AUTSSAR

Document Titl Specification of Fixed Point Math
€ Library

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 394

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial change.
Management
AUTOSAR
2024-11-27 | R24-11 Release * No content changes.
Management
AUTOSAR
2023-11-23 R23-11 Release * No content changes.
Management
* Update [SWS_Mfx_00064] for the
Function IDs 0x152 to 0x156 with the
new ’Associated maximum shift’ value
* Corrected the datatype of
AUTOSAR Mfx_Add_u32s32_u8 function
2022-11-24 R22-11 Release (SWS_Mix_00008)
Management -
* Correct parameter description for
(SWS_Mfx_00053)
* New Signum function Mfx_Sgn_s32_s8
is added
* Missing input parameter and return
AUTOSAR value description of Mfx_DivShLeft
2021-11-25 | R21-11 Release function (SWS_Mfx_00058) added
Management
« Editorial change (converted to LaTex)
AUTOSAR
2020-11-30 | R20-11 Release » Chapter 7.1 Error sections updated

Management

AUTSSAR

AUTOSAR « Editorial changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
» Added requirement tracing information
for SWS_Mfx_00024
AUTOSAR + Removal of (**) from Mul variants in
2017-12-08 | 4.3.1 Release SWS_Mix_00024
Management - Addition of (*) for 0x078
» Renamed "Development Error Tracer" to
"Default Error Tracer" in abbreviations
* The renaming of "Development Error
Tracer" to "Default Error Tracer" is done
in abbreviations
» Removal of the requirement SWS_Mfx_
AUTOSAR 00204
2016-11- .3. Release))
016-11-30) 4.3.0 Management » Maximum shift value updated for SWS_
Mfx_00064
» Updated SWS_Mfx_00073 for clarity in
min/max handling
« Clarifications
» Updated SWS_Mfx_00017 for shift value
AUTOSAR of Function ID 0x200 to 0x205 from 64 to
2015-07-31 | 4.2.2 Release 63
Management - Updated SWS_Mfx_00001 under
Section 5.1 File Structure
AUTOSAR
2014-10-31 | 4.21 Release « Minor corrections and clarifications
Management
AUTOSAR
2014-03-31 41.3 Release » Editorial Changes
Management
AUTOSAR + Corrections and removals of duplicate
2013-10-31 | 4.1.2 Release functions
Management « Editorial changes

AUTSSAR

2013-03-15 | 4.1.1 AUTQ.SAR : « Editorial Changes
Administration
+ Addition to the list of function for
2011-12-22 | 4.03 AUTOSAR consistency and completeness
Administration
* Fix typing errors in document
* New API created to achieve completion
of the need
2010-09-30 | 3.1.5 AUTQSAR , .
Administration « File structure has been detailed for what
concerns naming conventions
2010-02-02 | 3.1.4 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

5 Dependencies to other modules
51 Filestructure
6 Requirements Tracing

7 Functional specification

7.1 Errorclassification.
7.1.1 DevelopmentErrors
7.1.2 Runtime Errors e
7.1.3 Production Error
7.1.4 Extended ProductionErrors

7.2 Initialization and shutdown

7.3 Using Library APl o

7.4 Library implementation oo

8 API specification

8.1 Importedtypes e
8.2 Type definitions
8.3 Commentaboutrounding
8.4 Comment about routines optimization
8.4.1 Optimized withconstants
8.5 Mathematical routines definitions
8.5.1 Additions
8.5.2 Subtractions
8.5.3 Absolutevalue
8.5.4 Absolute value of adifference. L.
8.5.5 Multiplications
8.5.6 Divisionsroundedtowards O
8.5.7 Divisionsroundedoff,
8.5.8 Combinations of multiplication and division rounded towards 0
8.5.9 Combinations of multiplication and division rounded off
8.5.10 Combinations of multiplication and shift right

AUTSSAR

8.5.11 Combinations of division and shiftleft 38
8.5.12Modulo e 40
8.5.13Limiting 42
8.5.14 Limitations with only one value for minimum and maximum 43
8.5.15 Minimum and maximum 44
8.5.16 Signum Function 45
8.6 2n Scaled Integer Math Functions 45
8.6.1 Conversion e 47
8.6.1.1 16-Bit to 8-Bit 2n Scaled Integer Conversion 47
8.6.1.2 8-Bit to 16-Bit 2n Scaled Integer Conversion 48
8.6.1.3 32-Bit to 16-Bit 2n Scaled Integer Conversion 49
8.6.1.4 16-Bit to 32-Bit 2n Scaled Integer Conversion 50
8.6.2 Multiplication 51
8.6.2.1 16-Bit Multiplication of 2n Scaled Integer 51
8.6.2.2 32-Bit Multiplication of 2n Scaled Integer 52
8.6.3 Division 53
8.6.3.1 16-Bit Division of 2n Scaled Integer 53
8.6.3.2 32-Bit Division of 2n Scaled Integer 55
8.6.4 Addition 56
8.6.4.1 16-Bit Addition of 2n Scaled Integer 56
8.6.4.2 32-Bit Addition of 2n Scaled Integer 58
8.6.5 Subtraction 59
8.6.5.1 16-Bit Subtraction of 2n Scaled Integer 59
8.6.5.2 32-Bit Subtraction of 2n Scaled Integer 61
8.6.6 Absolute Difference of 2n Scaled Integer 62
8.6.7 AbsoluteValue 64
8.6.7.1 16-Bit Absolute Value of 2n Scaled Integer 64
8.6.7.2 32-Bit Absolute Value of 2n Scaled Integer 65

8.7 Examples of use of functions L. 66
8.7.1 Combinations of multiplication and shiftright 66
8.7.2 Combinations of division and shiftleft 66
8.8 Version APl e 67
8.8.1 Mfx_GetVersioninfo 67
8.9 Callback notifications 67
8.10Scheduled functions L 67
8.11Expectedinterfaces 68
8.11.1 Mandatory interfaces 68
8.11.20ptionalinterfaces 68
8.11.3 Configurable interfaces 68
8.12Service Interfaces 68

9 Sequence diagrams 69

AUTSSAR

10 Configuration specification

10.1Howtoread thischapter
10.2Containers and configuration parameters
10.3Published Information.

A Not applicable requirements

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e
B.1.1 Added Specification Itemsin R23-11
B.1.2 Changed Specification ltemsin R23-11
B.1.3 Deleted Specification ltemsin R23-11
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
B.2.1 Added Specification ltemsinR24-11
B.2.2 Changed Specification ltemsin R24-11
B.2.3 Deleted Specification Itemsin R24-11
B.3 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
B.3.1 Added Specification ltemsin R25-11
B.3.2 Changed Specification Itemsin R25-11
B.3.3 Deleted Specification Itemsin R25-11

70

70
70
70

71

72

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
library dedicated to arithmetic routines for fixed point values.

This mathematical library (MFX) contains the following routines :
+ Addition
+ Subtraction
* Absolute value
 Absolute value of differences
» Multiplication
+ Division
« Combination of multiplication and division
« Combination of multiplication and shift right
» Combination of division and shift left
* Modulo
* Limitation
Some of these functions are proposed too for 2n Scaled Integers :
+ Addition
+ Subtraction

« Absolute value

Absolute value of differences

Multiplication
+ Division
» Conversion (specific to 2n Scaled Integers)

All routines are re-entrant and can be used by multiple runnables at the same time.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the MFXLibrary
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Abs Absolute value

AbsDiff Absolute value of a difference

Add Addition

AR Autosar

DET Default Error Tracer

Div Division

DivShLeft Combination of division and shift left

Limit Limitation routine

Max Maximum

MFX/Mfx Math - Fixed Point library

Min Minimum

Minmax Limitation with only one value for min and max

Mod Modulo routine

Mul Multiplication

MulDiv Combination of multiplication and division

MulShRight Combination of multiplication and shift right

s16 Mnemonic for the sint16, specified in AUTOSAR_SWS_
PlatformTypes

s32 Mnemonic for the sint32, specified in AUTOSAR_SWS_
PlatformTypes

s8 Mnemonic for the sint8, specified in AUTOSAR_SWS_
PlatformTypes

Sub Subtraction

ulé Mnemonic for the uint16, specified in AUTOSAR_SWS_
PlatformTypes

u32 Mnemonic for the uint32, specified in AUTOSAR_SWS_
PlatformTypes

u8 Mnemonic for the uint8, specified in AUTOSAR_SWS_
PlatformTypes

Table 2.1: Acronyms and Abbreviations

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] ISO/IEC 9899:1990 Programming Language - C
https://www.iso.org

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[5] Requirements on Libraries
AUTOSAR _CP_RS Libraries

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for MFXLibrary.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for MFXLibrary.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

» No requirements on Service library can be implemented in multiple ways. Many
small routines can be combined into one implementation file. For bigger routines,
one file shall contain one routine implementation. Generally one routine per ob-
ject file is recommended from linker optimization point of view. For Bit handling
routines more routines can contribute to form one object file. This kind of group-
ing is not achieved in Release 4.0, Rev001 and will be addressed in Release 4.0,
Rev002.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

5.1 File structure

[SWS_Mfx_00001]
Upstream requirements: SRS_LIBS_00005

[The MFX module shall provide the following files:

+ C files, Mfx_<name>.c used to implement the library. All C files shall be prefixed
with "Mfx’.

]

Implementation & grouping of routines with respect to C files is recommended as per
below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,
eg.: Mfx_Add_u8u8_u8.c etc.
Option 2 : <Name> can have common name of group of functions:
» 2.1 Group by object family:
eg.: Mfx_NomMath.c, Mfx_ScaledMath.c
2.2 Group by routine family:
eg.: Mfx_Add.c
2.3 Group by method family: if it makes sense
2.4 Group by architecture:
eg.: Mfx_Add8.c
» 2.5 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all MFX functions,
eg.: Mfx.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Linking only on-demand is also possible in case of some
options.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4], [5] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Mfx_00215]

[SRS_BSW_00007]

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_Mfx_00209]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data

types

[SWS_Mfx_00212]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Mfx_00213]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Mfx_00215]

[SRS_BSW_00321]

The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_Mfx_00215]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Mix_00211]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_Mix_00214]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean
type

[SWS_Mfx_00212]

[SRS_BSW_00379]

All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_Mfx_00214]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Mix_00214]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Mfx_00215] [SWS_Mfx_00216]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Mfx_00216]

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_Mfx_00210]

[SRS_LIBS_00001]

The functional behavior of each
library functions shall not be
configurable

[SWS_Mfx_00218]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_LIBS_00002]

A library shall be operational before
all BSW modules and application
SW-Cs

[SWS_Mfx_00200]

[SRS_LIBS_00003]

A library shall be operational until the
shutdown

[SWS_Mfx_00201]

[SRS_LIBS_00004]

Using libraries shall not pass through
a port interface

[SWS_Mfx_00203]

[SRS_LIBS_00005]

Each library shall provide one header
file with its public interface

[SWS_Mfx_00001] [SWS_Mfx_91001]

[SRS_LIBS_00007]

Using a library should be documented

[SWS_Mfx_00205]

[SRS_LIBS_00009]

All library functions shall be re-entrant

[SWS_Mfx_91001]

[SRS_LIBS_00011]

All function names and type names
shall start with "Library short name_"

[SWS_Mfx_91001]

[SRS_LIBS_00015]

It shall be possible to configure the
microcontroller so that the library
code is shared between all callers

[SWS_Mfx_00206]

[SRS_LIBS_00017]

Usage of macros should be avoided

[SWS_Mfx_00207]

[SRS_LIBS_00018]

A library function may only call library
functions

[SWS_Mfx_00208]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Error classification

[SWS_Mfx_00227] [Chapter [3, General Specification of Basic Software Modules] 7.2
“Error Handling” describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules. |

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Error

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

7.2 Initialization and shutdown

[SWS_Mifx_00200]
Upstream requirements: SRS_LIBS_00002

[MFX library shall not require initialization phase. A Library function may be called at
the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library
shall be ready. |

[SWS_Mfx_00201]
Upstream requirements: SRS_LIBS_00003

[MFX library shall not require a shutdown operation phase. |

7.3 Using Library API

[SWS_Mfx_00203]
Upstream requirements: SRS_LIBS_ 00004

[MFX API can be directly called from BSW modules or SWC. No port definition is
required. It is a pure function call. |

[SWS_Mfx_00205]
Upstream requirements: SRS_LIBS_00007

[Using a library should be documented. if a BSW module or a SWC uses a Library,
the developer should add an Implementation-DependencyOnAtrtifact in the BSW/SWC
template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on a library behaviour, not on a supplier implementation. However,
the SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated. |

7.4 Library implementation

[SWS_Mfx_00206]
Upstream requirements: SRS_LIBS 00015

[The MFX library shall be implemented in a way that the code can be shared among
callers in different memory partitions. |

AUTSSAR

[SWS_Mfx_00207]
Upstream requirements: SRS_LIBS_00017

[Usage of macros should be avoided. The function should be declared as function or
inline function. Macro #define should not be used. |

[SWS_Mfx_00208]
Upstream requirements: SRS_LIBS_00018

[A library function shall not call any BSW modules functions, e.g. the DET. A library
function can call other library functions. Because a library function shall be re-entrant.
But other BSW modules functions may not be re-entrant. |

[SWS_Mfx_00209]

Upstream requirements: SRS_BSW_00007
[The library, written in C programming language, should conform to the MISRA C
Standard.

Please refer to SWS_BSW_00115 for more details. |

[SWS_Mfx_00210]
Upstream requirements: SRS_BSW_00437

[Each AUTOSAR library Module implementation <library>*.c and

<library>*.h shall map their code to memory sections using the AUTOSAR memory
mapping mechanism. |

[SWS_Mfx_00211]
Upstream requirements: SRS_BSW_00348

[Each AUTOSAR library Module implementation <library>*.c, that uses AUTOSAR in-
teger data types and/or the standard return, shall include the header file Std_Types.h. |

[SWS_Mifx_00212]
Upstream requirements: SRS_BSW_00378, SRS_BSW_00304
[All AUTOSAR library Modules should use the AUTOSAR data types (integers,

boolean) instead of native C data types, unless this library is clearly identified to be
compliant only with a platform. |

[SWS_Mfx_00213]
Upstream requirements: SRS_BSW_00306
[All AUTOSAR library Modules should avoid direct use of compiler and platform spe-

cific keyword, unless this library is clearly identified to be compliant only with a plat-
form. |

[SWS_Mfx_00225] [Integral promotion has to be adhered to when implementing Mfx
services. Thus, to obtain maximal precision, intermediate results shall not be limited. |

AUTSSAR

8 API specification

8.1 Imported types

[SWS_Mfx_91002] Definition of imported datatypes of module Mfx [

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType
In this chapter, all types included from the following modules are listed:
Module Imported Type
Std_Types.h sint8, uint8, sint16, uint16, sint32, uint32

Table 8.1: List of Imported Types

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

Thus, in order to improve the portability of the software, these types are defined in
Platform_Types.h [6].The following mnemonics are used in the library routine names.

Size Platform Type Mnemonic
signed 8-Bit sint8 s8

signed 16-Bit sint16 s16
signed 32-Bit sint32 s32
unsigned 8-Bit uint8 u8
unsigned 16-Bit uint16 ul6
unsigned 32-Bit uint32 u32

Table 8.2: Base Types

As described in [6], the ranges for each of the base types are shown in Table 2.

Base Type Range

uint8 [0,255]

sint8 [-128,127]

uint16 [0, 65535]

sint16 [-32768, 32767]

uint32 [0, 4294967295]

sint32 [-2147483648, 2147483647]

Table 8.3: Ranges for Base Types

As a convention in the rest of the document:

AUTSSAR

* Mnemonics will be used in the name of the routines (using <InTypeMn1> that
means Type Mnemonic for Input 1)

» The real type will be used in the description of the prototypes of the routines
(using <InType1> or <OutType>).

8.2 Type definitions

None.

8.3 Comment about rounding

Two types of rounding can be applied:
Results are "rounded off", it means:

* 0 <=X<0.5rounded to 0

* 0.5 <= X < 1 rounded to 1

* -0.5<X<=0roundedto 0

* -1 < X <=-0.5 rounded to -1
Results are rounded towards zero:

* 0 <= X< 1roundedto 0

* -1 <X <=0roundedto 0

8.4 Comment about routines optimization

8.4.1 Optimized with constants

For optimization purpose, in some routines, it is mandatory that an argument of the
function "must be constant".

The requirement is that the expression must be fully evaluated at compile time. It may
be a constant literal, macro, or arithmetic expression that can be computed at compile
time. It may not contain a variable or function call.

For example, the parameters for the radix points are constant expressions so that they
may be eliminated after the pre-process phase of compilation. When implemented
properly as an inline function or macro, the calculations for the number of shifts nec-
essary are done at compile time, not at run time. There is a ROM/throughput penalty
when constant expressions are not used.

AUTSSAR

8.5 Mathematical routines definitions

8.5.1 Additions

[SWS_Mfx_00002] Definition of API function Mfx_Add_<InTypeMni><InType
Mn2>_<OutTypeMn> |

Mfx_Add_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx_Add_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value

)

Service Name

Service ID [hex] 0x0001 to 0x0024
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation

Description
Available via Mfx.h

This routine makes an addition between the two arguments.

]
[SWS_Mfx_00006] [This routine makes an addition between the two arguments:

Return-value = x_value + y_value|

[SWS_Mfx_00007] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00008] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x001 uint8 Mfx_Add_u8u8_u8(uint8 , uint8);

0x002 uint8 Mfx_Add_u8s8_u8(uint8 , sint8);

0x003 sint8 Mfx_Add_u8s8_s8(uint8 , sint8);

0x004 uint8 Mfx_Add_s8s8_u8(sint8 , sint8);

0x005 sint8 Mfx_Add_s8s8_s8(sint8 , sint8);

0x006 uint16 Mfx_Add_u16u16_u16(uint16 , uint16);
0x007 uint16 Mfx_Add_u16s16_u16(uint16 , sint16);
0x008 sint16 Mfx_Add_u16s16_s16(uint16 , sint16);
0x009 uint8 Mfx_Add_s16s16_u8(sint16 , sint16);
0x00A sint8 Mfx_Add_s16s16_s8(sint16 , sint16);
0x00B uint16 Mfx_Add_s16s16_u16(sint16 , sint16);
0x00C sint16 Mfx_Add_s16s16_s16(sint16 , sint16);
0x00D sint8 Mfx_Add_u32u32_s8(uint32 , uint32);

AUTSSAR

Function ID[hex]

Function prototype

0x00E sint16 Mfx_Add_u32u32_s16(uint32 , uint32);
0x00F uint32 Mfx_Add_u32u32_u32(uint32 , uint32);
0x010 sint32 Mfx_Add_u32u32_s32(uint32 , uint32);
0x011 uint32 Mfx_Add_u32s32_u32(uint32 , sint32);
0x012 sint32 Mfx_Add_u32s32_s32(uint32 , sint32);
0x013 uint32 Mfx_Add_s32s32_u32(sint32 , sint32);
0x014 sint32 Mfx_Add_s32s32_s32(sint32 , sint32);
0x015 uint8 Mfx_Add_s32s32_u8(sint32 , sint32);
0x016 sint8 Mfx_Add_s32s32_s8(sint32 , sint32);
0x017 uint16 Mfx_Add_s32s32_u16(sint32, sint32);
0x018 sint16 Mfx_Add_s32s32_s16(sint32 , sint32);
0x019 sint16 Mfx_Add_u32s32_s16(uint32 , sint32);
0x01A sint8 Mfx_Add_u32s32_s8(uint32 , sint32);
0x01B uint16 Mfx_Add_u32s32_u16(uint32 , sint32);
0x01C uint8 Mfx_Add_u32s32_u8(uint32 , sint32);
0x01D uint16 Mfx_Add_u32u32_u16(uint32 , uint32);
0x01E uint8 Mfx_Add_u32u32_u8(uint32 , uint32);
0x01F sint16 Mfx_Add_u16u16_s16(uint16 , uint16);
0x020 uint8 Mfx_Add_u16u16_u8(uint16 , uint16);
0x021 uint8 Mfx_Add_u16s16_u8(uint16 , sint16);
0x022 sint8 Mfx_Add_u16u16_s8(uint16 , uint16);
0x023 sint8 Mfx_Add_u16s16_s8(uint16 , sint16);
0x024 sint8 Mfx_Add_u8u8_s8(uint8 , uint8);

8.5.2 Subtractions

[SWS_Mfx_00009]

Table 8.4: Implemented Mfx_Add Functions

Definition of API function Mfx_Sub_<InTypeMn1><InType

Mn2>_<OutTypeMn> |

Service Name

Mfx_Sub_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx_Sub_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value
)
Service ID [hex] 0x0025 to 0x0054
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ Result of the calculation

Y%

AUTSSAR

Description This routine makes a subtraction between the two arguments.

Available via Mfx.h

]

[SWS_Mfx_00010] [This routine makes a subtraction between the two arguments:

Return-value = x_value - y_value |

[SWS_Mfx_00011] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00012] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x025 uint8 Mfx_Sub_u8u8_u8(uint8 , uint8);

0x026 sint8 Mfx_Sub_u8u8_s8(uint8 , uint8);

0x027 uint8 Mfx_Sub_u8s8_u8(uint8 , sint8);

0x028 sint8 Mfx_Sub_s8u8_s8(sint8 , uint8);

0x029 sint8 Mfx_Sub_s8s8_s8(sint8 , sint8);

0x02A uint8 Mfx_Sub_u16u16_u8(uint16 , uint16);
0x02B sint8 Mfx_Sub_u16u16_s8(uint16 , uint16);
0x02C uint8 Mfx_Sub_s16s16_u8(sint16 , sint16);
0x02D sint8 Mfx_Sub_s16s16_s8(sint16 , sint16);
0x02E uint8 Mfx_Sub_s32s32_u8(sint32 , sint32);
0x02F sint8 Mfx_Sub_s32s32_s8(sint32 , sint32);
0x030 uint16 Mfx_Sub_u16u16_u16(uint16 , uint16);
0x031 uint16 Mfx_Sub_u16s16_u16(uint16 , sint16);
0x032 sint16 Mfx_Sub_s16u16_s16(sint16 , uint16);
0x033 sint16 Mfx_Sub_u16s16_s16(uint16 , sint16);
0x034 uint16 Mfx_Sub_s16s16_u16(sint16 , sint16);
0x035 sint16 Mfx_Sub_u16u16_s16(uint16 , uint16);
0x036 sint16 Mfx_Sub_s16s16_s16(sint16 , sint16);
0x037 uint8 Mfx_Sub_s32u32_u8(sint32 , uint32);
0x038 sint8 Mfx_Sub_u32s32_s8(uint32, sint32);
0x039 uint16 Mfx_Sub_s32u32_u16(sint32 , uint32);
0x03A uint16 Mfx_Sub_u32u32_u16(uint32 , uint32);
0x03B sint16 Mfx_Sub_u32u32_s16(uint32 , uint32);
0x03C uint16 Mfx_Sub_s32s32_u16(sint32 , sint32);
0x03D sint16 Mfx_Sub_s32s32_s16(sint32 , sint32);
0x03E uint32 Mfx_Sub_u32u32_u32(uint32 , uint32);
0x03F uint32 Mfx_Sub_u32s32_u32(uint32 , sint32);
0x040 uint32 Mfx_Sub_s32u32_u32(sint32 , uint32);
0x041 sint32 Mfx_Sub_u32u32_s32(uint32 , uint32);
0x042 sint32 Mfx_Sub_s32u32_s32(sint32 , uint32);
0x043 sint32 Mfx_Sub_u32s32_s32(uint32 , sint32);

AUTSSAR

Function ID[hex]

Function prototype

0x044 uint32 Mfx_Sub_s32s32_u32(sint32 , sint32);
0x045 sint32 Mfx_Sub_s32s32_s32(sint32, sint32);
0x046 sint16 Mfx_Sub_s32u32_s16(sint32 , uint32);
0x047 sint8 Mfx_Sub_s32u32_s8(sint32 , uint32);
0x048 sint16 Mfx_Sub_u32s32_s16(uint32 , sint32);
0x049 uint16 Mfx_Sub_u32s32_u16(uint32, sint32);
0x04A uint8 Mfx_Sub_u32s32_u8(uint32 , sint32);
0x04B sint8 Mfx_Sub_u32u32_s8(uint32 , uint32);
0x04C uint8 Mfx_Sub_u32u32_u8(uint32 , uint32);
0x04D uint16 Mfx_Sub_s16u16_u16(sint16 , uint16);
0x04E uint8 Mfx_Sub_u16s16_u8(uint16 , sint16);
0x04F uint8 Mfx_Sub_s16u16_u8(sint16 , uint16);
0x050 sint8 Mfx_Sub_u16s16_s8(uint16 , sint16);
0x051 sint8 Mfx_Sub_s16u16_s8(sint16 , uint16);
0x052 uint8 Mfx_Sub_s8u8_u8(sint8 , uint8);

0x053 uint8 Mfx_Sub_s8s8_u8(sint8 , sint8);

0x054 sint8 Mfx_Sub_u8s8_s8(uint8 , sint8);

Table 8.5: Implemented Mfx_Sub Functions

8.5.3 Absolute value

[SWS_Mifx_00013] Definition of API function Mfx_Abs_<InTypeMn1>_<OutType

Mn> |

Service Name

Mfx_Abs_<InTypeMn1>_<OutTypeMn>

Syntax <OutType> Mfx_Abs_<InTypeMnl>_<OutTypeMn> (
<InTypel> x_value
)
Service ID [hex] 0x0055 to 0x005E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value | First argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> | Result of the calculation

Description

This routine computes the absolute value of a signed value.

Available via

Mfx.h

]

[SWS_Mfx_00014] [This routine computes the absolute value of a signed value:

Return-value = | x_value |]

[SWS_Mfx_00015] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

AUTSSAR

[SWS_Mfx_00016] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x055 uint8 Mfx_Abs_s8 u8(sint8);
0x056 sint8 Mfx_Abs_s8_s8(sint8);
0x057 uint8 Mfx_Abs_s32_u8(sint32);
0x058 uint16 Mfx_Abs_s16_u16(sint16);
0x059 sint16 Mfx_Abs_s16_s16(sint16);
0x05A sint16 Mfx_Abs_s32_s16(sint32);
0x05B uint32 Mfx_Abs_s32_u32(sint32);
0x05C sint32 Mfx_Abs_s32_s32(sint32);
0x05D sint8 Mfx_Abs_s32_s8(sint32);
0x05E uint16 Mfx_Abs_s32_u16(sint32);

Table 8.6: Implemented Mfx_Abs Functions

8.5.4 Absolute value of a difference

[SWS_Mfx_00017] Definition of API function Mfx_AbsDiff <InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_AbsDiff_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_ AbsDiff <InTypeMnl><InTypeMn2> <OutTypeMn> (
<InTypel> x_value,
<InType2> y_value
)
Service ID [hex] 0x005F to 0x0082
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation
Description This routine computes the absolute value of a difference between 2 values.
Available via Mfx.h

]

[SWS_Mfx_00018] [This routine computes the absolute value of a difference between

2 values:

Return-value = | x_value - y_value ||

[SWS_Mfx_00019] [Return-value shall be saturated to boundary values in the event

of overflow. |

[SWS_Mfx_00020] [Here is the list of implemented functions. |

AUTSSAR

Function ID[hex] Function prototype

0x05F uint8 Mfx_AbsDiff_u8u8_u8(uint8 , uint8);

0x060 uint16 Mfx_AbsDiff_u16u16_u16(uint16 , uint16);
0x061 uint8 Mfx_AbsDiff_s16s16_u8(sint16 , sint16);
0x062 uint16 Mfx_AbsDiff_s16s16_u16(sint16 , sint16);
0x063 uint8 Mfx_AbsDiff_u32s32_u8(uint32, sint32);
0x064 uint16 Mfx_AbsDiff_u32s32_u16(uint32 , sint32);
0x065 uint32 Mfx_AbsDiff_u32s32_u32(uint32 , sint32);
0x066 uint32 Mfx_AbsDiff_u32u32_u32(uint32 , uint32);
0x067 uint8 Mfx_AbsDiff_s32s32_u8(sint32 , sint32);
0x068 sint16 Mfx_AbsDiff_s32s32_s16(sint32 , sint32);
0x069 sint32 Mfx_AbsDiff_s32s32_s32(sint32 , sint32);
0x06A sint8 Mfx_AbsDiff_s32s32_s8(sint32 , sint32);
0x06B uint16 Mfx_AbsDiff_s32s32_u16(sint32 , sint32);
0x06C uint32 Mfx_AbsDiff_s32s32_u32(sint32 , sint32);
0x06D uint16 Mfx_AbsDiff_u32u32_u16(uint32 , uint32);
0x06E uint8 Mfx_AbsDiff u32u32_u8(uint32 , uint32);
0x06F sint8 Mfx_Absdiff_u32u32_s8(uint32 , uint32);
0x070 sint16 Mfx_Absdiff_u32u32_s16(uint32 , uint32);
0x071 sint32 Mfx_Absdiff_u32u32_s32(uint32 , uint32);
0x072 sint8 Mfx_Absdiff _u32s32_s8(uint32 , sint32);
0x073 sint16 Mfx_Absdiff_u32s32_s16(uint32 , sint32);
0x074 sint32 Mfx_Absdiff_u32s32_s32(uint32 , sint32);
0x075 uint16 Mfx_AbsDiff_u16s16_u16(uint16, sint16);
0x076 sint16 Mfx_AbsDiff_u16u16_s16(uint16 , uint16);
0x077 sint16 Mfx_AbsDiff_u16s16_s16(uint16 , sint16);
0x078 sint16 Mfx_AbsDiff_s16s16_s16(sint16 , sint16);
0x079 uint8 Mfx_AbsDiff_u16u16_u8(uint16 , uint16);
0x07A uint8 Mfx_AbsDiff_u16s16_u8(uint16 , sint16);
0x07B sint8 Mfx_AbsDiff_u16u16_s8(uint16 , uint16);
0x07C sint8 Mfx_AbsDiff_u16s16_s8(uint16 , sint16);
0x07D sint8 Mfx_AbsDiff_s16s16_s8(sint16 , sint16);
0x07E uint8 Mfx_AbsDiff u8s8_u8(uint8 , sint8);

0x07F uint8 Mfx_AbsDiff_s8s8_u8(sint8 , sint8);

0x080 sint8 Mfx_AbsDiff_u8u8_s8(uint8 , uint8);

0x081 sint8 Mfx_AbsDiff_u8s8_s8(uint8 , sint8);

0x082 sint8 Mfx_AbsDiff_s8s8_s8(sint8 , sint8);

Table 8.7: Implemented Mfx_AbsDiff Functions

AUTSSAR

8.5.5 Multiplications

[SWS_Mfx_00021]

Definition of API function Mfx_Mul_<InTypeMn1><InType

Mn2>_<OutTypeMn> |

Service Name

Mfx_Mul_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx_Mul_ <InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value
)
Service ID [hex] 0x0083 to 0x00A7
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation

Description

This routine makes a multiplication between the two arguments.

Available via

Mfx.h

]

[SWS_Mfx_00022] [This routine makes a multiplication between the two arguments:

Return-value = x_value * y_value|

[SWS_Mfx_00023] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

AUTSSAR

[SWS_Mfx_00024] [Here is the list of implemented functions. |

Function ID[hex]

Function prototype

0x083 uint8 Mfx_Mul_u8u8_u8(uint8 , uint8);

0x084 uint8 Mfx_Mul_s8s8_u8(sint8 , sint8);

0x085 sint8 Mfx_Mul_s8s8_s8(sint8 , sint8);

0x086 uint16 Mfx_Mul_u16u16_u16(uint16 , uint16);
0x087 uint16 Mfx_Mul_s16s16_u16(sint16 , sint16);
0x088 uint8 Mfx_Mul_s16s16_u8(sint16 , sint16);
0x089 sint8 Mfx_Mul_s16s16_s8(sint16 , sint16);
0x08A sint16 Mfx_Mul_s16s16_s16(sint16 , sint16);
0x08B uint32 Mfx_Mul_u32u32_u32(uint32 , uint32);
0x08C sint32 Mfx_Mul_u32u32_s32(uint32 , uint32);
0x08D uint32 Mfx_Mul_s32s32_u32(sint32 , sint32);
0x08E uint8 Mfx_Mul_s32s32_u8(sint32 , sint32);
0x08F sint8 Mfx_Mul_u32u32_s8(uint32 , uint32);
0x090 sint8 Mfx_Mul_s32s32_s8(sint32 , sint32);
0x091 sint16 Mfx_Mul_u32u32_s16(uint32 , uint32);
0x092 sint16 Mfx_Mul_s32s32_s16(sint32 , sint32);
0x093 uint16 Mfx_Mul_s32s32_u16(sint32 , sint32);
0x094 sint32 Mfx_Mul_s32s32_s32(sint32 , sint32);
0x095 sint16 Mfx_Mul_u32s32_s16(uint32 , sint32);
0x096 sint8 Mfx_Mul_u32s32_s8(uint32 , sint32);
0x097 uint8 Mfx_Mul_u32s32_u8(uint32 , sint32);
0x098 uint16 Mfx_Mul_u32u32_u16(uint32 , uint32);
0x099 uint8 Mfx_Mul_u32u32_u8(uint32 , uint32);
0x09A uint8 Mfx_Mul_u8s8_u8(uint8 , sint8);

0x09B sint8 Mfx_Mul_u8s8_s8(uint8 , sint8);

0x09C uint16 Mfx_Mul_u16s16_u16(uint16 , sint16);
0x09D sint16 Mfx_Mul_u16s16_s16(uint16 , sint16);
0x09E sint32 Mfx_Mul_u16s16_s32(uint16 , sint16);
0x09F uint16 Mfx_Mul_u32s32_u16(uint32 , sint32);
0x0A0 uint32 Mfx_Mul_u32s32_u32(uint32 , sint32);
0x0A1 sint32 Mfx_Mul_u32s32_s32(uint32 , sint32);
0x0A2 sint16 Mfx_Mul_u16u16_s16(uint16 , uint16);
0x0A3 uint8 Mfx_Mul_u16u16_u8(uint16 , uint16);
0x0A4 uint8 Mfx_Mul_u16s16_u8(uint16 , sint16);
0x0A5 sint8 Mfx_Mul_u16u16_s8(uint16 , uint16);
0x0A6 sint8 Mfx_Mul_u16s16_s8(uint16 , sint16);
0x0A7 sint8 Mfx_Mul_u8u8_s8(uint8 , uint8);

Table 8.8: Implemented Mfx_Mul Functions

AUTSSAR

8.5.6 Divisions rounded towards 0

[SWS_Mfx_00025] Definition of API function Mfx_Div_<InTypeMni><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_Div_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_Div_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value
)
Service ID [hex] 0x00A8 to 0x00D7
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation
Description These routines make a division between the two arguments.
Available via Mfx.h
]

[SWS_Mfx_00026] [These routines make a division between the two arguments:

Return-value = x_value / y_value|

[SWS_Mfx_00027] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00028] [The result after division by zero is defined by:
* If x_value > 0 then the function returns the maximum value of the output type

* If x_value < 0 then the function returns the minimum value of the output type |
[SWS_Mfx_00030] [The result is rounded towards 0. |

[SWS_Mfx_00031] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x0A8 uint8 Mfx_Div_u8u8_u8(uint8 , uint8);

0x0A9 uint8 Mfx_Div_s8u8_u8(sint8 , uint8);

0x0AA uint8 Mfx_Div_u8s8_u8(uint8 , sint8);

0x0AB uint8 Mfx_Div_s8s8_u8(sint8 , sint8);

0x0AC sint8 Mfx_Div_u8s8_s8(uint8 , sint8);

0x0AD sint8 Mfx_Div_s8u8_s8(sint8 , uint8);

0x0AE sint8 Mfx_Div_s8s8_s8(sint8 , sint8);

0x0AF uint16 Mfx_Div_u16u16_u16(uint16 , uint16);

AUTSSAR

Function ID[hex]

Function prototype

0x0B0O uint16 Mfx_Div_s16u16_u16(sint16 , uint16);
0x0B1 uint16 Mfx_Div_u16s16_u16(uint16 , sint16);
0x0B2 sint16 Mfx_Div_u16s16_s16(uint16 , sint16);
0x0B3 sint16 Mfx_Div_s16u16_s16(sint16 , uint16);
0x0B4 uint16 Mfx_Div_s16s16_u16(sint16 , sint16);
0x0B5 uint8 Mfx_Div_s16s16_u8(sint16 , sint16);
0x0B6 sint8 Mfx_Div_s16s16_s8(sint16 , sint16);
0x0B7 sint16 Mfx_Div_s16s16_s16(sint16 , sint16);
0x0B8 sint16 Mfx_Div_s32u32_s16(sint32 , uint32);
0x0B9 uint32 Mfx_Div_u32u32_u32(uint32 , uint32);
0x0BA uint32 Mfx_Div_s32u32_u32(sint32 , uint32);
0x0BB uint32 Mfx_Div_u32s32_u32(uint32 , sint32);
0x0BC sint32 Mfx_Div_u32s32_s32(uint32 , sint32);
0x0BD sint32 Mfx_Div_s32u32_s32(sint32 , uint32);
0x0BE uint32 Mfx_Div_s32s32_u32(sint32 , sint32);
0x0BF uint8 Mfx_Div_s32s32_u8(sint32, sint32);
0x0CO0 sint8 Mfx_Div_s32s32_s8(sint32 , sint32);
0x0C1 uint16 Mfx_Div_s32s32_u16(sint32 , sint32);
0x0C2 sint16 Mfx_Div_s32s32_s16(sint32 , sint32);
0x0C3 sint32 Mfx_Div_s32s32_s32(sint32 , sint32);
0x0C4 sint8 Mfx_Div_u32u32_s8(uint32 , uint32);
0x0C5 sint16 Mfx_Div_u32u32_s16(uint32 , uint32);
0x0C6 sint32 Mfx_Div_u32u32_s32(uint32 , uint32);
0x0C7 sint8 Mfx_Div_s32u32_s8(sint32 , uint32);
0x0C8 uint16 Mfx_Div_s32u32_u16(sint32 , uint32);
0x0C9 uint8 Mfx_Div_s32u32_u8(sint32 , uint32);
0x0CA sint16 Mfx_Div_u32s32_s16(uint32 , sint32);
0x0CB sint8 Mfx_Div_u32s32_s8(uint32 , sint32);
0x0CC uint16 Mfx_Div_u32s32_u16(uint32 , sint32);
0x0CD uint8 Mfx_Div_u32s32_u8(uint32 , sint32);
0x0CE uint16 Mfx_Div_u32u32_u16(uint32 , uint32);
0x0CF uint8 Mfx_Div_u32u32_u8(uint32 , uint32);
0x0DO0 sint16 Mfx_Div_u16u16_s16(uint16 , uint16);
0x0D1 uint8 Mfx_Div_u16u16_u8(uint16 , uint16);
0x0D2 uint8 Mfx_Div_u16s16_u8(uint16 , sint16);
0x0D3 uint8 Mfx_Div_s16u16_u8(sint16 , uint16);
0x0D4 sint8 Mfx_Div_u16u16_s8(uint16 , uint16);
0x0D5 sint8 Mfx_Div_u16s16_s8(uint16 , sint16);
0x0D6 sint8 Mfx_Div_s16u16_s8(sint16 , uint16);
0x0D7 sint8 Mfx_Div_u8u8_s8(uint8 , uint8);

Table 8.9: Implemented Mfx_Div Functions

AUTSSAR

8.5.7 Divisions rounded off

[SWS_Mfx_00032] Definition of API function Mfx_RDiv_<InTypeMni><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_RDiv_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_RDiv_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value
)
Service ID [hex] 0x00D8 to 0x0107
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation
Description These routines make a division between the two arguments.
Available via Mfx.h

]
[SWS_Mfx_00033] [These routines make a division between the two arguments:

Return-value = x_value / y_value|

[SWS_Mfx_00034] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00035] [The result after division by zero is defined by:
* If x_value > 0 then the function returns the maximum value of the output type

* If x_value < 0 then the function returns the minimum value of the output type |
[SWS_Mfx_00037] [The result is rounded off. |

[SWS_Mfx_00038] [Here is the list of implemented functions. |

Function ID[hex] Function prototype : RDiv

0x0D8 uint8 Mfx_RDiv_u8u8_u8(uint8 , uint8);

0x0D9 uint8 Mfx_RDiv_s8u8_u8(sint8 , uint8);

0xODA uint8 Mfx_RDiv_u8s8_u8(uint8 , sint8);

0x0DB uint8 Mfx_RDiv_s8s8_u8(sint8 , sint8);

0x0DC sint8 Mfx_RDiv_u8s8_s8(uint8 , sint8);

0x0DD sint8 Mfx_RDiv_s8u8_s8(sint8 , uint8);

0xODE sint8 Mfx_RDiv_s8s8_s8(sint8 , sint8);

0xODF uint16 Mfx_RDiv_u16u16_u16(uint16 , uint16);

AUTSSAR

Function ID[hex]

Function prototype : RDiv

0x0EO0 uint16 Mfx_RDiv_s16u16_u16(sint16 , uint16);
0xO0E1 uint16 Mfx_RDiv_u16s16_u16(uint16 , sint16);
0x0E2 sint16 Mfx_RDiv_u16s16_s16(uint16 , sint16);
Ox0E3 sint16 Mfx_RDiv_s16u16_s16(sint16 , uint16);
0x0E4 uint16 Mfx_RDiv_s16s16_u16(sint16 , sint16);
0x0E5 uint8 Mfx_RDiv_s16s16_u8(sint16 , sint16);
0x0E6 sint8 Mfx_RDiv_s16s16_s8(sint16 , sint16);
O0x0E7 sint16 Mfx_RDiv_s16s16_s16(sint16 , sint16);
0x0E8 sint16 Mfx_RDiv_s32u32_s16(sint32 , uint32);
0x0E9 uint32 Mfx_RDiv_u32u32_u32(uint32 , uint32);
OxO0EA uint32 Mfx_RDiv_s32u32_u32(sint32 , uint32);
0x0EB uint32 Mfx_RDiv_u32s32_u32(uint32 , sint32);
0x0EC sint32 Mfx_RDiv_u32s32_s32(uint32 , sint32);
0x0ED sint32 Mfx_RDiv_s32u32_s32(sint32 , uint32);
OxOEE uint32 Mfx_RDiv_s32s32_u32(sint32 , sint32);
OxOEF uint8 Mfx_RDiv_s32s32_u8(sint32 , sint32);
0x0F0 sint8 Mfx_RDiv_s32s32_s8(sint32 , sint32);
0x0F1 uint16 Mfx_RDiv_s32s32_u16(sint32 , sint32);
0x0F2 sint16 Mfx_RDiv_s32s32_s16(sint32 , sint32);
0x0F3 sint32 Mfx_RDiv_s32s32_s32(sint32, sint32);
0x0F4 sint8 Mfx_RDiv_u32u32_s8(uint32 , uint32);
0x0F5 sint16 Mfx_RDiv_u32u32_s16(uint32 , uint32);
0x0F6 sint32 Mfx_RDiv_u32u32_s32(uint32 , uint32);
0x0F7 sint8 Mfx_RDiv_s32u32_s8(sint32 , uint32);
0x0F8 uint16 Mfx_RDiv_s32u32_u16(sint32 , uint32);
0x0F9 uint8 Mfx_RDiv_s32u32_u8(sint32 , uint32);
O0xOFA sint16 Mfx_RDiv_u32s32_s16(uint32 , sint32);
0xoFB sint8 Mfx_RDiv_u32s32_s8(uint32 , sint32);
0xOFC uint16 Mfx_RDiv_u32s32_u16(uint32 , sint32);
0xO0FD uint8 Mfx_RDiv_u32s32_u8(uint32 , sint32);
0xOFE uint16 Mfx_RDiv_u32u32_u16(uint32 , uint32);
0xOFF uint8 Mfx_RDiv_u32u32_u8(uint32 , uint32);
0x100 sint16 Mfx_RDiv_u16u16_s16(uint16 , uint16);
0x101 uint8 Mfx_RDiv_u16u16_u8(uint16 , uint16);
0x102 uint8 Mfx_RDiv_u16s16_u8(uint16 , sint16);
0x103 uint8 Mfx_RDiv_s16u16_u8(sint16 , uint16);
0x104 sint8 Mfx_RDiv_u16u16_s8(uint16 , uint16);
0x105 sint8 Mfx_RDiv_u16s16_s8(uint16 , sint16);
0x106 sint8 Mfx_RDiv_s16u16_s8(sint16 , uint16);
0x107 sint8 Mfx_RDiv_u8u8_s8(uint8 , uint8);

Table 8.10: Implemented Mfx_RDiv Functions

AUTSSAR

8.5.8 Combinations of multiplication and division rounded towards 0

[SWS_Mfx_00039] Definition of API function Mfx_MulDiv_<InTypeMn1><InType
Mn2><InTypeMn3>_<OutTypeMn> |

Service Name Mfx_MulDiv_<InTypeMn1><InTypeMn2><InTypeMn3>_<OutTypeMn>
Syntax <OutType> Mfx_MulDiv_<InTypeMnl><InTypeMn2><InTypeMn3>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value,
<InType3> z_value
)
Service ID [hex] 0x0108 to 0x0121
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_value First argument
y_value Second argument
z_value Third argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation
Description These routines make a multiplication between the two arguments and a division by the third
argument.
Available via Mfx.h

]

[SWS_Mfx_00040] [These routines make a multiplication between the two arguments
and a division by the third argument:

Return-value = x_value * y_value / z_value |

[SWS_Mfx_00041] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00042] [The result after division by zero is defined by:

* If x_value*y_value > 0 then the function returns the maximum value of the output
type

* If x_value*y_value < 0 then the function returns the minimum value of the output type |
[SWS_Mfx_00044] [The result is rounded towards 0. |

[SWS_Mfx_00045] [Here is the list of implemented functions. |

Function ID[hex] Function prototype : Div

0x108 uint16 Mfx_MulDiv_s32s32s32_u16(sint32 , sint32 , sint32);

0x109 sint16 Mfx_MulDiv_s32s32s32_s16(sint32 , sint32 , sint32);

0x10A uint16 Mfx_MulDiv_u32u32u16_u16(uint32 , uint32 ,
uint16);

AUTSSAR

Function ID[hex]

Function prototype : Div

0x10B sint16 Mfx_MulDiv_s32s32s16_s16(sint32 , sint32 , sint16);
0x10C uint16 Mfx_MulDiv_s16u16s16_u16(sint16 , uint16 , sint16);
0x10D uint16 Mfx_MulDiv_s16u16u16_u16(sint16 , uint16 , uint16);
0x10E uint16 Mfx_MulDiv_u16u16u16_u16(uint16 , uint16,
uint16);
0x10F sint16 Mfx_MulDiv_s16u16s16_s16(sint16 , uint16 , sint16);
0x110 sint16 Mfx_MulDiv_s16s16u16_s16(sint16 , sint16 , uint16);
0x111 sint16 Mfx_MulDiv_s16u16u16_s16(sint16 , uint16 , uint16);
0x112 sint16 Mfx_MulDiv_s16s16s16_s16(sint16 , sint16 , sint16);
0x113 uint32 Mfx_MulDiv_u32u32u32_u32(uint32 , uint32,
uint32);
0x114 uint32 Mfx_MulDiv_u32u32s32_u32(uint32 , uint32 , sint32);
0x115 uint32 Mfx_MulDiv_u32s32u32_u32(uint32, sint32 , uint32);
0x116 uint32 Mfx_MulDiv_u32s32s32_u32(uint32 , sint32 , sint32);
0x117 sint32 Mfx_MulDiv_s32s32u32_s32(sint32 , sint32 , uint32);
0x118 sint32 Mfx_MulDiv_s32u32s32_s32(sint32 , uint32 , sint32);
0x119 sint32 Mfx_MulDiv_s32u32u32_s32(sint32 , uint32 , uint32);
Ox11A sint32 Mfx_MulDiv_s32s32s32_s32(sint32 , sint32 , sint32);
0x11B uint16 Mfx_MulDiv_u32u32u32_u16(uint32 , uint32,
uint32);
0x11C uint16 Mfx_MulDiv_u16s16s16_u16(uint16 , sint16 , sint16);
0x11D uint16 Mfx_MulDiv_u16s16u16_u16(uint16, sint16 , uint16);
Ox11E sint16 Mfx_MulDiv_u16s16s16_s16(uint16, sint16 , sint16);
0x11F sint16 Mfx_MulDiv_u16s16u16_s16(uint16 , sint16 , uint16);
0x120 sint32 Mfx_MulDiv_u32s32s32_s32(uint32 , sint32 , sint32);
0x121 sint32 Mfx_MulDiv_u32s32u32_s32(uint32 , sint32 , uint32);

Table 8.11: Implemented Mfx_MulDiv Functions

Note : The redundancy due to commutativity will be reduced in the next version

AUTSSAR

8.5.9 Combinations of multiplication and division rounded off

[SWS_Mfx_00046] Definition of API function Mfx_RMulDiv_<InTypeMn1><InType
Mn2><InTypeMn3>_<OutTypeMn> |

Service Name Mfx_RMulDiv_<InTypeMn1><InTypeMn2><InTypeMn3>_<OutTypeMn>
Syntax <OutType> Mfx_RMulDiv_<InTypeMnl><InTypeMn2><InTypeMn3>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value,
<InType3> z_value
)
Service ID [hex] 0x0122 to 0x013B
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_value First argument
y_value Second argument
z_value Third argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation
Description These routines make a multiplication between the two arguments and a division by the third
argument.
Available via Mfx.h

]

[SWS_Mfx_00047] [These routines make a multiplication between the two arguments
and a division by the third argument:

Return-value = x_value * y_value / z_value |

[SWS_Mfx_00048] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00049] [The result after division by zero is defined by:

* If x_value*y_value > 0 then the function returns the maximum value of the output
type
* If x_value*y_value < 0 then the function returns the minimum value of the output type |

[SWS_Mfx_00051] [The result is rounded off. |
[SWS_Mfx_00052] [Here is the list of implemented functions. |

Function ID[hex] Function prototype : RDiv

0x122 uint16 Mfx_RMulDiv_s32s32s32_u16(sint32 , sint32 ,
sint32);

0x123 sint16 Mfx_RMulDiv_s32s32s32_s16(sint32, sint32 ,
sint32);

AUTSSAR

Function ID[hex]

Function prototype : RDiv

0x124 uint16 Mfx_RMulDiv_u32u32u16_u16(uint32 , uint32,
uint16);

0x125 sint16 Mfx_RMulDiv_s32s32s16_s16(sint32, sint32 ,
sint16);

0x126 uint16 Mfx_RMulDiv_s16u16s16_u16(sint16 , uint16 ,
sint16);

0x127 uint16 Mfx_RMulDiv_s16u16u16_u16(sint16 , uint16 ,
uint16);

0x128 uint16 Mfx_RMulDiv_u16u16u16_u16(uint16 , uint16 ,
uint16);

0x129 sint16 Mfx_RMulDiv_s16u16s16_s16(sint16 , uint16 ,
sint16);

0x12A sint16 Mfx_RMulDiv_s16s16u16_s16(sint16 , sint16,
uint16);

0x12B sint16 Mfx_RMulDiv_s16u16u16_s16(sint16 , uint16 ,
uint16);

0x12C sint16 Mfx_RMulDiv_s16s16s16_s16(sint16 , sint16 ,
sint16);

0x12D uint32 Mfx_RMulDiv_u32u32u32_u32(uint32 , uint32 ,
uint32);

0x12E uint32 Mfx_RMulDiv_u32u32s32_u32(uint32 , uint32 ,
sint32);

0x12F uint32 Mfx_RMulDiv_u32s32u32_u32(uint32 , sint32,
uint32);

0x130 uint32 Mfx_RMulDiv_u32s32s32_u32(uint32, sint32 ,
sint32);

0x131 sint32 Mfx_RMulDiv_s32s32u32_s32(sint32 , sint32,
uint32);

0x132 sint32 Mfx_RMulDiv_s32u32s32_s32(sint32 , uint32,
sint32);

0x133 sint32 Mfx_RMulDiv_s32u32u32_s32(sint32 , uint32 ,
uint32);

0x134 sint32 Mfx_RMulDiv_s32s32s32_s32(sint32, sint32 ,
sint32);

0x135 uint16 Mfx_RMulDiv_u32u32u32_u16(uint32 , uint32 ,
uint32);

0x136 uint16 Mfx_RMulDiv_u16s16s16_u16(uint16, sint16 ,
sint16);

0x137 uint16 Mfx_RMulDiv_u16s16u16_u16(uint16 , sint16,
uint16);

0x138 sint16 Mfx_RMulDiv_u16s16s16_s16(uint16, sint16 ,
sint16);

0x139 sint16 Mfx_RMulDiv_u16s16u16_s16(uint16 , sint16 ,
uint16);

0x13A sint32 Mfx_RMulDiv_u32s32s32_s32(uint32, sint32 ,
sint32);

0x13B sint32 Mfx_RMulDiv_u32s32u32_s32(uint32 , sint32 ,

uint32);

Table 8.12: Implemented Mfx_RMulDiv Functions

Note : The redundancy due to commutativity will be reduced in the next version

AUTSSAR

8.5.10 Combinations of multiplication and shift right

[SWS_Mfx_00053] Definition of API function Mfx_MulShRight_<InTypeMn1><In

TypeMn2>_<OutTypeMn> |

Service Name

Mfx_MulShRight_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx_MulShRight_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value,
uint8 shift
)
Service ID [hex] 0x013C to 0x0151
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First factor
y_value Second factor
shift Shift left of the fixed point result. Must be a constant expression.
Maximum shift according to [SWS_Mfx_00057]
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation

Description

This routine makes a multiplication between the two arguments and applies a shift right defined

by the third argument.

Available via

Mfx.h

]

[SWS_Mfx_00054] [This routine makes a multiplication between the two arguments

and applies a shift right defined by the third argument:

Return-value = (x_value * y_value) >> shift |

[SWS_Mfx_00055] [We precise that for the shift right of a negative number, we always
keep the bit of sign. |

[SWS_Mfx_00056] [Return-value shall be saturated to boundary values in the event

of negative or positive overflow. |

[SWS_Mfx_00057] [Here is the list of implemented functions. |

Function ID[hex]

Associated

Function prototype

maximum shift

u16(sint16, sint16 , uint8);

0x13C uint8 Mfx_MulShRight_s16s16u8_u8(30
sint16 , sint16 , uint8);

0x13D sint8 Mfx_MulShRight_s16s16u8_s8(30
sint16 , sint16 , uint8);

0x13E sint16 Mfx_MulShRight_s16s16u8_ 30
s16(sint16 , sint16 , uint8);

0x13F uint16 Mfx_MulShRight_s16s16u8_ 30

Y%

AUTSSAR

JAN
Function ID[hex] Function prototype Associated
maximum shift

0x140 uint8 Mfx_MulShRight_u32s32u8_u8(63
uint32 , sint32 , uint8);

0x141 sint8 Mfx_MulShRight_u32s32u8_s8(63
uint32 , sint32 , uint8);

0x142 uint16 Mfx_MulShRight_u32s32u8_ 63
u16(uint32, sint32 , uint8);

0x143 sint16 Mfx_MulShRight_u32s32u8_ 63
s16(uint32 , sint32, uint8);

0x144 uint32 Mfx_MulShRight_u32s32u8_ 63
u32(uint32, sint32 , uint8);

0x145 sint32 Mfx_MulShRight_u32s32u8_ 63
s32(uint32 , sint32 , uint8);

0x146 sint8 Mfx_MulShRight_s32s32u8_s8(62
sint32 , sint32 , uint8);

0x147 uint8 Mfx_MulShRight_s32s32u8_u8(62
sint32 , sint32 , uint8);

0x148 sint16 Mfx_MulShRight_s32s32u8_ 62
s16(sint32 , sint32 , uint8);

0x149 uint16 Mfx_MulShRight_s32s32u8_ 62
u16(sint32 , sint32 , uint8);

0x14A uint32 Mfx_MulShRight_s32s32u8_ 62
u32(sint32 , sint32 , uint8);

0x14B sint32 Mfx_MulShRight_s32s32u8_ 62
s32(sint32, sint32 , uint8);

0x14C uint8 Mfx_MulShRight_u32u32u8_u8(63
uint32 , uint32 , uint8);

0x14D sint8 Mfx_MulShRight_u32u32u8_s8(63
uint32 , uint32 , uint8);

0x14E uint16 Mfx_MulShRight_u32u32u8_ 63
u16(uint32 , uint32 , uint8);

0x14F sint16 Mfx_MulShRight_u32u32u8_ 63
s16(uint32 , uint32 , uint8);

0x150 uint32 Mfx_MulShRight_u32u32u8_ 63
u32(uint32 , uint32 , uint8);

0x151 sint32 Mfx_MulShRight_u32u32u8_ 63
s32(uint32 , uint32 , uint8);

Table 8.13: Implemented Mfx_MulShRight Functions

If you want to see an example of the use of these functions, see Chapter 8.7.1 .

AUTSSAR

8.5.11

[SWS_Mfx_00058] Definition of API function Mfx_DivShLeft <InTypeMn1><In

TypeMn2>u8_<OutTypeMn> |

Combinations of division and shift left

Service Name

Mfx_DivShLeft_<InTypeMn1><InTypeMn2>u8_<OutTypeMn>

Shnnax <OutType> Mfx_DivShLeft_<InTypeMnl><InTypeMn2>u8_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value,
uint8 shift
)
Service ID [hex] 0x0152 to 0x016E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_value Numerator
y_value Denominator
shift Shift left of the fixed point result. Must be a constant expression.
Maximum shift according to [SWS_Mfx_00064].
Parameters (inout) None
Parameters (out) None
Return value <OutType> Quotient result

Description

This routine applies a shift left defined by the third argument to the first argument, and then
makes a division by the second argument.

Available via

Mfx.h

]

[SWS_Mfx_00059] [This routine applies a shift left defined by the third argument to

the first argument, and then makes a division by the second argument:

Return-value = (x_value << shift) / y_value |

[SWS_Mfx_00060] [We precise that for the shift left of a negative number, we always
keep the bit of sign. |

[SWS_Mfx_00061] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00062] [The result after division by zero is defined by:
* If x_value > 0 then the function returns the maximum value of the output type

* If x_value < 0 then the function returns the minimum value of the output type |

[SWS_Mfx_00064] [Here is the list of implemented functions. |

AUTSSAR

Function ID[hex]

Function prototype

Associated maximum shift

0x152

uint8 Mfx_DivShLeft_u8u8u8_u8(uint8
, uint8 , uint8);

0x153 uint8 Mfx_DivShLeft_u16u16u8_u8(16
uint16 , uint16 , uint8);

0x154 uint16 Mfx_DivShLeft_u16ui6u8_u16(16
uint16 , uint16 , uint8);

0x155 sint16 Mfx_DivShLeft_s16s16u8_s16(16
sint16 , sint16 , uint8);

0x156 sint16 Mfx_DivShLeft_s16u16u8_s16(16
sint16 , uint16 , uint8);

0x157 uint16 Mfx_DivShLeft_u32u32u8_u16(31
uint32 , uint32 , uint8);

0x158 uint32 Mfx_DivShLeft_u32u32u8_u32(31
uint32 , uint32 , uint8);

0x159 sint32 Mfx_DivShLeft_s32s32u8_ s32(31
sint32 , sint32 , uint8);

0x15A sint32 Mfx_DivShLeft_s32u32u8_s32(31
sint32 , uint32 , uint8);

0x15B uint8 Mfx_DivShLeft_u32s32u8_u8(31
uint32 , sint32 , uint8);

0x15C sint8 Mfx_DivShLeft_u32s32u8_s8(31
uint32 , sint32 , uint8);

0x15D uint16 Mfx_DivShLeft_u32s32u8_u16(31
uint32 , sint32 , uint8);

0x15E sint16 Mfx_DivShLeft_u32s32u8_s16(31
uint32 , sint32 , uint8);

0x15F uint32 Mfx_DivShLeft_u32s32u8_u32(31
uint32 , sint32 , uint8);

0x160 sint32 Mfx_DivShLeft_u32s32u8_s32(31
uint32 , sint32 , uint8);

0x161 sint8 Mfx_DivShLeft_s32s32u8_s8(31
sint32 , sint32 , uint8);

0x162 uint8 Mfx_DivShLeft_s32s32u8_u8(31
sint32 , sint32 , uint8);

0x163 sint16 Mfx_DivShLeft _s32s32u8_ s16(31
sint32 , sint32 , uint8);

0x164 uint16 Mfx_DivShLeft_s32s32u8_u16(31
sint32 , sint32 , uint8);

0x165 uint32 Mfx_DivShLeft_s32s32u8_u32(31
sint32 , sint32 , uint8);

0x166 uint8 Mfx_DivShLeft_u32u32u8_u8(31
uint32 , uint32 , uint8);

0x167 sint8 Mfx_DivShLeft_u32u32u8_s8(31
uint32 , uint32 , uint8);

0x168 sint16 Mfx_DivShLeft_u32u32u8_s16(31
uint32 , uint32 , uint8);

0x169 sint32 Mfx_DivShLeft_u32u32u8_s32(31
uint32 , uint32 , uint8);

0x16A uint8 Mfx_DivShLeft_s32u32u8_u8(31
sint32 , uint32 , uint8);

0x16B sint8 Mfx_DivShLeft_s32u32u8_s8(31

sint32 , uint32 , uint8);

V

AUTSSAR

JAN

Function ID[hex] Function prototype Associated maximum shift
0x16C uint16 Mfx_DivShLeft_s32u32u8_u16(31

sint32 , uint32 , uint8);
0x16D sint16 Mfx_DivShLeft_s32u32u8_s16(31

sint32 , uint32 , uint8);
0x16E uint32 Mfx_DivShLeft_s32u32u8_u32(31

sint32 , uint32 , uint8);

Table 8.14: Implemented Mfx_DivShLeft Functions

If you want to see an example of the use of these functions, see Chapter 8.7.2 .

8.5.12 Modulo

[SWS_Mfx_00065] Definition of API function Mfx_Mod_<TypeMn> |

Service Name Mfx_Mod_<TypeMn>
Syntax <Type> Mfx_Mod_<TypeMn> (
<Type> x_value,
<Type> y_value
)
Service ID [hex] 0x016F to 0x0178
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <Type> Result of the calculation
Description This routine returns the remainder of the division x_value / y_value if y_value is not zero.
Available via Mfx.h

J
[SWS_Mfx_00066] [If y_value is zero, the result is zero. |

[SWS_Mfx_00068] [In other cases, Return-value = x_value mod y_value |
[SWS_Mfx_00069] [The sign of the remainder is the same than the sign of x_value. |

[SWS_Mfx_00070] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

Ox16F uint8 Mfx_Mod_u8(uint8 , uint8);
0x170 sint8 Mfx_Mod_s8(sint8 , sint8);
0x171 uint16 Mfx_Mod_u16(uint16 , uint16);
0x172 sint16 Mfx_Mod_s16(sint16 , sint16);

AUTSSAR

A
Function ID[hex] Function prototype
0x173 uint32 Mfx_Mod_u32(uint32 , uint32);
0x174 sint32 Mfx_Mod_s32(sint32 , sint32);
0x175 uint8 Mfx_Mod_u32u32_u8(uint32 , uint32)
0x176 sint8 Mfx_Mod_s32s32_s8(sint32 , sint32)
0x177 uint16 Mfx_Mod_u32u32_u16(uint32 , uint32)
0x178 sint16 Mfx_Mod_s32s32_s16(sint32 , sint32)

Table 8.15: Implemented Mfx_Mod Functions

AUTSSAR

8.5.13 Limiting

[SWS_Mfx_00073] Definition of API function Mfx_Limit_<TypeMn> |

Service Name

Mfx_Limit_<TypeMn>

Syntax <Type> Mfx_Limit_<TypeMn> (
<Type> value,
<Type> min_value,
<Type> max_value
)
Service ID [hex] 0x0179 to 0x017E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) value input value.
min_value Lower Bound. min_value shall not be strictly greater than max_
value.
max_value Upper Bound. max_value shall not be strictly lower than min_
value.
Parameters (inout) None
Parameters (out) None
Return value <Type> Result of the calculation

Description

This routine limits the input value between Lower Bound and Upper Bound.

Available via

Mfx.h

]

[SWS_Mfx_00074] [Return-value = min_value if value < min_value |

[SWS_Mfx_00075] [Return-value = max_value if value > max_value |

[SWS_Mfx_00076] [Return-value = value in the other cases |

[SWS_Mfx_00079] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x179 uint8 Mfx_Limit_u8(uint8 , uint8, uint8);
0x17A sint8 Mfx_Limit_s8(sint8 , sint8, sint8);
0x17B uint16 Mfx_Limit_u16(uint16 , uint16, uint16);
0x17C sint16 Mfx_Limit_s16(sint16 , sint16, sint16);
0x17D uint32 Mfx_Limit_u32(uint32 , uint32, uint32);
0x17E sint32 Mfx_Limit_s32(sint32 , sint32, sint32);

Table 8.16: Implemented Mfx_Limit Functions

AUTSSAR

8.5.14 Limitations with only one value for minimum and maximum

[SWS_Mfx_00082] Definition of API function Mfx_Minmax_<TypeMn> |

Service Name Mfx_Minmax_<TypeMn>
Syntax <Type> Mfx_Minmax_<TypeMn> (
<Type> value,
<Type> minmax_value
)
Service ID [hex] 0x017F to 0x0184
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) value First argument
minmax_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <Type> Result of the calculation
Description The routine limits a value to a minimum or a maximum that depends on the sign of the minmax_
value.
Available via Mfx.h

]

The result value is :

[SWS_Mfx_00083] [minmax_value if minmax_value > 0 and value > minmax_value |
[SWS_Mfx_00084] [minmax_value if minmax_value < 0 and value < minmax_value |
[SWS_Mfx_00085] [value in the other cases |

[SWS_Mfx_00086] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x17F uint8 Mfx_Minmax_u8(uint8 , uint8);
0x180 sint8 Mfx_Minmax_s8(sint8 , sint8);
0x181 uint16 Mfx_Minmax_u16(uint16 , uint16);
0x182 sint16 Mfx_Minmax_s16(sint16 , sint16);
0x183 uint32 Mfx_Minmax_u32(uint32 , uint32);
0x184 sint32 Mfx_Minmax_s32(sint32 , sint32);

Table 8.17: Implemented Mfx_MinMax Functions

AUTSSAR

8.5.15 Minimum and maximum

[SWS_Mfx_00090] Definition of API function Mfx_Min_<TypeMn> |

Service Name

Mfx_Min_<TypeMn>

Syntax <Type> Mfx_Min_<TypeMn> (
<Type> x_value,
<Type> y_value
)
Service ID [hex] 0x0185 to 0x018A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <Type> Result of the calculation

Description

This routine returns the minimum between two values.

Available via

Mfx.h

]

[SWS_Mfx_00091] [Return-value = x_value if x_value < y_value|
[SWS_Mfx_00092] [Return-value = y_value in the other case |

[SWS_Mfx_00093] Definition of API function Mfx_Max_<TypeMn> |

Service Name

Mfx_Max_<TypeMn>

Syntax <Type> Mfx_Max_<TypeMn> (
<Type> x_value,
<Type> y_value
)
Service ID [hex] 0x018B to 0x0190
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <Type> Result of the calculation

Description

This routine returns the maximum between two values.

Available via

Mfx.h

]

[SWS_Mfx_00094] [Return-value = x_value if x_value > y_value|
[SWS_Mfx_00095] [Return-value = y_value in the other case |

[SWS_Mfx_00096] [Here is the list of implemented functions. |

AUTSSAR

Function ID[hex] Function prototype

0x185 uint8 Mfx_Min_u8(uint8 , uint8);
0x186 sint8 Mfx_Min_s8(sint8 , sint8);
0x187 uint16 Mfx_Min_u16(uint16 , uint16);
0x188 sint16 Mfx_Min_s16(sint16 , sint16);
0x189 uint32 Mfx_Min_u32(uint32 , uint32);
0x18A sint32 Mfx_Min_s32(sint32 , sint32);
0x18B uint8 Mfx_Max_u8(uint8 , uint8);
0x18C sint8 Mfx_Max_s8(sint8 , sint8);
0x18D uint16 Mfx_Max_u16(uint16 , uint16);
0x18E sint16 Mfx_Max_s16(sint16 , sint16);
0x18F uint32 Mfx_Max_u32(uint32 , uint32);
0x190 sint32 Mfx_Max_s32(sint32 , sint32);

Table 8.18: Implemented Mfx_Min Functions

8.5.16 Signum Function

[SWS_Mfx_91001] Definition of API function Mfx_Sgn_s32_s8
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011

[

Service Name

Mfx_Sgn_s32_s8

Syntax sint8 Mfx_Sgn_s32_s8 (
sint32 x_value

)
Service ID [hex] 0x01dc
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value | First argument
Parameters (inout) None
Parameters (out) None
Return value sint8 ‘ Sign of the first argument

Description

Signum function. Extract the sign of an integer value.

Available via

Mfx.h

]

[SWS_Mfx_00223] [Extract the sign of an integer value.

Return-value = -1, if x_value < 0; 0, if x_value == 0; 1, if x_value > 0|

8.6 2n Scaled Integer Math Functions

For all the following functions, upper case letters will be used for operands, and lower

case letters will be used for radix.

For example :

It is defined as follows:

AUTSSAR

» "X" is the operand, "a" is the parameter that represents its radix,
» "C"is the result, "c" is the parameter for its radix.

A Radix will always be a signed integer on 16 bits (sint16). For that reason, the
mnemonic will not appear in the name of the functions in order to have shorter names.

For all operations, the valid range is given for information. Indeed, operations with
parameters outside of the valid range will be saturated within the range of the output
type. It can help for optimization purpose.

AUTSSAR

8.6.1 Conversion

8.6.1.1 16-Bit to 8-Bit 2n Scaled Integer Conversion

[SWS_Mfx_00100] Definition of API function Mfx_ConvertP2_<InTypeMn>_<Out

TypeMn> |

Service Name

Mfx_ConvertP2_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Mfx_ConvertP2_<InTypeMn>_<OutTypeMn> (
<InType> x,
sintl6 a,
sintl6 c
)
Service ID [hex] 0x0191 to 0x0192
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed-point operand.
a Radix point position of the fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -15<=(c-a) <=7
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ =2"(c-a) * x
Description The routine converts a scaled 16-bit integer to a scaled 8-bit integer.
Available via Mfx.h

]

[SWS_Mfx_00101] [The function returns the integer value of the fixed point conversion
(C), determined by C = 2°(c-a) * x.|

[SWS_Mfx_00102] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00103] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00104] [Here is the list of implemented functions. |

Function ID[hex] Function prototype
0x191 uint8 Mfx_ConvertP2_u16_u8(uint16 x, sint16 a, sint16 c)

0x192 sint8 Mfx_ConvertP2_s16_s8(sint16 x, sint16 a, sint16 c)
Table 8.19: Implemented Mfx_ConvertP2 Functions (16-Bit to 8-Bit)

AUTSSAR

8.6.1.2 8-Bit to 16-Bit 2n Scaled Integer Conversion

[SWS_Mfx_00106] Definition of API function Mfx_ConvertP2_<InTypeMn>_<Out

TypeMn> |

Service Name

Mfx_ConvertP2_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Mfx_ConvertP2_<InTypeMn>_<OutTypeMn> (
<InType> x,
sintl6 a,
sintl6 c
)
Service ID [hex] 0x0193 to 0x0194
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed-point operand.
a Radix point position of the fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -7 <= (c - a) <= 15
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ =2"(c-a) * x

Description

The routine converts a scaled 8-bit integer to a scaled 16-bit integer.

Available via

Mfx.h

]

[SWS_Mfx_00107] [The function returns the integer value of the fixed point conversion

(C), determined by C = 2°(c-a) * x.|

[SWS_Mfx_00108] [Return-value shall be saturated to boundary values in the event

of negative or positive overflow. |

[SWS_Mfx_00109] [If it is necessary to round the result of this equation, it is rounded

toward zero. |

[SWS_Mfx_00110] [Here is the list of implemented functions. |

Function ID[hex]

Function prototype

0x193

uint16 Mfx_ConvertP2_u8_u16(uint8 x, sint16 a, sint16 c)

0x194

sint16 Mfx_ConvertP2_s8 s16 (sint8 x, sint16 a, sint16 c)

Table 8.20: Implemented Mfx_ConvertP2 Functions (8-Bit to 16-Bit)

AUTSSAR

8.6.1.3 32-Bit to 16-Bit 2n Scaled Integer Conversion

[SWS_Mfx_00112] Definition of API function Mfx_ConvertP2_<InTypeMn>_<Out

TypeMn> |

Service Name

Mfx_ConvertP2_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Mfx_ConvertP2_<InTypeMn>_<OutTypeMn> (
<InType> x,
sintl6 a,
sintl6 c
)
Service ID [hex] 0x0195 to 0x0196
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed-point operand.
a Radix point position of the fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -31 <= (c-a) <= 15
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ =2"(c-a) * x

Description

The routine converts a scaled 32-bit integer to a scaled 16-bit integer.

Available via

Mfx.h

]

[SWS_Mfx_00113] [The function returns the integer value of the fixed point conversion
(C), determined by C = 2°(c-a) * x.|

[SWS_Mfx_00114] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00115] [If it is necessary to round the result of this equation, it is rounded

toward zero. |

[SWS_Mfx_00116] [Here is the list of implemented functions. |

Function ID[hex]

Function prototype

0x195

uint16 Mfx_ConvertP2_u32_u16 (uint32 x, sint16 a, sint16 c)

0x196

sint16 Mfx_ConvertP2_s32_s16 (sint32 x, sint16 a, sint16 c)

Table 8.21: Implemented Mfx_ConvertP2 Functions (32-Bit to 16-Bit)

AUTSSAR

8.6.1.4 16-Bit to 32-Bit 2n Scaled Integer Conversion

[SWS_Mfx_00118] Definition of API function Mfx_ConvertP2_<InTypeMn>_<Out

TypeMn> |

Service Name

Mfx_ConvertP2_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Mfx_ConvertP2_<InTypeMn>_<OutTypeMn> (
<InType> x,
sintl6 a,
sintl6 c
)
Service ID [hex] 0x0197 to 0x0198
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed-point operand.
a Radix point position of the fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -15 <= (c - a) <= 31
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ =2"(c-a) * x

Description

The routine converts a scaled 16-bit integer to a scaled 32-bit integer.

Available via

Mfx.h

]

[SWS_Mfx_00119] [The function returns the integer value of the fixed point conversion
(C), determined by C = 2°(c-a) * x.|

[SWS_Mfx_00120] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00121] [If it is necessary to round the result of this equation, it is rounded

toward zero. |

[SWS_Mfx_00122] [Here is the list of implemented functions. |

Function ID[hex]

Function prototype

0x197

uint32 Mfx_ConvertP2_u16_u32(uint16 x, sint16 a, sint16 c)

0x198

sint32 Mfx_ConvertP2_s16_s32(sint16 x, sint16 a, sint16 c)

Table 8.22: Implemented Mfx_ConvertP2 Functions (16-Bit to 32-Bit)

AUTSSAR

8.6.2 Multiplication

8.6.2.1 16-Bit Multiplication of 2n Scaled Integer

[SWS_Mfx_00124] Definition of API function Mfx_MulP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name

Mfx_MulP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx_MulP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x0199 to 0x019E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.
a Radix point position of the first fixed point operand. Must be a
constant expression.
b Radix point position of the second fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -31 <= (c-b-a) <= 15
Parameters (inout) None
Parameters (out) None
Return value <OutType> =2"(c-b-a) *[x *y]

Description

The routine multiplies two 16-bit integers with scaling factors set by input parameters.

Available via

Mfx.h

]

[SWS_Mfx_00125] [The function returns the integer value of the fixed point multipli-
cation (C), determined by C = 2°(c-b-a) * [x * y].|

[SWS_Mfx_00126] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00127] [If it is necessary to round the result of this equation, it is rounded

toward zero. |

[SWS_Mfx_00128] [Here is the list of implemented functions. |

Function ID[hex]

Function prototype

0x199

uint16 Mfx_MulP2_u16u16_u16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 ¢)

0x19A

uint16 Mfx_MulP2_u16s16_u16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

AUTSSAR

A

Function ID[hex] Function prototype

0x19B uint16 Mfx_MulP2_s16s16_u16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x19C sint16 Mfx_MulP2_u16u16_s16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 ¢)

0x19D sint16 Mfx_MulP2_u16s16_s16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x19E sint16 Mfx_MulP2_s16s16_s16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

Table 8.23: Implemented Mfx_MulP2 Functions (16-Bit)

8.6.2.2 32-Bit Multiplication of 2n Scaled Integer

[SWS_Mfx_00130] Definition of API function Mfx_MulP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_MulP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx MulP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x019F to Ox01A4
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.
a Radix point position of the first fixed point operand. Must be a
constant expression.
b Radix point position of the second fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -63 <= (c - b - a) <= 31
Parameters (inout) None
Parameters (out) None
Return value <OutType> =2%(c-b-a) * [x *y]
Description The routine multiplies two 32-bit integers with scaling factors set by input parameters.
Available via Mfx.h

]

[SWS_Mfx_00131] [The function returns the integer value of the fixed point multipli-
cation (C), determined by C = 2°(c-b-a) * [x * y].|

[SWS_Mfx_00132] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

AUTSSAR

[SWS_Mfx_00133] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00134] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x19F uint32 Mfx_MulP2_u32u32_u32(uint32 x, uint32 y, sint16 a,
sint16 b, sint16 c)

0x1A0 uint32 Mfx_MulP2_u32s32_u32(uint32 x, sint32 y, sint16 a,
sint16 b, sint16 c)

Ox1A1 uint32 Mfx_MulP2_s32s32_u32(sint32 x, sint32 y, sint16 a,
sint16 b, sint16 c)

0x1A2 sint32 Mfx_MulP2_u32u32_s32(uint32 x, uint32 y, sint16 a,
sint16 b, sint16 ¢)

0x1A3 sint32 Mfx_MulP2_u32s32_s32(uint32 x, sint32 y, sint16 a,
sint16 b, sint16 ¢)

0x1A4 sint32 Mfx_MulP2_s32s32_s32(sint32 x, sint32 y, sint16 a,
sint16 b, sint16 ¢)

Table 8.24: Implemented Mfx_MulP2 Functions (32-Bit)

8.6.3 Division
8.6.3.1 16-Bit Division of 2n Scaled Integer

[SWS_Mfx_00136] Definition of API function Mfx_DivP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_DivP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx DivP2_ <InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01A5 to 0x01AC
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.
a Radix point position of the first fixed point operand. Must be a
constant expression.
b Radix point position of the second fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -15 <= (c + b - a) <= 31
Parameters (inout) None
Parameters (out) None

AUTSSAR

A
Return value <OutType> | =[2"(c+b-a) *x]/y
Description The routine divides two 16-bit integers with scaling factors set by input parameters.
Available via Mfx.h

]

[SWS_Mfx_00137] [The function returns the integer value of the fixed point quotient
(C), determined by C = [2°(c+b-a) * X] / y.]

[SWS_Mfx_00138] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00139] [If the divisor, y, is zero, the result is defined by:
* If x > 0 then the function returns the maximum value of the output type

* If x < 0 then the function returns the minimum value of the output type |

[SWS_Mfx_00141] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00142] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x1A5 uint16 Mfx_DivP2_u16u16_u16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 c)

0x1A6 uint16 Mfx_DivP2_u16s16_u16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

0x1A7 uint16 Mfx_DivP2_s16u16_u16(sint16 x, uint16 y, sint16 a,
sint16 b, sint16 c)

0x1A8 uint16 Mfx_DivP2_s16s16_u16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1A9 sint16 Mfx_DivP2_u16u16_s16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 ¢)

Ox1AA sint16 Mfx_DivP2_u16s16_s16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1AB sint16 Mfx_DivP2_s16u16_s16(sint16 x, uint16 y, sint16 a,
sint16 b, sint16 c)

0x1AC sint16 Mfx_DivP2_s16s16_s16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

Table 8.25: Implemented Mfx_DivP2 Functions (16-Bit)

AUTSSAR

8.6.3.2 32-Bit Division of 2n Scaled Integer

[SWS_Mfx_00144] Definition of API function Mfx_DivP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name

Mfx_DivP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx _DivP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01AD to 0x01B4
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
y Integer value of the fixed point operand.
a Radix point position of the first fixed point operand. Must be a
constant expression.
b Radix point position of the second fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -31 <= (c + b - a) <= 63
Parameters (inout) None
Parameters (out) None
Return value <OutType> | =[2%(c+b-a) *x]/y

Description

The routine divides two 32-bit integers with scaling factors set by input parameters.

Available via

Mfx.h

]

[SWS_Mfx_00145] [The function returns the integer value of the fixed point quotient
(C), determined by C = [2°(c+b-a) * x] / y.|

[SWS_Mfx_00146] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00147] [If the divisor, y, is zero, the result is defined by:

* If x > 0 then the function returns the maximum value of the output type

* If x < 0 then the function returns the minimum value of the output type |

[SWS_Mfx_00149] [If it is necessary to round the result of this equation, it is rounded

toward zero. |

[SWS_Mfx_00150] [Here is the list of implemented functions. |

AUTSSAR

Function ID[hex] Function prototype

0x1AD uint32 Mfx_DivP2_u32u32_u32(uint32 x, uint32 y, sint16 a,
sint16 b, sint16 ¢)

0x1AE uint32 Mfx_DivP2_u32s32_u32(uint32 x, sint32 y, sint16 a,
sint16 b, sint16 c)

Ox1AF uint32 Mfx_DivP2_s32u32_u32(sint32 x, uint32 y, sint16 a,
sint16 b, sint16 c)

0x1B0 uint32 Mfx_DivP2_s32s32_u32(sint32 x, sint32 y, sint16 a,
sint16 b, sint16 c)

0x1B1 sint32 Mfx_DivP2_u32u32_s32(uint32 x, uint32 y, sint16 a,
sint16 b, sint16 ¢)

0x1B2 sint32 Mfx_DivP2_u32s32_s32(uint32 x, sint32 y, sint16 a,
sint16 b, sint16 ¢)

0x1B3 sint32 Mfx_DivP2_s32u32_s32(sint32 x, uint32 y, sint16 a,
sint16 b, sint16 ¢)

0x1B4 sint32 Mfx_DivP2_s32s32_s32(sint32 X, sint32 y, sint16 a,
sint16 b, sint16 c)

Table 8.26: Implemented Mfx_DivP2 Functions (32-Bit)

8.6.4 Addition
8.6.4.1 16-Bit Addition of 2n Scaled Integer

[SWS_Mifx_00152] Definition of API function Mfx_AddP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_AddP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_ AddP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01B5 to 0x01BA
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.

a Radix point position of the first fixed point operand. Must be a
constant expression.

b Radix point position of the second fixed point operand. Must be a
constant expression.

c Radix point position of the fixed point result. Must be a constant
expression. Valid range: 0 <=|a-b|<=15(c-b)<=15,(a-¢C) <=
15,a>=b(c-a)<=15,(b-c)<=15,a<b

Parameters (inout) None

Parameters (out) None

Return value <OutType> a>=b:2%(c-a) *[x + (y * 2°(a-b))],
a<b: 2°(c-b) * [(x * 2°(b-a)) +]

\Y

AUTSSAR

A

Description The routine adds two 16-bit integers with scaling factors set by input parameters.

Available via Mfx.h

]

[SWS_Mfx_00153] [The function returns the integer value of the fixed point sum (C),
determined by

a>b:C=2(c-a)*[x+(y*2(ab)],
a<b: C=2"ch) *[(x*2'(b-a) +y].]

[SWS_Mfx_00154] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00155] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00156] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x1B5 uint16 Mfx_AddP2_u16u16_u16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1B6 uint16 Mfx_AddP2_u16s16_u16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1B7 uint16 Mfx_AddP2_s16s16_u16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1B8 sint16 Mfx_AddP2_u16u16_s16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 c)

0x1B9 sint16 Mfx_AddP2_u16s16_s16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

0x1BA sint16 Mfx_AddP2_s16s16_s16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

Table 8.27: Implemented Mfx_AddP2 Functions (16-Bit)

AUTSSAR

8.6.4.2 32-Bit Addition of 2n Scaled Integer

[SWS_Mfx_00158] Definition of API function Mfx_AddP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_AddP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_ AddP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01BB to 0x01CO0
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.

a Radix point position of the first fixed point operand. Must be a
constant expression.

b Radix point position of the second fixed point operand. Must be a
constant expression.

c Radix point position of the fixed point result. Must be a constant
expression. Valid range: 0 <=|a-b|<=31 (c-b) <=31, (a-c) <=
31,a>=b(c-a)<=31,(b-c)<=31,a<b

Parameters (inout) None
Parameters (out) None
Return value <OutType> a>=b:2%(c-a) * [x + (y * 2°(a-b))],
a<b: 2°(c-b) * [(x * 2°(b-a)) +y]
Description The routine adds two 32-bit integers with scaling factors set by input parameters.
Available via Mfx.h

]

[SWS_Mfx_00159] [The function returns the integer value of the fixed point sum (C),
determined by

a>b:C=2(c-a)*[x+(y*2(a-b))],
a<b: C=2cb) *[(x *2°(b-a)) + Y]]

[SWS_Mfx_00160] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00161] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

AUTSSAR

[SWS_Mfx_00162] [Here is the list of implemented functions. |

Function ID[hex]

Function prototype

0x1BB

uint32 Mfx_AddP2_u32u32_u32(uint32 x, uint32 y, sint32 a,
sint32 b, sint32 c)

0x1BC uint32 Mfx_AddP2_u32s32_u32(uint32 x, sint32 y, sint32 a,
sint32 b, sint32 c)

0x1BD uint32 Mfx_AddP2_s32s32_u32(sint32 x, sint32 y, sint32 a,
sint32 b, sint32 ¢)

0x1BE sint32 Mfx_AddP2_u32u32_s32(uint32 x, uint32 y, sint32 a,
sint32 b, sint32 ¢)

0x1BF sint32 Mfx_AddP2_u32s32_s32(uint32 x, sint32 y, sint32 a,
sint32 b, sint32 ¢)

0x1CO0 sint32 Mfx_AddP2_s32s32_s32(sint32 x, sint32 y, sint32 a,

sint32 b, sint32 c)

8.6.5 Subtraction

Table 8.28: Implemented Mfx_AddP2 Functions (32-Bit)

8.6.5.1 16-Bit Subtraction of 2n Scaled Integer

[SWS_Mfx_00164] Definition of APl function Mfx_SubP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name

Mfx_SubP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>

Syntax <OutType> Mfx_SubP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01C1 to 0x01C8
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.

a Radix point position of the first fixed point operand. Must be a
constant expression.

b Radix point position of the second fixed point operand. Must be a
constant expression.

c Radix point position of the fixed point result. Must be a constant
expression. Valid range: 0 <= |a-b|<=15(c-b)<=15,(a-¢C) <=
15,a>=b(c-a)<=15,(b-c)<=15,a<b

Parameters (inout) None
Parameters (out) None
Return value <OutType> a>=b:2%(c-a) *[x- (y * 2°(a-b))]

a<b:2'(c-b) * [(x * 2°(b-a)) -]

Description

The routine subtracts two 16-bit integers with scaling factors set by input parameters.

\Y

AUTSSAR

| Available via Mfx.h

]

[SWS_Mfx_00165] [The function returns the integer value of the fixed point difference
(C), determined by

a>b:C=2c-a)*[x-(y*2(ab))],
a<b: C=2(cb) *[(x*2'(b-a)) - y]

[SWS_Mfx_00166] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00167] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00168] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x1C1 uint16 Mfx_SubP2_u16u16_u16(uint16 x, uint16 vy, sint16 a,
sint16 b, sint16 c)

0x1C2 uint16 Mfx_SubP2_u16s16_u16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1C3 uint16 Mfx_SubP2_s16u16_u16(sint16 x, uint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1C4 uint16 Mfx_SubP2_s16s16_u16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

0x1C5 sint16 Mfx_SubP2_u16u16_s16(uint16 x, uint16 y, sint16 a,
sint16 b, sint16 c)

0x1C6 sint16 Mfx_SubP2_u16s16_s16(uint16 x, sint16 y, sint16 a,
sint16 b, sint16 c)

0x1C7 sint16 Mfx_SubP2_s16u16_s16(sint16 x, uint16 y, sint16 a,
sint16 b, sint16 c)

0x1C8 sint16 Mfx_SubP2_s16s16_s16(sint16 x, sint16 y, sint16 a,
sint16 b, sint16 ¢)

Table 8.29: Implemented Mfx_SubP2 Functions (16-Bit)

AUTSSAR

8.6.5.2 32-Bit Subtraction of 2n Scaled Integer

[SWS_Mfx_00170] Definition of API function Mfx_SubP2_<InTypeMn1><InType
Mn2>_<OutTypeMn> |

Service Name Mfx_SubP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_SubP2_<InTypeMnl><InTypeMn2>_ <OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01C9 to 0x01D0O
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.

a Radix point position of the first fixed point operand. Must be a
constant expression.

b Radix point position of the second fixed point operand. Must be a
constant expression.

c Radix point position of the fixed point result. Must be a constant
expression. Valid range: 0 <=|a-b|<=31 (c-b) <=31, (a-c) <=
31,a>=b(c-a)<=31,(b-c)<=31,a<b

Parameters (inout) None
Parameters (out) None
Return value <OutType> a>=b:2%(c-a) * [x-(y*2°(a-b))]
a<b: 2°(c-b) * [(x * 2°(b-a)) - y]
Description The routine subtracts two 32-bit integers with scaling factors set by input parameters.
Available via Mfx.h

]

[SWS_Mfx_00171] [The function returns the integer value of the fixed point difference
(C), determined by

a>b:C=2%c-a)*[x-(y*2(ab))],
a<b: C=2"cb)*[(x*2°(b-a)) - y].]

[SWS_Mfx_00172] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00173] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

AUTSSAR

[SWS_Mfx_00174] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x1C9 uint32 Mfx_SubP2_u32u32_u32(uint32 x, uint32 y, sint32 a,
sint32 b, sint32 c)

0x1CA uint32 Mfx_SubP2_u32s32_u32(uint32 x, sint32 y, sint32 a,
sint32 b, sint32 c)

0x1CB uint32 Mfx_SubP2_s32u32_u32(sint32 x, uint32 y, sint32 a,
sint32 b, sint32 ¢)

0x1CC uint32 Mfx_SubP2_s32s32_u32(sint32 x, sint32 y, sint32 a,
sint32 b, sint32 ¢)

0x1CD sint32 Mfx_SubP2_u32u32_s32(uint32 x, uint32 y, sint32 a,
sint32 b, sint32 ¢)

0x1CE sint32 Mfx_SubP2_u32s32_s32(uint32 x, sint32 y, sint32 a,
sint32 b, sint32 c)

0x1CF sint32 Mfx_SubP2_s32u32_s32(sint32 x, uint32y, sint32 a,
sint32 b, sint32 c)

0x1D0 sint32 Mfx_SubP2_s32s32_s32(sint32 x, sint32 y, sint32 a,
sint32 b, sint32 c)

Table 8.30: Implemented Mfx_SubP2 Functions (32-Bit)

8.6.6 Absolute Difference of 2n Scaled Integer

[SWS_Mfx_00176] Definition of API function Mfx_AbsDiffP2_<InTypeMn1><In
TypeMn2>_<OutTypeMn> |

Service Name Mfx_AbsDiffP2_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Mfx_AbsDiffP2_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x,
<InType2> vy,
sintl6 a,
sintl6 b,
sintl6 c
)
Service ID [hex] 0x01D1 to 0x01D6
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
Integer value of the fixed point operand.

a Radix point position of the first fixed point operand. Must be a
constant expression.

b Radix point position of the second fixed point operand. Must be a
constant expression.

c Radix point position of the fixed point result. Must be a constant
expression. Valid range: 0 <=|a-b| <= 15 (c-b) <= 15, (a-c) <=
15,a>=b(c-a)<=15,(b-c)<=15,a<b

Parameters (inout) None

Parameters (out) None

Return value <OutType> a>=b:2%(c-a) * |x- (y * 2°(a-b))|
a<b: 2°(c-b) * |(x * 2°(b-a)) - y|

AUTSSAR

Description The routine subtracts and takes the absolute value of two 16-bit integers with scaling factors set
by input parameters.

Available via Mfx.h

]

[SWS_Mfx_00177] [The function returns the integer value of the fixed point absolute

difference (C), determined by

a>b:C=2%c-a) " [x-(y*2°(a-b))l,
a<b: C=2%ch)*|(x*2'(b-a)) - yl.]

[SWS_Mfx_00178] [Return-value shall be saturated to boundary values in the event

of negative or positive overflow. |

[SWS_Mfx_00179] [If it is necessary to round the result of this equation, it is rounded

toward zero. |

[SWS_Mfx_00180] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

0x1D1 uint16 Mfx_AbsDiffP2_u16u16_u16(uint16 x, uint16 y, sint16
a, sint16 b, sint16 c)

0x1D2 uint16 Mfx_AbsDiffP2_u16s16_u16(uint16 x, sint16 y, sint16
a, sint16 b, sint16 c)

0x1D3 uint16 Mfx_AbsDiffP2_s16s16_u16(sint16 x, sint16 y, sint16
a, sint16 b, sint16 c)

0x1D4 sint16 Mfx_AbsDiffP2_u16u16_s16(uint16 x, uint16 y, sint16
a, sint16 b, sint16 c)

0x1D5 sint16 Mfx_AbsDiffP2_u16s16_s16(uint16 x, sint16 y, sint16
a, sint16 b, sint16 ¢)

0x1D6 sint16 Mfx_AbsDiffP2_s16s16_s16(sint16 x, sint16 y, sint16
a, sint16 b, sint16 c)

Table 8.31: Implemented Mfx_AbsDiffP2 Functions (16-Bit)

AUTSSAR

8.6.7 Absolute Value
8.6.7.1 16-Bit Absolute Value of 2n Scaled Integer

[SWS_Mfx_00182] Definition of API function Mfx_AbsP2_s16_<OutTypeMn> |

Service Name Mfx_AbsP2_s16_<OutTypeMn>
Syntax <OutType> Mfx_AbsP2_sl16_<OutTypeMn> (
<InTypel> x,
sintl6 a,
sintl6 c
)
Service ID [hex] 0x01D7 to 0x01D8
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
a Radix point position of the first fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -15 <= (c-a) <= 15
Parameters (inout) None
Parameters (out) None
Return value <OutType> | 2°(c-a) * |x|
Description The routine takes the absolute value of a 16-bit integer with scaling factors set by input
parameters.
Available via Mfx.h

]

[SWS_Mfx_00183] [The function returns the integer value of the fixed point absolute
value (C), deter-mined by C = 2"(c-a) * |x|.]

[SWS_Mfx_00184] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00185] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00186] [Here is the list of implemented functions. |

Function ID[hex] Function prototype

()

()
0x1D7 uint16 Mfx_AbsP2_s16_u16(sint16 x, sint16 a, sint16 c)
0x1D8 sint16 Mfx_AbsP2_s16_s16(sint16 x, sint16 a, sint16 c)

Table 8.32: Implemented Mfx_AbsP2 Functions (16-Bit)

AUTSSAR

8.6.7.2 32-Bit Absolute Value of 2n Scaled Integer

[SWS_Mfx_00188] Definition of API function Mfx_AbsP2_s32_<OutTypeMn> |

Service Name Mfx_AbsP2_s32_<OutTypeMn>
Syntax <OutType> Mfx_AbsP2_s32_<OutTypeMn> (
<InTypel> x,
sintl6 a,
sintl6 c
)
Service ID [hex] 0x01D9 to 0x01DA
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Integer value of the fixed point operand.
a Radix point position of the first fixed point operand. Must be a
constant expression.
c Radix point position of the fixed point result. Must be a constant
expression. Valid range: -31 <= (c - a) <= 31
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ 2°(c-a) ™ |x|
Description The routine takes the absolute value of a 32-bit integer with scaling factors set by input
parameters.
Available via Mfx.h

]

[SWS_Mfx_00189] [The function returns the integer value of the fixed point absolute
value (C), deter-mined by C = 2°(c-a) * |x|.]

[SWS_Mfx_00190] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Mfx_00191] [If it is necessary to round the result of this equation, it is rounded
toward zero. |

[SWS_Mfx_00192] [Here is the list of implemented functions. |

Function ID[hex] Function prototype
0x1D9 uint32 Mfx_AbsP2_s32_u32(sint32 x, sint16 a, sint16 c)
0x1DA sint32 Mfx_AbsP2_s32_s32(sint32 x, sint16 a, sint16 c)

Table 8.33: Implemented Mfx_AbsP2 Functions (32-Bit)

AUTSSAR

8.7 Examples of use of functions

8.7.1 Combinations of multiplication and shift right

The function that multiplies an argument by a factor of a given range can be interpreted
as the combination of multiplication and shift right.

If we consider the factor that is a power of two : 2n1

If we consider the maximum of the type used to code the factor : 2n2-1

Then, the shift right we shall apply to the result of the multiplication is given by :
(n2-n1)

For example, we multiply a s8 value (argument1) by a factor of 1 (20) coded with an u8
(Max(u8)=28-1).

The physical range of the factor is [0, 0.996].
The resultis :

Mfx_MulShRight_s16s16u8_s8(argument1i, factor, 8)

8.7.2 Combinations of division and shift left

In the domain of power train, the function that divides two arguments to compute a
factor of a given range can be interpreted as the combination of division and shift left.

If we consider the factor that is a power of two : 2n1
If we consider the maximum of the type used to code the result (factor) : 2n2-1
Then, the shift left we shall apply to the result of the division is given by : (n2-n1)

For example, we divide two u16 values (argument1 and argument2) to obtain a factor
of 1 (20) coded with an u16 (Max(u16)=216-1).

The physical range of the result is [0, 0.999985].
The result is :

Mfx_DivShLeft u16u16u8_ui6(argument1, argument2, 16)

AUTSSAR

8.8 Version API

8.8.1 Mfx_GetVersioninfo

[SWS_Mfx_00215] Definition of API function Mfx_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_

00321
Service Name Mfx_GetVersionInfo
Syntax void Mfx_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x01DB
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]
Return value None
Description Returns the version information of this library.
Available via Mfx.h
The version information of a BSW module generally contains:
* Module Id
» Vendor Id

» Vendor specific version numbers (SRS_BSW_00407).

[SWS_Mfx_00216]
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[If source code for caller and callee of Mfx_ GetVersionInfo is available, the Mfx library
should realize Mfx_ GetVersionInfo as a macro defined in the module’s header file. |

8.9 Callback notifications

None.

8.10 Scheduled functions

The MFX library does not have scheduled functions.

AUTSSAR

8.11 Expected interfaces

None.

8.11.1 Mandatory interfaces

None.

8.11.2 Optional interfaces

None.

8.11.3 Configurable interfaces

None.

8.12 Service Interfaces

None.

AUTSSAR

9 Sequence diagrams

Not applicable.

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MFXLibrary.

Chapter 10.3 specifies published information of the module MFXLibrary.

10.1 How to read this chapter

For details refer to [3] Chapter 10 “Configuration specification”.

10.2 Containers and configuration parameters

[SWS_Mfx_00218]

Upstream requirements: SRS_LIBS_00001
[The MFX library shall not have any configuration options that may affect the functional
behavior of the routines. l.e. for a given set of input parameters, the outputs shall

be always the same. For example, the returned value in case of error shall not be
configurable. |

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

10.3 Published Information
For details refer to [3] Chapter 10.3 “Published Information”.

[SWS_Mfx_00214]
Upstream requirements: SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379

[The standardized common published parameters as required by SRS_BSW_00402
in [4] Chapter 4.2 “Functional Requirements” shall be published within the header file
of this module and need to be provided in the [3] Chapter 5.1.4 “BSW Module Descrip-
tion”. The according module abbreviation can be found in the [3] Chapter 11 “List of
Basic Software Modules”. |

Additional module-specific published parameters are listed below if applicable.

AUTSSAR

A Not applicable requirements

[SWS_Mfx_00222] [These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R23-11

B.1.1 Added Specification Iltems in R23-11

none

B.1.2 Changed Specification Items in R23-11

none

B.1.3 Deleted Specification Iltems in R23-11

none

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11
[SWS_Mfx_91002]

B.2.2 Changed Specification Items in R24-11

none

B.2.3 Deleted Specification Items in R24-11

none

AUTSSAR

B.3 Traceable item history of this document according to
AUTOSAR Release R25-11

B.3.1 Added Specification Iltems in R25-11

none

B.3.2 Changed Specification Items in R25-11

none

B.3.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Error
	7.1.4 Extended Production Errors

	7.2 Initialization and shutdown
	7.3 Using Library API
	7.4 Library implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about rounding
	8.4 Comment about routines optimization
	8.4.1 Optimized with constants

	8.5 Mathematical routines definitions
	8.5.1 Additions
	8.5.2 Subtractions
	8.5.3 Absolute value
	8.5.4 Absolute value of a difference
	8.5.5 Multiplications
	8.5.6 Divisions rounded towards 0
	8.5.7 Divisions rounded off
	8.5.8 Combinations of multiplication and division rounded towards 0
	8.5.9 Combinations of multiplication and division rounded off
	8.5.10 Combinations of multiplication and shift right
	8.5.11 Combinations of division and shift left
	8.5.12 Modulo
	8.5.13 Limiting
	8.5.14 Limitations with only one value for minimum and maximum
	8.5.15 Minimum and maximum
	8.5.16 Signum Function

	8.6 2n Scaled Integer Math Functions
	8.6.1 Conversion
	8.6.1.1 16-Bit to 8-Bit 2n Scaled Integer Conversion
	8.6.1.2 8-Bit to 16-Bit 2n Scaled Integer Conversion
	8.6.1.3 32-Bit to 16-Bit 2n Scaled Integer Conversion
	8.6.1.4 16-Bit to 32-Bit 2n Scaled Integer Conversion

	8.6.2 Multiplication
	8.6.2.1 16-Bit Multiplication of 2n Scaled Integer
	8.6.2.2 32-Bit Multiplication of 2n Scaled Integer

	8.6.3 Division
	8.6.3.1 16-Bit Division of 2n Scaled Integer
	8.6.3.2 32-Bit Division of 2n Scaled Integer

	8.6.4 Addition
	8.6.4.1 16-Bit Addition of 2n Scaled Integer
	8.6.4.2 32-Bit Addition of 2n Scaled Integer

	8.6.5 Subtraction
	8.6.5.1 16-Bit Subtraction of 2n Scaled Integer
	8.6.5.2 32-Bit Subtraction of 2n Scaled Integer

	8.6.6 Absolute Difference of 2n Scaled Integer
	8.6.7 Absolute Value
	8.6.7.1 16-Bit Absolute Value of 2n Scaled Integer
	8.6.7.2 32-Bit Absolute Value of 2n Scaled Integer

	8.7 Examples of use of functions
	8.7.1 Combinations of multiplication and shift right
	8.7.2 Combinations of division and shift left

	8.8 Version API
	8.8.1 Mfx_GetVersionInfo

	8.9 Callback notifications
	8.10 Scheduled functions
	8.11 Expected interfaces
	8.11.1 Mandatory interfaces
	8.11.2 Optional interfaces
	8.11.3 Configurable interfaces

	8.12 Service Interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R25-11
	B.3.1 Added Specification Items in R25-11
	B.3.2 Changed Specification Items in R25-11
	B.3.3 Deleted Specification Items in R25-11

