
Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

Document Title Specification of Memory
Abstraction Interface

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 285

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Editorial changes

2024-11-27 R24-11
AUTOSAR
Release
Management

• Editorial changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Updated SWS_MemIf_00047

• Removed Obsolete status of SWS_
MemIf_00065

• Editorial changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• Changed SWS_MemIf_00999 to SWS_
MemIf_NA_00999

2021-11-25 R21-11
AUTOSAR
Release
Management

• Improve the structure of the ’error
sections’

• Cleanup diagrams in chapter 10

2020-11-30 R20-11
AUTOSAR
Release
Management

• Chapter "7.1 Error classification" was
reshaped

2019-11-28 R19-11
AUTOSAR
Release
Management

• Configuration layout added

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

▽

1 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

△

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Updated tracing information

• Editorial changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Block result MEMIF_BLOCK_
INCONSISTENT extended to blocks
which can’t be foundError classification
reworked

• Links to requirements added

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Requirements linked to features, general
and module specific requirements

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Editorial changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Timing requirement removed from

• module’s main function

• "const" qualifier added to prototype of
function Fee_Write

• New configuration parameter
FeeMainFunctionPeriod

• Editorial changes

• Removed chapter(s) on change
documentation

2013-03-15 4.1.1 AUTOSAR
Administration

• Reworked according to the new SWS_
BSWGeneral

• Scope attribute in tables in chapter 10
added

• Changes in file include structure
(clean-up)

• Requirement IDs for type definitions
added

2011-12-22 4.0.3 AUTOSAR
Administration

• Module short name changed

• Consistency checking reformulated
▽

2 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

△

2010-09-30 3.1.5 AUTOSAR
Administration

• Check for NULL pointer added

• Inter module checks detailed

2010-02-02 3.1.4 AUTOSAR
Administration

• Description of return values extended

• File include structure changed

• Variant requirement description added

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• File include structure updated

• Return types of various APIs adapted

• Ranges of configuration parameters
adjusted

• Legal disclaimer revised

• Release Notes added

• "Advice for users" revised

• "Revision Information" added

2006-05-16 2.0.0 AUTOSAR
Administration

• Initial Release

3 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 8

3 Related documentation 9

3.1 Input documents & related standards and norms 9
3.2 Related specification . 9

4 Constraints and assumptions 10

4.1 Limitations . 10
4.2 Applicability to car domains . 10

5 Dependencies to other modules 11

6 Requirements Tracing 12

7 Functional specification 14

7.1 Error Classification . 14
7.1.1 Development Errors . 14
7.1.2 Runtime Errors . 14
7.1.3 Production Errors . 14
7.1.4 Extended Production Errors . 14

8 API specification 15

8.1 Imported types . 15
8.1.1 Standard types . 15

8.2 Type definitions . 15
8.2.1 MemIf_StatusType . 15
8.2.2 MemIf_JobResultType . 16

8.3 Function definitions . 16
8.3.1 MemIf_Read . 18
8.3.2 MemIf_Write . 19
8.3.3 MemIf_Cancel . 20
8.3.4 MemIf_GetStatus . 20
8.3.5 MemIf_GetJobResult . 21
8.3.6 MemIf_InvalidateBlock . 22
8.3.7 MemIf_GetVersionInfo . 22
8.3.8 MemIf_EraseImmediateBlock . 23

8.4 Callback notifications . 23
8.5 Scheduled functions . 23
8.6 Expected interfaces . 23

8.6.1 Mandatory Interfaces . 23
8.6.2 Optional Interfaces . 24

5 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

8.6.3 Configurable interfaces . 24

9 Sequence diagrams 25

10 Configuration specification 26

10.1Containers and configuration parameters 26
10.1.1 MemIf . 26
10.1.2 MemIfGeneral . 26

A Change history of AUTOSAR traceable items 29

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . 29

A.1.1 Added Specification Items in R25-11 29
A.1.2 Changed Specification Items in R25-11 29
A.1.3 Deleted Specification Items in R25-11 29

B Not applicable requirements 30

6 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

1 Introduction and functional overview

This specification describes the functionality, API and configuration of the AUTOSAR
Basic Software Module "Memory Abstraction Interface" (MemIf). This module allows
the [1] NVRAM manager to access several memory abstraction modules (FEE or EA
modules) (see Figure 1.1).

MemHwA

MemServices

Hardware

«module»

MemIf

«module»

Ea

«module»

Fee

«module»

NvM

«Peripheral»

Flash Memory

«Peripheral»

EEPROM

MemAcc

Mem

«module»

Mem_Fls

«module»

Mem_Eep

«module»

MemAcc

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 1.1: Module overview of memory hardware abstraction layer

The Memory Abstraction Interface (MemIf) shall abstract from the number of underlying
[2] FEE or [3] EA modules and provide upper layers with a virtual segmentation on a
uniform linear address space.

7 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the MemIf module
that are not included in the [4, AUTOSAR glossary].

Abbreviation / Acronym: Description:

EA EEPROM Abstraction

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here it’s bit.

Mem AUTOSAR Basic Software Module Memory Driver

MemAcc AUTOSAR Basic Software Module Memory Access

MemIf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here it’s bit.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

Address area Contiguous memory area in the logical address space. Typically, multiple physical memory
sectors are combined to one logical address area.

Fast Mode E.g. during startup / shutdown the underlying driver may be switched into fast mode in
order to allow for fast reading / writing in those phases.
Note: Whether this is possible depends on the implementation of the driver and the
capabilities of the underlying device. Whether it is done depends on the configuration of the
NVRAM manager and thus on the needs of a specific project.

Slow Mode During normal operation the underlying driver may be used in slow mode in order to reduce
the resource usage in terms of runtime or blocking time of the underlying device /
communication media.
Note: Whether this is possible depends on the implementation of the driver and the
capabilities of the underlying device. Whether it is done depends on the configuration of the
NVRAM manager and thus on the needs of a specific project.

Vendor specific library A vendor specific library is an ICC-2 implementation of the FEE/FLS and EA/EEP modules
respectively. It provides the same upper layer interface (API) and functionality as the
corresponding ICC-3 implementation.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

8 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[2] Specification of Flash EEPROM Emulation
AUTOSAR_CP_SWS_FlashEEPROMEmulation

[3] Specification of EEPROM Abstraction
AUTOSAR_CP_SWS_EEPROMAbstraction

[4] Glossary
AUTOSAR_FO_TR_Glossary

[5] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[6] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_CP_RS_MemoryHWAbstractionLayer

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [5, SWS BSW
General], which is also valid for Memory Abstraction Interface.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Memory Abstraction Interface.

9 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

10 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

5 Dependencies to other modules

No content.

11 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

6 Requirements Tracing

The following tables reference the requirements specified in [6, SRS SPALGeneral],
[7, SRS BSWGeneral], [8, SRS MemoryHWAbstraction] and links to the fulfillment of
these. Please note that if column ”Satisfied by” is empty for a specific requirement this
means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_MemIf_00022]

[SRS_BSW_00327] Error values naming convention [SWS_MemIf_00006]

[SRS_BSW_00337] Classification of development errors [SWS_MemIf_00006]

[SRS_BSW_00369] All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_MemIf_00024]

[SRS_BSW_00384] The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_MemIf_00047]

[SRS_BSW_00385] List possible error notifications [SWS_MemIf_00048]

[SRS_BSW_00386] The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_MemIf_00006] [SWS_MemIf_00023]

[SRS_BSW_00392] Parameters shall have a type [SWS_MemIf_00037] [SWS_MemIf_00064]
[SWS_MemIf_00065]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_MemIf_00045]

[SRS_MemHwAb_
14010]

The FEE and EA modules shall
provide a write service that operates
only on complete configured logical
blocks

[SWS_MemIf_00040]

[SRS_MemHwAb_
14019]

The Memory Abstraction Interface
shall provide uniform access to the
API services of the underlying
memory abstraction modules

[SWS_MemIf_00017]

[SRS_MemHwAb_
14020]

The Memory Abstraction Interface
shall allow the selection of an
underlying memory abstraction
module by using a device index

[SWS_MemIf_00011] [SWS_MemIf_00018]
[SWS_MemIf_00035]

[SRS_MemHwAb_
14021]

The Memory Abstraction Interface
shall allow the pre-compile time
configuration of the number of
underlying memory abstraction
modules

[SWS_MemIf_00018] [SWS_MemIf_00019]
[SWS_MemIf_00020] [SWS_MemIf_00022]

[SRS_MemHwAb_
14022]

The Memory Abstraction Interface
shall preserve the functionality of the
underlying memory abstraction
module

[SWS_MemIf_00010] [SWS_MemIf_00017]
[SWS_MemIf_00039] [SWS_MemIf_00040]
[SWS_MemIf_00041] [SWS_MemIf_00042]
[SWS_MemIf_00043] [SWS_MemIf_00044]
[SWS_MemIf_00046]

[SRS_MemHwAb_
14023]

The Memory Abstraction Interface
shall only check those parameters
that are used within the interface itself

[SWS_MemIf_00022]

▽

12 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_MemHwAb_
14028]

The FEE and EA modules shall
provide a service to invalidate a
logical block

[SWS_MemIf_00044]

[SRS_MemHwAb_
14029]

The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical block

[SWS_MemIf_00039]

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_MemIf_00041]

[SRS_MemHwAb_
14032]

The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

[SWS_MemIf_00046]

[SRS_SPAL_12078] The drivers shall be coded in a way
that is most efficient in terms of
memory and runtime resources

[SWS_MemIf_00019] [SWS_MemIf_00020]

[SRS_SPAL_12448] All driver modules shall have a
specific behavior after a development
error detection

[SWS_MemIf_00023]

Table 6.1: Requirements Tracing

13 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

7 Functional specification

7.1 Error Classification

Chapter [5, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

[SWS_MemIf_00006] Definition of development errors in module MemIf
Upstream requirements: SRS_BSW_00337, SRS_BSW_00386, SRS_BSW_00327

⌈
Type of error Related error code Error value

API service called with wrong device index
parameter

MEMIF_E_PARAM_DEVICE 0x01

API service called with NULL pointer argument MEMIF_E_PARAM_POINTER 0x02

⌋

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

14 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

8 API specification

8.1 Imported types

8.1.1 Standard types

In this chapter, all types included from the following modules are listed:

[SWS_MemIf_00037] Definition of imported datatypes of module MemIf
Upstream requirements: SRS_BSW_00392

⌈
Module Header File Imported Type

Std_Types.h Std_ReturnTypeStd

Std_Types.h Std_VersionInfoType

⌋

8.2 Type definitions

[SWS_MemIf_00010]
Upstream requirements: SRS_MemHwAb_14022

⌈The types specified in this chapter shall not be changed or extended for a specific
memory abstraction module or hardware platform.⌋

[SWS_MemIf_00011]
Upstream requirements: SRS_MemHwAb_14020

⌈The data type for the memory device index shall be uint8. The lowest value to be used
for this device index shall be 0. The allowed range of indices thus shall be 0..MEMIF_
NUMBER_OF_DEVICES-1.⌋

8.2.1 MemIf_StatusType

[SWS_MemIf_00064] Definition of datatype MemIf_StatusType
Upstream requirements: SRS_BSW_00392

⌈
Name MemIf_StatusType

Kind Enumeration

Range MEMIF_UNINIT – The underlying abstraction module or device
driver has not been initialized (yet).

▽

15 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

△
MEMIF_IDLE – The underlying abstraction module or device

driver is currently idle.

MEMIF_BUSY – The underlying abstraction module or device
driver is currently busy.

MEMIF_BUSY_INTERNAL – The underlying abstraction module is busy
with internal management operations. The
underlying device driver can be busy or idle.

Description Denotes the current status of the underlying abstraction module and device drive.

Available via MemIf.h

⌋

8.2.2 MemIf_JobResultType

[SWS_MemIf_00065] Definition of datatype MemIf_JobResultType
Upstream requirements: SRS_BSW_00392

⌈
Name MemIf_JobResultType

Kind Enumeration

MEMIF_JOB_OK – The job has been finished successfully.

MEMIF_JOB_FAILED – The job has not been finished successfully.

MEMIF_JOB_PENDING – The job has not yet been finished.

MEMIF_JOB_CANCELED – The job has been canceled.

MEMIF_BLOCK_
INCONSISTENT

– 1. The requested block is inconsistent, it may
contain corrupted data. 2. Block is NOT
found.

Range

MEMIF_BLOCK_INVALID – The requested block has been marked as
invalid, the requested operation can not be
performed.

Description Denotes the result of the last job.

Available via MemIf.h

⌋

8.3 Function definitions

[SWS_MemIf_00017]
Upstream requirements: SRS_MemHwAb_14019, SRS_MemHwAb_14022

⌈The API specified in this chapter shall be mapped to the API of the underlying memory
abstraction modules. For functional behavior refer to the specification of those modules
respectively to that of the underlying memory drivers.⌋

16 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

[SWS_MemIf_00018]
Upstream requirements: SRS_MemHwAb_14020, SRS_MemHwAb_14021

⌈The parameter DeviceIndex shall be used for selection of memory abstraction mod-
ules (and thus memory devices). If only one memory abstraction module is configured,
the parameter DeviceIndex shall be ignored.⌋

[SWS_MemIf_00019]
Upstream requirements: SRS_SPAL_12078, SRS_MemHwAb_14021

⌈If only one memory abstraction module is configured, the Memory Abstraction In-
terface shall be implemented as a set of macros mapping the Memory Abstraction
Interface API to the API of the corresponding memory abstraction module.⌋

Example:

#define MemIf_Write(DeviceIndex, BlockNumber, DataPtr) \
Fee_Write(BlockNumber, DataPtr)

[SWS_MemIf_00020]
Upstream requirements: SRS_SPAL_12078, SRS_MemHwAb_14021

⌈If more than one memory abstraction module is configured, the Memory Abstraction
Interface shall use efficient mechanisms to map the API calls to the appropriate mem-
ory abstraction module.⌋

Note: One solution is to use tables of pointers to functions where the parameter De-
viceIndex is used as array index.

Example:

#define MemIf_Write(DeviceIndex, BlockNumber, DataPtr) \
MemIf_WriteFctPtr[DeviceIndex](BlockNumber,DataPtr)

Note: The service IDs given in this interface specification are related to the service IDs
of the underlying memory abstraction module(s). For that reason, they may not start
with 0.

[SWS_MemIf_00022]
Upstream requirements: SRS_BSW_00323, SRS_MemHwAb_14021, SRS_MemHwAb_14023

⌈If more than one memory abstraction module is configured and development error
detection is enabled for this module, the functions of the Memory Abstraction Inter-
face API shall check the parameter DeviceIndex for being an existing device or the
broadcast identifier within the module’s services.⌋

17 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

[SWS_MemIf_00023]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448

⌈The functions of the Memory Abstraction Interface API shall report detected errors
attributed to an illegal parameter DeviceIndex to the Default Error Tracer (DET)
with the error code MEMIF_E_PARAM_DEVICE and the called service shall not be exe-
cuted.⌋

[SWS_MemIf_00024]
Upstream requirements: SRS_BSW_00369

⌈If a called function of the Memory Abstraction Interface API has detected an error
attributed to an illegal parameter DeviceIndex and has a return value, it shall be set
as follows:

MemIf_GetStatus: MEMIF_UNINIT

MemIf_GetJobResult: MEMIF_JOB_FAILED

All other functions: E_NOT_OK⌋

8.3.1 MemIf_Read

[SWS_MemIf_00039] Definition of API function MemIf_Read
Upstream requirements: SRS_MemHwAb_14029, SRS_MemHwAb_14022

⌈
Service Name MemIf_Read

Syntax Std_ReturnType MemIf_Read (
uint16 DeviceIndex,
uint16 BlockNumber,
uint16 BlockOffset,
uint8* DataBufferPtr,
uint16 Length

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Non Reentrant

DeviceIndex –

BlockNumber –

BlockOffset –

Parameters (in)

Length –

Parameters (inout) None

Parameters (out) DataBufferPtr –

Return value Std_ReturnType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_MemIf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the
underlying module.

▽

18 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

△
Description Invokes the "Read" function of the underlying memory abstraction module selected by the

parameter DeviceIndex.

Available via MemIf.h

⌋

8.3.2 MemIf_Write

[SWS_MemIf_00040] Definition of API function MemIf_Write
Upstream requirements: SRS_MemHwAb_14010, SRS_MemHwAb_14022

⌈
Service Name MemIf_Write

Syntax Std_ReturnType MemIf_Write (
uint16 DeviceIndex,
uint16 BlockNumber,
const uint8* DataBufferPtr

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

DeviceIndex –

BlockNumber –
Parameters (in)

DataBufferPtr –

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_MemIf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the
underlying module.

Description Invokes the "Write" function of the underlying memory abstraction module selected by the
parameter DeviceIndex.

Available via MemIf.h

⌋

19 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

8.3.3 MemIf_Cancel

[SWS_MemIf_00041] Definition of API function MemIf_Cancel
Upstream requirements: SRS_MemHwAb_14031, SRS_MemHwAb_14022

⌈
Service Name MemIf_Cancel

Syntax void MemIf_Cancel (
uint16 DeviceIndex

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) DeviceIndex –

Parameters (inout) None

Parameters (out) None

Return value None

Description Invokes the "Cancel" function of the underlying memory abstraction module selected by the
parameter DeviceIndex.

Available via MemIf.h

⌋

8.3.4 MemIf_GetStatus

[SWS_MemIf_00042] Definition of API function MemIf_GetStatus
Upstream requirements: SRS_MemHwAb_14022

⌈
Service Name MemIf_GetStatus

Syntax MemIf_StatusType MemIf_GetStatus (
uint16 DeviceIndex

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) DeviceIndex –

Parameters (inout) None

Parameters (out) None

Return value MemIf_StatusType –

Description Invokes the "GetStatus" function of the underlying memory abstraction module selected by the
parameter DeviceIndex.

Available via MemIf.h

⌋

20 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

[SWS_MemIf_00035]
Upstream requirements: SRS_MemHwAb_14020

⌈If the function MemIf_GetStatus is called with the device index denoting a broadcast
to all configured devices (MEMIF_BROADCAST_ID), the Memory Abstraction Interface
module shall call the "GetStatus" functions of all underlying devices in turn. It shall
return the value

• MEMIF_IDLE - if all underlying devices have returned this state

• MEMIF_UNINIT - if at least one device returned this state, all other returned
states shall be ignored

• MEMIF_BUSY - if at least one configured device returned this state and no other
device returned MEMIF_UNINIT

• MEMIF_BUSY_INTERNAL - if at least one configured device returned this state
and no other device returned MEMIF_BUSY or MEMIF_UNINIT

⌋

Note: The special "broadcast" device ID in the call to MemIf_GetStatus is used to
query whether all devices are idle in order to shut down the ECU.

8.3.5 MemIf_GetJobResult

[SWS_MemIf_00043] Definition of API function MemIf_GetJobResult
Upstream requirements: SRS_MemHwAb_14022

⌈
Service Name MemIf_GetJobResult

Syntax MemIf_JobResultType MemIf_GetJobResult (
uint16 DeviceIndex

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) DeviceIndex –

Parameters (inout) None

Parameters (out) None

Return value MemIf_JobResultType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_MemIf_00022] the function shall return
MEMIF_JOB_FAILED else it shall return the value of the called
function of the underlying module.

Description Invokes the "GetJobResult" function of the underlying memory abstraction module selected by
the parameter DeviceIndex.

Available via MemIf.h

⌋

21 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

8.3.6 MemIf_InvalidateBlock

[SWS_MemIf_00044] Definition of API function MemIf_InvalidateBlock
Upstream requirements: SRS_MemHwAb_14028, SRS_MemHwAb_14022

⌈
Service Name MemIf_InvalidateBlock

Syntax Std_ReturnType MemIf_InvalidateBlock (
uint16 DeviceIndex,
uint16 BlockNumber

)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Non Reentrant

DeviceIndex –Parameters (in)
BlockNumber –

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_MemIf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the
underlying module.

Description Invokes the "InvalidateBlock" function of the underlying memory abstraction module selected by
the parameter DeviceIndex.

Available via MemIf.h

⌋

8.3.7 MemIf_GetVersionInfo

[SWS_MemIf_00045] Definition of API function MemIf_GetVersionInfo
Upstream requirements: SRS_BSW_00407

⌈
Service Name MemIf_GetVersionInfo

Syntax void MemIf_GetVersionInfo (
Std_VersionInfoType* VersionInfoPtr

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfoPtr Pointer to standard version information structure.

Return value None

Description Returns version information.

Available via MemIf.h

⌋

22 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

8.3.8 MemIf_EraseImmediateBlock

[SWS_MemIf_00046] Definition of API function MemIf_EraseImmediateBlock
Upstream requirements: SRS_MemHwAb_14032, SRS_MemHwAb_14022

⌈
Service Name MemIf_EraseImmediateBlock

Syntax Std_ReturnType MemIf_EraseImmediateBlock (
uint16 DeviceIndex,
uint16 BlockNumber

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Non Reentrant

DeviceIndex –Parameters (in)
BlockNumber –

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_MemIf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the
underlying module.

Description Invokes the "EraseImmediateBlock" function of the underlying memory abstraction module
selected by the parameter DeviceIndex.

Available via MemIf.h

⌋

8.4 Callback notifications

None, the NVRAM manager shall provide the callback routines for the underlying mem-
ory abstraction modules.

8.5 Scheduled functions

None, there are no asynchronous functions in this module.

8.6 Expected interfaces

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

23 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

[SWS_MemIf_00047] Definition of mandatory interfaces required by module Mem
If

Upstream requirements: SRS_BSW_00384

⌈
API Function Header File Description

Ea_EraseImmediateBlock Ea.h Erases the block BlockNumber.

Ea_GetStatus Ea.h Service to return the Status.

Ea_InvalidateBlock Ea.h Invalidates the block BlockNumber.

Fee_EraseImmediateBlock Fee.h Service to erase a logical block.

Fee_GetStatus Fee.h Service to return the status.

Fee_InvalidateBlock Fee.h Service to invalidate a logical block.

⌋

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_MemIf_00048] Definition of optional interfaces requested by module Mem
If

Upstream requirements: SRS_BSW_00385

⌈
API Function Header File Description

Det_ReportError Det.h Service to report development errors.

⌋

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kind of inter-
faces is not fixed because they are configurable.

There are no configurable interfaces for this module.

24 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

9 Sequence diagrams

Refer to the specifications of the memory abstraction modules.

25 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meaning
of the parameters are described in Chapter 7 and Chapter 8.

10.1.1 MemIf

[ECUC_MemIf_00025] Definition of EcucModuleDef MemIf ⌈

Module Name MemIf

Description Configuration of the MemIf (Memory Abstraction Interface) module.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

MemIfGeneral 1 Configuration of the memory abstraction interface (Memif)
module.

⌋

MemIf: EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

MemIfDevErrorDetect: EcucBooleanParamDef

defaultValue = false

MemIfVersionInfoApi: EcucBooleanParamDef

defaultValue = false

MemIfNumberOfDevices: EcucIntegerParamDef

max = 2

min = 1

MemIfGeneral:

EcucParamConfContainerDef

+container

+parameter

+parameter

+parameter

Figure 10.1: Configuration of the MemIf

10.1.2 MemIfGeneral

[ECUC_MemIf_00034] Definition of EcucParamConfContainerDef MemIfGeneral
⌈

26 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

Container Name MemIfGeneral

Parent Container MemIf

Description Configuration of the memory abstraction interface (Memif) module.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MemIfDevErrorDetect 1 [ECUC_MemIf_00035]

MemIfNumberOfDevices 1 [ECUC_MemIf_00033]

MemIfVersionInfoApi 1 [ECUC_MemIf_00032]

No Included Containers

⌋

[ECUC_MemIf_00035] Definition of EcucBooleanParamDef MemIfDevErrorDetect
⌈

Parameter Name MemIfDevErrorDetect

Parent Container MemIfGeneral

Description Switches the development error detection and notification on or off.
• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_MemIf_00033] Definition of EcucIntegerParamDef MemIfNumberOfDe-
vices ⌈

Parameter Name MemIfNumberOfDevices

Parent Container MemIfGeneral

Description Concrete number of underlying memory abstraction modules.
Calculation Formula: Count number of configured EA and FEE modules.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 2

Default value –

Post-Build Variant Value false

Pre-compile time X All VariantsValue Configuration Class

Link time –
▽

27 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

△
Post-build time –

Dependency

⌋

[ECUC_MemIf_00032] Definition of EcucBooleanParamDef MemIfVersionInfoApi
⌈

Parameter Name MemIfVersionInfoApi

Parent Container MemIfGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

28 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

none

A.1.2 Changed Specification Items in R25-11

none

A.1.3 Deleted Specification Items in R25-11

none

29 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

Specification of Memory Abstraction Interface
AUTOSAR CP R25-11

B Not applicable requirements

[SWS_MemIf_NA_00999]
Upstream requirements: SRS_BSW_00404, SRS_BSW_00101, SRS_BSW_00159, SRS_BSW_

00168, SRS_BSW_00170, SRS_BSW_00330, SRS_BSW_00336,
SRS_BSW_00339, SRS_BSW_00343, SRS_BSW_00375, SRS_BSW_
00380, SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400,
SRS_BSW_00405, SRS_BSW_00406, SRS_BSW_00416, SRS_BSW_
00417, SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00424,
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_
00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433,
SRS_SPAL_00157, SRS_SPAL_12056, SRS_SPAL_12057, SRS_
SPAL_12063, SRS_SPAL_12064, SRS_SPAL_12067, SRS_SPAL_
12068, SRS_SPAL_12069, SRS_SPAL_12075, SRS_SPAL_12077,
SRS_SPAL_12092, SRS_SPAL_12125, SRS_SPAL_12129, SRS_
SPAL_12163, SRS_SPAL_12263, SRS_SPAL_12265, SRS_SPAL_
12267, SRS_SPAL_12461, SRS_SPAL_12462, SRS_SPAL_12463

⌈These requirements are not applicable to this specification.⌋

30 of 30 Document ID 285: AUTOSAR_CP_SWS_MemoryAbstractionInterface

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.1.1 Standard types

	8.2 Type definitions
	8.2.1 MemIf_StatusType
	8.2.2 MemIf_JobResultType

	8.3 Function definitions
	8.3.1 MemIf_Read
	8.3.2 MemIf_Write
	8.3.3 MemIf_Cancel
	8.3.4 MemIf_GetStatus
	8.3.5 MemIf_GetJobResult
	8.3.6 MemIf_InvalidateBlock
	8.3.7 MemIf_GetVersionInfo
	8.3.8 MemIf_EraseImmediateBlock

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 MemIf
	10.1.2 MemIfGeneral

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	B Not applicable requirements

