AUTSSAR

Document Title Specification of LIN Interface
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 73

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR « Removal of obsolete elements
2025-11-27 R25-11 Release
Management « Editorial Changes
» Support IEEE 1722 Tunneling —
AUTOSAR Changed the upper layer (in the PDU
2024-11-27 | R24-11 Release path) from PduR / CDD to LSduR
Management
» Editorial changes
» Added Extended Production Errors
regarding LinTp timeouts and relevant
errors
» Added a note after [SWS_Linlf_00503]
for clarification on implementation of
AUTOSAR LinIf_CheckWakeup API
2023-11-23 | R23-11 Eﬂzlﬁzsgment « Clarification of “Available via:
9 Configurable” in API tables (Header File
Cleanup)
* Refined configuration structure
« Editorial changes (incl. correcting typos
in spec. items)
» Changed upper limit of
LinTpP2Timing and LinTpP2Max
AUTOSAR * Renamed the arguments “Schedule”
2022-11-24 | R22-11 Release ([SWS_Linlf_00202] LinIf_
Management ScheduleRequest) and

“schedule” ((SWS_Linlf_00520]
<User>_
ScheduleRequestConfirmation)

AUTSSAR

» Added the API table of <User>__

GotoSleepIndication

AUTOSAR
2021-11-25 | R21-11 Release » Removed inconsistent requirements
Management regarding availability of LinTf_
CheckWakeup and LinIf_
WakeupConfirmation APIs
« Corrected behavior of LinTp-originated
schedule table switch (with limitations)
and LinTp P2 timeout monitoring
» Updated the structure and tables of the
error sections
AUTOSAR .
5020-11-30 | R20-11 Release . .Corre;:tzo![headgr filename for the
Management iImported type LinTrcv_
TrcvModeType
» Changed Service ID of LinTp_
Transmit API
» Reformulated negative requirements
which are not testable
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
» Changed TP Timers to channel specific
* Removed dummy APls
(LinIf_CancelTransmit etc.) and
replaced ChannelId with
LinIfChannel.ShortName
AUTOSAR * Replaced references to LIN 2.1 by ISO
2018-10-31 | 4.4.0 Release 17987:2016 (with no functional
o Management modification)

* LIN Slave Support (CONC_631)
» Header file cleanup

* Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

AUTSSAR

* Rollout of Runtime Errors

* Clarification of srr handling for Node

AUTOSAR Configuration Request
2017-12-08 | 4.3.1 'I?/Ielease » Resolve inconsistency on channel state
anagement upon initialization
» Clarification of LIN schedule table switch
behavior
» Changed the call of MainFunction_
<ChannelId> of each channel
AUTOSAR .
2016-11-30 | 4.3.0 Release . :{A%?:ir’:zi neew function for schedule
Management a 9
» Changed the signature of <User_
TxConfirmation>
* Removed PostBuildTime from the
configuration class of optional interfaces
AUTOSAR » Changed to call the <User_
2015-07-31 422 Release TriggerTransmit> with the buffer
Management length
» Changed to Default Error Tracer from
Development Error Tracer
» Changed the description of return value
E_NOT_OK for LinIf_Wakeup
AUTOSAR » Changed the parameter
2014_10_31 4.2.1 Release LiI’lIfFrameRef. , .
Management upperMultiplicity from ‘«’ to ‘1
* Revised the typo in [SWS_Linlf_00614]
« Editorial changes
* Set the parameter LinIfsSlave and
LinIfFrame.LinIfLength to obsolete
AUTOSAR
2014-03-31 41.3 Release » Changed the signature of <User_
Management RxIndication>

« Editorial changes

AUTSSAR

2013-10-31

41.2

AUTOSAR
Release
Management

» Added the parallel handling for physical
and functional request of LINTP

» Changed the wakeup handling by LIN
bus

* Removed the type NotifResultType
« Editorial changes

* Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

» Changed the buffer handling of the retry
and failure for LinTp

» Changed the reception error handling of
the unexpected PDU for LinTp

» Changed the wakeup operation during
the transition to sleep state

2011-12-22

4.0.3

AUTOSAR
Administration

« Added the As/Cs/Cr timeout observation
for LIN TP.

» Clarified the buffer handling requirement
for LIN TP.

* Deleted CDD for LIN TP.

» Added the specification of transceiver
wakeup.

2010-09-30

AUTOSAR
Administration

» Added 5.3.3 Version Check.

» Changed from the parameter name
“NetworkHandleType Transceiver”
to “NetworkHandleType Channel”

» Changed the type definitions and
deleted from LIN Interface: LinIf
TrcvModeType
(LinTrcv_TrcvModeType), LinTp_
ParameterValueType
(TPParameterType)

» Changed the function name with
‘“WakeUp” t0 “Wakeup”

» Changed the configuration parameter for
time to “in second”

AUTSSAR

2010-02-02

3.1.4

AUTOSAR
Administration

» Support of LIN 2.1 Specification
» Added support for LIN Transceiver Driver

* LIN schedule table manager removed
due to Basic Software Mode Manager
which controls this now

* Interaction with Complex Device Driver
extended

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

* Interaction with LIN State Manager
added

* LIN Interface configuration reworked

* Detection of LIN Response Error added
» Wake-up concept reworked

* Document meta information extended

» Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

« Start-up and Wake-up reworked for
Transceiver needs.

* File structure and requirements
traceability adapted to new template.

» Reworked configuration after integrator
input.

* Removed APIs: LinIf_
InitChannel (), LinIf_
DeInitChannel ()

* Legal disclaimer revised
* Release Notes added
« “Advice for users” revised

» “Revision Information” added

2006-05-16

2.0

AUTOSAR
Administration

« Initial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

1.1 Architectural overview
1.2 Functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

41 Limitations
4.2 Applicability to cardomains oo
4.3 Clarification about other LIN standards

5 Dependencies to other modules

51 Upperlayers
51.1 L-SDURouterandCDD
5.1.2 PDURouter. e e
51.3 BusMirroring
514 LINStateManager.
5.1.5 BSW Mode Manager.
51.6 AUTOSARCOM e e e

5.2 Lowerlayers
5.2.1 LINDriver e e e
5.2.2 LIN Transceiver Driver o o

53 Filestructure e
5.3.1 Headerfilestructure

6 Requirements Tracing

7 Functional specification

7.1 Frame Transfer
7.1.1 Frametypes
7.1.1.1 Unconditional frame,
7.1.1.2 Event-triggeredframe
7.1.1.3 Sporadic frame (Masteronly)
7.1.1.4 Diagnostic Frames MRF and SRF
7.1.1.5 Reservedframes
7.1.2 Framereception
7.1.2.1 Frame receptionin masternodes

7.1.2.2 Framereceptioninslavenodes
7.1.3 Frametransmission

13

14
15

16

AUTSSAR

7.1.3.1 Frame transmission in masternodes 38
7.1.3.2 Frame transmissioninslavenodes 39
7.1.4 sSlave-to-slave communication (Masteronly) 42
7141 Header. 42
7.1.42 Response 42
7.1.43 Statuscheck. 42
7.1.5 lIrrelevant communication (Slaveonly) 42
7.2 Schedules (Masteronly) 43
7.2.1 Scheduletable manager. 43
7.3 Mainfunction e 45
7.4 Network management 45
7.4.1 Node Management 45
7.4.1.1 LIN Interface state-machine 46
7.4.1.2 LIN channel sub-state-machine 46
742 Gotosleepprocess e 48
7.4.2.1 Goto sleep process in masternodes 48
7422 Gotosleepprocessinslavenodes 50
743 Wake upproCess o v v i i i 51
7.4.3.1 Wake up processinmasternodes. 51
7.4.3.2 Wake up processinslavenodes 52

7.5 Status Management 53
7.5.1 response_error signal (Slaveonly) 53
7.6 Diagnostics and Node configuration 54
7.6.1 Node configuration in masternodes 55
7.6.1.1 Node Configuration services 55
7.6.1.2 Node Configuration in Schedule Table 56
7.6.2 Node configurationinslavenodes 56
7.6.21 NodeModel 57
7.6.2.2 Node Configurationservices 57
7.6.2.3 Diagnostic Frame Dispatcher 58
7.6.2.4 Node Configuration Handler 59
7.6.3 Diagnostics — Transport Protocol 61
7.6.3.1 Schedule requestsinmasternodes 62
7.6.3.2 State-machine. 63
7.6.3.3 LIN TPtransmission v i v i i ... 64
7.6.3.4 LIN TP transmissionerror. 65
7.6.35 LIN TPreception. 67
7.6.3.6 Unavailability of receive buffer 68
7.6.3.7 LIN TPreceptionerror. 70

7.7 Handling multiple channelsanddrivers 74
7.7.1 Multiplechannels. 74

7.7.2 Multiple LINdrivers 74

AUTSSAR

7.7.3 Multiple LIN transceiverdrivers 75
7.8 Errorclassification. o 76
7.8.1 DevelopmentErrors 76
7.8.2 RuntimeErrorso 77
7.8.3 ProductionErrors o 77
7.8.4 Extended ProductionErrors 78
7.8.41 LINTP_E_LINTPNAS_TIMEOUT_OCCURRED 78
7.8.4.2 LINTP_E_LINTPNCS_TIMEOUT_OCCURRED 78
7.8.4.3 LINTP_E LINTPNCR_TIMEOUT_OCCURRED 79

7844 L1LINTP_E SWAPPED CONSECUTIVE_FRAMES RECEIVED ... 79
7.845 LINTP E DROPPED CONSECUTIVE FRAMES DETECTED ... 80
7.8.46 LINIF_E SCHEDULE_TABLE SWITCH REQUEST NOT_AC-

CEPTED .« v vt i e e e e e e e e e e e e e e 80

8 API specification 81
8.1 Importedtypes 81
8.1.1 Standardtypes 81
8.1.2 Typedefinitions. 82
8.1.21 LinIf_SchHandleType . . « v v v v v v vt vt e et e 82
8.1.22 LinIf_ConfigTypPe . « « v v v v v v v it et e e e e e 82
8.1.23 LinTp_ConfigTypPe . « « v v v v v v e it et e e e e e 83
8124 LinTp_Mode i i i ittt ittt 83
8.2 LIN Interface API 84
8.2.1 LinIf Init & i i i i it e e e e e 84
8.2.2 LinIf GetVersionInfo v v v i i v i i 85
8.2.3 LinIf Transmit o o v v i i i e e e e 85
8.24 LinIf_ScheduleRequest v i ... 86
8.25 LinIf_GotoSleep . . . v v v v v it e e e e e e e e e e e e 88
8.2.6 LinIf_WaKeup . « v v v v v v ittt e e e e e e e e e e e e 89
8.2.7 LinIf SetTrcvMode . . . v v v v v i it e e e e e e 90
8.2.8 LinIf GetTrcvMode . . . v v v v v i i et i e e e 91
8.29 LinIf GetTrcvWakeupReasono uuuuuwno. 92
8.210 LinIf_SetTrcviWakeupMode v v v v v v v i i e e e e 93
8.2.11 LinIf_GetPIDTable v i v i ittt e 94
8.2.12LinIf SetPIDTable v v v v v i i e e e e 95
8.213 LinIf_GetConfiguredNAD v v v v v v v v ie e 97
8.214 LinIf_SetConfiguredNAD '« v v v v v v i e e it e 97
8.215LinTp_TInit o v v i i e e e e e 99
8216 LinTp_Transmit v i i i i s e e e e e e e e e 99
8.217 LinTp_GetVersionInfo oo v v v v i 101
8.218 LinTp_Shutdown o v i it e e e 102
8.2.19 LinTp_ChangeParameter v v v v v v v v 103
8.220 LinIf_CheckWakeup . . . ¢ v v v v v i it i e e e e e e e e e 103

8.2.21 LinIf_EnableBusMirroring « v v v v v v v v v v v v 104

AUTSSAR

8.3 Callback notifications, 106
8.3.1 LinIf_WakeupConfirmation 106
8.3.2 LinIf HeaderIndication« ' i v i v v ..., 106
8.3.3 LinIf RxIndication.« . i v i i v i i i, 107
834 LinIf TxConfirmation v v v v v v i ... 108
8.3.5 LinIf LinErrorIndication ' v v v v 109

8.4 Scheduled functions 110
841 LinIf MainFunction <LinIfChannel.ShortName> 110

8.5 Expectedinterfaces 111
8.5.1 Mandatory Interfaces o 111
8.5.2 Optionalinterfaces oo 111
8.5.3 Configurable interfaces, 113

8.5.3.1 <User>_ScheduleRequestConfirmation. 114
8.5.3.2 <User>_GotoSleepConfirmation 114
8.5.3.3 <User>_WakeupConfirmation. 115
8.5.3.4 <User>_GotoSleepIndication 116
8.5.3.5 Calloutdefinitions 116
9 Sequence diagrams 119

9.1 Frame Transmission 119
9.1.1 Frame transmissionin masternodes 119
9.1.2 Frame transmissioninslavenodes 121

9.2 Frame Reception 122
9.2.1 Frame receptioninmasternodes 122
9.2.2 Framereceptioninslavenodes 123

9.3 Slave-to-slave/ Irrelevant communication 124
9.3.1 slave-to-slave communicationin masternodes 124
9.3.2 lIrrelevant communicationinslavenodes 124

9.4 Sporadic frame (Masteronly) 125

9.5 Event-triggeredframe 126
9.5.1 Event-triggered frame in masternodes 126

9.51.1 Withnoanswer, 127
9.5.1.2 With answer (No collision) 128
9.5.1.3 Withcollision 129
9.5.2 Event-triggered frameinslavenodes. 130

9.6 Transport Protocol message transmission 131

9.7 Transport Protocol message reception 133

9.8 Gotosleepprocess. 135
9.8.1 Gotosleep processinmasternodes 135
9.8.2 Gotosleepprocessinslavenodes 137

9.9 Wakeuprequest 138

9.10Internalwake-up. L 138

AUTSSAR

10 Configuration specification

10.1How to read this chapter
10.2Containers and configuration parameters .
10.2.1 Configuration Tool
10.3Linlf Configuration
10.31LinIf. L
10.3.2LinIfGlobalConfig
10.3.3LinIfGeneral
10.3.4 LinIfChannel
10.3.5LinIfNodeType o . o . ..
10.3.6 LinIfFrame
10.3.7 LinIfFixedFrameSdu.
10.3.8 LinIfFixedFrameSduByte
10.3.9LinIfPduDirection
10.3.10 LinIfSubstitutionFrames . . .
10.3.11 LinIfRxPdu
10.3.12 LinIfTxPdu v v v v v v v L.
10.3.13 LinIfScheduleTable
10.3.14 LinIfEntry o . ..
10.3.15 LinIfMaster
10.3.16 LinIfSlave

10.3.17 LinIfNodeConfigurationIdentification

10.3.18 LinIfSlaveToSlavePdu
10.3.19 LinIfInternalPdu
10.3.20 LinIfTransceiverDrvConfig .
10.4LIN Transport Layer configuration
1041 LinTp o oo o i i
10.4.2LinTpGeneral
10.4.3 LinTpGlobalConfig
10.4.4 LinTpChannelConfig.
10.4.5 LinTpDemEventParameterRefs .
1046 LinTpRxXNSAU .+ « v v v v v v v v v .
10.4.7 LinTpTxNSdu« v v v v . ..
10.5Published Information

A Not applicable requirements

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release

R24-11
B.1.1 Added Specification Items in R24-11 .
B.1.2 Changed Specification ltems in R24-11
B.1.3 Deleted Specification Items in R24-11

139

139
139
139
140
140
141
142
148
154
155
159
160
161
161
163
163
165
167
169
170
172
174
175

175
177
179
179
180
182
186
190
192
195

196

197

AUTSSAR

B.2 Traceable item history of this document according to AUTOSAR Release

R25-11 e 199
B.2.1 Added Specification ltemsinR25-11 199
B.2.2 Changed Specification ltemsin R25-11 199

B.2.3 Deleted Specification Itemsin R25-11 199

AUTSSAR

1 Introduction and functional overview

This document specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module LIN Interface (Linlf) and the LIN Transport Protocol (LIN TP,
LinTp). The LIN TP is a part of the LIN Interface.

The wake-up functionality is covered within the LIN Interface, LIN Driver and LIN
Transceiver Driver.

This document is based on the ISO 17987 specifications [1]. It is assumed that the
reader is familiar with the specifications. This document will not describe ISO 17987
LIN functionality again.

The LIN Interface module applies to ISO 17987 master and slave nodes (compatible
with LIN 2.2 [2] and LIN 2.1 [3] master nodes). The LIN implementation in AUTOSAR
deviates from the ISO 17987 specifications as described in this document but there
will be no change in the behavior on the LIN bus. It is the intention to be able to reuse
all existing LIN nodes together with the AUTOSAR LIN implementation (i.e. the LIN
Interface).

The LIN Interface module (Linlf) is designed to be hardware independent. The inter-
faces to upper (L-SDU Router for Linlf part and PDU Router for LinTp part) and lower
(LIN Driver) modules are well defined.

The LIN Interface may handle more than one LIN Driver. A LIN Driver can support
more than one channel. This means that the LIN Driver can handle one or more LIN
channels.

Au-r@ SAR Specification of LIN Interface

AUTOSAR CP R25-11

1.1 Architectural overview

According to the Layered Software Architecture [4], the LIN Interface is located within
the BSW architecture as shown below (Figure 1.1). In this example, the LIN Inter-
face is connected to two LIN Drivers. However, one LIN Driver is the most common
configuration.

LIN State
Manager
or
Complex

LIN Interface {incl. LIN TP)

Dirver for ext.

LIN Transceiver Driver LIN ASIC

LIM Driver 1 LIM Driver 2

Figure 1.1: AUTOSAR BSW software architecture (LIN relevant modules)

14 of 199 Document ID 73: AUTOSAR_CP_SWS_LINInterface

AUTSSAR

1.2

Functional overview

The LIN Interface is responsible for providing ISO 17987 LIN functionality. This means:

Executing the currently selected schedule for each LIN bus the ECU is con-
nected to, as a master node (transmitting headers and transmitting / receiving
responses).

Switching schedule tables of master nodes when requested by the upper layer(s).

Accepting frame transmit requests from the upper layers and transmit the data as
response within the appropriate LIN frame.

Providing frame receive notification for the upper layer when the corresponding
response is received within the appropriate frame.

Go-to-sleep and wake-up services.
Error handling.
Diagnostic Transport Layer services.

Node configuration and identification services of slave nodes.

AUTSSAR

2 Acronyms and Abbreviations

In addition to the acronyms and abbreviations found in the ISO 17987 LIN specifi-
cations [1], the following acronyms and abbreviations (that are not included in the [5,
AUTOSAR glossary]) are used throughout this document. Some terms already defined
in the ISO 17987 specifications have also been defined here in order to provide more
clarification, especially for terms used very often in this document.

Abbreviation / Description:

Acronym:

CF Consecutive Frame in LIN TP
FF First Frame in LIN TP

ID Identifier

LDF LIN Description File

LINTP (LinTp)

LIN Transport Protocol (Part of the LIN Interface)

MRF

Master Request Frame

NAD Node Address. Each slave in LIN must have a unique NAD.

NC Node Configuration

N_As Time for transmission of the LIN frame (any N-PDU) on the sender side (see ISO 17987-2 [6]).

N_Cr Time until reception of the next Consecutive Frame N-PDU (see ISO 17987-2 [6]).

N_Cs Time until transmission of the next Consecutive Frame N-PDU (see ISO 17987-2 [6]).

P2 Time between reception of the last frame of a diagnostic request on the LIN bus and the slave node
being able to provide data for a response.

p2* Time between sending a response pending frame (0x78) and the LIN-slave being able to provide data
for a response.

PID Protected ID

RX Reception

SID Service Identifier (of node configuration service)

SF Single Frame in LIN TP

SRF Slave Response Frame

SRS Software Requirement Specification

TX Transmission

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

Terms:

Description:

Bus idle timeout

Lapse of time duration with no bus activity

Irrelevant frame

From a LIN slave node point of view, there exist 3 different directions of frames on the LIN bus:
Response transmitted by the slave, Response received by the slave and Response that is ignored by
the slave (i.e. communication between master and another slave or between two other slaves).
These ignored frames are named Irrelevant frames in this specification. This is not described
explicitly in the ISO 17987 specifications.

Jitter

Difference between longest delay and shortest delay (e.g. Worst case execution time — Best case
execution time)

Maximum frame
length

The maximum frame length is the Trrame_max as defined in the ISO 17987-3 [7] (i.e. The nominal
frame length plus 40 %).

Relevant frame

From a LIN slave node point of view, a frame that is transmitted or received by the slave. Opposite of
Irrelevant frame.

Schedule entry (or
entry)

Corresponding to the term “Frame Slot” defined in the ISO 17987-3 [7].

Schedule entry is
due

This means that the LIN Interface has arrived at a new entry in the schedule table and a frame
(received or transmitted) will be initiated.

Slave-to-slave

From a LIN master node’s point of view, there exist 3 different directions of frames on the LIN bus:
Response transmitted by the master, Response received by the master and Response transmitted by
one slave and received by another slave. The slave-to-slave is describing the last one. This is
not described explicitly in the ISO 17987 specifications, but mentioned in Figure 14 in ISO 17987-3:
Three Unconditional frame transfers.

Slot Delay

The time between start of frames in a schedule table. The unit is in number of time-bases for the
specific cluster.

Sporadic frame

This is one of the Unconditional frames that are attached to a Sporadic slot.

Sporadic slot

This is a placeholder for the sporadic frames. The reason to name it slot is that it has no LIN
frame ID.

Tick

The tick is the smallest time entity to handle the communication on all channels.

Table 2.2: Terms used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] I1ISO 17987:2016 (all parts), Road vehicles — Local Interconnect Network (LIN)
https://www.iso.org

[2] LIN Specification Package, Revision 2.2A
https://lin-cia.org/

[3] LIN Specification Package, Revision 2.1
https://lin-cia.org/

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[5] Glossary
AUTOSAR_FO_TR_Glossary

[6] ISO 17987-2:2016 Road vehicles — Local Interconnect Network (LIN) — Part 2:
Transport protocol and network layer services
https://www.iso.org

[7] 1ISO 17987-3:2016 Road vehicles — Local Interconnect Network (LIN) — Part 3:
Protocol specification
https://www.iso.org

[8] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[9] J2602-1:2012 LIN Network for Vehicle Applications

[10] Specification of Default Error Tracer
AUTOSAR _CP_SWS DefaultErrorTracer

[11] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[12] Specification of PDU Router
AUTOSAR_CP_SWS_PDURouter

[13] Specification of Linklayer Sdu Routing Module
AUTOSAR_CP_SWS_LSduRouter

[14] Specification of LIN State Manager
AUTOSAR_CP_SWS_LINStateManager

[15] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS BSWModeManager

[16] Specification of Communication
AUTOSAR_CP_SWS _COM

https://www.iso.org
https://lin-cia.org/
https://lin-cia.org/
https://www.iso.org
https://www.iso.org

AUTSSAR

[17] Specification of LIN Driver
AUTOSAR_CP_SWS_LINDriver

[18] Specification of LIN Transceiver Driver
AUTOSAR_CP_SWS LINTransceiverDriver

[19] Specification of Bus Mirroring
AUTOSAR_CP_SWS_BusMirroring

[20] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[21] Requirements on LIN
AUTOSAR_CP_RS_LIN

[22] ISO/TR 17987-5:2016 Road vehicles — Local Interconnect Network (LIN) — Part 5:
Application programmers interface (API)
https://www.iso.org

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [8] (SWS BSW
General), which is also valid for LIN Interface.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for LIN Interface.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The LIN Interface module can be used as a LIN master or a LIN slave in a LIN cluster.
There is only one instance of the LIN Interface in each ECU. If the underlying LIN Driver
supports multiple channels, the LIN Interface acts on more than one cluster.

It's assumed that all connected LIN ECUs can receive a wakeup frame when they are
already operational (as the LIN ECU starts with LINIF_CHANNEL_SLEEP state).

The LIN Interface module does not support

* ConditionalChangeNAD (SID 0xB3, defined in the LIN 2.1 specification [3];
obsolete in ISO 17987-3 [7])

* DataDump (SID 0xB4, optional in ISO 17987-3)

Note: Until LIN 2.2A, ConditionalChangeNAD was defined without definition on neg-
ative response, and it was set to obsolete in ISO 17987-3 without any definition of re-
sponse behavior. Therefore, both ISO 17987 and LIN specifications do not define the
response behavior when ConditionalChangeNAD is not supported. However, it is
presumed that the clarification “A negative response shall never be sent by the slave
node.” for AssignNAD in ISO 17987-3 is also applicable to ConditionalChangeNAD.

For slave nodes, the LIN Interface module does not support

* ReadByIdentifier with identifier unequal to 0 and 2 (SID 0xB2, mandatory in
ISO 17987-3)

* the Sserial Number (defined in the ISO 17987-3, clause 6.2.2). It means that
there’s no corresponding configuration nor API for accessing Serial Number.

* AutoAddressingSlave (SID 0xB8, optional in ISO 17987-3), Slave node posi-
tion detection (SID 0xB5, optional in LIN 2.x specification)

For master nodes, the LIN Interface module does not support
* ReadByIdentifier (SID 0xB2, mandatory in ISO 17987-3)

Note: The ReadByIdentifier is not considered as node configuration. It is more
considered as an identification service. Therefore, it is senseless to support the Read-
ByIdentifier service as a schedule table command. It is the responsibility of the
diagnostic layer to support the functionality of ReadByIdentifier.

Note: An ECU with a master node on a channel can be a slave node on another
channel, too.

The LIN Interface module does not support transmission of Reserved frames (de-
fined in the LIN 2.1 specification [3])

The LIN Interface module supports Post-Build Variant, but not directly in the way de-
fined in ISO 17987-3 clause 6.3 Slave node model.

AUTSSAR

If LinTpScheduleChangeDiag was set to TRUE, simultaneous Schedule Table
Switch requests originated from LinTp and from Non-LinTp (BswM or CDD) must
be avoided, to prevent premature termination of diagnostic connections. This issue will
be fixed in next release(s).

4.2 Applicability to car domains

This specification is applicable to all car domains where LIN is used.

4.3 Clarification about other LIN standards

J2602 [9] and LIN 2.1 [3] are other standard manifestations of ISO 17987 [1]. These
alternate standards are predecessors of ISO 17987 and share the concepts of ISO
17987.

An ISO 17987 node is compatible with a LIN 2.1 node (see ISO 17987-3, annex B.2.3).
AUTOSAR Linlf supports the above standards as far as they are identical to ISO 17987.

For legacy reasons, existing slave nodes based on older LIN standards than ISO 17987
(LIN 1.3, LIN 2.0, LIN 2.1 and LIN2.2) are supported as far as the standard is identical
to ISO 17987.

AUTSSAR

5 Dependencies to other modules

This chapter describes the relations to other modules within the basic software. It
describes the services that are used from these modules.

To be able for the LIN Interface module to operate, the following modules are interfaced:
 Default Error Tracer — Det [10]

ECU State Manager — EcuM [11]

PDU Router — PduR [12]

L-SDU Router — LSduR [13]

LIN State Manager — LinSM [14]

BSW Mode Manager — BswM [15]

AUTOSAR COM — Com [16]

LIN Driver — Lin [17]

LIN Transceiver Driver — LinTrcv [18]

5.1 Upper layers
5.1.1 L-SDU Router and CDD

The LIN Interface (except LinTp part) connects to the L-SDU Router [13] and/or alter-
native modules above (e.g. Complex Driver) for transmission and reception of frames.
It is assumed that these modules are responsible for the copying of the data of the
frames for reception and transmission.

5.1.2 PDU Router

In case of LinTp part, the PDU Router is the only module above and handles the TP
messages buffers either as complete or fragmented messages.

5.1.3 Bus Mirroring

The LIN Interface also connects to the Bus Mirroring module [19]. The content of
all received and transmitted LIN frames will be reported, if mirroring is enabled. TP
messages are not reported to the Bus Mirroring module.

AUTSSAR

5.1.4 LIN State Manager

The LIN Interface connects to the LIN state manager [14] which is responsible for the
control flow of the whole LIN stack. Therefore, it has the following purposes regarding
the LIN Interface:

» For master nodes, the state manager forwards a schedule table request to the
LIN Interface.

» The state manager requests the transmission of the wake-up and, for master
nodes, the sleep command.

5.1.5 BSW Mode Manager

LIN TP that is a part of LIN Interface connects to BSW Mode Manager [15] for re-
questing the schedule table change when upper layer requests the LIN TP operation.

5.1.6 AUTOSAR COM

The LIN Interface used as LIN slave connects to the COM [16] to update the value of
the response_error signal.

5.2 Lower layers

5.2.1 LIN Driver

The LIN Interface requires the services of the underlying LIN Driver specified by [17].
The LIN Interface assumes the following primitives to be provided by the LIN Driver:

» Transmission of the header and response part of a frame (Lin_SendFrame) for
LIN master nodes. It is assumed that this primitive also tells the direction of the
frame response (transmit, receive or Slave-to-slave communication).

 Transmission of the go-to-sleep command (Lin_GoToSleep) for LIN master
nodes.

 Setting a LIN channel to state .IN_CH_SLEEP without transmitting a go-to-sleep
command (Lin_GoToSleepInternal).

 Transmission of the wake-up command (Lin_Wakeup).

» Setting a LIN channel to state L.IN_CH_OPERATIONAL without transmitting a
wakeup command (Lin_WakeupInternal).

» Query of transmission status and reception of the response part of a frame
(Lin_Getstatus) for LIN master nodes. The following cases are distinguished:

AUTSSAR

— Successful reception/transmission.
— No reception.
— Erroneous reception/transmission (framing error, bit error, checksum error).

— Ongoing reception — at least one response byte has been received, but the
checksum byte has not been received.

— Ongoing transmission.

— Channel In sleep (the go-to-sleep command has been successfully transmit-
ted).

For LIN slave nodes, the LIN Interface assumes the following primitives to be serviced
by the LIN Driver in addition:

* Indication of a received header (LinIf_HeaderIndication). It is assumed
that this primitive also tells the direction of the frame response (transmit, receive
or Slave—to-slave communication).

* Indication of a received response (LinIf_ RxIndication).
+ Confirmation of a transmitted response (LinIf TxConfirmation).

+ Indication of a detected communication error event (LinIf_LinErrorIndica-—
tion). The following cases are distinguished:

Error during header reception

Framing error in response

Checksum error

Bit error during response transmission

Incomplete response
— No response

The LIN Interface does not use or access the LIN hardware or assume information
about it any way other than what the LIN Driver provides through the function calls to
the LIN Driver listed above.

5.2.2 LIN Transceiver Driver

Optionally, the LIN Interface requires the services of the underlying LIN Transceiver
Driver specified by [18].

The LIN Interface maps the following services for all underlying LIN Transceiver Drivers
to one unique interface.

» Unique LIN Transceiver Driver mode request and read services to manage the
operation modes of each underlying LIN transceiver device.

AUTSSAR

* Read service for LIN transceiver wake up reason support.

* Mode request service to enable/disable/clear wake up event state of each used
LIN transceiver.

The LIN Interface does not use or access the LIN hardware or assume information
about it any way other than what the LIN Transceiver Driver provides through the func-
tion calls to the LIN Transceiver Driver listed above.

5.3 File structure

5.3.1 Header file structure

This section describes the header files that will be included by the LIN Interface and
possible other modules.

[SWS_Linlf_00889] Include the header file of LSduR for Linlf
Status: DRAFT

[The LIN Interface shall include the defined include files of all upper layer BSW mod-
ules it is connected to, e.g. in case of connection to the L-SDU Router the file LSduR_
Linlf.h (see [CP_SWS_LSduR_00001]). |

[SWS_Linlf_00561] [The LIN Interface shall include the file PduR_LinTp.h, if the LIN
TP is enabled (configuration parameter LinIfTpSupported). |

[SWS_Linlf_00555] [The LIN Interface shall include the file LinTrcv.h, if the configura-
tion parameter LinIfTrcvDriverSupported is setto TRUE. |

[SWS_Linlf_00669] [The LIN Interface shall include the header file(s) of the CDD(s)
for callback declaration. The names of the header files are configurable via configura-
tion parameter LinIfPublicCddHeaderFile. |

[SWS_Linlf_00872] [The LIN Interface shall include the header file Mirror.h if Bus
Mirroring is enabled (configuration parameter LinIfBusMirroringSupported). |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [20] and [21], and links to
the fulfillment of these. Requirements that are not fulfilled by this document are linked
to [SWS_Linlf_ NA 99999].

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Linlf_00198] [SWS_Linlf_00350]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Linlf_00375]

[SRS_BSW_00170]

The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

[SWS_Linlf_00373]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Linlf_00310] [SWS_Linlf_00387]

[SRS_BSW_00327]

Error values naming convention

[SWS_Linlf_00376] [SWS_Linlf 00729]

[SRS_BSW_00328]

All AUTOSAR Basic Software
Modules shall avoid the duplication of
code

[SWS_Linlf_00386]

[SRS_BSW_00335]

Status values naming convention

[SWS_Linlf_00316] [SWS_Linlf_00319]
[SWS_Linlf_00438] [SWS_Linlf_00439]
[SWS_Linlf_00441] [SWS_Linlf_00442]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Linlf_00355]

[SRS_BSW_00337]

Classification of development errors

[SWS_Linlf_00376]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Linlf_00373]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_Linlf_00198] [SWS_Linlf_00350]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Linlf_00384]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_Linlf_00378]

[SRS_BSW_00385]

List possible error notifications

[SWS_Linlf_00376] [SWS_Linlf_00729]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Linlf_00373]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Linlf_00373]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Linlf_00376]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Linlf_00340] [SWS_Linlf_00352]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00413]

An index-based accessing of the
instances of BSW modules shall be
done

[SWS_Linlf_00197] [SWS_Linlf_00469]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Linlf_00198] [SWS_Linlf_00350]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_Linlf_00198] [SWS_Linlf_00350]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_Linlf_00248]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_Linlf_00729]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_Linlf_00376]

[SRS_BSW_00481]

Invalid configuration set selection
errors shall follow a naming rule

[SWS_Linlf_00376]

[SRS_Lin_01502]

The LIN Interface shall support an
API for RX/TX notifications.

[SWS_Linlf_00890] [SWS_Linlf_00891]
[SWS_Linlf_00895] [SWS_Linlf_00900]

[SRS_Lin_01504]

The usage of AUTOSAR architecture
shall be applicable for LIN master
nodes

[SWS_Linlf_00248]

[SRS_Lin_01514]

The LIN Interface shall inform an
upper layer about wake-up events

[SWS_Linlf_00378]

[SRS_Lin_01515]

The LIN Interface shall provide an
API to wake-up a LIN channel cluster

[SWS_Linlf_00205]

[SRS_Lin_01523]

There shall be an API call to set the
LIN bus to sleep-mode.

[SWS_Linlf_00204]

[SRS_Lin_01534]

The AUTOSAR LIN Transport Layer
shall support half-duplex physical
connections.

[SWS_Linlf_00062]

[SRS_Lin_01540]

The LIN Transport Layer shall provide
an API for initialization.

[SWS_Linlf_00350]

[SRS_Lin_01544]

Errors shall be handled

[SWS_Linlf_00079] [SWS_Linlf_00651]

[SRS_Lin_01546]

The LIN Interface shall contain a
Schedule Table Handler for LIN
master nodes.

[SWS_Linlf_00028] [SWS_Linlf_00384]
[SWS_Linlf_00393]

[SRS_Lin_01551]

One LIN Interface shall support one
or more LIN Drivers.

[SWS_Linlf_00386]

[SRS_Lin_01555]

The LIN driver shall have an interface
to retrieve transmit / receive
notifications.

[SWS_Linlf_00384]

[SRS_Lin_01558]

The LIN Interface shall check for
successful data transfer for LIN
master nodes

[SWS_Linlf_00890] [SWS_Linlf_00891]
[SWS_Linlf_00895] [SWS_Linlf_00900]

[SRS_Lin_01560]

If a wakeup occurs during transition
to sleep-mode, this channel shall go
back to the running mode

[SWS_Linlf_00459]

[SRS_Lin_01561]

The LIN Interface shall define a main
function per channel

[SWS_Linlf_00384]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Lin_01564]

A Schedule Table Manager shall be
available for LIN master nodes.

[SWS_Linlf_00078] [SWS_Linlf_00202]
[SWS_Linlf_00495] [SWS_Linlf_00619]
[SWS_Linlf_00623] [SWS_Linlf_00658]
[SWS_Linlf_00662] [SWS_Linlf_00666]
[SWS_Linlf_00702] [SWS_Linlf_00877]
[SWS_Linlf_00878] [SWS_Linlf_00879]

[SRS_Lin_01569]

The LIN Interface shall support
initialization of each LIN channel
separately

[SWS_Linlf_00198]

[SRS_Lin_01571]

Transmission request service shall be
provided

[SWS_Linlf_00201] [SWS_Linlf_00730]
[SWS_Linlf_00731] [SWS_Linlf_00732]

[SRS_Lin_01574]

It shall be possible to have one
instance of the TP for each channel

[SWS_Linlf_00314]

[SRS_Lin_01576]

The ISO 17987 specifications shall
be reused as far as possible

[SWS_Linlf_00248]

[SRS_Lin_01577]

It shall be compatible to LIN protocol
specification

[SWS_Linlf_00248]

[SRS_Lin_01579]

The AUTOSAR LIN Transport Layer
shall be based on the Diagnostic
Transport Layer for ISO 17987.

[SWS_Linlf_00313]

[SRS_Lin_01584]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Standby mode.

[SWS_Linlf_00544]

[SRS_Lin_01585]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Sleep mode.

[SWS_Linlf_00544]

[SRS_Lin_01586]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Normal mode.

[SWS_Linlf_00544]

[SRS_Lin_01587]

The LIN Transceiver Driver shall
support an API to read out the
current operation mode.

[SWS_LinIf_00545]

[SRS_Lin_01588]

The LIN Transceiver Driver shall
support an API to read out the the
reason of the last wakeup.

[SWS_Linlf_00547]

[SRS_Lin_01589]

The bus transceiver driver shall
support an API to enable and disable
the wakeup notification for each bus
separately.

[SWS_Linlf_00550]

[SRS_Lin_01590]

The node configuration of LIN slaves
shall only be done via defined
schedule table(s) in master nodes.

[SWS_Linlf_00401]

[SRS_Lin_01592]

The AUTOSAR LIN Transport Layer
shall support the transmission of
functional requests at any time for
master nodes.

[SWS_Linlf_00062]

[SRS_Lin_01593]

The value of LIN Transport protocol
timeouts shall be statically
configurable for each connection.

[SWS_Linlf_00617] [SWS_Linlf_00621]
[SWS_Linlf_00623]

[SRS_Lin_01594]

LIN slave shall support the node
configuration and identification
services for slave nodes.

[SWS_Linlf_00810] [SWS_Linlf 00811]
[SWS_Linlf_00813]

[SRS_Lin_01595]

The LIN Interface shall support the
setting and clearing of the response
error signal for LIN slave nodes.

[SWS_Linlf_00763] [SWS_Linlf_00764]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Lin_01596]

The LIN Interface shall provide bus
idle condition observation for slave
nodes.

[SWS_Linlf_00751] [SWS_Linlf_00755]

[SRS_Lin_01599]

Linlf Forwarding of L-PDUs to LSduR

[SWS_Linlf_00890] [SWS_Linlf_00891]
[SWS_Linlf_00893] [SWS_Linlf_00894]
[SWS_Linlf_00895] [SWS_Linlf_00896]
[SWS_Linlf_00897] [SWS_Linlf_00898]
[SWS_Linlf_00899] [SWS_Linlf_00900]
[SWS_Linlf_00901]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

It is not required to reinvent the requirements already specified in the ISO 17987 spec-
ifications [1]. However, there are specific details for AUTOSAR and parts that need to
be specified since they are not specified enough or are missing. Specification of these
parts will be made here.

The LIN Interface shall support the behavior of master and slave in the ISO 17987
specifications. The following requirements are the base requirements and the rest of
the requirements in this chapter are refinements of these base requirements.

[SWS_Linlf_00248]
Upstream requirements: SRS_BSW_00425, SRS_Lin_01576, SRS_Lin_01504, SRS _Lin_01577

[The LIN Interface shall support the behavior of the master and slave in the ISO 17987
specifications. |

The requirement above basically means that the communication from a ISO 17987
node and the LIN Interface node will be equal.

[SWS_Linlf_00249] [The LIN Interface shall realize the LIN behavior so that existing
LIN nodes can be reused. |

[SWS_Linlf_00386]
Upstream requirements: SRS _BSW 00328, SRS Lin_ 01551

[The LIN Interface shall be able to handle one or more LIN channels. |

7.1 Frame Transfer

All the functionality of the Protocol Specification in the ISO 17987 specifications [1] is
used. Some parts of the specification need some clarification and additional require-
ments to suite the LIN Interface.

7.1.1 Frame types

The following requirements apply to the different frame types that are specified in the
ISO 17987 specifications [1]. The existing frame types are:

» Unconditional frame (Chapter 7.1.1.1)

« Event-triggered frame (Chapter 7.1.1.2)

* Sporadic frame (Chapter 7.1.1.3)

* Diagnostic frames MRF and sRF (Chapter 7.1.1.4)

* Reserved frames (Chapter 7.1.1.5)

AUTSSAR

The actual transmission/reception of the different frames is detailed in the Chapter
7.1.2 “Frame reception” and Chapter 7.1.3 “Frame transmission”.

7.1.1.1 Unconditional frame

This is the normal frame type that is used in LIN clusters. Its transportation on the bus
strictly follows the schedule table.

7.1.1.2 Event-triggered frame

Event-triggered frames are used to enable sporadic transmission from slaves.
The normal usage for this type of frame is in non-time-critical functions.

The requirements differentiates between master and slaves nodes depending on the
realized node type.

7.1.1.2.1 Event-triggered frame in master nodes

This section is only applicable to LIN master nodes.

Since more than one slave may respond to an Event-triggered frame header,
a collision may occur. The transmitting slaves shall detect this and withdraw from
communication.

[SWS_Linlf_00588] [If a collision occurs in an Event-triggered frame response,
then the LIN Interface shall switch to the corresponding collision resolving schedule
table. |

[SWS_Linlf_00176] [The LIN Interface shall switch to the given collision resolving
schedule table at the end of the current frame slot after a collision has been detected. |

[SWS_Linlf_00519] [The collision resolving schedule table is given by the LIN Inter-
face configuration (configuration parameter LinIfCollisionResolvingRef).]

7.1.1.2.2 Event-triggered frame in slave nodes

This section is only applicable to LIN slave nodes.

Upper layers decide the transmission of the response of an Event-triggered
frame. Therefore, an API call must be available to set the Event-triggered frame
response pending for transmission.

AUTSSAR

[SWS_Linlf_00730]

Upstream requirements: SRS_Lin_01571
[The LIN Interface shall maintain a flag to keep the transfer state of each Event-
triggered frame response (defined in the ISO 17987 specifications [1]).]

The first data byte of the Unconditional frame response allocated to an Event-
triggered frame is reserved for the PID of the Unconditional frame.

[SWS_Linlf_00731]
Upstream requirements: SRS_Lin_01571

[If the header of an Event-triggered frame is received and the associated re-
sponse is pending, the LIN Interface shall transmit the PID of the Unconditional
frame in the first byte of the response data. The payload of the Unconditional
frame response shall be transmitted in the following bytes. |

[SWS_Linlf_00732]
Upstream requirements: SRS_Lin_01571

[The LIN Interface shall clear the pending flag of an Event-triggered frame re-
sponse once it has been transmitted successfully. This applies also to the case if the
response is successfully transmitted as an Unconditional frame.]

7.1.1.3 Sporadic frame (Master only)

This section is only applicable to LIN master nodes. From a LIN slave point of view, a
received Sporadic frame does not differ from a received Unconditional frame.

The ISO 17987 specifications [1] define a Sporadic frame. A more precise definition
of the Sporadic frames is needed here:

* Sporadic slot — This is a placeholder for the Sporadic frames. The rea-
son to name it “slot” is that it has no LIN frame ID.

* Sporadic frame — This is one of the Unconditional frame that are at-
tached to a Sporadic slot.

[SWS_Linlf_00012] [The master shall be the only allowed transmitter of a Sporadic
frame (defined in the ISO 17987 specifications). |

[SWS_Linlf_00436] [Only a Ssporadic frame shall allocate a Sporadic slot (de-
fined in the ISO 17987 specifications). |

Upper layers decide the transmission of a Sporadic frame. Therefore, an API call
must be available to set the Sporadic frame pending for transmission.

[SWS_Linlf_00470] [The LIN Interface shall flag the specific Sporadic frame (de-
fined in the ISO 17987 specifications) for transfer. |

AUTSSAR

[SWS_Linlf_00471] [The LIN Interface shall transmit the specific Sporadic frame
(defined in the ISO 17987 specifications) in the associated Sporadic slot according
to the priority of the Sporadic frames.]|

The priority of the Sporadic frames is the order in which the Sporadic frames
are listed in the LDF. The priority mechanism of the LDF is not applicable here.

[SWS_Linlf_00014] [The priority of Sporadic frames (defined in the ISO 17987
specifications) allocated to the same schedule slot is defined by the configuration pa-
rameter LinIfFramePriority.]

7.1.1.4 Diagnostic Frames MRF and SRF

The Master Request Frame (MRF) and Slave Response Frame (SRF) are frames with a
fixed ID that are used for transportation of ISO 17987 node configuration services and
TP messages.

7.1.1.4.1 Diagnostic Frames MRF and SRF (Master only)

The I1ISO 17987 specifications [1] are vague in specifying when MRF and SRF are to
be transported and when the corresponding schedule entry is due. The LIN Interface
processes the schedule (Schedule Table Manager) and therefore knows when a TP
transmission is ongoing. Therefore, the following requirement can be stated:

[SWS_Linlf_00066] [The LIN Interface shall send an MRF if there is an ongoing TP
transmission, when a schedule entry is due, and there is data to be sent. |

Note that also the node configuration mechanism uses the MRF but above requirement
does only apply when the MRF is encountered in the schedule table. The node config-
uration shall have special schedule entries as seen below.

For the slave response frame, the master node sends only the header. Generally, it is
always sent because the master cannot know whether the slave has anything to send
in the response part of the frame. An exception to that is the case when the master
node wishes to prevent reception of such a frame during a TP frame sequence because
there is no buffer to store them.

[SWS_Linlf_00023] [The LIN Interface shall always send an SRF header when a
schedule entry is due except if the TP indicates that the upper layer is temporarily
unable to provide a receive buffer. |

7.1.1.5 Reserved frames

The LIN Interface module does not support transmission of Reserved frames.

AUTSSAR

Note: The ISO 17987 specifications [1] do not allow Reserved frames (not allowed
since LIN 2.1 [3]).

7.1.2 Frame reception
7.1.2.1 Frame reception in master nodes

This section is only applicable to LIN master nodes.
The LIN master controls the schedules and therefore initiates all frames on the bus.

The requirements in this section are applicable to all received frame types that are
received by the master if scheduled and pending for transportation (e.g. a schedule
entry with an SRF can be silent or pending for transportation).

7.1.2.1.1 Header

[SWS_Linlf_00419] [The LIN Interface shall call the function Lin_SendFrame of the
LIN Driver module when a new schedule entry for a frame reception is due. |

7.1.2.1.2 Response

The LIN Driver will automatically be set to reception state after the header is transmit-
ted.

7.1.2.1.3 Status check

[SWS_Linlf_00030] [The LIN Interface shall determine the status of the LIN Driver
module by calling the function Lin_GetStatus earliest after the maximum frame
length and latest when the next schedule entry is due. |

It is up to the LIN Interface module’s implementer to find an efficient way to determine
the status check of the LIN Driver. The normal implementation would be that the sta-
tus is checked within each LinIf MainFunction_ <LinIfChannel.ShortName>
function call after the maximum frame length has passed. In this case, the frame trans-
mission is still going on (busy). Therefore the status determination shall be checked
again within the next LinIf_MainFunction_<LinIfChannel.ShortName> func-
tion call (if the current LinIf_MainFunction_<LinIfChannel.ShortName> does
not start a new frame, of course).

The Figure 7.1 shows an example of how the frame transmission is initiated and con-
firmed on the bus.

AUTSSAR

o Maximum frame length (i.e. +40 %)
Bus activity
Mominal LIN frame length

A A A A A A
/|

Linff_MainFunction_ Linff_MainFunction_
=zLinfChannel ShortMName= =LinffChannel. ShortName=
calls will initiate the frame.

Linif_MainFunction_=<LinlfChannel ShortMName=
calls Lin_GetStatus.

Figure 7.1: Lin_GetStatus call example

When the status from the function Lin_GetsStatus is returned and a frame is re-
ceived, the following interpretation for different types of frames takes place:

[SWS_Linlf_00873] [If Bus Mirroring is enabled globally (configuration parameter

LinIfBusMirroringSupported) and has been activated with a call to LinIf_ -
EnableBusMirroring () for a LIN channel, the LIN Interface shall call Mirror_
ReportLinFrame () each time after reading the LIN Driver’s status for an Rx slot on
that channel, providing the received data when the status is LIN_RX_OK, and otherwise
a NULL pointer. |

[SWS_Linlf 00890] Limitation on invocation of LSduR_LinIfRxIndication in

master nodes
Status: DRAFT

Upstream requirements: SRS_Lin_01502, SRS Lin_01558, SRS Lin_ 01599

[The LIN Interface shall invoke LSduR_LinIfRxIndication with the received data
only when LIN Interface determines the LIN Driver module’s status is LIN_RX_OK. |

[SWS_Linlf_00259] [When the LIN Interface is receiving an Event-triggered
frame and the LIN Driver module’s status is LIN_RX_BUSY or LIN_RX_ERROR, the
LIN Interface shall not consider the status as an error. |

This is considered that a collision may occur, which is handled as described in Chapter
7.1.1.2. The following shall apply, if none of the slave reply on the Event-triggered
frame header.

[SWS_Linlf_00258] [When the LIN Interface has received an Event-triggered
frame and determined the LIN Driver module’s status to be LIN RX NO_RESPONSE,
the LIN Interface shall not consider this status as an error. |

AUTSSAR

[SWS_Linlf_00254] [When the LIN Interface has determined the LIN Driver module’s
status as LIN_RX_BUSY or LIN_RX_ERROR, the LIN Interface shall consider the re-
ceived frame as lost. Therefore, the LIN Interface shall report the runtime error code
LINIF_E_RESPONSE to the Default Error Tracer, if this frame is an Unconditional
frame. |

[SWS_Linlf_00466] [When the LIN Interface has determined the LIN Driver module’s
status as LIN_RX_NO_RESPONSE, the LIN Interface shall consider the expected frame
as lost. Therefore, the LIN Interface shall report the runtime error code LINIF_E_
RESPONSE to the Default Error Tracer, if this frame is an Unconditional frame.]

If there is disturbance on the bus, the LIN Interface may have problems sending out the
header. The philosophy of the ISO 17987 specifications [1] in this case is not reporting
the error to upper layers. The same behavior applies also for transmitted and s1ave-
to-slave frames.

7.1.2.2 Frame reception in slave nodes

This section is only applicable to LIN slave nodes.

The LIN slave has no knowledge about the scheduling of the LIN master, it solely reacts
to received LIN headers reported by the LIN Driver with the header indication callback
function LinIf HeaderIndication.

The requirements in this section are applicable to all frame types that are received
by the slave. An exception is the MRF for which only the header handling in Chapter
7.1.2.2.1 applies, but the response handling is described in Chapter 7.6.2 and Chapter
7.6.3.

7.1.2.2.1 Header

[SWS_Linlf_00733] [If the PID of a received header is evaluated and belongs to a
configured receive frame, before returning from the callback LinIf_ HeaderIndica-
tion the LIN Interface shall set the PduPtr->Cs and PduPtr->D1 to the configured
values and shall set the PduPtr->Drc t0 LIN_FRAMERESPONSE_RX. |

7.1.2.2.2 Response

The completion of each response reception is notified to the LIN Interface. The LIN
Driver indicates a successfully received response to the LIN Interface with the re-
sponse indication callback function .inIf_RxIndication and an unsuccessful re-
sponse with the error indication callback function LinIf_LinErrorIndication.

AUTSSAR

[SWS_Linlf_00891] Invocation of LSduR_LinIfRxIndication for Response in

slave nodes
Status: DRAFT
Upstream requirements: SRS_Lin_01502, SRS_Lin_01558, SRS _Lin_01599

[If the function LinIf RxIndication is called, the LIN Interface shall invoke
LSduR_LinIfRxIndication with the received data and payload length. |

[SWS_Linlf_00838] [If Bus Mirroring is enabled globally (configuration parameter
LinIfBusMirroringSupported) and has been activated with a call to LinTIf_-
EnableBusMirroring () fora LIN channel, the LIN Interface shall call Mirror_Re-
portLinFrame () eachtime LinIf_RxIndication is called on that channel, with
status code LIN_RX_OK and a pointer to the received data. |

[SWS_Linlf_00735] [If the function LinIf_LinErrorIndication is called, the LIN
Interface shall consider the response as lost. Therefore, the LIN Interface shall report
the runtime error code LINIF_E_RESPONSE to the Default Error Tracer unless the
error code of LinIf_ LinErrorIndication is LIN_ERR_HEADER. |

[SWS_Linlf_00736] [If the reported error is of type LIN_ERR_RESP_STOPBIT, LIN_
ERR_RESP_CHKSUM, LIN_ERR_RESP_DATABIT or LIN_ERR_INC_RESP, the LIN In-
terface shall set the response_error signal (see [SWS_Linlf_00764]). |

[SWS_Linlf_00846] [If LinIf_HeaderIndication is called while the indication of
a response reception is expected, the LIN Interface shall consider the received frame
as lost. Therefore, the LIN Interface shall report the runtime error code LINIF_E_
RESPONSE to the Default Error Tracer. Afterwards, the received LIN Header shall be
processed. |

[SWS_Linlf_00869] [If Bus Mirroring is enabled globally (configuration parameter
LinIfBusMirroringSupported) and has been activated with a call to LinIf_ -
EnableBusMirroring () for a LIN channel, the LIN Interface shall call Mirror_ Re-
portLinFrame () eachtime LinIf_ LinErrorIndication is called on that chan-
nel with any error code of LinIf_LinErrorIndication other than LIN_ERR_-
HEADER, providing the error status code and a NULL pointer for the frame content. |

[SWS_Linlf_00870] [The LIN Interface shall translate the error code reported by

LinIf_LinErrorIndication to an error code of Lin_StatusType before calling

Mirror_ReportLinFrame (). The error code LIN_ERR_RESP_STOPBIT shall be
mapped LIN_TX_ERROR Or LIN_RX_ERROR, depending on the direction of the current
frame. The error codes LIN_ERR_RESP_CHKSUM and LIN_ERR_INC_RESP shall be
mapped to LIN_RX_ERROR. The error code LIN_ERR_NO_RESP shall be mapped to

LIN_RX_NO_RESPONSE. The error code LIN_ERR_RESP_DATABIT shall be mapped
to LIN_TX_ERROR. |

Rationale: Mirror_ReportLinFrame () expects a Lin_StatusType parameter.

AUTSSAR

7.1.3 Frame transmission
7.1.3.1 Frame transmission in master nodes

This section is only applicable to LIN master nodes.

A LIN frame is transmitted inthe LinTf_MainFunction_<LinIfChannel.Short-
Name> when a new schedule entry is due.

The requirements in this section are applicable to all frame types that are transmitted
by the master if scheduled and pending for transportation (e.g. an Unconditional
frame that is scheduled is always pending for transportation, a Sporadic frame slot
may be pending for transportation or silent).

7.1.3.1.1 Header and response

[SWS_Linlf_00892] Invocation of LSduR LinIfTriggerTransmit in master
nodes

Status: DRAFT

[The LIN Interface shall call the function LSduR_LinIfTriggerTransmit with the
PduInfoPtr pointer containing data buffer (SdubataPtr) and buffer length (Sdu-
Length) to get the data part of the frame (data in the LIN frame response) when a
schedule entry for a frame transmission is due. |

[SWS_Linlf_00893] Invocation of Lin_SendFrame after successful invocation of
LSduR_LinIfTriggerTransmit in master nodes

Status: DRAFT

Upstream requirements: SRS_Lin_01599

[After getting the data part of the frame (when the function LSduR_LinIfTrigger-
Transmit returns E_OK), the LIN Interface shall call the LIN Driver module’s function
Lin_SendFrame to provide the LIN Driver a pointer to the data part. |

[SWS_Linif_00894] Behavior after failed invocation of LSduR_LinIfTrigger-

Transmit in master nodes
Status: DRAFT

Upstream requirements: SRS_Lin_01599

[When the function LSduR_LinIfTriggerTransmit returns E_NOT_OK, the LIN In-
terface shall not transmit the Sporadic frame or Unconditional frame forwhich
the data was requested. |

7.1.3.1.2 Status check

[SWS_Linlf_00874] [If Bus Mirroring is enabled globally (configuration parameter
LinIfBusMirroringSupported) and has been activated with a call to LinIf_ -

AUTSSAR

EnableBusMirroring () fora LIN channel, the LIN Interface shall call Mirror_ Re-
portLinFrame () each time after reading the LIN Driver’s status for a Tx slot on that
channel, providing the transmitted data when the status is LIN_TX_OK, and otherwise
a NULL pointer. |

[SWS_Linlf_00895] Limitation on invocation of LSduR_LinIfTxConfirmation

in master nodes
Status: DRAFT

Upstream requirements: SRS_Lin_01502, SRS Lin_01558, SRS Lin_ 01599

[If the return code of the function Lin_GetStatus is LIN_TX_OK, the LIN Interface
shall issue a LSduR_LinIfTxConfirmation callback with result E_OK. |

[SWS_Linlf_00896] Invocation of LSduR_LinIfTxConfirmation at error or busy

conditions in master nodes
Status: DRAFT

Upstream requirements: SRS_Lin_01599

[If the return code of the function Lin_GetStatus is LIN_TX_ERROR Of LIN_TX_
BUSY, the LIN Interface shall issue a LSduR_LinIfTxConfirmation callback with
result E_NOT_OK. |

[SWS_Linlf_00036] [If the return code of the function Lin_GetStatus iS LIN_TX__
ERROR and any LIN frame transmission is attempted, the LIN Interface shall consider
the transmitted frame as lost and report the runtime error code LINIF_E_RESPONSE
to the Default Error Tracer. |

[SWS_Linlf_00465] [If, just before a new frame is transmitted, the return code of the
function Lin_GetStatus is LIN_TX_ BUSY, the LIN Interface shall consider the old
frame as lost and report the runtime error code LINIF_E_RESPONSE to the Default
Error Tracer. |

[SWS_Linlf_00463] [If the LIN Interface has transmitted a Sporadic frame suc-
cessfully, it shall reset the pending flag. |

Note that Sporadic frames should not be used in combination with a PduR FIFO
(PduRQueueDepth > 1).

7.1.3.2 Frame transmission in slave nodes

This section is only applicable to LIN slave nodes.

The LIN slave has no knowledge about the scheduling, it solely reacts to received
LIN headers reported by the LIN Driver with the header indication callback function
LinTf HeaderIndication.

The requirements in this section are applicable to all frame types that are transmitted by
the slave. An exception is the sRF for which only the requirements [SWS_Linlf_00898]

AUTSSAR

and [SWS_Linlf_00743] of this section apply, but the remaining handling is described
in Chapter 7.6.2 and Chapter 7.6.3. Event-triggered frames have also a special
handling as described in Chapter 7.1.1.2.2.

7.1.3.2.1 Header

[SWS_Linlf_00897] Invocation of LSduR_LinIfTriggerTransmit after Header

indication in slave nodes
Status: DRAFT

Upstream requirements: SRS_Lin_01599

[If LinIf_HeaderIndication is called and the PID is evaluated and determined
as a transmit frame, the LIN Interface shall call the function LSduR_LinIfTrigger-
Transmit withthe PduInfoPtr->SduDataPtr setto the buffer provided as PduPt r-
>SduPtr and PduInfoPtr->SduLength set to the configured length to get the data
part of the frame (data in the LIN frame response). |

If the frame type is an Event-triggered frame, see also [SWS_Linlf_00731].

[SWS_Linlf_00898] Handling of Cs, DI and Drc in slave nodes
Status: DRAFT
Upstream requirements: SRS_Lin_01599

[After getting the data part of the frame (when the function LSduR_LinIfTrigger-
Transmit returns E_OK or the SRF data is provided by node configuration handler or
transport protocol), before returning from the callback L.inTIf_HeaderIndication,
the LIN Interface shall set the PduPtr->Cs and PduPtr->D1 to the configured values
and shall set the PduPtr->Drc to LIN_FRAMERESPONSE_ TX. |

[SWS_Linlf_00899] Handling of Drc for failed invocation of LSduR_LinIfTrig-
gerTransmit in slave nodes

Status: DRAFT

Upstream requirements: SRS_Lin_01599

[When the function LSduR_LinIfTriggerTransmit returns E_NOT_OK, the LIN In-
terface shall set the PduPt r->Drc to LIN_FRAMERESPONSE_ IGNORE before returning
from the callback LinIf HeaderIndication.|

Rationale: Avoid transmission of invalid data on the bus.

7.1.3.2.2 Response

The completion of each response transmission is notified to the LIN Interface. The LIN
Driver confirms a successfully transmitted response to the LIN Interface with the re-
sponse confirmation callback function LinIf_TxConfirmation and an unsuccessful
response with the error indication callback function LinIf_LinErrorIndication.

AUTSSAR

[SWS_Linlf_00900] Invocation of LSduR_LinIfTxConfirmation after LinIf

TxConfirmation in slave nodes
Status: DRAFT

Upstream requirements: SRS_Lin_ 01502, SRS Lin 01558, SRS Lin 01599

[If the function LinIf TxConfirmation is called, the LIN Interface shall issue a
LSduR_LinIfTxConfirmation callback with result E_OK. |

[SWS_Linlf_00747] [If the function LinIf_ TxConfirmation is called and the trans-
mitted frame contains the response_error signal, the LIN Interface shall clear the
response_error Signal. |

If the frame type is an Event-triggered frame Of Unconditional frame, CcON-
sider also [SWS_Linlf_00732].

[SWS_Linlf_00847] [If LinIf HeaderIndication is called while the confirmation
of a response transmission is expected, the LIN Interface shall consider the transmitted
frame as lost. Therefore, the LIN Interface shall report the runtime error code LINIF_
E_RESPONSE to the Default Error Tracer. Afterwards, the received LIN Header shall be
processed. |

[SWS_Linlf_00839] [If Bus Mirroring is enabled globally (configuration parameter
LinIfBusMirroringSupported) and has been activated with a call to LinIf_ -
EnableBusMirroring () for a LIN channel, the LIN Interface shall call Mirror_
ReportLinFrame () eachtime LinIf_ TxConfirmation is called on that channel,
with status code LIN_Tx_OK and a pointer to the transmitted data. |

[SWS_Linlf 00901] Invocation of LSduR_LinIfTxConfirmation after LinIf

LinErrorIndication in slave nodes
Status: DRAFT

Upstream requirements: SRS_Lin_01599

[If the function LinIf LinErrorIndication is called, the LIN Interface shall issue
aLSduR_LinIfTxConfirmation callback with result E_NOT_OX. |

[SWS_Linlf_00743] [If the function LinIf_LinErrorIndication is called, the LIN
Interface shall consider the transmitted frame as lost and report the runtime error code
LINIF_E_RESPONSE to the Default Error Tracer unless the error code of LinIf_-
LinErrorIndication is LIN_ERR_HEADER. |

[SWS_Linlf_00744] [If the error reported in LinIf_ LinErrorIndication is of type
LIN_ERR_RESP_STOPBIT, LIN_ERR_RESP_CHKSUM Or LIN_ERR_RESP_DATABIT,
the LIN Interface shall set the response_error signal (see [SWS_Linlf_00764]). |

See [SWS_Linlf_00869] and [SWS_Linlf_00870] for the reporting to the Bus Mirroring
module when LinIf LinErrorIndication is called.

AUTSSAR

7.1.4 Slave-to-slave communication (Master only)

This section is only applicable to LIN master nodes.

The third direction of a frame is the Slave-to-slave communication. This is a sup-
ported but not recommended way to use the LIN bus. It creates dependencies between
the slaves that are not desirable.

7.1.4.1 Header

[SWS_Linlf_00416] [The LIN Interface shall call the LIN Driver module’s function
Lin_SendFrame when a new schedule entry for a Slave-to-slave communication
is due. |

7.1.4.2 Response

[SWS_Linlf_00417] [The LIN Interface shall not be involved in the Slave-to-slave
communication, in either transmission or reception of the response. |

7.1.4.3 Status check

[SWS_Linlf_00418] [The LIN Interface shall not check the LIN Driver module’s status
after the transportation of the Slave-to-slave communication response. |

7.1.5 Irrelevant communication (Slave only)

This section is only applicable to LIN slave nodes.

The third direction of a frame response is the response of an Irrelevant frame.

[SWS_Linlf_00748] [If LinIf_ HeaderIndication is called and the PID is evalu-
ated and determined as a frame that is not relevant for the slave, before returning from
the callback LinIf HeaderIndication, the LIN Interface shall set the PduPtr->
Drc to LIN_FRAMERESPONSE_IGNORE. |

The LIN Driver will not call LinIf RxIndicationor LinIf TxConfirmation for
Irrelevant frames.

AUTSSAR

7.2 Schedules (Master only)

This section is only applicable to LIN master nodes.

The schedule table is the basis of all communication in an operational LIN cluster.
Because the LIN Interface always operates as a LIN master, it has to process the
schedule table.

Each channel may have separate sets of schedule tables. The time between starts of
frames (delay) is a multiple of the time-base for the specific cluster.

[SWS_Linlf_00261] [The delay between processing two frames shall be a multiple of
a period which is given by configuration parameter LinIfMainFunctionPeriod. |

[SWS_Linlf_00231] [The LIN Interface shall provide a predefined schedule table per
channel (named NULL_SCHEDULE). |

[SWS_Linlf_00263] [The schedule table NULL_SCHEDULE shall contain no entries. |

7.2.1 Schedule table manager

The schedule table manager is not defined in the ISO 17987 specifications [1].

The schedule table manager handles the schedule table and therefore indicates when
frame transmission and reception occurs.

The schedule table manager of the LIN Interface supports two types of schedule tables:
RUN_CONTINUOUS and RUN_ONCE.

The idea to support two types of schedule tables is that there is a set of “normal”
schedule tables defined as RUN_CONTINUOUS that are executed in normal communi-
cation. The RUN_ONCE schedule table is used for making specific requests from the
LIN cluster. The use cases for RUN_ONCE schedule tables are:

« starting a diagnostic session
» make an ISO 17987 node configuration

* poll Event-triggered frames Of Sporadic frames

[SWS_Linlf_00727] [The point in time where a schedule table switch is performed de-
pends on the optional configuration parameter LinIfScheduleChangeNextTime—
Base. If LinIfScheduleChangeNextTimeBase is disabled or absent, the schedule
table shall be switched after the current entry of the active schedule table is ended.
If LinIfScheduleChangeNextTimeBase is enabled, the schedule table shall be
switched when message transmission or reception within an entry has been completed,
ensured by status checks for transmission and reception. |

Note: The conditions under which schedule table switches can take place
are given by [SWS Linlf 00176], [SWS_Linlf 00293], [SWS_Linlf 00393],

AUTSSAR

[SWS_Linlf_00588], [SWS_Linlf_00617], [SWS_Linlf_00656], [SWS_Linlf_00660],
and [SWS_Linlf_00664].

Special treatment is needed for the NULL_SCHEDULE. Since, it should be possible to
set this schedule at any time.

[SWS_Linlf_00444] [If the LIN Interface’s environment is requesting a NULL_SCHED—
ULE (or set in case of initialization or sleep) the schedule table manager of the LIN
Interface shall change to NULL_SCHEDULE at the next possible time (even if the cur-
rent is RUN_ONCE). |

The LIN Interface allows changing of the current schedule table to another one or to
the beginning of the same schedule table. The function LinIf_ScheduleRequest
will select the schedule table to be executed. The actual switch to the new schedule is
made as follows:

[SWS_Linlf_00028]
Upstream requirements: SRS_Lin_01546

[The LIN Interface shall start the newly requested schedule table at the next possible
time (e.g. at start of a frame slot) if the current schedule is RUN_CONTINUOUS. |

Note: It is possible to request the same schedule table again. In this case, the table is
restarted.

[SWS_Linlf_00393]

Upstream requirements: SRS_Lin_01546
[The LIN Interface shall execute a schedule table of the type RUN_ONCE from the first
entry to the last entry before changing to a new schedule table. But, if a collision occurs

inan Event-triggered frame response, the LIN Interface shall switch to a collision
resolving schedule table according to [SWS_Linlf_00176]. |

[SWS_Linlf_00495]
Upstream requirements: SRS_Lin_01564

[If the switch to a requested schedule table has been performed, the schedule table
manager shall call the function <User>_ScheduleRequestConfirmation.|

For the sporadic frames, a schedule table switch means that the states of these
frames are not affected.

[SWS_Linlf_00029] [The state of Sporadic frames shall not be cleared when the
schedule table is changed. |

[SWS_Linlf_00397] [The LIN Interface shall perform the latest requested schedule
table of the type RUN_CONTINUOUS if no further schedule requests are left to be served
after a RUN_ONCE schedule table. |

AUTSSAR

[SWS_Linlf_00485] [The definition where the execution of a RUN_CONTINUOUS
schedule table shall be proceeded in case it has been interrupted by a table of the
type RUN_ONCE shall be configurable by the configuration parameter LinI fResume-
Position.]

Note: Since the function LinIf_Init will setthe NULL_SCHEDULE it means that there
is always a latest requested schedule table.

7.3 Main function

The LinIf_MainFunction_<LinIfChannel.ShortName> is the central process-
ing function in the LIN Interface. It has to be called periodically.

For LIN master nodes, the task of the function LinIf_ MainFunction_-
<LinIfChannel.ShortName> is to poll the Schedule Table Manager, initiate frame
transmission and receptions and interact with upper and lower layers.

For LIN slave nodes, the task of the function LinIf MainFunction_-
<LinIfChannel.ShortName> is to supervise different timings. It is up to the im-
plementer to decide if the frame handling and interaction with upper and lower layers
is handled on task level or inside the LIN interface callback functions.

The SchM will call the function LinIf_ MainFunction_<LinIfChannel.Short-
Name> periodically with a period which is given by the configuration parameter Lin-
IfMainFunctionPeriod.

7.4 Network management

The network management described in this section is based on the ISO 17987 network
management [6] and shall be not mixed up with the AUTOSAR network management.

In addition to the wake-up request and the go-to-sleep command, the network man-
agement is extended with node management. The node management describes more
precisely than the ISO 17987 specifications how a node operates.

7.4.1 Node Management

The LIN Interface shall operate as a state-machine. Each physical channel which is
connected to the LIN Interface operates in a sub-state-machine.

AUTSSAR

7.4.1.1 LIN Interface state-machine

[SWS_Linlf_00039] [The LIN Interface shall have one state-machine. The state-
machine is depicted in [SWS_Linlf_00887] (for master nodes) and [SWS_Linlf_00888]
(for slave nodes). |

[SWS_Linlf_00438]
Upstream requirements: SRS_BSW_00335

[The LIN Interface state-machine shall have the state LINIF_UNINIT. |

[SWS_Linlf_00439]
Upstream requirements: SRS_BSW_00335

[The LIN Interface state-machine shall have the state LINIF_INIT. |

[SWS_Linlf_00381] [When the LIN Interface’s environment has called the function
LinIf_TInit, the LIN Interface state-machine shall transit from LINIF_UNINIT to
LINIF_INIT.]

7.4.1.2 LIN channel sub-state-machine

The sub-state-machine of the state LINIF_INIT is depicted in [SWS_Linlf_00887]
(for master nodes) and [SWS_Linlf_00888] (for slave nodes).

[SWS_Linlf_00290] [Each LIN channel shall have a separate channel state-machine. |

[SWS_Linlf_00441]
Upstream requirements: SRS_BSW_00335

[The LIN channel sub-state-machine shall have the state LINIF_CHANNEL_OPERA-
TIONAL.]

Note: In the LIN channel state LINIF_CHANNEL_OPERATIONAL the corresponding
LIN channel shall be initialized and operate normally.

[SWS_Linlf_00189] [The LIN Interface shall receive/transmit LIN frame headers
and responses only when the corresponding LIN channel is in the state LINTIF_-
CHANNEL_OPERATIONAL. |

[SWS_Linlf_00053] [In the state LINIF_CHANNEL_OPERATIONAL, the LIN Inter-
face shall process the currently selected schedule table within the function LinTIf_
MainFunction_<LinIfChannel.ShortName>. This requirement is only applica-
ble to LIN master nodes. |

[SWS_Linlf_00507] [The LIN Interface shall transit from LINIF_UNINIT t0 LINIF_
CHANNEL_SLEEP without sending go-to-sleep command, when the function LinTf_
Init is called. |

AUTSSAR

Note: It is assumed that automatically external slave nodes will enter bus sleep mode
earliest after 4s and latest 10s of bus inactivity (as specified in the ISO 17987 spec-
ifications, see ISO 17987-2 [6] clause 5.4). AUTOSAR slave nodes are initialized in
sleep mode.

[SWS_Linlf_00442]
Upstream requirements: SRS _BSW_00335

[The LIN channel sub-state-machine shall have the state LINIF_CHANNEL_SLEEP. |

[SWS_Linlf_00478] [The LIN Interface shall transit from the channel state LINIF__
CHANNEL_SLEEP to LINIF_CHANNEL_OPERATIONAL when wake up process was ini-
tiated by valid call of LinIf_ Wakeup for the corresponding channel. |

Note: When entering or exiting the LIN channel state LINIF_CHANNEL_SLEEP, the
LIN Interface shall not set the hardware interface or the p-controller into a new power
mode.

[SWS_Linlf_00043] [When a channel is in the LIN channel state LINIF_CHANNEL_
SLEEP, the function LinIf MainFunction <LinIfChannel.ShortName> shall
not initiate any traffic on the bus for the corresponding LIN channel. |

[SWS_Linlf_00887] LIN Interface state-machine and channel sub-state-machine
for LIN Master Nodes |

stm Linlf Node Management: Master/

Reset

LINIF_UNINIT

Linif_Init

e LINIF_INIT N\
®

Linlf_GotoSleep

LINIF_CHANNEL_OPERATIONAL
Linlf_Wakeup
/~ LINIF_CHANNEL_SLEEP
Lin_GetStatus==LIN_CH_SLEEP

- /

For each channel

AUTSSAR

[SWS_Linlf_00888] LIN Interface state-machine and channel sub-state-machine
for LIN Slave Nodes |

stm Linlf Node Management: Slave/

Reset

LINIF_UNINIT

Linif_Init

e LINIF_INIT ™\
LINIF_CHANNEL_OPERATIONAL For each channel
Linlf_Wakeup
LINIF_CHANNEL_SLEEP
Linlf_GotoSleep

7.4.2 Go to sleep process

The transition into sleep mode significantly differs between master and slave nodes.

The LIN master node sends a go-to-sleep command when requested by upper layer to
set all slave nodes on the bus to sleep mode.

The LIN slave node enters sleep mode either by reception of a go-to-sleep command
or by detection of bus inactivity.

7.4.2.1 Go to sleep process in master nodes

This section is only applicable to LIN master nodes.

The function LinIf_GotoSleep initiates a transition into sleep mode on the selected
channel/controller. The transition is carried out by transmitting a LIN diagnostic master
request frame with its first data byte equal to 0 (zero). This is called the go-to-sleep
command in the ISO 17987 specifications (see ISO 17987-2 [6] clause 5.4).

AUTSSAR

[SWS_Linlf_00453] [When processing the go-to-sleep command and the channel
is not in the state LINIF_CHANNEL_SLEEP, the function LinIf_MainFunction_-
<LinIfChannel.ShortName> shall call the function Lin_GoToSleep instead of the
scheduled frame latest when the next schedule entry is due. |

[SWS_Linlf_00597] [When processing the go-to-sleep command and the chan-
nel is in the state LINIF_CHANNEL_SLEEP, the function LinIf_MainFunction_
<LinIfChannel.ShortName> shall call the function Lin_GoToSleepInternal in-
stead of the scheduled frame latest when the next schedule entry is due. |

Rational: This will prevent a wake-up of the attached LIN slaves due to the transmission
of the go-to-sleep command.

This means that the function LinIf MainFunction_<LinIfChannel.Short-
Name> can call the function Lin_GoToS1eep in the interval starting when the previous
frame is finished until the next schedule entry is due. This is up to the implementer to
decide.

[SWS_Linlf_00712] [When the function Lin_GoToSleep Or Lin_GoToSleepIn-—
ternal is called, the function LinIf MainFunction_<LinIfChannel.Short-
Name> shall clear the wakeup flag of selected channel. (see [SWS_Linlf_00716]) |

[SWS_Linlf_00455] [When processing the go-to-sleep command, the function
LinIf MainFunction_ <LinIfChannel.ShortName> shall call the function
Lin_GetStatus of the LIN Driver module, after the delay of the sleep mode frame has
passed. When the return code of the function L.in_GetStatus is LIN_CH_SLEEP, the
function LinIf MainFunction_<LinIfChannel.ShortName> shall set the chan-
nel state of the affected channel to LINIF_CHANNEL_SLEEP. In this case, the go-to-
sleep command transmission has successfully been performed. |

[SWS_Linlf_00454] [When processing the go-to-sleep command, the function
LinIf MainFunction <LinIfChannel.ShortName> shall call the function
Lin_GetStatus of the LIN Driver module, after the delay of the sleep mode frame
has passed. When the return code of the function Lin_GetStatus is not LIN_CH_
SLEEP, the go-to-sleep command transmission has failed. |

[SWS_Linlf_00557] [When the go-to-sleep command was sent successful or the func-
tion Lin_GoToSleepInternal was called, the LIN Interface shall invoke the function
<User>_GotoSleepConfirmation with the parameter TRUE. |

[SWS_Linlf_00558] [When the go-to-sleep command was not sent successful, the
LIN Interface shall invoke the function <User>_GotoSleepConfirmation with the
parameter FALSE. |

[SWS_Linlf_00293] [When entering the LINIF CHANNEL_SLEEP state dur-
ing the go-to-sleep command process, the function LinIf MainFunction_-
<LinIfChannel.ShortName> shall switch the current used schedule table to the
NULL_SCHEDULE. |

AUTSSAR

7.4.2.2 Go to sleep process in slave nodes

This section is only applicable to LIN slave nodes.

There are two distinct events in a slave that initiate the transition to sleep mode, the
reception of a go-to-sleep command and the occurrence of a bus idle timeout.

7.4.2.2.1 Reception of go-to-sleep command

[SWS_Linlf_00750] [If the function LinIf_RxIndication is called and the received
frame is a MRF with the first data byte (NAD) equal to 0, a go-to-sleep command has
been received and the transition to sleep mode shall be executed. |

7.4.2.2.2 Busidle

[SWS_Linlf_00751]
Upstream requirements: SRS_Lin_01596

[The LIN Interface shall provide bus idle timeout observation (configuration parameter
LinIfBusIdleTimeoutPeriod) for each channel in order to detect a sleep mode
transition event caused by bus inactivity. |

[SWS_Linlf_00752] [The LIN Interface shall start the bus idle timeout observation
when the state LINIF_CHANNEL_OPERATIONAL is entered. |

[SWS_Linlf_00753] [The LIN Interface shall stop the bus idle timeout observation
when the state LINIF_CHANNEL_SLEEP is entered. |

[SWS_Linlf_00754] [The LIN Interface shall reload the running bus idle timer each
time when LinIf_ HeaderIndication, LinIf RxIndication, LinIf_ TxCon-
firmationor LinIf LinErrorIndication with any error code is called. |

[SWS_Linlf_00755]
Upstream requirements: SRS_Lin_01596

[In case a bus idle timeout occurs, the sleep mode transition shall be executed. |

7.4.2.2.3 Sleep mode transition

[SWS_Linlf_00756] [In case of [SWS_Linlf_00750] or [SWS_Linlf_00755], the LIN
Interface shall invoke the function <User>_GotoSleepIndication.]

AUTSSAR

[SWS_Linlf_00757] [When the function LinIf_GotoSleep is called, the LIN Inter-
face shall call the function Lin_GoToSleepInternal directly (and not wait for next
main function call). |

Rationale: The LIN driver must be in LIN_CH_SLEEP state to be able to receive a
wakeup frame on bus.

Note: LinIf_GotoSleep may be called in the context of <User>_GotoSleepIndi-
cation.

[SWS_Linlf_00758] [After calling the function Lin_GoToSleepInternal, the LIN
Interface shall clear the wakeup flag of selected channel. (see [SWS_Linlf_00716]). |

[SWS_Linlf_00759] [After calling the function Lin_GoToSleepInternal, the LIN
Interface shall invoke the function <User>_GotoSleepConfirmation with the pa-
rameter TRUE. |

7.4.3 Wake up process

There are different possibilities to wake-up a LIN channel. Either the upper layer re-
quests a wake-up through the LinTf_Wakeup call or a bus wake-up is detected. If
a bus wake-up is detected, LinIf_Wakeup is also called when the upper layer en-
ters the FULL_coM mode after a successful validation through the function LinIf_
CheckWakeup.

7.4.3.1 Wake up process in master nodes
This section is only applicable to LIN master nodes.

[SWS_Linlf_00496] [When the return code of the function LinIf_ Wakeup is E_OK,
the LIN Interface shall issue the function <User>_WakeupConfirmation with the
parameter TRUE. |

[SWS_Linlf_00670] [When the return code of the function LinIf Wakeup is E_-
NOT_OK, the LIN Interface shall issue the function <User>_WakeupConfirmation
with the parameter FALSE. |

7.4.3.1.1 Wakeup during sleep transition in master nodes

It may happen that the upper layer requests a wake-up, when the upper layer has
requested the go-to-sleep command to be transmitted and while it is pending (from the
go-to-sleep request until the status check of the frame). In this case, the following shall
apply (Figure 7.2):

AUTSSAR

[SWS_Linlf_00459]
Upstream requirements: SRS_Lin_01560

[If the go-to-sleep command is requested and the upper layer requests a wake-up
before the go-to-sleep command is executed, the LIN Interface shall neither send the
pending go-to-sleep command nor a wake-up on the bus and shall maintain the LIN
channel state LINIF_CHANNEL_OPERATIONAL.]

[SWS_Linlf_00460] [When the LIN Interface has checked the go-to-sleep command
during the transition to sleep, using the function Lin_Getstatus of the LIN Driver
module and the return code of this function is LIN_CH_SLEEP, the LIN Interface shall
call the function Lin_wWakeup to wake-up the channel again. |

[SWS_Linlf_00699] [In case of [SWS_Linlf_00460], LIN Interface shall not invoke the
function <User>_GotoSleepConfirmation.]

Bus activit
y Linlf_GotoSleep Here a slave is transmitting

is called here. the wake-up reguest.
/ Go-to-sleep [
command >
| _/4\ 4{ A A A Aime

Linlf_MainFunction_ The Lin_GoToSleep will be
=LinffChannel ShortName=> called here and the frame will
calls start.

Here the LIN driver will confirm the
transmission of the go-to-sleep command.
Since the wake-up request is made before,
the state LINIF_CHANNEL _OPERATIONAL

will be maintained.

Figure 7.2: Wake up requested before confirmation of go-to-sleep command

7.4.3.2 Wake up process in slave nodes

This section is only applicable to LIN slave nodes.

If the wakeup is requested by upper layer without previous bus wake-up, the wakeup
process is started by transmitting the wakeup frame and is completed when the master
node starts scheduling (i.e. the first LIN header is received).

[SWS_Linlf_00761] [When the function LinIf_ HeaderIndication is called the
first time after LinIf_Wakeup was called with return code E_OK, the LIN Interface
shall issue the function <User>_WakeupConfirmation with the parameter TRUE. |

AUTSSAR

[SWS_Linlf_00762] [Before returning code E_NOT_OK from the function LinIf_ -
Wakeup, the LIN Interface shall call the function <User>_wakeupConfirmation with
the parameter FALSE. |

Note: When LinIf_Wakeup returns E_OK but the LIN master node does not start
scheduling LIN headers afterwards, the bus was not woken up successfully. In this
case, <User>_WakeupConfirmation is not called causing a timeout in the LIN State
Manager.

7.4.3.2.1 Wakeup during sleep transition in slave nodes

This section is only applicable to LIN slave nodes.

It may happen that the upper layer requests a wake-up during sleep mode transition,
after Lin_GoToSleepInternal has been called and before the sleep mode is en-
tered and the function <User>_GotoSleepConfirmation is called. In this case, the
following shall apply:

[SWS_Linlf_00760] [When the LIN Interface has started the sleep mode transition
and the upper layer requests a wake-up before the sleep mode transition is completed,
the LIN Interface shall not invoke the function <User>_GotoSleepConfirmation
and restart the wakeup process by calling the function Lin_wakeup to wake-up the
channel again. |

7.5 Status Management

The LIN Interface has to be able to report communication errors on the bus in the same
manner as the ISO 17987 specifications describe. However, the reporting is different.

There is an internal reporting within the own node (by using the APl call 1_ifc_-
read_status defined in the ISO 17987-5 specification [22]) that sets the Error_
in_response (not to be confused with the slave signal response_error) and the
Successful_transfer bits. The strategy here is only to report errors and not to
monitor successful transfers.

The conditions for the Error_in_response will be set in the LIN Interface in the
same way as described in the ISO 17987 specifications but not reported in the same
way. How the Error_in_response is handled is described in chapters Chapter
7.1.2.1.3 and Chapter 7.1.3.1.2 for master nodes respectively Chapter 7.1.2.2.2 and
Chapter 7.1.3.2.2 for slave nodes.

7.5.1 response_error signal (Slave only)

This section is only applicable to LIN slave nodes.

AUTSSAR

The response_error signal is a one bit scalar signal that is published by each slave
to the master node in one of its transmitted Unconditional frames. It is used to
report the communication status to the LIN cluster.

[SWS_Linlf_00763]
Upstream requirements: SRS_Lin_01595

[The LIN Interface shall provide the autonomous handling of the response_error
signal on each slave channel. |

Note: The configuration needs to ensure that Linlf is the only user that has write-access
to the response_error signal.

[SWS_Linlf_00764]
Upstream requirements: SRS_Lin_01595

[The LIN Interface shall call the function Com_SendSignal to update the value of the
response_error signal. |

The conditions under which to set the response_error signal are defined in
[SWS_Linlf_00736] and [SWS_Linlf_00744].

The condition under which to clear the response_error signal is defined in
[SWS_Linlf_00747].

[SWS_Linlf_00765] [Each time the response_error signal value has changed, the
LIN Interface shall call the function <User_ResponseErrorSignalChanged> with
the current value of the response_error signal. |

[SWS_Linlf_00766] [The support of function <User_ ResponseErrorSig-
nalChanged> is optional and enabled at pre-compile time by the configuration
parameter LinIfResponseErrorSignalChangedCallout.]

7.6 Diagnostics and Node configuration

Note that node configuration here means the configuration described in the ISO 17987
specifications [7] and has nothing to do with the AUTOSAR configuration.

The Node Configuration in the ISO 17987-3 specification is about configuring a slave
to be able to operate in a LIN cluster and make the LIN cluster collision free (in terms
of configured NAD and frame ID’s).

The Diagnostic Transport Layer and the Node Configuration in ISO 17987 specifica-
tions share the MRF and SRF. This will not be a conflict in master nodes since the Node
Configuration is using the fixed frame types. For slave nodes, the received MRF and
SRF must be evaluated and dispatched to the responsible user, either Transport Layer
or Node Configuration handler.

AUTSSAR

7.6.1 Node configuration in master nodes

This section is only applicable to LIN master nodes.
The ISO 17987 specifications specify two ways for the LIN master to configure slaves:

» By using the ISO 17987 API and by using the services directly in the Schedule
Table.

By using the defined Node Configuration API.

The idea here is to store the Node Configuration services in the configuration. There-
fore, only the Schedule Table approach is used.

[SWS_Linlf_00401]
Upstream requirements: SRS_Lin_01590

[The LIN Interface shall only do the Node Configuration (defined in the 1ISO 17987
specifications) by using services directly in the Schedule Table. |

7.6.1.1 Node Configuration services

The LIN Interface provides node configuration services as specified in the ISO 17987
specifications. The node configuration mechanism uses the same LIN frame struc-
ture as the LIN TP. The Node Configuration will only use single Frames (SF) for
transportation.

[SWS_Linlf_00309] [The LIN Interface shall support the Node Configuration requests
“Assign Frame ID” (defined in the LIN 2.0 specification), “Assign Frame ID range” (de-
fined in the ISO 17987 specifications), “Unassign Frame ID” (defined in the LIN 2.0
specification) and “Save Configuration” (defined in the ISO 17987 specifications). |

[SWS_Linlf_00409] [The LIN Interface shall support the FreeFormat (defined in the
ISO 17987 specifications). |

The response of the FreeFormat is not defined within the ISO 17987 specifications.
Therefore, a response from a slave cannot be processed.

[SWS_Linlf_00310]
Upstream requirements: SRS_BSW_00171

[The support for the Node Configuration request “Assign NAD” (defined in the 1ISO
17987-3 specifications) shall be pre-compile time configurable On/Off by the configu-
ration parameter LinIfNcOptionalRequestSupported.]

Note: The LIN Interface does not support the Node Configuration request DataDump,
as the ISO 17987 specifications state that the Dat aDump request shall not be used in
operational clusters.

AUTSSAR

7.6.1.2 Node Configuration in Schedule Table

The I1ISO 17987 specifications allow Node Configuration in schedule tables. This de-
couples the application from this functionality. Therefore, it is possible to store this
functionality in the configuration.

A number of fixed MRF s are defined in the ISO 17987 specifications.

[SWS_Linlf_00479] [The LIN Interface shall process the fixed MRF entries without the
interaction with an upper layer. |

[SWS_Linlf_00709] [The LIN Interface shall not send the srRF header when the trans-
mission of a fixed MRF failed. |

It is possible to put a SRF in the schedule table after a node configuration command.
A slave may answer to a node configuration command as defined in the ISO 17987
specifications.

[SWS_Linlf_00404] [The LIN Interface shall take no action if it has put a SRF in the
schedule table after a node configuration command and if the answer of the slave is
positive. |

The response from the slave is not optional for the node configuration requests accord-
ing to the ISO 17987 specifications. However, if the SRF header is scheduled after a
node configuration request, it is considered that a response is expected. Therefore,
the following shall apply:

[SWS_Linlf_00405] [The LIN Interface shall report the runtime error code LINIF_E_
NC_NO_RESPONSE to the Default Error Tracer, if it has put a SRF in the schedule table
after a node configuration command and if there’s no response from any slaves (timed
out). The error shall always be reported, even if the previous configuration command
was not transmitted successfully. |

Note: The LIN Interface will not report the runtime error code LINIF_E_NC_NO_-
RESPONSE, if there’s any slave response (regardless of its contents, e.g. RSID).

Note that there is no negative answer for node configuration requests defined in the
ISO 17987 specifications. Only the function Read-by-ldentifier supports a negative
answer. As this function is not supported within the LIN Interface, there are no negative
responses to process for the LIN Interface.

7.6.2 Node configuration in slave nodes

This section is only applicable to LIN slave nodes.

AUTSSAR

7.6.2.1 Node Model

The LIN Interface uses the Node Model defined in the ISO 17987-3 specification that
describes where the configuration is stored for slave nodes.

The LIN Interface manages the currently configured NAD and PIDs of the slave node.

The slave node shall have a valid configuration after reset in order to be addressed by
node configuration services and to be able to process Relevant frames.

[SWS_Linlf_00767] [The LIN Interface shall initialize the initial NAD and configured
NAD of the slave node from the configuration data (configuration parameters Lin-
IfInitialNAD and LinIfConfiguredNAD) in function LinIf Init.]

Note: The initial NAD is statically configured, i.e. does not change during runtime and is
used for “Assign NAD” requests. The configured NAD might change after initialization,
either by an “Assign NAD” request or by upper layer, and is used for node configuration
services (other than “Assign NAD”) and transport protocol.

[SWS_Linlf_00768] [The LIN Interface shall initialize the configured PIDs of the slave
node from the configuration data (configuration parameters LinTIfFrameId) in func-
tion LinIf_ Init.|

Note: The current configuration of the node can be updated by upper layer using
LinIf_SetConfiguredNAD and LinIf_SetPIDTable (e.g. with data loaded from
non-volatile memory) or by the LIN master node using node configuration commands.

[SWS_Linlf_00769] [The LIN Interface shall provide the LIN product identification (as
described in the ISO 17987-3 specification) consisting of supplier 1D, function ID and
variant ID (configuration parameters LinIfSupplierId, LinIfFunctionId and
LinIfVariantId).]

7.6.2.2 Node Configuration services

The LIN Interface provides node configuration services as specified in the ISO 17987-3
specification. The node configuration mechanism uses the same LIN frame structure
as the LIN TP. The Node Configuration will only use single Frames (SF) for trans-
portation.

[SWS_Linlf_00810]
Upstream requirements: SRS_Lin_01594
[The LIN Interface shall support the “Assign NAD” (SID 0xBO, defined in the ISO

17987-3 specification). The support is optional and pre-compile time configurable On/
Off by the configuration parameter LinIfNcOptionalRequestSupported.]

AUTSSAR

[SWS_Linlf_00811]
Upstream requirements: SRS_Lin_01594

[The LIN Interface shall support the “Assign Frame ID range” (SID 0xB7, defined in
the ISO 17987-3 specification). |

[SWS_Linlf_00812] [The LIN Interface shall support the “Save Configuration” (SID
0xB6, defined in the ISO 17987-3 specification). The support is optional and enabled at
pre-compile time by the configuration parameter L.inIfSaveConfigurationCall-
out. |

[SWS_Linlf_00813]
Upstream requirements: SRS_Lin_01594

[The LIN Interface shall support the “Read by Identifier” with identifier 0 (LIN Product
Identification) (SID 0xB2, defined in the ISO 17987-3 specification). |

[SWS_Linlf_00840] [The LIN Interface shall support the “Read by Identifier” with iden-
tifier 2 (Bit timing test) (SID 0xB2, defined in the ISO 17987-3 specification). |

Note: Node configuration services that are not directly supported by LIN Interface are
forwarded over Transport Layer to upper layer and can be implemented by integration
code.

7.6.2.3 Diagnostic Frame Dispatcher

The diagnostic communication frames (MRF and SRF) are shared by the two diagnostic
users in the LIN Interface:

* Node Configuration Handler
» Transport Layer

A priority mechanism is used to dispatch the received diagnostic communication
frames to the correct diagnostic user, in which the Node configuration is treated with
higher priority than the Transport Protocol.

The LIN Interface dispatches each MRF at first to the Node configuration handler, af-
terwards to the Transport Protocol. Note that ISO 17987-2, clause 7.6.4 (Unexpected
arrival of N_PDU) applies for both diagnostic users.

Similar, each received SRr header is at first passed to the Node configuration han-
dler to transmit a pending response. If no node configuration response waits to be
transmitted, the SRF is forwarded to Transport Layer.

[SWS_Linlf_00771] [The LIN Interface shall evaluate the NAD, PCI and SID of a re-
ceived MRF. |

AUTSSAR

[SWS_Linlf_00772] [If a received MRF contains a valid node configuration request
addressing the own slave node, the LIN interface shall accept the node configuration
request and inform the Transport layer about the request. |

[SWS_Linlf_00773] [If a received MRF does not contain a node configuration request
but addresses the own slave node, the LIN interface shall forward the MRF to the Trans-
port layer. |

[SWS_Linlf_00774] [If the received MRF does not address the own slave node, the
LIN interface shall inform the node configuration handler and the Transport Layer. |

Rationale: Any pending request must be aborted if a request addressing another slave
node is detected. Of course, the request will not be handled by either diagnostic user.

[SWS_Linlf_00775] [If the header of a SRF is received and the response of a node
configuration command is pending for transmission, the response of the SRF shall be
transmitted by the node configuration handler. |

[SWS_Linlf_00776] [If the header of a SRF is received and no node configuration
command response is pending for transmission, the SRF header shall be forwarded to
the Transport layer. |

[SWS_Linlf_00837] [If the function LinIf_ LinErrorIndication is called and a
MRF Or SRF response is expected, the LIN interface shall inform the node configuration
handler and the Transport Layer about the detected communication error. |

7.6.2.4 Node Configuration Handler

The Node configuration handler implements the functionality to evaluate, process and
respond to node configuration requests supported by the LIN Interface.

A “valid node configuration request” is a MRF with NAD addressing the slave node
(initial or broadcast/wildcard NAD for “Assign NAD” request, configured or broadcast/
wildcard NAD for the other supported services), PCl as defined in the ISO 17987-3
specification and a SID value of a supported node configuration service.

[SWS_Linlf_00778] [The LIN Interface shall support wildcards for Function Id, Sup-
plier Id and NAD in node configuration requests (as defined in the ISO 17987-3 speci-
fication). |

[SWS_Linlf_00780] [If a positive response needs to be sent for a node configura-
tion request, the LIN Interface shall transmit this response to the next scheduled srF
header. |

[SWS_Linlf_00779] [If a valid “Assign NAD” request is received, the LIN Interface shall
update its configured NAD value with the new NAD of the request and shall provide a
positive response when a SRF header is transmitted by the master node. |

AUTSSAR

[SWS_Linlf_00781] [If a valid “Assign Frame ID range” request is received, the LIN
Interface shall update its PID configuration with the PIDs of the request (as defined in
the ISO 17987-3 specification) and provide a positive response when a SRF header is
transmitted by the master node. |

[SWS_Linlf_00809] [t shall not be possible to change the PIDs of frames with identi-
fier 0x3C and 0x3D (MRF and SRF). |

[SWS_Linlf_00782] [If a valid “Save Configuration” request is received, the LIN Inter-
face shall call the function <User_SaveConfigurationRequest>. Depending on
the return value of this callout function, either a positive response or no response shall
be provided. |

[SWS_Linlf_00783] [If a valid “Read by Identifier” request with identifier 0 is received,
the LIN interface shall provide a positive response to be transmitted for next received
SRF header (as defined in the ISO 17987-3 specification). |

[SWS_Linlf_00841] [If a valid “Read by Identifier” request with identifier 2 is received,
the LIN interface shall provide a negative response to be transmitted for next received
SRF header (as defined in the ISO 17987-3 specification). |

7.6.2.4.1 Node Configuration error

[SWS_Linlf_00784] [The LIN Interface shall provide the N_as timeout observation
(configuration parameter L.inIfNasTimeout) for node configuration in order to abort
a pending response if no SRF header is received. |

[SWS_Linlf_00785] [The LIN Interface shall start the N_As timer after reception of
a valid node configuration request and stop the timer if a pending node configuration
response has been transmitted successfully. |

[SWS_Linlf_00786] [In case of N_As timeout occurrence the LIN Interface shall abort
the pending node configuration response. |

[SWS_Linlf_00787] [If a MRF with an unknown NAD is received, the LIN interface shall
reject the request and abort a pending node configuration response. |

[SWS_Linlf_00788] [If node configuration request is received with the functional NAD
(Ox7E), the LIN interface shall ignore the request. |

[SWS_Linlf_00871] [If a MRF with the functional NAD (0x7E) is received while a node
configuration response is pending, the LIN interface shall ignore the request. |

[SWS_Linlf_00789] [If a valid node configuration request is received while a node
configuration response is pending, the LIN Interface shall abort the node configuration
response and accept the new request. |

AUTSSAR

[SWS_Linlf_00790] [If a node configuration request with an invalid or unknown PCI
type is received, the LIN Interface shall ignore this LIN frame. |

[SWS_Linlf_00791] [If a node configuration response is pending and new MRF is re-
ceived with an error in the response (indicated by LinIf_LinErrorIndication),
the LIN Interface shall keep the pending node configuration response. |

7.6.3 Diagnostics — Transport Protocol

In the ISO 17987 specifications, the Transport Protocol (TP) is optional to implement.
There are three types of diagnostics defined:

+ Signal Based diagnostics
» User Defined diagnostics
 Diagnostic Transport Layer

It is only relevant to support the Diagnostic Transport Layer in the LIN Interface (and
this is what is called the LIN TP). The Signal Based diagnostics has no meaning since
signals are not defined here. The User Defined diagnostics shall not be used since all
Diagnostic communication shall use the Diagnostic Transport Layer.

[SWS_Linlf_00313]
Upstream requirements: SRS_Lin_01579

[The LIN Interface shall support the Diagnostic Transport Layer (defined in the ISO
17987 specifications) without the contained Diagnostic API which represents the LIN
TP |

The support of the LIN TP shall be configurable on/off to make the LIN Interface
smaller when LIN TP is not used.

[SWS_Linlf_00387]

Upstream requirements: SRS_BSW_00171
[The support for the LIN TP shall be pre-compile time configurable by the configura-
tion parameter LinIfTpSupported.]

It is possible that the LIN Interface has more than one channel (connected to more
than one LIN cluster).

[SWS_Linlf_00314]
Upstream requirements: SRS_Lin_01574

[The LIN Interface shall support the transfer of a LIN TP message on each separate
channel and they shall be independent of each other. |

AUTSSAR

The designer of the schedule tables has to include master request and slave response
frames. Otherwise, LIN TP transfer stalls.

The LIN TP is used to transport diagnostic service requests and responses. Func-
tional diagnostic requests are possible in parallel to physical requests or responses.

[SWS_Linlf_00062]
Upstream requirements: SRS_Lin_01534, SRS_Lin_01592

[LIN Interface shall support physical (only half-duplex) and functional TP connections
on one channel at the same time, while only one physical TP connection can be active
at a time. |

7.6.3.1 Schedule requests in master nodes
This section is only applicable to LIN master nodes.

[SWS_Linlf_00646] [If the configuration parameter LinTpScheduleChangeDiag is
TRUE, a schedule table change to the diagnostic or applicative schedule by calling the
function BswM_LinTp_RequestMode is done. |

[SWS_Linlf_00641] [When the transmission of a physical or functional request is re-
quested by the function LinTp_Transmit, the LIN Interface shall request a schedule
table change to the diagnostic request schedule by calling the function BswM_LinTp_
RequestMode with the parameter LINTP_DIAG_REQUEST. |

Note that the P2 timer is not restarted for the transmission of a functional request.

[SWS_Linlf_00642] [When the transmission of physical request is completed, the LIN
Interface shall request a schedule table change to the diagnostic response schedule by
calling the function BswM_TLinTp_RequestMode with the parameter LINTP_DIAG_-
RESPONSE. |

[SWS_Linlf_00643] [When the transmission of physical response is completed, the
LIN Interface shall request a schedule table change to the applicative schedule
by calling the function BswM_LinTp_RequestMode with the parameter LINTP_ -
APPLICATIVE_SCHEDULE.]

[SWS_Linlf_00707] [When the transmission of functional request is completed, the
LIN Interface shall request a schedule table change to the previous schedule (ap-
plicative, diagnostic request or diagnostic response schedule) by calling the function
BswM_LinTp_RequestMode. |

This ensures that the interrupted transmission or reception of a physical TP message
is continued afterwards.

AUTSSAR

[SWS_Linlf_00708] [If the transmission for a further physical request is triggered by
the function LinTp_Transmit while the LIN Interface waits for a physical response
or receives a physical response, LIN Interface shall terminate the current TP handling
(reception, N_Cr timeout supervision or P2 timeout supervision) and accept the new
physical request. |

7.6.3.2 State-machine

The following Figure 7.3 shows the state-machine of the LIN TP.

i LINTP_UNINIT :

LinTp_Shutdown LinTp_Init

e LINTP_INIT N

[LINTP_CHANNEL_IDLE]

LINTP LINTP
message end message start

[LINTP_CHANNEL_BUSY]

- J
Figure 7.3: LIN Transport Protocol state-machine

[SWS_Linlf_00315] [Each channel of the LIN Interface shall have one instance of the
LIN TP state-machine which is called LIN TP channel state-machine. |

[SWS_Linlf_00316]
Upstream requirements: SRS_BSW_00335

[The LIN TP state-machine shall have the state LINTP_UNINIT. |

[SWS_Linlf_00483] [The LIN Interface shall setthe LIN TP state to LINTP_UNINIT
for all corresponding channels after a reset. |

[SWS Linlf 00319]
Upstream requirements: SRS_BSW_00335

[The LIN TP state-machine shall have the state LINTP_INIT. |

AUTSSAR

[SWS_Linlf_00412] [The 1N TP state-machine shall have the sub-state-machines
of the state LINTP_INIT for each channel, that track the state of channel separately. |

[SWS_Linlf_00450] [The sub-state-machine of the state LINTP_INIT shall have the
state LINTP_CHANNEL_IDLE. |

[SWS_Linlf_00710] [The LIN Interface shall set the sub-state of a channel to
LINTP_CHANNEL_IDLE when the LIN TP state-machine is set to the state LINTP__
INIT.|

[SWS_Linlf_00321] [The LIN Interface shall start only a transmission of a TP message
if the channel is in the sub-state LINTP_CHANNEL_IDLE. |

[SWS_Linlf_00322] [The sub-state-machine of the state LINTP_INIT shall have the
state LINTP_CHANNEL_BUSY.]

[SWS_Linlf_00323] [The LIN Interface shall set the sub-state of a channel to
LINTP_CHANNEL_BUSY when it has received a FF or a SF on the channel and it has
detected it as a TP message (i.e. not conflicting with a configuration response from a
LIN slave node or a configuration request from a LIN master node). |

[SWS_Linlf_00414] [The LIN Interface shall set the sub-state of a channel to
LINTP_CHANNEL_IDLE when it has successfully terminated the transmission or re-
ception of a LIN TP message. |

[SWS_Linlf_00688] [The LIN Interface shall set the sub-state of a channel to
LINTP_CHANNEL_IDLE When it has detected an unrecoverable error on this channel. |

7.6.3.3 LIN TP transmission

Since all frames must follow the schedule table, also LIN TP messages must do this.
All LIN TP messages are using the MRF and SRF for transportation.

The LIN master use the MRF to transmit diagnostic data, while the LIN slave use the
LIN response of the SRF to transmit diagnostic data.

[SWS_Linlf_00671] [After a transmission request from the upper layer, the LIN Inter-
face shall call the function PduR_LinTpCopyTxData with the info pointer containing
data buffer (sdubataPtr) and data length (SduLength) for each segment that is sent.
The data length is 5 bytes (including SID) for FF, up to 6 bytes for sF and 6 bytes for
CF (or less in case of the last CF). |

The upper layer copies the transmit data to the info.

[SWS_Linlf_00329] [If the function PduR_LinTpCopyTxData returns BUFREQ_E_—
BUSY, a LIN master node shall not send the next MRF and a LIN slave node shall not
send a response to the next SRF header. |

AUTSSAR

[SWS_Linlf_00330] [If the function PduR_LinTpCopyTxData returns BUFREQ_E_
BUSY, the LIN Interface shall retry to copy the data via the function PduR_LinTp-
CopyTxData. For a master node, the LIN Interface shall retry to copy the data during
the next processing of the L.inIf_MainFunction_<LinIfChannel.ShortName>
until the transmit data is provided. For a slave node, the LIN Interface shall retry to
copy the data after reception of a SRF header until the transmit data is provided. For
the number of retries, refer to the configuration parameter LinTpMaxBufReq. |

[SWS_Linlf_00672] [When the function PduR_LinTpCopyTxData returns
BUFREQ_OK, a LIN master node shall resume the transmission of the MRF and a LIN
slave node shall resume the response transmission to SRF header. |

[SWS_Linlf_00068] [When the LIN Interface has transmitted a SF or the last CF as
MRE (LIN master) or SrRF response (LIN slave) successfully, it shall notify the upper
layer by calling the function PduR_LinTpTxConfirmation with the result E_OK. |

The LIN Interface does not support retransmission of corrupted data.

[SWS_Linlf_00705] [When calling PduR_LinTpCopyTxData, the LIN Interface shall
always set the parameter ret ry to NULL. |

7.6.3.4 LIN TP transmission error

7.6.3.4.1 Transmission error handling common for master and slave nodes

[SWS_Linlf_00073] [If the function PduR_LinTpCopyTxData reports BUFREQ_E_—
NOT_OK, the LIN Interface shall abort the transmission and notify the upper layer by
calling the function PduR_LinTpTxConfirmation with the result E_NOT_OK. |

7.6.3.4.2 Transmission error handling for master nodes
This section is only applicable to LIN master nodes.

[SWS_Linlf_00069] [If a LIN error on the MRF occurs (the return code of the function
Lin_GetStatus is LIN_TX_HEADER_ERROR Or LIN_TX_ERROR), the LIN Interface
shall abort the transmission and notify the upper layer by calling the function PduRr_
LinTpTxConfirmation with the result E_NOT_OK. |

[SWS_Linlf_00673] [When the LIN Interface has aborted the transmission, it shall
request a schedule table change to the applicative schedule by calling the function
BswM_LinTp_RequestMode with the parameter LINTP_APPLICATIVE_SCHEDULE
(see [SWS_Linlf_00646]). |

AUTSSAR

[SWS_Linlf_00656] [The LIN Interface shall provide the N_As timeout observation
(configuration parameter LinTpNas) in order to switch a schedule table from diagnos-
tic schedule to applicative schedule in case the transmission for MRF is not successful. |

[SWS_Linlf_00657] [The LIN Interface shall start the N_As timer after invocation of
the function Lin_SendFrame for MRF (FF or CF) and stop after receiving LIN driver
status as LIN_Tx_OK for MRF by calling the function Lin_Getstatus.]|

[SWS_Linlf_00658]
Upstream requirements: SRS_Lin_01564

[In case of N_As timeout occurrence the LIN Interface shall abort the transmission
and request a schedule table change to the applicative schedule by calling the function
BswM_LinTp_RequestMode with the parameter LINTP_APPLICATIVE_SCHEDULE
(see [SWS_Linlf_00646]). After successful completion or failure (e.g., since some
other schedule table change is currently going on) of the schedule table switch, the
LIN Interface shall notify the upper layer by calling the function PduR_LinTpTxCon—
firmation with the result E_NOT_OK.]

[SWS_Linlf_00660] [The LIN Interface shall provide the N_Cs timeout observation
(configuration parameter LinTpNcs) in order to switch a schedule table from diagnos-
tic schedule to applicative schedule in case the transmission for MRF is not successful.
(The 1ISO 17987 specifications define the following requirement: (N_Cs+N_As) < 0.9*
N_Cr timeout) |

[SWS_Linlf_00661] [The LIN Interface shall start the N_Cs timer after receiving LIN
driver status as LIN_TX_OK for MRF (FF or CF except last CF) by calling the function
Lin_GetStatus and stop after invocation of the function Lin_SendFrame for MRF
(next CcF). |

[SWS_Linlf_00662]
Upstream requirements: SRS_Lin_01564

[In case of N_Cs timeout occurrence the LIN Interface shall abort the transmission
and request a schedule table change to the applicative schedule by calling the function
BswM_LinTp_RequestMode with the parameter LINTP_APPLICATIVE_SCHEDULE
(see [SWS_Linlf_00646]). After successful completion or failure (e.g., since some
other schedule table change is currently going on) of the schedule table switch, the
LIN Interface shall notify the upper layer by calling the function PduR_LinTpTxCon-—
firmation with the result E_NOT_OK.]

7.6.3.4.3 Transmission error handling for slave nodes
This section is only applicable to LIN slave nodes.

[SWS_Linlf_00796] [If a LIN error on the SRF response occurs (LinIf_Lin-
ErrorIndication is called after reception of a SRF header), the LIN Interface shall

AUTSSAR

abort the transmission and notify the upper layer by calling the function PduR_LinTp-
TxConfirmation with the result E_NOT_OK.]

[SWS_Linlf_00797] [If the start of a new physical request (SF or FF) is received while
transmission of a previously triggered physical request is ongoing, the LIN Interface
shall abort the ongoing transmission. If the NAD matches the configured NAD of the
slave node or the broadcast NAD, the LIN Interface shall accept the new physical re-
quest. |

[SWS_Linlf_00798] [If a functional request is received while transmission of a previ-
ously triggered physical request is ongoing, the LIN Interface shall ignore the functional
request. |

[SWS_Linlf_00799] [The LIN Interface shall provide the N_As timeout observation
(configuration parameter LinTpNas) in order to abort a requested transmission if no
SRF header is received. |

[SWS_Linlf_00800] [The LIN Interface shall start the N_As timer for a SF or FF after
invocation of the function LinTp_Transmit with return value E_OK and for a CF after
the LIN driver indicates the reception of a SRF header with invocation of callback func-
tion LinIf_HeaderIndication and shall stop the N_As timer after the LIN driver
confirms the response transmission for a SRF header with invocation of callback func-
tion LinIf_TxConfirmation.]

[SWS_Linlf_00801] [In case of N_As timeout occurrence the LIN Interface shall abort
the transmission and notify the upper layer by calling the function PduR_LinTpTx-
Confirmation with the result E_NOT_OX. |

[SWS_Linlf_00802] [The LIN Interface shall provide the N_Cs timeout observation
(configuration parameter LinTpNcs) in order to abort an active transmission if no fur-
ther SRF header is received. |

Note: ISO 17987-2 specification [6] defines the following requirement: (N_Cs+N_As) <
0.9*N_Cr timeout

[SWS_Linlf_00803] [The LIN Interface shall start the N_Cs timer after the LIN driver
confirms the response transmission for a SRF header with invocation of callback func-
tion LinIf_ TxConfirmation and stop after the LIN driver indicates the reception of
a SRF header with invocation of callback function LinIf HeaderIndication.|

7.6.3.5 LIN TP reception

The LIN Interface shall be prepared to receive TP messages anytime.

The LIN master node receives the TP message from the slaves in one or several SRFs.
The first SRF in the TP message will always be a FF or a SF.

AUTSSAR

The LIN slave node receives the TP message from the master in in one or several
MRF's. The first MRF in the TP message will always be a FF or a SF.

Since the LIN Interface does not know when an external node is starting a TP message
that the LIN Interface shall receive, it must have the possibility to store part of the TP
message.

[SWS_Linlf_00075] [The LIN Interface shall call the function PduR_LinTp-
StartOfReception with an info pointer and TpsduLength when the start of a
TP message reception is indicated by the reception of a FF or a SF.

info is pointer to the buffer containing the received data (SdubataPtr) and data
length (SduLength). The data length (including SID) is 5 bytes for FF and up to 6
bytes for SF. TpSduLength is the total length of the Sdu. |

The output pointer parameter provides the LIN Interface with currently available receive
buffer size.

[SWS_Linlf_00076] [The LIN Interface shall convert the received NAD from the trans-
mitting LIN node to an N-SDU Id that the upper layer understands. |

[SWS_Linlf_00674] [After reception of each frame of a TP message (sF, FF and
CF), the LIN Interface shall call the function PduR_LinTpCopyRxData with an info
pointer containing received data (SdubataPtr) and data length (SduLength). The
data length is 5 bytes (including SID) for FF, up to 6 bytes for SF and 6 bytes for CF (or
less in case of the last CF). |

The output pointer parameter provides the LIN Interface with available receive buffer
size after data have been copied.

[SWS_Linlf_00078]
Upstream requirements: SRS_Lin_01564

[When the LIN Interface has received the sF or the last CF of a TP message success-
fully, it shall request a schedule table change to the applicative schedule by calling the
function BswM_LinTp_RequestMode with the parameter LINTP_APPLICATIVE_-
SCHEDULE (see [SWS_Linlf_00646]). After successful completion or failure (e.g.,
since some other schedule table change is currently going on) of the schedule table
switch, the LIN Interface shall notify the upper layer by calling the function Pdur_-
LinTpRxIndication with the result E_OX. |

7.6.3.6 Unavailability of receive buffer

The function PduR_LinTpStartOfReception and PduR_LinTpCopyRxData may
indicate that the required buffer is not available.

The LIN Interface handles this case differently.

AUTSSAR

7.6.3.6.1 Unavailability of receive buffer common for master and slave nodes

[SWS_Linlf_00676] [If the function PduR_LinTpStartOfReception returns
BUFREQ_FE_NOT_OK or BUFREQ_E_OVFL, the LIN Interface shall abort the reception
without any further calls to PduR. |

[SWS_Linlf_00701] [If the function PduR_LinTpStartOfReception returns
BUFREQ_OK with a smaller available buffer size than needed for the data received
inthe First Frame of a TP message (SF or Fr), the LIN Interface shall abort the re-
ception and notify the upper layer by calling the function PduR_LinTpRxIndication
with result E_NOT_OK. |

7.6.3.6.2 Unavailability of receive buffer for master nodes

[SWS_Linlf_00792] [If the function PduR_LinTpCopyRxData returns BUFREQ_E_—
NOT_OK, the LIN Interface shall request a schedule table change to the applicative
schedule by calling the function BswM_LinTp_RequestMode with the parameter
LINTP_APPLICATIVE_SCHEDULE (see [SWS_Linlf_00646]).

[SWS_Linlf_00879]
Upstream requirements: SRS_Lin_01564

[If the function PduR_LinTpCopyRxData returns BUFREQ_E_NOT_OK, the LIN Inter-
face shall abort the reception and notify the upper layer by calling the function Pdur_
LinTpRxIndication with the result E_NOT_OK, after successful completion or fail-
ure (e.g., since some other schedule table change is currently going on) of required
schedule table switch (see [SWS_Linlf_00646] and [SWS_Linlf_00792)). |

[SWS_Linlf_00679] [If the function PduR_LinTpCopyRxData returns BUFREQ_OK
with a smaller available buffer size than needed for the next cr, the LIN Interface shall
suspend the transmission of LIN headers for next SRF (CF) |

[SWS_Linlf_00086] [In case of [SWS_Linlf_00679], the LIN Interface shall call the
function PduR_LinTpCopyRxData with a data length (SduLength) O (zero) again
during the next processing of the LinTIf_MainFunction_<LinIfChannel.Short-
Name> until the available buffer size is big enough. |

[SWS_Linlf_00680] [In case of [SWS_Linlf_00086], when the buffer of sufficient size
is available, the LIN Interface shall copy the received data via the function Pdur_-
LinTpCopyRxData and resume the transmission of LIN headers for SRF (CF). |

AUTSSAR

7.6.3.6.3 Unavailability of receive buffer for slave nodes

[SWS_Linlf_00793] [If the function PduR_LinTpCopyRxData returns BUFREQ_OK
with a smaller available buffer size than needed for the next CcF, the LIN Interface shall
call the function PduR_LinTpCopyRxData with a data length (SduLength) 0 (zero)
again during the next processing of the LinIf_MainFunction_<LinIfChannel.-
ShortName> until the available buffer size is big enough or the next CF is received. |

[SWS_Linlf_00677] [If the function PduR_LinTpCopyRxData returns BUFREQ_E_—
NOT_OK, the LIN Interface shall abort the reception and notify the upper layer by calling
the function PduR_LinTpRxIndication with the result E_NOT_OK. |

[SWS_Linlf_00794] [In case of [SWS_Linlf_00793], when the buffer of sufficient size
is available, the LIN Interface shall copy the received data via the function Pdur_-
LinTpCopyRxData. |

[SWS_Linlf_00795] [In case of [SWS_Linlf_00793], when the next CF is received be-
fore the data of the current CF could be copied, the LIN Interface shall abort the re-
ception and notify the upper layer by calling the function PduR_LinTpRxIndication
with the result E_NOT_OK. |

7.6.3.7 LIN TP reception error

7.6.3.7.1 LIN TP reception error common for master and slave nodes

[SWS_Linlf_00079]
Upstream requirements: SRS_Lin_01544

[In case an incorrect sequence number is received, the LIN Interface shall stop the
current LIN TP message reception. |

[SWS_Linlf_00081] [In case an incorrect sequence number is received, the LIN In-
terface shall report this failure to PDU Router by calling the function PduR_LinT-
pRxIndication with the result E_NOT_OK. |

[SWS_Linlf_00651]
Upstream requirements: SRS_Lin_01544

[In case a FF or a SF is received after a CF which is not the last CF, the LIN Interface
shall stop the current LIN TP message reception. |

[SWS_Linlf_00653] [In case a FF or a SF is received after a CF, the LIN Interface shall
report this failure to PDU Router by calling the function PduR_LinTpRxIndication
with the result E_NOT_OK. |

[SWS_Linlf_00696] [In case a CF is received instead of a FF or a SF, the LIN Interface
shall ignore this LIN frame. |

AUTSSAR

[SWS_Linlf_00697] [In case an unknown PCl type is received, the LIN Interface shall
ignore this LIN frame. |

[SWS_Linlf_00652] [In case an invalid data length is received (a SF with a length of
0 (zero) or greater than 6, a FF with a length of less than 7), the LIN Interface shall
ignore the LIN TP message. |

7.6.3.7.2 LIN TP reception error for master nodes

If a LIN error occurs while receiving sRF, the LIN Interface checks the timeout of SRF
and does not notify a LIN error. If the reception of SRF is successful, the LIN Interface
checks the contents of received SRF's.

[SWS_Linlf_00612] [The LIN Interface shall detect if the NAD (node address of ad-
dressed LIN slave) of a diagnostic response differs from the NAD of the request. |

[SWS_Linlf_00613] [In case an incorrect NAD is received and the configuration pa-
rameter LinTpDropNotRequestedNad is TRUE, the LIN Interface shall stop the cur-
rent LIN TP message reception. |

[SWS_Linlf_00655] [In case an incorrect NAD is received and the configuration pa-
rameter LinTpDropNotRequestedNad is TRUE, the LIN Interface shall report this
failure to PDU Router by calling the function PduR_LinTpRxIndication with the
result E_NOT_OK. |

[SWS_Linlf_00648] [In case an incorrect NAD is received and the configuration pa-
rameter LinTpDropNotRequestedNad is FALSE, the LIN Interface shall continue
the current LIN TP message reception. |

[SWS_Linlf_00614] [The LIN Interface shall request a schedule table change to the
applicative schedule by calling the function BswM_1inTp_RequestMode with the pa-
rameter LINTP_APPLICATIVE_SCHEDULE when it detects the error that is specified
in [SWS_Linlf_00613] (see [SWS_Linlf_00646]). |

[SWS_Linlf_00080] [The LIN Interface shall start a new LIN TP reception if it is re-
ceiving a FF or a SF when another LIN TP reception is ongoing. The old message
shall be considered as lost. |

In the situation where the LIN Interface (master) has encountered a permanent error
(either by upper layer signaling permanent error or the bus indicated an erroneous
frame) the slave continues to transmit the rest of the frames when the master transmits
a SRF header. The slave cannot know when the master has encountered a problem.
The slave continues to transmit responses to the SRF headers. This means that no
error-recovery is supported.

AUTSSAR

[SWS_Linlf_00664] [The LIN Interface shall provide the N_cCr timeout observation
(configuration parameter LinTpNcr) in order to switch a schedule table from diagnos-
tic schedule to applicative schedule in case the reception for SRF is not successful. |

[SWS_Linlf_00665] [The LIN Interface shall start the N_cr timer after receiving LIN
driver status as LIN_RX_OK for SRF (FF or CF except last CF) by calling the function
Lin_GetStatus and stop after receiving LIN driver status as LIN_RX_OK for SRF
(next CcF) by calling the function Lin_GetStatus.|

[SWS_Linlf_00666]
Upstream requirements: SRS_Lin_01564

[In case of N_cCr timeout occurrence the LIN Interface shall abort the reception and
request a schedule table change to the applicative schedule by calling the function
BswM_LinTp_RequestMode with the parameter LINTP_APPLICATIVE_SCHEDULE
(see [SWS_Linlf_00646]). After successful completion or failure (e.g., since some
other schedule table change is currently going on) of the schedule table switch, the
LIN Interface shall notify the upper layer by calling the function PduR_LinTpRxIndi-
cation with the result E_NOT_OX. |

[SWS_Linlf_00617]
Upstream requirements: SRS_Lin_ 01593

[The LIN Interface shall provide the P2 timeout observation (configuration parame-
ter LinTpP2Timing) in order to switch a schedule table from diagnostic schedule to
applicative schedule in case the reception for SRF is not successful. |

[SWS_Linlf_00618] [The LIN Interface shall start the p2 timer after invocation of the
function Lin_SendFrame for last MRF (SF or CF) and stop after receiving LIN driver
status as LIN_RX_OK for SRF (SF or FF) by calling the function Lin_GetStatus.
Note that the P2 timeout monitoring shall be started only in LIN TP diagnostic mode. |

[SWS_Linlf_00619]
Upstream requirements: SRS_Lin_01564

[In case of P2 timeout occurrence after a reception has been successfully started (i.e.,
call to PduR_LinTpStartOfReception () has been called and returned BUFREQ__
OK), the LIN Interface shall abort the reception and request a schedule table change
to the applicative schedule by calling the function BswM_LinTp_RequestMode ()
with the parameter LINTP_APPLICATIVE_SCHEDULE (see [SWS_Linlf _00646]). Af-
ter successful completion or failure (e.g., since some other schedule table change is
currently going on) of the schedule table switch, the LIN Interface shall notify the upper
layer by calling the function PduR_LinTpRxIndication () with the result E_NOT_
OK. |

AUTSSAR

[SWS_Linlf_00877]
Upstream requirements: SRS_Lin_01564

[In case of P2 timeout occurrence before a reception has been successfully
started (i.e., call to PduR_LinTpStartOfReception () did not take place or re-
turned something different from BUFREQ_OK), the LIN Interface shall request a
schedule table change to the applicative schedule by calling the function BswM_-
LinTp_RequestMode () with the parameter LINTP_APPLICATIVE_SCHEDULE (See
[SWS_Linlf_00646)).

[SWS_Linlf 00621]
Upstream requirements: SRS_Lin_01593

[The LIN Interface shall provide UDS Response Pending handling. Therefore:

1. TP response PDUs containing an UDS response pending service are received
and forwarded to the PDU Router as any other response PDUs.

2. After reception of a response pending frame the P2 timeout timer is reloaded with
the timeout time P2-~max (configuration parameter LinTpP2Max).

]

[SWS_Linlf_00623]
Upstream requirements: SRS_Lin_01593, SRS_Lin_01564

[If more UDS response pending frames have been received than allowed (configu-
ration parameter LinTpMaxNumberOfRespPendingFrames), the LIN Interface shall
abort the reception and request a schedule table change to the applicative sched-
ule by calling the function BswM_LinTp_RequestMode with the parameter LINTP_
APPLICATIVE_SCHEDULE (see [SWS_Linlf_00646]). After successful completion or
failure (e.g., since some other schedule table change is currently going on) of the
schedule table switch, the LIN Interface shall notify the upper layer by calling the func-
tion PAduR_LinTpRxIndication with the result E_NOT_OK.]

7.6.3.7.3 LIN TP reception error for slave nodes

[SWS_Linlf_00804] [The LIN Interface shall provide the N_cCr timeout observation
(configuration parameter LinTpNcr) in order to abort a running reception in case the
no further MRF are received. |

[SWS_Linlf_00805] [The LIN Interface shall start/restart the N_cCr timer after the LIN
driver indicates the reception of a MRF (FF or CF except last CF) with invocation of
callback function LinIf_RxIndication and stop after the LIN driver indicates the
reception of a MRF (last CF) with invocation of callback function LinIf_ RxIndica-
tion.]

AUTSSAR

[SWS_Linlf_00806] [In case of N_Cr timeout occurrence the LIN Interface shall abort
the reception and notify the upper layer by calling the function PduR_LinTpRxIndi-—
cation with the result E_NOT_OX. |

[SWS_Linlf_00807] [If a new functional request is received while reception of a phys-
ical request is ongoing, the LIN Interface shall ignore the functional request. |

[SWS_Linlf_00808] [If the start of new physical request (SF or FF) is received while
reception of a physical request is ongoing, the LIN Interface shall stop the current LIN
TP message reception (see also [SWS_Linlf_00651]). If the received NAD matches
the configured NAD or broadcast NAD, the new request shall be accepted. |

7.7 Handling multiple channels and drivers

Normally, only one LIN driver (supporting multiple channels) is needed for the LIN
Interface. However, in rare cases the ECU contains different LIN hardware. In such
cases, multiple LIN drivers are used.

7.7.1 Multiple channels

[SWS_Linlf_00461] [Each channel of the LIN Interface shall have a unique internal
channel index even when the LIN channels are located on different LIN Drivers. The
channel index is derived from ComM channel (LinIfComMNetworkHandleRef).|

The LIN node type of a LIN channel is determined by the choice container LinT fN-
odeType.

7.7.2 Multiple LIN drivers

To be able to distinguish the LIN drivers, it is assumed that the LIN driver APl names
are extended with the vendorId and a vendorApiInfix.

[SWS_Linlf_00462] [The allocation of each channel to a LIN Driver shall
be pre-compile time configurable by the configuration parameter LinIfMulti-
pleDriversSupported.]

The LIN driver shall also have name extensions for all published parameters, variables,
types and files.

AUTSSAR

7.7.3 Multiple LIN transceiver drivers

To be able to distinguish the LIN transceiver drivers, it is assumed that the LIN
transceiver driver APl names are extended with the vendorId and a vendorApi-
Infix.

[SWS_Linlf_00560] [The allocation of each channel to a LIN transceiver driver shall
be pre-compile time configurable by the configuration parameter LinIfMultipleTr-
cvDriverSupported.]

The LIN transceiver driver shall also have name extensions for all published parame-
ters, variables, types and files.

AUTSSAR

7.8 Error classification

7.8.1 Development Errors

[SWS_Linlf_00376] Definition of development errors in module Linlf

Upstream requirements: SRS_BSW_00406, SRS_BSW_00337, SRS_BSW_00385, SRS_BSW _
00327, SRS_BSW_00480, SRS_BSW_00481

[

Type of error Related error code Error value
API called without initialization of LIN Interface LINIF_E_UNINIT 0x00
Initialization failed, e.g. selected configuration set LINIF_E_INIT_FAILED 0x10
doesn’t exist

Referenced channel does not exist (identification LINIF_E_NONEXISTENT_CHANNEL 0x20
is out of range)

API service called with wrong parameter LINIF_E_PARAMETER 0x30
API service called with invalid pointer LINIF_E_PARAM_POINTER 0x40
Schedule request made in channel sleep LINIF_E_SCHEDULE_REQUEST_ERROR 0x51
API service called with invalid parameter for LIN LINIF_E_TRCV_INV_MODE 0x53
transceiver operation mode

Referenced transceiver state is not normal LINIF_E_TRCV_NOT_NORMAL 0x54
API service called with invalid parameter for LINIF_E _PARAM_WAKEUPSOURCE 0x55
WakeupSource

]

Note: The table covers the error codes for the LIN Interface and the LIN TP.

Note: The error code LINIF_E_SCHEDULE_REQUEST_ERROR is only used by a LIN
master node.

AUTSSAR

7.8.2 Runtime Errors

[SWS_Linlf_00729] Definition of runtime errors in module Linlf
Upstream requirements: SRS_BSW_00452, SRS_BSW_00385, SRS_BSW_00327

Type of error Related error code Error value
LIN frame error detected LINIF_E_RESPONSE 0x60

Slave did not answer on a node configuration LINIF_E_NC_NO_RESPONSE 0x61
request

Note: The table covers the error codes for the LIN Interface and the LIN TP.

7.8.3 Production Errors

There are no Production Errors.

AUTSSAR

7.8.4 Extended Production Errors

7.8.4.1 LINTP_E_LINTPNAS_ TIMEOUT_ OCCURRED

[SWS_Linlf_00881] |

Error Name: LINTP_E_LINTPNAS_TIMEOUT_OCCURRED
Short Description: A N_As timeout is detected
Long Description: Linlf (LinTp part) shall report a LINTP_E_LINTPNAS_

TIMEOUT_OCCURRED Extended Production Error to DEM when
a N_As timeout is detected.

Detection Criteria: Fail N_As timer expired
Pass LinTp_Init () function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event

7.8.4.2 LINTP_E_LINTPNCS_TIMEOUT_ OCCURRED

[SWS_LinIf_00882] |

Error Name: LINTP_E_LINTPNCS_TIMEOUT_OCCURRED
Short Description: A N_Cs timeout is detected
Long Description: Linlf (LinTp part) shall report a LINTP_E_LINTPNCS_

TIMEOUT_OCCURRED Extended Production Error to DEM when
a N_Cs timeout is detected.

Detection Criteria: Fail N_Cs timer expired
Pass LinTp_Init () function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event

AUTSSAR

7.8.4.3 LINTP_E_LINTPNCR_TIMEOUT_OCCURRED

[SWS_Linlf_00883] [

Error Name: LINTP_E_LINTPNCR_TIMEOUT_OCCURRED
Short Description: A N_cCr timeout is detected
Long Description: Linlf (LinTp part) shall report a LINTP_E_LINTPNCR_

TIMEOUT_OCCURRED Extended Production Error to DEM when
a N_cCr timeout is detected.

Detection Criteria: Fail N_Cr timer expired
Pass LinTp_Init () function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event

7.8.4.4 LINTP_E_SWAPPED_ CONSECUTIVE_FRAMES_RECEIVED

[SWS_Linif_00884] |

Error Name: LINTP_E_SWAPPED_CONSECUTIVE_FRAMES_RECEIVED
Short Description: A swapped Consecutive Frame is received
Long Description: Linlf (LinTp part) shall report a LINTP_E_SWAPPED__

CONSECUTIVE_FRAMES_RECEIVED Extended Production Error
to DEM when swapped Consecutive Frames are received.

Detection Criteria: Fail Swapped Consecutive Frames are received
Pass LinTp_Init () function call

Secondary The condition under which the FAIL and/or PASS detection is

Parameters: active: None

Time Required: Not applicable

Monitor Frequency: on event

AUTSSAR

7.8.4.5 LINTP_E_DROPPED_CONSECUTIVE_ FRAMES_ DETECTED

[SWS_Linlf_00885] [

Error Name:

LINTP_E_DROPPED_CONSECUTIVE_FRAMES_DETECTED

Short Description:

Missing Consecutive Frame is detected

Long Description:

Linlf (LinTp part) shall report a LINTP_E_DROPPED__
CONSECUTIVE_FRAMES_DETECTED Extended Production Error
to DEM when missing Consecutive Frames are detected.

Detection Criteria: Fail Missing Consecutive Frame is detected
Pass LinTp_Init () function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
J

7.8.4.6 LINIF _E_ SCHEDULE_TABLE_ SWITCH REQUEST NOT_ACCEPTED

[SWS_Linlf_00886] [

Error Name: LINIF_E_SCHEDULE_TABLE_SWITCH_REQUEST_NOT_
ACCEPTED
Short Description: Schedule table switch request not accepted

Long Description:

Linlf shall report a LINIF_E_SCHEDULE_TABLE_SWITCH_
REQUEST_NOT_ ACCEPTED Extended Production Error to DEM
when LinIf_ScheduleRequest returned E_NOT_OK.

Detection Criteria: Fail LinIf_ScheduleRequest returned E_NOT_OK
Pass LinTp_Init () function call

Secondary The condition under which the FAIL and/or PASS detection is

Parameters: active: None

Time Required: Not applicable

Monitor Frequency: on event

AUTSSAR

8 API specification

8.1 Imported types

8.1.1 Standard types

In this section, all types included from the following modules are listed:

[SWS_Linlf_00469] Definition of imported datatypes of module Linlf
Upstream requirements: SRS_BSW_00413

Module Header File Imported Type

Com Com.h Com_SignalldType

Comtype ComStack_Types.h BufReq_ReturnType
ComStack_Types.h NetworkHandleType
ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType
ComStack_Types.h RetryInfoType
ComStack_Types.h TPParameterType
ComStack_Types.h TpDataStateType

EcuM EcuM.h EcuM_WakeupSourceType

Lin Lin_GeneralTypes.h Lin_FrameCsModelType
Lin_GeneralTypes.h Lin_FrameDIType
Lin_GeneralTypes.h Lin_FramePidType
Lin_GeneralTypes.h Lin_FrameResponseType
Lin_GeneralTypes.h Lin_PduType
Lin_GeneralTypes.h Lin_SlaveErrorType
Lin_GeneralTypes.h Lin_StatusType

LinTrcv Lin_GeneralTypes.h LinTrcv_TrcvModeType
Lin_GeneralTypes.h LinTrcv_TrcvWakeupModeType
Lin_GeneralTypes.h LinTrcv_TrcvWakeupReasonType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

AUTSSAR

8.1.2 Type definitions

This section shows the definitions of the types used in the LIN Interface.

8.1.21 LinIf SchHandleType
This type is only applicable for LIN master nodes.

[SWS_Linlf_00197] Definition of datatype Linlf_SchHandleType
Upstream requirements: SRS_BSW_00413

Name Linlf_SchHandleType
Kind Type
Derived from uint8
Range NULL_SCHEDULE 0x00 The NULL_SCHEDULE.
range 1..255 Index of the schedule table that is
selectable and followed by LIN
Interface. Value is unique per LIN
channel/controller, but not per
ECU.
Description Index of the schedule table that is selectable and followed by LIN Interface. Value is unique per LIN
channel/controller, but not per ECU.
The number of schedule tables is limited to 255
Available via Linlf.h

8.1.2.2 LinIf ConfigType

[SWS_Linlf_00668] Definition of datatype Linlf_ConfigType |

Name Linlf_ConfigType

Kind Structure

Elements implementation specific
Type -
Comment -

Description A pointer to an instance of this structure will be used in the initialization of the LIN Interface.
The outline of the structure is defined in chapter 10 Configuration Specification.

Available via Linlf.h

AUTSSAR

8.1.2.3 LinTp_ConfigType

[SWS_LinIf_00426] Definition of datatype LinTp_ConfigType [

Name LinTp_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description This is the base type for the configuration of the LIN Transport Protocol
A pointer to an instance of this structure will be used in the initialization of the LIN Transport
Protocol.
The outline of the structure is defined in chapter 10 Configuration Specification
Available via Linlf.h

8.1.2.4 LinTp_Mode
This type is only applicable for LIN master nodes.

[SWS_Linlf_00629] Definition of datatype LinTp_Mode |

Name LinTp_Mode
Kind Enumeration
Range LINTP_APPLICATIVE_ — Applicative schedule is selected
SCHEDULE
LINTP_DIAG_REQUEST - Master request schedule table is selected
LINTP_DIAG_RESPONSE - Slave response schedule table is selected
Description This type denotes which Schedule table can be requested by LIN TP during diagnostic session
Available via Linlf.h

AUTSSAR

8.2 LIN Interface API

This is a list of API calls provided for upper layer modules.

8.2.1 LinIf Init

[SWS_Linlf_00198] Definition of API function Linlf_Init

Upstream requirements: SRS_BSW_00101, SRS_BSW_00416, SRS _BSW 00358, SRS Lin_-

[

01569, SRS_BSW_00414

Service Name

Linlf_Init

Syntax void LinIf_Init (
const LinIf ConfigTypex ConfigPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the LIN Interface configuration
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the LIN Interface.
Available via Linlf.h

]

[SWS_LinlIf_00373]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW _

00170

[The function LinIf_Init shall accept a parameter that references to a LIN Interface
configuration descriptor. |

[SWS_Linlf_00233] [The function LinIf_Init shall set the schedule type NULL_
SCHEDULE for each configured channel. This requirement is only applicable to LIN

master nodes. |

AUTSSAR

8.2.2 LinIf GetVersionInfo

[SWS_Linlf_00340] Definition of API function Linlf_GetVersioninfo
Upstream requirements: SRS_BSW_00407

Service Name Linlf_GetVersioninfo

Syntax void LinIf_GetVersionInfo (
Std_VersionInfoTypex versioninfo

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via Linlf.h

]

[SWS_Linlf_00640] [If development error detection is enabled and the parameter
versioninfo has aninvalid value, the function LinIf_GetVersionInfo shall raise
the development error code LINIF_E_PARAM POINTER.]

8.2.3 LinIf Transmit

[SWS_Linlf_00201] Definition of API function Linlf_Transmit
Upstream requirements: SRS_Lin_01571

Service Name

Linlf_Transmit

Syntax Std_ReturnType LinIf_Transmit (
PduIdType TxPduld,
const PdulnfoTypex PdulnfoPtr
)
Service ID [hex] 0x49
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identifier of the PDU to be transmitted
PdulnfoPtr Length of and pointer to the PDU data and pointer to MetaData.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: Transmit request has been accepted.

E_NOT_OK: Transmit request has not been accepted.

Description

Requests transmission of a PDU.

Y%

AUTSSAR

| Available via Linlt.h

]

Note: TxPduId is the identifier of LIN frame for upper layer (not the LIN protected ID).
This parameter is used to determine the corresponding LIN protected ID (PID) and
implicitly the LIN Driver instance as well as the corresponding LIN Controller device.

[SWS_Linlf_00105] [The function LinIf_Transmit shall indicate a request from an
upper layer to transmit a frame specified by the parameter TxpPdu1d. |

[SWS_Linlf_00341] [The function LinIf Transmit shall only mark a Sporadic
frame (LIN master node) oran Event-triggered frame (LIN slave node) as pend-
ing for transmission and shall ignore other frame types. |

[SWS_Linlf_00700] [The function LinIf Transmit shall also return E_OX in case
the Pdu belongs to a non-sporadic frame (LIN master node) or non-Event-trig-
gered frame (LIN slave node) and LIN Interface is initialized. |

[SWS_Linlf_00106] [The function LinIf_ Transmit shall tolerate repeated invoca-
tions while the sporadic frame (LIN master node) or Event-triggered frame
(LIN slave node) is still pending. |

[SWS_Linlf_00570] [If development error detection is enabled and the parameter
PduInfoPtr has an invalid value, the function LinIf_ Transmit shall raise the de-
velopment error code LINIF_E_PARAM POINTER.|

[SWS_Linlf_00575] [If development error detection is enabled and the parameter
TxPdulId has an invalid value, the function LinIf_Transmit shall raise the develop-
ment error code LINIF_E_PARAMETER. |

[SWS_Linlf_00719] [LinIf_ Transmit () shall return E_NOT_OX in case the Linlf's
current schedule is NULL_SCHEDULE. This requirement is only applicable to LIN mas-
ter nodes. |

Caveats: The LIN Interface has to be initialized with a call of LinIf Init before this
API service may be called, see [SRS_BSW _00487].

8.24 LinIf ScheduleRequest

The service LinIf_ScheduleRequest is only applicable to LIN master node (avail-
able only if the ECU has any LIN master channel).

AUTSSAR

[SWS_Linlf_00202] Definition of API function Linlf_ScheduleRequest
Upstream requirements: SRS_Lin_01564

Service Name Linlf_ScheduleRequest
Syntax Std_ReturnType LinIf_ScheduleRequest (
NetworkHandleType Channel,
LinIf_SchHandleType ScheduleTableIdx
)
Service ID [hex] 0x05
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Channel Channel index.
ScheduleTableldx Index of the scheduled table
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Schedule table request has been accepted.
E_NOT_OK: Schedule table switch request has not been accepted
due to one of the following reasons:
- LIN Interface has not been initialized
- referenced channel does not exist (identification is out of range)
- referenced schedule table does not exist (identification is out of
range)
- State is sleep
Description Requests a schedule table to be executed.
Only used for LIN master nodes.
Available via Linlf.h

The schedule tables are configured by the LinIfScheduleTable container in the
LIN Interface configuration.

[SWS_Linlf_00389] [The function LinIf_ ScheduleRequest shall request the
schedule table manager to be executed. |

It is possible that each channel has multiple schedule tables. Each channel has a
set of schedule tables that are selectable at run-time.

[SWS_Linlf_00563] [If development error detection is enabled and an invalid Chan-
nel is given, the function LinIf_ScheduleRequest shall raise the development
error code LINIF_E_NONEXISTENT_CHANNEL. |

[SWS_Linlf_00567] [If development error detection is enabled and an invalid sched-
ule table is given or the corresponding Channel is in the state LINIF_CHANNEL_
SLEEP, the function LinIf_ScheduleRequest shall raise the development error
code LINIF_E_SCHEDULE_REQUEST_ERROR. |

[SWS_Linlf_00858] [The function LinIf_ ScheduleRequest is only available if the
Linlf module is configured as LIN master node on at least one channel. In a pure LIN
slave configuration, this function is not available. This depends on the configuration
parameter LinIfNodeType.|

AUTSSAR

Caveats: The LIN Interface has to be initialized with a call of LinIf Init before this
API service may be called, see [SRS_BSW_00487].

8.25 LinIf GotoSleep

[SWS_Linlf_00204] Definition of API function Linlf_GotoSleep
Upstream requirements: SRS_Lin_01523

Service Name Linlf_GotoSleep
Syntax Std_ReturnType LinIf_ GotoSleep (
NetworkHandleType Channel
)
Service ID [hex] 0x06
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) Channel Identification of the LIN channel.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request to go to sleep has been accepted or sleep
transition is already in progress or controller is already in sleep
state
E_NOT_OK: Request to go to sleep has not been accepted due to
one or more of the following reasons:
- LIN Interface has not been initialized
- referenced channel does not exist (identification is out of range)
Description Initiates a transition into the Sleep Mode on the selected channel.
Available via Linlf.h

[SWS_Linlf_00488] [The function LinIf_ GotoSleep shall initiate a transition into
sleep mode on the selected Channel. (see [SWS_Linlf_00453], [SWS_Linlf_00597]
and [SWS_Linlf_00757])

[SWS_Linlf_00564] [If development error detection is enabled and an invalid Chan-
nel is given, the function LinIf_GotoSleep shall raise the development error code
LINIF_E_NONEXISTENT_CHANNEL.]

[SWS_Linlf_00113] [The function LinIf_ GotoSleep shall have no effect on the
channel referenced by the parameter channel if the channel is already in the sleep
state. |

For LIN master nodes, the function LinIf_ GotoSleep will start the process of putting
the cluster into sleep and not do it immediately.

For LIN slave nodes, the function LinIf_GotoSleep sets the cluster directly into
sleep after sleep indication by the master node.

Caveats: The LIN Interface has to be initialized with a call of LinIf Init before this
API service may be called, see [SRS_BSW_00487].

AUTSSAR

8.2.6 LinIf Wakeup

[SWS_Linlf_00205] Definition of API function Linlf_Wakeup
Upstream requirements: SRS_Lin_01515

Service Name Linlf_Wakeup
Syntax Std_ReturnType LinIf_Wakeup (
NetworkHandleType Channel
)
Service ID [hex] 0x07
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request to wake up has been accepted or the controller is
not in sleep state.
E_NOT_OK: Request to wake up has not been accepted due to
one or more of the following reasons:
- LIN Interface has not been initialized
- referenced channel does not exist (identification is out of range)
- Lin_Wakeup has returned E_NOT_OK
- Lin_Wakeuplnternal has returned E_NOT_OK
Description Initiates the wake up process.
Available via Linlf.h

[SWS_Linlf_00432] [When the referenced Channel is not in the sleep state, the func-
tion LinIf_wWakeup will not forward the call to the LIN driver. In this case, it will simu-
late a successful wakeup by returning E_OX. |

[SWS_Linlf_00296] [The function LinIf_Wakeup shall call the function Lin_-
Wakeup of the LIN Driver module to transmit a wake-up request on the selected
Channel, if the Channel is in the channel state LINIF_CHANNEL_SLEEP and the
wakeup flag of the selected Channel is not set. (see [SWS_Linlf_00716]) |

[SWS_Linlf_00713] [The function LinIf Wakeup shall call the function Lin_Wake-
upInternal of the LIN Driver module to set selected Channel to the wakeup state,
if the Channel is in the channel state LINIF_CHANNEL_SLEEP and the wakeup flag
of the selected Channel is set. (see [SWS_Linlf_00716]) |

[SWS_Linlf_00714] [The function LinIf_wWakeup shall clear the wakeup flag of the
selected Channel. |

[SWS_Linlf_00720] [If the function Lin_wWakeup returns E_NOT_OK, the function
LinIf_ Wakeup shall return E_NOT_OXK and not change the status of the wakeup flag. |

[SWS_Linlf_00721] [If the function Lin_WakeupInternal returns E_NOT_OK, the
function LinIf_Wakeup shall return E_NOT_OK and not change the status of the
wakeup flag. |

AUTSSAR

[SWS_Linlf_00565] [If development error detection is enabled and an invalid Chan-
nel is given, the function LinIf Wakeup shall raise the development error code
LINIF_E_NONEXISTENT_CHANNEL.]

Caveats: The LIN Interface has to be initialized with a call of LinIf Init before this
API service may be called, see [SRS_BSW _00487].

8.2.7 LinIf SetTrcvMode

[SWS_Linlf_00544] Definition of API function Linlf_SetTrcvMode
Upstream requirements: SRS_Lin_01584, SRS_Lin_01585, SRS_Lin_01586

Service Name Linlf_SetTrcvMode
Syntax Std_ReturnType LinIf_SetTrcvMode (
NetworkHandleType Channel,
LinTrcv_TrcvModeType TransceiverMode
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel
TransceiverMode Requested mode transition
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Will be returned, if the transceiver state has been changed
to the requested mode.
E_NOT_OK: Will be returned, if the transceiver state change has
failed or the parameter is out of the allowed range. The previous
state has not been changed.
Description Set the given LIN transceiver to the given mode.
Available via Linlf.h

[SWS_Linlf_00536] [This service shall call the underlying function LinTrcv_SetOp-—
Mode (LinNetwork, OpMode) for the corresponding requested LIN transceiver. |

[SWS_Linlf_00537] [This API shall be applicable to all LIN transceivers with all values
independent if the transceiver hardware supports these modes or not. |

[SWS_Linlf_00538] [The APl LinIf_SetTrcvMode returnsthe value thatis returned
by LinTrcv_SetOpMode. |

[SWS_Linlf_00539] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_SetTrcvMode shall report LINIF_E_-
NONEXISTENT_CHANNEL to the default error tracer. |

AUTSSAR

[SWS_Linlf_00540] [If development error detection is enabled and an invalid mode
is requested for TransceiverMode, the function LinIf_ SetTrcvMode shall report
LINIF_E_TRCV_INV_MODE to the default error tracer. |

[SWS_Linlf_00634] [The function LinIf SetTrcvMode is required only if at least
one LIN channel uses the LIN transceiver driver. This function shall be pre-compile time
configurable On/Off by the configuration parameter LinIfTrcvDriverSupported.]

Caveats: The LIN Interface has to be initialized with a call of LinIf Init before this
API service may be called, see [SRS_BSW_00487].

8.2.8 LinIf GetTrcvMode

[SWS_Linlf_00545] Definition of API function Linlf_GetTrcvMode
Upstream requirements: SRS_Lin_01587

[

Service Name

Linlf_GetTrcvMode

Syntax Std_ReturnType LinIf_GetTrcvMode (
NetworkHandleType Channel,
LinTrcv_TrcvModeType* TransceiverModePtr

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Identification of the LIN channel
Parameters (inout) None

Parameters (out)

TransceiverModePtr

Pointer to a memory location where output value will be stored.

Return value

Std_ReturnType

E_OK: The call of the LIN Transceiver Driver's API service has
returned E_OK.

E_NOT_OK: The call of the LIN Transceiver Driver's API service
has returned E_NOT_OK or channel parameter is invalid or pointer
is NULL.

Description

Returns the actual state of a LIN Transceiver Driver.

Available via

Linlf.h

]

[SWS_Linlf_00541] [This service shall invoke the underlying function LinTrcv_
GetOpMode (LinNetwork, OpMode) for the corresponding requested LIN
transceiver. |

[SWS_Linlf_00546] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_GetTrcvMode shall report LINIF_E_-
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00571] [If development error detection is enabled and the parameter
TransceiverModePtr has an invalid value, the function LinIf_GetTrcvMode shall
raise the development error code LINIF_E_PARAM POINTER. |

AUTSSAR

[SWS_Linlf_00635] [The function LinIf_GetTrcvMode is required only if at least
one LIN channel uses the LIN transceiver driver. This function shall be pre-compile time
configurable On/Off by the configuration parameter LinIfTrcvDriverSupported.]

Caveats: The LIN Interface has to be initialized with a call of LinIf Init before this
API service may be called, see [SRS_BSW _00487].

8.29 LinIf GetTrcvWakeupReason

[SWS_Linlf_00547] Definition of API function Linlf_GetTrcvWakeupReason
Upstream requirements: SRS_Lin_01588

Service Name Linlf_GetTrcvWakeupReason
Syntax Std_ReturnType LinIf_ GetTrcvWakeupReason (
NetworkHandleType Channel,
LinTrcv_TrcvWakeupReasonTypex TrcvWuReasonPtr
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel
Parameters (inout) None
Parameters (out) TrcvWuReasonPtr Pointer to a memory location where output value will be stored.
Return value Std_ReturnType E_OK: The call of the LIN Transceiver Driver’s API service has
returned E_OK.
E_NOT_OK: The call of the LIN Transceiver Driver's API service
has returned E_NOT_OK or channel parameter is invalid or pointer
is NULL.
Description Returns the reason for the wake up that has been detected by the LIN Transceiver Driver.
Available via Linlf.h

[SWS_Linlf_00548] [This API shall return the reason for the wake up that the
LIN Transceiver Driver has detected by invoking the underlying function LinTrcv_-
GetBusWuReason (LinNetwork, Reason) for the corresponding requested LIN
transceiver. |

[SWS_Linlf_00549] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_ GetTrcvWakeupReason shall report
LINIF_E_NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00573] [If development error detection is enabled and the parameter Tr-
cviWWuReasonPtr has an invalid value, the function LinIf_GetTrcvWakeupReason
shall raise the development error code LINIF_E_PARAM POINTER. |

[SWS_Linlf_00572] [If development error detection is enabled and the current mode
is not LINTRCV_TRCV_MODE_NORMAL, the function LinIf_GetTrcvWakeupReason
shall report LINIF_E_TRCV_NOT_NORMAL to the default error tracer. |

AUTSSAR

[SWS_Linlf_00636] [The function LinIf_ GetTrcvWakeupReason is required only
if at least one LIN channel uses the LIN transceiver driver. This function shall be pre-
compile time configurable On/Off by the configuration parameter LinIfTrcvDriver—
Supported. |

Caveats:

* The LIN Interface has to be initialized with a call of LinIf Init before this API
service may be called, see [SRS_BSW_00487].

* Please be aware, that if more than one network is available, each network may
report a different wake up reason. This AP| has a“per network” view and does not
vote the more important reason or sequence internally. The same may be true if
e.g. one transceiver controls the power supply and the other is just powered or
un-powered. Then one may be able to return LINTRCV_WU_POWER_ON, whereas
the other may state e.g. LINTRCV_WU_RESET.

It is up to the EcuM to decide how to handle that wake up information.

8.2.10 LinIf SetTrcvWakeupMode

[SWS_Linlf_00550] Definition of API function Linlf_SetTrcvWakeupMode
Upstream requirements: SRS_Lin_01589

Service Name Linlf_SetTrcvWakeupMode
Syntax Std_ReturnType LinIf_SetTrcvWakeupMode (
NetworkHandleType Channel,
LinTrcv_TrcvWakeupModeType LinTrcvWakeupMode
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel
LinTrcvWakeupMode Requested transceiver wake up reason.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The call of the LIN Transceiver Driver's API service has
returned E_OK.
E_NOT_OK: The call of the LIN Transceiver Driver’'s API service
has returned E_NOT_OK or channel or mode parameter is invalid.
Description This API enables, disables and clears the notification for wakeup events on the addressed
network
Available via Linlf.h

[SWS_Linlf_00551] [This API shall enable, disable or clear the notification for wake
up events on the addressed network by calling the underlying function LinTrcv_-
SetWakeupMode (LinNetwork, TrcvWakeupMode).]

AUTSSAR

[SWS_Linlf_00595] [If development error detection is enabled and an invalid value for
Channel is given, the function LinIf_ SetTrcvWakeupMode shall report LINIF
E_NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00596] [If development error detection is enabled and an invalid value
for LinTrcviWakeupMode is given, the function LinIf_ SetTrcvWakeupMode shall
report LINIF_E_PARAMETER to the default error tracer. |

[SWS_Linlf_00637] [The function LinIf_SetTrcvWakeupMode is required only if
at least one LIN channel uses the LIN transceiver driver. This function shall be pre-
compile time configurable On/Off by the configuration parameter LinIfTrcvDriver-
Supported. |

Caveats:

* The LIN Interface has to be initialized with a call of LinIf Init before this API
service may be called, see [SRS_BSW_00487].

» The implementation may be e.g. disabling the interrupt source for the wake up.
If the interrupt is level triggered a pending interrupt is automatically stored and
raised after enabling the notification again. It is very important not to lose wake
up events during the disabled period.

8.2.11 LinIf GetPIDTable

The service LinIf_GetPIDTable is only applicable to LIN slave node (available only
if the ECU has any LIN slave channel).

[SWS_Linlf_91002] Definition of API function Linlf_GetPIDTable |

Service Name Linlf_GetPIDTable

SUﬂﬂaX Std_ReturnType LinIf_GetPIDTable (
NetworkHandleType Channel,
Lin_FramePidTypex PidBuffer,
uint8+ PidBufferLength

)

Service ID [hex] 0x72

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Identification of the LIN channel.

Parameters (inout) PidBuffer Pointer to existing buffer to which the current assigned PID values
are copied to

PidBufferLength Pointer to actual length of provided buffer. After successful return,

it contains the number of copied PID values.

Parameters (out) None

Return value Std_ReturnType E_OK: Request has been accepted.
E_NOT_OK: Request has not been accepted, development or
production error occurred.

V

AUTSSAR

A

Description Retrieves all assigned PID values. The order is congruent to the LIN frame index.
Only applicable for LIN slave nodes.

Available via Linlf.h

]

[SWS_Linlf_00816] [This API shall return the configured PIDs of all frames relevant
for the slave node. The order shall be ascending corresponding to the configuration
parameter LinIfFrameIndex. The value of PidBufferLength shall be updated
with the actual number of configured PIDs. |

[SWS_Linlf_00817] [The returned PID list shall not include the PIDs for MRF and
SRF. |

Rationale: MRF and SRF are always implicitly assigned to each slave node and their
PIDs shall not be changed (see also [SWS_Linlf_00809]).

[SWS_Linlf_00828] [If the length of the buffer (provided by parameter PidBuffer—
Length) is 0, the function shall return the number of configured PIDs of the slave node
in parameter PidBuf ferLength, without updating the PID buffer with PIDs. |

[SWS_Linlf_00818] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_GetPIDTable shall report LINIF_E_-
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00819] [If development error detection is enabled and an invalid value for
PidBuffer is given, the function LinIf_ GetPIDTable shall raise the development
error code LINIF_E_PARAM POINTER.]

[SWS_Linlf_00820] [If development error detection is enabled and an invalid value
for PidBufferLength is given, the function LinIf_GetPIDTable shall raise the
development error code LINIF_E_PARAM POINTER. |

[SWS_Linlf_00821] [If development error detection is enabled and length of the buffer
(provided by parameter PidBuf ferLength) is smaller than the number of configured
PIDs of the slave node (except 0, see [SWS_Linlf_00828]), the function LinIf_Get-
PIDTable shall raise the development error code LINIF_E_PARAMETER. |

[SWS_Linlf_00859] [The function LinIf_GetPIDTable is only available if the Linlf
module is configured as LIN slave node on at least one channel. In a pure LIN master
configuration, this function is not available. This depends on the configuration parame-
ter LinIfNodeType.]

8.2.12 LinIf SetPIDTable

The service LinIf_SetPIDTable is only applicable to LIN slave node (available only
if the ECU has any LIN slave channel).

AUTSSAR

[SWS_Linlf_91003] Definition of API function Linlf_SetPIDTable |

Service Name

Linlf_SetPIDTable

SUﬂﬂaX Std_ReturnType LinIf_SetPIDTable (
NetworkHandleType Channel,
Lin_FramePidTypex PidBuffer,
uint8 PidBufferLength
)
Service ID [hex] 0x73
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel.
PidBuffer Pointer to buffer which contains the PID values to configure.

PidBufferLength

Number of PID values in the provided buffer

Parameters (inout)

None

Parameters (out) None
Std_ReturnType

E_OK: Request has been accepted.
E_NOT_OK: Request has not been accepted, development or
production error occurred.

Return value

Description Sets all assigned PID values. The order is congruent to the LIN frame index.
Only applicable for LIN slave nodes.
Available via Linlf.h

[SWS_Linlf_00823] [This API shall update the internal configured PID list in LIN In-
terface with the given PID list. |

Note: The user is responsible that the order of the PIDs in the provided buffer is as-
cending corresponding to the configuration parameter LinIfFrameIndex.

[SWS_Linlf_00824] [The provided PID list shall not include the PIDs for MRF and
SRF. |

Rationale: MRF and SRF are always implicitly assigned to each slave node and their
PIDs shall not be changed (see also [SWS_Linlf_00809]).

[SWS_Linlf_00825] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_SetPIDTable shall report LINIF_E_-
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00826] [If development error detection is enabled and an invalid value for
PidBuffer is given, the function LinIf_ SetPIDTable shall raise the development
error code LINIF_E_PARAM POINTER.]

[SWS_Linlf_00827] [If development error detection is enabled and the value of Pid-
BufferLength is smaller than the number of the configured PIDs of the slave node,
the function LinIf_SetPIDTable shall raise the development error code LINIF_
E_PARAMETER. |

[SWS_Linlf_00860] [The function LinIf_SetPIDTable is only available if the Linlf
module is configured as LIN slave node on at least one channel. In a pure LIN master

AUTSSAR

configuration, this function is not available. This depends on the configuration parame-
ter LinIfNodeType.]

8.2.13 LinIf GetConfiguredNAD

The service LinIf_GetConfiguredNAD is only applicable to LIN slave node (avail-
able only if the ECU has any LIN slave channel).

[SWS_Linlf_00829] Definition of API function Linlf_GetConfiguredNAD |

Service Name Linlf_GetConfiguredNAD

Syntax Std_ReturnType LinIf_ GetConfiguredNAD (
NetworkHandleType Channel,
uint8+ Nad

)

Service ID [hex] 0x70

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Identification of the LIN channel.

Parameters (inout) None

Parameters (out) Nad Configured NAD of slave

Return value Std_ReturnType E_OK: Request has been accepted.
E_NOT_OK: Request has not been accepted, development or
production error occurred.

Description Reports the current configured NAD.

Only applicable for LIN slave nodes.
Available via Linlf.h

[SWS_Linlf_00830] [This API shall return the configured NAD of the slave node. |

[SWS_Linlf_00831] [If development error detection is enabled and an invalid value for
Channel is given, the function LinIf_GetConfiguredNAD shall report LINIF_E_
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00832] [If development error detection is enabled and an invalid value for
Nad is given, the function LinIf_ GetConfiguredNAD shall raise the development
error code LINIF_E_PARAM_POINTER.]

[SWS_Linlf_00861] [The function LinIf_GetConfiguredNAD isonly available if the
Linlf module is configured as LIN slave node on at least one channel. In a pure LIN
master configuration, this function is not available. This depends on the configuration
parameter LinIfNodeType. |

8.2.14 LinIf SetConfiguredNAD

The service LinIf_SetConfiguredNAD is only applicable to LIN slave node (avail-
able only if the ECU has any LIN slave channel).

AUTSSAR

[SWS_Linlf_00833] Definition of API function Linlf_SetConfiguredNAD |

Service Name Linlf_SetConfiguredNAD
Syntax Std_ReturnType LinIf_ SetConfiguredNAD (
NetworkHandleType Channel,
uint8 Nad
)
Service ID [hex] 0x71
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel.
Nad Configured NAD to set as new slave NAD
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request has been accepted.
E_NOT_OK: Request has not been accepted, development or
production error occurred.
Description Sets the current configured NAD.
Only applicable for LIN slave nodes.
Available via Linlf.h

]
[SWS_Linlf_00834] [This API shall update the configured NAD of the slave node. |

[SWS_Linlf_00835] [If development error detection is enabled and an invalid value for
Channel is given, the function LinIf SetConfiguredNAD shall report LINIF_E_
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00836] [If development error detection is enabled and the value 0 for Nad
is given, the function LinIf_ SetConfiguredNAD shall raise the development error
code LINIF_E_PARAMETER. |

[SWS_Linlf_00862] [The function LinIf SetConfiguredNAD is only available if the
Linlf module is configured as LIN slave node on at least one channel. In a pure LIN
master configuration, this function is not available. This depends on the configuration
parameter LinIfNodeType. |

AUTSSAR

8.2.15 LinTp_ Init

[SWS_Linlf_00350] Definition of API function LinTp_Init

Upstream requirements: SRS_BSW_00101, SRS_BSW_00414, SRS_BSW_00416, SRS_BSW_
00358, SRS _Lin 01540

[
Service Name LinTp_Init
Syntax void LinTp_Init (
const LinTp_ConfigType* ConfigPtr
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the LIN Transport Protocol configuration.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the LIN Transport Layer.
Available via Linlf.h
]

[SWS_Linlf_00427] [The parameter ConfigPtr of the function LinTp_Init is only
relevant for the configuration variant VARIANT-POST-BUILD. The parameter Config-
ptr shall be ignored for the configuration variant VARIANT-PRE-COMPILE and the
configuration variant VARIANT-LINK-TIME. |

The LIN Interface’s environment shall call the function LinTp_Init before using any
other LIN TP function.

[SWS_Linlf_00320] [The function LinTp_Init shall set the state LINTP_INIT and
sub-state LINTP_CHANNEL_IDLE for each configured channel of the LIN TP channel
state-machine. |

[SWS_Linlf_00681] [The function LinTp_Init shall be pre-compile time config-
urable On/Off by the configuration parameter LinIfTpSupported.]

8.2.16 LinTp_Transmit

[SWS_Linlf_00351] Definition of API function LinTp_Transmit |

Service Name LinTp_Transmit

Syntax Std_ReturnType LinTp_Transmit (
PduldType TxPduld,
const PdulInfoTypex PdulnfoPtr
)

V

AUTSSAR

A
Service ID [hex] 0x53
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identifier of the PDU to be transmitted
PdulnfoPtr Length of and pointer to the PDU data and pointer to MetaData.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Transmit request has been accepted.
E_NOT_OK: Transmit request has not been accepted.
Description Requests transmission of a PDU.
Available via Linlf.h
]

[SWS_Linlf_00326] [The function LinTp_Transmit shall prepare a LIN TP mes-
sage for transmission. |

The LIN Interface’s environment shall call the function LinIf_TInit for initializing the
referenced channel before using the function LinTp_Transmit.

[SWS_Linlf_00413] [The function LinTp_Transmit shall set the sub-state of the
referenced channel to LINTP_CHANNEL_BUSY. |

[SWS_Linlf_00422] [The function LinTp_Transmit shall convert the N-SDU Id
(given by the parameter TxPduId) to a specific channel and a destination NAD for
the slave. This requirement is only applicable to LIN master nodes. |

[SWS_Linlf_00584] [The function LinTp_Transmit shall accept a functional trans-
mission request also when a TP message is currently ongoing on the selected channel.
This requirement is only applicable to LIN master nodes. |

[SWS_Linlf_00616] [If the transmission for a further physical request is triggered while
transmission of a previously triggered physical request is ongoing, the LIN Interface
shall accept the new physical request and drop the old physical request. |

Note: According to the ISO 17987 specifications, the NAD 0x7E shall be used for a
functional transmission request.

[SWS_Linlf_00586] [The LIN Interface shall use the NAD Ox7E for transmission of
functional requests by LIN master nodes. |

[SWS_Linlf_00702]
Upstream requirements: SRS_Lin_01564

[When LinTp_Transmit was successful (returned E_OK), the LIN Interface shall
call PduR_LinTpTxConfirmation after successful completion or failure (e.g.,
since some other schedule table change is currently going on) of required sched-
ule table switch (see [SWS_Linlf 00646], [SWS_Linlf 00642], [SWS_Linlf 00643],

AUTSSAR

[SWS_Linlf_00707]), with a negative or positive result. When LinTp_Transmit was
not successful, PduR_LinTpTxConfirmation shall not be called. |

[SWS_Linlf_00878]
Upstream requirements: SRS_Lin_01564

[The function LinTp_Transmit shall return E_NOT_OK when the corresponding
LinIf_ScheduleRequest call (called from BswM_LinTp_RequestMode resulting
from the LinTp_Transmit call, see [SWS_Linlf_00646] and [SWS_Linlf_00641]) re-
turned E_NOT_OX for the Schedule Request. |

[SWS_Linlf_00574] [If development error detection is enabled and the parameter
PduInfoPtr has an invalid value, the function LinTp_Transmit shall raise the de-
velopment error code LINIF_E_PARAM POINTER. |

[SWS_Linlf_00576] [If development error detection is enabled and the parameter
TxPdulId has an invalid value, the function LinTp_Transmit shall raise the develop-
ment error code LINIF_E_PARAMETER. |

[SWS_Linlf_00682] [The function LinTp_Transmit shall be pre-compile time con-
figurable On/Off by the configuration parameter LinIfTpSupported. |

Caveats: The LIN Interface has to be initialized with a call of LinIf Init and
LinTp_Init before this APl service may be called, see [SRS_BSW_00487].

8.2.17 LinTp_GetVersionInfo

[SWS_Linlf_00352] Definition of API function LinTp_GetVersioninfo
Upstream requirements: SRS_BSW_00407

[

Service Name LinTp_GetVersioninfo

Syntax void LinTp_GetVersionInfo (
Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x42

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via Linlf.h

AUTSSAR

[SWS_Linlf_00639] [If development error detection is enabled and the parameter
versioninfo has aninvalid value, the function LinTp_GetVersionInfo shall raise
the development error code LINIF_E_PARAM POINTER. |

8.2.18 LinTp_Shutdown

[SWS_Linlf_00355] Definition of API function LinTp_Shutdown
Upstream requirements: SRS_BSW_00336

[
Service Name LinTp_Shutdown
Syntax void LinTp_Shutdown (
void
)
Service ID [hex] 0x43
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Shutdowns the LIN TP.
Available via Linlf.h
]

[SWS_Linlf_00356] [The function LinTp_Shutdown shall close all pending transport
protocol connection of the LIN TP and free all resources of the LIN TP. |

[SWS_Linlf_00433] [The function LinTp_sShutdown shall affect all configured chan-
nels. |

[SWS_Linlf_00484] [The function LinTp_sShutdown shall setthe LIN TP state of all
channels to LINTP_UNINIT.]

[SWS_Linlf_00683] [The function LinTp_shutdown shall be pre-compile time con-
figurable On/Off by the configuration parameter LinIfTpSupported. |

Caveats: The LIN Interface has to be initialized with a call of LinIf Init and
LinTp_Init before this APl service may be called, see [SRS_BSW_00487].

AUTSSAR

8.2.19 LinTp_ChangeParameter

[SWS_Linlf_00501] Definition of API function LinTp_ChangeParameter |

Service Name

LinTp_ChangeParameter

Syntax Std_ReturnType LinTp_ChangeParameter (
PduldType id,
TPParameterType parameter,
uintlé value
)
Service ID [hex] 0x4b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) id Identification of the PDU which the parameter change shall affect.
parameter ID of the parameter that shall be changed.
value The new value of the parameter.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The parameter was changed successfully.

E_NOT_OK: The parameter change was rejected.

Description

Request to change a specific transport protocol parameter (e.g. block size).

Available via

Linlf.h

]

Note: This function is an empty implementation to comply with upper layer specifica-

tion.

[SWS_Linlf_00592] [The change parameter request shall always be rejected by re-

turning E_NOT_OX. |

[SWS_Linlf_00685] [The function LinTp_ChangeParameter shall be pre-compile
time configurable On/Off by the configuration parameter LinI fTpSupported.]

Caveats: The LIN Interface has to be initialized with a call of LinIf Init and
LinTp_Init before this APl service may be called, [SRS_BSW _00487].

8.2.20 LinIf CheckWakeup

[SWS_Linlf_00378] Definition of API function Linlf_CheckWakeup
Upstream requirements: SRS Lin_01514, SRS BSW 00375

[

Service Name

Linlf_CheckWakeup

Syntax Std_ReturnType LinIf_CheckWakeup (
EcuM_WakeupSourceType WakeupSource
)
Service ID [hex] 0x60

Y

AUTSSAR

JAN
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WakeupSource Source device, which initiated the wakeup event: LIN controller or
LIN transceiver
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: No error has occurred during execution of the API
E_NOT_OK: An error has occurred during execution of the API or
invalid WakeupSource

Description

Will be called when the EcuM has been notified about a wakeup on a specific LIN channel.

Available via

Linlf.h

]

The LIN Interface will recognize the source of the wakeup and thus the destination of
this call by the parameter of the function LinIf_CheckWakeup.

[SWS_Linlf_00503] [The function LinIf_ CheckWakeup shall issue the call of func-
tion Lin_CheckWakeup Or LinTrcv_CheckWakeup depending on the given param-
eter wakeupSource. |

Note: It is implementation specific, which controllers and transceivers are queried. Linlf
just has to find out the exact LIN hardware device.

[SWS_Linlf_00566] [If development error detection is enabled and the parameter
WakeupSource has an invalid value, the function LinTIf_CheckWakeup shall raise
the development error code LINIF_E_PARAM WAKEUPSOURCE. |

The function LinIf_CheckWakeup may be called in an interrupt or polling mode.

8.2.21 LinIf EnableBusMirroring

[SWS_Linlf_00876] Definition of API function Linlf_EnableBusMirroring |

Service Name

Linlf_EnableBusMirroring

Syntax Std_ReturnType LinIf_ EnableBusMirroring (
NetworkHandleType Channel,
boolean MirroringActive
)
Service ID [hex] 0x7f
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel.

MirroringActive

TRUE: Mirror_ReportLinFrame will be called for each frame
received or transmitted on the given channel. FALSE: Mirror_
ReportLinFrame will not be called for the given channel.

Parameters (inout)

None

Y%

AUTSSAR

A
Parameters (out) None
Return value Std_ReturnType E_OK: Mirroring mode was changed.
E_NOT_OK: Wrong Channel, or mirroring globally disabled (see
LinlfBusMirroringSupport).
Description Enables or disables mirroring for a LIN channel.
Available via Linlf.h

]

[SWS_LinIf_00875] [If Bus Mirroring is not enabled (configuration parameter LinIf-

BusMirroringSupported), the APl LinIf_EnableBusMirroring can be omit-
ted. |

AUTSSAR

8.3 Callback notifications

This is a list of functions provided for other modules.

8.3.1 LinIf WakeupConfirmation

[SWS_Linlf_00715] Definition of callback function Linlf_WakeupConfirmation |

Service Name

Linlf_WakeupConfirmation

Syntax void LinIf_WakeupConfirmation (
EcuM_WakeupSourceType WakeupSource
)
Service ID [hex] 0x61
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WakeupSource Source device which initiated the wakeup event: LIN controller or
LIN transceiver
Parameters (inout) None
Parameters (out) None
Return value None

Description

The LIN Driver or LIN Transceiver Driver will call this function to report the wake up source after
the successful wakeup detection during CheckWakeup or after power on by bus.

Available via

Linlf.h

]

[SWS_Linlf_00716] [The function LinIf_ WakeupConfirmation shall set the
wakeup flag for the channel depending on the given parameter WakeupSource. The
wakeup flags shall be provided for each channel. |

[SWS_Linlf_00717] [If development error detection is enabled and the parameter
WakeupSource has an invalid value, the function LinIf WakeupConfirmation
shall raise the development error code LINIF_E_PARAM WAKEUPSOURCE. |

8.3.2 LinIf HeaderIndication

The callback function LinIf_HeaderIndication is only applicable for LIN slave

node.

[SWS_Linlf_91004] Definition of callback function Linlf_Headerindication |

Service Name Linlf_HeaderIndication
Syntax Std_ReturnType LinIf_ HeaderIndication (
NetworkHandleType Channel,
Lin_PduTypex PduPtr
)
Service ID [hex] 0x78
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant for different Channels. Non reentrant for the same Channel.
Parameters (in) Channel Identification of the LIN channel
Parameters (inout) PduPtr Pointer to PDU providing the received PID and pointer to the SDU

data buffer as in parameter. Upon return, the length, checksum
type and frame response type are received as out parameter. If
the frame response type is LIN_FRAMERESPONSE_TX, then

the SDU data buffer contains the transmission data.

Parameters (out) None

Return value Std_ReturnType E_OK: Request has been accepted.
E_NOT_OK: Request has not been accepted, development or
production error occurred.

Description The LIN Driver will call this function to report a received LIN header. This function is only

applicable for LIN slave nodes (available only if the ECU has any LIN slave channel).

Available via Linlf.h

]

[SWS_Linlf_00843] [If development error detection is enabled and an invalid value for
Channel is given, the function LinIf_HeaderIndication shall report LINIF_E_
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00844] [If development error detection is enabled and the parameter
PduPtr has an invalid value, the function LinIf_HeaderIndication shall raise the
development error code LINIF_E_PARAM POINTER. |

[SWS_Linlf_00845] [If development error detection is enabled, the PID is evaluated
and rated to belong to a transmit frame and the parameter PduPtr->SduPtr has an
invalid value, the function LinIf_HeaderIndication shall raise the development
error code LINIF_E_PARAM_POINTER.]

[SWS_Linlf_00863] [The function LinIf HeaderIndication isonly available if the
Linlf module is configured as LIN slave node on at least one channel. In a pure LIN
master configuration, this function is not available. This depends on the configuration
parameter LinIfNodeType. |

8.3.3 LinIf RxIndication
The callback function LinIf RxIndication is only applicable for LIN slave node.

[SWS_Linlf_91005] Definition of callback function Linlf_RxIndication |

Service Name Linlf_RxIndication

Syntax void LinIf_RxIndication (
NetworkHandleType Channel,
uint8+ Lin_SduPtr

)

Service ID [hex] 0x79
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant for different Channels. Non reentrant for the same Channel.
Parameters (in) Channel Identification of the LIN channel
Lin_SduPtr Pointer to pointer to a shadow buffer or memory mapped LIN

Hardware receive buffer where the current SDU is stored. This
pointer is only valid if the response is received.

Parameters (inout) None
Parameters (out) None
Return value None
Description The LIN Driver will call this function to report a successfully received response and provides the

reception data to the LIN Interface. This function is only applicable for LIN slave nodes
(available only if the ECU has any LIN slave channel).

Available via Linlf.h

]

[SWS_Linlf_00848] [If no header of a receive frame has been indicated before (no re-
sponse reception is expected), the function LinTIf_RxIndication shall return with-
out further action. |

Rationale: Unexpected calls to LinIf_ RxIndication shall be ignored.

[SWS_Linlf_00849] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_RxIndication shall report LINIF_E_-
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00850] [If development error detection is enabled and the parameter
Lin_SduPtr has an invalid value, the function LinIf_RxIndication shall raise the
development error code LINIF_E_PARAM POINTER. |

[SWS_Linlf_00864] [The function LinIf_ RxIndication is only available if the Linlf
module is configured as LIN slave node on at least one channel. In a pure LIN master
configuration, this function is not available. This depends on the configuration parame-
ter LinIfNodeType.]

83.4 LinIf TxConfirmation
The callback function LinIf_ TxConfirmation is only applicable for LIN slave node.

[SWS_Linlf_91006] Definition of callback function Linlf_TxConfirmation |

Service Name Linlf_TxConfirmation

Syntax void LinIf_TxConfirmation (
NetworkHandleType Channel
)

Service ID [hex] 0x7a
Sync/Async Synchronous
Reentrancy Reentrant for different Channels. Non reentrant for the same Channel.

V

AUTSSAR

A

Parameters (in) Channel | Identification of the LIN channel

Parameters (inout) None

Parameters (out) None

Return value None

Description The LIN Driver will call this function to report a successfully transmitted response. This function

is only applicable for LIN slave nodes (available only if the ECU has any LIN slave channel).

Available via Linlf.h

]

[SWS_Linlf_00852] [If no header of a transmit frame has been indicated before (no re-
sponse transmission is expected), the function LinIf_TxConfirmation shall return
without further action. |

Rationale: Unexpected calls to LinIf_TxConfirmation shall be ignored.

[SWS_Linlf_00853] [If development error detection is enabled and an invalid value
for Channel is given, the function LinIf_TxConfirmation shall report LINIF_E_
NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00865] [The function LinIf TxConfirmation is only available if the
Linlf module is configured as LIN slave node on at least one channel. In a pure LIN
master configuration, this function is not available. This depends on the configuration
parameter LinIfNodeType. |

8.3.5 LinIf LinErrorIndication

The callback function LinIf_LinErrorIndication is only applicable for LIN slave
node.

[SWS_Linlf_91007] Definition of callback function Linlf_LinErrorindication |

Service Name Linlf_LinErrorindication
Syntax void LinIf_LinErrorIndication (
NetworkHandleType Channel,
Lin_SlaveErrorType ErrorStatus
)
Service ID [hex] 0x7b
Sync/Async Synchronous
Reentrancy Reentrant for different Channels. Non reentrant for the same Channel.
Parameters (in) Channel Identification of the LIN channel
ErrorStatus Type of detected error
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A

Description The LIN Driver will call this function to report a detected error event during header or response
processing. This function is only applicable for LIN slave nodes (available only if the ECU has
any LIN slave channel).

Available via Linlf.h

]

[SWS_Linlf_00855] [If development error detection is enabled and an invalid value for
Channel is given, the function LinIf LinErrorIndication shall report LINIF__
E_NONEXISTENT_CHANNEL to the default error tracer. |

[SWS_Linlf_00866] [The function LinIf_LinErrorIndication is only available if
the Linlf module is configured as LIN slave node on at least one channel. In a pure LIN
master configuration, this function is not available. This depends on the configuration
parameter LinIfNodeType. |

8.4 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non-reentrant.

8.4.1 LinIf MainFunction_<LinIfChannel.ShortName>

[SWS_Linlf 00384] Definition of scheduled function Linlf _MainFunction <Linlf
Channel.ShortName>
Upstream requirements: SRS_BSW_00373, SRS_Lin_01546, SRS Lin_01561, SRS Lin_01555

Service Name Linlf_MainFunction_<LinlfChannel.ShortName>
Syntax void LinIf_MainFunction_<LinIfChannel.ShortName> (
void
)
Service ID [hex] 0x80
Description The main processing function of the LIN Interface.
Available via SchM_Linlf.h

Design hint: The function LinIf_MainFunction_<LinIfChannel.ShortName>
may be interrupted by other LIN Interface functions. Critical areas that are also modi-
fied by other functions shall be protected. Other LIN Interface API calls that may touch
the same resources arethe LinIf_ GotoSleep, LinIf_ Transmit, LinIf_Sched-
uleRequest and LinIf Wakeup, and potentially also LinIf Init, LinTp_Init
and LinTp_Shutdown.

AUTSSAR

[SWS_Linlf_00725] [The function LinIf MainFunction_<LinIfChannel.-
ShortName> shall exist once per LIN channel of the LIN Interface module. |

[SWS_Linlf_00726] [The function name of each instance of the Linlf MainFunc-
tion shall be LinIf MainFunction <LinIfChannel.ShortName> where <Lin-
IfChannel.ShortName> corresponds to the Short Name of the respective LIN chan-
nel (LinIfChannel).]

[SWS_Linlf_00473] [The function LinIf MainFunction_<LinIfChannel.-
ShortName> shall operate per LIN channel of the LIN Interface module. |

[SWS_Linlf_00286] [The function LinIf MainFunction_<LinIfChannel.-
ShortName> shall poll the Schedule Table Manager which frame shall be transported.
This requirement is only applicable to LIN master nodes. |

[SWS_Linlf_00287] [Only the function LinIf MainFunction_<LinIfChannel.-
ShortName> shall process the transportation (transmission and reception) of frames.
This requirement is only applicable to LIN master nodes. |

8.5 Expected interfaces

In this section, all interfaces required from other modules are listed.

8.5.1 Mandatory Interfaces
This section defines all interfaces that are required to fulfill the core functionality.

[SWS_Linlf_00359] Definition of mandatory interfaces required by module Linlf |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

Lin_GoToSleeplnternal Lin.h Sets the channel state to LIN_CH_SLEEP, enables

the wake-up detection and optionally sets the LIN
hardware unit to reduced power operation mode (if
supported by HW).

Lin_Wakeup Lin.h Generates a wake up pulse and sets the channel
state to LIN_CH_OPERATIONAL.
Lin_Wakeuplnternal Lin.h Sets the channel state to LIN._CH_OPERATIONAL

without generating a wake up pulse.

8.5.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

AUTSSAR

[SWS_Linlf_00360] Definition of optional interfaces requested by module Linlf |

API Function

Header File

Description

BswM_LinTp_RequestMode

BswM_LinTp.h

Function called by LinTP to request a mode for the
corresponding LIN channel. The LinTp_Mode
correlates to the LIN schedule table that should be
used.

Com_SendSignal

Com.h

The service Com_SendSignal updates the signal
object identified by Signalld with the signal
referenced by the SignalDataPtr parameter.

Det_ReportError

Det.h

Service to report development errors.

Lin_CheckWakeup

Lin.h

This function checks if a wakeup has occurred on
the addressed LIN channel.

Lin_GetStatus

Lin.h

Gets the status of the LIN driver.
Only used for LIN master nodes.

Lin_GoToSleep

Lin.h

The service instructs the driver to transmit a
go-to-sleep-command on the addressed LIN
channel.

Only used for LIN master nodes.

Lin_SendFrame

Lin.h

Sends a LIN header and a LIN response, if
necessary. The direction of the frame response
(master response, slave response, slave-to-slave
communication) is provided by the PdulnfoPtr.
Only used for LIN master nodes.

LinSM_GotoSleepConfirmation

LinSM.h

The Linlf will call this callback when the go to sleep
command is sent successfully or not sent
successfully on the network.

LinSM_GotoSleeplndication

LinSM.h

The Linlf will call this callback when the go to sleep
command is received on the network or a bus idle
timeout occurs.

Only applicable for LIN slave nodes.

LinSM_ScheduleRequestConfirmation

LinSM.h

The Linlf module will call this callback when the new
requested schedule table is active.

LinSM_WakeupConfirmation

LinSM.h

The Linlf will call this callback when the wake up
signal command is sent not successfully/
successfully on the network.

LinTrcv_CheckWakeup

LinTrcv.h

Notifies the calling function if a wakeup is detected.

LinTrcv_GetBusWuReason

LinTrev.h

This API provides the reason for the wakeup that the
LIN transceiver has detected in the parameter
"Reason". The ability to detect and differentiate the
possible wakeup reasons depends strongly on the
LIN transceiver hardware.

LinTrcv_GetOpMode

LinTrcv.h

API detects the actual software state of LIN
transceiver driver.

LinTrcv_SetOpMode

LinTrcv.h

The internal state of the LIN transceiver driver is
switched to mode given in the parameter OpMode.

LinTrcv_SetWakeupMode

LinTrev.h

This API enables, disables and clears the
notification for wakeup events on the addressed
network.

LSduR_LinlfRxIndication (draft)

LSduR_Linlf.h

Indication of a received PDU from a lower layer
communication interface module.

LSduR_LinlfTriggerTransmit (draft)

LSduR_Linlf.h

Within this API, the upper layer module (called
module) shall check whether the available data fits
into the buffer size reported by PdulnfoPtr->Sdu
Length. If it fits, it shall copy its data into the buffer
provided by PdulnfoPtr->SduDataPtr and update the
length of the actual copied data in PdulnfoPtr->Sdu
Length. If not, it returns E_NOT_OK without
changing PdulnfoPtr.

AUTSSAR

A

API Function Header File Description

LSduR_LinlfTxConfirmation (draft) LSduR_Linlf.h The lower layer communication interface module
confirms the transmission of a PDU, or the failure to
transmit a PDU.

Mirror_ReportLinFrame Mirror.h Reports a received or transmitted LIN frame.

PduR_LinTpCopyRxData PduR_LinTp.h This function is called to provide the received data of
an I-PDU segment (N-PDU) to the upper layer. Each
call to this function provides the next part of the
|I-PDU data. The size of the remaining buffer is
written to the position indicated by bufferSizePtr.

PduR_LinTpCopyTxData PduR_LinTp.h This function is called to acquire the transmit data of

an I-PDU segment (N-PDU). Each call to this
function provides the next part of the I-PDU data
unless retry->TpDataState is TP_DATARETRY. In
this case the function restarts to copy the data
beginning at the offset from the current position
indicated by retry->TxTpDataCnt. The size of the
remaining data is written to the position indicated by
availableDataPtr.

PduR_LinTpRxIndication PduR_LinTp.h Called after an I-PDU has been received via the TP
API, the result indicates whether the transmission
was successful or not.

PduR_LinTpStartOfReception PduR_LinTp.h This function is called at the start of receiving an
N-SDU. The N-SDU might be fragmented into
multiple N-PDUs (FF with one or more following
CFs) or might consist of a single N-PDU (SF). The
service shall provide the currently available
maximum buffer size when invoked with TpSdu
Length equal to 0.

PduR_LinTpTxConfirmation PduR_LinTp.h This function is called after the I-PDU has been
transmitted on its network, the result indicates
whether the transmission was successful or not.

8.5.3 Configurable interfaces

In this section, all interfaces are listed, where the target function of any upper layer to
be called has to be set up by configuration. These call-out services are specified and
implemented in the upper communication modules, which use the LIN Interface accord-
ing to the AUTOSAR BSW architecture. The specific call-out notification is specified in
the corresponding SWS document (see Chapter 3 “Related documentation”).

As far the interface name is not specified to be mandatory, no call-out is performed, if
no API name is configured. This section describes only the content of notification of
the call-out, the call context inside the LIN Interface and exact time by the call event.

<User>_NotificationName — This condition is applied for such interface services
that will be implemented in the upper layer (‘user’) and called by the LIN Interface. This
condition displays the symbolic name of the functional group in a call-out service in
the corresponding upper layer. Each upper layer can define no, one or several call-out
services for the same functionality (i.e. transmit confirmation).

AUTSSAR

8.5.3.1 <User>_ScheduleRequestConfirmation

[SWS_Linlf_00520] Definition of configurable interface < User >_ScheduleRe-
questConfirmation [

Service Name < User >_ScheduleRequestConfirmation
Syntax void < User >_ScheduleRequestConfirmation (
NetworkHandleType channel,
LinIf_SchHandleType ScheduleTableIdx
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) channel Identification of the LIN channel
ScheduleTableldx Index of the scheduled table
Parameters (inout) None
Parameters (out) None
Return value None
Description The Linlf will call this function when the schedule table change request has been performed.
Available via Configuration parameters LinlfScheduleRequestConfirmationUL and LinlfPublicCddHeaderFile
of the corresponding LinlfChannel

]

Configuration of <User>_ScheduleRequestConfirmation: The name of the API
<User>_ScheduleRequestConfirmation which will be called by the LIN Interface
module shall be configured for the LIN Interface module by parameter LinIfSched-
uleRequestConfirmationUL.

8.5.3.2 <User>_GotoSleepConfirmation

[SWS_Linlf_00521] Definition of configurable interface < User >_GotoSleepCon-
firmation |

Service Name < User >_GotoSleepConfirmation

Syntax void < User >_GotoSleepConfirmation (
NetworkHandleType channel,
boolean success

)

Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) channel Identification of the LIN channel
success True if goto sleep was successfully sent, false otherwise
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A
Description The Linlf will call this function when the go to sleep command is sent not successfully/
successfully on the bus.
Available via Configuration parameters Linlf{GotoSleepConfirmationUL and LinlfPublicCddHeaderFile of the
corresponding LinlfChannel

]

Configuration of <User>_GotoSleepConfirmation: The name of the APl <User>
_GotoSleepConfirmation which will be called by the LIN Interface module shall be
configured for the LIN Interface module by parameter LinIfGotoSleepConfirma-
tionUL.

8.5.3.3 <User>_WakeupConfirmation

[SWS_Linlf_00522] Definition of configurable interface < User >_WakeupConfir-
mation |

Service Name < User >_WakeupConfirmation

Syntax void < User >_WakeupConfirmation (
NetworkHandleType channel,
boolean success

)

Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) channel Identification of the LIN channel
success True if wakeup was successfully sent, false otherwise
Parameters (inout) None
Parameters (out) None
Return value None
Description The Linlf will call this function when the wake up signal command is sent not successfully/

successfully on the bus.

Available via Configuration parameters LinlfWakeupConfirmationUL and LinlfPublicCddHeaderFile of the
corresponding LinlfChannel

]

Configuration of <User>_WakeupConfirmation: The name of the APl <User>_
WakeupConfirmation which will be called by the LIN Interface module shall be con-
figured for the LIN Interface module by parameter LinIfWakeupConfirmationUL.

AUTSSAR

8.5.3.4 <User>_GotoSleepIndication

[SWS_Linlf_00880] Definition of configurable interface <User>_GotoSleeplndica-

tion [

Service Name

<User>_GotoSleeplndication

Syntax void <User>_GotoSleepIndication (
NetworkHandleType Channel
)
Sync/Async Synchronous
Reentrancy Reentrant for different Channels
Parameters (in) Channel Identification of the LIN channel
Parameters (inout) None
Parameters (out) None
Return value None

Description

The Linlf will call this callback when the go to sleep command is received on the network or a
bus idle timeout occurs. Only applicable for LIN slave nodes.

Available via

Configuration parameters LinlfGotoSleepindicationUL and LinlfPublicCddHeaderFile of the
corresponding LinlfChannel

]

Configuration of <User>_GotoSleepIndication: The name of the APl <User>_
GotoSleepIndication which will be called by the LIN Interface module shall be con-
figured for the LIN Interface module by parameter LinIfGotoSleepIndicationUL.

8.5.3.5 Callout definitions

8.5.3.5.1

<User_ResponseErrorSignalChanged>

The callout function <User_ResponseErrorSignalChanged> is only applicable for

LIN slave node.

[SWS_Linlf_00856] Definition of configurable interface <User_ResponseError

SignalChanged> |

Service Name <User_ResponseErrorSignalChanged>
Syntax void <User_ResponseErrorSignalChanged> (
NetworkHandleType Channel,
boolean RespErrSigValue
)
Service ID [hex] 0x74
Sync/Async Synchronous
Reentrancy Reentrant for different Channels. Non reentrant for the same Channel.

Parameters (in)

Channel Identification of the LIN channel.

RespErrSigValue Current value of the response error signal. True if the signal is set
to 1, false otherwise.

Only applicable for LIN slave nodes.

Parameters (inout)

None

V

AUTSSAR

A
Parameters (out) None
Return value None
Description Notifies the change of the response error signal with the new value.
Only applicable for LIN slave nodes.
Available via Linlf_Externals.h

]
This callout is optional, see [SWS_Linlf_00766].

Configuration of <User_ResponseErrorSignalChanged>: The name of the API
<User_ResponseErrorSignalChanged> which will be called by the LIN Interface
module shall be configured for the LIN Interface module by parameter LinIfRespon-—
seErrorSignalChangedCallout.

8.5.3.5.2 <User_SaveConfigurationRequest>

The callout function <User_SaveConfigurationRequest> is only applicable for
LIN slave node.

[SWS_Linlf_00857] Definition of configurable interface <User_SaveConfiguration
Request> |

Service Name <User_SaveConfigurationRequest>
Syntax boolean <User_SaveConfigurationRequest> (
NetworkHandleType Channel
)
Service ID [hex] 0x75
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Identification of the LIN channel.
Parameters (inout) None
Parameters (out) None
Return value boolean True if a positive response shall be transmitted, false if no
response shall be transmitted.
Description Notifies the reception of a SaveConfiguration request.
Only applicable for LIN slave nodes.
Available via Linlf_Externals.h

]

This callout is optional, depending if the SaveConfiguration node configura-
tion service is directly supported (configuration parameter LinIfSaveConfigura-
tionCallout).

Configuration of <User_SaveConfigurationRequest>: The name of the API
<User_SaveConfigurationRequest> wWhich will be called by the LIN Interface
module shall be configured for the LIN Interface module by parameter LinIfSave-
ConfigurationCallout.

AUTSSAR

Note: The functions LinIf_ GetConfiguredNAD and LinIf_GetPIDTable are in-
tended to be used after reception of a SaveConfiguration request to read the cur-
rent LIN configuration.

AUTSSAR

9 Sequence diagrams

This chapter shows use cases for LIN communication and AP| usage. As the com-
munication is in real-time, it is not easy to show the real-time behavior in the UML
dynamic diagrams. It is advisable to read the corresponding descriptive text to each
UML diagram.

To show the behavior of the modules in the different use cases, there are local function
calls made to show what is done and when to get information. It is not mandatory to use
these local functions. They are here just to make the use cases more understandable.

Note that all parameters and return types are omitted to make the diagrams easier to
read and understand. If needed for clarification the parameter value or return value are
shown.

9.1 Frame Transmission
9.1.1 Frame transmission in master nodes

This section is only applicable to LIN master nodes.

The following use case shows the transmission of a LIN frame. The first call of
the LinIf_MainFunction_<LinIfChannel.ShortName> requests transmission
of the header and the response. During the second call, the frame is under transmis-
sion. In the third call of the LinIf_ MainFunction_<LinIfChannel.ShortName>
, the frame is finished.

The RequestFrame call in the diagram is the interface call to the Schedule Table Man-
ager. The LinIf_MainFunction_<LinIfChannel.ShortName> gets the frame to
send and the delay to the next frame.

The copyBuffer call is to show that the copying of the SDU is made in the LIN Driver
and not in the LIN Interface.

The dynamic diagram in Figure 9.1 does not show any timing information. The timing
information is depicted in Figure 9.2 following the diagram.

AUTSSAR

«module» «module» «module»
LSduR Linlf Lin
(os o)
BSW Task (OS task T T T
or cyclic call) | | 1
| Linlf_MainFunction_<Channelld>() | :
i i
: RequestFrame() :
I I
: LSduR_LinlfTriggerTransmit() [:
|
|
I
SetupBuffer() :
|
————————————— > I
I
: Lin_SendFrame() !
|] CopyBuffer()
I
I
|
| ke — - — —
- e]
< I
T | T |
| | I |
| I I |
: LinIfﬁMainFurl1clion7<ChanneIId>() : :
| |
| |
| |
Sl By 1
T | . |
| | I |
| | I |
| I | |
| | I I
! Linlf_MainFunction_<Channelld>() ! :
| |
: Lin_GetStatus() - :
| L
: Lin_GetStatus(): LIN_TX_OK
N e e bt
|
| __LSduR_LinlfTxConfirmation() |
. |
I
I
H~ ————————————— > I
|
| |
e — e — ———— e — 1
L | L 1
| | I |
| | I |
Figure 9.1: Frame transmission (master node)
Bus activity
Header Response ticks
.
A A A]
First call of Third call of

Linlf_MainFunction_
=LinlfChannel.ShortName>
—Lin_SendFrame is called.

Second call of
Linlf_MainFunction_
<LinffChannel. ShortName=
—no action.

Linlf_MainFunction_
<LinlifChannel. ShortName=
—Lin_GetStatus is called to

check the status of the
response.

Figure 9.2: Timing information for transmitted frame

AUTSSAR

9.1.2 Frame transmission in slave nodes

This section is only applicable to LIN slave nodes.

The following use case (Figure 9.3) shows the transmission of a LIN frame. After
a received LIN header is indicated by the LIN driver, the PID is evaluated (shown by
function EvaluatePID). If it's determined to belong to a transmission frame, the trans-
mission response data is requested from upper layer. The buffer to which sduptr
member in PduPtr parameter points to can be directly passed to let the upper layer
copy the transmission data to the provided buffer. The LIN interface informs the driver
about the response type by setting the appropriate members of pduPtr (shown by
function setPduPtrvValues).

The copyBuffer call is to show that the copying of the SDU is made in the LIN Driver

and not in the LIN Interface.

«module»
LSduR

«module»
Linlf

LSduR_LinlIfTriggerTransmit()

«module»
Lin

Linlf_HeaderIndication()

Interrupt()

«Peripheral»
LinController/UAR)

Ir

e

e

SetupBuffer()

_ LSduR_LinlfTxConfirmation()

EvaluatePID()

SetPduPtrvalues()

Linlf_TxConfirmation()

CopyBuffer()

Interrupt()

LF___------------__>

J~———————————————————>

Figure 9.3: Frame transmission (slave node)

AUTSSAR

9.2 Frame Reception

9.2.1 Frame reception in master nodes

This section is only applicable to LIN master nodes.

The following use case (Figure 9.4) shows the reception of a LIN frame. The first call of
the LinIf_MainFunction_<LinIfChannel.ShortName> requests transmission
of the header. During the second call, the frame is under transmission. In the third call,
the frame is finished (this call is called after the maximum frame length).

The RequestFrame call in the diagram is the interface call to the Schedule Table Man-
ager. The LinIf MainFunction_<LinIfChannel.ShortName> gets the frame to
send and the delay to the next frame.

The AllocateRxBuffer callis to show that the storage of the received frame is made
in the LIN Driver and not in the LIN Interface.

«module» «module» «module»
LSduR Linlf Lin
O

BSW Task (OS task T

T T
or cyclic call) | | |
'

: Linlf_MainFunction_<Channelld>() : :
: RequestFrame() :
| |
| L |
I I
| Lin_SendFrame() o !
| L
|
| AllocateRxBuffer()
|
|
|
I S———— === ===

< - b]
|| 1 L | 1

I | I |
! | |

: Linlf_MainFunction_<Channelld>() | |
I I
| |
| |

bbbk e 1
T | n I
| | | |
| Linlf_MainFunction_<Channelld>() | |
T |
I I
I I
! Lin_GetStatus() !
1 .-
|
i | __ _Lin GeiStatus): LIN RX OK _ _ _
|
|
| LSduR_LinlfRxIndication() |
I
|
|
CopyBuffer() |
I
————————————— > 1
|
| |
< e — l
L | L |
| |

Figure 9.4: Frame reception (master node)

AUTSSAR

9.2.2 Frame reception in slave nodes

This section is only applicable to LIN slave nodes.

The following use case (Figure 9.5) shows the reception of a LIN frame. After a re-
ceived LIN header is indicated by the LIN driver, the PID is evaluated (shown by func-
tion EvaluatePID). If it's determined to belong to a reception frame, the LIN inter-
face informs the driver about the response type by setting the appropriate members of
PduPtr (shown by function SetPduPtrvalues).

The AllocateRxBuffer call is to show that the storage of the received frame is made
in the LIN Driver and not in the LIN Interface.

LSduR

«module»

«module»
LinIf

LSduR_LinlIfRxIndication()

«module»
Lin

Linlf_HeaderIndication()

Lin_Interrupt()

«Peripheral»
LinController/UAR]

I

EvaluatePID()

SetPduPtrvValues()

Linlf_RxIndication()

AllocateRxBuffer()

Lin_Interrupt()

CopyBuffer()

-

.
|
I

Figure 9.5: Frame reception (slave node)

AUTSSAR

9.3 Slave-to-slave / lIrrelevant communication

9.3.1 Slave-to-slave communication in master nodes

This section is only applicable to LIN master nodes.

The third direction for a LIN frame is that two slaves communicate with each other. In
this case, the master (LIN Interface) transmits the header and one slave transmits the
response. The difference between the transmit direction is that the master does not
monitor the response of the frame. Therefore, the frame header is transmitted and no
further action is made (Figure 9.6).

«module» «module»
Linif Lin
(os o)

BSW Task (OS task
or cyclic call)
|

: Linlf_MainFunction_<Channelld>()

RequestFrame()
C

Lin_SendFrame()

E— |

<_ _________________

T T
1 1

Figure 9.6: Slave-to-slave communication (master)

9.3.2 Irrelevant communication in slave nodes

This section is only applicable to LIN slave nodes.

The third direction for a LIN frame is that the frame is not relevant for the slave node
and is ignored. After a received LIN header is indicated by the LIN driver, the PID
is evaluated (shown by function EvaluatePID). If it's determined to belong to an
Irrelevant frame, the LIN interface informs the driver about the response type by
setting the appropriate members of PduPt r (shown by function SetPduPtrvalues).
No further action is made (Figure 9.7).

«module» «module» «Peripheral»
Linif Lin LinController/UARIT
(o o)

T T T
| | |
I I Lin_Interrupt() I
I
|

Linlf_HeaderIndication()

EvaluatePID()

SetPduPtrvalues()

___________________>

A | et e
1 T T

Figure 9.7: Irrelevant communication (slave node)

AUTSSAR

9.4 Sporadic frame (Master only)

This section is only applicable to LIN master nodes. For LIN slave nodes, Sporadic
frames are handled like reception of Unconditional frames.

The following use case (Figure 9.8) shows an upper layer requesting transmission of
a sporadic frame. Actually, this call does not initiate the transmission of the frame
since the schedule table must be followed. It just marks the frame for transmission.
When the sporadic slot (note that the schedule entry for a Sporadic frame is
a slot and not a frame) is due in the schedule table, the LinIf MainFunction_
<LinIfChannel.ShortName> transmits the Sporadic frame as a normal trans-
mitted frame and according to the priority rules for Sporadic frames.

The check1d function is to show that the LIN Interface must check what frame is
passed (convert the ID from the upper layer to the correct PID) from the upper layer.

The setF1lag functionis alocal function to flag the Sporadic frame for transmission
in the LIN Interface. There is one flag for each Sporadic frame.

«module» «module»
LSduR Linif

T T
| |
| Linlf_Transmit() |

Checkid()

SetFlag()

Figure 9.8: Sporadic frame (master node)

AUTSSAR

9.5 Event-triggered frame

9.5.1 Event-triggered frame in master nodes

This section is only applicable to LIN master nodes.
There are three results for an Event-triggered frame:
* No answer
* One slave node answers
» Two or more slaves answers so that there is a collision on the bus

All three use cases are shown below.

AUTSSAR

9.5.1.1 With no answer

The following use case (Figure 9.9) shows the transmission of an Event-triggered
frame header and no response.

The first call of the LinIf MainFunction_<LinIfChannel.ShortName> re-
quests transmission of the header. During the second call, the frame is under trans-
mission. In the third call, the frame is finished (this call is called after the maximum
frame length).

The RequestFrame call in the diagram is the interface call to the Schedule Table Man-
ager. The LinIf_ MainFunction_<LinIfChannel.ShortName> gets the frame to
send and the delay to the next frame.

The AllocateRxBuffer call is to show that the storage of the received SDU is made
in the LIN Driver and not in the LIN Interface.

No slave responds to the Event-triggered frame header. The LinIf_-
MainFunction_<LinIfChannel.ShortName> recognizes this situation and takes
no action since this is not considered to be a communication error.

«module» «module»
Linif Lin
oSO

BSW Task (OS task T
or cyclic call) |
! Linlf_MainFunction_<Channelld>() :

T
|
|
I
|
RequestFrame() |
|
I
[; I
Lin_SendFrame() |
».
L
|AllocateRxBuffer()
5
e]
|
T T 1
1 | !
1 | !
| |
: Linlf_MainFunction_<Channelld>() | |
|
I
|
<---————— === === — |
T - I
I
: Linlf_MainFunction_<Channelld>() 1 |
|
|
Lin_GetStatus() o |
L
e Lin_GetStatus(): LIN_RX_NO_RESPONSE U
<———— e ———— 1
L L |
|

Figure 9.9: Event-triggered frame with no answer (master node)

AUTSSAR

9.5.1.2 With answer (No collision)

The following use case (Figure 9.10) shows the transmission of an Event-triggered
frame header with a response from one slave.

The first call of the LinIf MainFunction_<LinIfChannel.ShortName> re-
quests transmission of the header. During the second call, the frame is under trans-
mission. In the third call, the frame is finished (this call is called after the maximum
frame length).

The RequestFrame call in the diagram is the interface call to the Schedule Table Man-
ager. The LinIf_ MainFunction_<LinIfChannel.ShortName> gets the frame to
send and the delay to the next frame.

The AllocateRxBuffer call is to show that the storage of the received SDU is made
in the LIN Driver and not in the LIN Interface.

The ResolvePid call is to show that the received PID in the first data field is converted
to the Pdu1d that upper layer understands.

«module» «module» «module»
LSduR Linlf Lin
O

BSW Task (OS task T T
orcyclic call) | I
| Linlf_MainFunction_<Channelld>() I

T
|
|
I
: RequestFrame() |
| |
| |
I I
| Lin_SendFrame() |
1 -
|
| AllocateRxBuffer()
I
I
|
| K ——— ===
I
| I
<o ToTomoo- rCTT T T T T 1
T | m |
I Linlf_MainFunction_<Channelld>() | |
T I
I I
| |
<---—-———-—-—--- Fm—m— - m 1
L | - |
| Linlf_MainFunction_<Channelld>() ! :
| |
: Lin_GetStatus() > :
I
l | ___ Lin GetStaus): LINAX OK _ __ _
|
I
I I
| ResolvePid() |
| |
I LSduR_LinlfRxIndication() [I
I
|
|
CopyBuffer() :
I
—————————————————— = |
|
| |
< —— - ——— b e] |
L I L I
| |
| |

Figure 9.10: Event-triggered frame with answer (no collision) (master node)

AUTSSAR

9.5.1.3 With collision

The following use case (Figure 9.11) shows the transmission of an Event-triggered
frame header with a response from more than one slave. This means that there is a
collision in the response field.

The first call of the LinIf MainFunction <LinIfChannel.ShortName> re-
quests transmission of the header. During the second call, the frame is under trans-
mission. In the third call, the frame is finished (this call is called after the maximum
frame length).

The RequestFrame call in the diagram is the interface call to the Schedule Table Man-
ager. The LinIf_MainFunction_<LinIfChannel.ShortName> gets the frame to
send and the delay to the next frame.

The AllocateRxBuffer call is to show that the storage of the received SDU is made
in the LIN Driver and not in the LIN Interface.

The local function ChangeToCollisionResolvingSchedule switches to the corre-
sponding collision resolving schedule table to enable sporadic transmission from slave.

«module» «module»
Linif Lin
oo

BSW Task (OS task
orcyclic call)
|

T
|
|
I Linlf_MainFunction_<Channelld>() |

T
|
|
I
|
|
RequestFrame() :
I
C I
Lin_SendFrame() !
>l

>

AllocateRxBuffer()
e - ————— - —

|
R i |
m T I
| | I
| X . . | |
| Linlf_MainFunction_<Channelld>() | |
|
I
I
K- mmm e e — |
L L 1
| I |
| Linlf_MainFunction_<Channelld>() | I
|
|
Lin_GetStatus() o !

L

Lin_GetStatus(): LIN_RX_ERROR
Ke—————— e e - —

ChangeToCollisionResolvingSchedule() |
L : |
|
] !
T T !
|

Figure 9.11: Event-triggered frame with collision (master node)

AUTSSAR

9.5.2 Event-triggered frame in slave nodes

This section is only applicable to LIN slave nodes.

The following use case (Figure 9.12) shows an upper layer requesting transmission
of an Event-triggered frame. It just marks the frame for transmission. When
the header of the Event-triggered frame is received for which the associated
response is pending, the transmission is requested from upper layer like for an uncon-
ditional transmission frame.

The checkId function is to show that the LIN Interface must check what frame is
passed (convert the ID from the upper layer to the correct PID) from the upper layer.

The setFlag function is a local function to flag the Event-triggered frame for
transmission in the LIN Interface. There is one flag for each Event-triggered
frame.

The copyPID function is to show that that the LIN Interface must copy the PID of the
requested Event-triggered frame to the first byte of the payload data.

The ClearFlag function is a local function to clear the pending flag of an Event-
triggered frame after successful transmission.

«module» «module» «module»
LSdurR Linif Lin

T T
| |
I Linlf_Transmit() |

J]‘__| Checkid()
SetFlag()

: Linlf_HeaderIndication()

EvaluatePID()

LSduR_LinlfTriggerTransmit()

SetupBuffer()

________________ >

| CopyPID()

|

! e
I

|

|

|

| ClearFlag()

|

! e
| T

Figure 9.12: Event-triggered frame (slave node)

AUTSSAR

9.6 Transport Protocol message transmission

The following diagram (Figure 9.13) shows the transmission of a TP message. The
initiation of the message, the continuous copying of the data and the finish of the mes-
sage are shown. The actual transmission of the MRF/SRF is not shown in the diagram
and it has the same behavior as frame transmission.

The TP message start is always initiated by requesting to send the TP message from
the PDU Router. For LIN master nodes, the schedule table change to the diagnostic re-
quest schedule is requested if a schedule table change is enabled by the configuration
parameter (see the parameter LinTpScheduleChangeDiag).

The TP message is finished after the last N-PDU (sSF or CF) is transmitted. The PDU
Router is notified of the completion of the message transmission. For LIN master
nodes, the schedule table change to the diagnostic response schedule is requested if
a schedule table change is enabled by the configuration parameter (see the parameter
LinTpScheduleChangeDiag).

AUTSSAR

«module»
BswM

«module»
PduR

«module»
LinSM

«module»
Linlf

BSW Task (OS task
or cyclic call)
1

alt TP status A
|

[Starting TP mgssage]

LinTp_Transmit()

[Ending TP message]
|

|
| I
| | |
: opt Schedule table change is enabled :
| |
: | BswM_LinTp_RequestMode()
| |
1 _ 1
1 LinSM_ScheduleRequest() o |
\ L
| Linlf_ScheduleRequest()
I
I
| <--—-—-——-—-—-—-—---
|
1 < _____________ rr—-—————"F~~—"—7—7—+—
I
e ——— T ——————— >
| L |
| T T
1 ! |
. . D R R Rl
| 1 L \ L
| I I I I
""""""" 5 e e e
[TPmes;agetrelinsmwon] | | | |
| | | | |
L 1} 1} 1} 1}
loop) | | | |
| | | I I
| | | | |
| I Linlf_MainFunction_<Channelld>() | |
T T T
I I I
| | |
| | |
| I PduR_LinTpCopyTxData()
| d T
I I
| |
e N rCcTTT Tt >
| |
I | |
K———————==== . TSI T T T I
o | | | -
I 1 1 1 1
| I I I I
| | | I I
.......... e e g

|
|
I
|
| |
| |
| [PduR_LinTpTxConfirmation()
| [[
| |
I B ettt | e >
| |
| | |
g T T
opt Schedule table change is enabled / \ |
1 1 BswM_LinTp_RequestMode()
| | |
I I
| |
LinSM_ScheduleRequest() o !
T L
| Linlf_ScheduleRequest()
I
|
! <--—-—-——-—-—-—-—---
|
<---—-—-—-——-—-—-—--- qQm ===
I
_______________ e S
| |
T 1} 1}
I I I
________ g

Figure 9.13: Transport Protocol message transmission

AUTSSAR

9.7 Transport Protocol message reception

The following diagram (Figure 9.14) shows the reception of a TP message. The initia-
tion of the message, the continuous copying of the data and the finish of the message
are shown. The actual reception of the MRF/SRF is not shown in the diagram and it has
the same behavior as frame reception.

The TP message start is always initiated by receiving a S or Fr from the LIN Driver.
In addition, if a SF or FF is received when there is an ongoing reception, a new TP
message reception is initiated. Incoming data is provided to the PDU Router via the
APl PduR_LinTpCopyRxData.

The continuous reception of the message is made by copying the N-SDU from the SRF.

The TP message is finished after the last N-PDU (SF or CF) is received. The PDU
Router is notified of the reception of the complete message. For LIN master nodes,
the schedule table change to the applicative schedule is requested if a schedule table
change is enabled by the configuration parameter. (see the parameter LinTpSched-
uleChangeDiag)

AUTSSAR

Connection()

«module» «module» «module» «module»
BswM PduR LinSM Linlf
BSW Task (OS task T T T T
or cyclic call) | | | |
| | | | |
| | | I I
| | | | |
L L L L L
alt TP status | | | |
| I I I
[TP reception message start / buffer request] Linlf_MainFunction_<Channelld>() 1 |
T T T
| | |
| | |
'
: : PduR_LinTpStartOfReception()
| |
| |
I Il H =1
I - I
| | |
| | !
| | PduRﬁLinTp_CopnyData()
I I
I I
1 e |
1 L 1
| I |
ke — - S e S ——
| | |
T | | | T
| | | | |
| I I I I
S [P D] [
[TP me#age reception] : : : :
L 1} 1} 1} 1}
loop) | | | |
§ : Linlf_MainFunction_<Channelld>() : :
| | |
| | |
: ! < PduR_LlnTp?opnyDataO
| |
| e ___
I I =1
I I
————————— F——_——————,—,—,—,—,—,ee e = A
| | |
| | | | |
| | | I I
S R [N D] [
- I 1 !
[TP me*age finish] | 1 |
| Linlf_MainFunction_<Channelld>() | |
T T Close
|
|

: e’

opt Schedule table change is enabled

| BswM_LinTp_RequestMode()

|
LinSM_ScheduleRequest()

Linlf_ScheduleRequest()

Figure 9.14: Transport Protocol message reception

AUTSSAR

9.8 Go to sleep process

9.8.1 Go to sleep process in master nodes

This section is only applicable to LIN master nodes.

This use case in Figure 9.15 shows the execution of the LinIf_GotoSleep com-
mand.

The LinIf MainFunction_ <LinIfChannel.ShortName> that is executed sub-
sequent to the LinIf_ GotoSleep call is to show that the go-to-sleep command is
not executed immediately. The go-to-sleep command is transmitted when the next
schedule entry is due.

Note that the LIN Interface sets the state to sleep even if the status is failure.

AUTSSAR

«module»
LinTrcv

alt Channel state)

[ch!linnel isnotin sleep mode]

Linlf_MainFunction_<Channelld>()

-

«module» «module» «module»
Linlf User LinIf Lin

3SW Task (OS task T T T
or cyclic call) | | |
| | Linlf_GotoSleep() | |
| I
| |
I |
[B S 1
| J I
! Linlf_MainFunction_<Channelld>() : :
| |
| |
____________ A] |
|
I |
|
T
I
|
|
|
I

[ch%nnel isin sleep mode]

LinIf_MlainFunction_<ChanneIId>()

Lin_GoToSleep()

Linlf_MainFunction_<Channelld>()

_<User>_GotoSleepConfirmation()

Lin_GetStatus()

<

| |

SetMode()
[; ;

Lin_GetStatus(): LIN_CH_SLEEP

optTransceiverDriverissupporled/

Linlf_SetTrcvMode

m(LINTRCV_TRCV_MODE_SLEEP) ™ 1

LinTrev_SetOpMode(LINTRCV_TRCV_MODE_SLEEP) _

Figure 9.15: Go-to-sleep command process (master nodes)

AUTSSAR

9.8.2 Go to sleep process in slave nodes

This section is only applicable to LIN slave nodes.

This use case in Figure 9.16 shows the execution of the sleep transition, either caused
by reception of a go-to-sleep command or by the detection of a bus idle condition.

«module» «module» «module» «module»
Linlf User Linif Lin LinTrcv
O

T T
| !
| <User>_GotoSleeplIndication() 1

Linlf_GotoSleep()

Lin_GoToSleepintemal()
L

R F

<User>_GotoSleepConfirmation()

L-
[T

opt Transceiver Driver is supported /

I
|
|
|]<__| SetMode() :
I L I
|
1
|
I
I
|

Linlf_SetTrcvMode(LINTRCV_TRCV_MODE_SLEEP)

Figure 9.16: Go-to-sleep process (slave node)

AUTSSAR

9.9 Wake up request

The wake-up use cases are described in chapter 9 of the AUTOSAR Specification of
the ECU State Manager [11].

9.10 Internal wake-up

There are two different use cases in Figure 9.17:

 The first shows when the upper layer request wake-up of the LIN cluster AND the
cluster is in sleep.

» The second shows when the upper layer request wake-up of the LIN cluster AND
the cluster is awake.

«module» «module» «module» «module»
Linlf User Linlf Lin LinTrev
O

3SW Task (OS task T

Rt B

T T T

or cyclic call) alt Bus Status ! ! !

| | I |

1 [busislasleep] Linlf_Wakeup() | | !

| | |

| Lin_Wakeup() | |

1 > 1

| I

| I

1 <---—-——————-—-=—-—---- |

I |

| < -—-——-—-—-—————-—-—-—-—-- 1

| L L I

| R L [|

: [bus is:awake] :

\ | Linlf_Wakeup() |

|

I

I

| e ——————————————

|

|

I

I

|

|

|

I

|

|

Linlf_MainFunction_<Channelld>()
t

|
|
|
| <User>_WakeupConfirmation()

opt Transceiver Driver is supported /

Linlf_SetTrcvMode

F \
LINTRCV_TRCV_MODE_NORMAL .
(- - -) -l LinTrcv_SetOpMode(LINTRCV.

S S

TRCV_MODE_NORMAL)

S R

-——

Figure 9.17: Internal wake-up

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers.

The Chapter 10.3 (the Linlf part) and Chapter 10.4 (the LinTp part) specifiy the struc-
ture (containers) and the parameters of the module LIN Interface.

The Chapter 10.5 specifies published information of the module LIN Interface.

10.1 How to read this chapter

For details refer to [8] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Linlf_00374] [For post-build time support, the LIN Interface configuration struc-
tures LinIf and LIN Transport Layer configuration structures LinTp shall be con-
structed so that it may be exchangeable in memory. |

Example: The LinIf is placed in a specific flash sector. This flash sector may be
reflashed after the ECU is placed in the vehicle.

10.2.1 Configuration Tool

A configuration tool will create a configuration structure that is understood by the LIN
Interface.

The philosophy of the ISO 17987 specifications is that a LIN cluster is static. Therefore,
many relations and behavior may be checked before the configuration is given to the
LIN Interface. To avoid time consuming checking in the LIN Interface it is possible to
do lots of checking offline.

[SWS_Linlf_00375]
Upstream requirements: SRS_BSW_00167
[The LIN Interface shall not make any consistency check of the configuration in run-

time in production software. It may be done if the development error detection is en-
abled. |

AUTSSAR

10.3 Linlf Configuration

The Figure 10.1 depicts the LIN Interface configuration.

10.3.1 LinIf

Linlf: EcucModuleDef X LinlfGlobalConfig: EcucParamConfContainerDef
——— +container

upperMultiplicity = 1
lowerMultiplicity = 0

+container

LinlfGeneral: +parameter LinlfDevErorDetect: EcucBooleanParamDef
EcucParamConfContainerDef (@

defaultValue = false

+parameter LinlfVersioninfoApi: EcucBooleanParamDef

¢

defaultValue = false

+parameter]
LinlfTpSupported: EcucBooleanParamDef

+parameter
LinlfNcOptionalRequestSupported: EcucBooleanParamDef

+parameter

‘—{ LinlfMultipleDriversSupported: EcucBooleanParamDef |
+parameter

‘—' LinlfMultipleTrcvDriverSupported: EcucBooleanParamDef |

LinlfResponseEmorSignalChangedCallout:
+parameter EcucFunctionNameDef

lowerMultiplicity = 0
upperMultiplicity = 1

LinlfSaveConfigurationCallout: EcucFunctionNameDef

+parameter
lowerMultiplicity = 0
upperMultiplicity = 1

+parameter
LinlfTrevDriverSupported: EcucBooleanParamDef

+parameter

LinlfBusMirroringSupported: EcucBooleanParamDef

defaultValue = false

+parameter

LinlfPublicCddHeaderFile:
EcucStringParamDef

lowerMultiplicity = 0
upperMultiplicity = *
minLength = 1
maxLength = 32

Figure 10.1: LIN Interface configuration

AUTSSAR

[ECUC_Linlf_00370] Definition of EcucModuleDef Linlf |

Module Name

Linlf

Description

Configuration of the Linlf (LIN Interface) module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

LinlfGeneral 1 This container contains the general parameters of LIN Interface
module.

LinlfGlobalConfig 1 This container contains the global configuration parameters of
the Linlf.

10.3.2 LinIfGlobalConfig

LinlfGlobal Config: EcucParamConfContainerDef

+subContainer

LinlfChannel:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

LinlfMainFunctionPeriod:
EcucFloatParamDef
+parameter
min =0
max = INF
li |
X X X +literal | LIN_SM: EcucEnumerationLiteralDef
LinlfScheduleRequestConfirmationUL: g |
+parameter EcucEnumerationParamDef
—— +literal
lowerMultiplicity = 0 CDD: EcucEnumerationLiteral Def
upperMultiplicity = 1
P +I|tera|| LIN_SM: EcucEnumerationLiteral Def
LinlfGotoSleepConfirmationUL: |
+parameter EcucEnumerationParamDef iioral
0—{ CDD: EcucEnumerationLiteral Def
+literal
LinlfWakeupConfirmationUL: LIN_SM: EcucEnumerationLiteral Def
+parameter EcucEnumerationParamDef
+literal
‘—| CDD: EcucEnumerationLiteral Def
+literal
LinlfGotoSleeplIndicationUL: ‘—' LIN_SM: EcucEnumerationLiteral Def
+parameter EcucEnumerationParamDef
P— +literal
IowerMulu.pll.m.ly =0 CDD: EcucEnumerationLiteral Def
upperMultiplicity = 1 -_—
| . l'inlfScheduleTable: EcucParamConfContainerDef
+subContainer.
lowerMultiplicity = 0 .
upperMultiplicity = * LinlfFrame:
EcucParamConfContainerDef
+subContainer lowerMultiplicity = 0
> upperMultiplicity = *

Figure 10.2: LIN Interface Global configuration

AUTSSAR

[ECUC_Linlf_00020] Definition of EcucParamConfContainerDef LinlfGlobalCon-

fig [
Container Name LinlfGlobalConfig
Parent Container Linlf

Description

This container contains the global configuration parameters of the Linlf.

Multiplicity

1

Configuration Parameters

No Included Parameters

Included Containers

Container Name

Multiplicity Dependency

LinlfChannel

1.* Describes each LIN channel the Linlf is connected to.

10.3.3 LinIfGeneral

[ECUC_Linlf_00019] Definition of EcucParamConfContainerDef LinlfGeneral |

Container Name

LinlfGeneral

Parent Container

Linlf

Description

This container contains the general parameters of LIN Interface module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinlfBusMirroringSupported 1 [ECUC_Linlf_00657]
LinlfDevErrorDetect 1 [ECUC_Linlf_00010]
LinlfMultipleDriversSupported 1 [ECUC_Linlf_00024]
LinlfMultipleTrcvDriverSupported 1 [ECUC_LinIf_00025]
LinlfNcOptionalRequestSupported 1 [ECUC_Linlf_00026]
LinlfPublicCddHeaderFile 0.~ [ECUC_Linlf_00631]
LinlfResponseErrorSignalChangedCallout 0..1 [ECUC_Linlf_00656]
LinlfSaveConfigurationCallout 0..1 [ECUC_Linlf_00651]
LinlfTpSupported 1 [ECUC_Linlf_00045]
LinlfTrcvDriverSupported 1 [ECUC_Linlf_00635]
LinlfVersionInfoApi 1 [ECUC_LinIf_00053]

| No Included Containers

AUTSSAR

[ECUC_Linlf_00657] Definition of EcucBooleanParamDef LinlfBusMirroringSup-

ported |

Parameter Name

LinlfBusMirroringSupported

Parent Container

LinlfGeneral

Description States if Bus Mirroring is enabled in the LIN Interface or not. The reason for this
parameter is to reduce the size of LIN Interface if the Bus Mirroring is not used.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Linlf_00010] Definition of EcucBooleanParamDef LinlfDevErrorDetect |

Parameter Name

LinlfDevErrorDetect

Parent Container

LinlfGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and natification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC _Linlf _00024]
Supported |

Definition of EcucBooleanParamDef LinlfMultipleDrivers

Parameter Name

LinlfMultipleDriversSupported

Parent Container

LinlfGeneral

Description States if multiple drivers are supported by the LIN Interface or not. The reason for this
parameter is to reduce the size of LIN Interface if multiple drivers are not used.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

[ECUC_Linlf_00025] Definition of EcucBooleanParamDef LinlfMultipleTrcvDriver

Supported |

Parameter Name

LinlfMultiple TrecvDriverSupported

Parent Container

LinlfGeneral

Description States if multiple transceiver drivers are supported by the LIN Interface or not. The
reason for this parameter is to reduce the size of LIN Interface if multiple transceiver
drivers are not used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC _Linlf _00026]
questSupported |

Definition of EcucBooleanParamDef LinlfNcOptionalRe-

Parameter Name

LinlfNcOptionalRequestSupported

Parent Container

LinlfGeneral

Description States if the node configuration commands Assign NAD and Conditional Change NAD
are supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Only applicable when the channel contains a LinlfMaster container.

]

[ECUC_Linlf_00631] Definition of EcucStringParamDef LinlfPublicCddHeaderFile

[

Parameter Name

LinlfPublicCddHeaderFile

Parent Container

LinlfGeneral

Description Defines header files for callback functions which shall be included in case of CDDs.
Range of characters is 1.. 32.

Multiplicity 0..*

Type EcucStringParamDef

V

AUTSSAR

A
Default value -
Length 1-32
Regular Expression -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time =
Post-build time -

Dependency

]

[ECUC_Linlf_00656] Definition of EcucFunctionNameDef LinlfResponseError

SignalChangedCallout |

Parameter Name

LinlfResponseErrorSignalChangedCallout

Parent Container

LinlfGeneral

Description This parameter contains the name of the callout function that is called after a response
error signal change. Only applicable for LIN slave nodes.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Only applicable when at least one channel contains a LinlfSlave container.

]

[ECUC_Linlf_00651] Definition of EcucFunctionNameDef LinlfSaveConfiguration

Callout |

Parameter Name

LinlfSaveConfigurationCallout

Parent Container

LinlfGeneral

Description This parameter contains the name of the callout function that is called when a save
configuration node configuration command is processed by this slave node. The
service is only supported when this parameter is configured. Only applicable for LIN
slave nodes.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

A

Link time -

Post-build time -

Dependency

Only applicable when at least one channel contains a LinlfSlave container.

]

[ECUC_Linlf_00045] Definition of EcucBooleanParamDef LinlfTpSupported |

Parameter Name

LinlfTpSupported

Parent Container

LinlfGeneral

Description States if the TP is included in the LIN Interface or not. The reason for this parameter is
to reduce the size of LIN Interface if the TP is not used.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Linlf_00635]
ported |

Definition of EcucBooleanParamDef LinlfTrcvDriverSup-

Parameter Name

LinlfTrevDriverSupported

Parent Container LinlfGeneral

Description States if transceiver driver support is included in the LIN Interface or not. The reason
for this parameter is to reduce the size of LIN Interface if transceiver drivers are not
used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Linlf_00053] Definition of EcucBooleanParamDef LinlfVersionIinfoApi |

Parameter Name

LinlfVersionInfoApi

Parent Container

LinlfGeneral

Description Switches the Linlf_GetVersionInfo function ON or OFF.
Multiplicity 1
Type EcucBooleanParamDef

Default value

false

V

AUTSSAR

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

10.3.4 LinIfChannel

LinlfChannel: +reference | LinlfChannelRef: EcucReferenceDef +destination
EcucParamConfContainerDef (@ - - LinChannel:
— requiresSymbolicNameValue = true EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = *
LinlfScheduleTable: lowerMultiplicity = 1
+subContainer| EcucParamConfContainerDef (from Lin)
lowerMultiplicity = 0
upperMultiplicity = *
+parameter
LinTrcvChannelld: . LinTrcvChannel: LinChannelld:
EcucintegerParamDe +parameter | EcucParamConfContainerDef EcuclntegerParamDef
m|n:_0 lowerMultiplicity = 1 min =0
max =255 upperMultiplicity = * max = 65535
withAuto = true withAuto = true
symbolicNameValue = true| +destination/|\ (from LinTrcv) symbolicNameValue = true

(from LinTrcv) (fromLin)

LinlfTrcvidRef: EcucReferenceDef

LinlfTransceiverDrvConfig:

FsubContainer| =o, cparamConfContainerdef | geference lowerMultiplicity = 1
> upperMultiplicity = 1
lowerMultiplicity = 0 requiresSymbolicNameValue = true

upperMultiplicity = 1

LinlfMaxFrameCnt: jcomMehannelldy
et EcucintegerParamDef
EcucintegerParamDef
+parameter min=0
min =0 ~ o
max = 65535 m‘?P:A_t o
lowerMultiplicity = 0 w bul'ol\I uev o
upperMultiplicity = 1 symbolicNameValue = true
+parameter‘ (from ComM)
LinIfComMNetworkHandleRef:
+reference

EcucReferenceDef +destination ComMChannel:
EcucParamConfContainerDef

requiresSymbolicNameValue = true

lowerMultiplicity = 1
upperMultiplicity = 256

LinlfScheduleChangeNextTimeBase:
EcucBooleanParamDef (from Comv)

lowerMultiplicity = 0
+parameter upperMultiplicity = 1

LinlfCddRef: EcucForeignReferenceDef LinlfJitter:
+reference EcucFloatParamDef
lowerMultiplicity = 0 ———————————
upperMultiplicity = 1 min =0.0
destinationType = ECUC-MODULE-CONFIGURATION-VALUES max = 0.255
+parameter

I
|
Ecu Configuration Dﬁfﬂ'ption Template

ARElement

ECUCDescriptionTemplate::
EcucModuleConfigurationValues

LinlfMaster:
EcucParamConfContainerDef

lowerMultiplicity = 0

+choice N
LinlfNodeType: o upperMultiplicity = 1
+subContainer| EcucChoiceContainerDef
+choice LinifSlave:
> EcucParam ConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

LinlfBusldleTimeoutPeriod:
EcucFloatParamDef

+parameter
o min = 0.1
defaultvalue = 4
max = INF

Figure 10.3: LIN Interface Channel configuration

AUTSSAR

[ECUC_Linlf_00364] Definition of EcucParamConfContainerDef LinlfChannel |

Container Name LinlfChannel

Parent Container LinlfGlobalConfig

Description Describes each LIN channel the Linlf is connected to.
Multiplicity 1.*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE,
VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Link time —
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinlfBusldle TimeoutPeriod 1 [ECUC_Linlf_00655]
LinlfGotoSleepConfirmationUL 1 [ECUC_Linlf_00601]
LinlfGotoSleeplndicationUL 0..1 [ECUC_Linlf_00652]
LinlfMainFunctionPeriod 1 [ECUC_Linlf_00639]
LinlfMaxFrameCnt 0..1 [ECUC_Linlf_00636]
LinlfScheduleChangeNextTimeBase 0..1 [ECUC_Linlf_00640]
LinlfScheduleRequestConfirmationUL 0..1 [ECUC_LinIf_00600]
LinlfWakeupConfirmationUL 1 [ECUC_Linlf_00602]

LinlfCddRef 0..1 [ECUC_Linlf_00637]
LinlfChannelRef 1 [ECUC_Linlf_00003]
LinlfComMNetworkHandleRef 1 [ECUC_Linlf_00626]

Included Containers

Container Name Multiplicity Dependency

LinlfFrame 0..* Generic container for all types of LIN frames.
LinlfNodeType 1 This container defines the LIN node type of this channel.
LinlfScheduleTable 0..” Describes a schedule table. Each LinlfChannel may have

several schedule tables. Each schedule table can only be
connected to one channel. Mandatory for LIN Master nodes.
The SHORT-NAME of the LinlfScheduleTable container
represents the symbolic name of the schedule table.

LinlfTransceiverDrvConfig 0..1 This container contains the configuration parameters of each
underlying LIN Transceiver Driver.

]

[ECUC_Linlf_00655] Definition of EcucFloatParamDef LinlfBusidleTimeoutPeriod
[

Parameter Name LinlfBusldleTimeoutPeriod
Parent Container LinlfChannel
Description Bus idle timeout in seconds. According to the LIN protocol specification, the bus idle

timeout period shall be in range [4, 10] seconds.

Multiplicity 1

\Y%

AUTSSAR

A

Type EcucFloatParamDef

Range [0.1 .. INF] |

Default value 4

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00601] Definition of EcucEnumerationParamDef LinlfGotoSleep

ConfirmationUL |

Parameter Name

LinlfGotoSleepConfirmationUL

Parent Container

LinlfChannel

Description This parameter defines the upper layer (UL) module to which the confirmation of the
goto-sleep command shall be sent.

Multiplicity 1

Type EcucEnumerationParamDef

Range CDD Complex Driver
LIN_SM LIN State Manager

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

]

[ECUC_Linlf_00652] Definition of EcucEnumerationParamDef LinlfGotoSleeplIn-

dicationUL |

Parameter Name

LinlfGotoSleeplndicationUL

Parent Container

LinlfChannel

Description This parameter defines the upper layer (UL) module to which the indication of the
goto-sleep command shall be sent. Only used for LIN Slave nodes, ignored for master
nodes.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CDD Complex Driver
LIN_SM LIN State Manager

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time -

Dependency

Only applicable when the channel contains a LinlfSlave container.

AUTSSAR

[ECUC_Linlf_00639] Definition of EcucFloatParamDef LinlfMainFunctionPeriod [

Parameter Name

LinlfMainFunctionPeriod

Parent Container

LinlfChannel

Description Defines the interval of calls to main functions per channel in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

]

[ECUC_Linlf_00636] Definition of EcuclntegerParamDef LinlfMaxFrameCnt |

Parameter Name

LinlfMaxFrameCnt

Parent Container

LinlfChannel

Description Maximum number of Frames. This parameter is needed only in case of post-build
loadable implementation using static memory allocation.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

]

[ECUC_Linlf_00640] Definition of EcucBooleanParamDef LinlfScheduleChange
NextTimeBase |

Parameter Name

LinlfScheduleChangeNextTimeBase

Parent Container

LinlfChannel

Description Enables/disables the switch to a new schedule table at the start of the next time base
after status check. True: Linlf selects a new schedule table in next main function. Only
applicable for LIN Master nodes.

Multiplicity 0..1

Type EcucBooleanParamDef

V

AUTSSAR

A
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

Only applicable when the channel contains a LinlfMaster container.

]

[ECUC_Linlf_00600] Definition of EcucEnumerationParamDef LinlfScheduleRe-

questConfirmationUL |

Parameter Name

LinlfScheduleRequestConfirmationUL

Parent Container

LinlfChannel

Description This parameter defines the upper layer (UL) module to which the confirmation of the
successfully performed schedule table change shall be sent. Only applicable to LIN
master nodes.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CDD Complex Driver
LIN_SM LIN State Manager

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time -

Dependency

Only applicable when the channel contains a LinlfMaster container.

]

[ECUC_Linlf_00602] Definition of EcucEnumerationParamDef LinlfWakeupCon-

firmationUL |

Parameter Name

LinlfWakeupConfirmationUL

Parent Container

LinlfChannel

Description This parameter defines the upper layer (UL) module to which the confirmation of the
wake-up shall be sent.

Multiplicity 1

Type EcucEnumerationParamDef

Range CDD Complex Driver
LIN_SM LIN State Manager

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

AUTSSAR

[ECUC_Linlf_00637] Definition of EcucForeignReferenceDef LinlfCddRef |

Parameter Name LinlfCddRef

Parent Container LinlfChannel

Description Reference to the CDD module description. This parameter is only required when Linlf
WakeupConfirmationUL, LinlfScheduleRequestConfirmationUL, LinlfGotoSleep
ConfirmationUL and/or LinlfGotoSleeplndicationUL is set to CDD.

Multiplicity 0..1

Type Foreign reference to ECUC-MODULE-CONFIGURATION-VALUES

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Linlf_00003] Definition of EcucReferenceDef LinlfChannelRef |

Parameter Name

LinlfChannelRef

Parent Container

LinlfChannel

Description Reference to the channel definition in the LIN driver.

Multiplicity 1

Type Symbolic name reference to LinChannel

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

]

[ECUC_Linlf_00626] Definition of EcucReferenceDef LinlfComMNetworkHandle

Ref |

Parameter Name

LinlfComMNetworkHandleRef

Parent Container

LinlfChannel

Description Unique handle to identify one LIN network. Reference to one of the network handles
configured for the ComM.

Multiplicity 1

Type Symbolic name reference to ComMChannel

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTSSAR

| Dependency

]

10.3.5 LinIfNodeType

[ECUC_Linlf_00654] Definition of EcucChoiceContainerDef LinlfNodeType |

Choice Container Name LinlfNodeType

Parent Container LinlfChannel

Description This container defines the LIN node type of this channel.
Multiplicity 1

No Included Parameters

Container Choices

Container Name Multiplicity Dependency

LinlfMaster 0..1 Each Master can only be connected to one physical channel.
This could be compared to the Node parameter in a LDF file.

LinlfSlave 0..1 Describes all parameters which are only relevant for a LIN Slave
node.

AUTSSAR

10.3.6 LinIfFrame

LinlfChannel:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = * LinlfFrameld:
EcucintegerParamDef
min =0
max = 63
lowerMultiplicity = 0
+parameter upperMultiplicity = 1

+subContainer

LinlfFrame:
EcucParamConfContainerDef

LinlfFramelndex:

lowerMultiplicity = 0 EcucintegerParamDef
o O .
upperMultiplicity = parameter min=0
max = 63

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter LinlfFrameType:

EcucEnumerationParamDef

. . literal
LinlfChecksumType: +
‘_

> CLASSIC: EcucEnumerationLiteralDef
+parameter | EcucEnumerationParamDef

lowerMultiplicity = 0 literal
upperMultiplicity = 1 o— ENHANCED:
EcucEnumerationLiteralDef

. . . LinlfFramePriority: EcucIntegerParamDef
L|nIfSubst|tut|onFra_rnes +parameter
EcucParamConfContainerDef o— min =0
i max = 255
+subContainer [, e Multiplicity = 0

upperMultiplicity = *

+reference
LinlfSubstitutionFrameRef:
EcucReferenceDef

+destination

+subContainer LinlfPduDirection:
EcucChoiceContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

LinlfFixedFrameSduByteVal: EcuclntegerParamDef

LinlfFixedFrameSdu:

LinlfFixedFrameSduByte: +parameter n=0
EcucParamConfContainerDef EcucParamConfContainerDef [€@»— min = -
max =

lowerMultiplicity = 0 +subContainer lowerMultiplicity = 8

upperMultiplicity = 1 upperMultiplicity = 8

+parameter LinlfFixedFrameSduBytePos: EcuclntegerParamDef

min =0
max =7

Figure 10.4: LIN Interface Frame configuration — (1) Overview

AUTSSAR

LinlfFrame:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+parameter
)] +iteral UNCONDITIONAL:
LinlfFrameType: EcucEnumerationLiteralDef
EcucEnumerationParamDef o mera o et +literal
> MRF: EcucEnumerationLiteral Def
+literal
SRF: EcucEnumerationLiteralDef
+literal
o EVENT_TRIGGERED:
literal EcucEnumerationLiteralDef
SPORADIC: EcucEnumerationLiteral Def
+literal
> ASSIGN: EcucEnumerationLiteral Def
+literal
UNASSIGN: EcucEnumerationLiteral Def
+literal
= ASSIGN_NAD: EcucEnumerationLiteralDef
+literal
FREE: EcucEnumerationLiteral Def
+literal
‘ CONDITIONAL:
EcucEnumerationLiteralDef
+literal
SAVE_CONFIGURATION:
EcucEnumerationLiteral Def .
+iteral| ASSIGN_FRAME_ID_RANGE:
> EcucEnumerationLiteralDef

Figure 10.5: LIN Interface Frame configuration — (2) LinlfFrameType

LinlfFrame:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer LinlfSlaveToSlavePdu:
EcucParamConfContainerDef

LinlfPduDirection: +choice ——
EcucChoiceContainerDef [@————— upperMultiplicity = 1
——— lowerMultiplicity = 0

lowerMultiplicity = 0
upperMultiplicity = 1

LinlfinternalPdu:
EcucParamConfContainerDef

+choice
lowerMultiplicity = 0
upperMultiplicity = 1
LinlfTxPduld: EcucIntegerParamDef
+choice
+parameter i =
LinlfTxPdu: @ ————— Max=65535
EcucParamConfContainerDef withAuto = true
— symbolicNameValue = true
upperMuIt.lpI.lc.lty =1 +reference
lowerMultiplicity = 0 +destination .
LinlfTxPduRef: EcucReferenceDef Pdu:
EcucParamConfContainerDef
+choice IowerMultl.pllpl.ty = Ei
upperMultiplicity =
LinlfRxPdu: . +destination
EcucParamConfContainerDef P +reterence| | inlfRxPduRef: EcucReferenceDef
upperMultiplicity = 1

lowerMultiplicity = 0

Figure 10.6: LIN Interface Frame configuration — (3) LinlfPduDirection

AUTSSAR

[ECUC_Linlf_00367] Definition of EcucParamConfContainerDef LinlfFrame |

Container Name LinlfFrame

Parent Container LinlfChannel

Description Generic container for all types of LIN frames.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinlfChecksumType 0..1 [ECUC_Linlf_00005]
LinlfFrameld 0..1 [ECUC_Linlf_00638]
LinlfFramelndex 0..1 [ECUC_Linlf_00653]
LinlfFrameType 1 [ECUC_Linlf_00017]

Included Containers
Container Name Multiplicity Dependency

LinlfFixedFrameSdu 0..1 In case this is a fixed frame this is the SDU (response). This
container represents an eight byte array. The Byte order shall be
MSB first. Only applicable to LIN master nodes.

LinlfPduDirection 0..1 Direction of the frame

LinlfSubstitutionFrames 0..” List of sporadic frames that can be sent in a sporadic frame slot
(master node) or list of unconditional frames that can be sent in
an event-triggered frame slot (slave node).

]

[ECUC_Linlf _00005] Definition of EcucEnumerationParamDef LinlfChecksum
Type [

Parameter Name LinlfChecksumType
Parent Container LinlfFrame
Description Type of checksum that the frame is using.
This parameter is optional because in case of sporadic frames it should not be set.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CLASSIC Classic
ENHANCED Enhanced
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency

AUTSSAR

[ECUC_Linlf_00638] Definition of EcuclntegerParamDef LinlfFrameld |

Parameter Name LinlfFrameld

Parent Container LinlfFrame

Description ID of the LIN frame. The Protected ID including parity is calculated by the generation
tool.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..63

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

|
[ECUC_Linlf_00653] Definition of EcuclntegerParamDef LinlfFramelndex |

Parameter Name LinlfFramelndex
Parent Container LinlfFrame
Description PID index of the frame. This index is used in the AssignFrameldentifierRange node

configuration service to identify the frame(s) to which a new PID shall be assigned. It
corresponds to the order of the frames in the configurable frames list in the node
attributes section of the LDF / NCF of the slave node. Only relevant for LIN slave nodes.

Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..63

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency Only applicable when the channel contains a LinlfSlave container.

AUTSSAR

[ECUC_Linlf_00017] Definition of EcucEnumerationParamDef LinlfFrameType |

Parameter Name

LinlfFrameType

Parent Container

LinlfFrame

Description This parameter defines the type of frame (e.g. sporadic frame). For master nodes, all
frame types are permitted. A sporadic slot may be used by a set of unconditional
frames in the role of substitution frames. For slave nodes, only following types are
permitted: Uncondtional, MRF, SRF, Event-triggered. An event-triggered slot may be
used by a set of unconditional frames in the role of substitution frames.

Multiplicity 1

Type EcucEnumerationParamDef
ASSIGN AssignFrameld

Range

ASSIGN_FRAME_ID_RANGE

AssignFrameldRange

ASSIGN_NAD AssignNAD
CONDITIONAL Conditional Change NAD
EVENT_TRIGGERED Event triggered frame
FREE FreeFormat
MRF Master Request Frame
SAVE_CONFIGURATION SaveConfiguration
SPORADIC Sporadic slot
SRF Slave Response Frame
UNASSIGN UnassignFrameld
UNCONDITIONAL Unconditional Frame
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.3.7 LinIfFixedFrameSdu

[ECUC_Linlf_00012] Definition of EcucParamConfContainerDef LinlfFixedFrame

Sdu |

Container Name

LinlfFixedFrameSdu

Parent Container

LinlfFrame

Description In case this is a fixed frame this is the SDU (response). This container represents an
eight byte array. The Byte order shall be MSB first. Only applicable to LIN master
nodes.

Multiplicity 0..1

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

LinlfFixedFrameSduByte 8 This container represents a byte within the 8 byte array.

AUTSSAR

10.3.8 LinIfFixedFrameSduByte

[ECUC_Linlf_00013] Definition of EcucParamConfContainerDef LinlfFixedFrame

SduByte |

Container Name

LinlfFixedFrameSduByte

Parent Container

LinlfFixedFrameSdu

Description

This container represents a byte within the 8 byte array.

Multiplicity

8

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

LinlfFixedFrameSduBytePos

1

[ECUC_Linlf_00014]

LinlfFixedFrameSduByteVal

1

[ECUC_Linlf_00015]

| No Included Containers

]

[ECUC_LinlIf_00014]
BytePos |

Definition of EcuclntegerParamDef LinlfFixedFrameSdu

Parameter Name

LinlfFixedFrameSduBytePos

Parent Container

LinlfFixedFrameSduByte

Description Index of the Byte in the SDU (response) 8 byte array.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..7

Default value

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00015]
ByteVal |

Definition of EcuclntegerParamDef LinlfFixedFrameSdu

Parameter Name

LinlfFixedFrameSduByteVal

Parent Container

LinlfFixedFrameSduByte

Description

Byte value in the SDU (response) 8-byte array.

Multiplicity

1

V

AUTSSAR

A

Type EcuclntegerParamDef

Range 0. 255 |

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.3.9 LinIfPduDirection

[ECUC_Linlf_00027] Definition of EcucChoiceContainerDef LinlfPduDirection |

Choice Container Name

LinlfPduDirection

Parent Container

LinlfFrame

Description

Direction of the frame

Multiplicity

0..1

No Included Parameters

Container Choices

Container Name Multiplicity Dependency

LinlfinternalPdu 0..1 Represents a Diagnostic or Configuration frame : no Message ID
(no Pduld). Only applicable to LIN master nodes.

LinlfRxPdu 0..1 represents a received PDU/frame

LinlfSlaveToSlavePdu 0..1 Represents a slave-to-slave PDU/frame. Master does only send
the header but doesn’t receive the response. Only relevant for
master nodes.

LinlfTxPdu 0..1 represents a transmitted PDU/frame

10.3.10 LinIfSubstitutionFrames

[ECUC_Linlf_00042] Definition of EcucParamConfContainerDef LinlfSubstitution

Frames |

Container Name

LinlfSubstitutionFrames

Parent Container

LinlfFrame

Description List of sporadic frames that can be sent in a sporadic frame slot (master node) or list of
unconditional frames that can be sent in an event-triggered frame slot (slave node).
Multiplicity 0..*

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name

Multiplicity

ECUC ID

LinlfFramePriority

1

[ECUC_Linlf_00513]

LinlfSubstitutionFrameRef

1

[ECUC_Linlf_00041]

| No Included Containers

]

[ECUC_Linlf_00513] Definition of EcuclntegerParamDef LinlfFramePriority |

Parameter Name

LinlfFramePriority

Parent Container

LinlfSubstitutionFrames

Description Priority of sporadic frame in a master node or of event-triggered frame in slave node.
Multiplicity 1
Type EcuclntegerParamDef
Range 0..255
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00041] Definition of EcucReferenceDef LinlfSubstitutionFrameRef

[

Parameter Name

LinlfSubstitutionFrameRef

Parent Container

LinlfSubstitutionFrames

Description Reference to an unconditional Frame that is used as sporadic frame in a master node
or event-triggered frame in a slave node.

Multiplicity 1

Type Reference to LinlfFrame

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.3.11 LinIfRxPdu

[ECUC_Linlf_00035] Definition of EcucParamConfContainerDef LinlfRxPdu |

Container Name

LinlfRxPdu

Parent Container

LinlfPduDirection

Description

represents a received PDU/frame

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

LinlfRxPduRef

1 [ECUC_Linlf_00036]

| No Included Containers

]

[ECUC_Linlf_00036] Definition of EcucReferenceDef LinlfRxPduRef |

Parameter Name

LinlfRxPduRef

Parent Container

LinlfRxPdu

Description Reference to the PDU that is received in this frame.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.3.12 LinIfTxPdu

[ECUC_Linlf_00049] Definition of EcucParamConfContainerDef LinlfTxPdu |

Container Name

LinlfTxPdu

Parent Container

LinlfPduDirection

Description

represents a transmitted PDU/frame

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
LinlfTxPduld 1 [ECUC_Linlf_00050]
LinlfTxPduRef 1 [ECUC_Linlf_00051]

No Included Containers

AUTSSAR

]

[ECUC_Linlf_00050] Definition of EcuclntegerParamDef LinlfTxPduld |

Parameter Name

LinlfTxPduld

Parent Container

LinlfTxPdu

Description Identifier of the Pdu for the upper layer.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

withAuto = true

]

[ECUC_Linlf_00051] Definition of EcucReferenceDef LinlfTxPduRef |

Parameter Name

LinlfTxPduRef

Parent Container

LinlfTxPdu

Description Reference to the PDU that is transmitted in this frame.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.3.13 LinIfScheduleTable

LinlfScheduleTablelndex:
LinlfScheduleTable: EcucintegerParamDef
EcucParamConfContainerDef +parameter ey
lowerMultiplicity = 0 max = 255
upperMultiplicity = * withAuto = true
symbolicNameValue = true
LinlfRunMode: +literal RUN_CONTINUOUS:
+parameter
+literal RUN_ONCE:
EcucEnumerationLiteralDef
+parameter LinlfResumePosition: +literal | START _FROM_BEGINNING:
EcucEnumerationParamDef > EcucEnumerationLiteral Def
+literal CONTINUE_AT_IT_POINT:
EcucEnumerationLiteralDef
LinlfCollisionResolvingRef:
EcucReferenceDef
+destination
lowerMultiplicity = 0
+reference

+subContainer

LinlfEntry:
EcucParamConfContainerDef

lowerMultiplicity = 0 LinlfEntrylndex:
upperMultiplicity = +parameter| g icintegerParamDef

min =0
max = 255

LinlfDelay:

+parameter EcucFloatParamDef

min = 0.0
max = 0.255

LinlfFrameRef: o LinlfFrame:
+reference EcucReferenceDef +destination| EcucParamConfContainerDef

lowerMultiplicity = 1 IowerMuIti.pIi.ci.ty = ?
upperMultiplicity = 1 upperMultiplicity =

Figure 10.7: LIN Interface Schedule Table configuration

[ECUC_Linlf_00365] Definition of EcucParamConfContainerDef LinlfSchedule
Table |

Container Name LinlfScheduleTable
Parent Container LinlfChannel
Description

Describes a schedule table. Each LinlfChannel may have several schedule tables.
Each schedule table can only be connected to one channel. Mandatory for LIN Master

nodes. The SHORT-NAME of the LinlfScheduleTable container represents the symbolic
name of the schedule table.

V

AUTSSAR

A
Multiplicity 0..”
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
LinlfResumePosition 1 [ECUC_Linlf_00033]
LinlfRunMode 1 [ECUC_Linlf_00034]
LinlfScheduleTableIndex 1 [ECUC_Linlf_00037]
Included Containers
Container Name Multiplicity Dependency
LinlfEntry 0..” gles;:ribes an entry in the schedule table (also known as Frame
ot).

]

[ECUC_Linlf_00033] Definition of EcucEnumerationParamDef LinlfResumePosi-
tion |

Parameter Name LinlfResumePosition

Parent Container LinlfScheduleTable

Description Defines where a RUN_CONTINUOUS schedule table shall proceed in case it has been
interrupted by a RUN_ONCE table.

Multiplicity 1

Type EcucEnumerationParamDef

Range CONTINUE_AT _IT_POINT Continue schedule table where it was interrupted.
START_FROM_BEGINNING Start schedule table from the beginning.

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]
[ECUC_Linlf_00034] Definition of EcucEnumerationParamDef LinlfRunMode |

Parameter Name LinlfRunMode
Parent Container LinlfScheduleTable
Description The schedule table can be executed in two different modes.
Multiplicity 1
Type EcucEnumerationParamDef
Range RUN_CONTINUOUS -
RUN_ONCE -

V

AUTSSAR

A
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00037] Definition of EcuclintegerParamDef LinlfScheduleTablelndex

[

Parameter Name

LinlfScheduleTableIndex

Parent Container

LinlfScheduleTable

Description This is the unique index used by upper layers to identify a schedule. Note that the
NULL_SCHEDULE for each channel must have index 0.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

10.3.14 LinIfEntry

[ECUC_Linlf_00366] Definition of EcucParamConfContainerDef LinlfEntry |

Container Name

LinlfEntry

Parent Container

LinlfScheduleTable

Description Describes an entry in the schedule table (also known as Frame Slot).

Multiplicity 0..”

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinlfDelay 1 [ECUC_Linlf_00009]

LinlfEntrylndex 1 [ECUC_LinlIf_00011]

LinlfCollisionResolvingRef 0..1 [ECUC_Linlf_00007]

LinlfFrameRef 1 [ECUC_Linlf_00016]

AUTSSAR

| No Included Containers

]

[ECUC_Linlf_00009] Definition of EcucFloatParamDef LinlfDelay [

Parameter Name

LinlfDelay

Parent Container

LinlfEntry

Description Delay to next entry in schedule table in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [0..0.255]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00011] Definition of EcuclntegerParamDef LinlfEntrylndex |

Parameter Name

LinlfEntryIndex

Parent Container

LinlfEntry

Description Position of the Frame Entry in the Schedule Table. The first entry index in the schedule
table is 0.

Multiplicity 1

Type EcuclintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00007] Definition of EcucReferenceDef LinlfCollisionResolvingRef

[

Parameter Name

LinlfCollisionResolvingRef

Parent Container

LinlfEntry

Description Reference to the schedule table, which resolves the collision. This parameter is only
used if the referenced frames are event triggered frames.

Multiplicity 0..1

Type Reference to LinlfScheduleTable

Post-Build Variant Value

true

\Y%

AUTSSAR

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]
[ECUC_Linlf_00016] Definition of EcucReferenceDef LinlfFrameRef |

Parameter Name

LinlfFrameRef

Parent Container

LinlfEntry

Description Reference to the frames that belong to this schedule table entry.

Multiplicity 1

Type Reference to LinlfFrame

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.3.15 LinIfMaster

[ECUC_Linlf_00512] Definition of EcucParamConfContainerDef LinlfMaster |

Container Name LinlfMaster

Parent Container LinlfNodeType

Description Each Master can only be connected to one physical channel. This could be compared
to the Node parameter in a LDF file.

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

LinlfJitter

1 [ECUC_Linlf_00629]

No Included Containers

AUTSSAR

[ECUC_Linlf_00629] Definition of EcucFloatParamDef Linlfditter |

Parameter Name

Linlfditter

Parent Container

LinlfMaster

+parameter

LinlfLinProtocolVersion:
EcucEnumerationParamDef

Description The jitter specifies the differences between the maximum and minimum delay from time
base tick to the header sending start point in seconds.
Multiplicity 1
Type EcucFloatParamDef
Range [0 .. 0.255]
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
10.3.16 LinIfSlave
LinlfSlave: LinlfNodeConfigurationldentification: LinlfSupplierld:
EcucParamConfContainerDef EcucParamConfContainerDef +parameter EcucIntegerParamDef
lowerMultiplicity = 0 lowerMultiplicity = 0 min =0
upperMultiplicity = 1 upperMultiplicity = 1 max = 32767 LinlfFunctionld:
+parameter EcuclintegerParamDef
> min =0
LinlfVariantld: ER =
+parameter EcucIntegerParamDef
. min =0
+subContainer max = 255 LinlfInitiaINAD:
parameter EcuclintegerParamDef
N =cucntegertarambel
‘ min =1
LinlfConfiguredNAD: max =125
+parameter EcuclntegerParamDef

+reference

LinlfResponseErorSignal:
EcucReferenceDef

requiresSymbolicNameValue = true

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.8: LIN Interface Slave configuration

EcucEnumerationLiteralDef

15017987:

min =1
max = 125 LinlfNasTimeout:
EcucFloatParamDef
+parameter min =0
max = 1
+literal LIN13:
EcucEnumerationLiteralDef
+literal LIN20:
EcucEnumerationLiteralDef
literal
era LIN21:
EcucEnumerationLiteralDef
+literal LIN22:
EcucEnumerationLiteralDef
+literal

AUTSSAR

[ECUC_Linlf_00649] Definition of EcucParamConfContainerDef LinlfSlave |

Container Name

LinlfSlave

Parent Container

LinlfNodeType

Description

Describes all parameters which are only relevant for a LIN Slave node.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinlfLinProtocolVersion 1 [ECUC_Linlf_00647]
LinlfResponseErrorSignal 0..1 [ECUC_Linlf_00648]

Included Containers

Container Name Multiplicity Dependency

LinlfNodeConfiguration 0..1 This container is mandatory for all LIN 2.x and 1ISO17987 LIN
Identification rngt(;::snodes, and ignored for LIN 1.3 slave nodes and all master

]

[ECUC_Linlf_00647] Definition of EcucEnumerationParamDef LinlfLinProtocol

Version |

Parameter Name

LinlfLinProtocolVersion

Parent Container

LinlfSlave

Description Defines the LIN protocol version of the slave node. This information is relevant for the
LIN conformance test execution.

Multiplicity 1

Type EcucEnumerationParamDef

Range ISO17987 ISO 17987 (first edition)
LIN13 LIN1.3
LIN20 LIN 2.0
LIN21 LIN 2.1
LIN22 LIN 2.2

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Linlf_00648] Definition of EcucReferenceDef LinlfResponseErrorSignal |

Parameter Name

LinlfResponseErrorSignal

Parent Container

LinlfSlave

Description Reference to the response_error signal. Mandatory for all LIN 2.x and ISO LIN slave
nodes, not relevant for LIN 1.3 slave nodes.
Multiplicity 0..1

V

AUTSSAR

A
Type Symbolic name reference to ComSignal
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

10.3.17 LinIfNodeConfigurationIdentification

[ECUC_Linlf_00650] Definition of EcucParamConfContainerDef LinlfNodeConfig-
urationldentification [

Container Name LinlfNodeConfigurationldentification

Parent Container LinlfSlave

Description This container is mandatory for all LIN 2.x and ISO17987 LIN slave nodes, and ignored
for LIN 1.3 slave nodes and all master nodes,

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
LinlfConfiguredNAD 1 [ECUC_Linlf_00643]
[ECUC_Linlf_00646]
[ECUC_Linlf_00642]
[ECUC_Linlf_00644]
[ECUC_Linlf_00645]
LinlfVariantld 1 [ECUC_Linlf_00641]

LinlfFunctionld
LinlfInitiaINAD

LinlfNasTimeout

LinlfSupplierld

| No Included Containers

|
[ECUC_Linlf_00643] Definition of EcuclntegerParamDef LinlfConfiguredNAD |

Parameter Name LinlfConfiguredNAD

Parent Container LinlfNodeConfigurationldentification

Description Slave node configured NAD.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..125 |

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time | X | VARIANT-PRE-COMPILE

V

AUTSSAR

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00646] Definition of EcuclntegerParamDef LinlfFunctionld |

Parameter Name

LinlfFunctionld

Parent Container

LinlfNodeConfigurationldentification

Description LIN function Id.

Multiplicity 1

Type EcucintegerParamDef

Range 0..65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00642] Definition of EcucintegerParamDef LinlfinitiaINAD |

Parameter Name

LinlfInitiaINAD

Parent Container

LinlfNodeConfigurationldentification

Description Slave node initial NAD.

Multiplicity 1

Type EcucintegerParamDef

Range 1..125

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Linlf_00644] Definition of EcucFloatParamDef LinlfNasTimeout |

Parameter Name

LinlfNasTimeout

Parent Container

LinlfNodeConfigurationldentification

Description N_As timeout in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range [0..1] |

Default value

AUTSSAR

A
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_Linlf_00645] Definition of EcucintegerParamDef LinlfSupplierld [

Parameter Name LinlfSupplierld

Parent Container LinlfNodeConfigurationldentification

Description LIN consortium or ISO LIN supplier Id.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 32767

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

J
[ECUC_Linlf_00641] Definition of EcuclntegerParamDef LinlfVariantld |

Parameter Name LinlfVariantld

Parent Container LinlfNodeConfigurationldentification

Description LIN variant Id.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.3.18 LinIfSlaveToSlavePdu

[ECUC_Linlf_00040] Definition of EcucParamConfContainerDef LinlfSlaveTo
SlavePdu |

AUTSSAR

Container Name

LinlfSlaveToSlavePdu

Parent Container

LinlfPduDirection

Description Represents a slave-to-slave PDU/frame. Master does only send the header but doesn'’t
receive the response. Only relevant for master nodes.
Multiplicity 0..1

Configuration Parameters

| No Included Parameters

| No Included Containers

10.3.19 LinIfInternalPdu

[ECUC_Linlf_00021] Definition of EcucParamConfContainerDef LinlfinternalPdu

[

Container Name

LinlfinternalPdu

Parent Container

LinlfPduDirection

Description Represents a Diagnostic or Configuration frame : no Message ID (no Pduld). Only
applicable to LIN master nodes.
Multiplicity 0..1

Configuration Parameters

No Included Parameters

No Included Containers

10.3.20 LinIfTransceiverDrvConfig

[ECUC_Linlf_00046] Definition of EcucParamConfContainerDef LinlfTransceiver

DrvConfig |

Container Name

LinlfTransceiverDrvConfig

Parent Container

LinlfChannel

Description This container contains the configuration parameters of each underlying LIN
Transceiver Driver.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

LinlfTrevidRef

1 [ECUC_Linlf_00047]

AUTSSAR

| No Included Containers

]

[ECUC_Linlf_00047] Definition of EcucReferenceDef LinlfTrcvidRef |

Parameter Name

LinlfTrcvidRef

Parent Container

LinlfTransceiverDrvConfig

Description Logical handle of the underlying LIN transceiver to be served by the LIN Interface.
Multiplicity 1
Type Symbolic name reference to LinTrcvChannel
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

AUTSSAR

10.4 LIN Transport Layer configuration

The Figure 10.9 shows the outline of the LIN Transport Protocol configuration.
LinTpVersionInfoApi:

LmTEGeneraI:. +parameter
EcucParamConfContainerDef < EcucBooleanParamDef
defaultValue = false

LinTp: EcucModuleDef .
— +container

+parameter . .

p LinTpChangeParameterApi:
EcucBooleanParamDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container
LinTpRxNSdu:

LinTpGlobalConfig: . 1
EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0

LinTpTxNSdu:

+subContainer
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

LinTpChannelConfig:

EcucParamConfContainerDef

+subContainer
upperMultiplicity = *

lowerMultiplicity = 0

LinTpMaxRxNSduCnt:
EcucintegerParamDef
min =0

max = 65535
lowerMultiplicity = 0

+parameter

LinTpMaxTxNSduCnt:
EcucintegerParamDef
min =0

max = 65535
lowerMultiplicity = 0

+parameter

LinTpDemEventParameterRefs:
EcucParamConfContainerDef

+subContainer
lowerMultiplicity = 0

upperMultiplicity = 1

Figure 10.9: LIN Transport Protocol configuration — (1) Overview

AUTSSAR

LinTpRxNSdu:
EcucParamConfContainerDef +reference LinTpRxNSduPduRef: +destination Pdu:
L EcucReferenceDef EcucParamConfContainerDef
upperMultiplicity = * | Multiolicity = 0
lowerMultiplicity = 0 . owerMuttipiicity =
plicity LinTpRxNSduNad: upperMultiplicity = *
+parameter| EcuclntegerParamDef
o (from EcucPdu)
min =0
max = 255
LinTpRxNSduld:
EcuclntegerParamDef
+parameter
min = 0 LinTpNcr: EcucFloatParamDef
max = 65535
withAuto = true min =0
symbolicNameValue = true max =1
+parameter lowerMultiplicity = 0
o upperMultiplicity = 1
+reference LinTpRxNSduChannelRef: o ComMChannel:
EcucReferenceDef +destination EcucParamConfContainerDef
requiresSymbolicNameValue = true lowerMultiplicity = 1
upperMultiplicity = 256

(from ComM)

Figure 10.10: LIN Transport Protocol configuration — (2) LinTpRxNSdu

LinTpTxNSdu: +reference LinTpTxNSduChannelRef: c P%’;&éﬂ"e'{ oot
EcucParamConfContainerDef [@———————— EcucReferenceDef cucParamConfContainerDe
P~ +destination iplicity =
upperMultiplicity = * requiresSymbolicNameValue = true Iowerl\&ulltl»plll.u.ty _]é
lowerMultiplicity = 0 upperMultiplicity = 256
. (from ComM)
LinTpTxNSduld:
EcucintegerParamDef
+parameter
min =0
max = 65535
withAuto = true
symbolicNameValue = true LinTpMaxBufReq:
+p EcuclntegerParamDef
>
max = 255
min =0
LinTpTxNSduNad:
+parameter EcucintegerParamDef
min =0
max = 255
+reference
LinTpTxNSduPduRef: +destination Pdu:
EcucReferenceDef EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
LinTpNcs: EcucFloatParamDef (from EcucPdu)
+parameter min =0
> max = INF
lowerMultiplicity = 0
LinTpNas: EcucFloatParamDef upperMultiplicity = 1
min =0
+parameter max =1

Figure 10.11: LIN Transport Protocol configuration — (3) LinTpTxNSdu

AUTSSAR

10.4.1 LinTp

[ECUC_LinTp_00425] Definition of EcucModuleDef LinTp |

Module Name LinTp

Description Configuration of the LIN Transport Protocol.

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

LinTpGeneral 1 Container that holds all LIN transport protocol general
parameters.

LinTpGlobalConfig 1 This container contains the global configuration parameters of
the LinTp.

10.4.2 LinTpGeneral

[ECUC_LinTp_00617] Definition of EcucParamConfContainerDef LinTpGeneral |

Container Name LinTpGeneral

Parent Container LinTp

Description Container that holds all LIN transport protocol general parameters.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
LinTpChangeParameterApi 1 [ECUC_LinTp_00638]
LinTpVersionInfoApi 1 [ECUC_LinTp_00068]

| No Included Containers

]

[ECUC_LinTp_00638] Definition of EcucBooleanParamDef LinTpChangeParame-
terApi |

Parameter Name LinTpChangeParameterApi

Parent Container LinTpGeneral

Description This parameter, if set to true, enables the LinTp_ChangeParameter Api for this Module.
Multiplicity 1

Type EcucBooleanParamDef

Default value -

V

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_LinTp_00068] Definition of EcucBooleanParamDef LinTpVersioninfoApi
[

Parameter Name LinTpVersionInfoApi

Parent Container LinTpGeneral

Description Switches the LinTp_GetVersionInfo function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.4.3 LinTpGlobalConfig

[ECUC_LinTp_00056] Definition of EcucParamConfContainerDef LinTpGlobal
Config |

Container Name LinTpGlobalConfig

Parent Container LinTp

Description This container contains the global configuration parameters of the LinTp.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
LinTpMaxRxNSduCnt 0..1 [ECUC_LinTp_00635]
LinTpMaxTxNSduCnt 0..1 [ECUC_LinTp_00636]

AUTSSAR

Included Containers
Container Name Multiplicity Dependency

LinTpChannelConfig 0..” This container contains the channel specific configuration
parameters of LinTp.

LinTpDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Event Id is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

LinTpRxNSdu 0..* This container exists once for each received N-SDU on any
channel the node is connected to. This N-SDU produces meta
data items of type LIN_NAD_8.

LinTpTxNSdu 0.~ This container exists once for each transmitted N-SDU on any
channel the node is connected to. This N-SDU consumes meta
data items of type LIN_NAD_8.

]
[ECUC_LinTp_00635] Definition of EcucintegerParamDef LinTpMaxRxNSduCnt |

Parameter Name LinTpMaxRxNSduCnt

Parent Container LinTpGlobalConfig

Description Maximum number of NSdus. This parameter is needed only in case of post-build
loadable implementation using static memory allocation.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

]
[ECUC_LinTp_00636] Definition of EcucintegerParamDef LinTpMaxTxNSduCnt |

Parameter Name LinTpMaxTxNSduCnt

Parent Container LinTpGlobalConfig

Description Maximum number of NSdus. This parameter is needed only in case of post-build
loadable implementation using static memory allocation.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 0.. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTSSAR

| Dependency

]

10.4.4 LinTpChannelConfig

LinT GIObaIConfﬁ : LinTpChannelConfig: LinT pDropNotRequestedNad:
EcucParamConfContainerDef EcucParamConfContainerDef +parameter|” EcucBooleanParamDef
upperMultiplicity = * defaultvValue = true

lowerMultiplicity = 0

LinTpScheduleChangeDiag:
+parameter EcucBooleanParamDef

defaultvalue = false

+reference| LinTpChannelRef: EcucReferenceDef

requiresSymbolicNameValue = true

+destination

ComMChannel:

+subContainer EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 256

LinTpMaxNumberOfRespPendingFrames:
+parameter EcucintegerParamDef

min =0

max = 65535

LinTpP2Timing:
+parameter EcucFloatParamDef

® min = 0.05

max =1

LinTpP2Max:

EcucFloatParamDef

+parameter .
0 min = 0.05

max = 10

Figure 10.12: LIN Transport Protocol Channel configuration

[ECUC_LinTp_00071] Definition of EcucParamConfContainerDef LinTpChannel
Config [

Container Name LinTpChannelConfig

Parent Container LinTpGlobalConfig

Description This container contains the channel specific configuration parameters of LinTp.

Multiplicity 0.~

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

AUTSSAR

A
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
LinTpDropNotRequestedNad 1 [ECUC_LinTp_00072]
LinTpMaxNumberOfRespPendingFrames 1 [ECUC_LinTp_00624]
LinTpP2Max 1 [ECUC_LinTp_00622]
LinTpP2Timing 1 [ECUC_LinTp_00625]
LinTpScheduleChangeDiag 1 [ECUC_LinTp_00070]

LinTpChannelRef

[ECUC_LinTp_00073]

No Included Containers

]

[ECUC_LinTp_00072]
questedNad |

Definition of EcucBooleanParamDef LinTpDropNotRe-

Parameter Name

LinTpDropNotRequestedNad

Parent Container LinTpChannelConfig

Description Configures if TP Frames of not requested LIN-Slaves are dropped or not.
TRUE: Drop TP Frames of not requested LIN-Slaves FALSE: Keep TP Frames of not
requested LIN-Slaves
Only used for LIN Master nodes, ignored for slave nodes.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00624] Definition of EcuclntegerParamDef LinTpMaxNumberOf
RespPendingFrames |

Parameter Name

LinTpMaxNumberOfRespPendingFrames

Parent Container

LinTpChannelConfig

Description Configures the maximum number of allowed response pending frames. Only used for
LIN Master nodes, ignored for slave nodes.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD

Dependency

]

[ECUC_LinTp_00622] Definition of EcucFloatParamDef LinTpP2Max [

Parameter Name

LinTpP2Max

Parent Container

LinTpChannelConfig

Description P2*max timeout when a response pending frame is expected in seconds. Note that the
minimum value of LinTpP2Max shall be more than or equal to the value of LinTpP2
Timing. Only used for LIN Master nodes, ignored for slave nodes.

Multiplicity 1

Type EcucFloatParamDef

Range [0.05 .. 10]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00625] Definition of EcucFloatParamDef LinTpP2Timing |

Parameter Name

LinTpP2Timing

Parent Container

LinTpChannelConfig

Description Definition of the P2max timeout observation parameter in seconds. Only used for LIN
Master nodes, ignored for slave nodes.

Multiplicity 1

Type EcucFloatParamDef

Range [0.05.. 1]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_LinTp_00070]

ChangeDiag |

Definition of EcucBooleanParamDef LinTpSchedule

Parameter Name

LinTpScheduleChangeDiag

Parent Container

LinTpChannelConfig

Description Enables or disables the call of BswM_LinTp_RequestMode() to diagnostic request/
response schedule.
false: BswM is not called true: BswM is called
Only used for LIN Master nodes, ignored for slave nodes.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00073] Definition of EcucReferenceDef LinTpChannelRef |

Parameter Name

LinTpChannelRef

Parent Container

LinTpChannelConfig

Description Index of the channel this LinTp channel belongs to.

Multiplicity 1

Type Symbolic name reference to ComMChannel

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.4.5 LinTpDemEventParameterRefs

LinTpDemEventParameterRefs:
EcucParamConfContainerDef LINTP_E_LINTPNAS_TIMEOUT_OCCURRED: DemEventParameter:
lowerMultiplicity = 0 +reference CCcRererencenen +destination [EcucParam ConfContainerDef
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

upperMultiplicity = 65535
lowerMultiplicity = 1

LINTP_E_LINTPNCS TIMEOUT_ OCCURRED:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

LINTP_E_LINTPNCR_TIMEOUT _OCCURRED:
EcucReferenceDef

+reference +destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

LINTP_E_SWAPPED_CONSECUTIVE_FRAMES_RECEIVED:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

LINTP_E_DROPPED_CONSECUTIVE_FRAMES DETECTED:
EcucReferenceDef

+reference +destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

LINIF_E_SCHEDULE_TABLE_SWITCH_REQUEST_NOT_ACCEPTED:
+reference EcucReferenceDef

[+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

(from Dem)

Figure 10.13: LIN Transport Protocol References to DemEventParameter

[ECUC_LinTp_00639] Definition of EcucParamConfContainerDef LinTpDem
EventParameterRefs [

Container Name LinTpDemEventParameterRefs
Parent Container LinTpGlobalConfig
Description Container for the references to DemEventParameter elements which shall be invoked

using the APl Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1
Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X Al Variants

Link time -
Post-build time -

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
LINIF_E_SCHEDULE_TABLE_SWITCH_REQUEST _- 0..1 [ECUC_LinTp_00645]
NOT_ACCEPTED

LINTP_E_DROPPED_CONSECUTIVE_FRAMES_- 0..1 [ECUC_LinTp_00644]
DETECTED

LINTP_E_LINTPNAS_TIMEOUT_OCCURRED 0..1 [ECUC_LinTp_00640]
LINTP_E_LINTPNCR_TIMEOUT_OCCURRED 0..1 [ECUC_LinTp_00642]
LINTP_E_LINTPNCS_TIMEOUT_OCCURRED 0..1 [ECUC_LinTp_00641]
LINTP_E_SWAPPED_CONSECUTIVE_FRAMES_- 0..1 [ECUC_LinTp_00643]
RECEIVED

No Included Containers

]

[ECUC_LinTp_00645]

Definition of EcucReferenceDef LINIF_E SCHEDULE_

TABLE_SWITCH_REQUEST _NOT_ACCEPTED |

Parameter Name

LINIF_E_SCHEDULE_TABLE_SWITCH_REQUEST _NOT_ACCEPTED

Parent Container

LinTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case LINIF_E_SCHEDULE_TABLE_SWITCH_REQUEST_
NOT_ACCEPTED error occurs. The Eventld is taken from the referenced DemEvent
Parameter's DemEventld symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_LinTp_00644]

Definition of EcucReferenceDef LINTP_E_DROPPED

CONSECUTIVE_FRAMES_DETECTED |

Parameter Name

LINTP_E_DROPPED_CONSECUTIVE_FRAMES_DETECTED

Parent Container

LinTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case LINTP_E_DROPPED_CONSECUTIVE_FRAMES
DETECTED error occurs. The Eventld is taken from the referenced DemEvent
Parameter's DemEventld symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity

false

\Y

AUTSSAR

A
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_LinTp_00640] Definition of EcucReferenceDef LINTP_E LINTPNAS
TIMEOUT_OCCURRED |

Parameter Name

LINTP_E_LINTPNAS_TIMEOUT_OCCURRED

Parent Container

LinTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case LINTP_E_LINTPNAS_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventid
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_LinTp_00642] Definition of EcucReferenceDef LINTP_E_LINTPNCR_
TIMEOUT_OCCURRED |

Parameter Name

LINTP_E_LINTPNCR_TIMEOUT_OCCURRED

Parent Container

LinTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case LINTP_E_LINTPNCR_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventld
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]
[

ECUC_LinTp_00641]

Definition of EcucReferenceDef LINTP_E LINTPNCS

TIMEOUT_OCCURRED |

Parameter Name

LINTP_E_LINTPNCS_TIMEOUT_OCCURRED

Parent Container

LinTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case LINTP_E_LINTPNCS_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter’s DemEventld
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]
[

ECUC_LinTp_00643]

Definition of EcucReferenceDef LINTP_E SWAPPED

CONSECUTIVE_FRAMES_RECEIVED |

Parameter Name

LINTP_E_SWAPPED_CONSECUTIVE_FRAMES_RECEIVED

Parent Container

LinTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case LINTP_E_SWAPPED_CONSECUTIVE_FRAMES _
RECEIVED error occurs. The Eventld is taken from the referenced DemEvent
Parameter's DemEventld symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

10.4.6 LinTpRxNSdu

[ECUC_LinTp_00428] Definition of EcucParamConfContainerDef LinTpRxNSdu [

Container Name LinTpRxNSdu

Parent Container LinTpGlobalConfig

Description This container exists once for each received N-SDU on any channel the node is
connected to. This N-SDU produces meta data items of type LIN_NAD_8.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinTpNcr 0..1 [ECUC_LinTp_00632]

LinTpRxNSduld 1 [ECUC_LinTp_00061]

LinTpRxNSduNad 1 [ECUC_LinTp_00062]

LinTpRxNSduChannelRef 1 [ECUC_LinTp_00060]

LinTpRxNSduPduRef 1 [ECUC_LinTp_00063]

No Included Containers

]

[ECUC_LinTp_00632] Definition of EcucFloatParamDef LinTpNcr |

Parameter Name

LinTpNcr

Parent Container

LinTpRxNSdu

Description Value in seconds of the N_Cr timeout. N_Cr is the time until reception of the next
Consecutive Frame N_PDU.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0..1]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

AUTSSAR

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_LinTp_00061] Definition of EcuclintegerParamDef LinTpRxNSduld |

Parameter Name LinTpRxNSduld
Parent Container LinTpRxNSdu
Description The identifier of the Transport Protocol message. This ID will be used by upper layers
to call LinTp_ChangeParameter.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency withAuto = true

]
[ECUC_LinTp_00062] Definition of EcuclintegerParamDef LinTpRxNSduNad |

Parameter Name LinTpRxNSduNad

Parent Container LinTpRxNSdu

Description A N-SDU transported on LIN is identified using the NAD for the specific slave.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00060] Definition of EcucReferenceDef LinTpRxNSduChannelRef
[

Parameter Name LinTpRxNSduChannelRef

Parent Container LinTpRxNSdu

Description Index of the channel this N-SDU belongs to.
Multiplicity 1

V

AUTSSAR

Type

Post-Build Variant Value

Value Configuration Class

A
Symbolic name reference to ComMChannel
false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time

Dependency

]

[ECUC_LinTp_00063] Definition of EcucReferenceDef LinTpRxNSduPduRef |

Parameter Name LinTpRxNSduPduRef
Parent Container LinTpRxNSdu

Description Reference to the global PDU
Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.4.7 LinTpTxNSdu

[ECUC_LinTp_00511] Definition of EcucParamConfContainerDef LinTpTxNSdu |

Container Name LinTpTxNSdu

Parent Container LinTpGlobalConfig

Description This container exists once for each transmitted N-SDU on any channel the node is
connected to. This N-SDU consumes meta data items of type LIN_NAD_8.

Multiplicity 0..*

Post-Build Variant Multiplicity

true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinTpMaxBufReq 1 [ECUC_LinTp_00637]
LinTpNas 1 [ECUC_LinTp_00633]
LinTpNcs 0..1 [ECUC_LinTp_00634]
LinTpTxNSduld 1 [ECUC_LinTp_00065]

AUTSSAR

JAN
Included Parameters
Parameter Name Multiplicity ECUC ID
LinTpTxNSduNad 1 [ECUC_LinTp_00066]
LinTpTxNSduChannelRef 1 [ECUC_LinTp_00064]
LinTpTxNSduPduRef 1 [ECUC_LinTp_00067]

| No Included Containers

]

[ECUC_LinTp_00637] Definition of EcucintegerParamDef LinTpMaxBufReq |

Parameter Name LinTpMaxBufReq

Parent Container LinTpTxNSdu

Description This parameter defines the maximum number of times the LinTp should request upper
layer for the Tx Buffer. It is also used to limit the number of retries for PduR_LinTpCopy
TxData when no timer is active.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00633] Definition of EcucFloatParamDef LinTpNas [

Parameter Name

LinTpNas

Parent Container

LinTpTxNSdu

Description Value in seconds of the N_As timeout. N_As is the time for transmission of a LIN frame
(any N_PDU) on the part of the sender.

Multiplicity 1

Type EcucFloatParamDef

Range [0..1]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_LinTp_00634] Definition of EcucFloatParamDef LinTpNcs |

Parameter Name

LinTpNcs

Parent Container

LinTpTxNSdu

Description Value in seconds of the performance requirement of N_Cs. N_Cs is the time which
elapses between the transmit request of a CF N-PDU until the transmit request of the
next CF N-PDU.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX | X|X|X]| X

Post-build time VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00065] Definition of EcucintegerParamDef LinTpTxNSduld |

Parameter Name

LinTpTxNSduld

Parent Container

LinTpTxNSdu

Description The identifier of the Transport Protocol message. This ID will be the one that is
communicated with upper layers.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

withAuto = true

]

[ECUC_LinTp_00066] Definition of EcucintegerParamDef LinTpTxNSduNad |

Parameter Name

LinTpTxNSduNad

Parent Container

LinTpTxNSdu

Description A N-SDU transported on LIN is identified using the NAD for the specific slave.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

Default value

AUTSSAR

Post-Build Variant Value

Value Configuration Class

A
true
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_LinTp_00064] Definition of EcucReferenceDef LinTpTxNSduChannelRef

[
Parameter Name LinTpTxNSduChannelRef
Parent Container LinTpTxNSdu
Description Index of the channel this N-SDU belongs to.
Multiplicity 1
Type Symbolic name reference to ComMChannel

Post-Build Variant Value

Value Configuration Class

false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time

Dependency

]

[ECUC_LinTp_00067] Definition of EcucReferenceDef LinTpTxNSduPduRef |

Parameter Name

LinTpTxNSduPduRef

Parent Container

LinTpTxNSdu

Description Reference to the global PDU
Multiplicity 1
Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.5 Published Information

For details refer to [8] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_Linlf NA_99999]

Upstream requirements: SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00417, SRS_BSW_
00437, SRS_BSW_00422, SRS_Lin_01600

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-

links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R24-11

B.1.1 Added Specification Iltems in R24-11

Number

Heading

[SWS_Linlf_00887]

LIN Interface state-machine and channel sub-state-machine for LIN Master
Nodes

[SWS_Linlf_00888]

LIN Interface state-machine and channel sub-state-machine for LIN Slave
Nodes

[SWS_Linlf_00889]

Include the header file of LSduR for Linlf

[SWS_Linlf_00890]

Limitation on invocation of LSduR_LinIfRxIndication in master nodes

[SWS_Linlf_00891]

Invocation of LSduR_LinIfRxIndication for Response in slave nodes

[SWS_Linlf_00892]

Invocation of LSduR_LinIfTriggerTransmit in master nodes

[SWS_Linlf_00893]

Invocation of Lin_SendFrame after successful invocation of LSduR_
LinIfTriggerTransmit in master nodes

[SWS_Linlf_00894]

Behavior after failed invocation of LSduR_LinIfTriggerTransmit in
master nodes

[SWS_Linlf 00895]

Limitation on invocation of LSduR_LinIfTxConfirmation in master
nodes

[SWS_Linlf_00896]

Invocation of LSduR_LinIfTxConfirmation aterror or busy conditions in
master nodes

[SWS_Linlf_00897]

Invocation of LSduR_LinIfTriggerTransmit after Header indication in
slave nodes

[SWS_Linlf_00898]

Handling of Cs, DI and Drc in slave nodes

[SWS_Linlf_00899]

Handling of Drc for failed invocation of LSduR_LinIfTriggerTransmit in
slave nodes

[SWS_Linlf_00900]

Invocation of LSduR_LinIfTxConfirmation after LinIf_
TxConfirmation in slave nodes

[SWS_Linlf_00901]

Invocation of LSduR_LinIfTxConfirmation after LinIf
LinErrorIndication in slave nodes

Table B.1: Added Specification Iltems in R24-11

AUTSSAR

B.1.2 Changed Specification Items in R24-11

Number Heading

[ECUC_Linlf_00035] Definition of EcucParamConfContainerDef LinlfRxPdu

[ECUC_Linlf_00049] Definition of EcucParamConfContainerDef LinlfTxPdu

[SWS_Linlf_00033]

[SWS_Linlf_00128]

[SWS_Linlf_00225]

[SWS_Linlf_00226]

[SWS_Linlf_00360] Definition of optional interfaces requested by module Linlf

[SWS_Linlf_00497]

[SWS_Linlf_00669]

[SWS_Linlf_00706]

[SWS_Linlf_00722]

[SWS_Linlf_00723]

[SWS_Linlf_00724]

[SWS_Linlf_00728]

[SWS_Linlf_00734]

[SWS_Linlf_00738]

[SWS_Linlf_00739]

[SWS_Linlf_00740]

[SWS_Linlf_00741]

[SWS_Linlf_00742]

Table B.2: Changed Specification ltems in R24-11

B.1.3 Deleted Specification Items in R24-11

Number Heading

[ECUC_Linlf_00054] Definition of EcucFunctionNameDef LinlfTxConfirmationUL

[ECUC_Linlf_00055] Definition of EcucFunctionNameDef LinlfRxIndicationUL

[ECUC_Linlf_00609] Definition of EcucEnumerationParamDef LinlfUserTxUL

[ECUC_Linlf_00610] Definition of EcucEnumerationParamDef LinlfUserRxIndicationUL

[ECUC_LinlIf_00628] Definition of EcucFunctionNameDef LinlfTxTriggerTransmitUL

[SWS_Linlf_00528] Definition of configurable interface <User_TriggerTransmit>

[SWS_Linlf_00529] Definition of configurable interface <User_TxConfirmation>

[SWS_Linlf_00530] Definition of configurable interface <User_RxIndication>

Table B.3: Deleted Specification Items in R24-11

AUTSSAR

B.2 Traceable item history of this document according to
AUTOSAR Release R25-11

B.2.1 Added Specification Items in R25-11

none

B.2.2 Changed Specification Items in R25-11

none

B.2.3 Deleted Specification Items in R25-11

Number Heading

[SWS_Linlf_00033]

[SWS_Linlf_00128]

[SWS_Linlf_00225]

[SWS_Linlf_00226]

[SWS_Linlf_00497]

[SWS_Linlf_00706]

[SWS_Linlf_00722]

[SWS_Linlf_00723]

[SWS_Linlf_00724]

[SWS_Linlf_00728]

[SWS_Linlf_00734]

[SWS_Linlf_00738]

[SWS_Linlf_00739]

[SWS_Linlf_00740]

[SWS_Linlf_00741]

[SWS_Linlf_00742]

Table B.4: Deleted Specification Items in R25-11

	1 Introduction and functional overview
	1.1 Architectural overview
	1.2 Functional overview

	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Clarification about other LIN standards

	5 Dependencies to other modules
	5.1 Upper layers
	5.1.1 L-SDU Router and CDD
	5.1.2 PDU Router
	5.1.3 Bus Mirroring
	5.1.4 LIN State Manager
	5.1.5 BSW Mode Manager
	5.1.6 AUTOSAR COM

	5.2 Lower layers
	5.2.1 LIN Driver
	5.2.2 LIN Transceiver Driver

	5.3 File structure
	5.3.1 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Frame Transfer
	7.1.1 Frame types
	7.1.1.1 Unconditional frame
	7.1.1.2 Event-triggered frame
	7.1.1.3 Sporadic frame (Master only)
	7.1.1.4 Diagnostic Frames MRF and SRF
	7.1.1.5 Reserved frames

	7.1.2 Frame reception
	7.1.2.1 Frame reception in master nodes
	7.1.2.2 Frame reception in slave nodes

	7.1.3 Frame transmission
	7.1.3.1 Frame transmission in master nodes
	7.1.3.2 Frame transmission in slave nodes

	7.1.4 Slave-to-slave communication (Master only)
	7.1.4.1 Header
	7.1.4.2 Response
	7.1.4.3 Status check

	7.1.5 Irrelevant communication (Slave only)

	7.2 Schedules (Master only)
	7.2.1 Schedule table manager

	7.3 Main function
	7.4 Network management
	7.4.1 Node Management
	7.4.1.1 LIN Interface state-machine
	7.4.1.2 LIN channel sub-state-machine

	7.4.2 Go to sleep process
	7.4.2.1 Go to sleep process in master nodes
	7.4.2.2 Go to sleep process in slave nodes

	7.4.3 Wake up process
	7.4.3.1 Wake up process in master nodes
	7.4.3.2 Wake up process in slave nodes

	7.5 Status Management
	7.5.1 response_error signal (Slave only)

	7.6 Diagnostics and Node configuration
	7.6.1 Node configuration in master nodes
	7.6.1.1 Node Configuration services
	7.6.1.2 Node Configuration in Schedule Table

	7.6.2 Node configuration in slave nodes
	7.6.2.1 Node Model
	7.6.2.2 Node Configuration services
	7.6.2.3 Diagnostic Frame Dispatcher
	7.6.2.4 Node Configuration Handler

	7.6.3 Diagnostics – Transport Protocol
	7.6.3.1 Schedule requests in master nodes
	7.6.3.2 State-machine
	7.6.3.3 LIN TP transmission
	7.6.3.4 LIN TP transmission error
	7.6.3.5 LIN TP reception
	7.6.3.6 Unavailability of receive buffer
	7.6.3.7 LIN TP reception error

	7.7 Handling multiple channels and drivers
	7.7.1 Multiple channels
	7.7.2 Multiple LIN drivers
	7.7.3 Multiple LIN transceiver drivers

	7.8 Error classification
	7.8.1 Development Errors
	7.8.2 Runtime Errors
	7.8.3 Production Errors
	7.8.4 Extended Production Errors
	7.8.4.1 LINTP_E_LINTPNAS_TIMEOUT_OCCURRED
	7.8.4.2 LINTP_E_LINTPNCS_TIMEOUT_OCCURRED
	7.8.4.3 LINTP_E_LINTPNCR_TIMEOUT_OCCURRED
	7.8.4.4 LINTP_E_SWAPPED_CONSECUTIVE_FRAMES_RECEIVED
	7.8.4.5 LINTP_E_DROPPED_CONSECUTIVE_FRAMES_DETECTED
	7.8.4.6 LINIF_E_SCHEDULE_TABLE_SWITCH_REQUEST_NOT_ACCEPTED

	8 API specification
	8.1 Imported types
	8.1.1 Standard types
	8.1.2 Type definitions
	8.1.2.1 LinIf_SchHandleType
	8.1.2.2 LinIf_ConfigType
	8.1.2.3 LinTp_ConfigType
	8.1.2.4 LinTp_Mode

	8.2 LIN Interface API
	8.2.1 LinIf_Init
	8.2.2 LinIf_GetVersionInfo
	8.2.3 LinIf_Transmit
	8.2.4 LinIf_ScheduleRequest
	8.2.5 LinIf_GotoSleep
	8.2.6 LinIf_Wakeup
	8.2.7 LinIf_SetTrcvMode
	8.2.8 LinIf_GetTrcvMode
	8.2.9 LinIf_GetTrcvWakeupReason
	8.2.10 LinIf_SetTrcvWakeupMode
	8.2.11 LinIf_GetPIDTable
	8.2.12 LinIf_SetPIDTable
	8.2.13 LinIf_GetConfiguredNAD
	8.2.14 LinIf_SetConfiguredNAD
	8.2.15 LinTp_Init
	8.2.16 LinTp_Transmit
	8.2.17 LinTp_GetVersionInfo
	8.2.18 LinTp_Shutdown
	8.2.19 LinTp_ChangeParameter
	8.2.20 LinIf_CheckWakeup
	8.2.21 LinIf_EnableBusMirroring

	8.3 Callback notifications
	8.3.1 LinIf_WakeupConfirmation
	8.3.2 LinIf_HeaderIndication
	8.3.3 LinIf_RxIndication
	8.3.4 LinIf_TxConfirmation
	8.3.5 LinIf_LinErrorIndication

	8.4 Scheduled functions
	8.4.1 LinIf_MainFunction_<LinIfChannel.ShortName>

	8.5 Expected interfaces
	8.5.1 Mandatory Interfaces
	8.5.2 Optional interfaces
	8.5.3 Configurable interfaces
	8.5.3.1 <User>_ScheduleRequestConfirmation
	8.5.3.2 <User>_GotoSleepConfirmation
	8.5.3.3 <User>_WakeupConfirmation
	8.5.3.4 <User>_GotoSleepIndication
	8.5.3.5 Callout definitions

	9 Sequence diagrams
	9.1 Frame Transmission
	9.1.1 Frame transmission in master nodes
	9.1.2 Frame transmission in slave nodes

	9.2 Frame Reception
	9.2.1 Frame reception in master nodes
	9.2.2 Frame reception in slave nodes

	9.3 Slave-to-slave / Irrelevant communication
	9.3.1 Slave-to-slave communication in master nodes
	9.3.2 Irrelevant communication in slave nodes

	9.4 Sporadic frame (Master only)
	9.5 Event-triggered frame
	9.5.1 Event-triggered frame in master nodes
	9.5.1.1 With no answer
	9.5.1.2 With answer (No collision)
	9.5.1.3 With collision

	9.5.2 Event-triggered frame in slave nodes

	9.6 Transport Protocol message transmission
	9.7 Transport Protocol message reception
	9.8 Go to sleep process
	9.8.1 Go to sleep process in master nodes
	9.8.2 Go to sleep process in slave nodes

	9.9 Wake up request
	9.10 Internal wake-up

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Configuration Tool

	10.3 LinIf Configuration
	10.3.1 LinIf
	10.3.2 LinIfGlobalConfig
	10.3.3 LinIfGeneral
	10.3.4 LinIfChannel
	10.3.5 LinIfNodeType
	10.3.6 LinIfFrame
	10.3.7 LinIfFixedFrameSdu
	10.3.8 LinIfFixedFrameSduByte
	10.3.9 LinIfPduDirection
	10.3.10 LinIfSubstitutionFrames
	10.3.11 LinIfRxPdu
	10.3.12 LinIfTxPdu
	10.3.13 LinIfScheduleTable
	10.3.14 LinIfEntry
	10.3.15 LinIfMaster
	10.3.16 LinIfSlave
	10.3.17 LinIfNodeConfigurationIdentification
	10.3.18 LinIfSlaveToSlavePdu
	10.3.19 LinIfInternalPdu
	10.3.20 LinIfTransceiverDrvConfig

	10.4 LIN Transport Layer configuration
	10.4.1 LinTp
	10.4.2 LinTpGeneral
	10.4.3 LinTpGlobalConfig
	10.4.4 LinTpChannelConfig
	10.4.5 LinTpDemEventParameterRefs
	10.4.6 LinTpRxNSdu
	10.4.7 LinTpTxNSdu

	10.5 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R24-11
	B.1.1 Added Specification Items in R24-11
	B.1.2 Changed Specification Items in R24-11
	B.1.3 Deleted Specification Items in R24-11

	B.2 Traceable item history of this document according to AUTOSAR Release R25-11
	B.2.1 Added Specification Items in R25-11
	B.2.2 Changed Specification Items in R25-11
	B.2.3 Deleted Specification Items in R25-11

