
Specification of MCU Driver
AUTOSAR CP R25-11

Document Title Specification of MCU Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 31

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Editorial Changes.

2024-11-27 R24-11
AUTOSAR
Release
Management

• Cleaned up unresolved references in
traceability.

• Removed [SWS_Mcu_CONSTR_00001]

2023-11-23 R23-11
AUTOSAR
Release
Management

• Cleaned up unresolved references in
traceability.

2022-11-24 R22-11
AUTOSAR
Release
Management

• Cleaned up unresolved references in
traceability.

2021-11-25 R21-11
AUTOSAR
Release
Management

• Removed [SWS_Mcu_00131], [SWS_
Mcu_00054], [SWS_Mcu_00035],
[SWS_Mcu_00030] and [SWS_Mcu_
00031]

• Cleaned up unresolved references in
traceability

2020-11-30 R20-11
AUTOSAR
Release
Management

• Enum and Error related modifications

• Editorial Changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Removed DRAFT status of items
introduced for Multicore support

• Removed duplicated chapters
McuGeneralConfiguration and
McuClockSettingConfig

• Changed Document Status from Final to
published

▽

1 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Debugging support was removed

• Introduced support for Multicore
distribution

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Introduced new configuration parameter
- McuRamSectionWriteSize

• Changed reentrancy of API Mcu_
SetMode to Reentrant

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Removed chapter "Variants"

• Cleaned up unresolved references in
traceability

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Minor change regarding DET renaming
and extension Incorporation

• Clarifications regarding configuration
class of symbolicNameValue parameters

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Removed requirements for NULL pointer
checking as redundant with BSW
General.

• Specified pass/fail criteria for extended
production errors

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Requirement Traceability Table revised

• Correction of requirement tag ([SWS_
Mcu_00146])

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Mcu_GetResetReason and Mcu_
GetResetRawValue return the same
value if called multiple times

• RAM sector multiplicity corrected

• McuClockSettingId and McuMode range
corrected

• Editorial changes

• Removed chapter(s) on change
documentation

▽

2 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△

2013-03-15 4.1.1 AUTOSAR
Administration

• Adaptation of the Document due to the
SWS General Release

• Scope Fields in all configuration
parameters (chapter 10) changed as
Local -> impact only this module or ECU
impact several modules

• Autosar Memory mapping abstraction
split for each BSW

• Split Production Errors in "Pure"
Production Errors and Extended
Production Errors

• Changed signature of Api Mcu_
DistributePllClock

2011-12-22 4.0.3 AUTOSAR
Administration

• Mcu_SetMode assumes that all
interrupts are disabled prior the call

2010-09-30 3.1.5 AUTOSAR
Administration

• Corrected [SWS_Mcu_00210]

• Removed [SWS_Mcu_00225].

• Rephrased [SWS_Mcu_00125] and
[SWS_Mcu_00011]

• Added Chapter 12

2010-02-02 3.1.4 AUTOSAR
Administration

• Lots requirements rephrased to make
them atomic.

• Debugging Concept inserted.

• Insertion of a new service (Api) to read
the Status after the reset. (Affected also
SRS R4.0)

• Insertion new configuration parameters
to enable/disable PLL Apis.

• Introduction of a new container to
publish all the different resets that Micro
Controller support.

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Table formatting corrected

▽

3 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△

2007-01-24 2.1.15 AUTOSAR
Administration

• Wakeup concept clarified (resulted in
removal of wakeup functionality and
sequence diagrams in the MCU SWS).
As per the concept agreed within the
Startup / Wakeup Taskforce.

• Obsolete function Dem_
ReportErrorEvent() removed.

• Technical Office Improvements: wording
improvements.

• Re-wording of requirements for
clarification

• Document meta information extended

• Small layout adaptations made

2007-11-28 2.1.14 AUTOSAR
Administration

• Update to section 5.2.2: Inclusion of new
file structure

• Sections 8.3.2, 8.3.3, 8.3.9 : Removal of
’const’ from API type definition.

• Section 8.2.4, 8.2.5,10.2.5: Description
detail amended

• Section 8.2.4: Default value (0x0) for
MCU_POWER_ON_RESET removed.

• Section 8.3.8 : Description updated to
include reference to new pre-processor
switch McuPerformResetApi.

• Section 10.2.2: Introduction of
pre-processor switch
McuPerformResetApi

• Section 10.2.3: Multiplicity of
sub-container Mcu Clock Setting
Configuration changed to 1.

• Legal disclaimer revised

• Release Notes added

• "Advice for users" revised

• "Revision Information" added
▽

4 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△

2006-05-16 2.0 AUTOSAR
Administration

• Document structure adapted to common
Release 2.0 SWS Template.

• Major changes in chapter 10

• Structure of document changed partly

• Other changes see chapter 11

2005-05-31 1.0 AUTOSAR
Administration

• Initial Release

5 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

6 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 10

2 Acronyms and Abbreviations 11

3 Related documentation 12

3.1 Input documents & related standards and norms 12
3.2 Related specification . 12

4 Constraints and assumptions 13

4.1 Limitations . 13
4.2 Applicability to car domains . 13

5 Dependencies to other modules 14

5.1 Start-up code . 14
5.2 File structure . 15

5.2.1 Code file structure . 15

6 Requirements Tracing 16

7 Functional specification 17

7.1 General Behavior . 17
7.1.1 Background and Rationale . 17
7.1.2 Requirements . 17

7.1.2.1 Reset . 17
7.1.2.2 Clock . 17
7.1.2.3 MCU Mode service . 17

7.2 Error Classification . 18
7.2.1 Development Errors . 18
7.2.2 Runtime Errors . 19
7.2.3 Production Errors . 19
7.2.4 Extended Production Errors . 19

7.2.4.1 MCU_E_CLOCK_FAILURE . 19
7.3 Security Events . 20

8 API specification 21

8.1 Imported types . 21
8.2 Type definitions . 21

8.2.1 Mcu_ConfigType . 21
8.2.2 Mcu_PllStatusType . 21
8.2.3 Mcu_ClockType . 22
8.2.4 Mcu_ResetType . 22
8.2.5 Mcu_RawResetType . 23
8.2.6 Mcu_ModeType . 23

7 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.2.7 Mcu_RamSectionType . 24
8.2.8 Mcu_RamStateType . 24

8.3 Function definitions . 24
8.3.1 Mcu_Init . 25
8.3.2 Mcu_InitRamSection . 26
8.3.3 Mcu_InitClock . 26
8.3.4 Mcu_DistributePllClock . 27
8.3.5 Mcu_GetPllStatus . 28
8.3.6 Mcu_GetResetReason . 29
8.3.7 Mcu_GetResetRawValue . 29
8.3.8 Mcu_PerformReset . 30
8.3.9 Mcu_SetMode . 31
8.3.10 Mcu_GetVersionInfo . 32
8.3.11 Mcu_GetRamState . 32

8.4 Callback notifications . 33
8.5 Scheduled functions . 33
8.6 Expected interfaces . 33

8.6.1 Mandatory interfaces . 33
8.6.2 Optional interfaces . 33

8.7 Service Interfaces . 34
8.8 API parameter checking . 34

9 Sequence diagrams 35

9.1 Example Sequence for Mcu initialization services 35
9.2 Mcu_GetResetReason . 36
9.3 Mcu_GetResetRawValue . 36
9.4 Mcu_PerformReset . 36

10 Configuration specification 37

10.1How to read this chapter . 37
10.2Containers and configuration parameters 37

10.2.1 Mcu . 37
10.2.2 McuGeneralConfiguration . 38
10.2.3 McuClockSettingConfig . 41
10.2.4 McuModuleConfiguration . 41
10.2.5 McuDemEventParameterRefs . 44
10.2.6 McuModeSettingConf . 45
10.2.7 McuRamSectorSettingConf . 45
10.2.8 McuClockReferencePoint . 47
10.2.9 McuPublishedInformation . 48
10.2.10 McuResetReasonConf . 49

10.3Published Information . 49

8 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

A Change history of AUTOSAR traceable items 50

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . 50

A.1.1 Added Specification Items in R25-11 50
A.1.2 Changed Specification Items in R25-11 50
A.1.3 Deleted Specification Items in R25-11 50

9 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

1 Introduction and functional overview

This specification describes the functionality, API and the configuration for the AU-
TOSAR Basic Software module MCU [Microcontroller Unit]. The MCU driver provides
services for basic microcontroller initialization, power down functionality, reset and mi-
crocontroller specific functions required by other MCAL software modules. The initial-
ization services allow a flexible and application related MCU initialization in addition
to the start-up code (see figure below). The start-up code is very MCU specific. The
provided start-up code description in this document is for guidance and implies func-
tionality which has to be taken into account before standardized MCU initialization is
able to start.

Figure 1.1: Scope of the MCU Driver Specification

The MCU driver accesses the microcontroller hardware directly and is located in the
Microcontroller Abstraction Layer (MCAL).

MCU driver Features:

• Initialization of MCU clock, PLL, clock prescalers and MCU clock distribution

• Initialization of RAM sections

• Activation of µC reduced power modes

• Activation of a µC reset

• Provides a service to get the reset reason from hardware

10 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the MCU Driver
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

µC Microcontroller

MCU Micro Controller Unit

SFR Special Function Register (MCU register)

DEM Diagnostic Event Manager

DET Default Error Tracer

Table 2.1: Acronyms and abbreviations used in the scope of this Document

11 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[3] Requirements on MCU Driver
AUTOSAR_CP_RS_MCUDriver

[4] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for MCU Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for MCU Driver.

12 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

In general the activation and configuration of MCU reduced power mode is not manda-
tory within AUTOSAR standardization.

Enabling/disabling of the ECU or µC power supply is not the task of the MCU driver.
This is to be handled by the upper layer.

4.2 Applicability to car domains

No restrictions

13 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

5 Dependencies to other modules

5.1 Start-up code

Before the MCU driver can be initialized, a basic initialization of the MCU has to be
executed. This MCU specific initialization is typically executed in a start-up code.

The start-up code of the MCU shall be executed after power up and any kind of mi-
crocontroller reset. It shall perform very basic and microcontroller specific start-up
initialization and shall be kept short because the MCU clock and PLL are not yet initial-
ized. The start-up code shall cover MCU specific initialization which is not part of other
MCU services or other MCAL drivers. The following description summarizes the basic
functionality to be included in the start-up code. It is listed for guidance because some
functionality might not be supported in all MCU’s.

The start-up code shall initialize the base addresses for interrupt and trap vector ta-
bles. These base addresses are provided as configuration parameters or linker/locator
setting.

The start-up code shall initialize the interrupt stack pointer if an interrupt stack is sup-
ported by the MCU. The interrupt stack pointer base address and the stack size are
provided as configuration parameter or linker/locator setting.

The start-up code shall initialize the user stack pointer. The user stack pointer base
address and the stack size are provided as configuration parameter or linker/locator
setting.

If the MCU supports context save operation, the start-up code shall initialize the mem-
ory which is used for context save operation. The maximum amount of consecutive
context save operations is provided as configuration parameter or linker/locator set-
ting.

The start-up code shall ensure that the MCU internal watchdog shall not be serviced
until the watchdog is initialized from the MCAL watchdog driver. This can be done for
example by increasing the watchdog service time.

If the MCU supports cache memory for data and/or code, it shall be initialized and
enabled in the start-up code.

The start-up code shall initialize MCU specific features with respect to internal memory
as, for example, memory protection.

If external memory is used, the memory shall be initialized in the start-up code. The
start-up code shall be prepared to support different memory configurations depending
on code location. Different configuration options shall be taken into account for code
execution from external/internal memory.

The settings of the different memories shall be provided to the start-up code as config-
uration parameters.

14 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

In the start-up code a default initialization of the MCU clock system shall be performed
including global clock prescalers.

The start-up code shall enable protection mechanisms for special function registers
(SFR’s) if supported by the MCU.

The start-up code shall initialize all necessary write once registers or registers com-
mon to several drivers where one write, rather than repeated writes, to the register is
required or highly desirable.

The start-up code shall initialize a minimum amount of RAM in order to allow proper
execution of the MCU driver services and the caller of these services.

Note: The start-up code is ECU and MCU dependant. Details of the specification shall
be described in the design specification of the MCU.

5.2 File structure

5.2.1 Code file structure

Note: The code file structure shall not be defined within this specification.

15 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

6 Requirements Tracing

The following tables reference the requirements specified in [2], [3] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[SRS_BSW_00101] The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Mcu_00026]

[SRS_BSW_00171] Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Mcu_00207]

[SRS_BSW_00327] Error values naming convention [SWS_Mcu_00012]

[SRS_BSW_00337] Classification of development errors [SWS_Mcu_00012]

[SRS_BSW_00406] API handling in uninitialized state [SWS_Mcu_00026]

[SRS_BSW_00458] Classification of production errors [SWS_Mcu_00300]

Table 6.1: Requirements Tracing

16 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

7 Functional specification

7.1 General Behavior

7.1.1 Background and Rationale

The MCU driver provides MCU services for Clock and RAM initialization. In the MCU
configuration set, the MCU specific settings for the Clock (i.e. PLL setting) and RAM
(i.e. section base address and size) shall be configured.

7.1.2 Requirements

7.1.2.1 Reset

[SWS_Mcu_00055] ⌈The MCU module shall provide a service to provide software
triggering of a hardware reset.⌋

Note: Only an authorized user shall be able to call this reset service function.

[SWS_Mcu_00052] ⌈The MCU module shall provide services to get the reset reason
of the last reset if the hardware supports such a feature.⌋

Note: In an ECU, there are several sources which can cause a reset. Depending on
the reset reason, several application scenarios might be necessary after re-initialization
of the MCU.

7.1.2.2 Clock

[SWS_Mcu_00248] ⌈Mcu shall provide a service to enable and set the MCU clock
(i.e. Cpu clock, Peripheral Clock, Prescalers, Multipliers have to be configured in the
MCU).⌋

Note: All the available peripheral clocks have to be made available to the other BSW
modules via the McuClockReferencePoint container.

7.1.2.3 MCU Mode service

[SWS_Mcu_00164] ⌈The MCU module shall provide a service to activate MCU re-
duced power modes.⌋

The service, which activates the reduced power mode, shall allow access to power
modes available in the µC hardware.

17 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[SWS_Mcu_00165] ⌈The number of modes and the configuration is MCU dependent
and shall be configured in the configuration set of the MCU module.⌋

Note: The activation of MCU reduced power modes might influence the PLL, the in-
ternal oscillator, the CPU clock, µC peripheral clock and the power supply for core and
peripherals.

In typical operation, MCU reduced power mode will be entered and exited frequently
during ECU runtime. In this case, wake-up is performed when it is activated in one of
the MCAL modules.

The upper layer is responsible for activating MCU normal operation (condition before
execution of MCU power mode) or to switch off µC power supply.

For some MCU mode configuration, the MCU is able to wake up only via hardware
reset.

7.2 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

[SWS_Mcu_00051] ⌈The MCU driver follows the standardized AUTOSAR concept to
report production errors. The provided callback routines are specified in the Diagnostic
Event Manager (DEM) specification (see [4]).⌋

[SWS_Mcu_00226] ⌈Production Errors shall not be used as the return value of the
called function.⌋

7.2.1 Development Errors

[SWS_Mcu_00012] Definition of development errors in module Mcu
Upstream requirements: SRS_BSW_00327, SRS_BSW_00337

⌈
Type of error Related error code Error value

API service called with wrong parameter MCU_E_PARAM_CONFIG 0x0A

API service called with wrong parameter MCU_E_PARAM_CLOCK 0x0B

API service called with wrong parameter MCU_E_PARAM_MODE 0x0C

API service called with wrong parameter MCU_E_PARAM_RAMSECTION 0x0D

▽

18 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Type of error Related error code Error value

API service called with wrong parameter MCU_E_PLL_NOT_LOCKED 0x0E

API service called with wrong parameter MCU_E_UNINIT 0x0F

API service called with wrong parameter MCU_E_PARAM_POINTER 0x10

API service called with wrong parameter MCU_E_INIT_FAILED 0x11

⌋

7.2.2 Runtime Errors

There are no runtime errors.

7.2.3 Production Errors

There are no production errors.

7.2.4 Extended Production Errors

Type or error Related error code Value

Clock source failure MCU_E_CLOCK_FAILURE Assigned by DEM

[SWS_Mcu_00053] ⌈If clock failure notification is enabled in the configuration set and
a clock source failure error occurs, the error code MCU_E_CLOCK_FAILURE shall be
reported (see also [SWS_Mcu_00051]).⌋

If the clock failure is detected with other HW mechanisms e.g. the generation of a trap,
this notification shall be disabled and the failure reporting shall be done outside the
MCU driver.

7.2.4.1 MCU_E_CLOCK_FAILURE

[SWS_Mcu_00300] Clock source failure.
Upstream requirements: SRS_BSW_00458

⌈
Diagnostic Event (Error Name) MCU_E_CLOCK_FAILURE

Description If clock failure notification is enabled in the configuration set and a clock source failure
error occurs, the error code MCU_E_CLOCK_FAILURE shall be reported.

Failed condition Fail criteria for MCU_E_CLOCK_FAILURE: a clock source failure occurs.

▽

19 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Passed condition Pass criteria for MCU_E_CLOCK_FAILURE: no clock source failure occurs.

⌋

[SWS_Mcu_00257] ⌈Fail criteria for MCU_E_CLOCK_FAILURE: a clock source failure
occurs⌋

[SWS_Mcu_00258] ⌈Pass criteria for MCU_E_CLOCK_FAILURE: no clock source fail-
ure occurs⌋

7.3 Security Events

The module does not report security events.

20 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Mcu_00152] Definition of imported datatypes of module Mcu ⌈
Module Header File Imported Type

Rte_Dem_Type.h Dem_EventIdTypeDem

Rte_Dem_Type.h Dem_EventStatusType

Std_Types.h Std_ReturnTypeStd

Std_Types.h Std_VersionInfoType

⌋

8.2 Type definitions

8.2.1 Mcu_ConfigType

[SWS_Mcu_00249] Definition of datatype Mcu_ConfigType ⌈
Name Mcu_ConfigType

Kind Structure
Hardware dependent structure

Type –

Elements

Comment A structure to hold the MCU driver configuration.

Description A pointer to such a structure is provided to the MCU initialization routines for configuration.

Available via Mcu.h

⌋

8.2.2 Mcu_PllStatusType

[SWS_Mcu_00250] Definition of datatype Mcu_PllStatusType ⌈
Name Mcu_PllStatusType

Kind Enumeration

MCU_PLL_LOCKED 0x00 PLL is locked

MCU_PLL_UNLOCKED 0x01 PLL is unlocked

Range

MCU_PLL_STATUS_
UNDEFINED

0x02 PLL Status is unknown

Description This is a status value returned by the function Mcu_GetPllStatus of the MCU module.

Available via Mcu.h

⌋

21 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[SWS_Mcu_00230] ⌈The type Mcu_PllStatusType is the type of the return value of
the function Mcu_GetPllStatus.⌋

[SWS_Mcu_00231] ⌈The type of Mcu_PllStatusType is an enumeration with the
following values: MCU_PLL_LOCKED, MCU_PLL_UNLOCKED, MCU_PLL_STATUS_UN-
DEFINED.⌋

8.2.3 Mcu_ClockType

[SWS_Mcu_00251] Definition of datatype Mcu_ClockType ⌈
Name Mcu_ClockType

Kind Type

Derived from uint

Range 0..<number of clock
settings>- 1

– The range is dependent on the
number of different clock settings
provided in the configuration
structure. The type shall be
chosen depending on MCU
platform for best performance.

Description Specifies the identification (ID) for a clock setting, which is configured in the configuration structure

Available via Mcu.h

⌋

[SWS_Mcu_00232] ⌈The type Mcu_ClockType defines the identification (ID) for clock
setting configured via the configuration structure.⌋

[SWS_Mcu_00233] ⌈The type shall be uint8, uint16 or uint32, depending on µC
platform.⌋

8.2.4 Mcu_ResetType

[SWS_Mcu_00252] Definition of datatype Mcu_ResetType ⌈
Name Mcu_ResetType

Kind Enumeration

MCU_POWER_ON_RESET 0x00 Power On Reset (default)

MCU_WATCHDOG_RESET 0x01 Internal Watchdog Timer Reset

MCU_SW_RESET 0x02 Software Reset

Range

MCU_RESET_UNDEFINED 0x03 Reset is undefined

Description This is the type of the reset enumerator containing the subset of reset types. It is not required that
all reset types are supported by hardware.

Available via Mcu.h

⌋

[SWS_Mcu_00234] ⌈The type Mcu_ResetType, represents the different reset that a
specified MCU can have.⌋

22 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[SWS_Mcu_00134] ⌈The MCU module shall provide at least the values MCU_POWER_
ON_RESET and MCU_RESET_UNDEFINED for the enumeration Mcu_ResetType.⌋

Note: Additional reset types of Mcu_ResetType may be added depending on MCU.

8.2.5 Mcu_RawResetType

[SWS_Mcu_00253] Definition of datatype Mcu_RawResetType ⌈
Name Mcu_RawResetType

Kind Type

Derived from uint

Range MCU dependent register
value

– The type shall be chosen
depending on MCU platform for
best performance.

Description This type specifies the reset reason in raw register format read from a reset status register.

Available via Mcu.h

⌋

[SWS_Mcu_00235] ⌈The type Mcu_RawResetType specifies the reset reason in raw
register format, read from a reset status register.⌋

[SWS_Mcu_00236] ⌈The type shall be uint8, uint16 or uint32 based on best
performance.⌋

8.2.6 Mcu_ModeType

[SWS_Mcu_00254] Definition of datatype Mcu_ModeType ⌈
Name Mcu_ModeType

Kind Type

Derived from uint

Range 0..<number of MCU
modes>-1

– The range is dependent on the
number of MCU modes provided
in the configuration structure. The
type shall be chosen depending
on MCU platform for best
performance.

Description This type specifies the identification (ID) for a MCU mode, which is configured in the configuration
structure.

Available via Mcu.h

⌋

[SWS_Mcu_00237] ⌈The Mcu_ModeType specifies the identification (ID) for a MCU
mode, configured via configuration structure.⌋

[SWS_Mcu_00238] ⌈The type shall be uint8, uint16 or uint32.⌋

23 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.2.7 Mcu_RamSectionType

[SWS_Mcu_00255] Definition of datatype Mcu_RamSectionType ⌈
Name Mcu_RamSectionType

Kind Type

Derived from uint

Range 0..< number of RAM
sections>-1

– The range is dependent on the
number of RAM sections provided
in the configuration structure. The
type shall be chosen depending
on MCU platform for best
performance.

Description This type specifies the identification (ID) for a RAM section, which is configured in the configuration
structure.

Available via Mcu.h

⌋

[SWS_Mcu_00239] ⌈The Mcu_RamSectionType specifies the identification (ID) for
a RAM section, configured via the configuration structure.⌋

[SWS_Mcu_00240] ⌈The type shall be uint8, uint16 or uint32, based on best
performance.⌋

8.2.8 Mcu_RamStateType

[SWS_Mcu_00256] Definition of datatype Mcu_RamStateType ⌈
Name Mcu_RamStateType

Kind Enumeration

MCU_RAMSTATE_INVALID 0x00 Ram content is not valid or unknown (default).Range

MCU_RAMSTATE_VALID 0x01 Ram content is valid:

Description This is the Ram State data type returned by the function Mcu_GetRamState of the Mcu module. It
is not required that all RAM state types are supported by the hardware.

Available via Mcu.h

⌋

8.3 Function definitions

This is a list of functions provided for upper layer modules.

24 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.3.1 Mcu_Init

[SWS_Mcu_00153] Definition of API function Mcu_Init ⌈
Service Name Mcu_Init

Syntax void Mcu_Init (
const Mcu_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to MCU driver configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description This service initializes the MCU driver.

Available via Mcu.h

⌋

[SWS_Mcu_00026]
Upstream requirements: SRS_BSW_00101, SRS_BSW_00406

⌈The function Mcu_Init shall initialize the MCU module, i.e. make the configuration
settings for power down, clock and RAM sections visible within the MCU module.⌋

Note: After the execution of the function Mcu_Init, the configuration data are acces-
sible and can be used by the MCU module functions as, e.g., Mcu_InitRamSection.

The MCU module’s implementer shall apply the following rules regarding initialization
of controller registers within the function Mcu_Init:

1. [SWS_Mcu_00116] ⌈If the hardware allows for only one usage of the register,
the driver module implementing that functionality is responsible for initializing the
register.⌋

2. [SWS_Mcu_00244] ⌈If the register can affect several hardware modules and if it
is an I/O register, it shall be initialised by the PORT driver.⌋

3. [SWS_Mcu_00245] ⌈If the register can affect several hardware modules and if it
is not an I/O register, it shall be initialised by this MCU driver.⌋

4. [SWS_Mcu_00246] ⌈One-time writable registers that require initialisation directly
after reset shall be initialised by the startup code.⌋

5. [SWS_Mcu_00247] ⌈All other registers not mentioned before shall be initialised
by the start-up code.⌋

Note: The term ’Hardware Module’ refers to internal modules of the MCU and not to a
BSW module.

25 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.3.2 Mcu_InitRamSection

[SWS_Mcu_00154] Definition of API function Mcu_InitRamSection ⌈
Service Name Mcu_InitRamSection

Syntax Std_ReturnType Mcu_InitRamSection (
Mcu_RamSectionType RamSection

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) RamSection Selects RAM memory section provided in configuration set

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: command has been accepted
E_NOT_OK: command has not been accepted e.g. due to
parameter error

Description This service initializes the RAM section wise.

Available via Mcu.h

⌋

[SWS_Mcu_00011] ⌈The function Mcu_InitRamSection shall fill the memory from
address McuRamSectionBaseAddress up to address McuRamSectionBaseAd-
dress + McuRamSectionSize-1 with the byte-value contained in McuRamDefault-
Value and by writing at once a number of bytes defined by McuRamSectionWrite-
Size, where McuRamSectionBaseAddress, McuRamSectionSize, McuRamDe-
faultValue and McuRamSectionWriteSize are the values of the configuration
parameters for each RamSection.⌋

[SWS_Mcu_00136] ⌈The MCU module’s environment shall call the function Mcu_-
InitRamSection only after the MCU module has been initialized using the function
Mcu_Init.⌋

8.3.3 Mcu_InitClock

[SWS_Mcu_00155] Definition of API function Mcu_InitClock ⌈
Service Name Mcu_InitClock

Syntax Std_ReturnType Mcu_InitClock (
Mcu_ClockType ClockSetting

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ClockSetting Clock setting

Parameters (inout) None

Parameters (out) None

▽

26 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Return value Std_ReturnType E_OK: Command has been accepted

E_NOT_OK: Command has not been accepted

Description This service initializes the PLL and other MCU specific clock options.

Available via Mcu.h

⌋

[SWS_Mcu_00137] ⌈The function Mcu_InitClock shall initialize the PLL and other
MCU specific clock options. The clock configuration parameters are provided via the
configuration structure.⌋

[SWS_Mcu_00138] ⌈The function Mcu_InitClock shall start the PLL lock procedure
(if PLL shall be initialized) and shall return without waiting until the PLL is locked.⌋

[SWS_Mcu_00139] ⌈The MCU module’s environment shall only call the function
Mcu_InitClock after the MCU module has been initialized using the function Mcu_
Init.⌋

[SWS_Mcu_00210] ⌈The function Mcu_InitClock shall be disabled if the param-
eter McuInitClock is set to FALSE. Instead this function is available if the former
parameter is set to TRUE (see also [ECUC_Mcu_00118]).⌋

8.3.4 Mcu_DistributePllClock

[SWS_Mcu_00156] Definition of API function Mcu_DistributePllClock ⌈
Service Name Mcu_DistributePllClock

Syntax Std_ReturnType Mcu_DistributePllClock (
void

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: Command has been accepted
E_NOT_OK: Command has not been accepted

Description This service activates the PLL clock to the MCU clock distribution.

Available via Mcu.h

⌋

[SWS_Mcu_00140] ⌈The function Mcu_DistributePllClock shall activate the PLL
clock to the MCU clock distribution.⌋

[SWS_Mcu_00141] ⌈The function Mcu_DistributePllClock shall remove the cur-
rent clock source (for example internal oscillator clock) from MCU clock distribution.⌋

27 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

The MCU module’s environment shall only call the function Mcu_DistributePll-
Clock after the status of the PLL has been detected as locked by the function Mcu_
GetPllStatus.

[SWS_Mcu_00056] ⌈The function Mcu_DistributePllClock shall return without
affecting the MCU hardware if the PLL clock has been automatically activated by the
MCU hardware.⌋

[SWS_Mcu_00142] ⌈If the function Mcu_DistributePllClock is called before PLL
has locked, this function shall return E_NOT_OK immediately, without any further ac-
tion.⌋

[SWS_Mcu_00205] ⌈The function Mcu_DistributePllClock shall be available if
the pre-compile parameter McuNoPll is set to FALSE. Otherwise, this Api has to be
disabled (see also [ECUC_Mcu_00180]).⌋

8.3.5 Mcu_GetPllStatus

[SWS_Mcu_00157] Definition of API function Mcu_GetPllStatus ⌈
Service Name Mcu_GetPllStatus

Syntax Mcu_PllStatusType Mcu_GetPllStatus (
void

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Mcu_PllStatusType PLL Status

Description This service provides the lock status of the PLL.

Available via Mcu.h

⌋

[SWS_Mcu_00008] ⌈The function Mcu_GetPllStatus shall return the lock status of
the PLL.⌋

[SWS_Mcu_00132] ⌈The function Mcu_GetPllStatus shall return MCU_PLL_-
STATUS_UNDEFINED if this function is called prior to calling of the function Mcu_-
Init.⌋

[SWS_Mcu_00206] ⌈The function Mcu_GetPllStatus shall also return MCU_PLL_
STATUS_UNDEFINED if the pre-compile parameter McuNoPll is set to TRUE (see also
[ECUC_Mcu_00180]).⌋

28 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.3.6 Mcu_GetResetReason

[SWS_Mcu_00158] Definition of API function Mcu_GetResetReason ⌈
Service Name Mcu_GetResetReason

Syntax Mcu_ResetType Mcu_GetResetReason (
void

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Mcu_ResetType –

Description The service reads the reset type from the hardware, if supported.

Available via Mcu.h

⌋

[SWS_Mcu_00005] : ⌈The function Mcu_GetResetReason shall read the reset rea-
son from the hardware and return this reason if supported by the hardware. If the
hardware does not support the hardware detection of the reset reason, the return value
from the function Mcu_GetResetReason shall always be MCU_POWER_ON_RESET.⌋

[SWS_Mcu_00133] ⌈The function Mcu_GetResetReason shall return MCU_RESET_
UNDEFINED if this function is called prior to calling of the function Mcu_Init, and if
supported by the hardware.⌋

The User should ensure that the reset reason is cleared once it has been read out to
avoid multiple reset reasons.

Note: In case of multiple calls to this function the return value should always be the
same.

8.3.7 Mcu_GetResetRawValue

[SWS_Mcu_00159] Definition of API function Mcu_GetResetRawValue ⌈
Service Name Mcu_GetResetRawValue

Syntax Mcu_RawResetType Mcu_GetResetRawValue (
void

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

▽

29 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Parameters (out) None

Return value Mcu_RawResetType Reset raw value

Description The service reads the reset type from the hardware register, if supported.

Available via Mcu.h

⌋

[SWS_Mcu_00135] ⌈The function Mcu_GetResetRawValue shall return an imple-
mentation specific value which does not correspond to a valid value of the reset status
register and is not equal to 0 if this function is called prior to calling of the function
Mcu_Init, and if supported by the hardware.⌋

[SWS_Mcu_00006] ⌈The function Mcu_GetResetRawValue shall read the reset raw
value from the hardware register if the hardware supports this. If the hardware does
not have a reset status register, the return value shall be 0x0.⌋

The User should ensure that the reset reason is cleared once it has been read out to
avoid multiple reset reasons.

Note: In case of multiple calls to this function the return value should always be the
same.

8.3.8 Mcu_PerformReset

[SWS_Mcu_00160] Definition of API function Mcu_PerformReset ⌈
Service Name Mcu_PerformReset

Syntax void Mcu_PerformReset (
void

)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The service performs a microcontroller reset.

Available via Mcu.h

⌋

[SWS_Mcu_00143] ⌈The function Mcu_PerformReset shall perform a microcon-
troller reset by using the hardware feature of the microcontroller.⌋

[SWS_Mcu_00144] ⌈The function Mcu_PerformReset shall perform the reset type
which is configured in the configuration set.⌋

30 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[SWS_Mcu_00145] ⌈The MCU module’s environment shall only call the function
Mcu_PerformReset after the MCU module has been initialized by the function Mcu_
Init.⌋

[SWS_Mcu_00146] ⌈The function Mcu_PerformReset is only available if the pre-
compile parameter McuPerformResetApi is set to TRUE. If set to FALSE, the function
Mcu_PerformReset is not applicable.).⌋

8.3.9 Mcu_SetMode

[SWS_Mcu_00161] Definition of API function Mcu_SetMode ⌈
Service Name Mcu_SetMode

Syntax void Mcu_SetMode (
Mcu_ModeType McuMode

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) McuMode Set different MCU power modes configured in the configuration
set

Parameters (inout) None

Parameters (out) None

Return value None

Description This service activates the MCU power modes.

Available via Mcu.h

⌋

[SWS_Mcu_00147] ⌈The function Mcu_SetMode shall set the MCU power mode. In
case of CPU power down mode, the function Mcu_SetMode returns after it has per-
formed a wake-up.⌋

[SWS_Mcu_00148] ⌈The MCU module’s environment shall only call the function
Mcu_SetMode after the MCU module has been initialized by the function Mcu_Init.⌋

Note: The environment of the function Mcu_SetMode has to ensure that the ECU is
ready for reduced power mode activation.

Note: The API Mcu_SetMode assumes that all interrupts are disabled prior the call of
the API by the calling instance. The implementation has to take care that no wakeup
interrupt event is lost. This could be achieved by a check whether pending wakeup
interrupts already have occurred even if Mcu_SetMode has not set the controller to
power down mode yet.

31 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.3.10 Mcu_GetVersionInfo

[SWS_Mcu_00162] Definition of API function Mcu_GetVersionInfo ⌈
Service Name Mcu_GetVersionInfo

Syntax void Mcu_GetVersionInfo (
Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description This service returns the version information of this module.

Available via Mcu.h

⌋

8.3.11 Mcu_GetRamState

[SWS_Mcu_00207] Definition of API function Mcu_GetRamState
Upstream requirements: SRS_BSW_00171

⌈
Service Name Mcu_GetRamState

Syntax Mcu_RamStateType Mcu_GetRamState (
void

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Mcu_RamStateType Status of the Ram Content

Description This service provides the actual status of the microcontroller Ram. (if supported)

Available via Mcu.h

⌋

Note: Some microcontrollers offer the functionality to check if the Ram Status is valid
after a reset. The function Mcu_GetRamState can be used for this reason.

[SWS_Mcu_00208] ⌈The MCU module’s environment shall call this function only if the
MCU module has been already initialized using the function Mcu_Init.⌋

[SWS_Mcu_00209] ⌈The function Mcu_GetRamState shall be available to the user if
the pre-compile parameter McuGetRamStateApi is set to TRUE. Instead, if the former

32 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

parameter is set to FALSE, this function shall be disabled (e.g. the hardware does not
support this functionality).⌋

8.4 Callback notifications

There are no callback notifications for the MCU driver. The callback notifications are
implemented in another module (ICU driver and/or complex drivers).

8.5 Scheduled functions

There are no scheduled functions within the MCU driver.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

[SWS_Mcu_00166] Definition of mandatory interfaces required by module Mcu ⌈
API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

⌋

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Mcu_00163] Definition of optional interfaces requested by module Mcu ⌈
API Function Header File Description

Det_ReportError Det.h Service to report development errors.

⌋

33 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

8.7 Service Interfaces

There are no service interfaces within the MCU driver.

8.8 API parameter checking

[SWS_Mcu_00017] ⌈If the development error detection is enabled for the MCU mod-
ule, the MCU functions shall check the following API parameters, report detected errors
to the Default Error Tracer and reject with return value E_NOT_OK in case the function
has a standard return type.⌋

[SWS_Mcu_00019] ⌈ClockSetting shall be within the settings defined in the configura-
tion data structure. Related error value: MCU_E_PARAM_CLOCK⌋

[SWS_Mcu_00020] ⌈McuMode shall be within the modes defined in the configuration
data structure. Related error value: MCU_E_PARAM_MODE⌋

[SWS_Mcu_00021] ⌈RamSection shall be within the sections defined in the configu-
ration data structure. Related error value: MCU_E_PARAM_RAMSECTION⌋

[SWS_Mcu_00122] ⌈A error shall be reported if the status of the PLL is detected as
not locked with the function Mcu_DistributePllClock. The DET error reporting
shall be used. Related error value: MCU_E_PLL_NOT_LOCKED.⌋

[SWS_Mcu_00125] ⌈If development error detection is enabled and if any other func-
tion (except Mcu_GetVersionInfo) of the MCU module is called before Mcu_Init
function, the error code MCU_E_UNINIT shall be reported to the DET.⌋

34 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

9 Sequence diagrams

9.1 Example Sequence for Mcu initialization services

User «module»

Mcu

Mcu_GetPllStatus
()

Mcu_GetPllStatus(Mcu_PllStatusType)

Mcu_Init(const
Mcu_ConfigType*)

Mcu_DistributePllClock
()

Mcu_InitRamSection(Std_ReturnType,
Mcu_RamSectionType)

Mcu_InitClock
()

Mcu_Init
()

Mcu_InitClock(Std_ReturnType,
Mcu_ClockType)

Mcu_InitRamSection
()

Mcu_InitRamSection(Std_ReturnType,
Mcu_RamSectionType)

Mcu_InitRamSection
()

Mcu_DistributePllClock
(Std_ReturnType)

Figure 9.1: Sequence Diagram - Mcu Initialization

The order of services is just an example and might differ depending on the user. Mcu_
Init shall be executed first after power-up. The user takes care that the PLL is locked
by executing Mcu_GetPllStatus.

35 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

9.2 Mcu_GetResetReason

User «module»

Mcu��� ����	
��
�

��������

�������������

Mcu_GetResetReason
()

Mcu_GetResetReason(Mcu_ResetType)

Figure 9.2: Sequence Diagram - Mcu_GetResetReason

9.3 Mcu_GetResetRawValue

User «module»

Mcu

��� ����	
��
�

��������

�������������

Mcu_GetResetRawValue(Mcu_RawResetType):
Mcu_RawResetType

Mcu_GetResetRawValue
()

Figure 9.3: Sequence Diagram - Mcu_GetResetRawValue

9.4 Mcu_PerformReset

User «module»

Mcu

��� ����	
��
�

��������

�������������

Mcu_PerformReset()

Hardware reset
()

Figure 9.4: Sequence Diagram - Mcu_PerformReset

36 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MCU Driver.

Chapter 10.3 specifies published information of the module MCU Driver.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification” .

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Mcu_00126] ⌈The initialization function of this module shall always have a
pointer as a parameter, even though for VARIANT-PRE-COMPILE no configuration set
shall be given. Instead a NULL pointer shall be passed to the initialization function.⌋

[SWS_Mcu_00259] ⌈The MCU Driver module shall reject configurations with partition
mappings which are not supported by the implementation.⌋

10.2.1 Mcu

[ECUC_Mcu_00189] Definition of EcucModuleDef Mcu ⌈

Module Name Mcu

Description Configuration of the Mcu (Microcontroller Unit) module.

Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

McuGeneralConfiguration 1 This container contains the configuration (parameters) of the
MCU driver.

McuModuleConfiguration 1 This container contains the configuration (parameters) of the
MCU driver

McuPublishedInformation 1 Container holding all MCU specific published information
parameters

37 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

⌋

10.2.2 McuGeneralConfiguration

[ECUC_Mcu_00118] Definition of EcucParamConfContainerDef McuGeneralCon-
figuration ⌈

Container Name McuGeneralConfiguration

Parent Container Mcu

Description This container contains the configuration (parameters) of the MCU driver.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuDevErrorDetect 1 [ECUC_Mcu_00166]

McuGetRamStateApi 1 [ECUC_Mcu_00181]

McuInitClock 1 [ECUC_Mcu_00182]

McuNoPll 1 [ECUC_Mcu_00180]

McuPerformResetApi 1 [ECUC_Mcu_00167]

McuVersionInfoApi 1 [ECUC_Mcu_00168]

McuEcucPartitionRef 0..* [ECUC_Mcu_00191]

No Included Containers

⌋

[ECUC_Mcu_00166] Definition of EcucBooleanParamDef McuDevErrorDetect ⌈
Parameter Name McuDevErrorDetect

Parent Container McuGeneralConfiguration

Description Switches the development error detection and notification on or off.
• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

38 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[ECUC_Mcu_00181] Definition of EcucBooleanParamDef McuGetRamStateApi ⌈
Parameter Name McuGetRamStateApi

Parent Container McuGeneralConfiguration

Description Pre-processor switch to enable/disable the API Mcu_GetRamState. (e.g. If the H/W
does not support the functionality, this parameter can be used to disable the Api).

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Mcu_00182] Definition of EcucBooleanParamDef McuInitClock ⌈
Parameter Name McuInitClock

Parent Container McuGeneralConfiguration

Description If this parameter is set to FALSE, the clock initialization has to be disabled from the
MCU driver. This concept applies when there are some write once clock registers and
a bootloader is present. If this parameter is set to TRUE, the MCU driver is responsible
of the clock initialization.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Mcu_00180] Definition of EcucBooleanParamDef McuNoPll ⌈
Parameter Name McuNoPll

Parent Container McuGeneralConfiguration

Description This parameter shall be set True, if the H/W does not have a PLL or the PLL circuitry is
enabled after the power on without S/W intervention. In this case MCU_DistributePll
Clock has to be disabled and MCU_GetPllStatus has to return MCU_PLL_STATUS_
UNDEFINED. Otherwise this parameters has to be set False

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

39 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[ECUC_Mcu_00167] Definition of EcucBooleanParamDef McuPerformResetApi ⌈
Parameter Name McuPerformResetApi

Parent Container McuGeneralConfiguration

Description Pre-processor switch to enable / disable the use of the function Mcu_PerformReset()

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Mcu_00168] Definition of EcucBooleanParamDef McuVersionInfoApi ⌈
Parameter Name McuVersionInfoApi

Parent Container McuGeneralConfiguration

Description Pre-processor switch to enable / disable the API to read out the modules version
information.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Mcu_00191] Definition of EcucReferenceDef McuEcucPartitionRef ⌈
Parameter Name McuEcucPartitionRef

Parent Container McuGeneralConfiguration

Description Maps the MCU driver to zero or multiple ECUC partition to make the driver API
available in this partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

40 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

10.2.3 McuClockSettingConfig

[ECUC_Mcu_00124] Definition of EcucParamConfContainerDef McuClockSetting
Config ⌈

Container Name McuClockSettingConfig

Parent Container McuModuleConfiguration

Description This container contains the configuration (parameters) for the Clock settings of the
MCU. Please see MCU031 for more information on the MCU clock settings.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuClockSettingId 1 [ECUC_Mcu_00183]

Included Containers
Container Name Multiplicity Dependency

McuClockReferencePoint 1..* This container defines a reference point in the Mcu Clock tree. It
defines the frequency which then can be used by other modules
as an input value. Lower multiplicity is 1, as even in the simplest
case (only one frequency is used), there is one frequency to be
defined.

⌋

[ECUC_Mcu_00183] Definition of EcucIntegerParamDef McuClockSettingId ⌈
Parameter Name McuClockSettingId

Parent Container McuClockSettingConfig

Description The Id of this McuClockSettingConfig to be used as argument for the API call "Mcu_Init
Clock".

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.2.4 McuModuleConfiguration

[ECUC_Mcu_00119] Definition of EcucParamConfContainerDef McuModuleCon-
figuration ⌈

41 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

Container Name McuModuleConfiguration

Parent Container Mcu

Description This container contains the configuration (parameters) of the MCU driver

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuClockSrcFailureNotification 1 [ECUC_Mcu_00170]

McuNumberOfMcuModes 1 [ECUC_Mcu_00171]

McuRamSectors 1 [ECUC_Mcu_00172]

McuResetSetting 0..1 [ECUC_Mcu_00173]

Included Containers
Container Name Multiplicity Dependency

McuClockSettingConfig 1..* This container contains the configuration (parameters) for the
Clock settings of the MCU. Please see MCU031 for more
information on the MCU clock settings.

McuDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_SetEventStatus in
case the corresponding error occurs. The EventId is taken from
the referenced DemEventParameter’s DemEventId symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

McuModeSettingConf 1..* This container contains the configuration (parameters) for the
Mode setting of the MCU. Please see MCU035 for more
information on the MCU mode settings.

McuRamSectorSettingConf 0..* This container contains the configuration (parameters) for the
RAM Sector setting. Please see MCU030 for more information
on RAM sec-tor settings.

⌋

[ECUC_Mcu_00170] Definition of EcucEnumerationParamDef McuClockSrcFail-
ureNotification ⌈

Parameter Name McuClockSrcFailureNotification

Parent Container McuModuleConfiguration

Description Enables/Disables clock failure notification. In case this feature is not supported by HW
the setting should be disabled.

Multiplicity 1

Type EcucEnumerationParamDef

DISABLED –Range
ENABLED –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

42 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

[ECUC_Mcu_00171] Definition of EcucIntegerParamDef McuNumberOfMcu
Modes ⌈

Parameter Name McuNumberOfMcuModes

Parent Container McuModuleConfiguration

Description This parameter shall represent the number of Modes available for the MCU. calculation
Formula = Number of configured McuModeSettingConf

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 255

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

[ECUC_Mcu_00172] Definition of EcucIntegerParamDef McuRamSectors ⌈
Parameter Name McuRamSectors

Parent Container McuModuleConfiguration

Description This parameter shall represent the number of RAM sectors available for the MCU.
calculationFormula = Number of configured McuRamSectorSettingConf

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

[ECUC_Mcu_00173] Definition of EcucIntegerParamDef McuResetSetting ⌈
Parameter Name McuResetSetting

Parent Container McuModuleConfiguration

Description This parameter relates to the MCU specific reset configuration. This applies to the
function Mcu_PerformReset, which performs a microcontroller reset using the
hardware feature of the microcontroller.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 1 .. 255

Default value –

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class Pre-compile time X All Variants

▽

43 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Link time –

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.2.5 McuDemEventParameterRefs

[ECUC_Mcu_00187] Definition of EcucParamConfContainerDef McuDemEvent
ParameterRefs ⌈

Container Name McuDemEventParameterRefs

Parent Container McuModuleConfiguration

Description Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventId symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MCU_E_CLOCK_FAILURE 0..1 [ECUC_Mcu_00188]

No Included Containers

⌋

[ECUC_Mcu_00188] Definition of EcucReferenceDef MCU_E_CLOCK_FAILURE ⌈
Parameter Name MCU_E_CLOCK_FAILURE

Parent Container McuDemEventParameterRefs

Description Reference to configured DEM event to report "Clock source failure".

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –
▽

44 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Dependency Dem

⌋

10.2.6 McuModeSettingConf

[ECUC_Mcu_00123] Definition of EcucParamConfContainerDef McuModeSetting
Conf ⌈

Container Name McuModeSettingConf

Parent Container McuModuleConfiguration

Description This container contains the configuration (parameters) for the Mode setting of the MCU.
Please see MCU035 for more information on the MCU mode settings.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuMode 1 [ECUC_Mcu_00176]

No Included Containers

⌋

[ECUC_Mcu_00176] Definition of EcucIntegerParamDef McuMode ⌈
Parameter Name McuMode

Parent Container McuModeSettingConf

Description The parameter represents the MCU Mode settings.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.2.7 McuRamSectorSettingConf

[ECUC_Mcu_00120] Definition of EcucParamConfContainerDef McuRamSector
SettingConf ⌈

45 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

Container Name McuRamSectorSettingConf

Parent Container McuModuleConfiguration

Description This container contains the configuration (parameters) for the RAM Sector setting.
Please see MCU030 for more information on RAM sec-tor settings.

Multiplicity 0..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuRamDefaultValue 1 [ECUC_Mcu_00177]

McuRamSectionBaseAddress 1 [ECUC_Mcu_00178]

McuRamSectionSize 1 [ECUC_Mcu_00179]

McuRamSectionWriteSize 1 [ECUC_Mcu_00190]

No Included Containers

⌋

[ECUC_Mcu_00177] Definition of EcucIntegerParamDef McuRamDefaultValue ⌈
Parameter Name McuRamDefaultValue

Parent Container McuRamSectorSettingConf

Description This parameter shall represent the Data pre-setting to be initialized

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

[ECUC_Mcu_00178]Definition of EcucIntegerParamDef McuRamSectionBaseAd-
dress ⌈

Parameter Name McuRamSectionBaseAddress

Parent Container McuRamSectorSettingConf

Description This parameter shall represent the MCU RAM section base address

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILEValue Configuration Class

Link time –
▽

46 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

△
Post-build time X VARIANT-POST-BUILD

Dependency

⌋

[ECUC_Mcu_00179] Definition of EcucIntegerParamDef McuRamSectionSize ⌈
Parameter Name McuRamSectionSize

Parent Container McuRamSectorSettingConf

Description This parameter represents the MCU RAM Section size in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

[ECUC_Mcu_00190] Definition of EcucIntegerParamDef McuRamSectionWrite
Size ⌈

Parameter Name McuRamSectionWriteSize

Parent Container McuRamSectorSettingConf

Description This parameter shall define the size in bytes of data which can be written into RAM at
once.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value 8

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

10.2.8 McuClockReferencePoint

[ECUC_Mcu_00174] Definition of EcucParamConfContainerDef McuClockRefer-
encePoint ⌈

47 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

Container Name McuClockReferencePoint

Parent Container McuClockSettingConfig

Description This container defines a reference point in the Mcu Clock tree. It defines the frequency
which then can be used by other modules as an input value. Lower multiplicity is 1, as
even in the simplest case (only one frequency is used), there is one frequency to be
defined.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuClockReferencePointFrequency 1 [ECUC_Mcu_00175]

No Included Containers

⌋

[ECUC_Mcu_00175] Definition of EcucFloatParamDef McuClockReferencePoint
Frequency ⌈

Parameter Name McuClockReferencePointFrequency

Parent Container McuClockReferencePoint

Description This is the frequency for the specific instance of the McuClockReferencePoint
container. It shall be given in Hz.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
Dependency

⌋

10.2.9 McuPublishedInformation

[ECUC_Mcu_00184] Definition of EcucParamConfContainerDef McuPublishedIn-
formation ⌈

Container Name McuPublishedInformation

Parent Container Mcu

Description Container holding all MCU specific published information parameters

Multiplicity 1

Configuration Parameters

No Included Parameters

48 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

Included Containers
Container Name Multiplicity Dependency

McuResetReasonConf 1..* This container contains the configuration for the different type of
reset reason that can be retrieved from Mcu_GetResetReason
Api.

⌋

10.2.10 McuResetReasonConf

[ECUC_Mcu_00185] Definition of EcucParamConfContainerDef McuResetRea-
sonConf ⌈

Container Name McuResetReasonConf

Parent Container McuPublishedInformation

Description This container contains the configuration for the different type of reset reason that can
be retrieved from Mcu_GetResetReason Api.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuResetReason 1 [ECUC_Mcu_00186]

No Included Containers

⌋

[ECUC_Mcu_00186] Definition of EcucIntegerParamDef McuResetReason ⌈
Parameter Name McuResetReason

Parent Container McuResetReasonConf

Description The parameter represents the different type of reset that a Micro supports. This
parameter is referenced by the parameter EcuMResetReason in the ECU State
manager module.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Dependency

⌋

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information” .

49 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

Specification of MCU Driver
AUTOSAR CP R25-11

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

Number Heading

[SWS_Mcu_00300] Clock source failure.

Table A.1: Added Specification Items in R25-11

A.1.2 Changed Specification Items in R25-11

Number Heading

[ECUC_Mcu_00118] Definition of EcucParamConfContainerDef McuGeneralConfiguration

[ECUC_Mcu_00119] Definition of EcucParamConfContainerDef McuModuleConfiguration

[ECUC_Mcu_00120] Definition of EcucParamConfContainerDef McuRamSectorSettingConf

[ECUC_Mcu_00123] Definition of EcucParamConfContainerDef McuModeSettingConf

[ECUC_Mcu_00124] Definition of EcucParamConfContainerDef McuClockSettingConfig

[ECUC_Mcu_00174] Definition of EcucParamConfContainerDef McuClockReferencePoint
[ECUC_Mcu_00184] Definition of EcucParamConfContainerDef McuPublishedInformation
[ECUC_Mcu_00185] Definition of EcucParamConfContainerDef McuResetReasonConf
[ECUC_Mcu_00187] Definition of EcucParamConfContainerDef McuDemEventParameterRefs

Table A.2: Changed Specification Items in R25-11

A.1.3 Deleted Specification Items in R25-11

none

50 of 50 Document ID 31: AUTOSAR_CP_SWS_MCUDriver

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Start-up code
	5.2 File structure
	5.2.1 Code file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General Behavior
	7.1.1 Background and Rationale
	7.1.2 Requirements
	7.1.2.1 Reset
	7.1.2.2 Clock
	7.1.2.3 MCU Mode service

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors
	7.2.4.1 MCU_E_CLOCK_FAILURE

	7.3 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Mcu_ConfigType
	8.2.2 Mcu_PllStatusType
	8.2.3 Mcu_ClockType
	8.2.4 Mcu_ResetType
	8.2.5 Mcu_RawResetType
	8.2.6 Mcu_ModeType
	8.2.7 Mcu_RamSectionType
	8.2.8 Mcu_RamStateType

	8.3 Function definitions
	8.3.1 Mcu_Init
	8.3.2 Mcu_InitRamSection
	8.3.3 Mcu_InitClock
	8.3.4 Mcu_DistributePllClock
	8.3.5 Mcu_GetPllStatus
	8.3.6 Mcu_GetResetReason
	8.3.7 Mcu_GetResetRawValue
	8.3.8 Mcu_PerformReset
	8.3.9 Mcu_SetMode
	8.3.10 Mcu_GetVersionInfo
	8.3.11 Mcu_GetRamState

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces

	8.7 Service Interfaces
	8.8 API parameter checking

	9 Sequence diagrams
	9.1 Example Sequence for Mcu initialization services
	9.2 Mcu_GetResetReason
	9.3 Mcu_GetResetRawValue
	9.4 Mcu_PerformReset

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Mcu
	10.2.2 McuGeneralConfiguration
	10.2.3 McuClockSettingConfig
	10.2.4 McuModuleConfiguration
	10.2.5 McuDemEventParameterRefs
	10.2.6 McuModeSettingConf
	10.2.7 McuRamSectorSettingConf
	10.2.8 McuClockReferencePoint
	10.2.9 McuPublishedInformation
	10.2.10 McuResetReasonConf

	10.3 Published Information

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

