AUTSSAR

. ificati
Document Title Spec |c§1t|on of Memory
Abstraction Interface
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 285
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
» Updated SWS_Memlf_00047
2023-11-23 R23-11 QELSE:R * Removed Obsolete status of SWS_
o) Memlf_00065
Management
« Editorial changes
AUTOSAR
2022-11-24 | R22-11 | Release . ﬁg?:ﬁeﬂ ivggg;\g)emlf_ooggg to SWS_
Management - =
AUTOSAR * Improve the structure of the ’error
2021-11-25 | R21-11 | Release sections’
Management « Cleanup diagrams in chapter 10
AUTOSAR " e
2020-11-30 R20-11 Release Chapter "7.1 Error classification" was
M reshaped
anagement
AUTOSAR » Configuration layout added
2019-11-28 | R19-11 | Release - Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes

Management

AUTSSAR

AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
AUTOSAR « Updated tracing information
2016-11-30 | 4.3.0 Release
Management « Editorial changes
* Block result MEMIF_BLOCK _
AUTOSAR INCONSISTENT extended to blocks
2015-07-31 400 Release which can’t be foundError classification
Management reworked
* Links to requirements added
5014-10-31 491 QEILSSGAR » Requirements linked to features, general
014-10- e Management and module specific requirements
AUTOSAR
2014-03-31 41.3 Release « Editorial changes
Management
« Timing requirement removed from
* module’s main function
* "const" qualifier added to prototype of
AUTOSAR function Fee_Write
2013-10-31 | 4.1.2 ll?/lelease * New configuration parameter
anagement FeeMainFunctionPeriod
« Editorial changes
* Removed chapter(s) on change
documentation
» Reworked according to the new SWS_
BSWGeneral
* Scope attribute in tables in chapter 10
added
20130315 | 4.1.1 ATOSAR
ministration « Changes in file include structure
(clean-up)
* Requirement IDs for type definitions
added
* Module short name changed
2011-12-22 | 4.0.3 AUTOSAR

Administration

* Consistency checking reformulated

AUTSSAR

» Check for NULL pointer added

2010-09-30 | 3.1.5 Q;JTQSAR .
ministration « Inter module checks detailed
* Description of return values extended
AUTOSAR * File include structure changed
2010-02-02 | 3.1.4 o :
Administration « Variant requirement description added
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTQ.SAR . * Legal disclaimer revised
Administration
* File include structure updated
* Return types of various APIs adapted
* Ranges of configuration parameters
AUTOSAR adjusted
2007-12-21 | 3.0.1 Administration « Legal disclaimer revised
* Release Notes added
* "Advice for users" revised
* "Revision Information" added
2006-05-16 | 2.0.0 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 7
Acronyms and Abbreviations 8
Related documentation 9
3.1 Input documents & related standardsandnorms 9
3.2 Related specification 9
Constraints and assumptions 10
4.1 Limitations e 10
4.2 Applicability to cardomains L. 10
Dependencies to other modules 11
Requirements Tracing 12
Functional specification 14
7.1 Error Classification, 14
7.1.1 DevelopmentErrors 14
71.2 RuntimeErrors 14
7.1.3 ProductionErrors 14
7.1.4 Extended ProductionErrors 14
API specification 15
8.1 Importedtypes 15
8.1.1 Standardtypes e 15
8.2 Typedefinitions 15
8.2.1 Memlf_StatusType L 15
8.2.2 Memlf_JobResultType 16
8.3 Functiondefinitions 16
831 Memlf Read 18
8.3.2 Memlf Writeo 19
8.3.3 Memlf Cancel 20
8.3.4 Memlf GetStatus 20
8.3.5 Memlf GetJobResult 21
8.3.6 Memlf InvalidateBlock 22
8.3.7 Memlf GetVersionInfo 22
8.3.8 Memlf EraselmmediateBlock 23
8.4 Callback notifications 23
8.5 Scheduled functions 23
8.6 Expectedinterfaces 23
8.6.1 Mandatory Interfaces 23

8.6.2 Optional Interfaces, 24

AUTSSAR

8.6.3 Configurable interfaces
9 Sequence diagrams

10 Configuration specification

10.1Containers and configuration parameters .
101AMemlIfo
10.1.2 MemlfGeneral

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release

R25-11
A.1.1 Added Specification ltems in R25-11 .
A.1.2 Changed Specification Items in R25-11
A.1.3 Deleted Specification ltems in R25-11

B Not applicable requirements

25

26

26
26
26

29

29
29
29
29

30

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and configuration of the AUTOSAR
Basic Software Module "Memory Abstraction Interface" (Memlf). This module allows

the [1] NVRAM manager to access several memory abstraction modules (FEE or EA
modules) (see Figure 1.1).

MemServices
«module» E
NvM
O
T
|
[
|
«use»
MemHwA !
v
«module» gl
Fe===== Memlf — F———- T
| |
«Ufe» «uiae»
v v
«module» gl «module» gl
Fee Ea
| |
1 1
! !
L J
«use» | | «use»
MemAcc | |
V V
«module» E
MemAcc
I I
! !
________ | - __ .
Mem | «wuse» «use» |
V V
«module» E «module» E
Mem_Fls Mem_Eep
T T
| |

[[
|
A y
«Peripheral» «Peripheral»
Flash Memory EEPROM

Figure 1.1: Module overview of memory hardware abstraction layer

The Memory Abstraction Interface (Memlf) shall abstract from the number of underlying
[2] FEE or [3] EA modules and provide upper layers with a virtual segmentation on a
uniform linear address space.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Memlf module
that are not included in the [4, AUTOSAR glossary].

Abbreviation / Acronym: Description:

EA EEPROM Abstraction

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)
FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here it’s bit.
Mem AUTOSAR Basic Software Module Memory Driver

MemAcc AUTOSAR Basic Software Module Memory Access

Memlf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here it’s bit.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

Address area Contiguous memory area in the logical address space. Typically, multiple physical memory

sectors are combined to one logical address area.

Fast Mode E.g. during startup / shutdown the underlying driver may be switched into fast mode in
order to allow for fast reading / writing in those phases.

Note: Whether this is possible depends on the implementation of the driver and the
capabilities of the underlying device. Whether it is done depends on the configuration of the
NVRAM manager and thus on the needs of a specific project.

Slow Mode During normal operation the underlying driver may be used in slow mode in order to reduce
the resource usage in terms of runtime or blocking time of the underlying device /
communication media.

Note: Whether this is possible depends on the implementation of the driver and the
capabilities of the underlying device. Whether it is done depends on the configuration of the
NVRAM manager and thus on the needs of a specific project.

Vendor specific library A vendor specific library is an ICC-2 implementation of the FEE/FLS and EA/EEP modules
respectively. It provides the same upper layer interface (API) and functionality as the
corresponding ICC-3 implementation.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[2] Specification of Flash EEPROM Emulation
AUTOSAR_CP_SWS_FlashEEPROMEmulation

[3] Specification of EEPROM Abstraction
AUTOSAR_CP_SWS EEPROMADbstraction

[4] Glossary
AUTOSAR_FO_TR_Glossary

[5] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[6] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_CP_RS_MemoryHWADbstractionLayer

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [5, SWS BSW
General], which is also valid for Memory Abstraction Interface.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Memory Abstraction Interface.

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

No content.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [6, SRS SPALGeneral],
[7, SRS BSWGeneral], [8, SRS MemoryHWAbstraction] and links to the fulfillment of
these. Please note that if column "Satisfied by” is empty for a specific requirement this

means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Memlf 00022]

[SRS_BSW_00327]

Error values naming convention

[SWS_Memlf_00006]

[SRS_BSW_00337]

Classification of development errors

[SWS_Memlf_00006]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Memlf_00024]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_Memlf_00047]

[SRS_BSW_00385]

List possible error notifications

[SWS_Memlf_00048]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Memlf_00006] [SWS_Memlf_00023]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_Memlf_00037] [SWS_Memlf_00064]
[SWS_Memlf_00065]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Memlf_00045]

[SRS_MemHwAb_
14010]

The FEE and EA modules shall
provide a write service that operates
only on complete configured logical
blocks

[SWS_Memlf_00040]

[SRS_MemHwAb__
14019]

The Memory Abstraction Interface
shall provide uniform access to the
API services of the underlying
memory abstraction modules

[SWS_Memlf_00017]

[SRS_MemHwAb_
14020]

The Memory Abstraction Interface
shall allow the selection of an
underlying memory abstraction
module by using a device index

[SWS_Memlf_00011] [SWS_Memlf_00018]
[SWS_Memlf_00035]

[SRS_MemHwAb_
14021]

The Memory Abstraction Interface
shall allow the pre-compile time
configuration of the number of
underlying memory abstraction
modules

[SWS_Memlf_00018] [SWS_Memlf_00019]
[SWS_Memlf_00020] [SWS_Memlf_00022]

[SRS_MemHwAb_
14022]

The Memory Abstraction Interface
shall preserve the functionality of the
underlying memory abstraction
module

[SWS_Memlf_00010] [SWS_Memlf 00017]
[SWS_Memlf_00039] [SWS_Memlf_00040]
[SWS_Memlf_00041] [SWS_Memlf_00042]
[SWS_Memlf_00043] [SWS_Memlf_00044]
[SWS_Memlf_00046]

[SRS_MemHwAb_
14023]

The Memory Abstraction Interface
shall only check those parameters
that are used within the interface itself

[SWS_Memlf_00022]

vV

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_MemHwAb_
14028]

The FEE and EA modules shall
provide a service to invalidate a
logical block

[SWS_Memlf_00044]

[SRS_MemHwAb_
14029]

The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical block

[SWS_Memlf_00039]

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_Memlf_00041]

[SRS_MemHwAb_
14032]

The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

[SWS_Memlf_00046]

[SRS_SPAL_12078]

The drivers shall be coded in a way
that is most efficient in terms of
memory and runtime resources

[SWS_Memlf_00019] [SWS_Memlf_00020]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_Memlf_00023]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Error Classification

Chapter [5, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

[SWS_Memif_00006] Definition of development errors in module Memlf
Upstream requirements: SRS_BSW_00337, SRS_BSW_00386, SRS_BSW_00327

Type of error Related error code Error value
API service called with wrong device index MEMIF_E_PARAM_DEVICE 0x01
parameter

API service called with NULL pointer argument MEMIF_E_PARAM_POINTER 0x02

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types
8.1.1 Standard types
In this chapter, all types included from the following modules are listed:

[SWS_Memif_00037] Definition of imported datatypes of module Memlf
Upstream requirements: SRS_BSW_00392

Module Header File Imported Type
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

[SWS_Memlf_00010]

Upstream requirements: SRS_MemHwAb_14022
[The types specified in this chapter shall not be changed or extended for a specific
memory abstraction module or hardware platform. |

[SWS_Memlif_00011]
Upstream requirements: SRS_MemHwAb_14020

[The data type for the memory device index shall be uint8. The lowest value to be used
for this device index shall be 0. The allowed range of indices thus shall be 0..MEMIF_
NUMBER_OF_DEVICES-1. |

8.2.1 Memlif_StatusType

[SWS_Memlif_00064] Definition of datatype Memlf_StatusType
Upstream requirements: SRS_BSW_00392

Name Memlf_StatusType

Kind Enumeration

Range MEMIF_UNINIT - The underlying abstraction module or device
driver has not been initialized (yet).

AUTSSAR

A
MEMIF_IDLE - The underlying abstraction module or device
driver is currently idle.
MEMIF_BUSY - The underlying abstraction module or device
driver is currently busy.
MEMIF_BUSY_INTERNAL - The underlying abstraction module is busy
with internal management operations. The
underlying device driver can be busy or idle.
Description Denotes the current status of the underlying abstraction module and device drive.
Available via Memlf.h

8.2.2 Memlf_JobResultType

[SWS_Memlf_00065] Definition of datatype Memlf_JobResultType
Upstream requirements: SRS_BSW_00392

Name Memlf_JobResultType
Kind Enumeration
Range MEMIF_JOB_OK The job has been finished successfully.

MEMIF_JOB_FAILED

The job has not been finished successfully.

MEMIF_JOB_PENDING

The job has not yet been finished.

MEMIF_JOB_CANCELED

The job has been canceled.

MEMIF_BLOCK
INCONSISTENT

1. The requested block is inconsistent, it may
contain corrupted data. 2. Block is NOT
found.

MEMIF_BLOCK_INVALID

The requested block has been marked as

invalid, the requested operation can not be
performed.

Description Denotes the result of the last job.

Available via Memlf.h

8.3 Function definitions

[SWS_Memlif_00017]
Upstream requirements: SRS_MemHwAb_ 14019, SRS_MemHwAb_ 14022
[The API specified in this chapter shall be mapped to the API of the underlying memory

abstraction modules. For functional behavior refer to the specification of those modules
respectively to that of the underlying memory drivers. |

AUTSSAR

[SWS_Memif_00018]
Upstream requirements: SRS_MemHwAb_14020, SRS_MemHwAb_14021
[The parameter DeviceIndex shall be used for selection of memory abstraction mod-

ules (and thus memory devices). If only one memory abstraction module is configured,
the parameter DeviceIndex shall be ignored. |

[SWS_Memif_00019]
Upstream requirements: SRS_SPAL_12078, SRS_MemHwAb_14021
[If only one memory abstraction module is configured, the Memory Abstraction In-

terface shall be implemented as a set of macros mapping the Memory Abstraction
Interface API to the API of the corresponding memory abstraction module. |

Example:

#define MemIf Write (DeviceIndex, BlockNumber, DataPtr) \
Fee_Write (BlockNumber, DataPtr)

[SWS_Memlif_00020]
Upstream requirements: SRS_SPAL_12078, SRS_MemHwAb_14021

[If more than one memory abstraction module is configured, the Memory Abstraction
Interface shall use efficient mechanisms to map the API calls to the appropriate mem-
ory abstraction module. |

Note: One solution is to use tables of pointers to functions where the parameter De-
viceIndex is used as array index.

Example:

#define MemIf_ Write (DevicelIndex, BlockNumber, DataPtr) \
MemIf_ WriteFctPtr[DevicelIndex] (BlockNumber,DataPtr)

Note: The service IDs given in this interface specification are related to the service IDs
of the underlying memory abstraction module(s). For that reason, they may not start
with 0.

[SWS_Memlf_00022]
Upstream requirements: SRS_BSW_00323, SRS_MemHwAb_ 14021, SRS_MemHwAb_14023

[If more than one memory abstraction module is configured and development error
detection is enabled for this module, the functions of the Memory Abstraction Inter-
face API shall check the parameter DeviceIndex for being an existing device or the
broadcast identifier within the module’s services. |

AUTSSAR

[SWS_Memlf_00023]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448

[The functions of the Memory Abstraction Interface API shall report detected errors
attributed to an illegal parameter DeviceIndex to the Default Error Tracer (DET)

with the error code MEMIF E_PARAM DEVICE and the called service shall not be exe-

cuted. |

[SWS_Memlif _00024]
Upstream requirements: SRS_BSW_00369

[If a called function of the Memory Abstraction Interface API has detected an error
attributed to an illegal parameter beviceIndex and has a return value, it shall be set

as follows:

Memlf GetStatus: MEMIF_UNINIT

Memlf GetJobResult: MEMIF_JOB_FAILED

All other functions: E_NOT_OK |

8.3.1 Memlf Read

[SWS_Memlif_00039] Definition of API function Memif_Read
Upstream requirements: SRS_MemHwAb_14029, SRS_MemHwAb_ 14022

[

Service Name

Memlf_Read

Syntax

Std_ReturnType MemIf_Read (
uint1l6 Devicelndex,
uintl6 BlockNumber,
uintl6 BlockOffset,
uint8+ DataBufferPtr,
uintl6é Length

)

Service ID [hex]

0x02

Sync/Async

Synchronous

Reentrancy

Non Reentrant

Parameters (in)

Devicelndex -

BlockNumber -

BlockOffset -
Length -
Parameters (inout) None
Parameters (out) DataBufferPtr -
Return value Std_ReturnType In case development error detection is enabled for the Memory

Abstraction Interface and a development error is detected
according to [SWS_Memlf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the
underlying module.

Y%

AUTSSAR

A

Description

Invokes the "Read" function of the underlying memory abstraction module selected by the
parameter Devicelndex.

Available via

Memlf.h

8.3.2 Memlf Write

[SWS_Memlif_00040] Definition of API function Memlif_Write
Upstream requirements: SRS _MemHwAb_ 14010, SRS_MemHwAb_ 14022

Service Name

Memlf_Write

SynnM' Std_ReturnType MemIf_Write (
uintl6 Devicelndex,
uintl6 BlockNumber,
const uint8x DataBufferPtr
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Devicelndex -
BlockNumber -
DataBufferPtr -
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType In case development error detection is enabled for the Memory

Abstraction Interface and a development error is detected
according to [SWS_Memlf_00022] the function shall return £_
NOT_OK else it shall return the value of the called function of the
underlying module.

Description

Invokes the "Write" function of the underlying memory abstraction module selected by the
parameter Devicelndex.

Available via

Memlf.h

AUTSSAR

8.3.3 Memlf_Cancel

[SWS_Memlif_00041] Definition of API function Memlif_Cancel
Upstream requirements: SRS_MemHwAb_14031, SRS_MemHwAb_ 14022

[

Service Name

Memlf_Cancel

Syntax void MemIf_Cancel (
uintl6 DeviceIndex
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Devicelndex -
Parameters (inout) None
Parameters (out) None
Return value None

Description

Invokes the "Cancel" function of the underlying memory abstraction module selected by the
parameter Devicelndex.

Available via

Memlf.h

8.3.4 Memlf_GetStatus

[SWS_Memlif_00042] Definition of API function Memlf_GetStatus
Upstream requirements: SRS_MemHwAb_14022

[

Service Name

Memlf_GetStatus

Syntax MemIf_ StatusType MemIf_GetStatus (
uintl6 DeviceIndex
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Devicelndex | -
Parameters (inout) None
Parameters (out) None

Return value

Memlf_StatusType ‘ -

Description

Invokes the "GetStatus" function of the underlying memory abstraction module selected by the
parameter Devicelndex.

Available via

Memlf.h

AUTSSAR

[SWS_Memif_00035]
Upstream requirements: SRS_MemHwAb_14020

[If the function MemlIf_GetStatus is called with the device index denoting a broadcast
to all configured devices (MEMIF_BROADCAST_1ID), the Memory Abstraction Interface
module shall call the "GetStatus" functions of all underlying devices in turn. It shall

return the value

* MEMIF_IDLE - if all underlying devices have returned this state

e MEMIF_UNINIT - if at least one device returned this state, all other returned

states shall be ignored

* MEMIF_BUSY - if at least one configured device returned this state and no other

device returned MEMIF_UNINIT

* MEMIF_BUSY_INTERNAL - if at least one configured device returned this state
and no other device returned MEMIF_BUSY Of MEMIF_UNINIT

]

Note: The special "broadcast” device ID in the call to Memlf GetStatus is used to

query whether all devices are idle in order to shut down the ECU.

8.3.5 Memlf GetJobResult

[SWS_Memlif_00043] Definition of API function Memif_GetJobResult
Upstream requirements: SRS_MemHwAb_ 14022

[

Service Name

Memlf_GetJobResult

Syntax MemIf_JobResultType MemIf_GetJobResult (
uintl6 DeviceIndex

)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Devicelndex -
Parameters (inout) None
Parameters (out) None
Return value Memlf_JobResultType In case development error detection is enabled for the Memory

Abstraction Interface and a development error is detected
according to [SWS_Memlf_00022] the function shall return
MEMIF_JOB_FAILED else it shall return the value of the called
function of the underlying module.

Description

Invokes the "GetJobResult" function of the underlying memory abstraction module selected by
the parameter Devicelndex.

Available via

Memlf.h

AUTSSAR

8.3.6 Memlf_InvalidateBlock

[SWS_Memlf_00044] Definition of API function Memlf_InvalidateBlock
Upstream requirements: SRS_MemHwAb_14028, SRS_MemHwAb_ 14022

Service Name

Memlf_InvalidateBlock

Syntax Std_ReturnType MemIf_InvalidateBlock (
uint1l6 Devicelndex,
uintl6 BlockNumber
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

Devicelndex -

BlockNumber -

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_Memlf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the

underlying module.

Description

Invokes the "InvalidateBlock" function of the underlying memory abstraction module selected by
the parameter Devicelndex.

Available via

Memlf.h

8.3.7 Memlif_GetVersioninfo

[SWS_Memif_00045] Definition of APl function Memlf_GetVersioninfo
Upstream requirements: SRS_BSW_00407

Service Name

Memlf_GetVersioninfo

Syntax void MemIf_GetVersionInfo (
Std_VersionInfoTypex VersionInfoPtr

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out)

VersionInfoPtr Pointer to standard version information structure.

Return value None
Description Returns version information.
Available via Memlf.h

AUTSSAR

8.3.8 Memlf_EraselmmediateBlock

[SWS_Memlf_00046] Definition of API function Memlf_EraselmmediateBlock
Upstream requirements: SRS_MemHwAb_14032, SRS_MemHwAb_ 14022

[

Service Name Memlf_EraselmmediateBlock
Syntax Std_ReturnType MemIf_EraseImmediateBlock (
uint1l6 Devicelndex,
uintl6 BlockNumber
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Devicelndex -
BlockNumber -
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType In case development error detection is enabled for the Memory
Abstraction Interface and a development error is detected
according to [SWS_Memlf_00022] the function shall return E_
NOT_OK else it shall return the value of the called function of the
underlying module.
Description Invokes the "EraselmmediateBlock" function of the underlying memory abstraction module
selected by the parameter Devicelndex.
Available via Memlf.h

8.4 Callback notifications

None, the NVRAM manager shall provide the callback routines for the underlying mem-
ory abstraction modules.

8.5 Scheduled functions

None, there are no asynchronous functions in this module.

8.6 Expected interfaces

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

AUTSSAR

[SWS_Memlif_00047] Definition of mandatory interfaces required by module Mem
If

Upstream requirements: SRS_BSW_00384

[
API Function Header File Description
Ea_EraselmmediateBlock Ea.h Erases the block BlockNumber.
Ea_GetStatus Ea.h Service to return the Status.
Ea_InvalidateBlock Ea.h Invalidates the block BlockNumber.
Fee_EraselmmediateBlock Fee.h Service to erase a logical block.
Fee_GetStatus Fee.h Service to return the status.
Fee_InvalidateBlock Fee.h Service to invalidate a logical block.

J

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Memif_00048] Definition of optional interfaces requested by module Mem
If

Upstream requirements: SRS_BSW_00385

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kind of inter-
faces is not fixed because they are configurable.

There are no configurable interfaces for this module.

AUTSSAR

9 Sequence diagrams

Refer to the specifications of the memory abstraction modules.

AUTSSAR

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meaning
of the parameters are described in Chapter 7 and Chapter 8.

10.1.1 Memlf

[ECUC_Memlf_00025] Definition of EcucModuleDef Memif |

Module Name Memlf

Description Configuration of the Memlf (Memory Abstraction Interface) module.
Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency
MemlfGeneral 1 Configuration of the memory abstraction interface (Memif)
module.
Memlf: EcucModuleDef MemlfGeneral: +parameter Mem|fDevEmorDetect: EcucBooleanParamDef
EcucParamConfContainerDef
upperMultiplicity = 1 defaultvalue = false
lowerMultiplicity = 0
MemIfNumberOfDevices: EcucintegerParamDef
+container +parameter max = 2
>— min =1
+parameter MemlfVersioninfoApi: EcucBooleanParamDef
g d =
efaultvalue = false

Figure 10.1: Configuration of the Memlf

10.1.2 MemlfGeneral

[ECUC_Memlif _00034] Definition of EcucParamConfContainerDef MemlfGeneral
[

AUTSSAR

Container Name

MemlfGeneral

Parent Container

Memlf

Description

Configuration of the memory abstraction interface (Memif) module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemlfDevErrorDetect 1 [ECUC_Memlf_00035]
MemlfNumberOfDevices 1 [ECUC_Memlf_00033]
MemlfVersionInfoApi 1 [ECUC_Memlf_00032]

No Included Containers

]

[ECUC_Memlif_00035] Definition of EcucBooleanParamDef MemlfDevErrorDetect

[

Parameter Name

MemlfDevErrorDetect

Parent Container

MemlfGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
- false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Memlf_00033]
vices |

Definition of EcuclntegerParamDef MemlfNumberOfDe-

Parameter Name

MemlfNumberOfDevices

Parent Container

MemlfGeneral

Description Concrete number of underlying memory abstraction modules.
Calculation Formula: Count number of configured EA and FEE modules.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..2

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time B

Dependency

]

[ECUC_Memif_00032] Definition of EcucBooleanParamDef MemlfVersioninfoApi
[

Parameter Name MemlfVersionInfoApi

Parent Container MemlfGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

A.1.1 Added Specification ltems in R25-11

none

A.1.2 Changed Specification Items in R25-11

none

A.1.3 Deleted Specification ltems in R25-11

none

AUTSSAR

B Not applicable requirements

[SWS_Memlif_NA_00999]

Upstream requirements: SRS_BSW_00404, SRS_BSW_00101, SRS_BSW_00159, SRS_BSW _
00168, SRS_BSW_ 00170, SRS_BSW_00330, SRS _BSW_00336,
SRS_BSW_00339, SRS_BSW_00343, SRS_BSW_00375, SRS_BSW_
00380, SRS_BSW_00398, SRS _BSW_00399, SRS_BSW_00400,
SRS_BSW_00405, SRS_BSW_00406, SRS_BSW_00416, SRS_BSW_
00417, SRS_BSW _00422, SRS BSW 00423, SRS BSW 00424,
SRS _BSW_00425, SRS _BSW_00426, SRS_BSW_00427, SRS_BSW _
00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433,
SRS _SPAL 00157, SRS _SPAL 12056, SRS SPAL 12057, SRS
SPAL 12063, SRS_SPAL 12064, SRS SPAL 12067, SRS_SPAL
12068, SRS _SPAL 12069, SRS SPAL 12075, SRS SPAL 12077,
SRS_SPAL 12092, SRS_SPAL 12125, SRS _SPAL 12129, SRS _
SPAL 12163, SRS_SPAL 12263, SRS SPAL 12265, SRS _SPAL
12267, SRS _SPAL 12461, SRS _SPAL 12462, SRS SPAL 12463

[These requirements are not applicable to this specification. |

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.1.1 Standard types

	8.2 Type definitions
	8.2.1 MemIf_StatusType
	8.2.2 MemIf_JobResultType

	8.3 Function definitions
	8.3.1 MemIf_Read
	8.3.2 MemIf_Write
	8.3.3 MemIf_Cancel
	8.3.4 MemIf_GetStatus
	8.3.5 MemIf_GetJobResult
	8.3.6 MemIf_InvalidateBlock
	8.3.7 MemIf_GetVersionInfo
	8.3.8 MemIf_EraseImmediateBlock

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 MemIf
	10.1.2 MemIfGeneral

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	B Not applicable requirements

