AUTSSAR

Document Title Spemﬂcatlon of LIN Transceiver
Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 257

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release * Clarified multicore support
Management
AUTOSAR
2023-11-23 R23-11 Release « Editorial changes
Management
AUTOSAR Undated L.:
2022-11-24 R22-11 Release pdaated LinTrcv_CheckWakeup
Management return values
AUTOSAR
2021-11-25 | R21-11 Release * Cleaned error codes
Management
AUTOSAR
2020-11-30 | R20-11 Release « Cleaned error classification
Management
AUTOSAR * MCALMulticoreDistribution (CONC_639)
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR * Minor corrections / clarifications /
2018-10-31 4.4.0 Release editorial changes; For details please
Management refer to the ChangeDocumentation
AUTOSAR » Restricted initial state to
2017-12-08 | 4.3.1 Release LINTRCV_TRCV_MODE_SLEEP
Management

« Editorial changes

AUTSSAR

» Change in GetVersionInfo API

AUTOSAR
2016-11-30 | 4.3.0 Release * minor corrections / editorial changes; For
Management details please refer to the
ChangeDocumentation
AUTOSAR « Development Error Tracer replaced with
2015-07-31 4290 Release Default Error Tracer
Management « Standardized the initialization function
AUTOSAR * Supports Time service for transceiver
2014-10-31 | 4.2.1 Release state change waits
Management
AUTOSAR
2014-03-31 41.3 Release « Editorial Changes
Management
» Added intimation to Linlf for wakeup by
transceiver
» Modified header file structure and
AUTOSAR mandatory interfaces
-10- Release .
2013-10-31) 4.1.2 Managament - Removed [SWS_LinTrcv_00160]
« Editorial changes
* Removed chapter(s) on change
documentation
* Removed [SWS_LinTrcv_00141] and
[SWS_LinTrcv_00118]
* DET Errors LINTRCV_E
_PARAM_TRCV_WAKEUP_MODE and
LINTRCV_E PARAM_TRCV_OPMODE
removed from [SWS_LinTrcv_00050]
* LINIF_TRCV_WU changed to
LINTRCV_WUMODE for
2013-03-15 | 4.1.1 AUTOSAR

Administration

LINIF_TRCV_WU_ENABLE,
LINIF_ TRCV_WU_DISABLE and
LINIF. TRCV_WU_CLEAR

» Rework of configuration parameter
LinTrcvDioAccess and changed scope of
configuration parameters to "local" or
"ECU"

* Rework of header file structure
v

AUTSSAR

A
* Removal of specification items covered
by the new SWS BSW General

» Formal rework

2011-12-22

4.0.3

AUTOSAR
Administration

» Update of wake-up validation (power-up)

 Several minor corrections (typos and
wordings)

2010-09-30

AUTOSAR
Administration

* Literals changed names:

« the imported LIN interface parameters
(from LINInterface) are removed, instead
3 local parameters are introduced

* LINIF_TRCV_MODE_NORMAL ->
LINTRCV_TRCV_MODE_NORMAL

« LINIF_TRCV_MODE_STANDBY ->
LINTRCV_TRCV_MODE_STANDBY

« LINIF_TRCV_MODE_SLEEP ->
LINTRCV_TRCV_MODE_SLEEP

2010-02-02

3.1.4

AUTOSAR
Administration

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

1.1 Goal of LIN transceiverdriver
1.2 Explicitly uncovered LIN transceiver functionality

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains oo

5 Dependencies to other modules

51 Filestructure
5.1.1 Naming convention for transceiver driver implementation
5.1.2 Codefilestructure
5.1.3 Headerfilestructure oo oL

6 Requirements Tracing

7 Functional specification

7.1 LIN transceiver driver operationmodes
7.2 LIN transceiver hardware operationmodes
7.3 LIN transceiver wakeup types
7.4 LIN transceiver wakeupmodes
7.5 Error Classification,
7.5.1 DevelopmentErrors
7.52 RuntimeErrors
7.5.3 ProductionErrors oo
7.5.4 Extended ProductionErrors L Lo
7.6 Preconditions for driver initialization 0.
7.7 Instance concept
7.8 Waitstates

8 API specification

8.1 Importedtypes e
8.2 Type definitions

8.2.1 LinTrcv_ConfigType
8.2.2 LinTrcv_TrcvModeType o o
8.2.3 LinTrcv_TrcvWakeupModeType
8.2.4 LinTrcv_TrcvWakeupReasonType
8.3 Function definitions Lo

0 NN

10

10
10

11

11
11
11
11

13

AUTSSAR

8.3.1 LinTrev_Init
8.3.2 LinTrcv_SetOpMode
8.3.3 LinTrcv_GetOpMode
8.3.4 LinTrcv_GetBusWuReason
8.3.5 LinTrcv_GetVersioninfo
8.3.6 LinTrcv_CheckWakeup
8.3.7 LinTrcv_SetWakeupMode
8.4 Callback notifications o
8.5 Scheduled functions
8.6 Expectedinterfaces
8.6.1 Mandatoryinterfaces
8.6.2 Optionalinterfaces
8.6.3 Configurableinterfaces

9 Sequence diagrams

10 Configuration specification

10.1How toread thischapter
10.2Containers and configuration parameters
10.2.1 Variants e e e e
10.2.2LINTrev o e e e e e e e
10.2.3LinTrevGeneral
10.2.4 LinTrevChannel
10.2.5LINTrEVACCESS o o e e e e e e e e e e
10.2.6 LINTrcvDIOACCESS e e e e e
10.2.7 LinTrcvDioChannelAccess o o v i i v i ..
10.2.8 LinTrcvSpiSequence
10.3Published Information.

A Not applicable requirements

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
B.1.1 Added Specification ltemsinR24-11
B.1.2 Changed Specification ltemsin R24-11
B.1.3 Deleted Specification ltemsin R24-11
B.2 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
B.2.1 Added Specification ltemsin R25-11
B.2.2 Changed Specification ltemsin R25-11
B.2.3 Deleted Specification Itemsin R25-11

AUTSSAR

1 Introduction and functional overview

This specification specifies functionality, APl and configuration of the module LIN
transceiver driver. It is responsible to handle the LIN transceiver hardware on an ECU.

A LIN bus transceiver is a hardware device. It is the interface between LIN protocol
controller and physical LIN bus. On one hand the transmit data stream of a LIN protocol
controller is converted into LIN physical layer compliant bus signals. On the other
hand LIN bus data streams are converted into protocol controller input signals. A LIN
protocol controller is typically a microcontroller implementation.

Most LIN transceivers support power supply control and wakeup via the bus. A lot of
different wakeup / sleep and power supply concepts are available on the market.

In addition so called system basis chips (SBC) are available. Beside LIN transceiver
functionalities these devices provide additional features, e.g. detection of electrical
malfunctions (e.g. short-circuit to dominant level (GND)), power supply control, ad-
vanced watchdogs, LIN transceiver, SPI etc.

1.1 Goal of LIN transceiver driver

The target of this document is to specify interfaces and behaviour, which are applicable
to most current LIN transceiver hardware implementations.

[SWS_LinTrcv_00042]
Upstream requirements: SRS_BSW_00162

[The LIN transceiver driver abstracts the applied LIN transceiver hardware and covers
hardware independent interfaces to the higher layers. It abstracts also from ECU layout
by using APIs of MCAL layer to access LIN transceiver hardware. |

1.2 Explicitly uncovered LIN transceiver functionality

Some LIN bus transceivers offer additional functionality like ECU self test or error de-
tection capability for diagnostics.

ECU self test and error detection are not defined within AUTOSAR and requiring such
functionality in general would lock out most currently used transceiver hardware chips.

Therefore, features like "ground shift detection", "selective wakeup", "slope control"
and others are not supported.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the
SWS_LINTransceiverDriver module that are not included in the [1, AUTOSAR glos-

sary].

Abbreviation / Description:

Acronym:

Channel A channel is a software exchange medium for data that are defined with the same criteria.

EcuM ECU State Manager

Frt Free Running Timer

LinTrcv LIN Transceiver Driver

n/a Not applicable

SBC System Basis Chip; a device, which integrates e.g. LIN and / or LIN transceiver, watchdog and
power control.

SPAL Standard Peripheral Abstraction Layer

SPI Channel A channel is a software exchange medium for data that are defined with the same criteria:
configuration parameters, number of data elements with same size and data pointers (source &
destination) or location. See specification of SPI driver for more details.

SPI Job A job is composed of one or several channels with the same chip select. A job is considered to be

atomic and therefore cannot be interrupted. A job has also an assigned priority. See specification
of SPI driver for more details.

SPI Sequence

A sequence is a number of consecutive jobs to be transmitted. A sequence depends on a static
configuration. See specification of SPI driver for more details.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[38] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[4] Requirements on LIN
AUTOSAR _CP_RS LIN

[5] Requirements on CAN
AUTOSAR_CP_RS_CAN

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for LIN Transceiver Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for LIN Transceiver Driver.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The used APlIs of underlying drivers like DIO or SPI shall be synchronous. Implemen-
tations of underlying drivers, which do not support synchronous behavior, cannot be
used together with LIN transceiver driver.

4.2 Applicability to car domains

This driver might be applicable in all car domains using LIN for communication.

AUTSSAR

5 Dependencies to other modules

Module Dependencies

Linlf All LIN transceiver drivers are arranged below Linlf.

ComM ComM steers LIN transceiver driver communication modes via Linlf. Independent steering of each
single LIN transceiver channel is possible.

Det Det gets development error information from LIN transceiver driver.

Dio Dio module is used to access LIN transceiver hardware connected via ports.

EcuM EcuM gets wakeup information from LIN transceiver driver via Linlf.

lcu Icu module might perform LIN transceiver hardware interrupts.

Spi Spi module is used to access LIN transceiver hardware connected via Spi.

Table 5.1: Dependencies to other modules

5.1 File structure
5.1.1 Naming convention for transceiver driver implementation

[SWS LinTrcv_00070]
Upstream requirements: SRS_BSW_00347

[In case different LIN transceiver hardware implementations are used in one ECU the
function names of the different LIN transceiver drivers must be modified such that no
two functions with the same names are generated. The names may be extended with
a vendor ID or a type ID.]

5.1.2 Code file structure

For detalils, refer to the section "Code file structure" of the [2].

5.1.3 Header file structure

[SWS LinTrcv_00067]
Upstream requirements: SRS_BSW_00301, SRS_BSW_00409

[The include file structure shall be as follows:

LinTrcv.c shall include Det.h (needed to notify about development errors) if develop-
ment error detection for the module LinTrcv is enabled.

LinTrev.c shall include Dio.h (DIO APIs needed to access Transceiver pins)

LinTrcv.c shall include Icu.h (if ICU APIs needed to perform LIN transceiver hardware
interrupts)

AUTSSAR

LinTrcv.c shall include Spi.h (if the LIN bus transceiver driver use drivers for Spi to
control the LIN bus transceiver hardware)

LinTrcv.c shall include Tm.h (needed for wait states for changing transceiver operation
modes) |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [3], [4], [5] and links to the
fulfillment of these. Please note that if column "Satisfied by" is empty for a specific

requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_LinTrcv_00001]

[SRS_BSW_00162]

The AUTOSAR Basic Software shall
provide a hardware abstraction layer

[SWS_LinTrcv_00042]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_LinTrcv_00067]

[SRS_BSW_00310]

API naming convention

[SWS_LinTrcv_00001] [SWS_LinTrcv_00002]
[SWS_LinTrcv_00005] [SWS_LinTrcv_00007]
[SWS_LinTrcv_00008] [SWS_LinTrcv_00012]

[SRS_BSW_00327]

Error values naming convention

[SWS_LinTrcv_00050]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_LinTrcv_00016] [SWS_LinTrcv_00070]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_LinTrcv_00002]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_LinTrcv_00001]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_LinTrcv_00002] [SWS_LinTrcv_00005]
[SWS_LinTrcv_00007] [SWS_LinTrcv_00008]
[SWS_LinTrcv_00012]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_LinTrcv_00012]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_LinTrov_00005] [SWS_LinTrcv_00007]

[SRS_BSW_00385]

List possible error notifications

[SWS_LinTrcv_00050]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_LinTrcv_00050]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_LinTrcv_00002] [SWS_LinTrcv_00007]
[SWS_LinTrcv_00008] [SWS_LinTrcv_00012]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_LinTrcv_00008]

[SRS_BSW_00409]

All production code error ID symbols
are defined by the Dem module and
shall be retrieved by the other BSW

modules from Dem configuration

[SWS_LinTrcv_00067]

[SRS_BSW_00413]

An index-based accessing of the
instances of BSW modules shall be
done

[SWS_LinTrcv_00016]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_LinTrcv_00001] [SWS_LinTrcv_00172]
[SWS_LinTrcv_00173]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Lin_01514]

The LIN Interface shall inform an
upper layer about wake-up events

[SWS_LinTrcv_00066]

[SRS_Lin_01524]

The LIN Driver shall be able to put
the LIN hardware to a reduced power
operation mode if needed

[SWS_LinTrcv_00002] [SWS_LinTrcv_00055]

[SRS_Lin_01563]

The LIN Driver shall provide a
notification for wake-up events

[SWS_LinTrcv_00066]

[SRS_Lin_01566]

Transition to sleep-mode shall be
handled

[SWS_LinTrcv_00002] [SWS_LinTrcv_00055]

[SRS_Lin_01580]

The LIN Transceiver Driver shall
support separate configuration
parameters per bus

[SWS_LinTrcv_00074] [SWS_LinTrcv_00075]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 LIN transceiver driver operation modes

[SWS_LinTrcv_00055]
Upstream requirements: SRS_Lin_01566, SRS_Lin_01524

[The LIN transceiver driver operation modes are described in the state diagram below. |
The main idea behind this diagram is to support the majority of available LIN bus
transceivers in a common model view. Depending on the LIN transceiver hardware,

the model may have one or two states more than necessary for a given LIN transceiver
hardware, but this will clearly decouple the ComM and EcuM from the used hardware.

Power @Power Off
[Power On]
[Power Off]

e \ POWER_ON N\
: NOT_ACTIVE :
/ LinTrev_Init() SEIUE \

e

NTRCV_TRCV_MODE_SLEE¥LinTrcvSetOpMode YINTRCV_TRCV_MODE_NORMA
{LinTRCV_TRCGV_MODE_NORMAL) =]

[L|nTrcvSetOpMode
LinTRCV_TRCV_MODE_SLEEP)]

\

optional LinTrcvSetOpMode
(LinTRCV_TRCV_MODE_NORMAL)

optional LinTrcvSetOpMode
(LinTRCV_TRCV_MODE_SLEEP)

optional LinTrcvSetOpMode

(LinTRCV_TRCV_MODE_STANDBY) /
optional LinTrcvSetOpMode
NTRCV_TRCV_MODE STANDj/(LnTRchRCVMODESTANDBY)

\ /
- %

Figure 7.1: LIN Transceiver Operation Modes

Hint: There are several optional interfaces that might not be needed for current LIN
transceiver hardware. E.g. the mode "LINTRCV_TRCV_MODE_STANDBY" might be
only an internal state that is used for internal hardware transitions. Especially if func-

AUTSSAR

tionality of "inhibit pin" is used to control the uC only the states "LINTRCV_TRCV_
MODE_SLEEP" and "LINTRCV_TRCV_MODE_NORMAL" are of interest.

State Description
POWER_ON MCU is fully powered.

NOT_ACTIVE State of LIN transceiver hardware depend on ECU hardware and on Dio and Port
driver configuration. LIN transceiver driver is not initialized and therefore not
active.

ACTIVE The function LinTrcv_Init was called. It carries LIN transceiver driver to
active state. LIN transceiver driver enters state LINTRCV_TRCV_MODE_SLEEP.

LINTRCV_TRCV_MODE_NORMAL Full bus communication. If LIN transceiver hardware controls MCU power supply,
MCU is fully powered. The LIN transceiver driver detects no further wakeup
information.

LINTRCV_TRCV_MODE_STANDBY No communication is possible. If LIN transceiver hardware controls MCU power
supply, the MCU is still powered. A wakeup by bus or by a local wakeup event is
possible.

Note: This is an optional state.

LINTRCV_TRCV_MODE_SLEEP No communication is possible. If LIN transceiver hardware controls MCU power
supply, the MCU is not powered. A wakeup by bus or by a local wakeup event is
possible.

Table 7.1: LIN Transceiver states

If a LIN transceiver driver covers more than one LIN channel, all channels are either
in state NOT_ACTIVE or in state ACTIVE. In state ACTIVE each channel may be in a
different sub state.

7.2 LIN transceiver hardware operation modes

The LIN transceiver hardware may support more mode transitions than the software.
The dependencies and the recommended implementations behaviour are explained in
this chapter.

It is up to the implementation to decide which LIN transceiver hardware state is covered
by which LIN transceiver driver software state. An implementation has to guarantee
that whole functionality of described LIN transceiver driver is given by the implementa-
tion.

7.3 LIN transceiver wakeup types

There are four different scenarios, which are often called wakeup:

1. MCU is not powered, parts of ECU including LIN transceiver hardware are pow-
ered. The considered LIN transceiver hardware is in mode LINTRCV_TRCV_
MODE_SLEEP. A wakeup event on LIN is detected by LIN transceiver hardware.
LIN transceiver hardware causes powering of MCU (e.g. via pin "inhibit"). In
terms of AUTOSAR this is kept as a cold start and not as a wakeup.

2. MCU is in low power mode, parts of ECU including LIN transceiver hardware
are powered. Depending on the hardware implementation the considered LIN

AUTSSAR

transceiver hardware is either in mode LINTRCV_TRCV_MODE_STANDBY or
LINTRCV_TRCV_MODE_SLEEP. A wakeup event on LIN is detected by LIN
transceiver hardware. LIN transceiver hardware is informing MCU about wakeup.
In terms of AUTOSAR this is kept as a wakeup of the LIN channel and of the
MCU.

3. MCU is in full power mode, at least parts of the ECU including LIN transceiver
hardware are powered. Depending on the hardware implementation the con-
sidered LIN transceiver hardware is either in mode LINTRCV_TRCV_MODE _
STANDBY or LINTRCV_TRCV_MODE_SLEEP. A wakeup event on LIN is de-
tected by LIN transceiver hardware. LIN transceiver hardware is informing MCU
about wakeup or is polled cyclically for wakeup events. In terms of AUTOSAR
this is kept as a wakeup of a LIN channel.

4. MCU is in full power mode, at least parts of the ECU including LIN transceiver
hardware are powered. Depending on the hardware implementation the con-
sidered LIN transceiver hardware is either in mode LINTRCV_TRCV_MODE_
STANDBY or LINTRCV_TRCV_MODE_SLEEP. The MCU is now setting the LIN
transceiver hardware to mode LINTRCV_TRCV_MODE_NORMAL and is waking
up the LIN channel. In terms of AUTOSAR this is kept as an internal wakeup of a
LIN channel (through MCU).

7.4 LIN transceiver wakeup modes

[SWS_LinTrcv_00066]
Upstream requirements: SRS_Lin_01514, SRS_Lin_01563
[Wakeup notification must be supported by LIN Transceiver driver, therefore LIN

transceiver driver covers 2 wakeup modes, internal wakeup by an upper layer or exter-
nal wakeup by LIN channel. |

1. Internal wakeup: An internal wakeup is initiated by an upper layer, e.g. by calling
LinTrcv_Init Or LinTrcv_SetOpMode.

2. External wakeup: Wakeup detected by LIN transceiver driver is forwarded to the
upper layer through the APl LinTrcv_CheckWakeup which has to be called by
the Linlf.

Hint: WakeUp through ISR is not supported by the LIN Transceiver Driver but is only
possible through ICU.

[SWS_LinTrcv_00074]
Upstream requirements: SRS_Lin_01580

[Selection of wakeup mode shall be done by configuration parameter LinTrcviiake-
UpSupport. |

AUTSSAR

[SWS_LinTrcv_00075]
Upstream requirements: SRS_Lin_01580

[Support of wakeup shall be switched on and off for each LIN transceiver channel
individually by configuration parameter LinTrcvilakeupByBusUsed. |

[SWS_LinTrcv_00161] [LinTrcv driver shall use the following APIs provided by ICU
driver, to enable and disable the wakeup event notification:

* lcu_EnableNotification

* lcu_DisableNotification

]

[SWS_LinTrcv_00162] [LinTrcv driver shall enable the ICU channels when the
transceiver transmits to standby mode (LINTRCV_STANDBY) |

[SWS_LinTrcv_00163] [LinTrcv driver shall disable the ICU channels when the
transceiver transmits to Normal mode (LINTRCV_NORMAL) |

Rationale: LinTrcv driver shall avoid the loss of wakeup events.

7.5 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.5.1 Development Errors
There are no development errors.

[SWS_LinTrcv_00050] Definition of development errors in module LinTrcv
Upstream requirements: SRS_BSW_00327, SRS_BSW_00385, SRS_BSW_00386

[
Type of error Related error code Error value
API called with wrong parameter for LIN network LINTRCV_E_INVALID_LIN_NETWORK 0x01
API called with null pointer parameter LINTRCV_E_PARAM_POINTER 0x02
API service used without initialization LINTRCV_E_UNINIT 0x11
API service called in wrong transceiver operation LINTRCV_E_TRCV_NOT_SLEEP 0x21
mode

Y%

AUTSSAR

JAN
Type of error Related error code Error value
API service called in wrong transceiver operation LINTRCV_E_TRCV_NOT_NORMAL 0x22
mode
API service called with invalid mode because LINTRCV_E_INVALID_TRCV_OPMODE 0x25
optional transition is not enabled

7.5.2 Runtime Errors

There are no runtime errors.

7.5.3 Production Errors

There are no production errors.

7.5.4 Extended Production Errors

There are no extended production errors.

7.6 Preconditions for driver initialization

[SWS_LinTrcv_00099] [The LIN bus transceiver driver might use drivers for Dio or Spi
to control the LIN bus transceiver hardware. Thus these drivers must be available and
ready to operate before the LIN bus transceiver driver is initialized. |

The LIN transceiver driver may have timing requirements for the initialization sequence
and the access to the transceiver device, which must be fulfilled by these used under-
lying drivers.

The timing requirements might be that

» The call of the LIN bus transceiver driver initialization has to be performed very
early after power up to be able to read all necessary information out of the
transceiver hardware in time for all other users within the ECU.

» The runtime of the used underlying services is very short and synchronous to en-
able the driver to keep his own timing requirements limited by the used hardware
device.

» The runtime of the driver may be enlarged, as some hardware devices have the
need to have the port pin level valid for e.g. 50us before changing it again to
reach a specific state, e.g. sleep.

AUTSSAR

7.7 Instance concept

[SWS_LinTrcv_00016]
Upstream requirements: SRS_BSW_00347, SRS_BSW_00413

[For each LIN transceiver hardware type an ECU has one LIN transceiver driver in-
stance. One instance serves all LIN transceiver hardware of the same type. |

7.8 Wait states

For changing operation modes, the LIN transceiver hardware may have to perform wait
states.

[SWS_LinTrcv_00171] [The LIN Transceiver Driver shall use the Time service Tm_
BusyWait1us16bit to realize the wait time for transceiver state changes. |

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_LinTrcv_91001] Definition of imported datatypes of module LinTrcv |

Module Header File Imported Type

Dio Dio.h Dio_ChannelGroupType
Dio.h Dio_ChannelType
Dio.h Dio_LevelType
Dio.h Dio_PortLevelType
Dio.h Dio_PortType

EcuM EcuM.h EcuM_WakeupSourceType

lcu lcu.h lcu_ChannelType

Spi Spi.h Spi_ChannelType
Spi.h Spi_DataBufferType
Spi.h Spi_NumberOfDataType
Spi.h Spi_SequenceType
Spi.h Spi_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersioninfoType

8.2 Type definitions

8.2.1 LinTrcv_ConfigType

[SWS_LinTrcv_00172] Definition of datatype LinTrcv_ConfigType
Upstream requirements: SRS_BSW_00414

[
Name LinTrcv_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the LinTrcv module.
Available via LinTrcv.h

AUTSSAR

8.2.2 LinTrcv_TrcvModeType

[SWS_LinTrcv_00168] Definition of datatype LinTrcv_TrcvModeType |

Name LinTrcv_TrcvModeType

Kind Enumeration

Range LINTRCV_TRCV_MODE_ - Transceiver mode NORMAL
NORMAL
LINTRCV_TRCV_MODE_ - Transceiver mode STANDBY
STANDBY
LINTRCV_TRCV_MODE_ - Transceiver mode SLEEP
SLEEP

Description Operating modes of the LIN Transceiver Driver

Available via Lin_GeneralTypes.h

8.2.3 LinTrcv_TrcvWakeupModeType

[SWS_LinTrcv_00169] Definition of datatype LinTrcv_TrcvWakeupModeType |

Name LinTrcv_TrcvWakeupModeType

Kind Enumeration

Range LINTRCV_WUMODE _ - The notification for wakeup events is enabled
ENABLE on the addressed network.
LINTRCV_WUMODE_ - The notification for wakeup events is disabled
DISABLE on the addressed network.
LINTRCV_WUMODE_ - A stored wakeup event is cleared on the
CLEAR addressed network.

Description Wake up operating modes of the LIN Transceiver Driver.

Available via Lin_GeneralTypes.h

8.2.4 LinTrcv_TrcvWakeupReasonType

[SWS_LinTrcv_00170] Definition of datatype LinTrcv_TrcvWakeupReasonType |

Name LinTrcv_TrcvWakeupReasonType
Kind Enumeration
Range LINTRCV_WU_ERROR — Due to an error wake up reason was not
detected.
LINTRCV_WU_NOT_ - The transceiver does not support any
SUPPORTED information for the wake up reason.
LINTRCV_WU_BY_BUS - The transceiver has detected, that the
network has caused the wake up of the ECU.
LINTRCV_WU_BY_PIN - The transceiver has detected a wake-up
event at one of the transceiver’s pins (not at
the LIN bus).

AUTSSAR

A
LINTRCV_WU_ - The transceiver has detected, that the
INTERNALLY network has been woken up by the ECU via a
request to NORMAL mode.
LINTRCV_WU_RESET - The transceiver has detected, that the wake
up is due to an ECU reset.
LINTRCV_WU_POWER_ - The transceiver has detected, that the wake
ON up is due to an ECU reset after power on.
Description This type denotes the wake up reason detected by the LIN transceiver in detail.
Available via Lin_GeneralTypes.h

8.3 Function definitions

8.3.1 LinTrcv_lInit

[SWS_LinTrcv_00001] Definition of API function LinTrcv_Init
Upstream requirements: SRS_BSW_00310, SRS_BSW_00358, SRS_BSW_00414, SRS_BSW_

00101
[
Service Name LinTrcv_Init
Syntax void LinTrcv_Init (
const LinTrcv_ConfigType* ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the Lin Transceiver Driver module.
Available via LinTrcv.h

]

[SWS_LinTrcv_00173]
Upstream requirements: SRS_BSW_00414

[The Configuration pointer ConfigPtr shall always have a NULL_PTR value |

The Configuration pointer ConfigPtr is currently not used and shall therefore be set
NULL_PTR value.

[SWS_LinTrcv_00119] [The function LinTrcv_Init shall set the LIN transceiver
hardware to the state LINTRCV_TRCV_MODE_SLEERP |

AUTSSAR

Caveats: The initialization sequence after reset (e.g. power up) is a critical phase for
the LIN transceiver driver. The driver will use SPAL functionality (DIO) to access the
transceiver hardware. Therefore all necessary BSW drivers must be initialized and
usable before.

8.3.2 LinTrcv_SetOpMode

[SWS_LinTrcv_00002] Definition of API function LinTrcv_SetOpMode

Upstream requirements: SRS_BSW_00310, SRS_BSW_00357, SRS_BSW_00369, SRS _BSW __
00406, SRS_Lin_01566, SRS_Lin_01524

Service Name LinTrcv_SetOpMode
Syntax Std_ReturnType LinTrcv_SetOpMode (
uint8 LinNetwork,
LinTrcv_TrcvModeType OpMode
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) LinNetwork LIN network to wich API call has to be applied
OpMode The parameter says to which operation mode the change shall be
performed.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: will be returned if the transceiver state has been changed
to the requested mode.
E_NOT_OK: will be returned if the transceiver state change is not
accepted or has failed or the parameter is out of the allowed
range.
Description The internal state of the LIN transceiver driver is switched to mode given in the parameter Op
Mode.
Available via LinTrcv.h

[SWS_LinTrcv_00108] [The function LinTrcv_SetOpMode shall switch the internal
state of channel LinNetwork to the value of the parameter OpMode which can be LIN-
TRCV_TRCV_MODE_NORMAL, LINTRCV_TRCV_MODE_STANDBY or LINTRCV_
TRCV_MODE_SLEERP .|

[SWS_LinTrcv_00109] [The function LinTrcv_SetOpMode shall switch the internal
state of channel LinNetwork to the value of LINTRCV_TRCV_MODE_STANDBY if
one of the following conditions is fulfilled:

a) the channel LinNetwork is in mode LINTRCV_TRCV_MODE_SLEEP and the op-
tional transition from this mode to LINTRCV_TRCV_MODE_STANDBY is enabled.

b) the channel LinNetwork is in mode LINTRCV_TRCV_MODE_NORMAL and the
optional transition from this mode to LINTRCV_TRCV_MODE_STANDBY is enabled. |

AUTSSAR

[SWS_LinTrcv_00110] [The function LinTrcv_SetOpMode shall switch the internal
state of channel LinNetwork to the value of LINTRCV_TRCV_MODE_SLEEP if one
of the following conditions is fulfilled:

a) the channel LinNetwork is in mode LINTRCV_TRCV_MODE_NORMAL

b) the channel LinNetwork is in mode LINTRCV_TRCV_MODE_STANDBY and the
optional transition from this mode to LINTRCV_TRCV_MODE_SLEEP is enabled. |

[SWS_LinTrcv_00147] [The function LinTrcv_SetOpMode shall switch the internal
state of channel LinNetwork to the value of LINTRCV_TRCV_MODE_NORMAL if
one of the following conditions is fulfilled:

a) the channel LinNetwork is in mode LINTRCV_TRCV_MODE_SLEEP

b) the channel LinNetwork is in mode LINTRCV_TRCV_MODE_STANDBY and the
optional transition from this mode to LINTRCV_TRCV_MODE_NORMAL is enabled. |

[SWS_LinTrcv_00111] [This API is applicable to each transceiver with each value
for parameter LinTrcv_SetOpMode regardless of whether the transceiver hardware
supports these modes or not. This is to simplify the view of the Linlf to the assigned
bus. |

[SWS_LinTrcv_00112] [If the requested mode is not supported by the underlying
transceiver hardware, the function LinTrcv_SetOpMode shall return E_NOT_OK. |

[SWS_LinTrcv_00113] [If there is no / incorrect communication to the transceiver, the
function LinTrcv_SetOpMode shall return E_NOT_OX. |

[SWS_LinTrcv_00114] [If development error detection for the module LinTrcv is en-
abled:

If the function LinTrcv_SetOpMode is called with opMode == LINTRCV_TRCV _
MODE_STANDBY and the channel LinNetwork is in mode LINTRCV_SLEEP but
the optional transition from LINTRCV_SLEEP to LINTRCV_STANDBY is not enabled,
the function LinTrcv_SetOpMode shall report the development error LINTRCV_E_
INVALID_TRCV_OPMODE. |

[SWS_LinTrcv_00148] [If development error detection for the module LinTrcv is en-
abled:

If the function LinTrcv_SetOpMode is called with OpMode == LINTRCV_TRCV_
MODE_STANDBY and the channel LinNetwork is in mode LINTRCV_NORMAL
but the optional transition from LINTRCV_NORMAL to LINTRCV_STANDBY is not
enabled, the function LinTrcv_SetOpMode shall report the development error

LINTRCV_E_INVALID_TRCV_OPMODE. |

[SWS_LinTrcv_00115] [If development error detection for the module LinTrcv is en-
abled:

AUTSSAR

If optional transition from LINTRCV_STANDBY to LINTRCV_SLEEP is not enabled
and the function LinTrcv_SetOpMode is called with OpMode == LINTRCV_TRCV_
MODE_SLEEP and the channel LinNetwork is not in mode LINTRCV_TRCV
MODE_NORMAL, the function LinTrcv_SetOpMode shall report the development
error LINTRCV_E_TRCV_NOT_NORMAL. |

[SWS_LinTrcv_00149] [If development error detection for the module LinTrcv is en-
abled:

If optional transition from LINTRCV_STANDBY to LINTRCV_NORMAL is not enabled
and the function LinTrcv_SetOpMode is called with OpMode == LINTRCV_TRCV_
MODE_NORMAL and the channel LinNetwork is not in mode LINTRCV_TRCV
MODE_SLEERP, the function LinTrcv_SetOpMode shall report the development er-
ror LINTRCV_E_TRCV_NOT_SLEEP. |

[SWS_LinTrcv_00116] [If development error detection for the module LinTrcv is en-
abled:

If called before the LinTrcv module has been initialized, the function LinTrcv_SetOp-
Mode shall report the development error LINTRCV_E_UNINIT. |

[SWS_LinTrcv_00117] [If development error detection for the module LinTrcv is en-
abled:

If called with an invalid network number LinNetwork, the function LinTrcv_SetOp-
Mode shall report the development error LINTRCV_E_INVALID_LIN_NETWORK.]

[SWS_LinTrcv_00157] [A mode request of the current mode is allowed and shall not
lead to an error even if DET is enabled. |

8.3.3 LinTrcv_GetOpMode

[SWS_LinTrcv_00005] Definition of API function LinTrcv_GetOpMode
Upstream requirements: SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00377

[

Service Name LinTrcv_GetOpMode

Syntax Std_ReturnType LinTrcv_GetOpMode (
uint8 LinNetwork,
LinTrcv_TrcvModeType* OpMode

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) LinNetwork | LIN network to which API call has to be applied

Parameters (inout) None

V

AUTSSAR

A
Parameters (out) OpMode Pointer to operation mode of the bus the APl is applied to.
Return value Std_ReturnType E_OK: will be returned if the operation mode is detected

E_NOT_OK: will be returned, if service request is failed due to
operation mode is not detected.

Description API detects the actual software state of LIN transceiver driver.

Available via LinTrcv.h

]

[SWS_LinTrcv_00121] [The function LinTrcv_GetOpMode shall return the actual
state of the LIN transceiver driver in the parameter OpMode. |

[SWS_LinTrcv_00122] [If there is no / incorrect communication to the transceiver, the
function LinTrcv_GetOpMode shall return E_NOT_OX. |

[SWS_LinTrcv_00123] [If development error detection for the module LinTrcv is en-
abled:

If called before the LinTrcv module has been initialized, the function LinTrcv_GetOp-
Mode shall report the development error LINTRCV_E_UNINIT. |

[SWS_LinTrcv_00124] [If development error detection for the module LinTrcv is en-
abled:

If called with an invalid network number LinNetwork, the function LinTrcv_GetOp-
Mode shall report the development error LINTRCV_E_INVALID_LIN_NETWORK.]

[SWS_LinTrcv_00125] [If development error detection for the module LinTrcv is en-
abled:

If called with opMode == NULL, the function LinTrcv_GetOpMode shall report the
development error LINTRCV_E_PARAM POINTER. |

Configuration: The number of supported busses is statically set in the configuration
phase.

AUTSSAR

8.3.4 LinTrcv_GetBusWuReason

[SWS_LinTrcv_00007] Definition of API function LinTrcv_GetBusWuReason
Upstream requirements: SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00377, SRS_BSW_

[

00406

Service Name

LinTrcv_GetBusWuReason

Syntax Std_ReturnType LinTrcv_GetBusWuReason (

uint8 LinNetwork,

LinTrcv_TrcvWakeupReasonTypex Reason

)

Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) LinNetwork LIN network to which API call has to be applied
Parameters (inout) None
Parameters (out) Reason Pointer to wakeup reason of the bus the APl is applied to.

Return value Std_ReturnType E_OK: will be returned if the wake up reason is detected
E_NOT_OK: will be returned, if service request is failed due to

wakeup reason is not detected.

Description This API provides the reason for the wakeup that the LIN transceiver has detected in the
parameter "Reason". The ability to detect and differentiate the possible wakeup reasons
depends strongly on the LIN transceiver hardware.

Available via LinTrcv.h

]

[SWS_LinTrcv_00126] [The function LinTrcv_GetBusWuReason shall return the
reason for the wake up that the LIN transceiver has detected in the parameter Rea—
son. |

[SWS_LinTrcv_00127] [If there is no / incorrect communication to the transceiver, the
function LinTrcv_GetBusWuReason shall return E_NOT_OX. |

[SWS_LinTrcv_00128] [If development error detection for the module LinTrcv is en-
abled:

If called before the LinTrcv module has been initialized, the function LinTrcv_Get-
BusWuReason shall report development error LINTRCV_E_UNINIT. |

[SWS_LinTrcv_00129] [If development error detection for the module LinTrcv is en-
abled:

If called with an invalid network number LinNetwork, the function LinTrcv_-
GetBusWuReason shall report development error LINTRCV_E_INVALID_LIN_NET-
WORK. |

[SWS_LinTrcv_00130] [If development error detection for the module LinTrcv is en-
abled:

If called with Reason == NULL, the function LinTrcv_GetBusWuReason shall report
the development error LINTRCV_E_PARAM _POINTER. |

AUTSSAR

Configuration: The number of supported busses is statically set in the configuration
phase.

Caveats: Be aware that if more than one bus is available each bus may report a dif-
ferent wakeup reason. E.g. if an ECU has LIN, a wakeup by LIN may occur and the
incoming data may cause an internal wakeup for another LIN bus.

The LIN transceiver driver has a "per bus" view and does not vote the more important
reason or sequence internally. The same may be true if e.g. one transceiver controls
the power supply and the other is just powered or un-powered.

8.3.5 LinTrcv_GetVersioninfo

[SWS_LinTrcv_00008] Definition of API function LinTrcv_GetVersioninfo

Upstream requirements: SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00406, SRS_BSW_
00407

[

Service Name

LinTrcv_GetVersioninfo

Syntax void LinTrcv_GetVersionInfo (
Std_VersionInfoTypex versioninfo

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to version information of this module.
Return value None

Description

This service provides the version information of this module through the parameter

"versioninfo".

Available via

LinTrcv.h

]

[SWS_LinTrcv_00131] [The function LinTrcv_GetVersionInfo shall return the
version information of this module. The version information contains all data defined in
Std_VersionInfoType in "AUTOSAR_SWS_ StandardTypes". |

[SWS_LinTrcv_00134] [If development error detection for the module LinTrcv is en-
abled:

If called with versioninfo == NULL, the function LinTrcv_GetVersionInfo shall
report development error LINTRCV_E_PARAM_POINTER.

AUTSSAR

8.3.6 LinTrcv_CheckWakeup

[SWS_LinTrcv_00012] Definition of callback function LinTrcv_CheckWakeup
Upstream requirements: SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00375, SRS_BSW_

00406
[

Service Name LinTrcv_CheckWakeup
Syntax Std_ReturnType LinTrcv_CheckWakeup (

uint8 LinNetwork

)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) LinNetwork LIN network to which API call has to be applied.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

Description Notifies the calling function if a wakeup is detected.
Available via LinTrcv.h

]

[SWS_LinTrcv_00144] [If development error detection for the module LinTrcv is en-
abled:

If called before the LinTrcv module has been initialized, the function LinTrcv_Check-
Wakeup shall report the development error LINTRCV_E_UNINIT.]

[SWS_LinTrcv_00145] [If development error detection for the module LinTrcv is en-
abled:

If called with an invalid network number LinNetwork, the function LinTrcv_Check-
Wakeup shall report the development error LINTRCV_E_ INVALID_LIN_NETWORK. |

[SWS_LinTrcv_00166] [The function LinTrcv_CheckWakeup shall evaluate the
wakeup on the addressed LIN network. When a wake-up event on the addressed
LIN network is detected (e.g. dominant bus state or negative edge at wakeup pin), the
function LinTrcv_CheckWakeup shall notify the ECU State Manager module immedi-
ately via the EcuM_SetWakeupEvent and Linlf via Linlf_WakeupConfirmation callback
function. |

[SWS_LinTrcv_00167] [If development error detection for the module LinTrcv is en-
abled: If the addressed LIN network is not in mode LINTRCV_TRCV_MODE_SLEEP,
the function LinTrcv_CheckWakeup shall report the development error LINTRCV_
E_TRCV_NOT_SLEEP. |

Configuration: See configuration parameter LinTrcviWWakeUpSupport.

AUTSSAR

8.3.7 LinTrcv_SetWakeupMode

[SWS_LinTrcv_00009] Definition of API function LinTrcv_SetWakeupMode |

Service Name LinTrcv_SetWakeupMode
Syntax Std_ReturnType LinTrcv_SetWakeupMode (
uint8 LINNetwork,
LinTrcv_TrcvWakeupModeType TrcvWakupMode
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy non Reentrant
Parameters (in) LINNetwork LIN network to which API call has to be applied
TrevWakupMode Requested transceiver wakup reason.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK will be returned if the transceiver state has been changed
to the requested mode.
E_NOT_OK will be returned, if service request is failed due to
wakeup mode is not set.
Description This API enables, disables and clears the notification for wakeup events on the addressed
network.
Available via LinTrcv.h

]

[SWS_LinTrcv_00135] [Enabled: If the function LinTrcv_SetWakeupMode is called
with TrcvilakupMode == LINTRCV_WUMODE_ENABLE and if the LinTrcv module
has a stored wakeup event pending for the addressed bus, the LinTrcv module shall
execute the notification within the API call or immediately after (depending on the im-
plementation). |

[SWS_LinTrcv_00136] [Disabled: If the function LinTrcv_SetWakeupMode is
called with TrcviWwakupMode == LINTRCV_WUMODE_DISABLE, then the notifica-
tions for wakeup events are disabled on the addressed network. It is required by
the transceiver device and the underlying communication driver to detect the wakeup
events and store it internally in order to raise the event when the wakeup notification is
enabled again. |

[SWS_LinTrcv_00137] [Clear: If the function LinTrcv_SetWakeupMode is called
with TrcviwakupMode == LINTRCV_WUMODE_CLEAR, then a stored wakeup event
is cleared on the addressed network. Clearing of wakeup events have to be used when
the wake up notification is disabled to clear all stored wake up events under control of
the higher layer. |

[SWS_LinTrcv_00138] [If there is no / incorrect communication to the transceiver, the
function LinTrcv_SetWakeupMode shall return E_NOT_OX. |

[SWS_LinTrcv_00139] [If development error detection for the module LinTrcv is en-
abled:

AUTSSAR

If called before the LinTrcv has been initialized, the function LinTrcv_SetWakeup-
Mode shall report development error LINTRCV_E_UNINIT.]

[SWS_LinTrcv_00140] [If development error detection for the module LinTrcv is en-
abled:

If called with an invalid network number LINNetwork, the function LinTrcv_Set-
WakeupMode shall report development error LINTRCV_E_INVALID_LIN_NETWORK. |

8.4 Callback notifications

There are no callback notifications provided by LIN Transceiver Driver.

8.5 Scheduled functions

This chapter lists all functions provided by the LinTrcv module and called directly by the
Basic Software Module Scheduler. There are no cyclical called functions provided by
LIN Transceiver Driver.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

This section defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_LinTrcv_91002] Definition of mandatory interfaces required by module Lin
Trev |

API Function Header File Description

Linlf_WakeupConfirmation Linlf.h The LIN Driver or LIN Transceiver Driver will call this
function to report the wake up source after the
successful wakeup detection during CheckWakeup
or after power on by bus.

8.6.2 Optional interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

AUTSSAR

[SWS_LinTrcv_91003] Definition of optional interfaces requested by module Lin
Trev |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

Dio_ReadChannel Dio.h Returns the value of the specified DIO channel.

Dio_ReadChannelGroup Dio.h This Service reads a subset of the adjoining bits of a
port.

Dio_ReadPort Dio.h Returns the level of all channels of that port.

Dio_WriteChannel Dio.h Service to set a level of a channel.

Dio_WriteChannelGroup Dio.h Service to set a subset of the adjoining bits of a port
to a specified level.

Dio_WritePort Dio.h Service to set a value of the port.

EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.

Icu_DisableNotification Icu.h This function disables the notification of a channel.

Icu_EnableNotification Icu.h This function enables the notification on the given
channel.

Spi_GetStatus Spi.h Service returns the SPI Handler/Driver software
module status.

Spi_ReadIB Spi.h Service for reading synchronously one or more data
from an IB SPI Handler/Driver Channel specified by
parameter.

Spi_SetupEB Spi.h Service to setup the buffers and the length of data
for the EB SPI Handler/Driver Channel specified.

Spi_SyncTransmit Spi.h Service to transmit data on the SPI bus

Spi_WritelB Spi.h Service for writing one or more data to an IB SPI

Handler/Driver Channel specified by parameter.

]

[SWS_LinTrcv_00165] [LinTrcv driver shall enable / disable ICU channels only if ref-
erence is configured for the parameter LinTrcvIcuChannelRef. |

8.6.3 Configurable interfaces

There are no configurable interfaces for LIN transceiver driver.

AUTSSAR

9 Sequence diagrams

For all wakeup related sequence diagrams please refer to chapter 9 of ECU State
Manager.

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
LinTrev.

Chapter 10.3 specifies published information of the module LinTrcv.

10.1 How to read this chapter
For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

[SWS_LinTrcv_00174] [The LIN Transceiver Driver module shall reject configurations
with partition mappings which are not supported by the implementation. |

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in preceding chapters.

10.2.1 Variants

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.2 LinTrcv

[ECUC_LinTrcv_00161] Definition of EcucModuleDef LinTrcv |

Module Name LinTrev

Description Configuration of LIN Transceiver Driver module
Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

LinTrcvChannel 1. Container gives LIN transceiver driver information about a single
LIN transceiver channel. Any LIN transceiver driver has such LIN
transceiver channels.

LinTrcvGeneral 1 Container gives LIN transceiver driver basic information.

AUTSSAR

LinTrov: LinTrcvGeneral: +parameter LinTrcvDevErrorDetect:
EcucParamConfContainerDef EcucBooleanParamDef

EcucModuleDef

lowerMultiplicity = 0 defaultValue = false

upperMultiplicity = *

+parameter LinTrcvWakeUpSupport:

EcucBooleanParamDef

+parameter LinTrevVersioninfoApi:

EcucBooleanParamDef

defaultValue = false

LinTrevindex:

+parameter| EcycintegerParamDef
o

+container
min =0
max = 255
LinTrcvTimerType: +literal Non.e:)
EcucEnumerationParamDef |@———— EcucEnumerationLiteral Def
+parameter lowerMultiplicity = 0
upperMultiplicity = 1
+literal Timer_1usi6bit:
EcucEnumerationLiteral Def
LinTrevWaitTime:
EcucFloatParamDef
+parameter —
min =0
max = 0.000255
lowerMultiplicity = 0
upperMultiplicity = 1
+reference?
LinTrcvEcucPartitionRef:
EcucReferenceDef
+destination .
lowerMultiplicity = 0 EcucPartition:
upperMultiplicity = * EcucParamConfContainerDef
+destination lowerMultiplicity = 0
LinTrcvChannel EcucPartitionRef: upperMultiplicity =
EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = 1
reference
B LinTrcvSpiSequence:
LinTrcvAccess: +choice | EcucParamConfContainerDef
EcucChoiceContainerDef —
] ———— upperMultiplicity = 1
M upperMultiplicity = 1 lowerMultiplicity = 0
+container|EcucParamConfContainerDef| +subContainer lowerMultiplicity = 1

LinTrcvDioAccess:

lowerMultiplicity = 1 +choice
EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1: Overview about LIN Transceiver Driver configuration containers

10.2.3 LinTrcvGeneral

[ECUC_LinTrcv_00090] Definition of EcucParamConfContainerDef LinTrcvGen-
eral [

AUTSSAR

Container Name

LinTrcvGeneral

Parent Container

LinTrcv

Description

Container gives LIN transceiver driver basic information.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinTrcvDevErrorDetect 1 [ECUC_LinTrcv_00001]
LinTrevindex 1 [ECUC_LinTrcv_00153]
LinTrcvTimerType 0..1 [ECUC_LinTrcv_00159]
LinTrcvVersionInfoApi 1 [ECUC_LinTrcv_00003]
LinTrcvWaitTime 0..1 [ECUC_LinTrcv_00160]
LinTrcvWakeUpSupport 1 [ECUC_LinTrcv_00107]
LinTrcvEcucPartitionRef 0..” [ECUC_LinTrcv_00162]

No Included Containers

]

[ECUC_LinTrcv_00001] Definition of EcucBooleanParamDef LinTrcvDevErrorDe-

tect |

Parameter Name

LinTrcvDevErrorDetect

Parent Container

LinTrcvGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_LinTrcv_00153] Definition of EcuclntegerParamDef LinTrcvindex |

Parameter Name

LinTrcvindex

Parent Container

LinTrcvGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

Default value

AUTSSAR

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

]

[ECUC_LinTrcv_00159]

Type [

Definition of EcucEnumerationParamDef LinTrcvTimer

Parameter Name

LinTrevTimerType

Parent Container

LinTrcvGeneral

Description Type of the Time Service Predefined Timer.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range None None
Timer_1us16bit 16 bit 1us timer

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_LinTrcv_00003] Definition of EcucBooleanParamDef LinTrcvVersioninfo

Api |

Parameter Name

LinTrcvVersionInfoApi

Parent Container

LinTrcvGeneral

Description Switches version information APl on and off. If switched off, function need not be
present in compiled code.
True: Is used False: Is not used

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_LinTrcv_00160] Definition of EcucFloatParamDef LinTrcvWaitTime |

Parameter Name

LinTrecvWaitTime

Parent Container

LinTrcvGeneral

Description Wait time for transceiver state changes in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. 2.55E-4]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_LinTrcv_00107] Definition of EcucBooleanParamDef LinTrcvWakeUpSup-

port [

Parameter Name

LinTrevWakeUpSupport

Parent Container

LinTrcvGeneral

Description Informs whether wake up is supported or not. In case wake up is not supported by LIN
transceiver hardware the setting shall be false. The wake up ability may be switched on
or off for each channel of one LIN transceiver by LinTrcvWakeupSourceRef.

True: Is used False: Is not used

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

LinTrevWakeupByBusUsed

]

[ECUC_LinTrcv_00162] Definition of EcucReferenceDef LinTrcvEcucPartitionRef

[

Parameter Name

LinTrcvEcucPartitionRef

Parent Container

LinTrcvGeneral

Description Maps the Lin transceiver driver to zero or multiple ECUC partitions to make the
modules API available in this partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity

true

\Y%

AUTSSAR

A
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

10.2.4 LinTrcvChannel

[ECUC_LinTrcv_00091] Definition of EcucParamConfContainerDef LinTrcvChan-
nel |

Container Name LinTrcvChannel
Parent Container LinTrcv
Description Container gives LIN transceiver driver information about a single LIN transceiver

channel. Any LIN transceiver driver has such LIN transceiver channels.

Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
LinTrcvChannelld 1 [ECUC_LinTrcv_00011]
LinTrcvChannelUsed 1 [ECUC_LinTrcv_00004]
LinTrcvWakeupByBusUsed 1 [ECUC_LinTrcv_00006]
LinTrcvChannelEcucPartitionRef 0..1 [ECUC_LinTrcv_00163]
LinTrcvicuChannelRef 0..1 [ECUC_LinTrcv_00157]
LinTrcvWakeupSourceRef 0..1 [ECUC_LinTrcv_00012]
Included Containers
Container Name Multiplicity Dependency
LinTrcvAccess 1 Container gives LIN transceiver driver access about a single LIN
transceiver channel.

J
[ECUC_LinTrcv_00011] Definition of EcuclntegerParamDef LinTrcvChannelld |

Parameter Name LinTrcvChannelld

Parent Container LinTrcvChannel

Description Unique identifier of the LIN Transceiver Channel.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

V

AUTSSAR

A
Range 0. 255 |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_LinTrcv_00004]
Used |

Definition of EcucBooleanParamDef LinTrcvChannel

Parameter Name

LinTrcvChannelUsed

Parent Container

LinTrcvChannel

Description Shall the related LIN transceiver channel be used?
True: Is used False Is not used

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_LinTrcv_00006]
BusUsed |

Definition of EcucBooleanParamDef LinTrcvWakeupBy

Parameter Name

LinTrcvWakeupByBusUsed

Parent Container

LinTrcvChannel

Description Is wake up by bus supported? If LIN transceiver hardware does not support wake up by
bus value is always FALSE. If LIN transceiver hardware supports wake up by bus value
is TRUE or FALSE depending whether it is used or not.

TRUE = Is used. FALSE = Is not used.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency LinTrcvWakeUpSupport

AUTSSAR

[ECUC_LinTrcv_00163] Definition of EcucReferenceDef LinTrcvChannelEcucPar-

titionRef |

Parameter Name

LinTrevChannelEcucPartitionRef

Parent Container

LinTrcvChannel

Description Maps one single Lin transceiver channel to zero or one ECUC partitions. The ECUC
partition referenced is a subset of the ECUC partitions where the Lin transceiver driver
is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_LinTrcv_00157] Definition of EcucReferenceDef LinTrcvicuChannelRef |

Parameter Name

LinTrcvicuChannelRef

Parent Container

LinTrcvChannel

Description Reference to the IcuChannel to enable/disable the interrupts for wakeups.

Multiplicity 0..1

Type Symbolic name reference to IlcuChannel

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_LinTrcv_00012]
Ref |

Definition of EcucReferenceDef LinTrcvWakeupSource

Parameter Name LinTrcvWakeupSourceRef

Parent Container LinTrcvChannel

Description Reference to a wakeup source in the EcuM configuration. This reference is only
needed if LinTrcvWakeupByBusUsed is true. Implementation Type: reference to EcuM_
WakeupSourceType.

Multiplicity 0..1

Type Symbolic name reference to EcuMWakeupSource

Y%

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency LinTrevWakeupByBusUsed

]

[SWS_LinTrcv_00176] [The ECUC partitions referenced by LinTrcvChannelE-
cucPartitionRef shall be a subset of the ECUC partitions referenced by LinTr-
cvEcucPartitionRef. |

[SWS_LinTrcv_00178] [If LinTrcvEcucPartitionRef references one or more
ECUC partitions, LinTrcvChannelEcucPartitionRef shall have a multiplicity of
one and reference one of these ECUC partitions as well. |

[SWS_LinTrcv_00177] [LinTrcvChannel and LinChannel of one communication
channel shall all reference the same ECUC partition. |

AUTSSAR

LinTrcvChannel: LinTrcvChannelld:
EcucParamConfContainerDef EcucintegerParamDef
+parameter
lowerMultiplicity = 1 min =0
upperMultiplicity = * max = 255

withAuto = true
symbolicNameValue = true|

LinTrcvChannelUsed:
+parameter| EcucBooleanParamDef

defaultvalue = true

LinTrcvWakeupByBusUsed:

+parameter| —/————— ————————
P EcucBooleanParamDef

defaultvalue = false

LinTrcvWakeupSourceRef:

+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination\|/

EcuMWakeupSource: EcuMWakeupSourceld:
EcucParamConfContainerDef +parameter EcucintegerParamDef
min =5

lowerMultiplicity = 1
upperMultiplicity = 32 max = 31

symbolicNameValue = true

LinTrcvAccess: LinTrcvDioAccess:
EcucChoiceContainerDef +choice | EcucParam ConfContainerDef
upperMultiplicity = 1 lowerMultiplicity = 0
+subContainer lowerMultiplicity = 1 upperMultiplicity = 1

+choice LinTrcvSpiSequence:

EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

LinTrcvicuChannelRef:
+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination
IcuChannel: IcuChannelld:
EcucParamConfContainerDef +parameter EcucintegerParamDef
upperMultiplicity = * min =0
lowerMultiplicity = 1 max = 65535
symbolicNameValue = true

+reference [LinTrcvChannelEcucPartitionRef:

EcucReferenceDef +degtination EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.2: LinTrcvChannel configuration container

10.2.5 LinTrcvAccess

[ECUC_LinTrcv_00154] Definition of EcucChoiceContainerDef LinTrcvAccess |

AUTSSAR

Choice Container Name LinTrcvAccess

Parent Container LinTrcvChannel

Description Container gives LIN transceiver driver access about a single LIN transceiver channel.
Multiplicity 1

No Included Parameters

Container Choices
Container Name Multiplicity Dependency

LinTrcvDioAccess 0..1 Container gives LIN transceiver driver information about
accessing ports and port pins. In addition relation between LIN
transceiver hardware pin names and Dio port access information
is given. If a LIN transceiver hardware has no Dio interface,
there is no instance of this container.

LinTrcvSpiSequence 0..1 Container gives LIN transceiver driver information about one SPI
sequence. One SPI sequence used by LIN transceiver driver is
in exclusive use for it. No other driver is allowed to access this
sequence. LIN transceiver driver may use one sequence to
access n LIN transceiver hardwares chips of the same type or n
sequences are used to access one single LIN transceiver
hardware chip. If a LIN transceiver hardware has no SPI
interface, there is no instance of this container.

LinTrcvAccess: LinTrcvDioAccess:
EcucChoiceContainerDef +choice |EcucParamConfContainerDef|
upperMultiplicity = 1 > lowerMultiplicity = 0
lowerMultiplicity = 1 upperMultiplicity = 1

+ch0iceT

LinTrcvSpiSequence:

EcucParamConfContainerDef SpiSequenceld:
EcucintegerParamDef
upperMultiplicity = 1
lowerMultiplicity = 0 symbolicNameValue = true
max = 255
+parameterl
+reference
o SpiSequence:
LinTrcvSpiSequenceName: +destination| gcycparamConfContainerDef

EcucReferenceDef

upperMultiplicity = *
requiresSymbolicNameValue = true lowerMultiplicity = 1

Figure 10.3: LinTrcvAccess configuration container

10.2.6 LinTrcvDioAccess

[ECUC_LinTrcv_00094] Definition of EcucParamConfContainerDef LinTrcvDioAc-
cess |

AUTSSAR

Container Name LinTrcvDioAccess
Parent Container LinTrcvAccess
Description Container gives LIN transceiver driver information about accessing ports and port pins.

In addition relation between LIN transceiver hardware pin names and Dio port access
information is given. If a LIN transceiver hardware has no Dio interface, there is no
instance of this container.

Multiplicity 0..1
Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

LinTrcvDioChannelAccess 1.* Container gives DIO channel access by single Lin transceiver
channel.

10.2.7 LinTrcvDioChannelAccess

[ECUC_LinTrcv_00158] Definition of EcucParamConfContainerDef LinTrcvDio
ChannelAccess |

Container Name LinTrcvDioChannelAccess

Parent Container LinTrcvDioAccess

Description Container gives DIO channel access by single Lin transceiver channel.
Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
LinTrcvHardwarelnterfaceName 1 [ECUC_LinTrcv_00009]
LinTrcvDioSymRefName 1 [ECUC_LinTrcv_00102]

‘ No Included Containers

AUTSSAR

[ECUC_LinTrcv_00009] Definition of EcucStringParamDef LinTrcvHardwarelnter-

faceName |

Parameter Name

LinTrcvHardwarelnterfaceName

Parent Container

LinTrecvDioChannelAccess

Description

LIN transceiver hardware interface name. It is typically the name of a pin. From a Dio
point of view it is either a port, a single channel or a channel group. Depending on this
fact either LINTRCV_DIO_PORT_SYMBOLIC_NAME or LINTRCV_DIO_CHANNEL_
SYMBOLIC_NAME or LINTRCV_DIO_CHANNEL_GROUP_SYMBOLIC_NAME shall
reference a Dio configuration. The LIN transceiver driver implementation description
shall list up this name for the appropriate LIN transceiver hardware.

Multiplicity

1

Type

EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_LinTrcv_00102]
RefName [

Definition of EcucChoiceReferenceDef LinTrcvDioSym

Parameter Name

LinTrcvDioSymRefName

Parent Container

LinTrcvDioChannelAccess

Description Choice Reference to a DIO Port, DIO Channel or DIO Channel Group. This reference
replaces the LINTRCV_DIO_PORT_SYM_NAME, LINTRCV_DIO_CHANNEL_SYM_
NAME and LINTRCV_DIO_GROUP_SYM_NAME references in the Lin Trcv SWS.

Multiplicity 1

Type Choice reference to [DioChannel, DioChannelGroup, DioPort]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

LinTrcvDioSymRefName:
LinTrcvDioAccess: EcucChoiceReferenceDef o DioChannelGroup:
EcucParam ConfContainerDef — +destination EcucParam ConfContainerDef
lowerMultiplicity = 1
lowerMultiplicity = 0 upperMultiplicity = 1 upperMultiplicity = *
upperMultiplicity = 1 lowerMultiplicity = 0
+subContainer
+&1bContaine$
LinTrcvDioChannelAccess: - DioPort: EcucParamConfContainerDef
AL MIHABST +destination
EcucParamConfContainerDef ——
————— upperMultiplicity = *
lowerMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = *
+reference
& +subContainer
R DioChannel:
+destination e ee]

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+parameter LinTrcvHardwareInterfaceName:

EcucsStringParamDef

lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.4: LinTrcvDioAccess configuration container

10.2.8 LinTrcvSpiSequence

[ECUC_LinTrcv_00155] Definition of EcucParamConfContainerDef LinTrcvSpiSe-
quence |

Container Name LinTrcvSpiSequence
Parent Container LinTrcvAccess
Description Container gives LIN transceiver driver information about one SPI sequence. One SPI

sequence used by LIN transceiver driver is in exclusive use for it. No other driver is
allowed to access this sequence. LIN transceiver driver may use one sequence to
access n LIN transceiver hardwares chips of the same type or n sequences are used to
access one single LIN transceiver hardware chip. If a LIN transceiver hardware has no
SPI interface, there is no instance of this container.

Multiplicity 0..1
Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
LinTrcvSpiSequenceName 1 [ECUC_LinTrcv_00156]

No Included Containers

AUTSSAR

[ECUC_LinTrcv_00156] Definition of EcucReferenceDef LinTrcvSpiSequence
Name |

Parameter Name LinTrcvSpiSequenceName

Parent Container LinTrcvSpiSequence

Description Reference to a Spi sequence configuration container.

Multiplicity 1

Type Symbolic name reference to SpiSequence

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency SpiSequence

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_LinTrcv_NA_00999]

Upstream requirements: SRS_BSW_00336, SRS_BSW_00344, SRS_BSW_00383, SRS_BSW _
00384, SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400,
SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00416, SRS_BSW_
00417, SRS_BSW_00422, SRS _BSW_00423, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_
00433, SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00168,
SRS _BSW_00170, SRS_Lin_01576, SRS_Lin_01504, SRS_Lin_01522,
SRS_Lin_01560, SRS_Lin_01577, SRS_Lin_01551, SRS_Lin_01568,
SRS_Lin_01569, SRS_Lin_01564, SRS_Lin_01546, SRS_Lin_01549,
SRS_Lin_01571, SRS_Lin_01515, SRS_Lin_01502, SRS_Lin_01558,
SRS_Lin_01523, SRS_Lin_01553, SRS_Lin_01552, SRS_Lin_01503,
SRS _Lin_01555, SRS _Lin 01547, SRS_Lin_01572, SRS_Lin_01556,
SRS _Lin_01579, SRS_Lin_01540, SRS_Lin_01545, SRS_Lin_01534,
SRS_Lin_01574, SRS_Lin_01539, SRS_Lin_01544

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.1.1 Added Specification Iltems in R24-11

none

B.1.2 Changed Specification Items in R24-11

Number Heading
E LinTi
E)O?éjzﬁ_ nirev_ Definition of EcucReferenceDef LinTrcvEcucPartitionRef

[SWS_LinTrcv_91003] | Definition of optional interfaces requested by module LinTrcv

Table B.1: Changed Specification Items in R24-11

B.1.3 Deleted Specification Items in R24-11

Number Heading

[SWS_LinTrcv_00175]

Table B.2: Deleted Specification Items in R24-11

B.2 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.2.1 Added Specification ltems in R25-11

none

B.2.2 Changed Specification ltems in R25-11

none

AUTSSAR

B.2.3 Deleted Specification Items in R25-11

none

	1 Introduction and functional overview
	1.1 Goal of LIN transceiver driver
	1.2 Explicitly uncovered LIN transceiver functionality

	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Naming convention for transceiver driver implementation
	5.1.2 Code file structure
	5.1.3 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 LIN transceiver driver operation modes
	7.2 LIN transceiver hardware operation modes
	7.3 LIN transceiver wakeup types
	7.4 LIN transceiver wakeup modes
	7.5 Error Classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Production Errors
	7.5.4 Extended Production Errors

	7.6 Preconditions for driver initialization
	7.7 Instance concept
	7.8 Wait states

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 LinTrcv_ConfigType
	8.2.2 LinTrcv_TrcvModeType
	8.2.3 LinTrcv_TrcvWakeupModeType
	8.2.4 LinTrcv_TrcvWakeupReasonType

	8.3 Function definitions
	8.3.1 LinTrcv_Init
	8.3.2 LinTrcv_SetOpMode
	8.3.3 LinTrcv_GetOpMode
	8.3.4 LinTrcv_GetBusWuReason
	8.3.5 LinTrcv_GetVersionInfo
	8.3.6 LinTrcv_CheckWakeup
	8.3.7 LinTrcv_SetWakeupMode

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 LinTrcv
	10.2.3 LinTrcvGeneral
	10.2.4 LinTrcvChannel
	10.2.5 LinTrcvAccess
	10.2.6 LinTrcvDioAccess
	10.2.7 LinTrcvDioChannelAccess
	10.2.8 LinTrcvSpiSequence

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R24-11
	B.1.1 Added Specification Items in R24-11
	B.1.2 Changed Specification Items in R24-11
	B.1.3 Deleted Specification Items in R24-11

	B.2 Traceable item history of this document according to AUTOSAR Release R25-11
	B.2.1 Added Specification Items in R25-11
	B.2.2 Changed Specification Items in R25-11
	B.2.3 Deleted Specification Items in R25-11

