParamDef MemUseFuncPtrTable

[ECUC_Mem_00027] Definition of EcucReferenceDef MemEcucPartitionRef

[ECUC_Mem_00028] Definition of EcucReferenceDef MemSectorBatchEcucPartitionRef

[ECUC_Mem_00029] | Definition of EcucFloatParamDef MemMainFunctionPeriod

Table A.3: Added Specification Iltems in R24-11

AUTSSAR

A.2.2 Changed Specification Iltems in R24-11

Number Heading

[SWS_Mem_10010] Definition of scheduled function Mem_MainFunction

[SWS_Mem_10017] Definition of API function Mem_HwSpecificService

[SWS_Mem_10024] Definition of API function Mem_Suspend

[SWS_Mem_10025] Definition of API function Mem_Resume

Table A.4: Changed Specification Items in R24-11

A.2.3 Deleted Specification Iltems in R24-11

Number Heading

[SWS_Mem_00065]

Table A.5: Deleted Specification Items in R24-11

A.3 Traceable item history of this document according to
AUTOSAR Release R23-11

A.3.1 Added Specification Iltems in R23-11
[SWS_Mem_00093] [SWS_Mem_00094] [SWS_Mem_00095] [SWS_Mem_00096]

A.3.2 Changed Specification Items in R23-11
[SWS_Mem_10004] [SWS_Mem_10011] [SWS_Mem_10020]

A.3.3 Deleted Specification ltems in R23-11

[SWS_Mem_00003] [SWS_Mem_00008] [SWS_Mem _00014] [SWS_Mem_00019]
[SWS_Mem_00021] [SWS_Mem_00068] [SWS_Mem_00085] [SWS_Mem_00086]
[SWS_Mem_10019]

AUTSSAR

B Not applicable requirements

No content.

	1 Introduction and Functional Overview
	2 Acronyms and Abbreviations
	2.1 Physical Segmentation

	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Related Specification

	4 Constraints and Assumptions
	4.1 Limitations
	4.1.1 General Limitations
	4.1.2 Implementation Limitations
	4.1.3 Memory Test Capabilities

	4.2 Applicability to Car Domains

	5 Dependencies to Other Modules
	5.1 SPI Driver

	6 Requirements Tracing
	7 Functional Specification
	7.1 Overview
	7.1.1 Key Aspects

	7.2 Functional Elements
	7.2.1 Job Management
	7.2.1.1 Job Status/Job Results
	7.2.1.2 Job Suspend/Resume

	7.2.2 Hardware Specific Services
	7.2.3 Multi Memory Device Instance Support
	7.2.4 Dynamic Driver Activation
	7.2.5 Service Invocation
	7.2.5.1 Direct Invocation
	7.2.5.2 Indirect Invocation

	7.2.6 Binary Image Format
	7.2.6.1 Header
	7.2.6.2 Service Function Pointer Table
	7.2.6.3 Delimiter

	7.2.7 Optional Services

	7.3 Module Handling
	7.3.1 Initialization
	7.3.2 Scheduling
	7.3.3 ECC Handling

	7.4 General Design Rules
	7.4.1 Address Alignment
	7.4.2 64-Bit Support

	7.5 Error Classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Production Errors
	7.5.4 Extended Production Errors

	8 API Specification
	8.1 Imported Types
	8.2 Type Definitions
	8.2.1 Mem_AddressType
	8.2.2 Mem_ConfigType
	8.2.3 Mem_DataType
	8.2.4 Mem_InstanceIdType
	8.2.5 Mem_LengthType
	8.2.6 Mem_HwServiceIdType

	8.3 Function Definitions
	8.3.1 Synchronous Functions
	8.3.1.1 Mem_Init
	8.3.1.2 Mem_DeInit
	8.3.1.3 Mem_GetVersionInfo
	8.3.1.4 Mem_GetJobResult
	8.3.1.5 Mem_Suspend
	8.3.1.6 Mem_Resume
	8.3.1.7 Mem_PropagateError

	8.3.2 Asynchronous Functions
	8.3.2.1 Mem_Read
	8.3.2.2 Mem_Write
	8.3.2.3 Mem_Erase
	8.3.2.4 Mem_BlankCheck
	8.3.2.5 Mem_HwSpecificService

	8.4 Callback Notifications
	8.5 Scheduled Functions
	8.5.1 Mem_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	9 Sequence Diagrams
	9.1 Hardware Specific Error Handling
	9.2 ECC Handling Example Sequence

	10 Configuration Specification
	10.1 How to Read this Chapter
	10.2 Containers and Configuration Parameters
	10.2.1 Mem
	10.2.2 MemInstance

	10.3 Published Information

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

	A.3 Traceable item history of this document according to AUTOSAR Release R23-11
	A.3.1 Added Specification Items in R23-11
	A.3.2 Changed Specification Items in R23-11
	A.3.3 Deleted Specification Items in R23-11

	B Not applicable requirements

