AUTSSAR

Document Title Specification of MCU Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 31

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial Changes.
Management
AUTOSAR . Cleaneq.up unresolved references in
2024-11-27 | R24-11 | Release traceability.
Management « Removed [SWS_Mcu_CONSTR_00001]
AUTOSAR » Cleaned up unresolved references in
2023-11-23 | R23-11 | Release > up
M traceability.
anagement
AUTOSAR » Cleaned up unresolved references in
2022-11-24 | R22-11 | Release > up
M traceability.
anagement
* Removed [SWS_Mcu_00131], [SWS_
Mcu_00054], [SWS_Mcu_00035],
AUTOSAR [SWS_Mcu_00030] and [SWS_Mcu_
2021-11-25 | R21-11 Release 00031]
Management
* Cleaned up unresolved references in
traceability
AUTOSAR « Enum and Error related modifications
2020-11-30 R20-11 Release
Management « Editorial Changes
* Removed DRAFT status of items
introduced for Multicore support
AUTOSAR * Removed duplicated chapters
2019-11-28 | R19-11 Release McuGeneralConfiguration and
Management McuClockSettingConfig

» Changed Document Status from Final to
published

AUTSSAR

AUTOSAR » Debugging support was removed
2018-10-31 4.4.0 Klﬂelease * Introduced support for Multicore
anagement distribution
* Introduced new configuration parameter
AUTOSAR - McuRamSectionWriteSize
2017-12-08 4.3.1 Release
Management » Changed reentrancy of APl Mcu_
SetMode to Reentrant
AUTOSAR * Removed chapter "Variants"
2016-11-30 | 4.3.0 Release « Cleaned up unresolved references in
Management traceability
* Minor change regarding DET renaming
AUTOSAR and extension Incorporation
2015-07-31 4.2.2 Release
Management » Clarifications regarding configuration
class of symbolicNameValue parameters
» Removed requirements for NULL pointer
AUTOSAR checking as redundant with BSW
2014-10-31 | 4.2.1 Release General.
Management - Specified pass/fail criteria for extended
production errors
AUTOSAR » Requirement Traceability Table revised
2014-03-31 | 4.1.3 Release « Correction of requirement tag ([SWS_
Management Mcu_00146])
* Mcu_GetResetReason and Mcu__
GetResetRawValue return the same
value if called multiple times
AUTOSAR * RAM sector multiplicity corrected
2013-10-31 4.1.2 Release » McuClockSettingld and McuMode range
Management corrected

« Editorial changes

* Removed chapter(s) on change
documentation

AUTSSAR

2013-03-15

411

AUTOSAR
Administration

» Adaptation of the Document due to the
SWS General Release

* Scope Fields in all configuration
parameters (chapter 10) changed as
Local -> impact only this module or ECU
impact several modules

» Autosar Memory mapping abstraction
split for each BSW

* Split Production Errors in "Pure”
Production Errors and Extended
Production Errors

» Changed signature of Api Mcu_
DistributePl1lClock

2011-12-22

4.0.3

AUTOSAR
Administration

* Mcu_SetMode assumes that all
interrupts are disabled prior the call

2010-09-30

AUTOSAR
Administration

* Corrected [SWS_Mcu_00210]
* Removed [SWS_Mcu_00225].

* Rephrased [SWS_Mcu_00125] and
[SWS_Mcu_00011]

* Added Chapter 12

2010-02-02

3.1.4

AUTOSAR
Administration

* Lots requirements rephrased to make
them atomic.

» Debugging Concept inserted.

* Insertion of a new service (Api) to read
the Status after the reset. (Affected also
SRS R4.0)

* Insertion new configuration parameters
to enable/disable PLL Apis.

* Introduction of a new container to
publish all the different resets that Micro
Controller support.

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

» Table formatting corrected

AUTSSAR

2007-01-24

2.1.15

AUTOSAR
Administration

» Wakeup concept clarified (resulted in
removal of wakeup functionality and
sequence diagrams in the MCU SWS).
As per the concept agreed within the
Startup / Wakeup Taskforce.

* Obsolete function Dem_
ReportErrorEvent () removed.

* Technical Office Improvements: wording
improvements.

* Re-wording of requirements for
clarification

» Document meta information extended

» Small layout adaptations made

2007-11-28

2.1.14

AUTOSAR
Administration

» Update to section 5.2.2: Inclusion of new
file structure

» Sections 8.3.2, 8.3.3, 8.3.9 : Removal of
‘const’ from API type definition.

* Section 8.2.4, 8.2.5,10.2.5: Description
detail amended

* Section 8.2.4: Default value (0x0) for
MCU_POWER_ON_RESET removed.

* Section 8.3.8 : Description updated to
include reference to new pre-processor
switch McuPerformResetApi.

* Section 10.2.2: Introduction of
pre-processor switch
McuPerformResetApi

* Section 10.2.3: Multiplicity of
sub-container Mcu Clock Setting
Configuration changed to 1.

* Legal disclaimer revised
* Release Notes added
« "Advice for users" revised

* "Revision Information" added

AUTSSAR

» Document structure adapted to common
Release 2.0 SWS Template.

5006-05-16 | 2.0 AUTQ_SAR _ » Major changes in chapter 10
Administration
» Structure of document changed partly
+ Other changes see chapter 11
2005-05-31 1.0 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview

Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standards and norms
3.2 Related specification

Constraints and assumptions

4.1 Limitations
4.2 Applicability to car domains

Dependencies to other modules

5.1 Start-upcode
5.2 Filestructure s

5.2.1

Code file structure

Requirements Tracing

Functional specification

7.1 General Behavior

7.1.1
7.1.2

Background and Rationale
Requirements

7.1.21 Reset. e
7122 Clock e
7123 MCUModeservice i it
7.2 Error Classification e

7.21
7.2.2
7.2.3
7.2.4

Development Errors oo
Runtime Errors
Production Errors L
Extended ProductionErrors oo

7.241 MCU_E_CLOCK FAILURE
7.3 Security Events

API specification

8.1 Importedtypes e
8.2 Type definitions

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

Mcu_ConfigType
Mcu_PIlIStatusType
Mcu_ClockType
Mcu_ResetType
Mcu_RawResetType o
Mcu_ModeType

10
11

12

12
12

13

13
13

14

14
15
15

16

AUTSSAR

8.2.7 Mcu_RamSectionTypeo 24
8.2.8 Mcu_RamStateType 24
8.3 Function definitions L 24
831 Mcu Init. e 25
8.3.2 Mcu_InitRamSection. 26
8.3.3 Mcu_InitClock 26
8.3.4 Mcu_DistributePllIClock 27
8.3.5 Mcu _GetPIIStatus 28
8.3.6 Mcu GetResetReason 29
8.3.7 Mcu_GetResetRawValue 29
8.3.8 Mcu_PerformReset 30
8.3.9 Mcu SetMode 31
8.3.10 Mcu_GetVersionInfo o 32
8.3.11 Mcu_GetRamState. 32
8.4 Callback notifications 33
8.5 Scheduled functions L 33
8.6 Expectedinterfaces 33
8.6.1 Mandatory interfaces 33
8.6.2 Optionalinterfaces, . 33
8.7 Servicelnterfaces 34
8.8 APl parameterchecking 34
9 Sequence diagrams 35
9.1 Example Sequence for Mcu initialization services 35
9.2 Mcu_GetResetReason 36
9.3 Mcu_GetResetRawValue 36
9.4 Mcu PerformReset 36
10 Configuration specification 37
10.1Howtoread thischapter 37
10.2Containers and configuration parameters 37
10.21MCU e e e 37
10.2.2 McuGeneralConfiguration 38
10.2.3 McuClockSettingConfig 41
10.2.4 McuModuleConfiguration 41
10.2.5 McuDemEventParameterRefs 44
10.2.6 McuModeSettingConf o 45
10.2.7 McuRamSectorSettingConf 45
10.2.8 McuClockReferencePoint 47
10.2.9 McuPublishedInformation 48
10.2.10 McuResetReasonConf 49

10.3Published Information 49

AUTSSAR

A Change history of AUTOSAR traceable items 50
A.1 Traceable item history of this document according to AUTOSAR Release

R25-11 . . . e 50

A.1.1 Added Specification Itemsin R25-11 50

A.1.2 Changed Specification Itemsin R25-11 50

A.1.3 Deleted Specification ltemsin R25-11 50

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the AU-
TOSAR Basic Software module MCU [Microcontroller Unit]. The MCU driver provides
services for basic microcontroller initialization, power down functionality, reset and mi-
crocontroller specific functions required by other MCAL software modules. The initial-
ization services allow a flexible and application related MCU initialization in addition
to the start-up code (see figure below). The start-up code is very MCU specific. The
provided start-up code description in this document is for guidance and implies func-
tionality which has to be taken into account before standardized MCU initialization is
able to start.
: Reset

é Not in scope of :)
AUTOSAR

STARTUP Code)
Bootloader Not

Bootloader Needed
Needed
()
(BOOTLOADER) :
' . Standardized in
\. J (Ml driver) AUTOSAR
additional initialization services
power down service

reset service

\ J

Figure 1.1: Scope of the MCU Driver Specification

The MCU driver accesses the microcontroller hardware directly and is located in the
Microcontroller Abstraction Layer (MCAL).

MCU driver Features:
» Initialization of MCU clock, PLL, clock prescalers and MCU clock distribution
* Initialization of RAM sections
» Activation of uC reduced power modes
+ Activation of a uC reset

» Provides a service to get the reset reason from hardware

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the MCU Driver
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

ucC Microcontroller

MCU Micro Controller Unit

SFR Special Function Register (MCU register)
DEM Diagnostic Event Manager

DET Default Error Tracer

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Requirements on MCU Driver
AUTOSAR_CP_RS_MCUDriver

[4] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for MCU Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for MCU Driver.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

In general the activation and configuration of MCU reduced power mode is not manda-
tory within AUTOSAR standardization.

Enabling/disabling of the ECU or uC power supply is not the task of the MCU driver.
This is to be handled by the upper layer.

4.2 Applicability to car domains

No restrictions

AUTSSAR

5 Dependencies to other modules

5.1 Start-up code

Before the MCU driver can be initialized, a basic initialization of the MCU has to be
executed. This MCU specific initialization is typically executed in a start-up code.

The start-up code of the MCU shall be executed after power up and any kind of mi-
crocontroller reset. It shall perform very basic and microcontroller specific start-up
initialization and shall be kept short because the MCU clock and PLL are not yet initial-
ized. The start-up code shall cover MCU specific initialization which is not part of other
MCU services or other MCAL drivers. The following description summarizes the basic
functionality to be included in the start-up code. It is listed for guidance because some
functionality might not be supported in all MCU’s.

The start-up code shall initialize the base addresses for interrupt and trap vector ta-
bles. These base addresses are provided as configuration parameters or linker/locator
setting.

The start-up code shall initialize the interrupt stack pointer if an interrupt stack is sup-
ported by the MCU. The interrupt stack pointer base address and the stack size are
provided as configuration parameter or linker/locator setting.

The start-up code shall initialize the user stack pointer. The user stack pointer base
address and the stack size are provided as configuration parameter or linker/locator
setting.

If the MCU supports context save operation, the start-up code shall initialize the mem-
ory which is used for context save operation. The maximum amount of consecutive
context save operations is provided as configuration parameter or linker/locator set-
ting.

The start-up code shall ensure that the MCU internal watchdog shall not be serviced
until the watchdog is initialized from the MCAL watchdog driver. This can be done for
example by increasing the watchdog service time.

If the MCU supports cache memory for data and/or code, it shall be initialized and
enabled in the start-up code.

The start-up code shall initialize MCU specific features with respect to internal memory
as, for example, memory protection.

If external memory is used, the memory shall be initialized in the start-up code. The
start-up code shall be prepared to support different memory configurations depending
on code location. Different configuration options shall be taken into account for code
execution from external/internal memory.

The settings of the different memories shall be provided to the start-up code as config-
uration parameters.

AUTSSAR

In the start-up code a default initialization of the MCU clock system shall be performed
including global clock prescalers.

The start-up code shall enable protection mechanisms for special function registers
(SFR’s) if supported by the MCU.

The start-up code shall initialize all necessary write once registers or registers com-
mon to several drivers where one write, rather than repeated writes, to the register is
required or highly desirable.

The start-up code shall initialize a minimum amount of RAM in order to allow proper
execution of the MCU driver services and the caller of these services.

Note: The start-up code is ECU and MCU dependant. Details of the specification shall
be described in the design specification of the MCU.

5.2 File structure

5.2.1 Code file structure

Note: The code file structure shall not be defined within this specification.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [2], [3] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[SRS_BSW_00101] The Basic Software Module shall be [SWS_Mcu_00026]
able to initialize variables and
hardware in a separate initialization
function

[SRS_BSW_00171] Optional functionality of a Basic-SW [SWS_Mcu_00207]
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SRS_BSW_00327] Error values naming convention [SWS_Mcu_00012]
[SRS_BSW_00337] Classification of development errors [SWS_Mcu_00012]
[SRS_BSW_00406] API handling in uninitialized state [SWS_Mcu_00026]
[SRS_BSW_00458] Classification of production errors [SWS_Mcu_00300]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General Behavior

7.1.1 Background and Rationale

The MCU driver provides MCU services for Clock and RAM initialization. In the MCU
configuration set, the MCU specific settings for the Clock (i.e. PLL setting) and RAM
(i.e. section base address and size) shall be configured.

7.1.2 Requirements

7.1.2.1 Reset

[SWS_Mcu_00055] [The MCU module shall provide a service to provide software
triggering of a hardware reset. |

Note: Only an authorized user shall be able to call this reset service function.

[SWS_Mcu_00052] [The MCU module shall provide services to get the reset reason
of the last reset if the hardware supports such a feature. |

Note: In an ECU, there are several sources which can cause a reset. Depending on
the reset reason, several application scenarios might be necessary after re-initialization
of the MCU.

7.1.2.2 Clock

[SWS_Mcu_00248] [Mcu shall provide a service to enable and set the MCU clock
(i.e. Cpu clock, Peripheral Clock, Prescalers, Multipliers have to be configured in the
MCU). |

Note: All the available peripheral clocks have to be made available to the other BSW
modules via the McuClockReferencePoint container.

7.1.2.3 MCU Mode service

[SWS_Mcu_00164] [The MCU module shall provide a service to activate MCU re-
duced power modes. |

The service, which activates the reduced power mode, shall allow access to power
modes available in the uC hardware.

AUTSSAR

[SWS_Mcu_00165] [The number of modes and the configuration is MCU dependent
and shall be configured in the configuration set of the MCU module. |

Note: The activation of MCU reduced power modes might influence the PLL, the in-
ternal oscillator, the CPU clock, uC peripheral clock and the power supply for core and
peripherals.

In typical operation, MCU reduced power mode will be entered and exited frequently
during ECU runtime. In this case, wake-up is performed when it is activated in one of
the MCAL modules.

The upper layer is responsible for activating MCU normal operation (condition before
execution of MCU power mode) or to switch off uC power supply.

For some MCU mode configuration, the MCU is able to wake up only via hardware
reset.

7.2 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

[SWS_Mcu_00051] [The MCU driver follows the standardized AUTOSAR concept to
report production errors. The provided callback routines are specified in the Diagnostic
Event Manager (DEM) specification (see [4]). |

[SWS_Mcu_00226] [Production Errors shall not be used as the return value of the
called function. |

7.2.1 Development Errors

[SWS_Mcu_00012] Definition of development errors in module Mcu
Upstream requirements: SRS_BSW_00327, SRS_BSW_00337

[
Type of error Related error code Error value
API service called with wrong parameter MCU_E_PARAM_CONFIG 0x0A
API service called with wrong parameter MCU_E_PARAM_CLOCK 0x0B
API service called with wrong parameter MCU_E_PARAM_MODE 0x0C
API service called with wrong parameter MCU_E_PARAM_RAMSECTION 0x0D

\Y

AUTSSAR

A
Type of error Related error code Error value
API service called with wrong parameter MCU_E_PLL_NOT_LOCKED 0x0E
API service called with wrong parameter MCU_E_UNINIT 0x0F
API service called with wrong parameter MCU_E_PARAM_POINTER 0x10
API service called with wrong parameter MCU_E_INIT_FAILED 0x11

7.2.2 Runtime Errors

There are no runtime errors.

7.2.3 Production Errors

There are no production errors.

7.2.4 Extended Production Errors

Type or error

Related error code

Value

Clock source failure

MCU_E_CLOCK_FAILURE

Assigned by DEM

[SWS_Mcu_00053] [If clock failure notification is enabled in the configuration set and
a clock source failure error occurs, the error code MCU_E_CLOCK_FAILURE shall be

reported (see also [SWS_Mcu_00051]). |

If the clock failure is detected with other HW mechanisms e.g. the generation of a trap,
this notification shall be disabled and the failure reporting shall be done outside the

MCU driver.

7.2.41 MCU_E_CLOCK_FAILURE

[SWS Mcu_00300] Clock source failure.
Upstream requirements: SRS_BSW_00458

Diagnostic Event (Error Name) MCU_E_CLOCK_FAILURE

Description If clock failure notification is enabled in the configuration set and a clock source failure
error occurs, the error code MCU_E_CLOCK_FAILURE shall be reported.

Failed condition Fail criteria for MCU_E_CLOCK_FAILURE: a clock source failure occurs.

Y%

AUTSSAR

A

| Passed condition Pass criteria for MCU_E_CLOCK_FAILURE: no clock source failure occurs.

]

[SWS_Mcu_00257] [Fail criteria for MCU_E_CLOCK_FAILURE: a clock source failure
occurs |

[SWS_Mcu_00258] [Pass criteria for MCU_E_CLOCK_FAILURE: no clock source fail-
ure occurs |

7.3 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Mcu_00152] Definition of imported datatypes of module Mcu |

Module Header File Imported Type

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Mcu_ConfigType

[SWS_Mcu_00249] Definition of datatype Mcu_ConfigType |

Name Mcu_ConfigType
Kind Structure
Elements Hardware dependent structure
Type -
Comment A structure to hold the MCU driver configuration.
Description A pointer to such a structure is provided to the MCU initialization routines for configuration.

Available via

Mcu.h

8.2.2 Mcu_PIIStatusType

[SWS_Mcu_00250] Definition of datatype Mcu_PIIStatusType |

Name Mcu_PIIStatusType

Kind Enumeration

Range MCU_PLL_LOCKED 0x00 PLL is locked
MCU_PLL_UNLOCKED 0x01 PLL is unlocked
MCU_PLL_STATUS_ 0x02 PLL Status is unknown
UNDEFINED

Description This is a status value returned by the function Mcu_GetPIIStatus of the MCU module.

Available via Mcu.h

AUTSSAR

[SWS_Mcu_00230] [The type Mcu_P1l1lstatusType is the type of the return value of
the function Mcu_GetP1l1lStatus.]|

[SWS_Mcu_00231] [The type of Mcu_P1llsStatusType is an enumeration with the
following values: MCU_PLI_LOCKED, MCU_PLIL_UNLOCKED, MCU_PLL_STATUS_UN-
DEFINED. |

8.2.3 Mcu_ClockType

[SWS_Mcu_00251] Definition of datatype Mcu_ClockType |

Name Mcu_ClockType

Kind Type

Derived from uint

Range 0..<number of clock - The range is dependent on the

settings>- 1 number of different clock settings

provided in the configuration
structure. The type shall be
chosen depending on MCU
platform for best performance.

Description Specifies the identification (ID) for a clock setting, which is configured in the configuration structure

Available via Mcu.h

[SWS_Mcu_00232] [The type Mcu_ClockType defines the identification (ID) for clock
setting configured via the configuration structure. |

[SWS_Mcu_00233] [The type shall be uint8, uint16 or uint32, depending on puC
platform. |

8.2.4 Mcu_ResetType

[SWS_Mcu_00252] Definition of datatype Mcu_ResetType |

Name Mcu_ResetType

Kind Enumeration

Range MCU_POWER_ON_RESET | 0x00 Power On Reset (default)
MCU_WATCHDOG_RESET | 0x01 Internal Watchdog Timer Reset
MCU_SW_RESET 0x02 Software Reset
MCU_RESET_UNDEFINED | 0x03 Reset is undefined

Description This is the type of the reset enumerator containing the subset of reset types. It is not required that
all reset types are supported by hardware.

Available via Mcu.h

J

[SWS_Mcu_00234] [The type Mcu_ResetType, represents the different reset that a
specified MCU can have. |

AUTSSAR

[SWS_Mcu_00134] [The MCU module shall provide at least the values MCU_POWER_
ON_RESET and MCU_RESET_UNDEFINED for the enumeration Mcu_ResetType. |

Note: Additional reset types of Mcu_Reset Type may be added depending on MCU.

8.2.5 Mcu_RawResetType

[SWS_Mcu_00253] Definition of datatype Mcu_RawResetType |

Name Mcu_RawResetType

Kind Type

Derived from uint

Range MCU dependent register - The type shall be chosen

value depending on MCU platform for
best performance.

Description This type specifies the reset reason in raw register format read from a reset status register.

Available via Mcu.h

]

[SWS_Mcu_00235] [The type Mcu_RawReset Type specifies the reset reason in raw
register format, read from a reset status register. |

[SWS_Mcu_00236] [The type shall be uint8, uintl6 or uint32 based on best
performance. |

8.2.6 Mcu_ModeType

[SWS_Mcu_00254] Definition of datatype Mcu_ModeType |

Name Mcu_ModeType
Kind Type
Derived from uint
Range 0..<number of MCU - The range is dependent on the
modes>-1 number of MCU modes provided
in the configuration structure. The
type shall be chosen depending
on MCU platform for best
performance.
Description This type specifies the identification (ID) for a MCU mode, which is configured in the configuration
structure.
Available via Mcu.h

]

[SWS_Mcu_00237] [The Mcu_ModeType specifies the identification (ID) for a MCU
mode, configured via configuration structure. |

[SWS_Mcu_00238] [The type shall be uint8, uint16 or uint32. |

AUTSSAR

8.2.7 Mcu_RamSectionType

[SWS_Mcu_00255] Definition of datatype Mcu_RamSectionType [

Name Mcu_RamSectionType
Kind Type
Derived from uint
Range 0..< number of RAM - The range is dependent on the
sections>-1 number of RAM sections provided
in the configuration structure. The
type shall be chosen depending
on MCU platform for best
performance.
Description This type specifies the identification (ID) for a RAM section, which is configured in the configuration
structure.
Available via Mcu.h

]

[SWS_Mcu_00239] [The Mcu_RamSectionType specifies the identification (ID) for
a RAM section, configured via the configuration structure. |

[SWS_Mcu_00240] [The type shall be uint8, uint16 or uint32, based on best
performance. |

8.2.8 Mcu_RamStateType

[SWS_Mcu_00256] Definition of datatype Mcu_RamStateType |

Name Mcu_RamStateType

Kind Enumeration

Range MCU_RAMSTATE_INVALID 0x00 Ram content is not valid or unknown (default).
MCU_RAMSTATE_VALID 0x01 Ram content is valid:

Description This is the Ram State data type returned by the function Mcu_GetRamState of the Mcu module. It
is not required that all RAM state types are supported by the hardware.

Available via Mcu.h

8.3 Function definitions

This is a list of functions provided for upper layer modules.

AUTSSAR

8.3.1 Mcu_lInit

[SWS_Mcu_00153] Definition of API function Mcu_Init |

Service Name

Mcu_Init

Syntax void Mcu_Init (
const Mcu_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to MCU driver configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description This service initializes the MCU driver.
Available via Mcu.h

]

[SWS_Mcu_00026]
Upstream requirements: SRS_BSW_00101, SRS_BSW_00406

[The function Mcu_1Init shall initialize the MCU module, i.e. make the configuration
settings for power down, clock and RAM sections visible within the MCU module. |

Note: After the execution of the function Mcu_1nit, the configuration data are acces-
sible and can be used by the MCU module functions as, €.g., Mcu_InitRamSection.

The MCU module’s implementer shall apply the following rules regarding initialization
of controller registers within the function Mcu_TInit:

1. [SWS_Mcu_00116] [If the hardware allows for only one usage of the register,
the driver module implementing that functionality is responsible for initializing the
register. |

2. [SWS_Mcu_00244] [If the register can affect several hardware modules and if it
is an 1/O register, it shall be initialised by the PORT driver. |

3. [SWS_Mcu_00245] [If the register can affect several hardware modules and if it
is not an /O register, it shall be initialised by this MCU driver. |

4. [SWS_Mcu_00246] [One-time writable registers that require initialisation directly
after reset shall be initialised by the startup code. |

5. [SWS_Mcu_00247] [All other registers not mentioned before shall be initialised
by the start-up code. |

Note: The term 'Hardware Module’ refers to internal modules of the MCU and not to a
BSW module.

AUTSSAR

8.3.2 Mcu_InitRamSection

[SWS_Mcu_00154] Definition of API function Mcu_InitRamSection |

Service Name

Mcu_InitRamSection

Syntax Std_ReturnType Mcu_InitRamSection (

Mcu_RamSectionType RamSection

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) RamSection Selects RAM memory section provided in configuration set
Parameters (inout) None

Parameters (out) None

Return value

Std_ReturnType

parameter error

Description

This service initializes the RAM section wise.

Available via

Mcu.h

]

[SWS_Mcu_00011] [The function Mcu_InitRamSection shall fill the memory from
address McuRamSectionBaseAddress up to address McuRamSectionBaseAd-
dress + McuRamSectionSize-1 with the byte-value contained in McuRambe fault—
Value and by writing at once a number of bytes defined by McuRamSectionWrite-
Size, where McuRamSectionBaseAddress, McuRamSectionSize, McuRamDe—
faultValue and McuRamSectionWriteSize are the values of the configuration

parameters for each RamSection. |

[SWS_Mcu_00136] [The MCU module’s environment shall call the function Mcu_-
InitRamSection only after the MCU module has been initialized using the function

Mcu_Init.]

8.3.3 Mcu_lInitClock

[SWS_Mcu_00155] Definition of API function Mcu_lInitClock |

Service Name

Mcu_InitClock

Syntax Std_ReturnType Mcu_InitClock (
Mcu_ClockType ClockSetting
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ClockSetting | Clock setting
Parameters (inout) None
Parameters (out) None

Y%

E_OK: command has been accepted
E_NOT_OK: command has not been accepted e.g. due to

AUTSSAR

A

E_OK: Command has been accepted
E_NOT_OK: Command has not been accepted

Return value Std_ReturnType

Description This service initializes the PLL and other MCU specific clock options.

Available via Mcu.h

]

[SWS_Mcu_00137] [The function Mcu_1InitClock shall initialize the PLL and other
MCU specific clock options. The clock configuration parameters are provided via the
configuration structure. |

[SWS_Mcu_00138] [The function Mcu_InitClock shall start the PLL lock procedure
(if PLL shall be initialized) and shall return without waiting until the PLL is locked. |

[SWS_Mcu_00139] [The MCU module’s environment shall only call the function
Mcu_InitClock after the MCU module has been initialized using the function Mcu_
Init.|

[SWS_Mcu_00210] [The function Mcu_InitClock shall be disabled if the param-
eter McuInitClock is set to FALSE. Instead this function is available if the former
parameter is set to TRUE (see also [ECUC_Mcu_00118]). |

8.3.4 Mcu_DistributePlIClock

[SWS_Mcu_00156] Definition of API function Mcu_DistributePlIClock |

Mcu_DistributePIlIClock

Service Name

Syntax Std_ReturnType Mcu_DistributePllClock (
void
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: Command has been accepted
E_NOT_OK: Command has not been accepted

Description

This service activates the PLL clock to the MCU clock distribution.

Available via

Mcu.h

]

[SWS_Mcu_00140] [The function Mcu_DistributePl1Clock shall activate the PLL

clock to the MCU clock distribution. |

[SWS_Mcu_00141] [The function Mcu_DistributeP11Clock shall remove the cur-
rent clock source (for example internal oscillator clock) from MCU clock distribution. |

AUTSSAR

The MCU module’s environment shall only call the function Mcu_DistributePl1-
Clock after the status of the PLL has been detected as locked by the function Mcu_
GetPllStatus.

[SWS_Mcu_00056] [The function Mcu_DistributePl1Clock shall return without
affecting the MCU hardware if the PLL clock has been automatically activated by the
MCU hardware. |

[SWS_Mcu_00142] [If the function Mcu_DistributePl1Clock is called before PLL
has locked, this function shall return E_NOT_OK immediately, without any further ac-
tion. |

[SWS_Mcu_00205] [The function Mcu_DistributeP1l1Clock shall be available if

the pre-compile parameter McuNoP11 is set to FALSE. Otherwise, this Api has to be
disabled (see also [ECUC_Mcu_00180]). |

8.3.5 Mcu_GetPlIStatus

[SWS_Mcu_00157] Definition of API function Mcu_GetPIlIStatus |

Service Name

Mcu_GetPlIStatus

Syntax Mcu_PllStatusType Mcu_GetPllStatus (
void
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Mcu_PlIStatusType PLL Status

Description

This service provides the lock status of the PLL.

Available via

Mcu.h

]

[SWS_Mcu_00008] [The function Mcu_GetP11Status shall return the lock status of
the PLL. |

[SWS_Mcu_00132] [The function Mcu_GetPl1lStatus shall return MCU_PLL_-
STATUS_UNDEFINED if this function is called prior to calling of the function Mcu_-
Init.|

[SWS_Mcu_00206] [The function Mcu_GetP1l1Status shall also return MCU_PLL_
STATUS_UNDEFINED if the pre-compile parameter McuNoP11 is set to TRUE (see also
[ECUC_Mcu_00180]). |

AUTSSAR

8.3.6 Mcu_GetResetReason

[SWS_Mcu_00158] Definition of API function Mcu_GetResetReason |

Service Name

Mcu_GetResetReason

Eﬁﬂﬂax Mcu_ResetType Mcu_GetResetReason (
void
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Mcu_ResetType -

Description

The service reads the reset type from the hardware, if supported.

Available via

Mcu.h

]

[SWS_Mcu_00005] : [The function Mcu_GetResetReason shall read the reset rea-
son from the hardware and return this reason if supported by the hardware. If the
hardware does not support the hardware detection of the reset reason, the return value
from the function Mcu_GetResetReason shall always be MCU_POWER_ON_RESET. |

[SWS_Mcu_00133] [The function Mcu_GetResetReason shall return MCU_RESET__
UNDEF INED if this function is called prior to calling of the function Mcu_1Init, and if
supported by the hardware. |

The User should ensure that the reset reason is cleared once it has been read out to
avoid multiple reset reasons.

Note: In case of multiple calls to this function the return value should always be the
same.

8.3.7 Mcu_GetResetRawValue

[SWS_Mcu_00159] Definition of API function Mcu_GetResetRawValue |

Service Name

Mcu_GetResetRawValue

Syntax Mcu_RawResetType Mcu_GetResetRawValue (
void
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None

AUTSSAR

A

Parameters (out) None

Return value Mcu_RawResetType | Reset raw value

Description The service reads the reset type from the hardware register, if supported.

Available via Mcu.h

]

[SWS_Mcu_00135] [The function Mcu_GetResetRawValue shall return an imple-
mentation specific value which does not correspond to a valid value of the reset status
register and is not equal to O if this function is called prior to calling of the function
Mcu_Init, and if supported by the hardware. |

[SWS_Mcu_00006] [The function Mcu_GetResetRawValue shall read the reset raw
value from the hardware register if the hardware supports this. If the hardware does
not have a reset status register, the return value shall be 0x0. |

The User should ensure that the reset reason is cleared once it has been read out to
avoid multiple reset reasons.

Note: In case of multiple calls to this function the return value should always be the
same.

8.3.8 Mcu_PerformReset

[SWS_Mcu_00160] Definition of API function Mcu_PerformReset |

Service Name

Mcu_PerformReset

Syntax void Mcu_PerformReset (
void
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

The service performs a microcontroller reset.

Available via

Mcu.h

]

[SWS_Mcu_00143] [The function Mcu_PerformReset shall perform a microcon-
troller reset by using the hardware feature of the microcontroller. |

[SWS_Mcu_00144] [The function Mcu_PerformReset shall perform the reset type
which is configured in the configuration set. |

AUTSSAR

[SWS_Mcu_00145] [The MCU module’s environment shall only call the function
Mcu_PerformReset after the MCU module has been initialized by the function Mcu_
Init.]

[SWS_Mcu_00146] [The function Mcu_PerformReset is only available if the pre-

compile parameter McuPerformResetApi is set to TRUE. If set to FALSE, the function
Mcu_PerformReset is not applicable.). |

8.3.9 Mcu_SetMode

[SWS_Mcu_00161] Definition of API function Mcu_SetMode |

Service Name Mcu_SetMode
Syntax void Mcu_SetMode (
Mcu_ModeType McuMode
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) McuMode Set different MCU power modes configured in the configuration
set
Parameters (inout) None
Parameters (out) None
Return value None
Description This service activates the MCU power modes.
Available via Mcu.h
|

[SWS_Mcu_00147] [The function Mcu_SetMode shall set the MCU power mode. In
case of CPU power down mode, the function Mcu_SetMode returns after it has per-
formed a wake-up. |

[SWS_Mcu_00148] [The MCU module’s environment shall only call the function
Mcu_SetMode after the MCU module has been initialized by the function Mcu_Init. |

Note: The environment of the function Mcu_sSetMode has to ensure that the ECU is
ready for reduced power mode activation.

Note: The API Mcu_SetMode assumes that all interrupts are disabled prior the call of
the API by the calling instance. The implementation has to take care that no wakeup
interrupt event is lost. This could be achieved by a check whether pending wakeup
interrupts already have occurred even if Mcu_SetMode has not set the controller to
power down mode yet.

AUTSSAR

8.3.10 Mcu_GetVersioninfo

[SWS_Mcu_00162] Definition of API function Mcu_GetVersioninfo |

Service Name

Mcu_GetVersioninfo

Syntax void Mcu_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None
Description This service returns the version information of this module.
Available via Mcu.h

8.3.11 Mcu_GetRamState

[SWS_Mcu_00207] Definition of API function Mcu_GetRamState
Upstream requirements: SRS_BSW_00171

[

Service Name

Mcu_GetRamState

Synmx Mcu_RamStateType Mcu_GetRamState (
void
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Mcu_RamStateType Status of the Ram Content

Description

This service provides the actual status of the microcontroller Ram. (if supported)

Available via

Mcu.h

]

Note: Some microcontrollers offer the functionality to check if the Ram Status is valid

after a reset. The function Mcu_GetRamState can be used for this reason.

[SWS_Mcu_00208] [The MCU module’s environment shall call this function only if the

MCU module has been already initialized using the function Mcu_Init.|

[SWS_Mcu_00209] [The function Mcu_GetRamState shall be available to the user if
the pre-compile parameter McuGetRamStateApi is set to TRUE. Instead, if the former

AUTSSAR

parameter is set to FALSE, this function shall be disabled (e.g. the hardware does not
support this functionality). |

8.4 Callback notifications

There are no callback notifications for the MCU driver. The callback notifications are
implemented in another module (ICU driver and/or complex drivers).

8.5 Scheduled functions

There are no scheduled functions within the MCU driver.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

[SWS_Mcu_00166] Definition of mandatory interfaces required by module Mcu |

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Mcu_00163] Definition of optional interfaces requested by module Mcu |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

AUTSSAR

8.7 Service Interfaces

There are no service interfaces within the MCU driver.

8.8 API parameter checking

[SWS_Mcu_00017] [If the development error detection is enabled for the MCU mod-
ule, the MCU functions shall check the following API| parameters, report detected errors
to the Default Error Tracer and reject with return value E_NOT_OK in case the function
has a standard return type. |

[SWS_Mcu_00019] [ClockSetting shall be within the settings defined in the configura-
tion data structure. Related error value: MCU_E_PARAM CLOCK |

[SWS_Mcu_00020] [McuMode shall be within the modes defined in the configuration
data structure. Related error value: MCU_E_PARAM MODE |

[SWS_Mcu_00021] [RamSection shall be within the sections defined in the configu-
ration data structure. Related error value: MCU_E_PARAM_RAMSECTION |

[SWS_Mcu_00122] [A error shall be reported if the status of the PLL is detected as
not locked with the function Mcu_DistributePl1Clock. The DET error reporting
shall be used. Related error value: MCU_E_PLL_NOT_LOCKED. |

[SWS_Mcu_00125] [If development error detection is enabled and if any other func-
tion (except Mcu_GetVersionInfo) of the MCU module is called before Mcu_TInit
function, the error code MCU_E_UNINIT shall be reported to the DET. |

AUTSSAR

9 Sequence diagrams

9.1 Example Sequence for Mcu initialization services

User «module»

Mcu_Init(const
Mcu_ConfigType*) >

Mcu_lInit

-

Mcu_InitClock(Std_ReturnType,
Mcu_ClockType) -

Mcu_InitClock
R i T e m— e ——

Yy
-

Mcu_InitRamSection(Std_ReturnType,
Mcu_RamSectionType)

Mcu_InitRamSection

R R N L E P PR

-~

Mcu_GetPlIStatus(Mcu_PlIStatusType)

Mcu_GetPlIStatus
- ——————— = - T T T T T T T T T oo oo oo

f-—1

Mcu_DistributePlIClock
(Std_ReturnType) >

Mcu_DistributePIlIClock
<< - oo mmmmmm——m— e — -

F——I

Mcu_InitRamSection(Std_ReturnType,
Mcu_RamSectionType) >

Mcu_InitRamSection

<_ __

Figure 9.1: Sequence Diagram - Mcu Initialization

The order of services is just an example and might differ depending on the user. Mcu_
Init shall be executed first after power-up. The user takes care that the PLL is locked
by executing Mcu_GetP1l1Status.

AUTSSAR

9.2 Mcu_GetResetReason

User «module»
The function is Mcu
performed
synchronously

'

Mcu_GetResetReason(Mcu_ResetType)

\—L Mcu_GetResetReason
_________ ;- --————--——---

Figure 9.2: Sequence Diagram - Mcu_GetResetReason

9.3 Mcu_GetResetRawValue

The function is

User «module»

performed
synchronously Mcu

Mcu_GetResetRawValue(Mcu_RawResetType):

Mcu_RawResetType
Mcu_GetResetRawValue
____________ g ST mmmmo——— oo

Figure 9.3: Sequence Diagram - Mcu_GetResetRawValue

9.4 Mcu_PerformReset

= The function is «module»
performed

synchronously Mecu

Mcu_PerformReset()

Hardware reset

Figure 9.4: Sequence Diagram - Mcu_PerformReset

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MCU Driver.

Chapter 10.3 specifies published information of the module MCU Driver.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Mcu_00126] [The initialization function of this module shall always have a
pointer as a parameter, even though for VARITANT-PRE—-COMP ILE no configuration set
shall be given. Instead a NULL pointer shall be passed to the initialization function. |

[SWS_Mcu_00259] [The MCU Driver module shall reject configurations with partition
mappings which are not supported by the implementation. |

10.2.1 Mcu

[ECUC_Mcu_00189] Definition of EcucModuleDef Mcu |

Module Name Mcu

Description Configuration of the Mcu (Microcontroller Unit) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

McuGeneralConfiguration 1 This container contains the configuration (parameters) of the
MCU driver.

McuModuleConfiguration 1 This container contains the configuration (parameters) of the
MCU driver

McuPublishedInformation 1 Container holding all MCU specific published information
parameters

AUTSSAR

10.2.2 McuGeneralConfiguration

[ECUC_Mcu_00118] Definition of EcucParamConfContainerDef McuGeneralCon-
figuration |

Container Name McuGeneralConfiguration

Parent Container Mcu

Description This container contains the configuration (parameters) of the MCU driver.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

McuDevErrorDetect 1 [ECUC_Mcu_00166]
McuGetRamStateApi 1 [ECUC_Mcu_00181]
MculnitClock 1 [ECUC_Mcu_00182]
McuNoPII 1 [ECUC_Mcu_00180]
McuPerformResetApi 1 [ECUC_Mcu_00167]
McuVersionInfoApi 1 [ECUC_Mcu_00168]
McuEcucPartitionRef 0..” [ECUC_Mcu_00191]

| No Included Containers

]
[ECUC_Mcu_00166] Definition of EcucBooleanParamDef McuDevErrorDetect |

Parameter Name McuDevErrorDetect
Parent Container McuGeneralConfiguration
Description Switches the development error detection and natification on or off.

« true: detection and notification is enabled.
« false: detection and natification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

[ECUC_Mcu_00181] Definition of EcucBooleanParamDef McuGetRamStateApi |

Parameter Name

McuGetRamStateApi

Parent Container

McuGeneralConfiguration

Description Pre-processor switch to enable/disable the APl Mcu_GetRamState. (e.g. If the H/W
does not support the functionality, this parameter can be used to disable the Api).
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Mcu_00182] Definition of EcucBooleanParamDef MculnitClock |

Parameter Name

MculnitClock

Parent Container

McuGeneralConfiguration

Description If this parameter is set to FALSE, the clock initialization has to be disabled from the
MCU driver. This concept applies when there are some write once clock registers and
a bootloader is present. If this parameter is set to TRUE, the MCU driver is responsible
of the clock initialization.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Mcu_00180] Definition of EcucBooleanParamDef McuNoPII |

Parameter Name

McuNoPIl

Parent Container

McuGeneralConfiguration

Description This parameter shall be set True, if the H/W does not have a PLL or the PLL circuitry is
enabled after the power on without S/W intervention. In this case MCU_DistributePl|
Clock has to be disabled and MCU_GetPlIStatus has to return MCU_PLL_STATUS _
UNDEFINED. Otherwise this parameters has to be set False

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Mcu_00167] Definition of EcucBooleanParamDef McuPerformResetApi [

Parameter Name

McuPerformResetApi

Parent Container

McuGeneralConfiguration

Description Pre-processor switch to enable / disable the use of the function Mcu_PerformReset()
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Mcu_00168] Definition of EcucBooleanParamDef McuVersioninfoApi |

Parameter Name

McuVersionInfoApi

Parent Container

McuGeneralConfiguration

Description Pre-processor switch to enable / disable the API to read out the modules version
information.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Mcu_00191] Definition of EcucReferenceDef McuEcucPartitionRef |

Parameter Name

McuEcucPartitionRef

Parent Container

McuGeneralConfiguration

Description Maps the MCU driver to zero or multiple ECUC partition to make the driver API
available in this partition.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

10.2.3 McuClockSettingConfig

[ECUC_Mcu_00124] Definition of EcucParamConfContainerDef McuClockSetting

Config [

Container Name

McuClockSettingConfig

Parent Container

McuModuleConfiguration

Description

This container contains the configuration (parameters) for the Clock settings of the
MCU. Please see MCUO031 for more information on the MCU clock settings.

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

McuClockSettingld 1 [ECUC_Mcu_00183]

Included Containers

Container Name Multiplicity Dependency

McuClockReferencePoint 1.7 This container defines a reference point in the Mcu Clock tree. It

defines the frequency which then can be used by other modules
as an input value. Lower multiplicity is 1, as even in the simplest
case (only one frequency is used), there is one frequency to be
defined.

]

[ECUC_Mcu_00183] Definition of EcucintegerParamDef McuClockSettingld |

Parameter Name

McuClockSettingld

Parent Container

McuClockSettingConfig

Description The Id of this McuClockSettingConfig to be used as argument for the API call "Mcu_Init
Clock".

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.4 McuModuleConfiguration

[ECUC_Mcu_00119] Definition of EcucParamConfContainerDef McuModuleCon-

figuration |

AUTSSAR

Container Name

McuModuleConfiguration

Parent Container Mcu
Description This container contains the configuration (parameters) of the MCU driver
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

McuClockSrcFailureNotification 1 [ECUC_Mcu_00170]

McuNumberOfMcuModes 1 [ECUC_Mcu_00171]

McuRamSectors 1 [ECUC_Mcu_00172]

McuResetSetting 0..1 [ECUC_Mcu_00173]

Included Containers

Container Name Multiplicity Dependency

McuClockSettingConfig 1.7 This container contains the configuration (parameters) for the
Clock settings of the MCU. Please see MCU031 for more
information on the MCU clock settings.

McuDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

McuModeSettingConf 1.* This container contains the configuration (parameters) for the
Mode setting of the MCU. Please see MCUOQ35 for more
information on the MCU mode settings.

McuRamSectorSettingConf 0..* This container contains the configuration (parameters) for the

RAM Sector setting. Please see MCUO030 for more information
on RAM sec-tor settings.

[ECUC_Mcu_00170] Definition of EcucEnumerationParamDef McuClockSrcFail-

ureNotification [

Parameter Name

McuClockSrcFailureNotification

Parent Container

McuModuleConfiguration

Description Enables/Disables clock failure notification. In case this feature is not supported by HW
the setting should be disabled.
Multiplicity 1
Type EcucEnumerationParamDef
Range DISABLED -
ENABLED -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time —
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Mcu_00171]
Modes |

Definition of EcucintegerParamDef McuNumberOfMcu

Parameter Name

McuNumberOfMcuModes

Parent Container

McuModuleConfiguration

Description This parameter shall represent the number of Modes available for the MCU. calculation
Formula = Number of configured McuModeSettingConf

Multiplicity 1

Type EcuclntegerParamDef

Range 1..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Mcu_00172] Definition of EcucintegerParamDef McuRamSectors |

Parameter Name

McuRamSectors

Parent Container

McuModuleConfiguration

Description This parameter shall represent the number of RAM sectors available for the MCU.
calculationFormula = Number of configured McuRamSectorSettingConf
Multiplicity 1
Type EcucintegerParamDef
Range 0 .. 4294967295
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Mcu_00173] Definition of EcucintegerParamDef McuResetSetting |

Parameter Name

McuResetSetting

Parent Container

McuModuleConfiguration

Description This parameter relates to the MCU specific reset configuration. This applies to the
function Mcu_PerformReset, which performs a microcontroller reset using the
hardware feature of the microcontroller.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 1..255 |

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

A
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

10.2.5 McuDemEventParameterRefs

[ECUC_Mcu_00187] Definition of EcucParamConfContainerDef McuDemEvent
ParameterRefs |

Container Name McuDemEventParameterRefs
Parent Container McuModuleConfiguration
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

MCU_E_CLOCK_FAILURE 0..1 [ECUC_Mcu_00188]

No Included Containers

J
[ECUC_Mcu_00188] Definition of EcucReferenceDef MCU_E_CLOCK_FAILURE |

Parameter Name MCU_E_CLOCK_FAILURE

Parent Container McuDemEventParameterRefs

Description Reference to configured DEM event to report "Clock source failure".
Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

AUTSSAR

| Dependency

Dem

]

10.2.6 McuModeSettingConf

[ECUC_Mcu_00123] Definition of EcucParamConfContainerDef McuModeSetting

Conf |

Container Name

McuModeSettingConf

Parent Container

McuModuleConfiguration

Description

This container contains the configuration (parameters) for the Mode setting of the MCU.
Please see MCUO035 for more information on the MCU mode settings.

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

McuMode

1 [ECUC_Mcu_00176]

| No Included Containers

]

[ECUC_Mcu_00176] Definition of EcucintegerParamDef McuMode |

Parameter Name

McuMode

Parent Container

McuModeSettingConf

Description The parameter represents the MCU Mode settings.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.7 McuRamSectorSettingConf

[ECUC_Mcu_00120] Definition of EcucParamConfContainerDef McuRamSector

SettingConf [

AUTSSAR

Container Name

McuRamSectorSettingConf

Parent Container

McuModuleConfiguration

Description This container contains the configuration (parameters) for the RAM Sector setting.
Please see MCUO030 for more information on RAM sec-tor settings.
Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

McuRamDefaultValue 1 [ECUC_Mcu_00177]
McuRamSectionBaseAddress 1 [ECUC_Mcu_00178]
McuRamSectionSize 1 [ECUC_Mcu_00179]
McuRamSectionWriteSize 1 [ECUC_Mcu_00190]

No Included Containers

]

[ECUC_Mcu_00177] Definition of EcucintegerParamDef McuRamDefaultValue |

Parameter Name

McuRamDefaultValue

Parent Container

McuRamSectorSettingConf

Description This parameter shall represent the Data pre-setting to be initialized

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Mcu_00178] Definition of EcuclintegerParamDef McuRamSectionBaseAd-

dress |

Parameter Name

McuRamSectionBaseAddress

Parent Container

McuRamSectorSettingConf

Description This parameter shall represent the MCU RAM section base address

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

AUTSSAR

Post-build time

| VARIANT-POST-BUILD

Dependency

]

[ECUC_Mcu_00179] Definition of EcucintegerParamDef McuRamSectionSize |

Parameter Name

McuRamSectionSize

Parent Container

McuRamSectorSettingConf

Description This parameter represents the MCU RAM Section size in bytes.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Mcu_00190]
Size |

Definition of EcuclntegerParamDef McuRamSectionWrite

Parameter Name

McuRamSectionWriteSize

Parent Container

McuRamSectorSettingConf

Description This parameter shall define the size in bytes of data which can be written into RAM at
once.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

8

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

10.2.8 McuClockReferencePoint

[ECUC_Mcu_00174] Definition of EcucParamConfContainerDef McuClockRefer-
encePoint |

AUTSSAR

Container Name McuClockReferencePoint
Parent Container McuClockSettingConfig
Description This container defines a reference point in the Mcu Clock tree. It defines the frequency

which then can be used by other modules as an input value. Lower multiplicity is 1, as
even in the simplest case (only one frequency is used), there is one frequency to be

defined.
Multiplicity 1.*
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
McuClockReferencePointFrequency 1 [ECUC_Mcu_00175]

No Included Containers

]

[ECUC_Mcu_00175] Definition of EcucFloatParamDef McuClockReferencePoint
Frequency |

Parameter Name McuClockReferencePointFrequency

Parent Container McuClockReferencePoint

Description This is the frequency for the specific instance of the McuClockReferencePoint
container. It shall be given in Hz.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.9 McuPublishedinformation

[ECUC_Mcu_00184] Definition of EcucParamConfContainerDef McuPublishedin-
formation |

Container Name McuPublishedInformation

Parent Container Mcu

Description Container holding all MCU specific published information parameters
Multiplicity 1

Configuration Parameters

No Included Parameters

AUTSSAR

Included Containers

Container Name Multiplicity Dependency

McuResetReasonConf 1.* This container contains the configuration for the different type of
reset reason that can be retrieved from Mcu_GetResetReason
Api.

10.2.10 McuResetReasonConf

[ECUC_Mcu_00185] Definition of EcucParamConfContainerDef McuResetRea-
sonConf |

Container Name McuResetReasonConf
Parent Container McuPublishedInformation
Description This container contains the configuration for the different type of reset reason that can

be retrieved from Mcu_GetResetReason Api.

Multiplicity 1.*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

McuResetReason 1 [ECUC_Mcu_00186]

| No Included Containers

]
[ECUC_Mcu_00186] Definition of EcucintegerParamDef McuResetReason |

Parameter Name McuResetReason
Parent Container McuResetReasonConf
Description The parameter represents the different type of reset that a Micro supports. This

parameter is referenced by the parameter EcuMResetReason in the ECU State
manager module.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants
Dependency

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

Number Heading

[SWS_Mcu_00300] Clock source failure.

Table A.1: Added Specification Iltems in R25-11

A.1.2 Changed Specification Iltems in R25-11

Number Heading

[ECUC_Mcu_00118] Definition of EcucParamConfContainerDef McuGeneralConfiguration

[ECUC_Mcu_00119] Definition of EcucParamConfContainerDef McuModuleConfiguration

[ECUC_Mcu_00120] Definition of EcucParamConfContainerDef McuRamSectorSettingConf

[ECUC_Mcu_00123] Definition of EcucParamConfContainerDef McuModeSettingConf

[ECUC_Mcu_00124] Definition of EcucParamConfContainerDef McuClockSettingConfig

[ECUC_Mcu_00174] Definition of EcucParamConfContainerDef McuClockReferencePoint

[ECUC_Mcu_00184] Definition of EcucParamConfContainerDef McuPublishedInformation

[ECUC_Mcu_00185] Definition of EcucParamConfContainerDef McuResetReasonConf

[ECUC_Mcu_00187] Definition of EcucParamConfContainerDef McuDemEventParameterRefs

Table A.2: Changed Specification Items in R25-11

A.1.3 Deleted Specification ltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Start-up code
	5.2 File structure
	5.2.1 Code file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General Behavior
	7.1.1 Background and Rationale
	7.1.2 Requirements
	7.1.2.1 Reset
	7.1.2.2 Clock
	7.1.2.3 MCU Mode service

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors
	7.2.4.1 MCU_E_CLOCK_FAILURE

	7.3 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Mcu_ConfigType
	8.2.2 Mcu_PllStatusType
	8.2.3 Mcu_ClockType
	8.2.4 Mcu_ResetType
	8.2.5 Mcu_RawResetType
	8.2.6 Mcu_ModeType
	8.2.7 Mcu_RamSectionType
	8.2.8 Mcu_RamStateType

	8.3 Function definitions
	8.3.1 Mcu_Init
	8.3.2 Mcu_InitRamSection
	8.3.3 Mcu_InitClock
	8.3.4 Mcu_DistributePllClock
	8.3.5 Mcu_GetPllStatus
	8.3.6 Mcu_GetResetReason
	8.3.7 Mcu_GetResetRawValue
	8.3.8 Mcu_PerformReset
	8.3.9 Mcu_SetMode
	8.3.10 Mcu_GetVersionInfo
	8.3.11 Mcu_GetRamState

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces

	8.7 Service Interfaces
	8.8 API parameter checking

	9 Sequence diagrams
	9.1 Example Sequence for Mcu initialization services
	9.2 Mcu_GetResetReason
	9.3 Mcu_GetResetRawValue
	9.4 Mcu_PerformReset

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Mcu
	10.2.2 McuGeneralConfiguration
	10.2.3 McuClockSettingConfig
	10.2.4 McuModuleConfiguration
	10.2.5 McuDemEventParameterRefs
	10.2.6 McuModeSettingConf
	10.2.7 McuRamSectorSettingConf
	10.2.8 McuClockReferencePoint
	10.2.9 McuPublishedInformation
	10.2.10 McuResetReasonConf

	10.3 Published Information

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

