
Specification of Floating Point Math Library
AUTOSAR CP R25-11

Document Title
Specification of Floating Point
Math Library

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 397

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Editorial: fix typographic errors
introduced in R21-11

2024-11-27 R24-11
AUTOSAR
Release
Management

• New function added SWS_Mfl_91007.

• Added SWS_Mfl_91006.

2023-11-23 R23-11
AUTOSAR
Release
Management

• Updated SWS_Mfl_00305.

2022-11-24 R22-11
AUTOSAR
Release
Management

• Updated SWS_Mfl_00285 and SWS_
Mfl_00289.

• New function added SWS_Mfl_00820
and updated the following: SWS_Mfl_
00142, SWS_Mfl_00152, SWS_Mfl_
00157, SWS_Mfl_00163, SWS_Mfl_
91000, SWS_Mfl_91001, SWS_Mfl_
00854, SWS_Mfl_91003 and SWS_Mfl_
91004.

2021-11-25 R21-11
AUTOSAR
Release
Management

• New requirements SWS_Mfl_00843 and
SWS_Mfl_00848 added for "Mfl_
FloatToIntCvrt_f32" function.

• Editorial changes.

2020-11-30 R20-11
AUTOSAR
Release
Management

• New function added Mfl_DivLim_f32 with
the requirements SWS_Mfl_00844,
SWS_Mfl_00845, SWS_Mfl_00846 and
SWS_Mfl_00847.

• Updated Chapter 7.1 Error classification.
▽

1 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△

2019-11-28 R19-11
AUTOSAR
Release
Management

• Editorial changes

• Changed Document Status from Final to
published

2019-07-29 4.4.1
AUTOSAR
Release
Management

• New function description for Mfl_Mod_
f32 function

• Added new 64 bit variants in conversion
function - SWS_Mfl_00836, SWS_Mfl_
00839, SWS_Mfl_00838, SWS_Mfl_
00842

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Added description for Mfl_Pow_f32
function

• Updated name of parameter dT_f32 in
the requirements SWS_Mfl_00045,
SWS_Mfl_00047, SWS_Mfl_00301 &
SWS_Mfl_00303

2017-12-08 4.3.1
AUTOSAR
Release
Management

• A note has been added in Section 8.1 of
MFL specification to provide clarity in
usage of mnemonic for Boolean data
types.

• Inclusion of Pointer to Constant
(P2CONST) for SWS_Mfl_00260, SWS_
Mfl_00246, SWS_Mfl_00225 & SWS_
Mfl_00223 and proper categorization of
Parameters as Out/InOut for SWS_Mfl_
00266, SWS_Mfl_00285 & SWS_Mfl_
00037.

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Section 2 has been revisited to update
Default Error Tracer instead of
Development Error tracer.

• SWS_Mfl_00362 has been updated to
provide clarity in requirements.

• SWS_Mfl_00363 has been modified to
provide clear requirements.

• Updated the parameters in SWS_Mfl_
00360 for Mfl_ArcTan2_f32 service to be
in sync with standard C library.

• Updated SWS_Mfl_00122 to provide
better clarity on the input parameter
limits.

▽
▽

2 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
△

• Verified that the spec SWS_Mfl_00122
has been updated to provide better
clarity on input parameter limits.

• Updated MFL document to support
MISRA 2012 standard. (Removed
Reference related to MISRA 2004 from
chapter 3.2 ans redundant statements in
SWS_Mfl_00809 which already exist in
SWS_BSW document and SWS_SRS
document)

• Modified the reference to SRS_BSW_
General (SRS_BSW_00437) & (SRS_
BSW_00448) for SWS_Mfl_00810 &
SWS_Mfl_00822 requirements.

2015-07-31 4.2.2
AUTOSAR
Release
Management

• BSWUML Model for "Mfl_
HystCenterHalfDelta_f32_u8", "Mfl_
HystLeftRight_f32_u8", "Mfl_
HystDeltaRight_f32_u8" & "Mfl_
HystLeftDelta_f32_u8" functions were
updated in the Word Document.

• Statement has been updated for Mfl_
DT1Typ1Calc and Mfl_DT1Typ2Calc to
clearly mention the data type for the
Time Equivalent parameter.

• Description field has been
updated/rectified for Tv_C and Tnrec_C
parameters in Mfl_ParamPID_Type.

• Updated naming convention for TeQ_f32
Parameter.

• Corrected the description for TeQ_
<Size> in section 8.5.4.1 and statement
in section 8.5.4.4.

• Naming convention followed for Tnrec
Parameter in Mfl_PISetParam function.

• Statement has been updated to correct
naming convention for TeQ_f32.

• Updated SWS_Mfl_00001 for naming
convention under Section 5.1, File
Structure

▽
▽

3 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
△

• BSWUML Model for "Mfl_ArrayAverage_
f32_f32" function was updated to include
pointer to constant to avoid MISRA
violation/warning. (SWS_Mfl_00192)

• Valid range for float32 has been updated
in Section 8.2 and removed float64 data
type from Section 8.1, 8.2 and Section 2

• Removed the requirements SWS_Mfl_
00240, SWS_Mfl_00245, SWS_Mfl_
00250 & SWS_Mfl_00255

• Removed redundant requirements
SWS_Mfl_00034, SWS_Mfl_00046 &
SWS_Mfl_00302, which were covered
as part of section 8.5.4.4.

2014-10-31 4.2.1
AUTOSAR
Release
Management

• New Functions are added to convert
values between Float and Integer.
(SWS_Mfl_00837, SWS_Mfl_838,
SWS_Mfl_840, SWS_Mfl_841 & SWS_
Mfl_842)

• BSWUML Model was updated for "Mfl_
FloatToIntCvrt_f32" & "Mfl_
IntToFloatCvrt" functions. (SWS_Mfl_
00836 & SWS_Mfl_839)

• Updated usage of const in a consistent
manner.

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Removed SWS_Mfl_00206, SWS_Mfl_
00207 and SWS_Mfl_00281 from Mfl_
RampCalc & Mfl_RampCalcJump
functions.

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Deprecated: Mfl_DeadTime function

• Removed: SWS_Mfl_00197 from Mfl_
Hypot function

• Added: SWS_Mfl_00835 for Mfl_
RampCalc function, a note for Mfl_
RampGetSwitchPos function

• Modified: Description for Mfl_
RampSetParam function, Parameter (in)
definition for Mfl_RateLimiter_f32

• Editorial changes
▽

4 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△

2013-03-15 4.1.1 AUTOSAR
Administration

• Description and requirements are
modified for Mfl_RampCalcJump, Mfl_
RampCalc

• Formatting error in superscipts are
corrected

• Corrected "DT1" to "I" in I-Controller
functions

• Description of the parameter "State" is
corrected in Mfl_Debounce and Mfl_
DebounceInit functions

• Corrected for ’DependencyOnArtifact’

2011-12-22 4.0.3 AUTOSAR
Administration

• Removal of ’Accumulator routine’

• Revised ’Trigonometric routines’ names

• Added ’Median Sort Routines’

2010-09-30 3.1.5 AUTOSAR
Administration

• Introduction of additional LIMITED
Functions for controllers

• Ramp functions optimised for effective
usage

• Separation of DT1 Type 1 and Type 2
Controller functions

• Introduction of additional approximative
function for calculatio of TeQ

2010-02-02 3.1.4 AUTOSAR
Administration

• Initial Release

5 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

6 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 10

2 Acronyms and Abbreviations 12

3 Related documentation 13

3.1 Input documents & related standards and norms 13
3.2 Related specification . 13

4 Constraints and assumptions 14

4.1 Limitations . 14
4.2 Applicability to car domains . 14

5 Dependencies to other modules 15

5.1 File structure . 15

6 Requirements Tracing 16

7 Functional specification 18

7.1 Error Classification . 18
7.1.1 Development Errors . 18
7.1.2 Runtime Errors . 18
7.1.3 Production Errors . 18
7.1.4 Extended Production Errors . 18

7.2 Error detection . 18
7.3 Error notification . 19
7.4 Initialization and shutdown . 19
7.5 Using Library API . 19
7.6 Library implementation . 20

8 Routine specification 22

8.1 Imported types . 22
8.2 Type definitions . 22
8.3 Comment about rounding . 23
8.4 Comment about routines optimized for target 24
8.5 Routine definitions . 25

8.5.1 Floating point to Fixed-Point Conversion 25
8.5.2 Fixed-Point to Floating-Point Conversion 26
8.5.3 Rounding . 27
8.5.4 Controller routines . 28

8.5.4.1 Structure definitions for controller routines 29
8.5.4.2 Proportional Controller . 34
8.5.4.3 Proportional controller with first order time constant 35

8.5.4.4 Differential component with time delay : DT1 39

7 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.5 Proportional & Differential controller 45

8.5.4.6 Integral component . 48

8.5.4.7 Proportional & Integral controller 54

8.5.4.8 Proportional, Integral & Differential controller 61

8.5.5 Magnitude and Sign . 69
8.5.6 Limiting . 70
8.5.7 Logarithms and Exponentials . 73
8.5.8 Trigonometry . 77
8.5.9 Average . 84
8.5.10 Array Average . 85
8.5.11 Hypotenuse . 85
8.5.12 Ramp routines . 86

8.5.12.1 Ramp routine . 87
8.5.12.2 Ramp Initialisation . 88
8.5.12.3 Ramp Set Slope . 89
8.5.12.4 Ramp Out routine . 90
8.5.12.5 Ramp Jump routine . 91
8.5.12.6 Ramp switch routine . 92
8.5.12.7 Get Ramp Switch position . 95
8.5.12.8 Check Ramp Activity . 95

8.5.13 Hysteresis routines . 96
8.5.13.1 Hysteresis center half delta . 96
8.5.13.2 Hysteresis left right . 97
8.5.13.3 Hysteresis delta right . 98
8.5.13.4 Hysteresis left delta . 99

8.5.14 Mfl_DeadTime . 100
8.5.15 Debounce routines . 101

8.5.15.1 Mfl_Debounce . 101
8.5.15.2 Mfl_DebounceInit . 103
8.5.15.3 Mfl_DebounceSetParam . 104

8.5.16 Ascending Sort Routine . 105
8.5.17 Descending Sort Routine . 106
8.5.18 Median sort routine . 106
8.5.19 Bit pattern . 112
8.5.20 Fast inverse square root . 112
8.5.21 Trigonometric routines . 113

8.6 Examples of use of functions . 114
8.7 Version API . 114

8.7.1 Mfl_GetVersionInfo . 114
8.8 Callback notifications . 115
8.9 Scheduled functions . 115
8.10Expected interfaces . 115

8 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.10.1 Mandatory interfaces . 115
8.10.2 Optional interfaces . 115
8.10.3 Configurable interfaces . 116

9 Sequence diagrams 117

10 Configuration specification 118

10.1Published Information . 118
10.2Configuration option . 118

A Not applicable requirements 119

B Change history of AUTOSAR traceable items 120

B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . 120

B.1.1 Added Specification Items in R25-11 120
B.1.2 Changed Specification Items in R25-11 120
B.1.3 Deleted Specification Items in R25-11 120

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . 120

B.2.1 Added Specification Items in R24-11 120
B.2.2 Changed Specification Items in R24-11 121
B.2.3 Deleted Specification Items in R24-11 121

B.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . 121

B.3.1 Added Specification Items in R23-11 121
B.3.2 Changed Specification Items in R23-11 121
B.3.3 Deleted Specification Items in R23-11 123

9 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
& below figure shows position of AUTOSAR library in layered architecture.

Figure 1.1: Layered Architecture

This specification specifies the functionality, API and the configuration of the AUTOSAR
library dedicated to arithmetic routines for floating point values.

The float math library contains routines addressing the following topics:

• Conversion

• Rounding

• Magnitude and sign

• Limiting

• Logarithms and exponential

• Trigonometric

• Controller routines

• Average

• Array Average

• Hypotenuse

• Ramp routines

• Hysteresis function

• Dead Time

10 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

• Debounce

• Ascending Sort Routine

• Descending Sort Routine

All routines are re-entrant. They may be used by multiple runnables at the same time.

11 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not contained
in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation / Acronym: Description:

abs Absolute value
Lib Library

DET Default Error Tracer

f32 Mnemonic for the float32, specified in AUTOSAR_SWS_PlatformTypes

Limit Limitation routine
max Maximum
MFL Mathematical Floating point Library

min Minimum
Mn Mnemonic
s16 Mnemonic for the sint16, specified in AUTOSAR_SWS_PlatformTypes

s32 Mnemonic for the sint32, specified in AUTOSAR_SWS_PlatformTypes

s8 Mnemonic for the sint8, specified in AUTOSAR_SWS_PlatformTypes

u16 Mnemonic for the uint16, specified in AUTOSAR_SWS_PlatformTypes

u32 Mnemonic for the uint32, specified in AUTOSAR_SWS_PlatformTypes

u8 Mnemonic for the uint8, specified in AUTOSAR_SWS_PlatformTypes

boolean Boolean data type, specified in AUTOSAR_SWS_PlatformTypes

12 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] ISO/IEC 9899:1990 Programming Language - C
https://www.iso.org

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for MFLLibrary.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for MFLLibrary.

13 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

https://www.iso.org

Specification of Floating Point Math Library
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

14 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

5 Dependencies to other modules

5.1 File structure

[SWS_Mfl_00001]
Upstream requirements: SRS_LIBS_00005

⌈The Mfl module shall provide the following files:

• C files, Mfl_<name>.c used to implement the library. All C files shall be prefixed
with ’Mfl_’.

⌋

Implementation & grouping of routines with respect to C files is recommended as per
below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,

eg.: Mfl_Pt1_f32.c etc.

Option 2 : <Name> can have common name of group of functions:

• 2.1 Group by object family:

eg.:Mfl_Pt1.c, Mfl_Dt1.c, Mfl_Pid.c

• 2.2 Group by routine family:

eg.: Mfl_Conversion.c, Mfl_Controller.c, Mfl_Limit.c etc.

• 2.3 Group by method family:

eg.: Mfl_Sin.c, Mfl_Exp.c, Mfl_Arcsin.c, etc.

• 2.4 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Mfl functions,
eg.: Mfl.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Linking only on-demand is also possible in case of some
options.

15 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

6 Requirements Tracing

Requirement Description Satisfied by

[SRS_BSW_00003] All software modules shall provide
version and identification information

[SWS_Mfl_00815]

[SRS_BSW_00007] All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_Mfl_00809]

[SRS_BSW_00304] All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data
types

[SWS_Mfl_00812]

[SRS_BSW_00306] AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Mfl_00813]

[SRS_BSW_00318] Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Mfl_00815]

[SRS_BSW_00321] The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_Mfl_00815]

[SRS_BSW_00348] All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Mfl_00811]

[SRS_BSW_00374] All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_Mfl_00814]

[SRS_BSW_00378] AUTOSAR shall provide a boolean
type

[SWS_Mfl_00812]

[SRS_BSW_00379] All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_Mfl_00814]

[SRS_BSW_00402] Each module shall provide version
information

[SWS_Mfl_00814]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Mfl_00815] [SWS_Mfl_00816]

[SRS_BSW_00411] All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Mfl_00816]

[SRS_BSW_00437] Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_Mfl_00810]

[SRS_BSW_00448] Module SWS shall not contain
requirements from other modules

[SWS_Mfl_00822]

[SRS_LIBS_00001] The functional behavior of each
library functions shall not be
configurable

[SWS_Mfl_00818]

[SRS_LIBS_00002] A library shall be operational before
all BSW modules and application
SW-Cs

[SWS_Mfl_00800]

[SRS_LIBS_00003] A library shall be operational until the
shutdown

[SWS_Mfl_00801]

▽

16 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_LIBS_00005] Each library shall provide one header
file with its public interface

[SWS_Mfl_00001] [SWS_Mfl_00854]
[SWS_Mfl_91001] [SWS_Mfl_91003]
[SWS_Mfl_91004]

[SRS_LIBS_00009] All library functions shall be re-entrant [SWS_Mfl_00854] [SWS_Mfl_91001]
[SWS_Mfl_91003] [SWS_Mfl_91004]

[SRS_LIBS_00011] All function names and type names
shall start with "Library short name_"

[SWS_Mfl_00854] [SWS_Mfl_91001]
[SWS_Mfl_91003] [SWS_Mfl_91004]

[SRS_LIBS_00013] The error cases, resulting in the
check at runtime of the value of input
parameters, shall be listed in SWS

[SWS_Mfl_00817] [SWS_Mfl_00819]

[SRS_LIBS_00015] It shall be possible to configure the
microcontroller so that the library
code is shared between all callers

[SWS_Mfl_00806]

[SRS_LIBS_00017] Usage of macros should be avoided [SWS_Mfl_00807]

[SRS_LIBS_00018] A library function may only call library
functions

[SWS_Mfl_00808]

Table 6.1: Requirements Tracing

17 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

7 Functional specification

7.1 Error Classification

[SWS_Mfl_00821] ⌈Chapter [2, General Specification of Basic Software Modules] 7.2
“Error Handling” describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules.⌋

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

7.2 Error detection

[SWS_Mfl_00819]
Upstream requirements: SRS_LIBS_00013

⌈Error detection: The validity of the parameters passed to library functions must be
checked at the application level, there is no error detection or reporting within the library
function. The library functions are required return a predefined but mathematically
senseless value when they are called with invalid parameters. Warning, this strategy
has the unsound consequence of masking errors throughout the software development
process. All the invalid input cases shall be listed in the SWS specifying a predefined
function return value that is not configurable. This value is dependant of the function
and the error case so it is determined case by case.

18 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

If values passed to the routines are not valid and out of the function specification, then
such error are not detected.⌋

E.g. If passed value > 32 for a bit-position
or a negative number of samples of an axis distribution is passed to a routine.

7.3 Error notification

[SWS_Mfl_00817]
Upstream requirements: SRS_LIBS_00013

⌈The functions shall not call the DET for error notification.⌋

7.4 Initialization and shutdown

[SWS_Mfl_00800]
Upstream requirements: SRS_LIBS_00002

⌈Mfl library shall not require initialization phase. A Library function may be called at the
very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall
be ready.⌋

[SWS_Mfl_00801]
Upstream requirements: SRS_LIBS_00003

⌈Mfl library shall not require a shutdown operation phase.⌋

7.5 Using Library API

Mfl API can be directly called from BSW modules or SWC. No port definition is required.
It is a pure function call.

The statement ’Mfl.h’ shall be placed by the developer or an application code generator
but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library,
the developer should add an Implementation-DependencyOnArtifact in the BSW/SWC
template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on a library behavior, not on a supplier implementation. However, the
SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated.

19 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

7.6 Library implementation

[SWS_Mfl_00806]
Upstream requirements: SRS_LIBS_00015

⌈The Mfl library shall be implemented in a way that the code can be shared among
callers in different memory partitions.⌋

[SWS_Mfl_00807]
Upstream requirements: SRS_LIBS_00017

⌈Usage of macros should be avoided. The function should be declared as function or
inline function. Macro #define should not be used.⌋

[SWS_Mfl_00808]
Upstream requirements: SRS_LIBS_00018

⌈A library function shall not call any BSW modules functions, e.g. the DET. A library
function can call other library functions. Because a library function shall be re-entrant.
But other BSW modules functions may not be re-entrant.⌋

[SWS_Mfl_00809]
Upstream requirements: SRS_BSW_00007

⌈The library, written in C programming language, should conform to the MISRA C
Standard.

Please refer to SWS_BSW_00115 for more details.⌋

[SWS_Mfl_00810]
Upstream requirements: SRS_BSW_00437

⌈Each AUTOSAR library Module implementation <library>*.c and

<library>*.h shall map their code to memory sections using the AUTOSAR memory
mapping mechanism.⌋

[SWS_Mfl_00811]
Upstream requirements: SRS_BSW_00348

⌈Each AUTOSAR library Module implementation <library>*.c, that uses AUTOSAR in-
teger data types and/or the standard return, shall include the header file Std_Types.h.⌋

[SWS_Mfl_00812]
Upstream requirements: SRS_BSW_00304, SRS_BSW_00378

⌈All AUTOSAR library Modules should use the AUTOSAR data types (integers,
boolean) instead of native C data types, unless this library is clearly identified to be
compliant only with a platform.⌋

20 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00813]
Upstream requirements: SRS_BSW_00306

⌈All AUTOSAR library Modules should avoid direct use of compiler and platform spe-
cific keyword, unless this library is clearly identified to be compliant only with a platform.
eg. #pragma, typeof etc.⌋

[SWS_Mfl_00820] ⌈

Note: The following functions are exact equivalents to the C99 Standard library func-
tions. A detailed description can be found here:[10](ISO/IEC 9899:1990 Programming
Language - C)

Mfl_Sin_f32(float32) <=> sinf(float)

Mfl_Cos_f32(float32) <=> cosf(float)

Mfl_Tan_f32(float32) <=> tanf(float)

Mfl_Exp_f32(float32) <=> expf(float)

Mfl_Log_f32(float32) <=> logf(float)

Mfl_ArcSin_f32(float32) <=> asinf(float)

Mfl_ArcCos_f32(float32) <=> acosf(float)

Mfl_ArcTan_f32(float32) <=> atanf(float)

Mfl_ArcTan2_f32(float32) <=> atan2f(float)

Mfl_Hypot_f32f32_f32 <=> hypotf⌋

21 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8 Routine specification

8.1 Imported types

In this chapter, all types included from the following modules are listed:

Module Header File Imported Type

Std Std_Types.h boolean, sint8, uint8, sint16, uint16, sint32, uint32, float32

[SWS_Mfl_91006] Definition of imported datatypes of module Mfl ⌈
Module Header File Imported Type

Std Std_Types.h Std_VersionInfoType

⌋

8.2 Type definitions

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

Thus, in order to improve the portability of the software these types are defined in Plat-
form_Types.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in
the library routine names.

Size Platform Type Mnemonic Range

unsigned 8-Bit boolean u8 [TRUE, FALSE]

signed 8-Bit sint8 s8 [-128, 127]

signed 16-Bit sint16 s16 [-32768, 32767]

signed 32-Bit sint32 s32 [-2147483648, 2147483647]

unsigned 8-Bit uint8 u8 [0, 255]

unsigned 16-Bit uint16 u16 [0, 65535]

unsigned 32-Bit uint32 u32 [0, 4294967295]

32-Bit float32 f32 [-3.4028235E38, 3.4028235E38]

Table 8.1: Mnemonic for Base Types

As a convention in the rest of the document:

• mnemonics will be used in the name of the routines (using <InTypeMn1> that
means Type Mnemonic for Input 1)

• the real type will be used in the description of the prototypes of the routines (using
<InType1> or <OutType>).

Note:

22 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

The naming convention for the api’s with boolean return type/parameter type is given
as _u8 which shall be interpreted as _b. (Boolean)

If there is no boolean data type present in the return type/parameter type then _u8
shall be interpreted as _u8 only.

[SWS_Mfl_91002] Definition of datatype Mfl_Mod_St_Type ⌈
Name Mfl_Mod_St_Type

Kind Enumeration

E_SUCCESS – Mod operation successRange

E_INVALID – Invalid Operation

Description Specifies the status of the Mod operation

Available via Mfl.h

⌋

[SWS_Mfl_91005] Definition of datatype MfL_Div_st ⌈
Name MfL_Div_st

Kind Enumeration

E_SUCCESS – Division success

E_DIVBYZERO – Divide by Zero

Range

E_INVALID – Invalid Operation

Description –

Available via Mfl_Types.h

⌋

8.3 Comment about rounding

Two types of rounding can be applied:

Results are ’rounded off’, it means:

• 0 <= X < 0.5 rounded to 0

• 0.5 <= X < 1 rounded to 1

• -0.5 < X <= 0 rounded to 0

• -1 < X <= -0.5 rounded to -1

Results are rounded towards zero.

• 0 <= X < 1 rounded to 0

• -1 < X <= 0 rounded to 0

23 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.4 Comment about routines optimized for target

The routines described in this library may be realized as regular routines or inline func-
tions. For ROM optimization purposes, it is recommended that the c routines be real-
ized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:

• Some routines can be replaced by another routine using integer promotion.

• Some routines can be replaced by the combination of a limiting routine and a
routine with a different signature.

24 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5 Routine definitions

8.5.1 Floating point to Fixed-Point Conversion

[SWS_Mfl_00005] Definition of API function Mfl_Cvrt_f32_<OutTypeMn> ⌈
Service Name Mfl_Cvrt_f32_<OutTypeMn>

Syntax <OutType> Mfl_Cvrt_f32_<OutTypeMn> (
float32 ValFloat,
sint16 ValFixedExponent

)

Service ID [hex] 0x01 to 0x04

Sync/Async Synchronous

Reentrancy Reentrant

ValFloat Floating-point quantity to be converted.Parameters (in)

ValFixedExponent Exponent of the fixed-point result of the conversion.

Parameters (inout) None

Parameters (out) None

Return value <OutType> Returns the integer value of the fixed-point result

Description Returns the integer value of the fixed point result of the conversion, determined according to
the following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00006] ⌈

Result = V alF loat ∗ 2V alF ixedExponent

⌋

[SWS_Mfl_00007] ⌈

The return value shall be saturated to the return type boundary values in the event of
overflow or underflow.

⌋

[SWS_Mfl_00008] ⌈

If it is necessary to round the result of this equation, it is rounded toward zero.

⌋

Function ID and prototypes

[SWS_Mfl_00009] ⌈

Function ID[hex] Function prototype

0x01 uint16 Mfl_Cvrt_f32_u16(float32, sint16)

0x02 sint16 Mfl_Cvrt_f32_s16(float32, sint16)

0x03 uint32 Mfl_Cvrt_f32_u32(float32, sint16)

0x04 sint32 Mfl_Cvrt_f32_s32(float32, sint16)

25 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

⌋

8.5.2 Fixed-Point to Floating-Point Conversion

[SWS_Mfl_00010] Definition of API function Mfl_Cvrt_<InTypeMn>_f32 ⌈
Service Name Mfl_Cvrt_<InTypeMn>_f32

Syntax float32 Mfl_Cvrt_<InTypeMn>_f32 (
<InType> ValFixedInteger,
sint16 ValFixedExponent

)

Service ID [hex] 0x05 to 0x08

Sync/Async Synchronous

Reentrancy Reentrant

ValFixedInteger Integer value of the fixed-point quantity to be convertedParameters (in)

ValFixedExponent Exponent of the fixed-point quantity to be converted.

Parameters (inout) None

Parameters (out) None

Return value float32 The floating-point result of the conversion.

Description Returns the floating-point result of the conversion, determined according to the following
equation.

Available via Mfl.h

⌋

[SWS_Mfl_00011] ⌈

Result = V alF ixedInteger ∗ 2−V alF ixedExponent

⌋

Function ID and prototypes

[SWS_Mfl_00012] ⌈

Function ID[hex] Function prototype

0x05 float32 Mfl_Cvrt_u16_f32(uint16, sint16)

0x06 float32 Mfl_Cvrt_s16_f32(sint16, sint16)

0x07 float32 Mfl_Cvrt_u32_f32(uint32, sint16)

0x08 float32 Mfl_Cvrt_s32_f32(sint32, sint16)

⌋

26 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.3 Rounding

[SWS_Mfl_00013] Definition of API function Mfl_Trunc_f32 ⌈
Service Name Mfl_Trunc_f32

Syntax float32 Mfl_Trunc_f32 (
float32 ValValue

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Truncated value

Description Returns the integer value determined by rounding the argument toward zero.

Available via Mfl.h

⌋

For example:

36.56 will be truncated to 36.00

[SWS_Mfl_00015] Definition of API function Mfl_Round_f32 ⌈
Service Name Mfl_Round_f32

Syntax float32 Mfl_Round_f32 (
float32 ValValue

)

Service ID [hex] 0x0A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Rounded value of operand.

Description Returns the integer value determined by rounding the argument toward the nearest whole
number.

Available via Mfl.h

⌋

For example:

36.56 will be rounded to 37.00

[SWS_Mfl_00017] ⌈

If the argument is halfway between two integers, it is rounded away from zero.⌋

For example:

36.5 will be rounded to 37.00

27 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00018] Definition of API function Mfl_Ceil_f32 ⌈
Service Name Mfl_Ceil_f32

Syntax float32 Mfl_Ceil_f32 (
float32 ValValue

)

Service ID [hex] 0x0B

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Ceiling of the ValValue.

Description Returns the integer value determined by rounding the argument toward positive infinity.

Available via Mfl.h

⌋

[SWS_Mfl_00020] Definition of API function Mfl_Floor_f32 ⌈
Service Name Mfl_Floor_f32

Syntax float32 Mfl_Floor_f32 (
float32 ValValue

)

Service ID [hex] 0x0C

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Operand rounded to floor.

Description Returns the natural number value determined by rounding the argument toward negative infinity.

Available via Mfl.h

⌋

8.5.4 Controller routines

Controller routines includes P, PT1, DT1, PD, I, PI, PID governors used in control sys-
tem applications. For these controllers, the required parameters are derived using
Laplace-Z transformation. The following parameters are required to calculate the new
controller output yn and can be represented in the following equation.

Yn = a1 * Yn-1 + b0 * Xn + b1 * Xn-1 + b2 * Xn-2 + + bn-1 * X1 + bn * X0

In the equation, the following symbols are used

28 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Symbols Description

Yn Actual output to calculate

Yn-1 Output value, one time step before

Xn Actual input, given from the input

Xn-1 Input, one time step before

Xn-2 Input, two time steps before

X1 Input, n-1 time steps before

X0 Input, n time steps before

a1, b0, b1, b2, bn-1, bn Controller dependent proportional parameters are used to
describe the weight of the states.

8.5.4.1 Structure definitions for controller routines

System parameters are separated from time or time equivalent parameters.
The system parameters are grouped in controller dependent structures Mfl_
Param<controller>_Type, whereas the time (equivalent) parameters are assigned di-
rectly. Systems states are grouped in a structure Mfl_State<controller>_Type except
the actual input value Xn which is assigned directly.

The System parameters, used in the equations are given by:

• K : Amplification factor, the description of the semantic is given in

• T1 : Decay time constant

• Tv : Lead time

• Tn : Follow-up time

The time & time equivalent parameters in the equation / implementation are given by:

• dT : Time step = sampling interval

Analogous to the abbreviations above, the following abbreviations are used in the im-
plementation:

• K_<size>, K_C : Amplification factor

• T1rec_<size> : Reciprocal delay time constant = 1/ T1

• Tv _<size>, Tv _C : Lead time

• Tnrec _<size>, Tnrec _C : Reciprocal follow-up time = 1/ Tn.

• dT_<size> : Time step = sampling interval

• TeQ_<size> : Time equivalent = exp (-dT/ T1).

Herein "<size>" denotes the size of the variable, e.g _f32 stand for a float32 bit variable.

Following C-structures are specially defined for the controller routines.

29 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00025] Definition of datatype Mfl_StatePT1_Type ⌈
Name Mfl_StatePT1_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for PT1 controller routine

Available via Mfl.h

⌋

[SWS_Mfl_00823] Definition of datatype Mfl_StateDT1Typ1_Type ⌈
Name Mfl_StateDT1Typ1_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

X2

Type float32

Comment Input value, two time steps before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for DT1-Type1 controller routine

Available via Mfl.h

⌋

[SWS_Mfl_00824] Definition of datatype Mfl_StateDT1Typ2_Type ⌈
Name Mfl_StateDT1Typ2_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for DT1-Type2 controller routine

Available via Mfl.h

⌋

30 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00825] Definition of datatype Mfl_StatePD_Type ⌈
Name Mfl_StatePD_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for PD controller routine

Available via Mfl.h

⌋

[SWS_Mfl_00826] Definition of datatype Mfl_ParamPD_Type ⌈
Name Mfl_ParamPD_Type

Kind Structure

K_C

Type float32

Comment Amplification factor

Tv_C

Type float32

Elements

Comment Lead time

Description System and Time equivalent parameter Structure for PD controller routine

Available via Mfl.h

⌋

[SWS_Mfl_00827] Definition of datatype Mfl_StateI_Type ⌈
Name Mfl_StateI_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for I controller routine

Available via Mfl.h

⌋

31 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00828] Definition of datatype Mfl_StatePI_Type ⌈
Name Mfl_StatePI_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for PI additive (Type1 and Type 2) controller routine

Available via Mfl.h

⌋

[SWS_Mfl_00829] Definition of datatype Mfl_ParamPI_Type ⌈
Name Mfl_ParamPI_Type

Kind Structure

K_C

Type float32

Comment Amplification factor

Tnrec_C

Type float32

Elements

Comment Reciprocal follow up time (1/Tn)

Description System and Time equivalent parameter Structure for PI additive (Type1 and Type 2) controller
routine

Available via Mfl.h

⌋

[SWS_Mfl_00830] Definition of datatype Mfl_StatePID_Type ⌈
Name Mfl_StatePID_Type

Kind Structure
X1

Type float32

Comment Input value, one time step before

X2

Type float32

Comment Input value, two time step before

Y1

Type float32

Elements

Comment Output value, one time step before

Description System State Structure for PID additive (Type1 and Type 2) controller routine

Available via Mfl.h

⌋

32 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00831] Definition of datatype Mfl_ParamPID_Type ⌈
Name Mfl_ParamPID_Type

Kind Structure

K_C

Type float32

Comment Amplification factor

Tv_C

Type float32

Comment Lead time

Tnrec_C

Type float32

Elements

Comment Reciprocal follow up time (1/Tn)

Description System and Time equivalent parameter Structure for PID additive (Type1 and Type 2) controller
routine

Available via Mfl.h

⌋

[SWS_Mfl_00832] Definition of datatype Mfl_Limits_Type ⌈
Name Mfl_Limits_Type

Kind Structure

Min_C

Type float32

Comment Minimum limit value

Max_C

Type float32

Elements

Comment Maximum limit value

Description Controller limit value structure

Available via Mfl.h

⌋

33 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.2 Proportional Controller

Proportional component calculates Y(x) = Kp * X.

8.5.4.2.1 ’P’ Controller

[SWS_Mfl_00026] Definition of API function Mfl_PCalc ⌈
Service Name Mfl_PCalc

Syntax void Mfl_PCalc (
float32 X_f32,
float32* P_pf32,
float32 K_f32

)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 input valueParameters (in)

K_f32 Amplification factor

Parameters (inout) P_pf32 Pointer to the calculated state

Parameters (out) None

Return value None

Description Differential equation: Y = K * X

Available via Mfl.h

⌋

[SWS_Mfl_00027] ⌈Implemented difference equation:

*P_pf32 = K_f32 * X_f32⌋

8.5.4.2.2 Get ’P’ output

This routine can be realised using inline function.

[SWS_Mfl_00030] Definition of API function Mfl_POut_f32 ⌈
Service Name Mfl_POut_f32

Syntax float32 Mfl_POut_f32 (
const float32* P_pf32

)

Service ID [hex] 0x12

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) P_pf32 Pointer to the calculated state

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’P’ controller output value

▽

34 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Description This routine returns ’P’ controllers output value limited by the return data type

Available via Mfl.h

⌋

[SWS_Mfl_00031] ⌈

Output value = *P_pf32

⌋

8.5.4.3 Proportional controller with first order time constant

This routine calculates proportional element with first order time constant.

Routine Mfl_CalcTeQ_f32, given in Chapter 8.5.4.3.3, shall be used for Mfl_PT1Calc
function to calculate the time equivalent TeQ_f32.

8.5.4.3.1 ’PT1’ Controller

[SWS_Mfl_91007] Definition of API function Mfl_PT1Typ1Calc ⌈
Service Name Mfl_PT1Typ1Calc

Syntax void Mfl_PT1Typ1Calc (
float32 X_f32,
Mfl_StatePT1_Type* State_cpst,
float32 K_f32,
float32 TeQ_f32

)

Service ID [hex] 0x0105

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the PT1 element

K_f32 Amplification factor

Parameters (in)

TeQ_f32 Time equivalent

Parameters (inout) State_cpst Pointer to PT1 state structure

Parameters (out) None

Return value None

Description This routine computes PT1 controller output value using below difference equation Yn = exp(-d
T/T1) * Yn-1+ K(1 - exp(-dT/T1)) * Xn

Available via Mfl.h

⌋

35 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00032] Definition of API function Mfl_PT1Calc ⌈
Service Name Mfl_PT1Calc

Syntax void Mfl_PT1Calc (
float32 X_f32,
Mfl_StatePT1_Type* State_cpst,
float32 K_f32,
float32 TeQ_f32

)

Service ID [hex] 0x1A

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the PT1 element

K_f32 Amplification factor

Parameters (in)

TeQ_f32 Time equivalent

Parameters (inout) State_cpst Pointer to PT1 state structure

Parameters (out) None

Return value None

Description This routine computes PT1 controller output value using below difference equation

Available via Mfl.h

⌋

[SWS_Mfl_00033] ⌈

Yn= exp(-dT/T1) * Yn-1+ K(1- exp(-dT/T1)) * Xn-1

This derives implementation:

Output_value = (TeQ_f32 * State_cpst->Y1) + K_f32 * (1 - TeQ_f32) * State_cpst->X1

where TeQ_f32 = exp (-dT/T1)

⌋

[SWS_Mfl_00035] ⌈

If (TeQ_f32 = 0) then PT1 controller follows Input value,

State_cpst->Y1 = K_f32 * X_f32

⌋

[SWS_Mfl_00036] ⌈

calculated Output_value and current input value shall be stored to State_cpst->Y1 and
State_cpst->X1 respectively.

State_cpst->Y1 = Output_value

State_cpst->X1 = X_f32

⌋

36 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.3.2 ’PT1’ Set State Value

This routine can be realised using inline function.

[SWS_Mfl_00037] Definition of API function Mfl_PT1SetState ⌈
Service Name Mfl_PT1SetState

Syntax void Mfl_PT1SetState (
Mfl_StatePT1_Type* State_cpst,
float32 X1_f32,
float32 Y1_f32

)

Service ID [hex] 0x1B

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for input stateParameters (in)

Y1_f32 Initial value for output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None

Description The routine initialises internal state variables of a PT1 element.

Available via Mfl.h

⌋

[SWS_Mfl_00038] ⌈

Initialisation of output state variable Y1.

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00039] ⌈

Initialisation of input state variable X1.

State_cpst->X1 = X1_f32.

⌋

8.5.4.3.3 Calculate time equivalent Value

This routine can be realised using inline function.

37 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00040] Definition of API function Mfl_CalcTeQ_f32 ⌈
Service Name Mfl_CalcTeQ_f32

Syntax float32 Mfl_CalcTeQ_f32 (
float32 T1rec_f32,
float32 dT_f32

)

Service ID [hex] 0x1C

Sync/Async Synchronous

Reentrancy Reentrant

T1rec_f32 Reciprocal delay timeParameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) None

Return value float32 Time Equivalent TeQ_f32

Description This routine calculates time equivalent factor

Available via Mfl.h

⌋

[SWS_Mfl_00041] ⌈

TeQ_f32 = exp(-T1rec_f32 * dT_f32)

⌋

8.5.4.3.4 Calculate an approximate time equivalent Value

This routine calculates approximate time equivalent and can be realised using inline
function

[SWS_Mfl_00315] Definition of API function Mfl_CalcTeQApp_f32 ⌈
Service Name Mfl_CalcTeQApp_f32

Syntax float32 Mfl_CalcTeQApp_f32 (
float32 T1rec_f32,
float32 dT_f32

)

Service ID [hex] 0x1E

Sync/Async Synchronous

Reentrancy Reentrant

T1rec_f32 Reciprocal delay timeParameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) None

Return value float32 Time Equivalent TeQApp_f32

Description This routine calculates time equivalent factor

Available via Mfl.h

⌋

[SWS_Mfl_00316] ⌈

38 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

TeQApp_f32 = 1 - (T1rec_f32 * dT_f32)⌋

8.5.4.3.5 Get ’PT1’ output

This routine can be realised using inline function.

[SWS_Mfl_00042] Definition of API function Mfl_PT1Out_f32 ⌈
Service Name Mfl_PT1Out_f32

Syntax float32 Mfl_PT1Out_f32 (
const Mfl_StatePT1_Type* State_cpst

)

Service ID [hex] 0x1D

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’PT1’ controller output value

Description This routine returns ’PT1’ controllers output value

Available via Mfl.h

⌋

[SWS_Mfl_00043] ⌈

Output value = State_cpst->Y1

⌋

8.5.4.4 Differential component with time delay : DT1

This routine calculates differential element with first order time constant.

Routine Mfl_CalcTeQ_f32, given in Chapter 8.5.4.3.3, shall be used for Mfl_
DT1Typ1Calc and Mfl_DT1Typ2Calc functions to calculate the time equivalent TeQ_
f32.

39 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.4.1 ’DT1’ Controller - Type1

[SWS_Mfl_00044] Definition of API function Mfl_DT1Typ1Calc ⌈
Service Name Mfl_DT1Typ1Calc

Syntax void Mfl_DT1Typ1Calc (
float32 X_f32,
Mfl_StateDT1Typ1_Type* State_cpst,
float32 K_f32,
float32 TeQ_f32,
float32 dT_f32

)

Service ID [hex] 0x20

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the DT1 controller

K_f32 Amplification factor

TeQ_f32 Time equivalent

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to state structure

Parameters (out) None

Return value None

Description This routine computes DT1 controller output value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00045] ⌈

Yn= exp(-dT/T1) * Yn-1+ K * (1- exp(-dT/T1)) * ((Xn-1 - Xn-2) / dT)

This derives implementation:

Output_value = (TeQ_f32 * State_cpst->Y1) + K_f32 * (1 - TeQ_f32) * ((State_cpst->X1
- State_cpst->X2) / dT_f32)

where TeQ_f32 = exp(-dT_f32/T1)

⌋

[SWS_Mfl_00047] ⌈

If (TeQ_f32 = 0) then DT1 controller follows Input value,

Output_value = K_f32 * (X_f32 - State_cpst->X1) / dT_f32

⌋

[SWS_Mfl_00048] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

40 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00049] ⌈

Old input value State_cpst->X1 shall be stored to State_cpst->X2.

State_cpst->X2 = State_cpst->X1

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.4.2 ’DT1’ Controller - Type2

[SWS_Mfl_00300] Definition of API function Mfl_DT1Typ2Calc ⌈
Service Name Mfl_DT1Typ2Calc

Syntax void Mfl_DT1Typ2Calc (
float32 X_f32,
Mfl_StateDT1Typ2_Type* State_cpst,
float32 K_f32,
float32 TeQ_f32,
float32 dT_f32

)

Service ID [hex] 0xC0

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the DT1 controller

K_f32 Amplification factor

TeQ_f32 Time equivalent

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to state structure

Parameters (out) None

Return value None

Description This routine computes DT1 controller output value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00301] ⌈

Yn= exp(-dT/T1) * Yn-1+ K * (1- exp(-dT/T1)) * ((Xn - Xn-1) / dT)

This derives implementation:

Output_value = (TeQ_f32 * State_cpst->Y1) + K_f32 * (1 - TeQ_f32) * ((X_f32 - State_
cpst->X1) / dT_f32)

where TeQ_f32 = exp(-dT_f32/T1)

⌋

[SWS_Mfl_00303] ⌈

41 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

If (TeQ_f32 = 0) then DT1 controller follows Input value,

Output_value = K_f32 * (X_f32 - State_cpst->X1) / dT_f32

⌋

[SWS_Mfl_00304] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00305] ⌈

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.4.3 Set ’DT1’ State Value - Type1

This routine can be realised using inline function.

[SWS_Mfl_00050] Definition of API function Mfl_DT1Typ1SetState ⌈
Service Name Mfl_DT1Typ1SetState

Syntax void Mfl_DT1Typ1SetState (
Mfl_StateDT1Typ1_Type* State_cpst,
float32 X1_f32,
float32 X2_f32,
float32 Y1_f32

)

Service ID [hex] 0x22

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for the input state X1

X2_f32 Initial value for the input state X2

Parameters (in)

Y1_f32 Initial value for the output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None

Description The routine initialises internal state variables of a DT1 element.

Available via Mfl.h

⌋

[SWS_Mfl_00051] ⌈

Initialisation of output state variable Y1.

42 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00052] ⌈

Initialisation of input state variables X1 and X2.

State_cpst->X1 = X1_f32

State_cpst->X2 = X2_f32

⌋

8.5.4.4.4 Set ’DT1’ State Value - Type2

This routine can be realised using inline function.

[SWS_Mfl_00306] Definition of API function Mfl_DT1Typ2SetState ⌈
Service Name Mfl_DT1Typ2SetState

Syntax void Mfl_DT1Typ2SetState (
Mfl_StateDT1Typ2_Type* State_cpst,
float32 X1_f32,
float32 Y1_f32

)

Service ID [hex] 0xC1

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for the input stateParameters (in)

Y1_f32 Initial value for the output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None

Description The routine initialises internal state variables of a DT1 element.

Available via Mfl.h

⌋

[SWS_Mfl_00307] ⌈

Initialisation of output state variable Y1.

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00308] ⌈

Initialisation of input state variable X1.

State_cpst->X1 = X1_f32

⌋

43 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.4.5 Get ’DT1’ output - Type1

This routine can be realised using inline function.

[SWS_Mfl_00053] Definition of API function Mfl_DT1Typ1Out_f32 ⌈
Service Name Mfl_DT1Typ1Out_f32

Syntax float32 Mfl_DT1Typ1Out_f32 (
const Mfl_StateDT1Typ1_Type* State_cpst

)

Service ID [hex] 0x23

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’DT1’ controller output value

Description This routine returns ’DT1’ controller’s output value

Available via Mfl.h

⌋

[SWS_Mfl_00054] ⌈

Output value = State_cpst->Y1

⌋

8.5.4.4.6 Get ’DT1’ output - Type2

This routine can be realised using inline function.

[SWS_Mfl_00310] Definition of API function Mfl_DT1Typ2Out_f32 ⌈
Service Name Mfl_DT1Typ2Out_f32

Syntax float32 Mfl_DT1Typ2Out_f32 (
const Mfl_StateDT1Typ2_Type* State_cpst

)

Service ID [hex] 0xC2

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’DT1’ controller output value

Description This routine returns ’DT1’ controller’s output value

Available via Mfl.h

⌋

[SWS_Mfl_00311] ⌈

44 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Output value = State_cpst->Y1

⌋

8.5.4.5 Proportional & Differential controller

This routine is a combination of proportional & differential controller.

8.5.4.5.1 PD Controller

[SWS_Mfl_00055] Definition of API function Mfl_PDCalc ⌈
Service Name Mfl_PDCalc

Syntax void Mfl_PDCalc (
float32 X_f32,
Mfl_StatePD_Type* State_cpst,
const Mfl_ParamPD_Type* Param_cpst,
float32 dT_f32

)

Service ID [hex] 0x2A

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the PD controller

Param_cpst Pointer to parameter structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to state structure

Parameters (out) None

Return value None

Description This routine computes proportional plus derivative controller output value using differential
equation

Available via Mfl.h

⌋

[SWS_Mfl_00056] ⌈

Yn= K(1+Tv/dT) * Xn- K(Tv/dT) * Xn-1

This derives implementation:

Output_value = (Param_cpst->K_C * (1+ Param_cpst->Tv_C/dT_f32) * X_f32) -
(Param_cpst->K_C * (Param_cpst->Tv_C/dT_f32) * State_cpst->X1)

⌋

[SWS_Mfl_00057] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

45 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00058] ⌈

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.5.2 PD Set State Value

This routine can be realised using inline function.

[SWS_Mfl_00059] Definition of API function Mfl_PDSetState ⌈
Service Name Mfl_PDSetState

Syntax void Mfl_PDSetState (
Mfl_StatePD_Type* State_cpst,
float32 X1_f32,
float32 Y1_f32

)

Service ID [hex] 0x2B

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for input stateParameters (in)

Y1_f32 Initial value for output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None

Description The routine initialises internal state variables of a PD element.

Available via Mfl.h

⌋

[SWS_Mfl_00060] ⌈

Initialisation of output state variable Y1.

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00061] ⌈

Initialisation of input state variable X1.

State_cpst->X1 = X1_f32

⌋

8.5.4.5.3 Set ’PD’ Parameters

This routine can be realised using inline function.

46 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00062] Definition of API function Mfl_PDSetParam ⌈
Service Name Mfl_PDSetParam

Syntax void Mfl_PDSetParam (
Mfl_ParamPD_Type* Param_cpst,
float32 K_f32,
float32 Tv_f32

)

Service ID [hex] 0x2C

Sync/Async Synchronous

Reentrancy Reentrant

K_f32 Amplification factorParameters (in)

Tv_f32 Lead time

Parameters (inout) None

Parameters (out) Param_cpst Pointer to internal parameter structure

Return value None

Description The routine sets the parameter structure of a PD element.

Available via Mfl.h

⌋

[SWS_Mfl_00063] ⌈

Initialisation of amplification factor.

Param_cpst->K_C = K_f32

⌋

[SWS_Mfl_00064] ⌈

Initialisation of lead time state variable

Param_cpst->Tv_C = Tv_f32

⌋

8.5.4.5.4 Get ’PD’ output

This routine can be realised using inline function.

[SWS_Mfl_00066] Definition of API function Mfl_PDOut_f32 ⌈
Service Name Mfl_PDOut_f32

Syntax float32 Mfl_PDOut_f32 (
const Mfl_StatePD_Type* State_cpst

)

Service ID [hex] 0x2D

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

▽

47 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (inout) None

Parameters (out) None

Return value float32 Return ’PD’ controller output value

Description This routine returns ’PD’ controllers output value.

Available via Mfl.h

⌋

[SWS_Mfl_00067] ⌈

Output value = State_cpst->Y1

⌋

8.5.4.6 Integral component

This routine calculates Integration element.

8.5.4.6.1 ’I’ Controller

[SWS_Mfl_00068] Definition of API function Mfl_ICalc ⌈
Service Name Mfl_ICalc

Syntax void Mfl_ICalc (
float32 X_f32,
Mfl_StateI_Type* State_cpst,
float32 K_f32,
float32 dT_f32

)

Service ID [hex] 0x30

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’I’ controller

K_f32 Amplification factor

Parameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) State_cpst Pointer to state variable.

Return value None

Description This routine computes I controller output value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00069] ⌈

Yn= Yn-1 + K * dT * Xn-1

This derives implementation:

48 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Output_value = State_cpst->Y1 + K_f32 * dT_f32 * State_cpst->X1

⌋

[SWS_Mfl_00070] ⌈

Calculated Output_value and current input value shall be stored to State_cpst->Y1 and
State_cpst->X1 respectively.

State_cpst->Y1 = Output_value

State_cpst->X1 = X_f32

⌋

8.5.4.6.2 ’I’ Controller with limitation

[SWS_Mfl_00320] Definition of API function Mfl_ILimCalc ⌈
Service Name Mfl_ILimCalc

Syntax void Mfl_ILimCalc (
float32 X_f32,
Mfl_StateI_Type* State_cpst,
float32 K_f32,
const Mfl_Limits_Type* Limit_cpst,
float32 dT_f32

)

Service ID [hex] 0x32

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’I’ controller

K_f32 Amplification factor

Limit_cpst Pointer to limit structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to state variable

Parameters (out) None

Return value None

Description This routine computes I controller output value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00321] ⌈

Yn= Yn-1 + K * dT * Xn-1

This derives implementation:

Output_value = State_cpst->Y1 + K_f32 * dT_f32 * State_cpst->X1

⌋

[SWS_Mfl_00322] ⌈

49 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Limit output value with maximum and minimum controller limits.

If (Output_value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output_value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C

⌋

[SWS_Mfl_00323] ⌈

Calculated Output_value and current input value shall be stored to State_cpst->Y1 and
State_cpst->X1 respectively.

State_cpst->Y1 = Output_value

State_cpst->X1 = X_f32

⌋

8.5.4.6.3 Set limits for controllers

[SWS_Mfl_00324] Definition of API function Mfl_CtrlSetLimit ⌈
Service Name Mfl_CtrlSetLimit

Syntax void Mfl_CtrlSetLimit (
float32 Min_f32,
float32 Max_f32,
Mfl_Limits_Type* Limit_cpst

)

Service ID [hex] 0x34

Sync/Async Synchronous

Reentrancy Reentrant

Min_f32 Minimum limitParameters (in)

Max_f32 Maximum limit

Parameters (inout) Limit_cpst Pointer to limit structure

Parameters (out) None

Return value None

Description Update limit structure

Available via Mfl.h

⌋

[SWS_Mfl_00325] ⌈

Update limit structure

Limit_cpst->Min_C = Min_f32

Limit_cpst->Max_C = Max_f32

⌋

50 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Note : "This routine (Mfl_CtrlSetLimit) is depreciated and will not be supported in future
release

Replacement routine : Mfl_CtrlSetLimits "

51 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00367] Definition of API function Mfl_CtrlSetLimits ⌈
Service Name Mfl_CtrlSetLimits

Syntax void Mfl_CtrlSetLimits (
Mfl_Limits_Type* Limit_cpst,
float32 Min_f32,
float32 Max_f32

)

Service ID [hex] 0xC9

Sync/Async Synchronous

Reentrancy Reentrant

Min_f32 Minimum limitParameters (in)

Max_f32 Maximum limit

Parameters (inout) Limit_cpst Pointer to limit structure

Parameters (out) None

Return value None

Description Update limit structure

Available via Mfl.h

⌋

[SWS_Mfl_00368] ⌈

Update limit structure

Limit_cpst->Min_C = Min_f32

Limit_cpst->Max_C = Max_f32

⌋

8.5.4.6.4 Set ’I’ State Value

This routine can be realised using inline function.

[SWS_Mfl_00071] Definition of API function Mfl_ISetState ⌈
Service Name Mfl_ISetState

Syntax void Mfl_ISetState (
Mfl_StateI_Type* State_cpst,
float32 X1_f32,
float32 Y1_f32

)

Service ID [hex] 0x31

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for input stateParameters (in)

Y1_f32 Initial value for output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None
▽

52 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Description The routine initialises internal state variables of an I element.

Available via Mfl.h

⌋

[SWS_Mfl_00072] ⌈

Initialisation of output state variable Y1.

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00073] ⌈

Initialisation of input state variable X1.

State_cpst->X1 = X1_f32

⌋

8.5.4.6.5 Get ’I’ output

This routine can be realised using inline function.

[SWS_Mfl_00074] Definition of API function Mfl_IOut_f32 ⌈
Service Name Mfl_IOut_f32

Syntax float32 Mfl_IOut_f32 (
const Mfl_StateI_Type* State_cpst

)

Service ID [hex] 0x33

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’I’ controller output value

Description This routine returns ’I’ controllers output value.

Available via Mfl.h

⌋

[SWS_Mfl_00075] ⌈

Output value = State_cpst->Y1

⌋

53 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.7 Proportional & Integral controller

This routine is a combination of Proportional & Integral controller.

8.5.4.7.1 ’PI’ Controller - Type1 (Implicit type)

[SWS_Mfl_00076] Definition of API function Mfl_PITyp1Calc ⌈
Service Name Mfl_PITyp1Calc

Syntax void Mfl_PITyp1Calc (
float32 X_f32,
Mfl_StatePI_Type* State_cpst,
const Mfl_ParamPI_Type* Param_cpst,
float32 dT_f32

)

Service ID [hex] 0x35

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PI’ controller

Param_cpst Pointer to parameter structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) State_cpst Pointer to the internal state structure.

Return value None

Description This routine computes Proportional plus integral controller (implicit type) output value using
differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00077] ⌈

Yn= Yn-1+ K * Xn- K * (1 - dT/Tn) * Xn-1

This derives implementation:

Output_value = State_cpst->Y1 + (Param_cpst->K_C * X_f32) - (Param_cpst->K_C *
(1 - Param_cpst->Tnrec_C * dT_f32) * State_cpst->X1)

⌋

[SWS_Mfl_00078] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00079] ⌈

Current input value X_f32 shall be stored to State_cpst->X1.

54 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

State_cpst->X1 = X_f32

⌋

8.5.4.7.2 ’PI’ Controller - Type1 with limitation (Implicit type)

[SWS_Mfl_00326] Definition of API function Mfl_PITyp1LimCalc ⌈
Service Name Mfl_PITyp1LimCalc

Syntax void Mfl_PITyp1LimCalc (
float32 X_f32,
Mfl_StatePI_Type* State_cpst,
const Mfl_ParamPI_Type* Param_cpst,
const Mfl_Limits_Type* Limit_cpst,
float32 dT_f32

)

Service ID [hex] 0xC3

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PI’ controller

Param_cpst Pointer to parameter structure

Limit_cpst Pointer to limit structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to the internal state structure

Parameters (out) None

Return value None

Description This routine computes Proportional plus integral controller (implicit type) output value using
differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00327] ⌈

Yn= Yn-1+ K * Xn- K * (1 - dT/Tn) * Xn-1

This derives implementation:

Output_value = State_cpst->Y1 + (Param_cpst->K_C * X_f32) - (Param_cpst->K_C *
(1 - Param_cpst->Tnrec_C * dT_f32) * State_cpst->X1)

⌋

[SWS_Mfl_00328] ⌈

Limit output value with maximum and minimum controller limits.

If (Output_value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output_value > Limit_cpst->Max_C) Then,

55 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Output_value = Limit_cpst->Max_C

⌋

[SWS_Mfl_00329] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00330] ⌈

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.7.3 ’PI’ Controller - Type2 (Explicit type)

[SWS_Mfl_00080] Definition of API function Mfl_PITyp2Calc ⌈
Service Name Mfl_PITyp2Calc

Syntax void Mfl_PITyp2Calc (
float32 X_f32,
Mfl_StatePI_Type* State_cpst,
const Mfl_ParamPI_Type* Param_cpst,
float32 dT_f32

)

Service ID [hex] 0x36

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PI’ controller

Param_cpst Pointer to parameter structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) State_cpst Pointer to the internal state structure.

Return value None

Description This routine computes Proportional plus integral controller (explicit type) output value using
differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00081] ⌈

Yn= Yn-1 + K * (1 + dT/Tn) * Xn - K * Xn-1

This derives implementation:

56 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Output_value = State_cpst->Y1 + (Param_cpst->K_C * (1 + Param_cpst->Tnrec_C * d
T_f32) * X_f32) - (Param_cpst->K_C * State_cpst->X1)

⌋

[SWS_Mfl_00082] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00083] ⌈

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.7.4 ’PI’ Controller - Type2 with limitation (Explicit type)

[SWS_Mfl_00331] Definition of API function Mfl_PITyp2LimCalc ⌈
Service Name Mfl_PITyp2LimCalc

Syntax void Mfl_PITyp2LimCalc (
float32 X_f32,
Mfl_StatePI_Type* State_cpst,
const Mfl_ParamPI_Type* Param_cpst,
const Mfl_Limits_Type* Limit_cpst,
float32 dT_f32

)

Service ID [hex] 0xC4

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PI’ controller

Param_cpst Pointer to parameter structure

Limit_cpst Pointer to limit structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to the internal state structure

Parameters (out) None

Return value None

Description This routine computes Proportional plus integral controller (explicit type) output value using
differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00332] ⌈

Yn= Yn-1 + K * (1 + dT/Tn) * Xn - K * Xn-1

This derives implementation:

57 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Output_value = State_cpst->Y1 + (Param_cpst->K_C * (1 + Param_cpst->Tnrec_C * d
T_f32) * X_f32) - (Param_cpst->K_C * State_cpst->X1)

⌋

[SWS_Mfl_00333] ⌈

Limit output value with maximum and minimum controller limits.

If (Output_value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output_value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C

⌋

[SWS_Mfl_00334] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00335] ⌈

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.7.4.1 Set ’PI’ State Value

This routine can be realised using inline function.

[SWS_Mfl_00084] Definition of API function Mfl_PISetState ⌈
Service Name Mfl_PISetState

Syntax void Mfl_PISetState (
Mfl_StatePI_Type* State_cpst,
float32 X1_f32,
float32 Y1_f32

)

Service ID [hex] 0x37

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for input stateParameters (in)

Y1_f32 Initial value for output state

▽

58 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None

Description The routine initialises internal state variables of a PI element.

Available via Mfl.h

⌋

[SWS_Mfl_00085] ⌈

Initialisation of output state variable Y1.

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00086] ⌈

Initialisation of input state variable X1.

State_cpst->X1 = X1_f32

⌋

8.5.4.7.4.2 Set ’PI’ Parameters

This routine can be realised using inline function.

[SWS_Mfl_00087] Definition of API function Mfl_PISetParam ⌈
Service Name Mfl_PISetParam

Syntax void Mfl_PISetParam (
Mfl_ParamPI_Type* Param_cpst,
float32 K_f32,
float32 Tnrec_f32

)

Service ID [hex] 0x38

Sync/Async Synchronous

Reentrancy Reentrant

K_f32 Amplification factorParameters (in)

Tnrec_f32 Reciprocal follow-up time

Parameters (inout) None

Parameters (out) Param_cpst Pointer to internal parameter structure

Return value None

Description The routine sets the parameter structure of a PI element.

Available via Mfl.h

⌋

[SWS_Mfl_00088] ⌈

Initialisation of amplification factor.

59 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Param_cpst->K_C = K_f32

⌋

[SWS_Mfl_00089] ⌈

Initialisation of reciprocal follow up time state variable

Param_cpst->Tnrec_C = Tnrec_f32

⌋

8.5.4.7.4.3 Get ’PI’ output

This routine can be realised using inline function.

[SWS_Mfl_00090] Definition of API function Mfl_PIOut_f32 ⌈
Service Name Mfl_PIOut_f32

Syntax float32 Mfl_PIOut_f32 (
const Mfl_StatePI_Type* State_cpst

)

Service ID [hex] 0x39

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’PI’ controller output value

Description This routine returns ’PI’ controllers output value.

Available via Mfl.h

⌋

[SWS_Mfl_00091] ⌈

Output value = State_cpst->Y1

⌋

60 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.8 Proportional, Integral & Differential controller

This routine is a combination of Proportional, integral & differential controller

8.5.4.8.1 ’PID’ Controller - Type1 (Implicit type)

[SWS_Mfl_00092] Definition of API function Mfl_PIDTyp1Calc ⌈
Service Name Mfl_PIDTyp1Calc

Syntax void Mfl_PIDTyp1Calc (
float32 X_f32,
Mfl_StatePID_Type* State_cpst,
const Mfl_ParamPID_Type* Param_cpst,
float32 dT_f32

)

Service ID [hex] 0x3A

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PID’ controller

Param_cpst Pointer to parameter structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) State_cpst Pointer to the internal state structure.

Return value None

Description This routine computes Proportional plus integral plus derivative controller (implicit type) output
value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00093] ⌈

Yn=Yn-1+ K * (1 + Tv/dT) * Xn- K *(1 - dT/Tn + 2Tv/dT) * Xn-1 + K * (Tv/dT) * Xn-2

This derives implementation:

calc1 = Param_cpst->K_C * (1 + t_val) * X_f32

calc2 = Param_cpst->K_C * (1 - dT_f32 * Param_cpst->Tnrec_C + 2 * t_val) * State_
cpst->X1

calc3 = Param_cpst->K_C * t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3

Where t_val = Param_cpst->Tv_C / dT_f32

⌋

[SWS_Mfl_00094] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

61 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00095] ⌈

Old input value State_cpst->X1 shall be stored to State_cpst->X2

State_cpst->X2 = State_cpst->X1

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.8.2 ’PID’ Controller - Type1 with limitation (Implicit type)

[SWS_Mfl_00340] Definition of API function Mfl_PIDTyp1LimCalc ⌈
Service Name Mfl_PIDTyp1LimCalc

Syntax void Mfl_PIDTyp1LimCalc (
float32 X_f32,
Mfl_StatePID_Type* State_cpst,
const Mfl_ParamPID_Type* Param_cpst,
const Mfl_Limits_Type* Limit_cpst,
float32 dT_f32

)

Service ID [hex] 0xC5

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PID’ controller

Param_cpst Pointer to parameter structure

Limit_cpst Pointer to limit structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to the internal state structure

Parameters (out) None

Return value None

Description This routine computes Proportional plus integral plus derivative controller (implicit type) output
value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00341] ⌈

Yn=Yn-1+ K * (1 + Tv/dT) * Xn- K *(1 - dT/Tn + 2Tv/dT) * Xn-1 + K * (Tv/dT) * Xn-2

This derives implementation:

calc1 = Param_cpst->K_C * (1 + t_val) * X_f32

calc2 = Param_cpst->K_C * (1 - dT_f32 * Param_cpst->Tnrec_C + 2 * t_val) * State_
cpst->X1

62 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

calc3 = Param_cpst->K_C * t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3

Where t_val = Param_cpst->Tv_C / dT_f32

⌋

[SWS_Mfl_00342] ⌈

Limit output value with maximum and minimum controller limits.

If (Output_value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output_value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C

⌋

[SWS_Mfl_00343] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00344] ⌈

Old input value State_cpst->X1 shall be stored to State_cpst->X2

State_cpst->X2 = State_cpst->X1

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

8.5.4.8.3 ’PID’ Controller - Type2 (Explicit type)

[SWS_Mfl_00096] Definition of API function Mfl_PIDTyp2Calc ⌈
Service Name Mfl_PIDTyp2Calc

Syntax void Mfl_PIDTyp2Calc (
float32 X_f32,
Mfl_StatePID_Type* State_cpst,
const Mfl_ParamPID_Type* Param_cpst,
float32 dT_f32

)

▽

63 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Service ID [hex] 0x3B

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PID’ controller

Param_cpst Pointer to parameter structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) None

Parameters (out) State_cpst Pointer to the internal state structure

Return value None

Description This routine computes Proportional plus integral plus derivative controller (explicit type) output
value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00097] ⌈

Yn = Yn-1 + K * (1 + dT/Tn+ Tv/dT) * Xn- K *(1 + 2Tv/dT) * Xn-1+ K * (Tv/dT) * Xn-2

This derives implementation:

calc1 = Param_cpst->K_C * (1 + dT_f32 * Param_cpst->Tnrec_C + t_val) * X_f32

calc2 = Param_cpst->K_C * (1 + 2 * t_val) * State_cpst->X1

calc3 = Param_cpst->K_C * t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3

Where t_val = Param_cpst->Tv_C / dT_f32

⌋

[SWS_Mfl_00098] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00099] ⌈

Old input value State_cpst->X1 shall be stored to State_cpst->X2

State_cpst->X2 = State_cpst->X1

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

64 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.8.4 ’PID’ Controller - Type2 with limitation (Explicit type)

[SWS_Mfl_00345] Definition of API function Mfl_PIDTyp2LimCalc ⌈
Service Name Mfl_PIDTyp2LimCalc

Syntax void Mfl_PIDTyp2LimCalc (
float32 X_f32,
Mfl_StatePID_Type* State_cpst,
const Mfl_ParamPID_Type* Param_cpst,
const Mfl_Limits_Type* Limit_cpst,
float32 dT_f32

)

Service ID [hex] 0xC6

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Input value for the ’PID’ controller

Param_cpst Pointer to parameter structure

Limit_cpst Pointer to limit structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to the internal state structure

Parameters (out) None

Return value None

Description This routine computes Proportional plus integral plus derivative controller (explicit type) output
value using differential equation

Available via Mfl.h

⌋

[SWS_Mfl_00346] ⌈

Yn = Yn-1 + K * (1 + dT/Tn+ Tv/dT) * Xn- K *(1 + 2Tv/dT) * Xn-1+ K * (Tv/dT) * Xn-2

This derives implementation:

calc1 = Param_cpst->K_C * (1 + dT_f32 * Param_cpst->Tnrec_C + t_val) * X_f32

calc2 = Param_cpst->K_C * (1 + 2 * t_val) * State_cpst->X1

calc3 = Param_cpst->K_C * t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3

Where t_val = Param_cpst->Tv_C / dT_f32

⌋

[SWS_Mfl_00347] ⌈

Limit output value with maximum and minimum controller limits.

If (Output_value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output_value > Limit_cpst->Max_C) Then,

65 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Output_value = Limit_cpst->Max_C

⌋

[SWS_Mfl_00348] ⌈

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

⌋

[SWS_Mfl_00349] ⌈

Old input value State_cpst->X1 shall be stored to State_cpst->X2

State_cpst->X2 = State_cpst->X1

Current input value X_f32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_f32

⌋

66 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.4.8.5 Set ’PID’ State Value

This routine can be realised using inline function.

[SWS_Mfl_00100] Definition of API function Mfl_PIDSetState ⌈
Service Name Mfl_PIDSetState

Syntax void Mfl_PIDSetState (
Mfl_StatePID_Type* State_cpst,
float32 X1_f32,
float32 X2_f32,
float32 Y1_f32

)

Service ID [hex] 0x3C

Sync/Async Synchronous

Reentrancy Reentrant

X1_f32 Initial value for input state

X2_f32 Initial value for input state

Parameters (in)

Y1_f32 Initial value for output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value None

Description The routine initialises internal state variables of a PID element.

Available via Mfl.h

⌋

[SWS_Mfl_00101] ⌈

Initialisation of output state variable Y1.

State_cpst->Y1 = Y1_f32

⌋

[SWS_Mfl_00102] ⌈

Initialisation of input state variable X1.

State_cpst->X1 = X1_f32

Initialisation of input state variable X2.

State_cpst->X2 = X2_f32

⌋

8.5.4.8.6 Set ’PID’ Parameters

This routine can be realised using inline function.

67 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00103] Definition of API function Mfl_PIDSetParam ⌈
Service Name Mfl_PIDSetParam

Syntax void Mfl_PIDSetParam (
Mfl_ParamPID_Type* Param_cpst,
float32 K_f32,
float32 Tv_f32,
float32 Tnrec_f32

)

Service ID [hex] 0x3D

Sync/Async Synchronous

Reentrancy Reentrant

K_f32 Amplification factor

Tv_f32 Lead Time

Parameters (in)

Tnrec_f32 Reciprocal follow-up timer

Parameters (inout) None

Parameters (out) Param_cpst Pointer to internal parameter structure

Return value None

Description The routine sets the parameter structure of a PID element.

Available via Mfl.h

⌋

[SWS_Mfl_00104] ⌈

Initialisation of amplification factor.

Param_cpst->K_C = K_f32⌋

[SWS_Mfl_00105] ⌈Initialisation of lead time state variable

Param_cpst->Tv_C = Tv_f32

⌋

[SWS_Mfl_00106] ⌈

Initialisation of reciprocal follow up time state variable

Param_cpst->Tnrec_C = Tnrec_f32

⌋

8.5.4.8.7 Get ’PID’ output

This routine can be realised using inline function.

68 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00107] Definition of API function Mfl_PIDOut_f32 ⌈
Service Name Mfl_PIDOut_f32

Syntax float32 Mfl_PIDOut_f32 (
const Mfl_StatePID_Type* State_cpst

)

Service ID [hex] 0x3E

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value float32 Return ’PID’ controller output value

Description This routine returns ’PID’ controllers output value.

Available via Mfl.h

⌋

[SWS_Mfl_00108] ⌈

Output value = State_cpst->Y1

⌋

8.5.5 Magnitude and Sign

[SWS_Mfl_00110] Definition of API function Mfl_Abs_f32 ⌈
Service Name Mfl_Abs_f32

Syntax float32 Mfl_Abs_f32 (
float32 ValValue

)

Service ID [hex] 0x40

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Absolute value of operand.

Description Returns the absolute value of the argument (ValAbs), determined according to the following
equation.

Available via Mfl.h

⌋

[SWS_Mfl_00111] ⌈

ValAbs = | ValValue |

⌋

69 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00112] Definition of API function Mfl_Sign_f32 ⌈
Service Name Mfl_Sign_f32

Syntax sint8 Mfl_Sign_f32 (
float32 ValValue

)

Service ID [hex] 0x41

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value sint8 Integer representing the sign of the operand.

Description Returns the sign of the argument (ValSign), determined according to the following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00113] ⌈

ValSign = 1, ValValue > 0.0

⌋

[SWS_Mfl_00114] ⌈

ValSign = 0, ValValue == 0.0

⌋

[SWS_Mfl_00115] ⌈

ValSign = -1, ValValue < 0.0

⌋

8.5.6 Limiting

[SWS_Mfl_00116] Definition of API function Mfl_Max_f32 ⌈
Service Name Mfl_Max_f32

Syntax float32 Mfl_Max_f32 (
float32 ValValue1,
float32 ValValue2

)

Service ID [hex] 0x45

Sync/Async Synchronous

Reentrancy Reentrant

ValValue1 Floating-point operand.Parameters (in)

ValValue2 Floating-point operand.

▽

70 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (inout) None

Parameters (out) None

Return value float32 Maximum value of two arguments.

Description Returns the value of the larger of the two arguments (ValMax), determined according to the
following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00117] ⌈

ValMax = ValValue1, ValValue1 ≥ ValValue2

ValMax = ValValue2, ValValue1 < ValValue2

⌋

[SWS_Mfl_00118] Definition of API function Mfl_Min_f32 ⌈
Service Name Mfl_Min_f32

Syntax float32 Mfl_Min_f32 (
float32 Value1,
float32 Value2

)

Service ID [hex] 0x46

Sync/Async Synchronous

Reentrancy Reentrant

Value1 Floating-point operand.Parameters (in)

Value2 Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Minimum value of two arguments.

Description Returns the value of the smaller of the two arguments (Min), determined according to the
following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00119] ⌈

Min = Value1, Value1 ≤ Value2

Min = Value2, Value1 > Value2

⌋

71 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00120] Definition of API function Mfl_RateLimiter_f32 ⌈
Service Name Mfl_RateLimiter_f32

Syntax float32 Mfl_RateLimiter_f32 (
float32 newval,
float32 oldval,
float32 maxdif

)

Service ID [hex] 0x47

Sync/Async Synchronous

Reentrancy Reentrant

newval Variable to be limited.

oldval Previous value of newval.
Parameters (in)

maxdif Absolute maximum difference allowed between previous value
(oldval) and the current value (newval).

Parameters (inout) None

Parameters (out) None

Return value float32 Limited value.

Description An increasing value and decreasing value is rate limited by maxdif

Available via Mfl.h

⌋

[SWS_Mfl_00121] ⌈

if (newval > oldval) and ((newval - oldval) > maxdif)

Result = oldval + maxdif

else if (newval < oldval) and ((oldval - newval) > maxdif)

Result = oldval - maxdif

else

Result = newval

⌋

[SWS_Mfl_00122] Definition of API function Mfl_Limit_f32 ⌈
Service Name Mfl_Limit_f32

Syntax float32 Mfl_Limit_f32 (
float32 val,
float32 lowLim,
float32 upLim

)

Service ID [hex] 0x48

Sync/Async Synchronous

Reentrancy Reentrant

val Quantity to be bounded.

lowLim Lower bound. lowLim shall not be strictly greater than upLim.

Parameters (in)

upLim Upper bound. upLim shall not be strictly lower than lowLim.

Parameters (inout) None

▽

72 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (out) None

Return value float32 Limited value.

Description Returns the bounded value (newVal), determined according to the following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00123] ⌈

newVal = lowLim, val ≤ lowLim

newVal = upLim, val ≥ upLim

newVal = val, lowLim < val < upLim

⌋

8.5.7 Logarithms and Exponentials

[SWS_Mfl_00130] Definition of API function Mfl_Pow_f32 ⌈
Service Name Mfl_Pow_f32

Syntax float32 Mfl_Pow_f32 (
float32 ValBase,
float32 ValExp

)

Service ID [hex] 0x50

Sync/Async Synchronous

Reentrancy Reentrant

ValBase Base to be raised to an exponent. Valid range:ValBase > 0.0Parameters (in)

ValExp Exponent by which to raise the base.

Parameters (inout) None

Parameters (out) None

Return value float32 ValBase raised to ValExp power.

Description Returns the ValBase raised to ValExp power, determined according to the following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00131] ⌈

V alResult = V alBaseV alExp

⌋

[SWS_Mfl_00132] ⌈

If ValExp = 0, and ValBase = 0, ValResult = 1, (00 = 1)

If ValBase = 0 and ValExp <> 0, ValResult = 0, (0ValExp = 0)

⌋

73 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00133] ⌈

If ValBase and ValExp are having maximum value of type float32, the return value will
be toward positive infinity.

⌋

74 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00135] Definition of API function Mfl_Sqrt_f32 ⌈
Service Name Mfl_Sqrt_f32

Syntax float32 Mfl_Sqrt_f32 (
float32 ValValue

)

Service ID [hex] 0x51

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Square root of ValValue

Description Returns the square root of the operand (ValSqrt), determined according to the following
equation

Available via Mfl.h

⌋

[SWS_Mfl_00136] ⌈

V alSqrt = V alV alue1/2

⌋

[SWS_Mfl_00137] ⌈

ValValue shall be passed as positive value. (ValValue ≥ 0)

⌋

[SWS_Mfl_00140] Definition of API function Mfl_Exp_f32 ⌈
Service Name Mfl_Exp_f32

Syntax float32 Mfl_Exp_f32 (
float32 ValValue

)

Service ID [hex] 0x53

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 e raised to ValValue power

Description Returns the exponential of the operand (ValExp), determined according to the following
equation.

Available via Mfl.h

⌋

[SWS_Mfl_00141] ⌈

V alExp = eV alV alue

⌋

75 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00142] ⌈

Call the function with input value in the range [-24PI, +24PI]

⌋

76 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00145] Definition of API function Mfl_Log_f32 ⌈
Service Name Mfl_Log_f32

Syntax float32 Mfl_Log_f32 (
float32 ValValue

)

Service ID [hex] 0x54

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValValue Floating-point operand. Valid range: ValValue > 0.0

Parameters (inout) None

Parameters (out) None

Return value float32 Natural log of ValValue

Description Returns the natural (base-e) logarithm of the operand (ValLog), determined according to the
following equation.

Available via Mfl.h

⌋

[SWS_Mfl_00146] ⌈

V alLog = loge(V alV alue)

⌋

[SWS_Mfl_00147] ⌈

ValValue shall be passed as > 0 value.

⌋

8.5.8 Trigonometry

[SWS_Mfl_00150] Definition of API function Mfl_Sin_f32 ⌈
Service Name Mfl_Sin_f32

Syntax float32 Mfl_Sin_f32 (
float32 value

)

Service ID [hex] 0x55

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value angle in radians

Parameters (inout) None

Parameters (out) None

Return value float32 result = sine (value)

Description Calculates the sine of the argument.

Available via Mfl.h

⌋

[SWS_Mfl_00151] ⌈

77 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Result: result = sine (value)

⌋

[SWS_Mfl_00152] ⌈

Call the function with input value in the range [-24PI, +24PI]

⌋

[SWS_Mfl_00155] Definition of API function Mfl_Cos_f32 ⌈
Service Name Mfl_Cos_f32

Syntax float32 Mfl_Cos_f32 (
float32 value

)

Service ID [hex] 0x56

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value angle in radians

Parameters (inout) None

Parameters (out) None

Return value float32 result = cosine (value)

Description Calculates the cosine of the argument.

Available via Mfl.h

⌋

[SWS_Mfl_00156] ⌈

Result: result = cosine (value)

⌋

[SWS_Mfl_00157] ⌈

Call the function with input value in the range [-24PI, +24PI]

⌋

[SWS_Mfl_00160] Definition of API function Mfl_Tan_f32 ⌈
Service Name Mfl_Tan_f32

Syntax float32 Mfl_Tan_f32 (
float32 value

)

Service ID [hex] 0x57

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value angle in radians

Parameters (inout) None

Parameters (out) None

▽

78 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Return value float32 result = tangent(value)

Description Calculates the tangent of the argument.

Available via Mfl.h

⌋

[SWS_Mfl_00161] ⌈

Result: result = tangent(value)

⌋

[SWS_Mfl_00163] ⌈

Call the function with input value in the range [-24PI, +24PI]

⌋

79 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00165] Definition of API function Mfl_arcSin_f32 ⌈
Service Name Mfl_arcSin_f32

Syntax float32 Mfl_arcSin_f32 (
float32 value

)

Service ID [hex] 0x58

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value The value whose arc sine is to be returned

Parameters (inout) None

Parameters (out) None

Return value float32 The arc sine of the argument, in radians

Description Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Available via Mfl.h

⌋

[SWS_Mfl_00167] ⌈

If the argument is zero, then the result is a zero.

⌋

[SWS_Mfl_00168] ⌈

Range of the value shall be [-1, +1]

⌋

Note : "This routine (Mfl_arcSin_f32) is depreciated and will not be supported in future
release

Replacement routine : Mfl_ArcSin_f32"

[SWS_Mfl_00350] Definition of API function Mfl_ArcSin_f32 ⌈
Service Name Mfl_ArcSin_f32

Syntax float32 Mfl_ArcSin_f32 (
float32 value

)

Service ID [hex] 0xBC

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value The value whose arc sine is to be returned

Parameters (inout) None

Parameters (out) None

Return value float32 The arc sine of the argument, in radians

Description Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Available via Mfl.h

⌋

[SWS_Mfl_00352] ⌈

80 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

If the argument is zero, then the result is a zero.

⌋

[SWS_Mfl_00353] ⌈

Range of the value shall be [-1, +1]

⌋

[SWS_Mfl_00170] Definition of API function Mfl_arcCos_f32 ⌈
Service Name Mfl_arcCos_f32

Syntax float32 Mfl_arcCos_f32 (
float32 value

)

Service ID [hex] 0x59

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value The value whose arc cosine is to be returned

Parameters (inout) None

Parameters (out) None

Return value float32 The arc cosine of the argument, in radians

Description Returns the arc cosine of an angle, in the range of 0.0 through pi.

Available via Mfl.h

⌋

[SWS_Mfl_00172] ⌈

Range of the value shall be [-1, +1]

⌋

Note : "This routine (Mfl_arcCos_f32) is depreciated and will not be supported in future
release

Replacement routine : Mfl_ArcCos_f32"

[SWS_Mfl_00354] Definition of API function Mfl_ArcCos_f32 ⌈
Service Name Mfl_ArcCos_f32

Syntax float32 Mfl_ArcCos_f32 (
float32 value

)

Service ID [hex] 0xBD

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value The value whose arc cosine is to be returned

Parameters (inout) None

Parameters (out) None

Return value float32 The arc cosine of the argument, in radians

▽

81 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Description Returns the arc cosine of an angle, in the range of 0.0 through pi.

Available via Mfl.h

⌋

[SWS_Mfl_00356] ⌈

Range of the value shall be [-1, +1]

⌋

[SWS_Mfl_00175] Definition of API function Mfl_arcTan_f32 ⌈
Service Name Mfl_arcTan_f32

Syntax float32 Mfl_arcTan_f32 (
float32 value

)

Service ID [hex] 0x5A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value The value whose arc tan is to be returned.

Parameters (inout) None

Parameters (out) None

Return value float32 the arc tan of the argument, in radians

Description Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

Available via Mfl.h

⌋

[SWS_Mfl_00177] ⌈

If the argument is zero, then the result is a zero with the same sign as the argument.

⌋

Note : "This routine (Mfl_arcTan_f32) is depreciated and will not be supported in future
release

Replacement routine : Mfl_ArcTan_f32"

[SWS_Mfl_00357] Definition of API function Mfl_ArcTan_f32 ⌈
Service Name Mfl_ArcTan_f32

Syntax float32 Mfl_ArcTan_f32 (
float32 value

)

Service ID [hex] 0xBE

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) value The value whose arc tan is to be returned.

Parameters (inout) None

▽

82 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (out) None

Return value float32 the arc tan of the argument, in radians

Description Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

Available via Mfl.h

⌋

[SWS_Mfl_00359] ⌈

If the argument is zero, then the result is a zero with the same sign as the argument.

⌋

[SWS_Mfl_00360] Definition of API function Mfl_ArcTan2_f32 ⌈
Service Name Mfl_ArcTan2_f32

Syntax float32 Mfl_ArcTan2_f32 (
float32 y,
float32 x

)

Service ID [hex] 0xBF

Sync/Async Synchronous

Reentrancy Reentrant

y y coordinateParameters (in)

x x coordinate

Parameters (inout) None

Parameters (out) None

Return value float32 Returns arctan for inputs y and x

Description Returns the arc tangent of an angle, in the range of [-pi to pi[, Input parameter order (y, x) is
compliant to c function atan2f.

Available via Mfl.h

⌋

[SWS_Mfl_00362] ⌈

If the x coordinate is zero, then check

if(y > 0.0) then

Return PI/2

if(y = 0.0) then

Return Zero

if(y < 0.0) then

Return -PI/2

⌋

[SWS_Mfl_00363] ⌈

Z = y / x

83 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

if (|Z| < 1) Then

Result = Z / (1.0 + (0.28 * Zˆ2))

if (x < 0.0f) Then

Result = (y < 0.0f) ? Result - PI : Result + PI

Else

Result = (pi / 2) - (Z / (Zˆ2 + 0.28))

if (y < 0.0f) Result = Result - PI;

⌋

8.5.9 Average

[SWS_Mfl_00190] Definition of API function Mfl_Average_f32_f32 ⌈
Service Name Mfl_Average_f32_f32

Syntax float32 Mfl_Average_f32_f32 (
float32 value1,
float32 value2

)

Service ID [hex] 0x61

Sync/Async Synchronous

Reentrancy Reentrant

value1 Input value1Parameters (in)

value2 Input value2

Parameters (inout) None

Parameters (out) None

Return value float32 Return value of the function

Description The routine returns average value.

Available via Mfl.h

⌋

[SWS_Mfl_00191] ⌈

Output = (Value1 + Value2) / 2

⌋

84 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.10 Array Average

[SWS_Mfl_00192] Definition of API function Mfl_ArrayAverage_f32_f32 ⌈
Service Name Mfl_ArrayAverage_f32_f32

Syntax float32 Mfl_ArrayAverage_f32_f32 (
const float32* Array,
uint32 Count

)

Service ID [hex] 0x65

Sync/Async Synchronous

Reentrancy Reentrant

Array Pointer to an arrayParameters (in)

Count Number of array elements

Parameters (inout) None

Parameters (out) None

Return value float32 Return value of the function

Description The routine returns average value of an array.

Available via Mfl.h

⌋

[SWS_Mfl_00193] ⌈

Output = (Array[0] + Array[1]+_ _ Array[N-1]) / N

⌋

8.5.11 Hypotenuse

[SWS_Mfl_00195] Definition of API function Mfl_Hypot_f32f32_f32 ⌈
Service Name Mfl_Hypot_f32f32_f32

Syntax float32 Mfl_Hypot_f32f32_f32 (
float32 x_value,
float32 y_value

)

Service ID [hex] 0x70

Sync/Async Synchronous

Reentrancy Reentrant

x_value First argument Recommended input range: [-24PI, +24PI]Parameters (in)

y_value Second argument Recommended input range [-24PI, +24PI]

Parameters (inout) None

Parameters (out) None

Return value float32 Return value of the function

Description This service computes the length of a vector

Available via Mfl.h

⌋

[SWS_Mfl_00196] ⌈

85 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

This service computes the length of a vector:

Result = square_root (x_value * x_value + y_value * y_value)

⌋

8.5.12 Ramp routines

In case of a change of the input value, the ramp output value follows the input value
with a specified limited slope.

Mfl_ParamRamp_Type and Mfl_StateRamp_Type are the data types for storing ramp
parameters. Usage of Switch-Routine and Jump-Routine is optional based on the func-
tionality requirement. Usage of Switch-Routine, Jump-Routine, Calc-Routine and Out-
Method have the following precondition concerning the sequence of the calls.

• Mfl_RampCalcSwitch

• Mfl_RampCalcJump

• Mfl_RampCalc

• Mfl_RampOut_f32

Structure definition for function argument

[SWS_Mfl_00200] Definition of datatype Mfl_ParamRamp_Type ⌈
Name Mfl_ParamRamp_Type

Kind Structure

SlopePos_f32

Type float32

Comment Positive slope for ramp in absolute value

SlopeNeg_f32

Type float32

Elements

Comment Negative slope for ramp in absolute value

Description Structure definition for Ramp routine

Available via Mfl.h

⌋

[SWS_Mfl_00833] Definition of datatype Mfl_StateRamp_Type ⌈
Name Mfl_StateRamp_Type

Kind Structure

State_f32

Type float32

Comment State of the ramp

Elements

Dir_s8

▽

86 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Type sint8

Comment Ramp direction

Switch_s8

Type sint8

Comment Position of switch

Description Structure definition for Ramp routine

Available via Mfl.h

⌋

8.5.12.1 Ramp routine

[SWS_Mfl_00201] Definition of API function Mfl_RampCalc ⌈
Service Name Mfl_RampCalc

Syntax void Mfl_RampCalc (
float32 X_f32,
Mfl_StateRamp_Type* State_cpst,
const Mfl_ParamRamp_Type* Param_cpcst,
float32 dT_f32

)

Service ID [hex] 0x90

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 Target value for the ramp to reach

Param_cpcst Pointer to parameter structure

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to state structure

Parameters (out) None

Return value None

Description The ramp output value increases or decreases a value with slope * dT_f32 depending if (State_
cpst->State_f32 > X_f32) or (State_cpst->State_f32 < X_f32).

Available via Mfl.h

⌋

[SWS_Mfl_00835] ⌈

If the ramp state State_cpst->State_f32 has reached or crossed the target value X_
f32 while the direction of the ramp had been RISING/FALLING, then set State_cpst-
>State_f32 = X_f32.

⌋

[SWS_Mfl_00202] ⌈

If ramp direction is rising then ramp increases a value with slope * dT_f32

if (State_cpst->Dir_s8 == RISING)

87 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

State_cpst->State_f32 = State_cpst->State_f32 + (Param_cpcst->SlopePos_f32 * dT_
f32)

⌋

[SWS_Mfl_00203] ⌈

If ramp direction is falling then ramp decreases a value with slope * dT_f32

if (State_cpst->Dir_s8 == FALLING)

State_cpst->State_f32 = State_cpst->State_f32 - (Param_cpcst->SlopeNeg_f32 * dT_
f32)

⌋

[SWS_Mfl_00204] ⌈

Direction of the ramp is stored so that a change of the target can be recognized and
the output will follow immediately to the new target value.

State_cpst->Dir_s8 states are: RISING, FALLING, END.

⌋

[SWS_Mfl_00205] ⌈

Comparison of State and Target decides ramp direction.

If(State_cpst->State_f32 > X_f32) then State_cpst->Dir_s8 = FALLING

If(State_cpst->State_f32 < X_f32) then State_cpst->Dir_s8 = RISING

If(State_cpst->State_f32 == X_f32) then State_cpst->Dir_s8 = END

⌋

8.5.12.2 Ramp Initialisation

[SWS_Mfl_00208] Definition of API function Mfl_RampInitState ⌈
Service Name Mfl_RampInitState

Syntax void Mfl_RampInitState (
Mfl_StateRamp_Type* State_cpst,
float32 Val_f32

)

Service ID [hex] 0x91

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Val_f32 Initial value for state variable

Parameters (inout) State_cpst Pointer to the state structure

▽

88 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (out) None

Return value None

Description Initializes the state, direction and switch parameters for the ramp.

Available via Mfl.h

⌋

[SWS_Mfl_00209] ⌈

Ramp direction is initialised with END value. User has no possibility to change or
modify ramp direction.

State_cpst->Dir_s8 = END

For example:

ramp direction states: RISING = 1, FALLING = -1, END = 0⌋

[SWS_Mfl_00275] ⌈

Initialisation of state variable

State_cpst ->State_f32 = Val_f32

⌋

[SWS_Mfl_00276] ⌈

Initialisation of switch variable. User has no possibility to change or modify switch
initialization value.

State_cpst->Switch_s8 = OFF

For example:

switch states: TARGET_A = 1, TARGET_B = -1, OFF = 0⌋

8.5.12.3 Ramp Set Slope

[SWS_Mfl_00210] Definition of API function Mfl_RampSetParam ⌈
Service Name Mfl_RampSetParam

Syntax void Mfl_RampSetParam (
Mfl_ParamRamp_Type* Param_cpst,
float32 SlopePosVal_f32,
float32 SlopeNegVal_f32

)

Service ID [hex] 0x92

Sync/Async Synchronous

Reentrancy Reentrant

▽

89 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
SlopePosVal_f32 Positive slope valueParameters (in)

SlopeNegVal_f32 Negative slope value

Parameters (inout) None

Parameters (out) Param_cpst Pointer to parameter structure

Return value None

Description Sets the slope parameter for the ramp provided by the structure Mfl_ParamRamp_Type.

Available via Mfl.h

⌋

[SWS_Mfl_00211] ⌈

Sets positive and negative ramp slopes.

Param_cpst->SlopePos_f32 = SlopePosVal_f32

Param_cpst->SlopeNeg_f32 = SlopeNegVal_f32

⌋

8.5.12.4 Ramp Out routine

[SWS_Mfl_00212] Definition of API function Mfl_RampOut_f32 ⌈
Service Name Mfl_RampOut_f32

Syntax float32 Mfl_RampOut_f32 (
const Mfl_StateRamp_Type* State_cpcst

)

Service ID [hex] 0x93

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpcst Pointer to the state value

Parameters (inout) None

Parameters (out) None

Return value float32 Internal state of the ramp element

Description Returns the internal state of the ramp element.

Available via Mfl.h

⌋

[SWS_Mfl_00213] ⌈

Return Value = State_cpcst->State_f32

⌋

90 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.12.5 Ramp Jump routine

[SWS_Mfl_00214] Definition of API function Mfl_RampCalcJump ⌈
Service Name Mfl_RampCalcJump

Syntax void Mfl_RampCalcJump (
float32 X_f32,
Mfl_StateRamp_Type* State_cpst

)

Service ID [hex] 0x94

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) X_f32 Target value for ramp to jump

Parameters (inout) State_cpst Pointer to the state value

Parameters (out) None

Return value None

Description This routine works in addition to main ramp function Mfl_RampCalc to provide a faster adaption
to target value. If ramp is still rising (or falling) and target value is not reached, then input value
of ramp jumps to a lower (or higher) value of current ramp state, ramp will jump to that value
immediately. This functionality is helpful if input target value of ramp changes its direction often
and significantly and ramp should reach target value faster than without that functionality. If the
target is reached or the target does not change its direction, the standard behaviour of ramp
functionality is untouched.
In general, this routine decides whether a jump has to be done or not, if there is a change in the
target. After a call to this function, Mfl_RampCalc function shall be called to execute the
standard ramp behaviour.

Available via Mfl.h

⌋

[SWS_Mfl_00215] ⌈

If target value changes to a value contrary to current ramp direction and ramp has not
reached its old target value then ramp state jumps to new target value immediately.

State_cpst->State_f32 = X_f32

State_cpst->Dir_s8 = END

Otherwise the previous values of State_cpst->Dir_s8 and State_cpst->State_f32
should be kept.

⌋

91 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.12.6 Ramp switch routine

[SWS_Mfl_00216] Definition of API function Mfl_RampCalcSwitch_f32 ⌈
Service Name Mfl_RampCalcSwitch_f32

Syntax float32 Mfl_RampCalcSwitch_f32 (
float32 Xa_f32,
float32 Xb_f32,
Mfl_StateRamp_Type* State_cpst,
const Mfl_ParamRamp_Type* Param_cpcst,
float32 dT_f32

)

Service ID [hex] 0x95

Sync/Async Synchronous

Reentrancy Reentrant

Xa_f32 Target value for the ramp to reach if switch is in position ’A’

Xb_f32 Target value for the ramp to reach if switch is in position ’B’

Param_cpcst Pointer to the parameter structure which contains the positive and
negative slope of the ramp

Parameters (in)

dT_f32 Sample Time

Parameters (inout) State_cpst Pointer to actual value of the ramp

Parameters (out) None

Return value float32 Returns the actual state of the ramp

Description This routine switches ramp between two target values based on the Switch value.

Available via Mfl.h

⌋

[SWS_Mfl_00217] ⌈

Switch decides target to select.

If (State_cpst->Switch_s8 == TARGET_A), target = Xa_f32

If (State_cpst->Switch_s8 == TARGET_B), target = Xb_f32

⌋

[SWS_Mfl_00218] ⌈

State_cpst->Dir_s8 holds direction information

Ramp direction status: RISING, FALLING, END

⌋

[SWS_Mfl_00219] ⌈

If ramp is active then ramp will change to reach selected target with defined slope.

if (State_cpst->Dir_s8 == RISING)

then State_cpst->State_f32 = State_cpst->State_f32 + (Param_cpcst->SlopePos_f32
* dT_f32)

else if (State_cpst->Dir_s8 == FALLING)

92 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

then State_cpst->State_f32 = State_cpst->State_f32 - (Param_cpcst->SlopeNeg_f32 *
dT_f32)

else if (State_cpst->Dir_s8 == END)

State_cpst->State_f32 = target value which is decided by State_cpst->Switch_s8.

⌋

[SWS_Mfl_00220] ⌈

Once ramp value reaches the selected target value, the ramp direction status is
switched to END.

State_cpst->Dir_s8 == END

⌋

[SWS_Mfl_00221] ⌈

If the ramp has reached its destination and no change of switch occurs, the output
value follows the actual target value.

If(State_cpst->State_f32 == target value)

Return_value = Xa_f32 (if State_cpst->Switch_s8 is TARGET_A)

Return_value = Xb_f32 (if State_cpst->Switch_s8 is TARGET_B)

⌋

[SWS_Mfl_00222] ⌈

Calculated ramp value shall be stored to State_cpst->State_f32 variable.

⌋

Note : "This routine (Mfl_RampCalcSwitch_f32) is depreciated and will not be sup-
ported in future release.

Replacement routine : Mfl_RampCalcSwitch "

[SWS_Mfl_00369] Definition of API function Mfl_RampCalcSwitch ⌈
Service Name Mfl_RampCalcSwitch

Syntax float32 Mfl_RampCalcSwitch (
float32 Xa_f32,
float32 Xb_f32,
boolean Switch,
Mfl_StateRamp_Type* State_cpst

)

Service ID [hex] 0xCA

Sync/Async Synchronous

Reentrancy Reentrant

▽

93 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Xa_f32 Target value for the ramp to reach if switch is in position ’A’

Xb_f32 Target value for the ramp to reach if switch is in position ’B’

Parameters (in)

Switch Switch to decide target value

Parameters (inout) State_cpst Pointer to StateRamp structure

Parameters (out) None

Return value float32 Returns the selected target value

Description This routine switches between two target values for a ramp service based on a Switch
parameter.

Available via Mfl.h

⌋

[SWS_Mfl_00370] ⌈

Parameter Switch decides which target value is selected.

If Switch = TRUE, then Xa_f32 is selected.

State_cpst->Switch_s8 is set to TARGET_A

Return value = Xa_f32

If Swtich = FALSE, then Xb_f32 is selected.

State_cpst->Switch_s8 is set to TARGET_B

Return value = Xb_f32

⌋

[SWS_Mfl_00371] ⌈

State_cpst->Dir_s8 hold direction information

State_cpst->Dir_s8 shall be set to END to reset direction information in case of target
switch.

⌋

[SWS_Mfl_00372] ⌈

Mfl_RampCalcSwitch has to be called before Mfl_RampCalc routine

⌋

94 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.12.7 Get Ramp Switch position

[SWS_Mfl_00223] Definition of API function Mfl_RampGetSwitchPos ⌈
Service Name Mfl_RampGetSwitchPos

Syntax boolean Mfl_RampGetSwitchPos (
const Mfl_StateRamp_Type* State_cpst

)

Service ID [hex] 0x96

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to the state structure

Parameters (inout) None

Parameters (out) None

Return value boolean return value TRUE or FALSE

Description Gets the current switch position of ramp switch function.

Available via Mfl.h

⌋

[SWS_Mfl_00224] ⌈

Return value = TRUE if Switch position State_cpst->Switch_s8 = TARGET_A

Return value = FALSE if Switch position State_cpst->Switch_s8 = TARGET_B

⌋

Note: The function "Mfl_RampGetSwitchPos" should be called only after calling the
function "Mfl_RampCalcSwitch" or "Mfl_RampCalc".

8.5.12.8 Check Ramp Activity

[SWS_Mfl_00225] Definition of API function Mfl_RampCheckActivity ⌈
Service Name Mfl_RampCheckActivity

Syntax boolean Mfl_RampCheckActivity (
const Mfl_StateRamp_Type* State_cpst

)

Service ID [hex] 0x97

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst Pointer to the state structure

Parameters (inout) None

Parameters (out) None

Return value boolean return value TRUE or FALSE

Description This routine checks the status of the ramp and returns a TRUE if the ramp is active, otherwise it
returns FALSE.

Available via Mfl.h

⌋

95 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00226] ⌈

return value = TRUE, if Ramp is active (State_cpst->Dir_s8 != END)

return value = FALSE, if Ramp is inactive (State_cpst->Dir_s8 == END)

⌋

8.5.13 Hysteresis routines

8.5.13.1 Hysteresis center half delta

[SWS_Mfl_00236] Definition of API function Mfl_HystCenterHalfDelta_f32_u8 ⌈
Service Name Mfl_HystCenterHalfDelta_f32_u8

Syntax boolean Mfl_HystCenterHalfDelta_f32_u8 (
float32 X,
float32 center,
float32 halfDelta,
uint8* State

)

Service ID [hex] 0xA0

Sync/Async Synchronous

Reentrancy Reentrant

X Input value

center Center of hysteresis range

Parameters (in)

halfDelta Half width of hysteresis range

Parameters (inout) State Pointer to state value

Parameters (out) None

Return value boolean Returns TRUE or FALSE depending of input value and state value

Description Hysteresis with center and left and right side halfDelta switching point.

Available via Mfl.h

⌋

[SWS_Mfl_00237] ⌈

Return value is TRUE if input is greater then center plus halfDelta switching point.

⌋

[SWS_Mfl_00238] ⌈

Return value is FALSE if input is less then center minus halfDelta switching point.

⌋

[SWS_Mfl_00239] ⌈

Return value is former state value if input is in the range of halfDelta around the center
switching point

⌋

96 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.13.2 Hysteresis left right

[SWS_Mfl_00241] Definition of API function Mfl_HystLeftRight_f32_u8 ⌈
Service Name Mfl_HystLeftRight_f32_u8

Syntax boolean Mfl_HystLeftRight_f32_u8 (
float32 X,
float32 Lsp,
float32 Rsp,
uint8* State

)

Service ID [hex] 0xA3

Sync/Async Synchronous

Reentrancy Reentrant

X Input value

Lsp Left switching point

Parameters (in)

Rsp Right switching point

Parameters (inout) State Pointer to state value

Parameters (out) None

Return value boolean Returns TRUE or FALSE depending of input value and state value

Description Hysteresis with left and right switching point.

Available via Mfl.h

⌋

[SWS_Mfl_00242] ⌈

Return value is TRUE if input is greater then right switching point.

⌋

[SWS_Mfl_00243] ⌈

Return value is FALSE if input is less then left switching point.

⌋

[SWS_Mfl_00244] ⌈

Return value is former state value if input is between left and right switching points

⌋

97 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.13.3 Hysteresis delta right

[SWS_Mfl_00246] Definition of API function Mfl_HystDeltaRight_f32_u8 ⌈
Service Name Mfl_HystDeltaRight_f32_u8

Syntax boolean Mfl_HystDeltaRight_f32_u8 (
float32 X,
float32 Delta,
float32 Rsp,
uint8* State

)

Service ID [hex] 0xA5

Sync/Async Synchronous

Reentrancy Reentrant

X Input value

Delta Left switching point = rsp - delta

Parameters (in)

Rsp Right switching point

Parameters (inout) State Pointer to state value

Parameters (out) None

Return value boolean Returns TRUE or FALSE depending of input value and state value

Description Hysteresis with right switching point and delta to left switching point

Available via Mfl.h

⌋

[SWS_Mfl_00247] ⌈

Return value is TRUE if input is greater then right switching point.

⌋

[SWS_Mfl_00248] ⌈

Return value is FALSE if input is less then right switching point minus delta.

⌋

[SWS_Mfl_00249] ⌈

Return value is former state value if input is between right switching points and right
minus delta.

⌋

98 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.13.4 Hysteresis left delta

[SWS_Mfl_00251] Definition of API function Mfl_HystLeftDelta_f32_u8 ⌈
Service Name Mfl_HystLeftDelta_f32_u8

Syntax boolean Mfl_HystLeftDelta_f32_u8 (
float32 X,
float32 Lsp,
float32 Delta,
uint8* State

)

Service ID [hex] 0xA7

Sync/Async Synchronous

Reentrancy Reentrant

X Input value

Lsp Left switching point

Parameters (in)

Delta Right switching point = lsp + delta

Parameters (inout) State Pointer to state value

Parameters (out) None

Return value boolean Returns TRUE or FALSE depending of input value and state value

Description Hysteresis with left switching point and delta to right switching point.

Available via Mfl.h

⌋

[SWS_Mfl_00252] ⌈

Return value is TRUE if input is greater then left switching point plus delta.

⌋

[SWS_Mfl_00253] ⌈

Return value is FALSE if input is less then left switching point.

⌋

[SWS_Mfl_00254] ⌈

Return value is former state value if input is between left switching points and left plus
delta.

⌋

99 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.14 Mfl_DeadTime

[SWS_Mfl_00256] Definition of API function Mfl_DeadTime_f32_f32 ⌈
Service Name Mfl_DeadTime_f32_f32

Syntax float32 Mfl_DeadTime_f32_f32 (
float32 X,
float32 DelayTime,
float32 StepTime,
Mfl_DeadTimeParam_Type* Param

)

Service ID [hex] 0xAA

Sync/Async Synchronous

Reentrancy Reentrant

X Input value

DelayTime Time to be delayed

Parameters (in)

StepTime Sample time

Parameters (inout) Param Pointer to parameter structure of type Mfl_DeadTimeParam_Type

Parameters (out) None

Return value float32 Returns the actual state of the dead time element as sint16 value

Description This routine returns input value with specified delay time.

Available via Mfl.h

⌋

[SWS_Mfl_00257] ⌈

Buffer data stores input samples hence reproduced output signal will reduce samples
in case high delay time.

⌋

[SWS_Mfl_00258] ⌈

Buffer size shall be configured as per the delay time range requirement.

⌋

Structure definition for function argument

[SWS_Mfl_00259] Definition of datatype Mfl_DeadTimeParam_Type ⌈
Name Mfl_DeadTimeParam_Type

Kind Structure

dsintStatic

Type float32

Comment Time since the last pack was written

*lszStatic

Type float32

Comment Pointer to actual buffer position

Elements

*dtbufBegStatic

▽

100 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Type float32

Comment Pointer to begin of buffer

*dtbufEndStatic

Type float32

Comment Pointer to end of buffer

Description Structure definition for Dead Time routine

Available via Mfl.h

⌋

"Note: This routine (Mfl_DeadTime_f32_f32) is depreciated and will not be supported
in future release."

8.5.15 Debounce routines

8.5.15.1 Mfl_Debounce

[SWS_Mfl_00260] Definition of API function Mfl_Debounce_u8_u8 ⌈
Service Name Mfl_Debounce_u8_u8

Syntax boolean Mfl_Debounce_u8_u8 (
boolean X,
Mfl_DebounceState_Type* State,
const Mfl_DebounceParam_Type* Param,
float32 dT

)

Service ID [hex] 0xB0

Sync/Async Synchronous

Reentrancy Reentrant

X Input value

Param Pointer to state structure of type Mfl_DebounceState_Type

Parameters (in)

dT Sample Time

Parameters (inout) State Pointer to structure for debouncing state variables

Parameters (out) None

Return value boolean Returns the debounced input value

Description This routine debounces a digital input signal and returns the state of the signal as a boolean
value.

Available via Mfl.h

⌋

[SWS_Mfl_00261] ⌈

If(X != State->XOld) then check start debouncing.

⌋

[SWS_Mfl_00262] ⌈

101 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

If transition is from Low to High, then use Param->TimeLowHigh as debouncing time
otherwise use Param->TimeHighLow

⌋

[SWS_Mfl_00263] ⌈

State->Timer is incremented with sample time for debouncing input signal.

Once reached to the set period, old state is updated with X.

State->Timer += dT;

If(State ->Timer ≥ TimePeriod)

State->XOld = X, and stop the timer, State->Timer = 0

where TimePeriod = Param->TimeLowHigh or Param->TimeHighLow

⌋

[SWS_Mfl_00264] ⌈

Old value shall be returned as a output value. Current input is stored to old state.

Return value = State->XOld

State->XOld = X

⌋

Structure definition for function argument

[SWS_Mfl_00265] Definition of datatype Mfl_DebounceParam_Type ⌈
Name Mfl_DebounceParam_Type

Kind Structure
TimeHighLow

Type float32

Comment Time for a High to Low transition, given in 10ms steps

TimeLowHigh

Type float32

Elements

Comment Time for a Low to High transition, given in 10ms steps

Description Structure definition for Debouncing parameters

Available via Mfl.h

⌋

[SWS_Mfl_00834] Definition of datatype Mfl_DebounceState_Type ⌈
Name Mfl_DebounceState_Type

Kind Structure
Elements XOld

▽

102 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Type boolean

Comment Old input value from last call

Timer

Type float32

Comment Timer for internal state

Description Structure definition for Debouncing state variables

Available via Mfl.h

⌋

8.5.15.2 Mfl_DebounceInit

[SWS_Mfl_00266] Definition of API function Mfl_DebounceInit ⌈
Service Name Mfl_DebounceInit

Syntax void Mfl_DebounceInit (
Mfl_DebounceState_Type* State,
boolean X

)

Service ID [hex] 0xB1

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) X Initial value for the input state

Parameters (inout) None

Parameters (out) State Pointer to structure for debouncing state variables

Return value None

Description This routine call shall stop the debouncing timer.

Available via Mfl.h

⌋

[SWS_Mfl_00267] ⌈

State->Timer = 0

⌋

[SWS_Mfl_00268] ⌈

Sets the input state to the given init value.

State->XOld = X

⌋

103 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.15.3 Mfl_DebounceSetParam

[SWS_Mfl_00269] Definition of API function Mfl_DebounceSetparam ⌈
Service Name Mfl_DebounceSetparam

Syntax void Mfl_DebounceSetparam (
Mfl_DebounceParam_Type* Param,
float32 THighLow,
float32 TLowHigh

)

Service ID [hex] 0xB2

Sync/Async Synchronous

Reentrancy Reentrant

THighLow Value for TimeHighLow of Mfl_DebounceParam_TypeParameters (in)

TLowHigh Value for TimeLowHigh of Mfl_DebounceParam_Type

Parameters (inout) None

Parameters (out) Param Pointer to state structure of type Mfl_DebounceParam_Type

Return value None

Description This routine sets timing parameters, time for high to low transition and time for low to high for
debouncing.

Available via Mfl.h

⌋

[SWS_Mfl_00270] ⌈

Param-> TimeHighLow = THighLow

Param-> TimeLowHigh = TLowHigh

⌋

Note : "This routine (Mfl_DebounceSetparam) is depreciated and will not be supported
in future release

Replacement routine : Mfl_DebounceSetParam "

[SWS_Mfl_00365] Definition of API function Mfl_DebounceSetParam ⌈
Service Name Mfl_DebounceSetParam

Syntax void Mfl_DebounceSetParam (
Mfl_DebounceParam_Type* Param,
float32 THighLow,
float32 TLowHigh

)

Service ID [hex] 0xC8

Sync/Async Synchronous

Reentrancy Reentrant

THighLow Value for TimeHighLow of Mfl_DebounceParam_TypeParameters (in)

TLowHigh Value for TimeLowHigh of Mfl_DebounceParam_Type

Parameters (inout) None

Parameters (out) Param Pointer to state structure of type Mfl_DebounceParam_Type

▽

104 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Return value None

Description This routine sets timing parameters, time for high to low transition and time for low to high for
debouncing.

Available via Mfl.h

⌋

[SWS_Mfl_00366] ⌈

Param-> TimeHighLow = THighLow

Param-> TimeLowHigh = TLowHigh

⌋

8.5.16 Ascending Sort Routine

[SWS_Mfl_00271] Definition of API function Mfl_SortAscend_f32 ⌈
Service Name Mfl_SortAscend_f32

Syntax void Mfl_SortAscend_f32 (
float32* Array,
uint16 Num

)

Service ID [hex] 0xB5

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Num Size of an data array

Parameters (inout) Array Pointer to an data array

Parameters (out) None

Return value None

Description The sorting algorithm modifies the given input array in ascending order & returns sorted array
result via pointer

Available via Mfl.h

⌋

Example for signed array:

Input array : float32 Array [5] = {-42.0, -10.0, 88.0, 8.0, 15.0};

Result : Array will be sorted to [-42.0, -10.0, 8.0, 15.0, 88.0]

105 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.5.17 Descending Sort Routine

[SWS_Mfl_00273] Definition of API function Mfl_SortDescend_f32 ⌈
Service Name Mfl_SortDescend_f32

Syntax void Mfl_SortDescend_f32 (
float32* Array,
uint16 Num

)

Service ID [hex] 0xBA

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Num Size of an data array

Parameters (inout) Array Pointer to an data array

Parameters (out) None

Return value None

Description The sorting algorithm modifies the given input array in descending order & returns sorted array
result via pointer

Available via Mfl.h

⌋

Example for signed array:

Input array : float32 Array [5] = {-42.0, -10.0, 88.0, 8.0, 15.0};

Result : Array will be sorted to [88.0, 15.0, 8.0, -10.0, -42.0]

8.5.18 Median sort routine

[SWS_Mfl_00285] Definition of API function Mfl_MedianSort_f32_f32 ⌈
Service Name Mfl_MedianSort_f32_f32

Syntax float32 Mfl_MedianSort_f32_f32 (
float32* Array,
uint8 N

)

Service ID [hex] 0xBB

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) N Size of an array

Parameters (inout) Array Pointer to an array

Parameters (out) None

Return value float32 Return value of the function

Description This routine sorts values of an array in ascending order. Input array passed by the pointer shall
have sorted values after this routine call.
If N is set incorrectly there is a security risk of buffer overrun. Memory corruption is possible, if
parameter N is greater than the array size. Therefore N is recommended to be a constant, not a
variable.

Available via Mfl.h

⌋

For example:

106 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Input array [5] = [42.0, 10.0, 88.0, 8.0, 15.0]

Sorted array[5] = [8.0, 10.0, 15.0, 42.0, 88.0]

[SWS_Mfl_00287] ⌈

Returns the median value of sorted array in case of N is even.

Result = (Sorted_array[N/2] + Sorted_array[(N/2) - 1]) / 2

For example:

Sorted_array[4] = [8.0, 10.0, 15.0, 42.0]

Result = (15.0 + 10.0) / 2.0 = 12.5⌋

[SWS_Mfl_00288] ⌈

Returns the median value of sorted array in case of N is odd.

Return_Value = Sorted_array [N/2] = 15

For example:

Sorted_array[5] = [8.0, 10.0, 15.0, 42.0, 88.0]

Result = 15.0⌋

[SWS_Mfl_00289] ⌈

In above calculation, N/2 shall be rounded off towards 0.

If N is set incorrectly there is a security risk of buffer overrun. Memory corruption is
possible, if parameter N is greater than the array size. Therefore N is recommended to
be a constant, not a variable.

⌋

[SWS_Mfl_00836] Definition of API function Mfl_IntToFloatCvrt_<InTypeMn>_f32
⌈

Service Name Mfl_IntToFloatCvrt_<InTypeMn>_f32

Syntax float32 Mfl_IntToFloatCvrt_<InTypeMn>_f32 (
<InType> ValInteger

)

Service ID [hex] 0xD1 to 0xD6, 0xD9 to 0xDA

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValInteger Integer value to be converted

Parameters (inout) None

Parameters (out) None

Return value float32 Returns the float value

Description Returns the Float value for the corresponding Integer input.

▽

107 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Available via Mfl.h

⌋

[SWS_Mfl_00837] ⌈The result shall be round ties to even.⌋

Function ID and prototypes

[SWS_Mfl_00838] ⌈

Function ID[hex] Function prototype

0xD1 float32 Mfl_IntToFloatCvrt_u8_f32(uint8)

0xD2 float32 Mfl_IntToFloatCvrt_s8_f32(sint8)

0xD3 float32 Mfl_IntToFloatCvrt_u16_f32(uint16)

0xD4 float32 Mfl_IntToFloatCvrt_s16_f32(sint16)

0xD5 float32 Mfl_IntToFloatCvrt_u32_f32(uint32)

0xD6 float32 Mfl_IntToFloatCvrt_s32_f32(sint32)

0xD9 float32 Mfl_IntToFloatCvrt_u64_f32(uint64)

0xDA float32 Mfl_IntToFloatCvrt_s64_f32(sint64)

⌋

[SWS_Mfl_00839] Definition of API function Mfl_FloatToIntCvrt_f32_<OutType
Mn> ⌈

Service Name Mfl_FloatToIntCvrt_f32_<OutTypeMn>

Syntax <OutType> Mfl_FloatToIntCvrt_f32_<OutTypeMn> (
float32 ValFloat

)

Service ID [hex] 0xCB to 0xD0, 0xD7 to 0xD8

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ValFloat Floating-point value to be converted

Parameters (inout) None

Parameters (out) None

Return value <OutType> Returns the integer value

Description Returns the Integer value for the corresponding floating point input.

Available via Mfl.h

⌋

[SWS_Mfl_00840] ⌈

The return value shall be saturated to the return type boundary values in the event of
overflow or underflow.

⌋

[SWS_Mfl_00841] ⌈

108 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

The result shall be rounded toward zero.

⌋

[SWS_Mfl_00843] ⌈

If the input is +/- Infinity, then the output shall be limited to target type boundaries
(max/min) after the conversion.

⌋

[SWS_Mfl_00848] ⌈

If the input is NaN, then the output of the conversion shall be zero.

⌋

[SWS_Mfl_00842] ⌈

Function ID[hex] Function prototype

0xCB uint8 Mfl_FloatToIntCvrt_f32_u8(float32)

0xCC sint8 Mfl_FloatToIntCvrt_f32_s8(float32)

0xCD uint16 Mfl_FloatToIntCvrt_f32_u16(float32)

0xCE sint16 Mfl_FloatToIntCvrt_f32_s16(float32)

0xCF uint32 Mfl_FloatToIntCvrt_f32_u32(float32)

0xD0 sint32 Mfl_FloatToIntCvrt_f32_s32(float32)

0xD7 uint64 Mfl_FloatToIntCvrt_f32_u64(float32)

0xD8 sint64 Mfl_FloatToIntCvrt_f32_s64(float32)

⌋

109 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00850] Definition of API function Mfl_Mod_f32 ⌈
Service Name Mfl_Mod_f32

Syntax Mfl_Mod_St_Type Mfl_Mod_f32 (
float32 x_f32,
float32 y_f32,
float32* Result

)

Service ID [hex] 0x0100

Sync/Async Synchronous

Reentrancy Reentrant

x_f32 dividendParameters (in)

y_f32 divisor

Parameters (inout) None

Parameters (out) Result Pointer to the Result

Return value Mfl_Mod_St_Type Returns status of modulus operation
E_SUCCESS: Division success
E_DIVBYZERO: Divide by Zero
E_INVALID: Invalid Operation

Description This routine returns the value x_f32 - (n*y_f32), for some integer n such that, if y_f32 is nonzero,
the result has the same sign as x_f32 and magnitude less than the magnitude of y_f32.

Available via

⌋

[SWS_Mfl_00851] ⌈

Returns E_SUCCESS, in case of the following scenarios,

if the dividend and divisor is finite then,

*Result = x_f32 % y_f32 and the sign of result shall be same as sign of divdend.

- If the dividend is +/-0 and the divisor is finite number then the result shall be +/-0.

- If the dividend is finite number and divisor is +/-Infinity then the dividend shall be
return as the result and the sign of result shall be same as that of the dividend.

⌋

[SWS_Mfl_00852] ⌈

Returns E_INVALID, if there is an invalid operation and the result of the operation shall
be NaN (not a number).

The operations considered as invalid in the following scenarios:

- If the divisor is zero

- If dividend is +/- infinity

- If dividend or divisor is NaN

- mod(0, 0) or mod(+/∞, +/∞)

⌋

110 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

[SWS_Mfl_00844] Definition of API function Mfl_DivLim_f32 ⌈
Service Name Mfl_DivLim_f32

Syntax MfL_Div_st Mfl_DivLim_f32 (
float32 X_f32,
float32 Y_f32,
float32 min_f32,
float32 max_f32,
float32* Result

)

Service ID [hex] 0xDC

Sync/Async Synchronous

Reentrancy Reentrant

X_f32 X_f32 Dividend

Y_f32 Y_f32 Divisor

min_f32 min_f32 minimum limit, min_f32 shall not be strictly greater than
max_f32

Parameters (in)

max_f32 max_f32 maximum limit, max_f32 shall not be strictly lower than
min_f32

Parameters (inout) None

Parameters (out) Result Result Pointer to the Result

Return value MfL_Div_st Returns status of division
E_SUCCESS: Division success
E_DIVBYZERO: Divide by Zero
E_INVALID: Invalid Operation

Description Divides X_f32 by Y_f32 and limits the result within min_f32 and max_f32 value.

Available via Mfl.h

⌋

[SWS_Mfl_00845] ⌈

Returns E_SUCCESS, in case of the following scenarios,if the dividend and divisor
are finite then,Result = X_f32 / Y_f32 and the sign of result is the exclusive OR of the
operands’ signs.

IF(*Result > max_f32)

*Result = max_f32

ELSE IF(*Result < min_f32)

*Result = min_f32

If the dividend is +/-Infinity and the divisor is finite number then the result shall be
saturated to max/min based on the sign of the result which is the exclusive OR of the
operands’ signs.

If the divisor is Infinity and dividend is finite number then the result shall be zero and
the sign of result is the exclusive OR of the operands’ signs.

⌋

[SWS_Mfl_00846] ⌈

Returns E_INVALID, if there is an invalid operation and the result of the IEEE754 divi-
sion operation is NaN (not a number).

111 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

According to IEEE 754 the results of 0/0 and (+/- ∞)/(+/- ∞) are invalid. In these cases
the function result shall remain at its initial value.

⌋

[SWS_Mfl_00847] ⌈

Returns E_DIVBYZERO, if the divisor is zero and the dividend is a finite non-zero num-
ber, the result shall be max/min based on the sign of the result which is the exclusive
OR of the operands’ signs.

⌋

8.5.19 Bit pattern

[SWS_Mfl_91000] Definition of API function Mfl_Bitpat_f32_u32 ⌈
Service Name Mfl_Bitpat_f32_u32

Syntax uint32 Mfl_Bitpat_f32_u32 (
float32 Value

)

Service ID [hex] 0x0101

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Value Floating-point value to be represented

Parameters (inout) None

Parameters (out) None

Return value uint32 Bit representation of the single precision floating point value

Description Return the bit representation of the single point precision float value

Available via Mfl.h

⌋

8.5.20 Fast inverse square root

[SWS_Mfl_91001] Definition of API function Mfl_RSqrt_f32
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

⌈
Service Name Mfl_RSqrt_f32

Syntax float32 Mfl_RSqrt_f32 (
float32 ValValue

)

Service ID [hex] 0x0104

Sync/Async Synchronous

Reentrancy Reentrant

▽

112 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (in) ValValue Floating-point operand.

Parameters (inout) None

Parameters (out) None

Return value float32 Reciprocal square root of ValValue

Description Fast reciprocal square root of the operand (ValSqrt)

Available via Mfl.h

⌋

[SWS_Mfl_00854]
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

⌈

Calculate an approximation of the reciprocal of the square root of ValValue
(1/sqrt(ValValue)). The accuracy of the result is no less than 6.75 bits, and therefore
always within +/- 1 % of the accurate result.

This instruction can be used to implement a floating-point square root function in soft-
ware using the Newton-Raphson iterative method.⌋

8.5.21 Trigonometric routines

[SWS_Mfl_91003] Definition of API function Mfl_Cos_s32_f32
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

⌈
Service Name Mfl_Cos_s32_f32

Syntax float32 Mfl_Cos_s32_f32 (
sint32 x_value

)

Service ID [hex] 0x0102

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) x_value Physical range: [-PI, PI[Resolution: 2*PI/(232)

Parameters (inout) None

Parameters (out) None

Return value float32 result = cosine (x_value), range: [-1.0 ... 1.0]

Description Fast cosine calculation

Available via Mfl.h

⌋

Algorithm hint (no requirement) for x_value [-PI/2...PI/2]:

Mfl_Cos_s32_f32 (x_value) = c1 + c2 * x_valueˆ 2 + c3 * x_valueˆ 4

which is the same as:

113 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

Mfl_Cos_s32_f32 (x_value) = c1 + x_valueˆ 2 * (c2 + c3 * x_valueˆ 2)

[SWS_Mfl_91004] Definition of API function Mfl_Sin_s32_f32
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

⌈
Service Name Mfl_Sin_s32_f32

Syntax float32 Mfl_Sin_s32_f32 (
sint32 x_value

)

Service ID [hex] 0x0103

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) x_value Physical range: [-PI, PI[Resolution: 2*PI/(232)

Parameters (inout) None

Parameters (out) None

Return value float32 result = sine (x_value), range: [-1.0 ... 1.0]

Description Fast sine calculation

Available via Mfl.h

⌋

Algorithm hint (no requirement):

Mfl_Sin_s32_f32(x_value) = Mfl_Cos_s32_f32(1073741824 (physical: pi/2) - x_value)

8.6 Examples of use of functions

None

8.7 Version API

8.7.1 Mfl_GetVersionInfo

[SWS_Mfl_00815] Definition of API function Mfl_GetVersionInfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_

00321

⌈
Service Name Mfl_GetVersionInfo

Syntax void Mfl_GetVersionInfo (
Std_VersionInfoType* versioninfo

)

Service ID [hex] 0xff

Sync/Async Synchronous

Reentrancy Reentrant

▽

114 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]

Return value None

Description Returns the version information of this library.

Available via Mfl.h

⌋

The version information of a BSW module generally contains:

• Module Id

• Vendor Id

• Vendor specific version numbers (SRS_BSW_00407).

[SWS_Mfl_00816]
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

⌈If source code for caller and callee of Mfl_GetVersionInfo is available, the Mfl library
should realize Mfl_GetVersionInfo as a macro defined in the module’s header file.⌋

8.8 Callback notifications

None

8.9 Scheduled functions

The Mfl library does not have scheduled functions.

8.10 Expected interfaces

None

8.10.1 Mandatory interfaces

None

8.10.2 Optional interfaces

None

115 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

8.10.3 Configurable interfaces

None

116 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

9 Sequence diagrams

Not applicable.

117 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

10 Configuration specification

10.1 Published Information

[SWS_Mfl_00814]
Upstream requirements: SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379

⌈The standardized common published parameters as required by [SRS_BSW_00402]
in the General Requirements on Basic Software Modules [REF] shall be published
within the header file of this module and need to be provided in the BSW Module
Description. The according module abbreviation can be found in the List of Basic
Software Modules [REF].⌋

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration option

[SWS_Mfl_00818]
Upstream requirements: SRS_LIBS_00001

⌈The Mfl library shall not have any configuration options that may affect the functional
behavior of the routines. I.e. for a given set of input parameters, the outputs shall
be always the same. For example, the returned value in case of error shall not be
configurable.⌋

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

118 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

A Not applicable requirements

[SWS_Mfl_00822]
Upstream requirements: SRS_BSW_00448

⌈These requirements are not applicable to this specification.⌋

119 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Items in R25-11

none

B.1.2 Changed Specification Items in R25-11

Number Heading

[SWS_Mfl_00360] Definition of API function Mfl_ArcTan2_f32

[SWS_Mfl_00839] Definition of API function Mfl_FloatToIntCvrt_f32_<OutTypeMn>

Table B.1: Changed Specification Items in R25-11

B.1.3 Deleted Specification Items in R25-11

Number Heading

[SWS_Mfl_00180] Definition of API function Mfl_arcTan2_f32

[SWS_Mfl_00182]

[SWS_Mfl_00183]

Table B.2: Deleted Specification Items in R25-11

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

Number Heading

[SWS_Mfl_91006] Definition of imported datatypes of module Mfl
▽

120 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Number Heading

[SWS_Mfl_91007] Definition of API function Mfl_PT1Typ1Calc

Table B.3: Added Specification Items in R24-11

B.2.2 Changed Specification Items in R24-11

none

B.2.3 Deleted Specification Items in R24-11

none

B.3 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.3.1 Added Specification Items in R23-11

Number Heading

[SWS_Mfl_00850] Definition of API function Mfl_Mod_f32

[SWS_Mfl_91002] Definition of datatype Mfl_Mod_St_Type

[SWS_Mfl_91005] Definition of datatype MfL_Div_st

Table B.4: Added Specification Items in R23-11

B.3.2 Changed Specification Items in R23-11

Number Heading

[SWS_Mfl_00010] Definition of API function Mfl_Cvrt_<InTypeMn>_f32

[SWS_Mfl_00013] Definition of API function Mfl_Trunc_f32

[SWS_Mfl_00015] Definition of API function Mfl_Round_f32

[SWS_Mfl_00018] Definition of API function Mfl_Ceil_f32

[SWS_Mfl_00020] Definition of API function Mfl_Floor_f32

[SWS_Mfl_00025] Definition of datatype Mfl_StatePT1_Type

[SWS_Mfl_00030] Definition of API function Mfl_POut_f32

[SWS_Mfl_00040] Definition of API function Mfl_CalcTeQ_f32
▽

121 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Number Heading

[SWS_Mfl_00042] Definition of API function Mfl_PT1Out_f32

[SWS_Mfl_00045]

[SWS_Mfl_00053] Definition of API function Mfl_DT1Typ1Out_f32

[SWS_Mfl_00066] Definition of API function Mfl_PDOut_f32

[SWS_Mfl_00074] Definition of API function Mfl_IOut_f32

[SWS_Mfl_00090] Definition of API function Mfl_PIOut_f32

[SWS_Mfl_00107] Definition of API function Mfl_PIDOut_f32

[SWS_Mfl_00110] Definition of API function Mfl_Abs_f32

[SWS_Mfl_00112] Definition of API function Mfl_Sign_f32

[SWS_Mfl_00116] Definition of API function Mfl_Max_f32

[SWS_Mfl_00118] Definition of API function Mfl_Min_f32

[SWS_Mfl_00120] Definition of API function Mfl_RateLimiter_f32

[SWS_Mfl_00122] Definition of API function Mfl_Limit_f32

[SWS_Mfl_00130] Definition of API function Mfl_Pow_f32

[SWS_Mfl_00135] Definition of API function Mfl_Sqrt_f32

[SWS_Mfl_00140] Definition of API function Mfl_Exp_f32

[SWS_Mfl_00145] Definition of API function Mfl_Log_f32

[SWS_Mfl_00150] Definition of API function Mfl_Sin_f32

[SWS_Mfl_00155] Definition of API function Mfl_Cos_f32

[SWS_Mfl_00160] Definition of API function Mfl_Tan_f32

[SWS_Mfl_00165] Definition of API function Mfl_arcSin_f32

[SWS_Mfl_00170] Definition of API function Mfl_arcCos_f32

[SWS_Mfl_00175] Definition of API function Mfl_arcTan_f32

[SWS_Mfl_00180] Definition of API function Mfl_arcTan2_f32

[SWS_Mfl_00190] Definition of API function Mfl_Average_f32_f32

[SWS_Mfl_00192] Definition of API function Mfl_ArrayAverage_f32_f32

[SWS_Mfl_00195] Definition of API function Mfl_Hypot_f32f32_f32

[SWS_Mfl_00200] Definition of datatype Mfl_ParamRamp_Type

[SWS_Mfl_00212] Definition of API function Mfl_RampOut_f32

[SWS_Mfl_00216] Definition of API function Mfl_RampCalcSwitch_f32

[SWS_Mfl_00223] Definition of API function Mfl_RampGetSwitchPos

[SWS_Mfl_00225] Definition of API function Mfl_RampCheckActivity

[SWS_Mfl_00236] Definition of API function Mfl_HystCenterHalfDelta_f32_u8

[SWS_Mfl_00241] Definition of API function Mfl_HystLeftRight_f32_u8

[SWS_Mfl_00246] Definition of API function Mfl_HystDeltaRight_f32_u8

[SWS_Mfl_00251] Definition of API function Mfl_HystLeftDelta_f32_u8

[SWS_Mfl_00256] Definition of API function Mfl_DeadTime_f32_f32

[SWS_Mfl_00259] Definition of datatype Mfl_DeadTimeParam_Type
▽

122 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

Specification of Floating Point Math Library
AUTOSAR CP R25-11

△
Number Heading

[SWS_Mfl_00260] Definition of API function Mfl_Debounce_u8_u8

[SWS_Mfl_00265] Definition of datatype Mfl_DebounceParam_Type

[SWS_Mfl_00285] Definition of API function Mfl_MedianSort_f32_f32

[SWS_Mfl_00305]

[SWS_Mfl_00310] Definition of API function Mfl_DT1Typ2Out_f32

[SWS_Mfl_00315] Definition of API function Mfl_CalcTeQApp_f32

[SWS_Mfl_00350] Definition of API function Mfl_ArcSin_f32

[SWS_Mfl_00354] Definition of API function Mfl_ArcCos_f32

[SWS_Mfl_00357] Definition of API function Mfl_ArcTan_f32

[SWS_Mfl_00360] Definition of API function Mfl_ArcTan2_f32

[SWS_Mfl_00369] Definition of API function Mfl_RampCalcSwitch

[SWS_Mfl_00823] Definition of datatype Mfl_StateDT1Typ1_Type

[SWS_Mfl_00824] Definition of datatype Mfl_StateDT1Typ2_Type

[SWS_Mfl_00825] Definition of datatype Mfl_StatePD_Type

[SWS_Mfl_00826] Definition of datatype Mfl_ParamPD_Type

[SWS_Mfl_00827] Definition of datatype Mfl_StateI_Type

[SWS_Mfl_00828] Definition of datatype Mfl_StatePI_Type

[SWS_Mfl_00829] Definition of datatype Mfl_ParamPI_Type

[SWS_Mfl_00830] Definition of datatype Mfl_StatePID_Type

[SWS_Mfl_00831] Definition of datatype Mfl_ParamPID_Type

[SWS_Mfl_00832] Definition of datatype Mfl_Limits_Type

[SWS_Mfl_00833] Definition of datatype Mfl_StateRamp_Type

[SWS_Mfl_00834] Definition of datatype Mfl_DebounceState_Type

[SWS_Mfl_00836] Definition of API function Mfl_IntToFloatCvrt_<InTypeMn>_f32

[SWS_Mfl_00844] Definition of API function Mfl_DivLim_f32

[SWS_Mfl_91000] Definition of API function Mfl_Bitpat_f32_u32

[SWS_Mfl_91001] Definition of API function Mfl_RSqrt_f32

[SWS_Mfl_91003] Definition of API function Mfl_Cos_s32_f32

[SWS_Mfl_91004] Definition of API function Mfl_Sin_s32_f32

Table B.5: Changed Specification Items in R23-11

B.3.3 Deleted Specification Items in R23-11

Number Heading

[SWS_Mfl_00849]

Table B.6: Deleted Specification Items in R23-11

123 of 123 Document ID 397: AUTOSAR_CP_SWS_MFLLibrary

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	7.2 Error detection
	7.3 Error notification
	7.4 Initialization and shutdown
	7.5 Using Library API
	7.6 Library implementation

	8 Routine specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about rounding
	8.4 Comment about routines optimized for target
	8.5 Routine definitions
	8.5.1 Floating point to Fixed-Point Conversion
	8.5.2 Fixed-Point to Floating-Point Conversion
	8.5.3 Rounding
	8.5.4 Controller routines
	8.5.4.1 Structure definitions for controller routines
	8.5.4.2 Proportional Controller
	8.5.4.3 Proportional controller with first order time constant
	8.5.4.4 Differential component with time delay : DT1
	8.5.4.5 Proportional & Differential controller
	8.5.4.6 Integral component
	8.5.4.7 Proportional & Integral controller
	8.5.4.8 Proportional, Integral & Differential controller

	8.5.5 Magnitude and Sign
	8.5.6 Limiting
	8.5.7 Logarithms and Exponentials
	8.5.8 Trigonometry
	8.5.9 Average
	8.5.10 Array Average
	8.5.11 Hypotenuse
	8.5.12 Ramp routines
	8.5.12.1 Ramp routine
	8.5.12.2 Ramp Initialisation
	8.5.12.3 Ramp Set Slope
	8.5.12.4 Ramp Out routine
	8.5.12.5 Ramp Jump routine
	8.5.12.6 Ramp switch routine
	8.5.12.7 Get Ramp Switch position
	8.5.12.8 Check Ramp Activity

	8.5.13 Hysteresis routines
	8.5.13.1 Hysteresis center half delta
	8.5.13.2 Hysteresis left right
	8.5.13.3 Hysteresis delta right
	8.5.13.4 Hysteresis left delta

	8.5.14 Mfl_DeadTime
	8.5.15 Debounce routines
	8.5.15.1 Mfl_Debounce
	8.5.15.2 Mfl_DebounceInit
	8.5.15.3 Mfl_DebounceSetParam

	8.5.16 Ascending Sort Routine
	8.5.17 Descending Sort Routine
	8.5.18 Median sort routine
	8.5.19 Bit pattern
	8.5.20 Fast inverse square root
	8.5.21 Trigonometric routines

	8.6 Examples of use of functions
	8.7 Version API
	8.7.1 Mfl_GetVersionInfo

	8.8 Callback notifications
	8.9 Scheduled functions
	8.10 Expected interfaces
	8.10.1 Mandatory interfaces
	8.10.2 Optional interfaces
	8.10.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Published Information
	10.2 Configuration option

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11

