AUTSSAR

Document Title Specification of Memory Access
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 1017

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR Clarificati f th fthe t
2025-11-27 | R25-11 | Release oot and Mindraa o
Management irect" and "indirec
* Removed all draft markings
» Added SynchronizationGroups
AUTOSAR
2024-11-27 | R24-11 Release * Moved MemAccUseMemFuncPtrTable,
Management MemAccMemNamePrefix and
MemAccMemlnvocation to MemDrv
» Minor corrections and bugfixes
AUTOSAR
2023-11-23 | R23-11 Release « Fixed inconsistencies
Management
* Renamed MemAcc_MemApiType in
MemAcc_MemBinaryHeaderType
+ Additional DET checks added
AUTOSAR ,
2022-11-24 R22-11 Release » Updated Configurable Interface chapter
Management « Corrected Service IDs
» Minor corrections and bugfixes
« Editorial changes
AUTOSAR
2021-11-25 | R21-11 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and Functional Overview 7
1.1 Supported Use-Cases i 8

2 Acronyms and Abbreviations 9
2.1 Physical Segmentation oo o 10

3 Related Documentation 11
3.1 Input Documents & Related Standards and Norms 11
3.2 Related Specification 11

4 Constraints and Assumptions 12
4.1 Limitations 12
411 General Limitations 12
4.1.2 Memory Mapped Access o 12

4.2 Applicability to Car Domains 12

5 Dependencies to Other Modules 13
6 Requirements Tracing 14
7 Functional Specification 17
7.1 OVEIVIEW o 17
7.2 Key Aspects 17
7.3 Functional Elements Lo 17
7.3.1 Memory Address Translation 17
7.3.1.1 Memory Mapping Constraints 18

7.3.2 Memory Access Coordination 19

7.3.3 JobManagement 19
7.34 JobProcessing 20
7341 JobStatus 20

7342 JobResult 21

7.3.5 Hardware Specific Services L. 22

7.3.6 Performance Optimization 22
7.3.7 Generic Locking Mechanism 23
7.3.8 Dynamic Memory Driver Handling 23
7.3.8.1 Dynamic Memory Driver Activation 23

7.3.8.2 Servicelnvocation o oL 24

7.4 Module Handling 24
7.4.1 lInitialization 24
7.4.2 Scheduling 24

7.5 General DesignRules o 24
7.5.1 Retry Mechanism 25

7.5.2 Address Alignment L L 25

AUTSSAR

7.5.3 64-BitSupport 26
7.6 Error Classification 27
7.6.1 DevelopmentErrors 27
7.6.2 RuntimeErrors L 27
7.6.3 Production Errors 27
7.6.4 Extended ProductionErrors oL 27
8 API Specification 28
8.1 Imported Types e 28
8.2 Type Definitions 28
8.2.1 MemAcc_AddressArealdType. 28
8.2.2 MemAcc _AddressType 29
8.2.3 MemAcc_ConfigType 29
8.2.4 MemAcc Datalype 29
8.2.5 MemAcc JobResultType 30
8.2.6 MemAcc_JobStatusType 30
8.2.7 MemAcc_ JobType 31
8.2.8 MemAcc_LengthType 31
8.2.9 MemAcc_MemoryInfoType 32
8.2.10 MemAcc_JobinfoType 33
8.2.11 MemAcc_HwldType 34
8.2.12 MemAcc_MemBinaryHeaderType 34
8.2.13 MemAcc_MemAddressType 36
8.2.14 MemAcc_MemConfigType, 36
8.2.15 MemAcc_MembDatalype 36
8.2.16 MemAcc_MeminstanceldType, 37
8.2.17 MemAcc_MemdobResultType 37
8.2.18 MemAcc_MemlLengthType, 37
8.2.19 MemAcc_MemHwServiceldType 38
8.2.20 MemAcc_MeminitFuncType L 38
8.2.21 MemAcc_MemDelnitFuncType 39
8.2.22 MemAcc_MemGetJobResultFuncType 39
8.2.23 MemAcc_MemSuspendFuncType 40
8.2.24 MemAcc_MemResumeFuncType 40
8.2.25 MemAcc_MemPropagateErrorFuncType 41
8.2.26 MemAcc_MemReadFuncType 41
8.2.27 MemAcc_MemMWriteFuncType L. 42
8.2.28 MemAcc_MemEraseFunclype 42
8.2.29 MemAcc_MemBlankCheckFuncType 43
8.2.30 MemAcc_MemHwSpecificServiceFuncType 44
8.2.31 MemAcc_MemMainFuncType. L. 44
8.2.32 MemAcc_ApplicationLockNotificationType 45
8.2.33 Extension of Std_ReturnTypeo 45

8.3 Function Definitions 45

AUTSSAR

8.3.1 Synchronous Functions 45
8.3.1.1 MemAcc Init 45
8.3.1.2 MemAcc Delnit 46
8.3.1.3 MemAcc GetVersioninfo 47
8.3.1.4 MemAcc GetdobResult 47
8.3.1.5 MemAcc GetdobStatus 48
8.3.1.6 MemAcc_GetMemoryInfo 50
8.3.1.7 MemAcc_GetProcessedLength 51
8.3.1.8 MemAcc GetdobInfo 52
8.3.1.9 MemAcc ActivateMem L. 53
8.3.1.10 MemAcc_DeactivateMem 54
8.3.1.11 MemAcc ReleaselLock 55

8.3.2 Asynchronous Functions 56
8.3.2.1 MemAcc Cancel 56
8322 MemAcc Read 57
8.3.23 MemAcc Writeo 59
8324 MemAcc Erase 60
8.3.25 MemAcc_Compare it 62
8.3.2.6 MemAcc BlankCheck 63
8.3.2.7 MemAcc_HwSpecificService 65
8.3.2.8 MemAcc_RequestLock L. 66

8.4 Callback Notifications 68
8.5 Scheduled Functions 68

8.5.1 MemAcc MainFunction, 68
8.6 ExpectedInterfaces 68

8.6.1 Mandatory Interfaces L. 68

8.6.2 OptionalInterfaces, 70

8.6.3 Configurable Interfaces 70
8.6.3.1 <AddressAreadJobEndNotification> 71

8.7 Servicelnterfaces 71

9 Sequence Diagrams 72
9.1 Job Handling with Result Polling 72
9.2 Job Handling with Job End Notification 73
9.3 Mem Driver Initialization by MemAcc 73
9.4 Mem Driver Initializationby EcuM oL 74
9.5 Mem Driver Schedulingby MemAcc 75
9.6 Mem Driver Schedulingby SchM 76
9.7 GenericLock Sequence e 77

10 Configuration Specification 78
10.1How to Read this Chapter 78
10.2Containers and Configuration Parameters 78
10.21 MemACC e e e 79

10.2.2 MemAccAddressAreaConfiguration 83

AUTSSAR

10.2.3 MemAccSubAddressAreaConfiguration 86
10.2.4 MemAccSynchronizationGroupConfiguration 90
10.3Published Information., 91
A Change history of AUTOSAR traceable items 92
A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 92
A.1.1 Added Specification ltemsin R25-11 92
A.1.2 Changed Specification ltemsin R25-11 92
A.1.3 Deleted Specification ltemsin R25-11 92
A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 92
A.2.1 Added Specification ItemsinR24-11 92
A.2.2 Changed Specification Itemsin R24-11 92
A.2.3 Deleted Specification ltemsinR24-11 93
A.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e 93
A.3.1 Added Specification ItemsinR23-11 93
A.3.2 Changed Specification Itemsin R23-11 93
A.3.3 Deleted Specification Itemsin R23-11 93

B Not applicable requirements 94

AUT@ SAR Specification of Memory Access

AUTOSAR CP R25-11

1 Introduction and Functional Overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Basic Software module Memory Access (MemAcc).

The Memory Access module provides access to different memory technology devices
by an address-based API.

The Memory Access module is always complemented by one or more Memory Driver
(Mem). The Memory Access module is memory device technology agnostic and can
be used with typical memory devices such as flash, EEPROM, RAM or phase change
memory.

The Memory Access module and Memory Driver are located in the same layer of the
AUTOSAR architecture as Fls and Eep Driver but split these modules into a hardware
independent part (MemAcc) and a hardware dependent part (Mem).

Figure 1.1 shows an example architectural overview with different Memory Drivers and
upper layers:

Figure 1.1: MemAcc Architecture Example

7 of 94 Document ID 1017: AUTOSAR_CP_SWS MemoryAccess

AUTSSAR

1.1 Supported Use-Cases

The combination of MemAcc module and Mem driver supports the following use cases:

 Block based non-volatile memory access for data storage using NvM and Fee or
Ea

» OTA software update
» General address-based memory access, e.g. for BndM or flash bootloader usage

Combinations of these use cases are also supported.

Since MemAcc module and Mem driver also cover the Fls and Eep use cases
for non-volatile data storage, Fls and Eep become obsolete for the future.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the MemAcc mod-
ule that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym

Description

BndM

Bulk Non-Volatile Data Manager

ECC Error Correction Code

FOTA Firmware Over The Air - remote firmware update using wireless
communication

HSM Hardware Security Module - dedicated security MCU core

OTA Over The Air - general term for wireless communication between
OEM backend and vehicle

RWW Read While Write - capability of a memory device to perform a
read operation in one memory bank while at the same time a
write/erase operation takes place in another bank

SOTA Software Over The Air - remote software update using wireless
communication

Terms Description

Address Area Contiguous memory area in the logical address space
Typically multiple physical memory sectors are combined to one
logical address area.

Bank Group of sector batches

In case a memory technology is segmented in sectors, a bank is
an instance of a sector batch group in which no read-while-write
operation is permitted. In case of a flash memory device, this
typically maps to an individual flash controller.

Job Request

Memory access request by an upper layer module for an address
area.

Memory Device

Group of banks

Page Burst

Aggregated access of memory pages for improved performance
In case a memory device technology has a physical segmenta-
tion, some memory devices provide an optimized access method
to read or write multiple pages at a time. Page burst denotes the
aggregation of memory pages used for the access optimization.

Sector

Smallest erasable memory unit (in bytes)

Some memory device technologies require an explicit physical
erase operation before the memory can be written. A sector de-
fines the minimum size of such an erase unit. Depending on the
memory device, sectors can be either uniform- or variable-sized.

Sector Batch

Aggregation of sectors with uniform size
Logical aggregation of contiguous sectors with the same size.

Sector Burst

Aggregation of sectors for improved erase performance

In case a memory technology needs a physical erase opera-
tion, some devices provide an erase performance optimization
by erasing an aggregation of sectors in one step.

Sub Address Area

Contiguous memory area in the logical address space mapped
to a sector batch of one memory device.

AUTSSAR

Terms Description

Write Page Smallest writeable unit of a memory device (in bytes)

Some memory device technologies must be accessed consider-
ing a physical segmentation. Hence a byte-wise access is not
possible for all memory device technologies. This term defines
the minimum size that needs to be written in one access.

2.1 Physical Segmentation

Figure 2.1 gives an overview of the physical segmentation and the according technical
terms:

Page Burst
Byte/Word : 7 rsector | | 0
m~m _ ; L T T T T PP PR
Crrriil”
Page
Sector Bank Device

Figure 2.1: Overview of Physical Segmentation

AUTSSAR

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_CP_RS_ MemoryHWADbstractionLayer

[4] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

3.2 Related Specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for MemAcc.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for MemAcc.

AUTSSAR

4 Constraints and Assumptions

To be able to control and coordinate the access of shared memory resources, all mem-
ory upper layers shall use the MemAcc module to access these shared memory re-
sources. The only exception to this constraint are exclusive memory accesses at dis-
crete points in time.

4.1 Limitations

4.1.1 General Limitations

The MemAcc module is targeted for address based memory access. File based
access is not considered.

Block based memory devices like NAND flash devices which require an explicit
bad block management are out of scope of this specification.

4.1.2 Memory Mapped Access

It's not possible to perform a memory-mapped access on a shared memory resource
while at the same time, the AUTOSAR memory stack performs an access on a shared
memory resource.

This restriction applies to memory devices like flash or EEPROM where the memory
must be put into a special programming mode in which a concurrent read access is not
possible. This restriction applies to internal and external shared memory devices and
also affects hardware-based flash EEPROM emulations.

In case a memory-mapped access is heeded, MemAcc coordination must be imple-
mented at the application level. The application must ensure that no concurrent access
is performed on the shared memory.

4.2 Applicability to Car Domains

The MemAcc module can be used in any domain application that needs MemAcc to
either store data or perform a software update.

AUTSSAR

5 Dependencies to Other Modules

The MemAcc module has interfaces towards the Flash EEPROM Emulation (Fee), the
EEPROM Abstraction (Ea), Bulk Nv Data Manager (BndM), Memory Drivers (Mem),
the Default Error Tracer (DET) and, in case of a OTA software update client, also to
Complex Device Drivers (CDD).

The MemAcc module includes header files of DET and MemMap.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [3] and [4] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific

requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_MemAcc_10016]

[SRS_BSW_00004]

All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_MemAcc_00002]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_MemAcc_00002]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_MemAcc_00002] [SWS_MemAcc_00027]
[SWS_MemAcc_00031] [SWS_MemAcc_00034]
[SWS_MemAcc_00036] [SWS_MemAcc_00037]
[SWS_MemAcc_00039] [SWS_MemAcc_00041]
[SWS_MemAcc_00042] [SWS_MemAcc_00044]
[SWS_MemAcc_00045] [SWS_MemAcc_00046]
[SWS_MemAcc_00047] [SWS_MemAcc_00049]
[SWS_MemAcc_00050] [SWS_MemAcc_00051]
[SWS_MemAcc_00052] [SWS_MemAcc_00054]
[SWS_MemAcc_00055] [SWS_MemAcc_00056]
[SWS_MemAcc_00058] [SWS_MemAcc_00059]
[SWS_MemAcc_00060] [SWS_MemAcc_00061]
[SWS_MemAcc_00063] [SWS_MemAcc_00064]
[SWS_MemAcc_00065] [SWS_MemAcc_00067]
[SWS_MemAcc_00068] [SWS_MemAcc_00070]
[SWS_MemAcc_00071] [SWS_MemAcc_00072]
[SWS_MemAcc_00073] [SWS_MemAcc_00077]
[SWS_MemAcc_00093] [SWS_MemAcc_00124]

[SRS_BSW_00327]

Error values naming convention

[SWS_MemAcc_10038]

[SRS_BSW_00337]

Classification of development errors

[SWS_MemAcc_10038]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_MemAcc_10038]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_MemAcc_00030] [SWS_MemAcc_00033]
[SWS_MemAcc_00035] [SWS_MemAcc_00038]
[SWS_MemAcc_00040] [SWS_MemAcc_00043]
[SWS_MemAcc_00048] [SWS_MemAcc_00053]
[SWS_MemAcc_00057] [SWS_MemAcc_00062]
[SWS_MemAcc_00066] [SWS_MemAcc_00076]
[SWS_MemAcc_00088] [SWS_MemAcc_00090]
[SWS_MemAcc_00099] [SWS_MemAcc_00117]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_MemAcc_10002] [SWS_MemAcc_91012]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_MemAcc_10035] [SWS_MemAcc_10036]

[SRS_MemHwAb_
14002]

The FEE and EA modules shall allow
the configuration of a required
number of write cycles for each
logical block

[SWS_MemAcc_00005] [SWS_MemAcc_00100]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_MemAcc_00029] [SWS_MemAcc_00123]

[SRS_MemHwAb_
14034]

MemAcc module shall allow the
configuration of the priority for
different logical address areas

[SWS_MemAcc_00014] [SWS_MemAcc_00017]
[SWS_MemAcc_00024]

[SRS_MemHwAb_
14035]

MemAcc module shall support variant
mapping

[SWS_MemAcc_10015]

[SRS_MemHwAb_
14037]

MemAcc module and Mem driver
shall provide an interface for
initialization

[SWS_MemAcc_00025] [SWS_MemAcc_10015]
[SWS_MemAcc_10041]

[SRS_MemHwAb_
14038]

MemAcc module and Mem driver
shall provide asynchronous memory
access functions

[SWS_MemAcc_00028] [SWS_MemAcc_00076]
[SWS_MemAcc_00115] [SWS_MemAcc_10018]
[SWS_MemAcc_10023] [SWS_MemAcc_10024]
[SWS_MemAcc_10025] [SWS_MemAcc_10026]
[SWS_MemAcc_10027] [SWS_MemAcc_10028]
[SWS_MemAcc_10030]

[SRS_MemHwAb_
14039]

MemAcc module and Mem driver
shall support optional services

[SWS_MemAcc_10018] [SWS_MemAcc_10023]
[SWS_MemAcc_10024] [SWS_MemAcc_10025]
[SWS_MemAcc_10026] [SWS_MemAcc_10027]
[SWS_MemAcc_10028] [SWS_MemAcc_10030]

[SRS_MemHwAb_
14040]

MemAcc module and Mem driver
shall provide a synchronous status
function

[SWS_MemAcc_00020] [SWS_MemAcc_00021]
[SWS_MemAcc_00092] [SWS_MemAcc_00104]
[SWS_MemAcc_00105] [SWS_MemAcc_00106]
[SWS_MemAcc_00107] [SWS_MemAcc_00108]
[SWS_MemAcc_00109] [SWS_MemAcc_00112]
[SWS_MemAcc_00113] [SWS_MemAcc_00114]
[SWS_MemAcc_00118] [SWS_MemAcc_00119]
[SWS_MemAcc_00120] [SWS_MemAcc_10009]
[SWS_MemAcc_10011] [SWS_MemAcc_10013]
[SWS_MemAcc_10019] [SWS_MemAcc_10021]
[SWS_MemAcc_10022] [SWS_MemAcc_10037]
[SWS_MemAcc_10039] [SWS_MemAcc_10040]
[SWS_MemAcc_91016]

[SRS_MemHwAb_
14041]

MemAcc module shall provide a job
notification mechanism for the upper
layer modules

[SWS_MemAcc_00015] [SWS_MemAcc_10029]

[SRS_MemHwAb_
14042]

MemAcc module shall support
multiple Mem drivers for different
types of memory

[SWS_MemAcc_00098] [SWS_MemAcc_10010]

[SRS_MemHwAb_
14043]

Mem driver and shall support multiple
instances of the same memory device

[SWS_MemAcc_91011]

[SRS_MemHwAb_
14044]

MemAcc module shall manage the
memory job requests from different
upper layer modules

[SWS_MemAcc_00006] [SWS_MemAcc_00007]
[SWS_MemAcc_00008] [SWS_MemAcc_00028]

[SRS_MemHwAb_
14045]

MemAcc module and Mem driver
shall provide measures for dynamic
driver activation

[SWS_MemAcc_00085] [SWS_MemAcc_00089]
[SWS_MemAcc_00121] [SWS_MemAcc_00122]
[SWS_MemAcc_10014] [SWS_MemAcc_10033]
[SWS_MemAcc_10034] [SWS_MemAcc_91000]
[SWS_MemAcc_91001] [SWS_MemAcc_91002]
[SWS_MemAcc_91003] [SWS_MemAcc_91004]
[SWS_MemAcc_91005] [SWS_MemAcc_91006]
[SWS_MemAcc_91007] [SWS_MemAcc_91008]
[SWS_MemAcc_91009] [SWS_MemAcc_91010]
[SWS_MemAcc_91018]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_MemHwAb_
14046]

MemAcc module and Mem driver
shall provide support for 64-Bit
address range

[SWS_MemAcc_00081] [SWS_MemAcc_00082]
[SWS_MemAcc_10001] [SWS_MemAcc_10007]
[SWS_MemAcc_91013] [SWS_MemAcc_91014]

[SRS_MemHwAb_
14047]

MemAcc module shall provide
optional support for the initialization
and main function triggering of
memory drivers

[SWS_MemAcc_00025] [SWS_MemAcc_00084]
[SWS_MemAcc_00111] [SWS_MemAcc_00121]
[SWS_MemAcc_00122] [SWS_MemAcc_10017]
[SWS_MemAcc_10033] [SWS_MemAcc_10034]

[SRS_MemHwAb_
14048]

Mem driver shall operate on physical
segmentation/physical addresses

[SWS_MemAcc_00003] [SWS_MemAcc_00004]
[SWS_MemAcc_00087] [SWS_MemAcc_00101]
[SWS_MemAcc_00102] [SWS_MemAcc_00125]
[SWS_MemAcc_00126] [SWS_MemAcc_00127]

[SRS_MemHwAb_
14049]

Mem driver shall use a standard
binary format for dynamic driver
activation

[SWS_MemAcc_00089]

[SRS_MemHwAb_
14051]

Mem driver shall not buffer data

[SWS_MemAcc_10004] [SWS_MemAcc_91020]

[SRS_MemHwAb_
14054]

MemAcc module shall provide a
function to retrieve memory
segmentation information

[SWS_MemAcc_10012] [SWS_MemAcc_10020]

[SRS_MemHwAb_
14055]

MemAcc module shall provide a lock
function to enable/disable the direct
memory access from application

[SWS_MemAcc_00116] [SWS_MemAcc_10030]
[SWS_MemAcc_10031]

[SRS_MemHwAb_
14056]

MemAcc module and Mem driver
shall provide a generic function to
access the hardware specific
functionalities

[SWS_MemAcc_00083] [SWS_MemAcc_10008]
[SWS_MemAcc_10028]

[SRS_MemHwAb_
14057]

MemAcc module shall allow the
configuration of the non-contiguous
physical memory areas of different
memory devices to a logical address
area

[SWS_MemAcc_00012] [SWS_MemAcc_00018]
[SWS_MemAcc_00078] [SWS_MemAcc_00079]
[SWS_MemAcc_00080] [SWS_MemAcc_10000]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional Specification

This chapter defines the behavior of the MemAcc module.
The API of the module is defined in chapter 8, while the configuration is defined in 10.

741

Overview

The MemAcc module provides a memory device agnostic address-based memory ac-
cess for different upper layers modules. It implements all high level functionality like job
management, access coordination and allocation of Memory Driver access requests
according to the physical segmentation as the Memory Drivers expect all memory ac-
cesses aligned to physical segments.

7.2

7.3

7.3.1

Key Aspects

Access coordination of different upper layers like Fee, Ea and OTA software up-
date client

Memory technology device agnostic API supporting all kinds of memories includ-
ing code memories

Coordination of CPU cores like host- and HSM core
Memory access job management

Virtualization of memory areas to support mapping of non-contiguous areas as
well as spanning areas across different memory devices

Mapping of memory locations to memory devices

Splitting of Memory Driver access requests according to physical segments like
pages and sectors for flash memories

Functional Elements

Memory Address Translation

The MemAcc module abstracts the physical memory addressing scheme of the Mem
driver to the upper layer by means of a logical address space.

Figure 7.1 provides an overview of the memory address translation/mapping scheme:

AUTSSAR Specification of Memory Access

AUTOSAR CP R25-11

Physical Logical
Sector
Batch
N | SubAddress |
_ _| Area
Sub Address
Area Address
_ Area
Sector Sub Address
Batch Area

Figure 7.1: Overview Memory Address Translation Scheme

[SWS_MemAcc_00012]
Upstream requirements: SRS_MemHwAb_ 14057

[All MemAcc services, i.e. erase, read and write, shall support access requests which
cross memory device boundaries based on the logical/physical memory mapping. |

7.3.1.1 Memory Mapping Constraints

[SWS _MemAcc 00078]
Upstream requirements: SRS_MemHwAb_ 14057

[An address area shall only be assigned to one upper layer module. |

[SWS_MemAcc _00079]
Upstream requirements: SRS_MemHwAb_14057

[Within a sub-address area, only a uniform sector size is allowed. |
Note: A sub-address area maps to a sector batch.

[SWS_MemAcc_00080]
Upstream requirements: SRS_MemHwAb_14057

[Start address and length of address areas shall be aligned to the physical sectors. |

Note: Start address and length of memory accesses have to be aligned to the physical
segmentation.

18 of 94 Document ID 1017: AUTOSAR_CP_SWS MemoryAccess

AUTSSAR

7.3.2 Memory Access Coordination

[SWS_MemAcc_00006]
Upstream requirements: SRS_MemHwAb_ 14044

[The MemAcc module shall coordinate conflicting memory accesses by multiple upper
layers. |

Note: Typically, code- and data flash share the same flash controller and therefore
it's not possible to perform a write access at the same time. Since code- and data
flash write access might happen at the same time for the software update use case,
MemAcc needs to coordinate these accesses.

[SWS_MemAcc_00007]
Upstream requirements: SRS_MemHwAb_14044

[The MemAcc module shall only coordinate conflicting resource accesses. The access
dependencies shall be configurable in the configuration tool. |

Note: Only relevant resource conflicts shall be coordinated to prevent any performance
impact.

[SWS_MemAcc_00008]

Upstream requirements: SRS_MemHwAb_14044
[The MemAcc module shall support multiple memory access requests from different
upper layers for distinct memory areas at the same time. In case there is a hardware

resource conflict, the memory stack shall still accept the access request and process
it once the resource is free. |

Note: The AUTOSAR BSW upper layers shall not have to deal with any retry mecha-
nisms as this would affect every upper layer.

7.3.3 Job Management

In general, all MemAcc services that need a significant amount of time to process an
operation are defined as asynchronous services. Therefore, MemAcc job requests get
only queued by the asynchronous services like MemAcc_Read and the processing of
the queued jobs happen in the MemAcc_MainFunction.

[SWS MemAcc_00018]
Upstream requirements: SRS_MemHwAb_ 14057

[The MemAcc module shall allow only one job request per address area. |

Note: Simplification of job management since one address area can only have one
upper layer and job request are typically requested sequentially from the upper layer.

AUTSSAR

[SWS_MemAcc_00014]
Upstream requirements: SRS_MemHwAb_14034

[Based on MemAccAddressAreaPriority, MemAcc shall prioritize memory access
requests from AUTOSAR BSW upper layer modules. |

Note: Writing crash non-volatile data shall have priority over background software up-
date tasks.

[SWS_MemAcc_00024]
Upstream requirements: SRS_MemHwAb_14034

[The prioritization of memory operations shall use the Mem_Suspend and
Mem_Resume service if the memory hardware supports this functionality.

If the memory hardware does not support a suspend/resume functionality, the prior-
itization shall be implemented on a page/page burst, respectively sector/sector burst
basis. |

7.3.4 Job Processing

[SWS_MemAcc_00015]
Upstream requirements: SRS_MemHwAb_ 14041

[If a job end notification function is configured by MemAccJobEndNotification-
Name, MemAcc shall notify the upper layer BSW module by calling the configured no-
tification function. |

Note: In case no notification function is configured, the upper layer BSW module has
to poll the MemAcc job status.

[SWS MemAcc 00017]
Upstream requirements: SRS_MemHwAb_ 14034

[If the MemAcc module is not able to process a job request, e.g. due to a pending
request on the same address area or due to an invalid parameter, the job request shall
be rejected by an E_NOT_OX return code. |

7.3.4.1 Job Status

The MemAcc module provides the current job processing status information via the
MemAcc_GetJobStatus service.

[SWS_MemAcc_00113]
Upstream requirements: SRS_MemHwAb_14040

[After initialization via the MemAcc_Init service, the job precessing status shall be
set to MEMACC_JOB_IDLE.]

AUTSSAR

[SWS_MemAcc_00104]

Upstream requirements: SRS_MemHwAb_14040
[In case the job processing was completed or no job is currently pending, the job
processing status shall be set to MEMACC_JOB_IDLE. |

[SWS_MemAcc_00020]
Upstream requirements: SRS_MemHwAb_14040

[Once a job request was accepted, the job processing status shall be set to
MEMACC_JOB_PENDING.

7.3.4.2 Job Result

The results of the last MemAcc job is provided by the MemAcc_Get JobResult ser-
vice. It can be used by upper layer modules to retrieve detailed information for fine-
tuned fault handling.

[SWS_MemAcc_00112]
Upstream requirements: SRS_MemHwAb_ 14040

[After initialization via the MemAcc_Init service, the job result shall be set to
MEMACC_OK. |

[SWS_MemAcc_00105]
Upstream requirements: SRS_MemHwAb_14040

[In case the job processing was completed successfully, the job result shall be set to
MEMACC_OK. |

[SWS_MemAcc_00106]
Upstream requirements: SRS_MemHwAb_14040

[In case the job processing was completed but the results of the last MemAcc job
didn’t meet the expected result, e.g. a blank check operation was applied on a non-
blank memory area, the job result shall be set to MEMACC_INCONSISTENT. |

[SWS_MemAcc_00107]

Upstream requirements: SRS_MemHwAb_14040
[In case the last memory operation was completed but the ECC circuit corrected an
ECC error, the job result shall be set to MEMACC_ECC_CORRECTED. |

[SWS_MemAcc_00108]
Upstream requirements: SRS_MemHwAb_14040

[In case the last memory operation didn’t complete due to an uncorrectable ECC error,
the job result shall be set to MEMACC_ECC_UNCORRECTED. |

AUTSSAR

[SWS_MemAcc_00021]

Upstream requirements: SRS_MemHwAb_14040
[In case the last memory operation was canceled, the job result shall be set to
MEMACC_CANCELED. |

[SWS_MemAcc_00109]
Upstream requirements: SRS_MemHwAb_14040

[In case the memory operation was not successfully completed for any other reason,
the job result shall be set to MEMACC_FAILED. |

7.3.5 Hardware Specific Services

To support memory device specific services, the MemAcc module provides a generic
API to call hardware specific Mem driver services - see MemAcc_HwSpecificSer-—
vice.

Each Mem driver can have multiple hardware specific services which are selected by
the hwServiceId parameter.

Note: By providing a generic API for hardware specific services, the MemAcc module
can be kept hardware independent.

7.3.6 Performance Optimization

Some Mem drivers provide burst capabilities, i.e. instead of writing/erasing one small-
est possible unit, several of these units are written/erased at once to increase the
write/erase throughput. Depending on the hardware capabilities, a Mem driver might
offer two burst modes:

» Erase multiple sectors

» Write multiple pages

[SWS_MemAcc_00087]

Upstream requirements: SRS_MemHwAb_ 14048
[If enabled by MemAccUseEraseBurst, MemAcc shall align and split the Mem driver
erase requests according to the erase burst size of the Mem driver. |

[SWS_MemAcc_00101]
Upstream requirements: SRS_MemHwAb_14048
[MemAcc shall split the Mem driver read requests according to the maximum read

length defined by MemMaxRead if the length of the MemAcc read request is larger than
the MemMaxRead value of the respective Mem driver. |

AUTSSAR

[SWS_MemAcc_00102]
Upstream requirements: SRS_MemHwAb_14048

[If enabled by MemAccUseWriteBurst, MemAcc shall align and split the Mem driver
write requests according to the write burst size of the Mem driver. |

Note: Enabling burst mode also increases the latency when a job shall be processed
with a higher priority. Therefore, system integrators have to consider the maximum
latency when configuring the burst modes.

7.3.7 Generic Locking Mechanism

To support upper layers like the BndM, the MemAcc module provides a generic lock
API which can be used to restrict the memory access by a certain Mem driver, e.g., if
an upper layer wants to do a direct memory mapped access.

Figure 9.7 shows an example lock/unlock sequence.

Note: The application or upper layer module has to maintain the lock state and release
the lock once the direct memory access was completed. For the sake of simplicity,
nested locks are not supported.

7.3.8 Dynamic Memory Driver Handling

For some safety-relevant use cases, it is not desirable for the Mem driver to be per-
manently available in an executable form, e.g. to prevent accidental overwriting of
memory areas. For these use cases, the Mem driver is compiled as a separate binary
which contains a function pointer table to expose the Mem driver service functions to
the MemAcc module and the MemAcc module calls the Mem driver service functions
indirectly using the Mem driver function pointer table.

7.3.8.1 Dynamic Memory Driver Activation

For the dynamic memory driver activation, the upper layer module has to ensure that
the Mem driver binary is available for execution, e.g. downloaded to RAM and initialized
before any MemAcc job is requested for the according address area.

AUTSSAR

7.3.8.2 Service Invocation

[SWS_MemAcc_00085]
Upstream requirements: SRS_MemHwAb_ 14045

[If MemInvocation (see [ECUC_Mem_00025]) is set to DIRECT_STATIC, MemAcc
shall call the Mem driver service functions. Otherwise the MemAcc shall call the Mem
driver service functions via the Mem driver function pointer table. |

7.4 Module Handling

7.4.1 |Initialization

The MemAcc module is initialized via MemAcc_Init. Except for MemAcc_GetVer-
sionInfo and MemAcc_Init, the APl functions of the MemAcc module may only be
called after the module has been properly initialized.

Depending on the MemInvocation (see [ECUC_Mem_00025]) attribute, MemAcc
can also initialize the Mem driver’s individual initialization functions.

Figure 9.3 shows the Mem driver initialization via MemAcc while figure 9.4 shows the
Mem driver initialization via EcuM.

7.4.2 Scheduling

Since most of the MemAcc module services are asynchronous services, the MemAcc_
MainFunction needs to be cyclically triggered.

Depending on the MemInvocation (see [ECUC_Mem_00025]) attribute, MemAcc
can call all Mem main functions within MemAcc_MainFunction.

Note: In case Mem drivers shall be dynamically activated, the scheduling of the Mem
driver main functions cannot be done via the SchM. Therefore, the MemAcc module
has to take care of the main function triggering depending on the individual Mem driver
State.

Figure 9.5 shows the Mem main function triggering via MemAcc while figure 9.6 shows
the Mem main function triggering via SchM.

7.5 General Design Rules

[SWS_MemAcc_00083]
Upstream requirements: SRS_MemHwAb_ 14056

[The MemAcc module implementation shall be hardware independent. |

AUTSSAR

Note: The MemAcc module will be used with different kinds of Mem drivers, e.g., for
internal and external memory devices. Thus, MemAcc has to be completely hardware
independent.

[SWS_MemAcc_00098]
Upstream requirements: SRS_MemHwAb_ 14042

[The MemAcc module implementation shall support multiple Mem drivers. |

[SWS_MemAcc_00002]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00167, SRS_BSW_00004

[The MemAcc module shall check static configuration parameters statically (at the
latest during compile time) for correctness. |

7.5.1 Retry Mechanism

[SWS_MemAcc_00005]
Upstream requirements: SRS_MemHwAb_14002

[If MemAccNumberOfEraseRetries is set to a value > 0, MemAcc shall retry the
Mem driver erase operation according to the configured value if the Mem driver erase
operation resulted in MEM_JOB_FAILED. |

[SWS_MemAcc_00100]
Upstream requirements: SRS_MemHwAb_14002

[If MemAccNumberOfWriteRetries is set to a value > 0, MemAcc shall retry the
Mem driver write operation according to the configured value if the Mem driver write
operation resulted in MEM_JOB_FAILED. |

Note: Upper layers shall not have to deal with transient memory write/erase issues.
The retry mechanism strongly depends on the underlying memory technology/devices
types. Not all memory devices support a write retry.

7.5.2 Address Alignment

The MemAcc module does not perform any kind of buffer alignment. Therefore, the
buffers provided by the upper layers need to consider already the alignment require-
ments defined by the MemAccBufferAlignmentValue attribute.
MemAccBufferAlignmentValue must be configured to the least common multiple
value needed by the underlying Mem drivers. The same applies to the write page
requirements.

AUTSSAR

[SWS_MemAcc_00003]
Upstream requirements: SRS_MemHwAb_14048

[The MemAcc module shall split memory write access requests for the Mem driver
layer according to page/page burst size defined by MemWritePageSize/Memiirite—
BurstSize.]

Note: Mem driver expects request aligned to the physical write segmentation.

[SWS_MemAcc_00004]
Upstream requirements: SRS_MemHwAb_14048

[If the start address or the length of a memory write request does not match the physi-
cal write segmentation of the device defined by MemWritePageSize, MemAcc_Write
shall reject such job requests with E_NOT_OK. |

Note: Memory requests must be aligned to the physical memory segmentation.

[SWS_MemAcc_00125]
Upstream requirements: SRS_MemHwAb_14048

[If the start address or the length of a memory read request does not match the mini-
mum read size of the device defined by MemMinReadSize, MemAcc_Read shall reject
such job requests with E_NOT_OK. |

[SWS_MemAcc_00126]
Upstream requirements: SRS_MemHwAb_14048

[If the start address or the length of a memory erase request does not match the phys-
ical erase segmentation of the device defined by MemEraseSectorSize, MemAcc_
Erase shall reject such job requests with E_NOT_OX. |

[SWS_MemAcc_00127]
Upstream requirements: SRS_MemHwAb_14048

[The MemAcc module shall split memory erase access requests for the Mem
driver layer according to sector/sector burst sizes defined by MemEraseSectorSize/
MemEraseBurstSize. |

Note: Mem driver expects request aligned to the physical erase segmentation.

7.5.3 64-Bit Support

[SWS_MemAcc_00081]
Upstream requirements: SRS_MemHwAb_ 14046
[The MemAcc module shall support address areas larger than 4GBytes, thus

MemAcc_AddressType and MemAcc_LengthType shall be defined as a 64-Bit types
in case the address area configuration of one address area exceeds 4GBytes. |

AUTSSAR

[SWS_MemAcc_00082]
Upstream requirements: SRS_MemHwAb_14046

[If all address areas don’t exceed 4GBytes, MemAcc_AddressType and MemAcc_
LengthType shall be defined as a 32-Bit types. |

Note: Avoid unnecessary overhead due to 64-Bit types.

7.6 Error Classification

7.6.1 Development Errors

[SWS_MemAcc_10038] Definition of development errors in module MemAcc
Upstream requirements: SRS_BSW_00337, SRS_BSW_00386, SRS_BSW_00327

Type of error Related error code Error value
API service called without module initialization MEMACC_E_UNINIT 0x01
API service called with NULL pointer argument MEMACC_E_PARAM_POINTER 0x02
API service called with wrong address area ID MEMACC_E_PARAM_ADDRESS_AREA_ID 0x03
API service called with address and length not MEMACC_E_PARAM_ADDRESS_LENGTH 0x04
belonging to the passed address area ID

API service called with a hardware ID not MEMACC_E_PARAM_HW_ID 0x05
belonging to the passed address area ID

API service called for an address area ID with a MEMACC_E_BUSY 0x06
pending job request

Dynamic MEM driver activation failed due to MEMACC_E_MEM_INIT_FAILED 0x07
inconsistent MEM driver binary

7.6.2 Runtime Errors

There are no runtime errors.

7.6.3 Production Errors

There are no production errors.

7.6.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API Specification

8.1 Imported Types
In this chapter all types included from the following files are listed.

[SWS_MemAcc_10037] Definition of imported datatypes of module MemAcc
Upstream requirements: SRS_MemHwAb_ 14040

[
Module Header File Imported Type
Mem Mem.h Mem_AddressType
Mem.h Mem_ConfigType
Mem.h Mem_DataType
Mem.h Mem_HwServiceldType
Mem.h Mem_InstanceldType
Mem.h Mem_LengthType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

8.2 Type Definitions

8.2.1 MemAcc_AddressArealdType

[SWS_MemAcc_10000] Definition of datatype MemAcc_AddressArealdType
Upstream requirements: SRS_MemHwAb_14057

[
Name MemAcc_AddressArealdType
Kind Type
Derived from uint16
Description Unique address area ID type.
Available via MemAcc_GeneralTypes.h

AUTSSAR

8.2.2 MemAcc_AddressType

[SWS_MemAcc_10001] Definition of datatype MemAcc_AddressType
Upstream requirements: SRS_MemHwAb_ 14046

[

Name MemAcc_AddressType
Kind Type
Derived from Basetype Variation
uint32 -
uint64 -
Description Logical memory address type.
Available via MemAcc_GeneralTypes.h

8.2.3 MemAcc_ConfigType

[SWS_MemAcc_10002] Definition of datatype MemAcc_ConfigType
Upstream requirements: SRS_BSW_00414

Name MemAcc_ConfigType

Kind Structure

Description Postbuild configuration structure type.
Available via MemAcc.h

8.2.4 MemAcc_DataType

[SWS_MemAcc_10004] Definition of datatype MemAcc_DataType
Upstream requirements: SRS_MemHwAb 14051

Name MemAcc_DataType

Kind Type

Derived from uint8

Description General data type.
Available via MemAcc_GeneralTypes.h

AUTSSAR

8.2.5 MemAcc_JobResultType

[SWS_MemAcc_10039] Definition of datatype MemAcc_JobResultType
Upstream requirements: SRS_MemHwAb_ 14040

Name MemAcc_JobResultType
Kind Enumeration
Range MEMACC_OK 0x00 The last MemAcc job was finished
successfully
MEMACC_FAILED 0x01 The last MemAcc job resulted in an unspecific
failure and the job was not completed
MEMACC_INCONSISTENT | 0x02 The results of the last MemAcc job didn’t
meet the expected result, e.g. a blank check
operation was applied on a non-blank
memory area
MEMACC_CANCELED 0x03 The last MemAcc job was canceled
MEMACC_ECC_ 0x04 The last memory operation returned an
UNCORRECTED uncorrectable ECC error
MEMACC_ECC_ 0x05 The last memory operation returned a
CORRECTED correctable ECC error
MEMACC_MEM_ 0x06 The service requested is not available for this
SERVICE_NOT_AVAIL memory driver
Description Asynchronous job result type.

Available via

MemAcc_GeneralTypes.h

8.2.6 MemAcc_JobStatusType

[SWS_MemAcc_10009] Definition of datatype MemAcc_JobStatusType
Upstream requirements: SRS_MemHwAb_14040

Name MemAcc_JobStatusType
Kind Enumeration
Range MEMACC_JOB_IDLE 0x00 Job processing was completed or no job
currently pending
MEMACC_JOB_PENDING 0x01 A job is currently being processed
Description Asynchronous job status type.

Available via

MemAcc_GeneralTypes.h

AUTSSAR

8.2.7 MemAcc_JobType

[SWS_MemAcc_10011] Definition of datatype MemAcc_JobType
Upstream requirements: SRS_MemHwAb_ 14040

Name MemAcc_JobType

Kind Enumeration

Range MEMACC_NO_JOB 0x00 No job currently pending
MEMACC_WRITE_JOB 0x01 Write job pending
MEMACC_READ_JOB 0x02 Read job pending
MEMACC_COMPARE_JOB | 0x03 Compare job pending
MEMACC_ERASE_JOB 0x04 Erase job pending
MEMACC_ 0x05 Hardware specific job pending
MEMHWSPECIFIC_JOB
MEMACC_BLANKCHECK_ | 0x06 Blank check job pending
JOB
MEMACC_ 0x07 Request lock job pending
REQUESTLOCK_JOB

Description Type for asynchronous jobs.

Available via

MemAcc_GeneralTypes.h

8.2.8 MemAcc_LengthType

[SWS_MemAcc_10007] Definition of datatype MemAcc_LengthType
Upstream requirements: SRS_MemHwAb_ 14046

[
Name MemAcc_LengthType
Kind Type
Derived from Basetype Variation
uint32 -
uint64 -
Description Job length type.

Available via

MemAcc_GeneralTypes.h

AUTSSAR

8.2.9 MemAcc_MemoryinfoType

[SWS_MemAcc_10012] Definition of datatype MemAcc_MemorylnfoType
Upstream requirements: SRS_MemHwAb_ 14054

[

Name MemAcc_MemoryInfoType
Kind Structure
LogicalStartAddress
Elements Type MemAcc_AddressType
Comment Logical start address of sub address area
PhysicalStartAddress
Type MemAcc_AddressType
Comment Physical start address of sub address area
MaxOffset
Type MemAcc_LengthType
Comment Size of sub address area in bytes -1
EraseSectorSize
Type uint32
Comment Size of a sector in bytes
EraseSectorBurstSize
Type uint32
Comment Size of a sector burst in bytes. Equals SectorSize in case burst is
disabled
MinReadSize
Type uint32
Comment Smallest readable unit in bytes
WritePageSize
Type uint32
Comment Write size of a page in bytes
MaxReadSize
Type uint32
Comment Largest readable unit in bytes
WritePageBurstSize
Type uint32
Comment Size of a page burst in bytes. Equals WritePageSize in case burst is
disabled
Hwid
Type MemAcc_HwldType
Comment Referenced memory driver hardware identifier
Description This structure contains information of Mem device characteristics. It can be accessed via the

MemAcc_GetMemorylnfo() service.

Available via

MemAcc_GeneralTypes.h

AUTSSAR

8.2.10 MemAcc_JoblinfoType

[SWS_MemAcc_10013] Definition of datatype MemAcc_JobiInfoType
Upstream requirements: SRS_MemHwAb_ 14040

[

Name MemAcc_JobinfoType
Kind Structure
LogicalAddress
Elements Type MemAcc_AddressType
Comment Address of currently active address area request
Length
Type MemAcc_LengthType
Comment Length of the currently active address area request
Hwid
Type MemAcc_HwldType
Comment Referenced memory driver hardware identifier

Meminstanceld

Type uint32

Comment Instance ID of the current memory request

MemAddress

Type uint32

Comment Physical address of the current memory driver request

MemLength

Type uint32

Comment Length of memory driver request

CurrentJob

Type MemAcc_JobType

Comment Currently active MemAcc job

MemResult

Type MemAcc_MemdJobResultType

Comment Current or last Mem driver result
Description This structure contains information the current processing state of the MemAcc module.
Available via MemAcc_GeneralTypes.h

AUTSSAR

8.2.11 MemAcc_HwldType

[SWS_MemAcc_10010] Definition of datatype MemAcc_HwlIdType
Upstream requirements: SRS_MemHwAb_ 14042

Name MemAcc_HwldType

Kind Type

Derived from uint32

Range 0 - 4294967295 - The name of each enum
parameter is constructed from the
Mem module name and the Mem
instance name

Description Type for the unique numeric identifiers of all Mem hardware instances used for hardware specific

requests.
Available via MemAcc_GeneralTypes.h

8.2.12 MemAcc_MemBinaryHeaderType

[SWS_MemAcc_10014] Definition of datatype MemAcc_MemBinaryHeaderType
Upstream requirements: SRS_MemHwAb_14045

[

Name MemAcc_MemBinaryHeaderType

Kind Structure
Uniqueld

Elements Type Lint64
Comment Unique ID
Flags
Type uinté4
Comment Header flags
Header
Type uint64
Comment Address of Mem driver header structure
Delimiter
Type uinté4
Comment Address of Mem driver delimiter field
InitFunc
Type MemAcc_MeminitFuncType
Comment Mem_Init function pointer
DeinitFunc
Type MemAcc_MemDelnitFuncType
Comment Mem_Deinit function pointer
MainFunc

\Y%

AUTSSAR

JAN
Type MemAcc_MemMainFuncType
Comment Mem_Main function pointer
GetJobResultFunc
Type MemAcc_MemGetJobResultFuncType
Comment Mem_GetJobResult function pointer
ReadFunc
Type MemAcc_MemReadFuncType
Comment Mem_Read function pointer
WriteFunc
Type MemAcc_MemWriteFuncType
Comment Mem_Write function pointer
EraseFunc
Type MemAcc_MemEraseFuncType
Comment Mem_Erase function pointer
PropagateErrorFunc
Type MemAcc_MemPropagateErrorFuncType
Comment Mem_PropagateError function pointer
BlankCheckFunc
Type MemAcc_MemBlankCheckFuncType
Comment Mem_BlankCheck function pointer
SuspendFunc
Type MemAcc_MemSuspendFuncType
Comment Mem_Suspend function pointer
ResumeFunc
Type MemAcc_MemResumeFuncType
Comment Mem_Resume function pointer
HwSpecificServiceFunc
Type MemAcc_MemHwSpecificServiceFuncType
Comment Hardware specific service function pointer

Description

This structure contains elements for accessing the Mem driver service functions and consistency
information.

Available via

MemAcc_MemApi.h

AUTSSAR

8.2.13 MemAcc_MemAddressType

[SWS_MemAcc_91013] Definition of datatype MemAcc_MemAddressType
Upstream requirements: SRS_MemHwAb_ 14046

Name MemAcc_MemAddressType

Kind Type

Derived from MemAcc_AddressType

Description Physical memory device address type
Available via MemAcc_MemApi.h

8.2.14 MemAcc_MemConfigType

[SWS_MemAcc_91012] Definition of datatype MemAcc_MemConfigType
Upstream requirements: SRS_BSW_00414

[
Name MemAcc_MemConfigType
Kind Structure
Description Memory driver configuration structure type
Available via MemAcc_MemApi.h
]

8.2.15 MemAcc_MembDataType

[SWS_MemAcc_91020] Definition of datatype MemAcc_MemDataType
Upstream requirements: SRS_MemHwAb_14051

Name MemAcc_MemDataType
Kind Type

Derived from uint8

Description General data type
Available via MemAcc_MemApi.h

AUTSSAR

8.2.16 MemAcc_MeminstanceldType

[SWS_MemAcc_91011] Definition of datatype MemAcc_MeminstanceldType
Upstream requirements: SRS_MemHwAb_14043

Name MemAcc_MeminstanceldType
Kind Type

Derived from uint32

Description Memory driver instance ID type

Available via

MemAcc_MemApi.h

8.2.17 MemAcc_MemdJobResultType

[SWS_MemAcc_91016] Definition of datatype MemAcc_MemdJobResultType
Upstream requirements: SRS_MemHwAb_ 14040

[

Name MemAcc_MemdJobResultType

Kind Enumeration

Range MEM_JOB_OK 0x00 The last job has been finished successfully
MEM_JOB_PENDING 0x01 A job is currently being processed
MEM_JOB_FAILED 0x02 Job failed for some unspecific reason
MEM_INCONSISTENT 0x03 The checked page is not blank
MEM_ECC_ 0x04 Uncorrectable ECC errors occurred during
UNCORRECTED memory access
MEM_ECC_CORRECTED 0x05 Correctable ECC errors occurred during

memory access
Description Asynchronous job result type

Available via

MemAcc_GeneralTypes.h

8.2.18 MemAcc_MemLengthType

[SWS_MemAcc_91014] Definition of datatype MemAcc_MemLengthType
Upstream requirements: SRS_MemHwAb_ 14046

[
Name MemAcc_MemLengthType
Kind Type
Derived from uint32
Description Physical memory device length type

Available via

MemAcc_MemApi.h

AUT<

SAR

8.2.19 MemAcc_MemHwServiceldType

[SWS_MemAcc_10008] Definition of datatype MemAcc_MemHwServiceldType
Upstream requirements: SRS_MemHwAb_14056

Name MemAcc_MemHwServiceldType

Kind Type

Derived from uint32

Description Index type for Mem driver hardware specific service table.

Available via

MemAcc_MemApi.h

8.2.20 MemAcc_MeminitFuncType

[SWS_MemAcc_91000] Definition of datatype MemAcc_MeminitFuncType
Upstream requirements: SRS_MemHwAb_14045

Name MemAcc_MeminitFuncType
Kind Function Pointer
Syntax void (*MemAcc_MemInitFuncType) (

MemAcc_MemConfigTypex configPtr
)

Parameters (in) configPtr Pointer to the Mem driver configuration data structure.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Function pointer for the Mem_Init service for the invocation of the Mem driver API via function
pointer interface.

Available via

MemAcc_MemApi.h

AUTSSAR

8.2.21 MemAcc_MembDelnitFuncType

[SWS_MemAcc_91018] Definition of datatype MemAcc_MemDelnitFuncType
Upstream requirements: SRS_MemHwAb_ 14045

Name MemAcc_MemDelnitFuncType

Kind Function Pointer

Syntax void (xMemAcc_MemDeInitFuncType) (

void

)

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Function pointer for the Mem_Delnit service for the invocation of the Mem driver API via
function pointer interface.

Available via MemAcc_MemApi.h

8.2.22 MemAcc_MemGetJobResultFuncType

[SWS_MemAcc_91002] Definition of datatype MemAcc_MemGetJobResultFunc
Type
Upstream requirements: SRS_MemHwAb_14045

Name MemAcc_MemGetJobResultFuncType
Kind Function Pointer
Syntax MemAcc_MemJobResultType (xMemAcc_MemGetJobResultFuncType) (

MemAcc_MemInstanceIdType instanceId

)

Parameters (in) instanceld ID of the related memory driver instance.
Parameters (inout) None
Parameters (out) None
Return value MemAcc_MemdJobResult Most recent job result.
Type
Description Function pointer for the Mem_JobResultType service for the invocation of the Mem driver API

via function pointer interface.

Available via MemAcc_MemApi.h

AUTSSAR

8.2.23 MemAcc_MemSuspendFuncType

[SWS_MemAcc_91008] Definition of datatype MemAcc_MemSuspendFuncType
Upstream requirements: SRS_MemHwAb_ 14045

Name MemAcc_MemSuspendFuncType
Kind Function Pointer
Syntax Std_ReturnType (xMemAcc_MemSuspendFuncType) (

MemAcc_MemInstanceIdType instanceId

)

Parameters (in) instanceld ID of the related memory driver instance.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK:The requested job has not been accepted by the
module.

E_MEM_SERVICE_NOT_AVAIL: The underlying Mem driver
service function is not available.

Description Function pointer for the Mem_Suspend service for the invocation of the Mem driver API via
function pointer interface.

Available via MemAcc_MemApi.h

8.2.24 MemAcc_MemResumeFuncType

[SWS_MemAcc_91009] Definition of datatype MemAcc_MemResumeFuncType
Upstream requirements: SRS_MemHwAb_14045

Name MemAcc_MemResumeFuncType
Kind Function Pointer
Syntax Std_ReturnType (*MemAcc_MemResumeFuncType) (

MemAcc_MemInstanceIdType instancelId

)

Parameters (in) instanceld ID of the related memory driver instance.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK:The requested job has not been accepted by the
module.

E_MEM_SERVICE_NOT_AVAIL: The underlying Mem driver
service function is not available.

Description Function pointer for the Mem_Resume service for the invocation of the Mem driver APl via
function pointer interface.

Available via MemAcc_MemApi.h

AUTSSAR

8.2.25 MemAcc_MemPropagateErrorFuncType

[SWS_MemAcc_91006]

FuncType

Upstream requirements: SRS_MemHwAb_ 14045

Name MemAcc_MemPropagateErrorFuncType
Kind Function Pointer
Syntax void (*MemAcc_MemPropagateErrorFuncType) (

MemAcc_MemInstanceIdType instanceId

)

Parameters (in) instanceld ID of the related memory driver instance.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Function pointer for the Mem_PropagateError service for the invocation of the Mem driver API
via function pointer interface.

Available via

MemAcc_MemApi.h

8.2.26 MemAcc_MemReadFuncType

[SWS_MemAcc_91003] Definition of datatype MemAcc_MemReadFuncType
Upstream requirements: SRS_MemHwAb_14045

Name MemAcc_MemReadFuncType
Kind Function Pointer
Syntax Std_ReturnType (xMemAcc_MemReadFuncType) (

MemAcc_MemInstancelIdType instanceld,
MemAcc_MemAddressType sourceAddress,
MemAcc_MemDataType* destinationDataPtr,
MemAcc_MemLengthType length

)

Parameters (in) instanceld ID of the related memory driver instance.
sourceAddress Physical address to read data from.
length Read length in bytes.

Parameters (inout) None

Parameters (out)

destinationDataPtr Destination memory pointer to store the read data.

Return value

Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the

module.

Description

Function pointer for the Mem_Read service for the invocation of the Mem driver API via
function pointer interface.

Available via

MemAcc_MemApi.h

Definition of datatype MemAcc_MemPropagateError

AUTSSAR

8.2.27 MemAcc_MemWriteFuncType

[SWS_MemAcc_91004] Definition of datatype MemAcc_MemWriteFuncType
Upstream requirements: SRS_MemHwAb_ 14045

Name MemAcc_MemWriteFuncType
Kind Function Pointer
Syntax Std_ReturnType (*MemAcc_MemWriteFuncType) (

MemAcc_MemInstanceIdType instanceld,
MemAcc_MemAddressType targetAddress,
const MemAcc_MemDataType*x sourceDataPtr,
MemAcc_MemLengthType length

)

Parameters (in) instanceld ID of the related memory driver instance.
targetAddress Physical write address (aligned to page size).
sourceDataPtr Source data pointer (aligned to page size).
length Write length in bytes (aligned to page size).
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description

Function pointer for the Mem_Write service for the invocation of the Mem driver API via function
pointer interface.

Available via

MemAcc_MemApi.h

8.2.28 MemAcc_MemEraseFuncType

[SWS_MemAcc_91005] Definition of datatype MemAcc_MemEraseFuncType
Upstream requirements: SRS_MemHwAb_14045

Name MemAcc_MemEraseFuncType
Kind Function Pointer
Syntax Std_ReturnType (x*MemAcc_MemEraseFuncType) (

MemAcc_MemInstanceIdType instanceld,
MemAcc_MemAddressType targetAddress,
MemAcc_MemLengthType length

)

Parameters (in) instanceld ID of the related memory driver instance.
targetAddress Physical erase address (aligned to sector size).
length Erase length in bytes (aligned to sector size).

Parameters (inout) None

Parameters (out) None

\Y

AUTSSAR

A
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Function pointer for the Mem_Erase service for the invocation of the Mem driver API via
function pointer interface.
Available via MemAcc_MemApi.h

8.2.29 MemAcc_MemBlankCheckFuncType

[SWS_MemAcc_91007] Definition of datatype MemAcc_MemBlankCheckFunc
Type
Upstream requirements: SRS_MemHwAb_ 14045

Name MemAcc_MemBlankCheckFuncType
Kind Function Pointer
Syntax Std_ReturnType (xMemAcc_MemBlankCheckFuncType) (

MemAcc_MemInstanceIdType instanceld,
MemAcc_MemAddressType targetAddress,
MemAcc_MemLengthType length

)

Parameters (in) instanceld ID of the related memory driver instance.
targetAddress Physical blank check address.
length Blank check length.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Function pointer for the Mem_BlankCheck service for the invocation of the Mem driver API via

function pointer interface.

Available via MemAcc_MemApi.h

AUTSSAR

8.2.30 MemAcc_MemHwSpecificServiceFuncType

[SWS_MemAcc_91010] Definition of datatype MemAcc_MemHwSpecificService
FuncType

Upstream requirements: SRS_MemHwAb_ 14045

Name MemAcc_MemHwSpecificServiceFuncType
Kind Function Pointer
Syntax Std_ReturnType (xMemAcc_MemHwSpecificServiceFuncType) (

MemAcc_MemInstanceIdType instanceld,
MemAcc_MemHwServiceIdType hwServicelId,
MemAcc_MemDataType* dataPtr,
MemAcc_MemLengthType* lengthPtr

)

Parameters (in) instanceld ID of the related memory driver instance.
hwServiceld Hardware specific service request identifier for dispatching the
request.
lengthPtr Size pointer of the passed data.
Parameters (inout) dataPtr Request specific data pointer.
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Function pointer for the Mem_HwSpecificService function for the invocation of the Mem driver

API via function pointer interface.

Available via MemAcc_MemApi.h

8.2.31 MemAcc_MemMainFuncType

[SWS_MemAcc_91001] Definition of datatype MemAcc_MemMainFuncType
Upstream requirements: SRS_MemHwAb_14045

Name MemAcc_MemMainFuncType

Kind Function Pointer

Syntax void (*MemAcc_MemMainFuncType) (

void

)

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Function pointer for the Mem_MainFunction service for the invocation of the Mem driver API via
function pointer interface.

Available via MemAcc_MemApi.h

AUTSSAR

8.2.32 MemAcc_ApplicationLockNotificationType

[SWS_MemAcc_91021] Definition of datatype MemAcc_ApplicationLockNotifica-
tionType |

Name MemAcc_ApplicationLockNotificationType

Kind Function Pointer

Syntax void (xMemAcc_ApplicationLockNotificationType) (

void

)

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Type of the function pointer to register an application callback to be notified once the address
area lock was successfully acquired.

Available via MemAcc.h

8.2.33 Extension of Std_ReturnType

[SWS_MemAcc_91022] Definition of Std_ReturnType-extension for module Mem
Acc |

Range E_MEM_SERVICE_NOT_ 0x03 The underlying Mem driver
AVAIL service function is not available.

Description Overlayed return value of Std_ReturnType for Mem driver API

Available via MemAcc_MemApi.h

8.3 Function Definitions

8.3.1 Synchronous Functions

8.3.1.1 MemAcc_lInit

[SWS_MemAcc_10015] Definition of API function MemAcc_lInit
Upstream requirements: SRS_MemHwAb_14035, SRS_MemHwAb_14037

[

Service Name MemAcc_Init

Syntax void MemAcc_Init (
const MemAcc_ConfigTypex configPtr
)

\Y

AUTSSAR

A
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) configPtr Pointer to selected configuration structure.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initialization function - initializes all variables and sets the module state to initialized.

Available via

MemAcc.h

]

[SWS_MemAcc_00025]
Upstream requirements: SRS_MemHwAb_14037, SRS_MemHwAb_14047

[The service MemAcc_Init shall initialize the MemAcc module internal states. If
MemInvocation (see [ECUC_Mem_00025]) is setto INDIRECT_DYNAMIC Or INDI-
RECT_STATIC, MemAcc_Init shall also initialize all available Mem drivers by calling
the Mem driver’s individual initialization functions. |

8.3.1.2 MemAcc_Delnit

[SWS_MemAcc_10041] Definition of API function MemAcc_Delnit
Upstream requirements: SRS_MemHwAb_14037

[

Service Name

MemAcc_Delnit

Syntax void MemAcc_DelInit (
void
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Deinitialize module. If there are still access jobs pending, they are immediately terminated and
the module state is set to unitialized. Therefore, MemAcc must be re-initialized before it will
accept any new job requests after this service is processed.

Available via

MemAcc.h

]

[SWS_MemAcc_00111]
Upstream requirements: SRS_MemHwAb_14047

[The service MemAcc_DeInit shall de-initialize the MemAcc module internal states.
If MemInvocation (see [ECUC_Mem_00025]) is set to INDIRECT_DYNAMIC Of IN-

AUTSSAR

DIRECT_STATIC, MemAcc_DeInit shall also de-initialize all available Mem drivers
by calling the Mem driver’s individual de-initialization functions. |

8.3.1.3 MemAcc_GetVersioninfo

[SWS MemAcc_10016] Definition of API function MemAcc_GetVersioninfo
Upstream requirements: SRS_BSW_00003

[

Service Name

MemAcc_GetVersionInfo

Sﬁﬂnax void MemAcc_GetVersionInfo (
Std_VersionInfoType* versionInfoPtr

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out)

versioninfoPtr Pointer to where to store the version information of this module.

Return value None
Description Service to return the version information of the MemAcc module.
Available via MemAcc.h

]

[SWS_MemAcc_00027]
Upstream requirements: SRS _BSW_00323

[If development

error
the service MemAcc_GetVersionInfo

detection

shall raise the development

MEMACC_E_PARAM POINTER if the argument is a NULL pointer. |

8.3.1.4 MemAcc_GetJobResult

[SWS_MemAcc_10019] Definition of API function MemAcc_GetJobResult
Upstream requirements: SRS_MemHwAb 14040

[

Service Name MemAcc_GetJobResult
Syntax MemAcc_JobResultType MemAcc_GetJobResult (
MemAcc_AddressArealdType addressAreald
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant

is enabled by MemAccDevErrorDetect,
error

AUTSSAR

A
Parameters (in) addressAreald | Numeric identifier of address area.
Parameters (inout) None
Parameters (out) None
Return value MemAcc_JobResultType | Most recent job result of the referenced address area.
Description Returns the consolidated job result of the address area referenced by addressAreald.
Available via MemAcc.h
|

[SWS MemAcc 00092]
Upstream requirements: SRS_MemHwAb_ 14040

[The service MemAcc_GetJobResult shall return the consolidated result of the last
MemAcc job. |

Note: If a MemAcc job is still pending, the API returns the result of the last MemAcc
job.

[SWS MemAcc_00033]

Upstream requirements: SRS_BSW_00406
[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_GetJobResult shall check that the MemAcc module has been initial-

ized. If this check fails, MemAcc_GetJobResult shall raise the development error
MEMACC_FE_UNINIT. |

[SWS_MemAcc_00034]
Upstream requirements: SRS _BSW_ 00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_GetJobResult shall check that the provided addressArealId is consis-
tent with the configuration. If this check fails, MemAcc_Get JobResult shall raise the
development error MEMACC_E_PARAM_ADDRESS_AREA_ID. |

8.3.1.5 MemAcc_GetJobStatus

[SWS_MemAcc_10040] Definition of API function MemAcc_GetJobStatus
Upstream requirements: SRS_MemHwAb_14040

Service Name MemAcc_GetJobStatus
Syntax MemAcc_JobStatusType MemAcc_GetJobStatus (
MemAcc_AddressArealdType addressAreald
)
Service ID [hex] 0x10

\Y

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) addressAreald | Numeric identifier of address area.
Parameters (inout) None
Parameters (out) None
Return value MemAcc_JobStatusType | Most recent job result of the referenced address area.
Description Returns the status of the MemAcc job referenced by addressAreald.
Available via MemAcc.h
]

[SWS _MemAcc _00118]
Upstream requirements: SRS_MemHwAb_ 14040

[The service MemAcc_GetJobsStatus shall return MEMACC_JOB_IDLE for the refer-
enced addressArealId if MemAcc is not processing a job request. |

[SWS_MemAcc_00119]
Upstream requirements: SRS_MemHwAb_14040

[The service MemAcc_GetJobStatus shall return MEMACC_JOB_PENDING for the
referenced addressAreald if MemAcc is currently processing a job request. |

[SWS_MemAcc_00117]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_GetJobStatus shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_GetJobsStatus shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00124]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_GetJobStatus shall check that the provided addressAreaId is consis-
tent with the configuration. If this check fails, MemAcc_GetJobStatus shall raise the
development error MEMACC_E_PARAM_ADDRESS_AREA_ID. |

AUTSSAR

8.3.1.6 MemAcc_GetMemoryinfo

[SWS_MemAcc_10020] Definition of API function MemAcc_GetMemoryinfo
Upstream requirements: SRS_MemHwAb_ 14054

[

Service Name MemAcc_GetMemoryinfo

Syntax Std_ReturnType MemAcc_GetMemoryInfo (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType address,
MemAcc_MemoryInfoTypex memoryInfoPtr

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) addressAreald Numeric identifier of address area.

address Address in logical address space from which corresponding
memory device information shall be retrieved.

Parameters (inout) None

Parameters (ouft) memoryInfoPtr Destination memory pointer to store the memory device
information.

Return value Std_ReturnType E_OK: The requested addressAreald and address are valid.
E_NOT_OK: The requested addressAreald and address are
invalid.

Description This service function retrieves the physical memory device information of a specific address

area. It can be used by an upper layer to get all necessary information to align the start address
and trim the length for erase/write jobs.

Available via MemAcc.h

]

[SWS_MemAcc_00035]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_GetMemoryInfo shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_GetMemoryInfo shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00036]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_GetMemoryInfo shall check that the provided addressArealId is consis-
tent with the configuration. If this check fails, MemAcc_GetMemoryInfo shall raise the
development error MEMACC_E_PARAM ADDRESS_AREA_1ID.]

[SWS_MemAcc_00037]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDetect,

the service MemAcc_GetMemoryInfo shall raise the development error
MEMACC_E_PARAM POINTER if the memoryInfoPtr argumentis a NULL pointer. |

AUTSSAR

8.3.1.7 MemAcc_GetProcessedLength

[SWS_MemAcc_10021] Definition of API function MemAcc_GetProcessedLength
Upstream requirements: SRS_MemHwAb_ 14040

[
Service Name MemAcc_GetProcessedLength
Syntax MemAcc_LengthType MemAcc_GetProcessedLength (
MemAcc_AddressArealdType addressAreald
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) addressAreald | Numeric identifier of address area.
Parameters (inout) None
Parameters (out) None
Return value MemAcc_LengthType ‘ Processed length of current job (in bytes).
Description Returns the accumulated number of bytes that have already been processed in the current job.
Available via MemAcc.h
]

[SWS_MemAcc_00120]
Upstream requirements: SRS_MemHwAb_14040

[The service MemAcc_GetProcessedLength shall return the processed length of
the current MemAcc job referenced by addressAreaId. The processed length infor-
mation shall only be updated if the underlying Mem job was successfully completed. |

[SWS_MemAcc_00038]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_GetProcessedLength shall check that the MemAcc module has been ini-
tialized. If this check fails, MemAcc_GetProcessedLength shall raise the develop-
ment error MEMACC_FE_UNINIT. |

[SWS_MemAcc_00039]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_GetProcessedLength shall check that the provided addressArealId is
consistent with the configuration. If this check fails, MemAcc_GetProcessedLength
shall raise the development error MEMACC_FE_PARAM_ADDRESS_AREA_ID.|

AUTSSAR

8.3.1.8 MemAcc_GetJobinfo

[SWS_MemAcc_10022] Definition of API function MemAcc_GetJobinfo
Upstream requirements: SRS_MemHwAb_ 14040

Service Name MemAcc_GetJoblinfo
Syntax void MemAcc_GetJobInfo (
MemAcc_AddressArealdType addressAreald,
MemAcc_JobInfoTypex JjobInfoPtr
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
Parameters (inout) None
Parameters (out) jobInfoPtr Structure pointer to return the detailed processing information of
the current job.
Return value None
Description Returns detailed information about the current memory job like memory device ID, job type, job,
processing state or job result, address area as well as address and length. In case no job is
pending on the referenced address area, the function returns the information of the last job.
Available via MemAcc.h

[SWS MemAcc 00040]
Upstream requirements: SRS _BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_GetJobInfo shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_GetJobInfo shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00041]

Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_GetJobInfo shall check that the provided addressArealId is consistent

with the configuration. If this check fails, MemAcc_GetJobInfo shall raise the devel-
opment error MEMACC_E_PARAM_ADDRESS_AREA_ID. |

[SWS_MemAcc_00042]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDe-

tect, the service MemAcc_GetJobInfo shall raise the development error
MEMACC_FE_PARAM_POINTER if the jobInfoPtr argumentis a NULL pointer. |

AUTSSAR

8.3.1.9 MemAcc_ActivateMem

[SWS_MemAcc_10033] Definition of API function MemAcc_ActivateMem
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_ 14047

[
Service Name MemAcc_ActivateMem
Syntax Std_ReturnType MemAcc_ActivateMem (
MemAcc_AddressType headerAddress,
MemAcc_HwIdType hwId
)
Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) headerAddress Physical start address of Mem driver header structure.
hwld Unique numeric memory driver identifier.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Mem driver activation successful.
E_NOT_OK: Mem driver activation failed.
Description Dynamic activation and initialization of a Mem driver referenced by hwld and headerAddress.
Available via MemAcc.h
]

[SWS_MemAcc_00121]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14047

[If MemInvocation (see [ECUC_Mem_00025]) is set to INDIRECT_DYNAMIC, the
service MemAcc_ActivateMem shall initialize the Mem driver referenced by hwId and
headerAddress and update the internal driver activation state. |

[SWS_MemAcc_00088]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_ActivateMem shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_ActivateMem shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00089]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14049

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_ActivateMem shall ensure the validity of the Mem driver binary by checks
in the following sequence:

1. Comparing the header address field with the start address of the Mem driver
binary (if the Mem driver was not compiled as a relocatable binary)

2. Unique ID validity

3. Availability and consistency of the delimiter field

AUTSSAR

If any of these checks fails MemAcc_ActivateMem shall raise the development error
MEMACC_F_MEM_INIT_FATLED.]

8.3.1.10 MemAcc_DeactivateMem

[SWS_MemAcc_10034] Definition of API function MemAcc_DeactivateMem
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_14047

[
Service Name MemAcc_DeactivateMem
Syntax Std_ReturnType MemAcc_DeactivateMem (
MemAcc_AddressType headerAddress,
MemAcc_HwIdType hwId
)
Service ID [hex] 0x15
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) headerAddress Physical start address of Mem driver header structure.
hwld Unique numeric memory driver identifier.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Mem driver deactivation successful.
E_NOT_OK: Mem driver deactivation failed.
Description Dynamic deactivation of a Mem driver referenced by hwld and headerAddress.
Available via MemAcc.h
]

[SWS MemAcc 00122]
Upstream requirements: SRS_MemHwAb_14045, SRS_MemHwAb_ 14047
[If MemInvocation (see [ECUC_Mem_00025]) is set to INDIRECT_DYNAMIC, the

service MemAcc_DeactivateMem shall de-initialize the Mem driver referenced by
hwId and headerAddress and update the internal driver activation state. |

[SWS MemAcc_00090]

Upstream requirements: SRS_BSW_00406
[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_DeactivateMem shall check that the MemAcc module has been initial-

ized. If this check fails, MemAcc_DeactivateMem shall raise the development error
MEMACC_FE_UNINIT. |

[SWS_MemAcc_00123]
Upstream requirements: SRS_MemHwAb_14031

[In case a MemAcc job is still pending, the service MemAcc_DeactivateMem shall
return E_NOT_OK without any further action. |

AUTSSAR

Note: After calling the MemAcc_DeactivateMem service, the integration code shall
also clear the memory area where the corresponding Mem driver is stored to prevent
accidental execution of a Mem driver.

8.3.1.11 MemAcc_ReleaselLock

[SWS_MemAcc_10031] Definition of API function MemAcc_ReleaselLock
Upstream requirements: SRS_MemHwAb_14055

[
Service Name MemAcc_Releaselock
Syntax Std_ReturnType MemAcc_ReleaseLock (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType address,
MemAcc_LengthType length
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
address Logical start address to identify lock area.
length Length to identify lock area.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has been rejected by the module.
Description Release access lock of provided address area.
Available via MemAcc.h
]

[SWS_MemAcc_00076]
Upstream requirements: SRS_BSW_00406, SRS_MemHwAb_14038

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_ReleaseLock shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_ReleaselLock shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00093]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_ReleaseLock shall check that the provided addressArealId is consistent
with the configuration. If this check fails, MemAcc_Releaselock shall raise the devel-
opment error MEMACC_E_PARAM_ADDRESS_AREA_ID. |

AUTSSAR

[SWS_MemAcc_00077]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect,
the service MemAcc_ReleaseLock shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by address and
length is invalid, i.e. not mapped to a specific Mem driver. |

8.3.2 Asynchronous Functions

8.3.2.1 MemAcc_Cancel

[SWS_MemAcc_10018] Definition of API function MemAcc_Cancel
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039

[
Service Name MemAcc_Cancel
Syntax void MemAcc_Cancel (
MemAcc_AddressArealdType addressAreald
)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
Parameters (inout) None
Parameters (out) None
Return value None
Description Triggers a cancel operation of the pending job for the address area referenced by the address
Areald. Cancelling affects only jobs in pending state. For any other states, the request will be
ignored.
Available via MemAcc.h
]

[SWS_MemAcc_00028]
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14044

[When the MemAcc_Cancel service is called by an upper layer, the MemAcc module
shall wait for the completion of a pending Mem job and stop further processing of the
current MemAcc job. |

Note: Not all memory devices support a cancel operation in hardware. To keep the
behavior consistent, the cancel operation is only applied on the physical segmentation.

[SWS_MemAcc_00029]
Upstream requirements: SRS_MemHwAb_14031

[In case no MemAcc job is pending, the MemAcc_Cancel service shall just return
without any further action, i.e., the result of the last MemAcc job shall not be affected. |

AUTSSAR

[SWS_MemAcc_00030]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Cancel shall check that the MemAcc module has been initialized. If this
check fails, MemAcc_Cancel shall raise the development error MEMACC_E_UNINIT. |

[SWS_MemAcc_00031]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Cancel shall check that the provided addressAreaId is consistent with the
configuration. If this check fails, MemAcc_Cancel shall raise the development error
MEMACC_F_PARAM_ADDRESS_AREA_ID.|

8.3.2.2 MemAcc_Read

[SWS_MemAcc_10023] Definition of API function MemAcc_Read

Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039

[

Service Name

MemAcc_Read

Syntax Std_ReturnType MemAcc_Read (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType sourceAddress,
MemAcc_DataTypex destinationDataPtr,
MemAcc_LengthType length

)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in)

addressAreald

Numeric identifier of address area.

sourceAddress Read address in logical address space.
length Read length in bytes (aligned to MemMinReadSize)
Parameters (inout) None

Parameters (out)

destinationDataPtr

Destination memory pointer to store the read data.

Return value

Std_ReturnType

E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description

Triggers a read job to copy data from the source address into the referenced destination data
buffer. The result of this service can be retrieved using the MemAcc_GetJobResult API. If the
read operation was successful, the result of the job is MEMACC_OK. If the read operation
failed, the result of the job is either MEMACC_FAILED in case of a general error or MEMACC_
ECC_CORRECTED/MEMACC_ECC_UNCORRECTED in case of a correctable/uncorrectable

ECC error.

Available via

MemAcc.h

AUTSSAR

[SWS_MemAcc_00043]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Read shall check that the MemAcc module has been initialized. If this check
fails, MemAcc_Read shall raise the development error MEMACC_E_UNINIT. |

[SWS_MemAcc_00044]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Read shall check that the provided addressArealId is consistent with the
configuration. If this check fails, MemAcc_Read shall raise the development error
MEMACC_F_PARAM_ADDRESS_AREA_ID.|

[SWS_MemAcc_00045]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Read shall raise the development error MEMACC_E_PARAM_POINTER if the
destinationDataPtr argumentis a NULL pointer.

[SWS_MemAcc_00046]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDe-
tect, the service MemAcc_Read shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by sourcead-
dress and length is invalid, i.e. not aligned to MemMinReadSize or exceeds the
configured area. |

[SWS _MemAcc_00047]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDetect, the ser-

vice MemAcc_Read shall raise the development error MEMACC_E_BUSY if a previous
MemAcc job for the same addressArealId is still being processed. |

AUTSSAR

8.3.2.3 MemAcc_Write

[SWS_MemAcc_10024] Definition of API function MemAcc_Write
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_ 14039

[

Service Name

MemAcc_Write

Syntax Std_ReturnType MemAcc_Write (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType targetAddress,
const MemAcc_DataTypex sourceDataPtr,
MemAcc_LengthType length
)
Service ID [hex] 0x0a
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
targetAddress Write address in logical address space.
sourceDataPtr Source data pointer (aligned to MemAccBufferAlignmentValue).
length Write length in bytes (aligned to page size).
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description

Triggers a write job to store the passed data to the provided address area with given address
and length. The result of this service can be retrieved using the MemAcc_GetJobResult API. If
the write operation was successful, the job result is MEMACC_OK. If there was an issue writing
the data, the result is MEMACC_FAILED.

Available via

MemAcc.h

]

[SWS_MemAcc_00048]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Write shall check that the MemAcc module has been initialized. If this check
fails, MemAcc_wWrite shall raise the development error MEMACC_E_UNINIT. |

[SWS_MemAcc_00049]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Write shall check that the provided addressAreaId is consistent with the
configuration. If this check fails, MemAcc_Write shall raise the development error
MEMACC_E_PARAM_ADDRESS_AREA_ID.]

AUTSSAR

[SWS_MemAcc_00050]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDetect, the service

MemAcc_Write shall raise the development error MEMACC_E_PARAM_POINTER if the
sourceDataPtr argument is a NULL pointer. |

[SWS_MemAcc_00051]

Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDe-
tect, the service MemAcc_Write shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by targe-

tAddress and length is invalid, i.e. not aligned to MemWritePageSize Or exceeds
the configured area. |

[SWS_MemAcc_00052]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_Write shall raise the development error MEMACC_E_BUSY if a previous
MemAcc job for the same addressArealId is still being processed. |

8.3.2.4 MemAcc_ Erase

[SWS_MemAcc_10025] Definition of API function MemAcc_Erase
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_ 14039

Service Name MemAcc_Erase
SynEM' Std_ReturnType MemAcc_Erase (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType targetAddress,
MemAcc_LengthType length
)
Service ID [hex] 0x0b
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
targetAddress Erase address in logical address space (aligned to sector size).
length Erase length in bytes (aligned to sector size).
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

\Y

AUTSSAR

A

Description Triggers an erase job of the given area.

Triggers an erase job of the given area defined by targetAddress and length. The result of this
service can be retrieved using the Mem_GetJobResult API. If the erase operation was
successful, the result of the job is MEM_JOB_OK. If the erase operation failed, e.g. due to a
hardware issue, the result of the job is MEM_JOB_FAILED.

Available via MemAcc.h

]

[SWS_MemAcc_00053]
Upstream requirements: SRS _BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Erase shall check that the MemAcc module has been initialized. If this check
fails, MemAcc_Erase shall raise the development error MEMACC_E_UNINIT. |

[SWS MemAcc 00054]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Erase shall check that the provided addressArealId is consistent with the
configuration. If this check fails, MemAcc_Erase shall raise the development error
MEMACC_FE_PARAM_ADDRESS_AREA_ID.|

[SWS_MemAcc_00055]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDe-
tect, the service MemAcc_Erase shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by targe-
tAddress and length is invalid, i.e. not aligned t0 MemEraseSectorSize Or
exceeds the configured area. |

[SWS_MemAcc_00056]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDetect, the ser-

vice MemAcc_Erase shall raise the development error MEMACC_E_BUSY if a previous
MemAcc job for the same addressAreald is still being processed. |

AUTSSAR

8.3.2.5 MemAcc_Compare

[SWS_MemAcc_10026] Definition of API function MemAcc_Compare
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_ 14039

[

Service Name

MemAcc_Compare

Syntax Std_ReturnType MemAcc_Compare (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType sourceAddress,
const MemAcc_DataTypex dataPtr,
MemAcc_LengthType length
)
Service ID [hex] 0x0c
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
sourceAddress Compare address in logical address space.
dataPtr Pointer to user data which shall be compared to data in memory.
length Compare length in bytes.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description

Triggers a job to compare the passed data to the memory content of the provided address area.
The job terminates, if all bytes matched or a difference was detected. The result of this service
can be retrieved using the MemAcc_GetJobResult() API. If the compare operation determined
a mismatch, the result code is MEMACC_INCONSISTENT.

Available via

MemAcc.h

]

[SWS_MemAcc_00057]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Compare shall check that the MemAcc module has been initialized. If this
check fails, MemAcc_Compare shall raise the development error MEMACC_E_UNINIT. |

[SWS_MemAcc_00058]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Compare shall check that the provided addressAreaId is consistent with
the configuration. If this check fails, MemAcc_Compare shall raise the development
error MEMACC_E_PARAM_ADDRESS_AREA_ID.]

AUTSSAR

[SWS_MemAcc_00059]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Compare shall raise the development error MEMACC_E_PARAM_POINTER if
the dataPtr argument is a NULL pointer. |

[SWS_MemAcc_00060]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDe-
tect, the service MemAcc_Compare shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by sourcead-
dress and length is invalid, i.e. not aligned to MemMinReadSize. |

[SWS_MemAcc_00061]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_Compare shall raise the development error MEMACC_FE_BUSY if a previous
MemAcc job for the same addressAreald is still being processed. |

[SWS_MemAcc_00114]
Upstream requirements: SRS_MemHwAb_14040

[If the compare operation determined a mismatch, the result code returned by the
MemAcc_GetJobResult service shall be set to MEMACC_INCONSISTENT, otherwise
MemAcc_GetJobResult shall return MEMACC_OK. |

8.3.2.6 MemAcc_BlankCheck

[SWS_MemAcc_10027] Definition of API function MemAcc_BlankCheck
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039

Service Name MemAcc_BlankCheck
Shﬂnax Std_ReturnType MemAcc_BlankCheck (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType targetAddress,
MemAcc_LengthType length
)
Service ID [hex] 0x0d
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
targetAddress Blank check address in logical address space.
length Blank check length in bytes.

\Y

AUTSSAR

A

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has been rejected by the module.

Description Checks if the passed address space is blank, i.e. erased and writeable. The result of this
service can be retrieved using the MemAcc_GetJobResult API. If the address area defined by
targetAddress and length is blank, the result is MEMACC_OK, otherwise the result is
MEMACC_INCONSISTENT.

Available via MemAcc.h

]

[SWS_MemAcc_00062]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_BlankCheck shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_BlankCheck shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00063]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_BlankCheck shall check that the provided addressArealId is consistent
with the configuration. If this check fails, MemAcc_BlankCheck shall raise the devel-
opment error MEMACC_E_PARAM_ADDRESS_AREA_ID. |

[SWS_MemAcc_00064]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDe-
tect, the service MemAcc_BlankCheck shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by sourcead-
dress and length is invalid, i.e. not aligned to MemWritePageSize. |

[SWS_MemAcc_00065]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled by MemAccDevErrorDetect, the service

MemAcc_BlankCheck shall raise the development error MEMACC_E_BUSY if a previ-
ous MemAcc job for the same addressArealId is still being processed. |

AUTSSAR

8.3.2.7 MemAcc_HwSpecificService

[SWS_MemAcc_10028] Definition of API function MemAcc_HwSpecificService
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039, SRS_MemHwAb_-

[

14056

Service Name

MemAcc_HwSpecificService

Syntax

Std_ReturnType MemAcc_HwSpecificService (
MemAcc_AddressArealdType addressAreald,
MemAcc_HwIdType hwId,
MemAcc_MemHwServiceIdType hwServiceld,
MemAcc_DataTypex dataPtr,
MemAcc_MemLengthType* lengthPtr

)

Service ID [hex]

0x0e

Sync/Async

Asynchronous

Reentrancy

Reentrant

Parameters (in)

addressAreald

Numeric identifier of address area.

hwid

Unique numeric memory driver identifier.

hwServiceld Hardware specific service request identifier for dispatching the
request.

Parameters (inout) dataPtr Data pointer pointing to the job buffer. Value can be NULL_PTR,
if not needed. If dataPtr is used by the hardware specific service,
the pointer must be valid until the job completed.

lengthPtr Size pointer of the data passed by dataPtr. Can be NULL_PTR if
dataPtr is also NULL_PTR.

Parameters (out) None

Return value

Std_ReturnType

E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description

Triggers a hardware specific job request referenced by hwServiceld. Service specific data can
be passed/retrieved by dataPtr.

The result of this service can be retrieved using the MemAcc_GetJobResult API. If the
hardware specific operation was successful, the result of the job is MEMACC_OK. If the
hardware specific operation failed, the result of the job is MEMACC_FAILED.

Available via

MemAcc.h

]

[SWS_MemAcc_00066]

Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_HwSpecificService shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_HwSpecificService shall raise the development
error MEMACC_E_UNINIT. |

[SWS_MemAcc_00067]

Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_HwSpecificService shall check that the provided addressAreald
is consistent with the configuration. If this check fails, MemAcc_HwSpecificService
shall raise the development error MEMACC_FE_PARAM_ADDRESS_AREA_ID.|

AUTSSAR

[SWS_MemAcc_00068]

Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the
service MemAcc_HwSpecificService shall raise the development error

MEMACC_E_PARAM_HW_1D if the Mem driver hardware identification given by
hwId is invalid or not assigned to the passed addressAreald.|

[SWS_MemAcc_00070]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_HwSpecificService shall raise the development error MEMACC_E_BUSY if
a previous MemAcc job for the same addressAreald is still being processed. |

8.3.2.8 MemAcc_RequestLock

[SWS_MemAcc_10030] Definition of API function MemAcc_RequestLock
Upstream requirements: SRS_MemHwAb_14038, SRS_MemHwAb_14039, SRS_MemHwAb_-

14055
Service Name MemAcc_RequestLock
Syntax Std_ReturnType MemAcc_RequestLock (
MemAcc_AddressArealdType addressAreald,
MemAcc_AddressType address,
MemAcc_LengthType length,
MemAcc_ApplicationLockNotificationType lockNotificationFctPtr
)
Service ID [hex] 0x11
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
address Logical start address of the address area to identify the Mem
driver to be locked.
length Length of the address area to identify the Mem driver to be
locked.
lockNotificationFctPtr Pointer to the callback function to be notified once the address
area lock was successfully acquired.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has been rejected by the module
Description Request lock of an address area for exclusive access. Once the lock is granted, the referenced
lock notification function is called by MemAcc.
Available via MemAcc.h

AUTSSAR

[SWS_MemAcc_00115]
Upstream requirements: SRS_MemHwAb_14038

[MemAcc_RequestLock shall lock all memory accesses of the Mem driver referenced
by the addressAreald, address and length parameter.

If an upper layer calls a MemAcc service function for an address area which is locked
for direct memory access, MemAcc shall still accept the memory access request for
the address area but shall not forward the access request to the corresponding Mem
driver until the lock request is released by the MemAcc_ReleaseLock service. |

[SWS MemAcc 00116]
Upstream requirements: SRS_MemHwAb_ 14055

[MemAcc shall wait until the address area referenced by addressAreaId is idle be-
fore it calls the lock notification function referenced by lockNotificationFctPtr
to notify the upper layer module that the lock of the address area was successfully
acquired. |

[SWS_MemAcc_00099]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled by MemAccDevErrorDetect, the ser-
vice MemAcc_RequestLock shall check that the MemAcc module has been initial-
ized. If this check fails, MemAcc_RequestLock shall raise the development error
MEMACC_E_UNINIT. |

[SWS_MemAcc_00071]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect, the service
MemAcc_RequestLock shall check that the provided addressAreaId is consistent
with the configuration. If this check fails, MemAcc_RequestLock shall raise the devel-
opment error MEMACC_E_PARAM_ADDRESS_AREA_ID. |

[SWS_MemAcc_00072]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect,
the service MemAcc_RequestLock shall raise the development error
MEMACC_E_PARAM_POINTER if the lockNotificationFctPtr argument is a
NULL pointer. |

[SWS_MemAcc_00073]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled by MemAccDevErrorDetect,
the service MemAcc_RequestLock shall raise the development error
MEMACC_E_PARAM_ADDRESS_LENGTH if the address range defined by address and
length is invalid, i.e. not mapped to a specific Mem driver. |

AUTSSAR

8.4 Callback Notifications

MemAcc does not provide any call-back notification functions.

8.5 Scheduled Functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

8.5.1 MemAcc_MainFunction

[SWS MemAcc_10017] Definition of scheduled function MemAcc_MainFunction
Upstream requirements: SRS_MemHwAb_ 14047

Service Name MemAcc_MainFunction
Syntax void MemAcc_MainFunction (
void
)
Service ID [hex] 0x03
Description Service to handle the requested jobs and the internal management operations. Depending on
the configuration MemAcc will call the Mem driver main functions.
Available via SchM_MemAcc.h

[SWS_MemAcc_00084]
Upstream requirements: SRS_MemHwAb_14047

[If MemInvocation (see [ECUC_Mem_00025]) is setto INDIRECT_DYNAMIC Of IN-
DIRECT_STATIC, MemAcc shall call all Mem main functions within MemAcc_Main-
Function.

MemAcc_MainFunction shall only call the Mem main function if there is a job request
pending for the corresponding Mem driver. |

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This section defines all interfaces, which are required to fulfill the core functionality of
the module.

AUTSSAR

[SWS_MemAcc_10036] Definition of mandatory interfaces required by module

MemAcc

Upstream requirements: SRS_BSW_00415

API Function

Header File

Description

Mem_BlankCheck

Mem.h

Triggers a job to check the erased state of the page
which is referenced by targetAddress. The result of
this service can be retrieved using the Mem_GetJob
Result API. If the checked page is blank, the result
of the job is MEM_JOB_OK. Otherwise, if the page
is not blank, the resultis MEM_INCONSISTENT.

Mem_Delnit

Mem.h

De-initialize module. If there is still an access job
pending, it is immediately terminated (using
hardware cancel operation) and the Mem driver
module state is set to unitialized. Therefore, Mem
must be re-initialized before it will accept any new
job requests after this service is processed.

Mem_Erase

Mem.h

Triggers an erase job of the given sector/sector
batch defined by targetAddress and length. The
result of this service can be retrieved using the
Mem_GetJobResult API. If the erase operation was
successful, the result of the job is MEM_JOB_OK. If
the erase operation failed, e.g. due to a hardware
issue, the result of the job is MEM_JOB_FAILED.

Mem_GetJobResult

Mem.h

Service to return results of the most recent job.

Mem_HwSpecificService

Mem.h

Triggers a hardware specific memory driver job.
dataPtr can be used to pass and return data to/from
this service. This service is just a dispatcher to the
hardware specific service implementation
referenced by hwServiceld. The result of this
service can be retrieved using the Mem_GetJob
Result APL. If the hardware specific operation was
successful, the result of the job is MEM_JOB_OK. If
the hardware specific operation failed, the result of
the job is MEM_JOB_FAILED.

Mem_Init

Mem.h

Initialization function - initializes all variables and
sets the module state to initialized.

Mem_MainFunction

SchM_Mem.h

Service to handle the requested jobs and the
internal management operations.

Mem_PropagateError

Mem.h

This service can be used to report an access error
in case the Mem driver cannot provide the access
error information - typically for ECC faults. It is
called by the system ECC handler to propagate an
ECC error to the memory upper layers..

Mem_Read

Mem.h

Triggers a read job to copy the from the source
address into the referenced destination data buffer.
The result of this service can be retrieved using the
Mem_GetJobResult APL. If the read operation was
successful, the result of the job is MEM_JOB_OK. If
the read operation failed, the result of the job is
either MEM_JOB_FAILED in case of a general error
or MEM_ECC_CORRECTED/MEM_ECC_
UNCORRECTED in case of a correctable/
uncorrectable ECC error.

Mem_Resume

Mem.h

Resume suspended memory operation using
hardware mechanism.

Mem_Suspend

Mem.h

Suspend active memory operation using hardware
mechanism.

AUTSSAR

API Function Header File Description

Mem_Write Mem.h Triggers a write job to store the passed data to the
provided address area with given address and
length. The result of this service can be retrieved
using the Mem_GetJobResult API. If the write
operation was successful, the job result is MEM_
JOB_OK. If there was an issue writing the data, the
result is MEM_FAILED.

8.6.2 Optional Interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_MemAcc_10035] Definition of optional interfaces requested by module
MemAcc

Upstream requirements: SRS_BSW_00415

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

AUTSSAR

8.6.3.1 <AddressAreadJobEndNotification>

[SWS_MemAcc_10029] Definition of configurable interface <AddressAreadob
EndNotification>

Upstream requirements: SRS_MemHwAb_ 14041

[

Service Name <AddressAreaJobEndNotification>
Syntax void <AddressAreaJobEndNotification> (
MemAcc_AddressArealdType addressAreald,
MemAcc_JobResultType JjobResult
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) addressAreald Numeric identifier of address area.
jobResult Result of the last MemAcc operation.
Parameters (inout) None
Parameters (out) None
Return value None
Description MemAcc application job end notification callback. The function name is configurable.
Available via configurable

8.7 Service Interfaces

The MemAcc module does not provide any service interfaces.

AUTSSAR

9 Sequence Diagrams

9.1 Job Handling with Result Polling

«module» «module» «module»
:SchM :MemAcc ‘Mem
Upper Layer
| T T T
| ! ! !
I ' | I
| MemAcc_Erase() | |
| |
| |
MemAcc_Erase() 1
I I
I I
! | | |
! 1 | |
- T T T
loop Result Polling) | | |
| | |
| T T
| loop Sector | 1
: 1 MemAcc_MainFunction() | :
| |
| Mem_Erase() |
|
I
| Mem_Erase()
| <-—-———— === === ===
| T
| Mem_MainFunction() I
I
|
| Mem_MainFunction()
1 Km———— T m——— = —
| L
: Mem_GetJobResult() !
|
: Mem_GetJobResult()
| MemAcc_MainFunction() bkt
e - m s T]
|
| T
I |
| !
|
|
|

M emAcc_'GetJobStatus()

1
MemAcc_GetJobStatus()

_____________ IO

MemAcc_GetJobResult()
t

|
|
MemAcc:.GetJobResult()

Figure 9.1: Job Handling with Result Polling

AUTSSAR

9.2 Job Handling with Job End Notification

«module» «module» «module»
:SchM :MemAcc :Mem
Upper Layer
! T T T
! 1 1 1
I ' 1 1
| MemAcc_Erase() | |
| |
| |
MemAcc_Erase() 1
STTTTTTTTTTTTaTTTTTTTTTTTTTTT 1
I I
| 1 1 1
I ! ! !
: loop Sector / 1 1
I I
! 1 1 1
| 1 . . 1 1
| | MemAcc_MainFunction() | 1
| 1
: Mem_Erase() |
|
|
| e __ Mem Erase) ___ _ __ |
|
: Mem_MainFunction() :
I
I
1 Mem_MainFunction()
| <-——————F === ————-
| T
| Mem_GetJobResult() |
I
|
| Mem_GetJobResult()
| MemAcc_MainFunction() S — === === == ===
| Ke——— === —— == — -
| - L |
! | | |
| 1 1 1
! + + +
: 1 1 1
| <UpperLayer>_JobEndNotification() : :
| |
'
<UpperLayer>_JobEndNotification() :
| |
| |
I 1 1 1
Figure 9.2: Job Handling with Job End Notification
- ™ - -
9.3 Mem Driver Initialization by MemAcc
«module» «module» «module»
:EcuM :MemAcc :Mem
T T T
| | |
! MemAcc_Init() ! :
Mem_30_PFIs_Init() |
Mem_30_PFls_Init()
< ____________________
Mem_30_DFls_Init() :
e Mem_30_DFlIs_Init()
MemAcc_lnit) | [T T T T T T T T T T T T T T T
e —————— T ————— o

Figure 9.3: Mem Driver Initialization by MemAcc

cm

AUTSSAR

9.4 Mem Driver Initialization by EcuM

«module» «module» «module»
:EcuM :MemAcc :Mem

I
Mem_30_PFIs_Init()
T

|
Mem_30_PFIs_Init
K e = = - = _0 ___________________
! L
Mem_30_DFIs Init() !
]
1
Mem_30_DFIs_Init()
R e e e e P P L PP

MemAcc_Init()

»
>
MemAcc_Init()
¢<_ ______________________ “

Figure 9.4: Mem Driver initialization by EcuM

—————

AUTSSAR

9.5 Mem Driver Scheduling by MemAcc

«module» «module» «module»
:SchM :MemAcc :Mem

Upper Layer

'
MemAcc_Erase()
|

|
MemAcc_Erase()

loop Result Polling)
MemAcc_MainFunction()
|
|
I
I
1 loop Sector
! /
| Mem_Erase()
I
I
| A Mem Erase0__ ___ __ |
| L
: Mem_MainFunction() !
|
|
Mem_MainFunction()
| - ———mm S m S e Y e — 1
I T
| Mem_GetJobResult() |
|
I
| Mem_GetJobResult()
| S e
| T
| |
! 1
| !
! |
|
| MemAcc_MainFunction() :
| imininiee ikt I
! T T I
! 1 1 1
: MemAcc_GetJobStatus() ! :
| |
MemAcc:GetJobStatus() :
I
I
|
|
I
I
|

oy
|
|
]
|
|

Figure 9.5: Mem Driver Scheduling by MemAcc

AUTSSAR

9.6 Mem Driver Scheduling by SchM

«module» «module» «module»
:SchM :MemAcc :Mem
Upper Layer
! T T T
! 1 1 1
| ' 1 1
| MemAcc_Erase() | |
| |
| |
MemAcc_Erase() 1
I I
I I
! 1 1 1
! | | |
- T T T
loop Result Polling) : :
loop Sector J 1 1
! 1 1
| | MemAcc_MainFunction() | |
| |
| Mem_Erase() |
|
|
! Mem_Erase()
| MemAcc_MainFunction() K- —— ===
[O EEE e e L
| L |
! 1 1 1
| | 1 . . |
| | Mem_MainFunction() |
! 1
! |
| Mem_MainFunction()
| Ke—————————————= e — - —
| L 1 L
| 1 1 1
! | MemAcc_MainFunction() | |
! > 1
| Mem_GetJobResult() |
|
|
| Mem_GetJobResult()
| MemAcc_MainFunction() et
! Kme——— ===
! L
| 1 1
| 1 1
| | |
| T T
| | 1
| MemAcc_GetJobStatus() - |
L

I
MemAcc_GetJobStatus()

Figure 9.6: Mem Driver Scheduling by SchM

e R

AUTSSAR

9.7 Generic Lock Sequence

X

Upper Layer

«module»
:MemAcc

T
|
MemAcc_RequestLock() :

<____

<ApplicationLockNotification>() U

MemAcc_ReleasetLock()

<____

»
L
MemAcc_ReleasetLock() U

Figure 9.7: Example Lock/Unlock Sequence

AUTSSAR

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification chapter 10.1 describes fundamentals. It
also specifies a template (table) you shall use for the parameter specification. We
intend to leave chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MemAcc.

Chapter 10.3 specifies published information of the module MemAcc.

10.1 How to Read this Chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and Configuration Parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe chapter 7 and chapter 8.

AUTSSAR

10.2.1 MemAcc

MemAcc: EcucModuleDef MemAccGeneral:
upperMultiplicity = 1 EcucParamConfContainerDef MeméchFeltinl::nctiorI;Pfriod:
lowerMultiplicity = 0 lowerMultiplicity = 1 feclicEoatiaramulel
upperMultiplicity = 1 o +parameter min = 0.0001
max = INF
Mo E s lowerMultiplicity = 1
emAccDevErorDetect: i
_— upperMultiplicity = 1
‘+parameter| EcucBooleanParamDef B [
lowerMultiplicity = 1
upperMultiplicity = 1
MemAccCompareApi:
+parameter EcucBooleanParamDef
+container > ——
' defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1
MemAcc64BitSupport:
EcucBooleanParamDef
+parameter defaultvValue = false
‘ lowerMultiplicity = 1
upperMultiplicity = 1
MemAccPublicCddHeaderFile:
+parameter EcucStringParamDef
maxLength = 32
minLength = 1
lowerMultiplicity = 0
upperMultiplicity = *
. MemAccAddressAreaConfiguration: Mem:zﬁi;ggﬁ&f?&zﬁg;z?g;t'On:
+container EcucParamConfContainerDef +subContainer
——— lowerMultiplicity = 1
lowerMultiplicity = 1 NI
upperMultiplicity = 65535 upperMultiplicity = 65536

+destination

MemAccMSynchronizationSubAddressAreaRef:

MemAccSynchronizationGroupConfiguration:
+reference EcucReferenceDef

EcucParamConfContainerDef

>

lowerMultiplicity = 1

i lowerMultiplicity = 0
+container I upperMultiplicity = 65535

upperMultiplicity = 1

MemAccMSynchronizationGroupld:

+parameter
P EcucintegerParamDef
min =0
max = 65535

defaultvalue = 0
lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.1: MemAcc

[ECUC_MemAcc_00001] Definition of EcucModuleDef MemAcc |

Module Name MemAcc

Description The MemAcc module shall only coordinate conflicting resource accesses. The
access dependencies shall be configured based on MemAccSynchronization
GroupConfiguration. Note: Only relevant resource conflicts shall be coordinated
to prevent any performance impact.

Post-Build Variant Support false

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

AUTSSAR

Included Containers
Container Name Multiplicity Dependency

MemAccAddressAreaConfiguration | 1..65535 This container includes the configuration of AddressArea specific
parameters for the MemAcc module.

An AddressArea is a logical area of memory. Upper layers only
use logical addresses to access the address area. It is the job of
MemAcc to map between logical and physical addresses. An
AddressArea contains SubAddressAreas and each SubAddress
Area is part of a physically continuous memory area (sector

batch).
MemAccGeneral 1 General configuration parameters of the MemAcc.
MemAccSynchronizationGroup 0..1 This container represents one synchronization group. This
Configuration container references sub address areas with same

synchronization affiliation.

]

[ECUC_MemAcc_00002] Definition of EcucParamConfContainerDef MemAcc
General |

Container Name MemAccGeneral

Parent Container MemAcc

Description General configuration parameters of the MemAcc.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemAcc64BitSupport 1 [ECUC_MemAcc_00024]
MemAccCompareApi 1 [ECUC_MemAcc_00006]
MemAccDevErrorDetect 1 [ECUC_MemAcc_00005]
MemAccMainFunctionPeriod 1 [ECUC_MemAcc_00004]
MemAccPublicCddHeaderFile 0..* [ECUC_MemAcc_00028]

| No Included Containers

]

[ECUC_MemAcc_00024] Definition of EcucBooleanParamDef MemAcc64BitSup-
port |

Parameter Name MemAcc64BitSupport
Parent Container MemAccGeneral
Description If this option is selected, the address type shall be implemented in 64Bit.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

[ECUC_MemAcc_00006] Definition of EcucBooleanParamDef MemAccCompare

Api |
Parameter Name MemAccCompareApi
Parent Container MemAccGeneral

Description This parameter enables/disables the function MemAcc_Compare().
This function allows to compare data stored in a buffer with data stored in memory.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_MemAcc_00005] Definition of EcucBooleanParamDef MemAccDevError

Detect |
Parameter Name MemAccDevErrorDetect
Parent Container MemAccGeneral

Description Switches the development error detection and notification on or off.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_MemAcc_00004] Definition of EcucFloatParamDef MemAccMainFunction

Period |

Parameter Name MemAccMainFunctionPeriod

Parent Container MemAccGeneral

Description This value specifies the fixed call cycle for MemAcc_MainFunction().
Additionally, if a job is ongoing on a Mem, the underlying Mem_MainFunction will be
triggered directly by MemAcc at this fixed call cycle.
MemAcc does not depend on a fixed cycle time; in can be triggered at arbitrary rates.

Multiplicity 1

Type EcucFloatParamDef

V

AUTSSAR

A
Range [1E-4 .. INF] |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_MemAcc_00028] Definition of EcucStringParamDef MemAccPublicCdd
HeaderFile |

Parameter Name MemAccPublicCddHeaderFile

Parent Container MemAccGeneral

Description Defines header files for callback functions which shall be included in case of CDDs.
Range of characters is 1.. 32.

Multiplicity 0..”

Type EcucStringParamDef

Default value -
Length 1-32

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time —

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

AUTSSAR

10.2.2 MemAccAddressAreaConfiguration

MemAccAddressAreald:
MemAcc: EcucModuleDef EcucintegerParamDef
A F— MemAccAddressAreaPriority:
Apeilpifiiy = 1 min =0 EcuclntegerParamDef s
lowerMultiplicity = 0 max = 65535 —_—
defaultvValue =0 min =0
lowerMultiplicity = 1 max = 65535
+container +parameter upperMuItllemty =il defaultvalue = 0
symbolicNameValue = true lowerMultiplicity = 1
MemAccAddressAreaConfiguration: P upperMultiplicity = 1
EcucParamConfContainerDef >
lowerMultiplicity = 1 MemAccJobEndNotificationName: -
upperMultiplicity = 65535 +parameter EcucFunctionNameDef MemAccBufferAlignmentvalue:
EcucintegerParamDef
lowerMultiplicity = 1 :
upperMultiplicity = 1 min =0
max = 255
+parameter lowerMultiplicity = 1
® upperMultiplicity = 1
MemAccNumberOfSectors:
+subContainer EcuclntegerParamDef
MemAccSubAddressAreaConfiguration: min =1
EcucParamConfContainerDef +parameter max = 4294967295
defaultvalue = 1 i
lowerMultiplicity = 1 lowerMultiplicity = 1 MerTE\AcclL?glcaIPStanAgd;es_
upperMultiplicity = 65536 upperMultiplicity = 1 +parameter L=clciniegeraamue
> min =0
max = 18446744073709551615
MemAccSectorOffset: defaultvalue = 0
EcucintegerParamDef lowerMultiplicity = 1
upperMultiplicity = 1
+parameter -
max = 4294967295
defaultvalue = 0 MemAccNumberOfEraseRetries:
lowerMultiplicity = 1 EcuclntegerParamDef
upperMultiplicity = 1 R
pp plicity +parameter min =0
o max = 255
defaultValue =0
MemAccUseEraseBurst: lowerMultiplicity = 1
+parameter| EcucBooleanParambef upperMultiplicity = 1
defaultValue = false
lowerMultiplicity = 1 MemAccUseWriteBurst:
upperMultiplicity = 1 . EcucBooleanParamDef
+parameter
o defaultvalue = false
lowerMultiplicity = 1
upperMultiplicity = 1
MemAccNumberOfWriteRetries:
EcucintegerParamDef
+parameter min =0
o max = 255
defaultvValue =0
lowerMultiplicity = 1
upperMultiplicity = 1

MemSectorBatch:
EcucParamConfContainerDef

MemAccSectorBatchRef: +destination

+reference EcucReferenceDef

lowerMultiplicity = 1
upperMultiplicity = *

lowerMultiplicity = 1

upperMultiplicity = 1 (from Mem)

Figure 10.2: MemAccAddressAreaConfiguration

[ECUC_MemAcc_00010] Definition of EcucParamConfContainerDef MemAccAd-
dressAreaConfiguration |

AUTSSAR

Container Name MemAccAddressAreaConfiguration
Parent Container MemAcc
Description This container includes the configuration of AddressArea specific parameters for the

MemAcc module.

An AddressArea is a logical area of memory. Upper layers only use logical addresses
to access the address area. It is the job of MemAcc to map between logical and
physical addresses. An AddressArea contains SubAddressAreas and each Sub
AddressArea is part of a physically continuous memory area (sector batch).

Multiplicity 1..65535

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemAccAddressAreald 1 [ECUC_MemAcc_00011]
MemAccAddressAreaPriority 1 [ECUC_MemAcc_00012]
MemAccBufferAlignmentValue 1 [ECUC_MemAcc_00025]
MemAccJobEndNotificationName 1 [ECUC_MemAcc_00027]

Included Containers

Container Name Multiplicity Dependency
MemAccSubAddressArea 1..65536 This container includes the configuration parameters for a
Configuration physically continuous area of memory.

]

[ECUC_MemAcc_00011] Definition of EcuclntegerParamDef MemAccAddress
Areald |

Parameter Name MemAccAddressAreald
Parent Container MemAccAddressAreaConfiguration
Description This value specifies a unique identifier which is used to reference to an AddressArea.

This identifier is used as parameter for MemAcc jobs in order to distinguish between
several AddressAreas with the same logical addresses.

Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value 0
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_MemAcc_00012]
AreaPriority |

Definition of EcucintegerParamDef MemAccAddress

Parameter Name

MemAccAddressAreaPriority

Parent Container

MemAccAddressAreaConfiguration

Description This value specifies the priority of an AddressArea compared to other AddressAreas (0
= lowest priority, 65535 = highest priority).
For each AddressArea only one job can be processed at a time. MemAcc processes
the jobs priority based. In case a job with a higher priority is requested by an upper
layer, the lower priority jobs are suspended until the higher priority job is completed.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 65535

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc 00025]
AlignmentValue |

Definition of EcuclntegerParamDef MemAccBuffer

Parameter Name

MemAccBufferAlignmentValue

Parent Container

MemAccAddressAreaConfiguration

Description Buffer alignment value inherited by MemAcc upper layer modules. The value must be a
multiple of MinReadSize.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_MemAcc_00027]
NotificationName |

Definition of EcucFunctionNameDef MemAccJobEnd

Parameter Name MemAccJobEndNotificationName

Parent Container MemAccAddressAreaConfiguration

Description Job end notification function which is called after MemAcc job completion of the
corresponding address area. If this parameter is left empty, no job end notification is
triggered and the upper layer module needs to poll the job results.

Multiplicity 1

Type EcucFunctionNameDef

\Y

AUTSSAR

A
Default value -
Regular Expression -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -
Dependency

10.2.3 MemAccSubAddressAreaConfiguration

[ECUC_MemAcc_00013] Definition of EcucParamConfContainerDef MemAccSub
AddressAreaConfiguration |

Container Name MemAccSubAddressAreaConfiguration

Parent Container MemAccAddressAreaConfiguration

Description This container includes the configuration parameters for a physically continuous area of
memory.

Multiplicity 1..65536

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
MemAccLogicalStartAddress 1 [ECUC_MemAcc_00015]
MemAccNumberOfEraseRetries 1 [ECUC_MemAcc_00021]

MemAccNumberOfSectors
MemAccNumberOfWriteRetries

[ECUC_MemAcc_00014]
[ECUC_MemAcc_00020]

]
]

MemAccSectorOffset 1 [ECUC_MemAcc_00016]

MemAccUseEraseBurst 1 [ECUC_MemAcc_00018]

MemAccUseWriteBurst 1 [ECUC_MemAcc_00019]

MemAccSectorBatchRef 1 [ECUC_MemAcc_00023]

No Included Containers

AUTSSAR

[ECUC_MemAcc_00015]

StartAddress |

Definition of EcuclntegerParamDef MemAccLogical

Parameter Name

MemAccLogicalStartAddress

Parent Container

MemAccSubAddressAreaConfiguration

Description This value specifies the logical start address of the SubAddressArea.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc_00021] Definition of EcuclntegerParamDef MemAccNumberOf

EraseRetries |

Parameter Name

MemAccNumberOfEraseRetries

Parent Container

MemAccSubAddressAreaConfiguration

Description This value specifies the number of retries of a failed erase job.
0: No retry, a failed job will be aborted immediately
> 0: Retry the number of times before aborting the job.
Multiplicity 1
Type EcucintegerParamDef
Range 0..255
Default value 0
Post-Build Variant Multiplicity false
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc_00014] Definition of EcucintegerParambDef MemAccNumberOf

Sectors |

Parameter Name

MemAccNumberOfSectors

Parent Container

MemAccSubAddressAreaConfiguration

Description This value specifies the number of physical sectors of the SubAddressArea.
Multiplicity 1
Type EcuclntegerParamDef

V

AUTSSAR

A
Range 1.. 4294967295 |
Default value 1
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc_00020] Definition of EcucintegerParambDef MemAccNumberOf

WriteRetries |

Parameter Name

MemAccNumberOfWriteRetries

Parent Container

MemAccSubAddressAreaConfiguration

Description This value specifies the number of retries of a failed write job.
0: No retry, a failed job will be aborted immediately
> 0: Retry the number of times before aborting the job.
Multiplicity 1
Type EcuclntegerParamDef
Range 0..255
Default value 0
Post-Build Variant Multiplicity false
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc_00016] Definition of EcuclntegerParamDef MemAccSectorOfi-

set |

Parameter Name

MemAccSectorOffset

Parent Container

MemAccSubAddressAreaConfiguration

Description This value specifies the sector offset of the SubAddressArea in case the SubAddress
Area should not start with the first sector of the referenced MemSectorBatch.
Multiplicity 1
Type EcucintegerParamDef
Range 0 .. 4294967295
Default value 0
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

| Dependency

]

[ECUC_MemAcc_00018] Definition of EcucBooleanParamDef MemAccUseErase

Burst |

Parameter Name

MemAccUseEraseBurst

Parent Container

MemAccSubAddressAreaConfiguration

Description This parameter enables erase bursting for the related sub address area.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc_00019] Definition of EcucBooleanParamDef MemAccUseWrite

Burst |

Parameter Name

MemAccUseWriteBurst

Parent Container

MemAccSubAddressAreaConfiguration

Description This parameter enables write bursting for the related sub address area.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_MemAcc_00023] Definition of EcucReferenceDef MemAccSectorBatch

Ref |

Parameter Name

MemAccSectorBatchRef

Parent Container

MemAccSubAddressAreaConfiguration

Description Reference to MemSectorBatch mapped to the SubAddressArea.
Multiplicity 1
Type Reference to MemSectorBatch

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD

Dependency

10.2.4 MemAccSynchronizationGroupConfiguration

[ECUC_MemAcc_00029] Definition of EcucParamConfContainerDef MemAcc
SynchronizationGroupConfiguration |

Container Name MemAccSynchronizationGroupConfiguration

Parent Container MemAcc

Description This container represents one synchronization group. This container references sub
address areas with same synchronization affiliation.

Multiplicity 0..1

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
MemAccMSynchronizationGroupld 1 [ECUC_MemAcc_00030]
MemAccMSynchronizationSubAddressAreaRef 1..65535 [ECUC_MemAcc_00031]

| No Included Containers

]

[ECUC_MemAcc_00030] Definition of EcucintegerParamDef MemAccMSynchro-
nizationGroupld |

Parameter Name MemAccMSynchronizationGroupld

Parent Container MemAccSynchronizationGroupConfiguration

Description This value specifies an unique identifier which is used to reference to a synchronization
group. The value is used within MemAcc internally.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 65535

Default value 0

Post-Build Variant Multiplicity false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

| Dependency

]

[ECUC_MemAcc_00031] Definition of EcucReferenceDef MemAccMSynchroniza-
tionSubAddressAreaRef |

Parameter Name MemAccMSynchronizationSubAddressAreaRef

Parent Container MemAccSynchronizationGroupConfiguration

Description References to all SubAddressAreas relevant for this synchronization group.
Multiplicity 1..65535

Type Reference to MemAccSubAddressAreaConfiguration

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

none

A.1.2 Changed Specification Items in R25-11

Number Heading

E)%COZJ%_MemACC_ Definition of EcucFunctionNameDef MemAccJobEndNotificationName
[SWS_MemAcc_

00085]

Table A.1: Changed Specification Items in R25-11

A.1.3 Deleted Specification ltems in R25-11

none

A.2 Traceable item history of this document according to
AUTOSAR Release R24-11

A.2.1 Added Specification Iltems in R24-11

[ECUC_MemAcc_00029] [ECUC_MemAcc _00030] [ECUC_MemAcc_00031] [SWS_-
MemAcc_91021] [SWS_MemAcc_91022]

A.2.2 Changed Specification Items in R24-11

[ECUC_MemAcc_00001] [ECUC_MemAcc_00004] [ECUC_MemAcc_00020]
[ECUC_MemAcc _00021] [SWS_MemAcc 00007] [SWS_MemAcc 00025] [SWS
MemAcc _00064] [SWS_MemAcc 00084] [SWS_MemAcc 00085] [SWS_MemAcc
00111] [SWS_MemAcc 00121] [SWS_MemAcc 00122] [SWS_MemAcc_10002]
[SWS_MemAcc _10010] [SWS_MemAcc 10012] [SWS_MemAcc 10014] [SWS_
MemAcc_10017] [SWS_MemAcc_10023] [SWS_MemAcc_10024] [SWS_MemAcc
10025] [SWS_MemAcc_10026] [SWS_MemAcc_10027] [SWS_MemAcc_10028]
[SWS_MemAcc 10029] [SWS_MemAcc 10030] [SWS_MemAcc 10031] [SWS
MemAcc_10034] [SWS_MemAcc_10036] [SWS_MemAcc_10039] [SWS_MemAcc_

AUTSSAR

91003] [SWS_MemAcc 91004] [SWS_MemAcc 91005] [SWS_MemAcc 91007]
[SWS_MemAcc _91008] [SWS_MemAcc _91009] [SWS_MemAcc_91010]

A.2.3 Deleted Specification ltems in R24-11

[ECUC_MemAcc_00007] [ECUC_MemAcc _00017] [ECUC_MemAcc_00026] [SWS_-
MemAcc_10032]

A.3 Traceable item history of this document according to
AUTOSAR Release R23-11

A.3.1 Added Specification Iltems in R23-11
[SWS_MemAcc_00125] [SWS_MemAcc_00126] [SWS_MemAcc_00127]

A.3.2 Changed Specification Items in R23-11

[SWS_MemAcc_00003] [SWS_MemAcc_00004] [SWS_MemAcc _00021] [SWS_
MemAcc_00037] [SWS_MemAcc_00042] [SWS_MemAcc_00046] [SWS_MemAcc_
00060] [SWS_MemAcc 00064] [SWS_MemAcc 00101] [SWS_MemAcc 00105]
[SWS_MemAcc 00106] [SWS_MemAcc 00107] [SWS_MemAcc 00108] [SWS_
MemAcc_00109] [SWS_MemAcc 00112] [SWS_MemAcc 00114] [SWS_MemAcc_
00120] [SWS_MemAcc 10012] [SWS_MemAcc 10013] [SWS_MemAcc 10022]
[SWS_MemAcc _10023] [SWS_MemAcc_10024] [SWS_MemAcc 10026] [SWS_
MemAcc_10027] [SWS_MemAcc_10028] [SWS_MemAcc_10037] [SWS_MemAcc_
10039] [SWS_MemAcc _91016]

A.3.3 Deleted Specification Items in R23-11

none

AUTSSAR

B Not applicable requirements

No content.

	1 Introduction and Functional Overview
	1.1 Supported Use-Cases

	2 Acronyms and Abbreviations
	2.1 Physical Segmentation

	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Related Specification

	4 Constraints and Assumptions
	4.1 Limitations
	4.1.1 General Limitations
	4.1.2 Memory Mapped Access

	4.2 Applicability to Car Domains

	5 Dependencies to Other Modules
	6 Requirements Tracing
	7 Functional Specification
	7.1 Overview
	7.2 Key Aspects
	7.3 Functional Elements
	7.3.1 Memory Address Translation
	7.3.1.1 Memory Mapping Constraints

	7.3.2 Memory Access Coordination
	7.3.3 Job Management
	7.3.4 Job Processing
	7.3.4.1 Job Status
	7.3.4.2 Job Result

	7.3.5 Hardware Specific Services
	7.3.6 Performance Optimization
	7.3.7 Generic Locking Mechanism
	7.3.8 Dynamic Memory Driver Handling
	7.3.8.1 Dynamic Memory Driver Activation
	7.3.8.2 Service Invocation

	7.4 Module Handling
	7.4.1 Initialization
	7.4.2 Scheduling

	7.5 General Design Rules
	7.5.1 Retry Mechanism
	7.5.2 Address Alignment
	7.5.3 64-Bit Support

	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Production Errors
	7.6.4 Extended Production Errors

	8 API Specification
	8.1 Imported Types
	8.2 Type Definitions
	8.2.1 MemAcc_AddressAreaIdType
	8.2.2 MemAcc_AddressType
	8.2.3 MemAcc_ConfigType
	8.2.4 MemAcc_DataType
	8.2.5 MemAcc_JobResultType
	8.2.6 MemAcc_JobStatusType
	8.2.7 MemAcc_JobType
	8.2.8 MemAcc_LengthType
	8.2.9 MemAcc_MemoryInfoType
	8.2.10 MemAcc_JobInfoType
	8.2.11 MemAcc_HwIdType
	8.2.12 MemAcc_MemBinaryHeaderType
	8.2.13 MemAcc_MemAddressType
	8.2.14 MemAcc_MemConfigType
	8.2.15 MemAcc_MemDataType
	8.2.16 MemAcc_MemInstanceIdType
	8.2.17 MemAcc_MemJobResultType
	8.2.18 MemAcc_MemLengthType
	8.2.19 MemAcc_MemHwServiceIdType
	8.2.20 MemAcc_MemInitFuncType
	8.2.21 MemAcc_MemDeInitFuncType
	8.2.22 MemAcc_MemGetJobResultFuncType
	8.2.23 MemAcc_MemSuspendFuncType
	8.2.24 MemAcc_MemResumeFuncType
	8.2.25 MemAcc_MemPropagateErrorFuncType
	8.2.26 MemAcc_MemReadFuncType
	8.2.27 MemAcc_MemWriteFuncType
	8.2.28 MemAcc_MemEraseFuncType
	8.2.29 MemAcc_MemBlankCheckFuncType
	8.2.30 MemAcc_MemHwSpecificServiceFuncType
	8.2.31 MemAcc_MemMainFuncType
	8.2.32 MemAcc_ApplicationLockNotificationType
	8.2.33 Extension of Std_ReturnType

	8.3 Function Definitions
	8.3.1 Synchronous Functions
	8.3.1.1 MemAcc_Init
	8.3.1.2 MemAcc_DeInit
	8.3.1.3 MemAcc_GetVersionInfo
	8.3.1.4 MemAcc_GetJobResult
	8.3.1.5 MemAcc_GetJobStatus
	8.3.1.6 MemAcc_GetMemoryInfo
	8.3.1.7 MemAcc_GetProcessedLength
	8.3.1.8 MemAcc_GetJobInfo
	8.3.1.9 MemAcc_ActivateMem
	8.3.1.10 MemAcc_DeactivateMem
	8.3.1.11 MemAcc_ReleaseLock

	8.3.2 Asynchronous Functions
	8.3.2.1 MemAcc_Cancel
	8.3.2.2 MemAcc_Read
	8.3.2.3 MemAcc_Write
	8.3.2.4 MemAcc_Erase
	8.3.2.5 MemAcc_Compare
	8.3.2.6 MemAcc_BlankCheck
	8.3.2.7 MemAcc_HwSpecificService
	8.3.2.8 MemAcc_RequestLock

	8.4 Callback Notifications
	8.5 Scheduled Functions
	8.5.1 MemAcc_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces
	8.6.3.1 <AddressAreaJobEndNotification>

	8.7 Service Interfaces

	9 Sequence Diagrams
	9.1 Job Handling with Result Polling
	9.2 Job Handling with Job End Notification
	9.3 Mem Driver Initialization by MemAcc
	9.4 Mem Driver Initialization by EcuM
	9.5 Mem Driver Scheduling by MemAcc
	9.6 Mem Driver Scheduling by SchM
	9.7 Generic Lock Sequence

	10 Configuration Specification
	10.1 How to Read this Chapter
	10.2 Containers and Configuration Parameters
	10.2.1 MemAcc
	10.2.2 MemAccAddressAreaConfiguration
	10.2.3 MemAccSubAddressAreaConfiguration
	10.2.4 MemAccSynchronizationGroupConfiguration

	10.3 Published Information

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

	A.3 Traceable item history of this document according to AUTOSAR Release R23-11
	A.3.1 Added Specification Items in R23-11
	A.3.2 Changed Specification Items in R23-11
	A.3.3 Deleted Specification Items in R23-11

	B Not applicable requirements

