AUTSSAR

Document Title Specification of LIN Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 72

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
« Clarification of an ongoing frame
AUTOSAR transmission and a new frame
2025-11-27 | R25-11 Release transmission is requested
Management
» Editorial Changes
AUTOSAR » Clarification of configuration data
2024-11-27 | R24-11 Release structure for multicore support
Management « Editorial Changes
* LIN_E TIMEOUT removed as
Production Error
AUTOSAR
2023-11-23 | R23-11 Release * Misleading note regarding
Management Lin_CheckWakeup removed
» Editorial Changes
AUTOSAR » Clarification of Lin_CheckWakeup return
2022-11-24 | R22-11 | Release values
Management « Editorial changes
+ Clarification of configuration parameter
LinChannelWakeupSupport
AUTOSAR
2021-11-25 R21-11 Release * Cleanup of Error classification chapter
Management)
* Header file for EcuM_CheckWakeup
changed
2020-11-30 | R20-11 | Release Lin_GeneralTypes removed
Management

« Editorial change

AUTSSAR

» MCALMulticoreDistribution (CONC_639)

AUTOSAR
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management published
* LIN Slave support (CONC_634)
» MCALMulticoreDistribution (CONC_639)
as DRAFT
AUTOSAR . Replac?e referepces to LIN.2.1 by ISO
2018-10-31 440 Release 17987:2016 (with no functional
018-10- o modification)
Management
* Header file cleanup
* Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
* Minor corrections / clarifications /
AUTOSAR editorial changes
2017-12-08 | 4.3.1 Release _ _
Management * Resolve inconsistency on channel state
upon initialization
AUTOSAR « Updated tracing information
2016-11-30 | 4.3.0 Release
Management * Removed chapter 'Variants’
» Chapter 6 "Requirements traceability”
clean up
AUTOSAR . 'I':{eferenfe to DET are_named as
5015-07-31 490 Release Default" Error Tracer instead of
- "Development" Error Tracer
Management
* Dependency on Module DET listed in
Chapter 5 is linked to SWS_Lin_00048
instead of SWS_Lin_00052
AUTOSAR , .
2014-10-31 491 Release Replaced SWS_Lin_00064 with

Management

SWS_Lin_00268

AUTSSAR

* Removed SWS_Lin_00243.

* Modified SWS_Lin_00237,
SWS_Lin_00058, SWS_Lin_00266,
SWS_Lin_00255, SWS_Lin_00256,

AUTOSAR SWS_Lin_00258, SWS_Lin_00259,
2014-03-31 41.3 Release SWS_Lin_00260.
Management
» Updated Figure 7-1.
* Removed references to
SWS_Lin_00073 and SWS_Lin_00034
from chapter 6.
* Removed outdated SWS_Lin_00109,
SWS_Lin_00136 and SWS_Lin_00132.
* Import of SWS_Lin_184 from R3.2.2
» Wake-up LIN Functionality updated
* New API Lin_Wakeuplnternal added.
See chapter 8.3.2.5
» Added the following type definition (with
SWS item ID) to chapter 8:
AUTOSAR * Lin_FrameCsModelType
2013-10-31 4.1.2 Release
Management * Lin_FrameDIType

* Lin_FramePidType

* Lin_FrameResponseType
* Lin_PduType

« Lin_StatusType

« Editorial changes

* Removed chapter(s) on change
documentation

AUTSSAR

2013-03-15

411

AUTOSAR
Administration

» Specified LIN_E_TIMEOUT as
production error

» Shifted all types used by other modules
to Lin_GeneralTypes.h

* Revised configuration container
LinDemEventParamterRefs

» Some minor updates

2011-12-22

4.0.3

AUTOSAR
Administration

» Changed error reporting
* Improved wake-up handling

* Corrected call of Lin_Init

2010-09-30

AUTOSAR
Administration

* Introduce Lin_GeneralTypes.h

» Add missing DET error code (NULL
pointer error)

« Remove instance ID from
Lin_GetVersionInfo API

* Correct naming of "WakeUp" to
"Wakeup"

» Further maintenance for R4.0.2: see
chapter 12

2010-02-02

AUTOSAR
Administration

* Support of advanced LIN controllers
(combination of Lin_SendHeader and
Lin_SendResponse to Lin_SendFrame)

* Integrating LIN channel initialization in
LIN module initialization

» Further maintenance for R4.0: see
chapter 11

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

« Editorial Changes
» Tables generated in Chapter 8 and 10
» Document meta information extended

» Small layout adaptations made

AUTSSAR

* Lin Transceiver Wake Up validation
function added

* Incorporate Feedback from Validator2

» Updated Chapter 10.2 according to the
Specification of ECU Configuration

2007-01-24 | 2.1.15 AUTOSAR Parameters
Administration
* Legal disclaimer revised
» Release Notes added
» "Advice for users" revised
* "Revision Information" added
2006-05-16 2.0 AUTOSAR « Initial release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 10
1.1 Scope . . . e 10
1.2 Architectural overview Lo 10

2 Acronyms, abbreviations and glossary 12
2.1 Acronyms and abbreviations o oL 12
2.2 Glossary e e 12
2.3 LIN hardware unit classification 13

3 Related documentation 15
3.1 Input documents & related standardsandnorms 15
3.2 Related specification oo 15

4 Constraints and assumptions 16
4.1 Limitations e 16

411 DriversCope o i i e e 16
4.2 Applicability to cardomains o 16

5 Dependencies to other modules 17

51 Filestructure 17
5.1.1 Codefilestructure 17
5.1.2 Headerfilestructure 18

6 Requirements Tracing 19

7 Functional specification 21
7.1 General Requirements 21
7.2 VersionCheck e 22

7.2.1 Requirements 22
7.3 LIN driver and Channel Initialization 22
7.3.1 Background & Rationale L. 22
7.3.2 Requirements 22
7.3.3 Statediagrams 23
7.4 Frame processing v o o i e e e e 25
7.4.1 Background & Rationale 25
7.4.2 Requirements 26
7.4.21 LINMasterspecific L. 26
7422 LINSlavespecific. 26
7.423 CommON 28
7.4.3 DataConsistency 29
7.4.3.1 Transmit Data Consistency: 29
7.4.3.2 Receive Data Consistency: 29

744 Databytemapping 30

AUTSSAR

7.5 Sleep and wake-up functionality 30
7.5.1 Background & Rationale 30
7.5.2 Requirements 31

7.6 Error Classification 32
7.6.1 DevelopmentErrors 32
7.6.2 Runtime Errors e 32
7.6.3 Production Errors 33

7.6.3.1 LIN_E TIMEOUT 33

7.6.4 Extended ProductionErrors 33

7.7 Security Events 33

8 API specification 34

8.1 Importedtypes 34

8.2 Typedefinitions 34
8.2.1 Lin_ConfigType e 34
8.2.2 Lin_FramePidType 35
8.2.3 Lin_FrameCsModelType 35
8.2.4 Lin_FrameResponseType 35
8.2.5 Lin_FrameDIType 36
8.2.6 Lin_PduType 36
8.2.7 Lin_StatusType 37
8.2.8 Lin_SlaveErrorType 38

8.3 Function definitions 38
8.3.1 Services affecting the complete LIN hardware unit 38

83.1.1 Lin_Init. 38
8.3.1.2 Lin_CheckWakeup 40
8.3.1.3 Lin _GetVersioninfo 41
8.3.2 Services affecting a single LIN channel 41
8.3.21 Lin. SendFrame 41
8.3.2.2 Lin_GoToSleep 43
8.3.2.3 Lin_GoToSleepinternal, 44
8324 Lin_Wakeup 45
8.3.2.5 Lin_Wakeupinternal 46
8326 Lin GetStatus 47

8.4 Callback notifications 49

8.5 Scheduled functions 49

8.6 Expectedinterfaces 49
8.6.1 Mandatoryinterfaces, 49
8.6.2 Optionalinterfaces 50
8.6.3 Configurable interfaces 51

9 Sequence diagrams 52

9.1 ReceivingalLINFrame 52

9.1.1 LINMaster e 52

AUTSSAR

9.1.2

LIN Slave

10 Configuration specification

10.1How to read this chapter
10.2Containers and configuration parameters
10.2.1 Lin

10.2.2LinGeneral e
10.2.3LinChannel e
10.2.4 LinGlobalConfig

10.2.5 LinDemEventParameterRefs
10.3Published Information

Not applicable requirements

Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6

Added Constraints in R25-11
Changed Constraints in R25-11
Deleted Constraints in R25-11
Added Specification Itemsin R25-11
Changed Specification Itemsin R25-11
Deleted Specification Items inR25-11

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6

Added Constraintsin R24-11
Changed Constraintsin R24-11
Deleted Constraints in R24-11
Added Specification Itemsin R24-11
Changed Specification Itemsin R24-11
Deleted Specification ltemsin R24-11

B.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6

Added Constraints in R23-11
Changed Constraints in R23-11
Deleted Constraints in R23-11
Added Specification Itemsin R23-11
Changed Specification Items in R23-11
Deleted Specification ltems in R23-11

54

54
54
55
o6
58
62
62
63

64

65

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module LIN driver.

1.1 Scope

The base for this document is the ISO 17987 specifications [1]. It is assumed that the
reader is familiar with this specification. This document will not describe ISO 17987
LIN functionality again.

The LIN driver applies to ISO 17987 master and slave nodes. The LIN implementation
in AUTOSAR deviates from the ISO 17987 specifications as described in this specifi-
cation of LIN driver, but there will be no change in the behavior on the LIN bus. It is
the intention to be able to reuse all existing LIN nodes together with the AUTOSAR LIN
implementation (i.e. the LIN driver).

[SWS_Lin_00063]
Upstream requirements: SRS_Lin_01547
[It is intended to support the complete range of LIN hardware from a simple SCI/UART

to a complex LIN hardware controller. Using a SW-UART implementation is out of the
scope. |

For a closer description of the LIN hardware unit, see chapter 2.3.

1.2 Architectural overview

The LIN driver is part of the microcontroller abstraction layer (MCAL), performs the
hardware access and offers a hardware independent API to the upper layer. The only
upper layer, which has access to the LIN driver, is the LIN Interface.

A LIN driver can support more than one channel. This means that the LIN driver
can handle one or more LIN channels as long as they are belonging to the same LIN
hardware unit.

In the example below three different LIN drivers are connected to the LIN interface.
However, one LIN driver is the most common configuration.

AUTSSAR

(Oun
Scheduler
(Master only)

LIM interface
(,LIN Communication Stack®)

I/O Drivers
LIM driver LIM driver LIN driver
VENDOR A VENDOR B VENDOR C
Frame Frame Frame
Processing Processing Processing

%

LIN HW Unit LIN HW Unit LIN HW Unit LIN HW Unit

Type A Type B Type B Type C

(2.0 Standard {e.g.: Enhancad {e.g.: Enhanced ({2.p.: Multi-channel
SCIUART) LIN-SCIUJART) LIN-SCIUART) LIM Controller)

Transcener Transcener Transcever Transcever Transcener
c Ic Ic I Iz

Figure 1.1: Overview LIN Software Architecture Layering

AUTSSAR

2 Acronyms, abbreviations and glossary

2.1 Acronyms and abbreviations

Acronyms, abbreviations and definitions that have a local scope for the LIN driver and
therefore are not contained in the [2, AUTOSAR glossary] must appear here.

Acronym: Description:

PID Protected ID (as defined by [1])

PLL Phase-Locked Loop

RX Reception

SCI Serial Communication Interface

SFR Special Function Register

SPAL Standard Peripheral Abstraction Layer

SRS Software Requirement Specification

X Transmission

UART Universal Asynchronous Receiver Transmitter
Table 2.1: Acronyms used in the scope of this Document

Abbreviation: Description:

Id Identifier

Table 2.2: Abbreviations used in the scope of this Document

2.2 Glossary

Besides AUTOSAR terminology this document also uses terms defined in the 1SO
17987 specifications [1], e.g. LIN frame, header and message.

AUTSSAR

Glossary: Description:

enumeration This can be in "C" programming language an enum or a #define.

LIN channel The LIN channel entity interlinks the ECUs of a LIN cluster physically: An ECU is
part of a LIN cluster if it contains one LIN controller that is connected to one LIN
channel of the LIN cluster. An ECU is allowed to connect to a particular LIN
cluster through one channel only.

LIN cluster As defined by [1]: "A cluster is the LIN bus wire plus all the nodes."

LIN controller

A dedicated LIN hardware with a build Frame processing state machine. A
hardware which is capable to connect to several LIN clusters is treated as several
LIN controllers.

LIN frame

As defined by [1]: "All information is sent packed as frames; a frame consist of
the header and a response."

LIN frame processor

Frame processing implies the complete LIN frame handling. Implementation
could be achieved as software emulated solution or with a dedicated LIN
controller.

LIN hardware unit

A LIN hardware unit may drive one or multiple LIN channels to control one or
multiple LIN clusters.

LIN header As defined by [1]: "A header is the first part of a frame; it is always sent by the
master."
LIN node As defined by [1]: "Loosely speaking, a node is an ECU. However, a single ECU

may be connected to multiple LIN clusters."

LIN response

As defined by [1]: "A LIN frame consists of a header and a response. Also called
a Frame response."

Table 2.3: Glossary used in the scope of this Document

2.3 LIN hardware unit classification

The on-chip LIN hardware unit combines one or several LIN channels.

The following figure shows a classification of different LIN hardware types connected
to multiple LIN physical channels:

AUTSSAR

pCtr

LIN Hardware UNIT A

LIN Controller 0

LIN Controller 1

LIN Controller n

LIN Hardware UNIT B
SCI/UART O

SCI/UART 1

LIN Hardware UNIT C

Enhanced SC1/ UART 0

TxD 0
RxD 0O

TxD 1
RxD 1

T=D n

T<D O

T=D 1
RxD 1

TxD 0
RxD 0O

Transceiver
IC A

Transceiver
iCB

Transceiver
ICN

Transceiver
IC N+1

Transceiver
IC N+2

Transceiver
IC N+3

TxD 1
Enhanced SCI/UART 1 2401 Transceiver
— IC N+4

Figure 2.1: LIN hardware unit classification

LIN cluster
A

LIN cluster
B

LIN cluster
M

LIN cluster
MN+1

LIN cluster
M=2

LIN cluster
M+3

LIN cluster
N+4

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] I1ISO 17987:2016 (all parts), Road vehicles — Local Interconnect Network (LIN)
https://www.iso.org

[2] Glossary
AUTOSAR_FO_TR_Glossary

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] Specification of LIN Interface
AUTOSAR_CP_SWS_LINInterface

[5] Specification of MCU Driver
AUTOSAR_CP_SWS_MCUDriver

[6] Specification of Default Error Tracer
AUTOSAR_CP_SWS_DefaultErrorTracer

[7] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[8] Specification of Operating System
AUTOSAR_CP_SWS_0OS

[9] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[10] Requirements on LIN
AUTOSAR_CP_RS LIN

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3,
SWS_BSWGeneral], which is also valid for LIN Driver.

Thus, the specification SWS_BSWGeneral shall be considered as additional and re-
quired specification for LIN Driver.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

Only one LIN channel of an ECU is allowed to connect to a particular LIN cluster.
Unless there are unused (not connected) channels in the ECU, the number of LIN
channels is equal to the number of LIN clusters.

4.1.1 Driver scope

[SWS_Lin_00045]
Upstream requirements: SRS_BSW_00347

[One LIN driver provides access to one LIN hardware unit type (simple UART or dedi-
cated LIN hardware) that may consist of several LIN channels. |

[SWS_Lin_00201] [For different LIN hardware units a separate LIN driver needs to be
implemented. It is up to the implementer to adapt the driver to the different instances
of similar LIN channels. |

[SWS_Lin_00177] [In case several LIN driver instances (of same or different vendor)
are implemented in one ECU the file names, APl names, and published parameters
must be modified such that no two definitions with the same name are generated. The
name shall be extended according to [SRS_BSW_00347] with a Vendor Id (needed to
distinguish LIN drivers from different vendors) and a Vendor specific name (needed to
distinguish different hardware units implemented by one Vendor): <Module abbrevia-
tion>_<Vendor Id>_<Vendor specific name>. |

The LIN Interface is responsible for calling the correct function. The necessary infor-
mation shall be given in an XML file during configuration. See [4, Specification of LIN
Interface] for description how the LIN Interface handles several LIN drivers.

4.2 Applicability to car domains

This specification is applicable to all car domains, where LIN is used.

AUTSSAR

5 Dependencies to other modules

Module MCU [5, Specification of MCU Driver]

The hardware of the internal LIN hardware unit depends on the system clock,
prescaler(s) and PLL. Hence, the length of the LIN bit timing depends on the clock
settings made in module MCU.

The LIN driver module will not take care of setting the registers that configure the
clock, prescaler(s) and PLL (e.g. switching on/off the PLL) in its init functions. The
MCU module must do this.

Module Port

The Port driver configures the port pins used for the LIN driver as input or output.
Hence, the Port driver has to be initialized prior to the use of LIN functions. Otherwise,
LIN driver functions will exhibit undefined behavior.

Module DET [6, Specification of Default Error Tracer]

In development mode, the Lin module reports development error through the Det_
ReportError function of module DET. (see [SWS_Lin_00048])

Module DEM [7, Specification of Diagnostic Event Manager]

The Lin module reports production errors to the Diagnostic Event Manager. (see
[SWS_Lin_00058])

OS [8, Specification of Operating System]

The LIN driver uses interrupts and therefore there is a dependency on the OS, which
configures the interrupt sources.

LIN driver Users

The LIN Interface [4, Specification of LIN Interface] is the only user of the LIN driver
services.

5.1 File structure

5.1.1 Code file structure

[SWS_Lin_00268] [The code file structure shall not be defined within this specifica-
tion. |

AUTSSAR

5.1.2 Header file structure
[SWS_Lin_00054]
Upstream requirements: SRS_BSW_00302

[The file Lin.h only contains external declarations of constants, global data, type
definitions and services that are specified in LIN driver SWS. |

[SWS_Lin_00207] [Constants, global data types and functions that are only used by
LIN driver internally, are declared in Lin. c.]

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [9] and [10] and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Lin_00006]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_Lin_00029]

[SRS_BSW_00164]

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_Lin_00155]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Lin_00039]

[SRS_BSW_00302]

All AUTOSAR Basic Software
Modules shall only export information
needed by other modules

[SWS_Lin_00054]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Lin_00055]

[SRS_BSW_00308]

AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

[SWS_Lin_00055]

[SRS_BSW_00309]

All AUTOSAR Basic Software
Modules shall indicate all global data
with read-only purposes by explicitly
assigning the const keyword

[SWS_Lin_00055]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Lin_00048]

[SRS_BSW_00327]

Error values naming convention

[SWS_Lin_00048]

[SRS_BSW_00337]

Classification of development errors

[SWS_Lin_00048]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Lin_00013]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_Lin_00045]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_Lin_00098]

[SRS_BSW_00385]

List possible error notifications

[SWS_Lin_00048]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Lin_00013]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Lin_00011] [SWS_Lin_00013]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Lin_00006]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Lin_00001]

[SRS_BSW_00458]

Classification of production errors

[SWS_Lin_00290]

[SRS_Lin_01503]

An API shall exist that enables the
LIN driver to directly copy up to 8 byte
directly from/to the frame buffers.

[SWS_Lin_00024] [SWS_Lin_00025]
[SWS_Lin_00274] [SWS_Lin_00283]

[SRS_Lin_01504]

The usage of AUTOSAR architecture
shall be applicable for LIN master
nodes

[SWS_Lin_00005]

[SRS_Lin_01522]

LIN-SDU shall be copied consistently
for transfer

[SWS_Lin_00025] [SWS_Lin_00053]
[SWS_Lin_00060] [SWS_Lin_00283]

[SRS_Lin_01524]

The LIN Driver shall be able to put
the LIN hardware to a reduced power
operation mode if needed

[SWS_Lin_00032]

[SRS_Lin_01526]

The LIN Driver shall provide a status
for error events on the bus.

[SWS_Lin_00053]

[SRS_Lin_01547]

The LIN Driver shall support standard
UART and LIN optimized HW

[SWS_Lin_00063]

[SRS_Lin_01555]

The LIN driver shall have an interface
to retrieve transmit / receive
notifications.

[SWS_Lin_00024] [SWS_Lin_00274]
[SWS_Lin_00275]

[SRS_Lin_01556]

One LIN driver shall be able to handle
more than one LIN channel

[SWS_Lin_00008] [SWS_Lin_00190]

[SRS_Lin_01560]

If a wakeup occurs during transition
to sleep-mode, this channel shall go
back to the running mode

[SWS_Lin_00033]

[SRS_Lin_01563]

The LIN Driver shall provide a
notification for wake-up events

[SWS_Lin_00098]

[SRS_Lin_01566]

Transition to sleep-mode shall be
handled

[SWS_Lin_00033] [SWS_Lin_00266]

[SRS_Lin_01572]

The LIN Driver shall support the
initialization of each LIN channel
separately

[SWS_Lin_00011]

[SRS_Lin_01573]

The LIN Driver shall support dynamic
selection of configuration sets.

[SWS_Lin_00011]

[SRS_Lin_01576]

The ISO 17987 specifications shall
be reused as far as possible

[SWS_Lin_00005]

[SRS_Lin_01577]

It shall be compatible to LIN protocol
specification

[SWS_Lin_00005]

[SRS_Lin_01578]

It shall be compatible to LIN
Datalinklayer

[SWS_Lin_00017] [SWS_Lin_00272]
[SWS_Lin_00273]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

The LIN driver module is required to manage the hardware dependent aspects of com-
munication via any LIN cluster attached to the node the driver resides in.

This includes accepting header data for transmission onto the bus, response frame
data to transmit, the retrieval of header information and of response frame data in-
tended for the node.

The need for sleep mode management of both the node and of the cluster exists. This
implies the ability to detect and generate a 'wake-up’ pulse as defined in the ISO 17987
specifications. If the underlying hardware supports a low-power mode then entering
and exiting from that state is included.

7.1 General Requirements

The Lin module is a Basic Software Module that has direct access to hardware re-
sources.

[SWS_Lin_00005]

Upstream requirements: SRS_Lin_01576, SRS_Lin_01504, SRS_Lin_01577
[The Lin module shall conform to the ISO 17987 specifications [1]. This applies to ISO
17987 LIN Master and Slave nodes. |
[SWS_Lin_00055]

Upstream requirements: SRS_BSW_00306, SRS_BSW_00308, SRS _BSW_00309
[The Lin module shall fulfill all design and implementation guidelines as described in
[3, SWS_BSWGeneral]. |
[SWS_Lin_00155]

Upstream requirements: SRS_BSW_00164
[The Lin module shall implement the ISRs for all LIN hardware unit interrupts that are
needed. |

[SWS_Lin_00156] [The Lin module shall ensure that all unused interrupts are dis-
abled. |

[SWS_Lin_00157] [The Lin module shall reset the interrupt flag at the end of the ISR
(if not done automatically by hardware). |

The Lin module shall not configure the interrupt (i.e. priority) nor set the vector table
entry.

AUTSSAR

7.2 Version Check

7.2.1 Requirements

For details refer to [3] Chapter 5.1.8 “Version check”.

7.3 LIN driver and Channel Initialization

7.3.1 Background & Rationale

Before communication can be started on a LIN bus, both the LIN driver and the relevant
LIN channel must be initialized.

The driver initialization (see Lin_Init) handles all aspects of initialization that are of
relevance to all channels present in the LIN hardware unit. This may include any static
variables or hardware register settings common to all LIN channels that are available.
Additionally each channel must also be initialized according to the configuration sup-
plied. This will for example include (but is not limited to) the baud rate over the bus.

[SWS_Lin_00225] [There must be at least one statically defined configuration set
available for the LIN driver. When the EcuM invokes the initialization function, it has to
provide a specific pointer to the configuration that it wishes to use. |

7.3.2 Requirements

The Lin module shall not initialize or configure LIN channels, which are not used.

The Lin module shall allow the environment to select between different static configu-
ration data at runtime.

[SWS Lin_00011]
Upstream requirements: SRS_BSW_00405, SRS_Lin_01572, SRS_Lin_01573

[The Lin module’s configuration shall include a data communication rate set as defined
by static configuration data. |

[SWS_Lin_00013]
Upstream requirements: SRS_BSW_00345, SRS_BSW_00404, SRS_BSW_00405

[The Lin module’s configuration data, intended for hardware registers, shall be stored
as hardware specific data structures in ROM (see Lin_ConfigType).]

[SWS_Lin_00014] [Each LIN PID shall be associated with a checksum model (either
‘enhanced’ where the PID is included in the checksum, or ’classic’ where only the
response data is check-summed) (see Lin_PduType).]

AUTSSAR

[SWS_Lin_00015] [Each LIN PID shall be associated with a response data length in
bytes (see Lin_PduType).]

7.3.3 State diagrams
The LIN driver has a state machine that is shown in Figure 7.1.

Reset

LIN_UNINIT

Lin_Init

/ LIN_INIT \

Master only

LIN_CH_SLEEP_PENDING
- - for each channel

Lin_GetStatus
Lin_GoToSleep

LIN_CH_OPERATIONAL "\ Lin_GoToSleepintemal /~ LIN_CH_SLEEP
Lin_Wakeup

Lin_Wakeuplnternal

/ _
N J

Figure 7.1: Lin driver states

Module State Meaning / Activities in the state

LIN_UNINIT The state LIN_UNINIT means that the Lin module has not
been initialized yet and cannot be used.

LIN_INIT The LIN_INIT state indicates that the LIN driver has been
initialized, making each available channel ready for service.

Table 7.1: Lin driver states

AUTSSAR

Channel State Meaning / Activities in the state

LIN_CH_OPERATIONAL The individual channel has been initialized (using at least
one statically configured data set) and is able to participate
in the LIN cluster.

LIN_CH_SLEEP The detection of a 'wake-up’ pulse is enabled. The LIN
hardware is into a low power mode if such a mode is
provided by the hardware.

Table 7.2: Lin driver channel states

[SWS_Lin_00145] [Reset -> LIN_UNINIT: After reset, the Lin module shall set its state
to LIN_UNINIT. |

[SWS_Lin_00146] [LIN_UNINIT -> LIN_INIT: The Lin module shall transition from
LIN_UNINIT to LIN_INIT when the function Lin_1Init is called. |

The LIN module’s environment shall call the function L.in_TInit only once during run-
time.

[SWS_Lin_00171] [On entering the state LIN_INIT, the Lin module shall set each
channel into state LIN_CH_SLEEP, enable bus monitoring for a wake-up request on
that channel if external wake-up detection is supported by configuration parameter
LinChannelWakeupSupport, and optionally set the LIN hardware unit to reduced
power operation mode (if supported by HW). |

[SWS_Lin_00263] [LIN_CH_OPERATIONAL -> LIN_CH_SLEEP_PENDING through
Lin_GoToSleep: If a go to sleep is requested by the LIN interface, the Lin module shall
ensure that the rest of the LIN cluster goes to sleep also. This is achieved by issuing
a go-to-sleep-command on the bus before entering the LIN._CH_SLEEP_ PENDING
state. This requirement is only applicable for LIN master nodes. |

[SWS_Lin_00264] [LIN_CH_SLEEP_PENDING -> LIN_CH_SLEEP: When Lin_-
Getstatus is called, the LIN driver shall directly enter the LIN_CH_SLEEP state, even
if the go-to-sleep-command has not yet been sent. This requirement is only applicable
for LIN master nodes. |

[SWS_Lin_00265] [LIN_CH_OPERATIONAL -> LIN_CH_SLEEP through Lin_Go-
ToSleepInternal: If an internal go to sleep is requested by the LIN interface, the
LIN driver shall directly enter the LIN_CH_SLEEP state. |

[SWS_Lin_00174] [LIN_CH_SLEEP -> LIN_CH_OPERATIONAL through Lin_-
Wakeup: If a LIN channel is in the state LIN_CH_SLEEP, the function Lin_Wakeup
shall put the LIN channel into the state LIN_CH_OPERATIONAL. |

[SWS_Lin_00261] [LIN_CH_SLEEP -> LIN_CH_OPERATIONAL through Lin_-
WakeupInternal: If a LIN channelis in the state LIN_CH_SLEEP, the function Lin_
WakeupInternal shall put the LIN channel into the state LIN_CH_OPERATIONAL. |

AUTSSAR

[SWS_Lin_00209] [Lin_Wakeup: During the state transition from LIN_CH_SLEEP
to LIN_CH_OPERATIONAL the LIN Driver shall ensure that the rest of the cluster is
awake. This is achieved by issuing a wake-up request, forcing the bus to the dominant
state for 250 us to 5 ms. |

[SWS_Lin_00184] [A mode switch request to the current mode is allowed and shall
not lead to an error, even if DET is enabled. |

7.4 Frame processing

7.4.1 Background & Rationale

A LIN frame is composed of two parts, the LIN header and the LIN response.

The LIN header is always transmitted by the LIN master node and indicates the start
of frame, including the LIN PID. The LIN response is transmitted on the bus after the
LIN header and can be transmitted by either the master or one of the slaves [1].

The driver must also be able to access data concerning the checksum model and data
length for each LIN PID. LIN 2.0 and newer versions have a different checksum model
compared to LIN 1.3, but the LIN master must be able to communicate with all slave
node types (LIN 1.3, LIN 2.0, LIN 2.1, LIN 2.2 and ISO 17987). However, a LIN 1.3
master is not able to communicate with LIN 2.0 or newer slaves.

The checksum is a part of the response, and may or may not include the PID depending
upon the checksum model for the PID in question. The LIN ID’s 60 (0x3c) to 63 (0x3f)
must always use the classic (response data only) checksum model [1].

The LIN driver module works with LIN frames as its basic building block. From the LIN
driver module point of view, the frame handling significantly differs depending on the
implemented node type:

» For a LIN master node, the LIN interface layer requests a particular frame to be
sent during one of its scheduler time-slots. Any response from the frame should
be available latest before the next frame will be sent.

In the case that the master is also responsible for sending the frame response,
an indication (PdulnfoPtr->Drc= LIN_FRAMERESPONSE_TX) will be given at
the same time as the request to send the frame.

» A LIN slave node waits for the reception of a LIN header. A received LIN header
is indicated to the LIN interface that evaluates the PID and returns information
about the response. In the case that the slave is responsible for sending the
frame response, the transmission data is also directly provided.

The LIN driver module must be able to retrieve data from the response and make
it available to the LIN interface module. It must retrieve all data from the response
without blocking.

AUTSSAR

7.4.2 Requirements
7.4.2.1 LIN Master specific
Following requirements are only appicable for LIN master nodes.

[SWS_Lin_00016] [The LIN driver shall interpret the supplied identifier as PID. The
identifier is then transmitted as-supplied within the LIN header (see Lin_Send-
Frame). |

[SWS_Lin_00017]
Upstream requirements: SRS_Lin_01578

[The LIN driver shall be able to send a LIN header. This is composed of the break
field, synch byte field, and protected identifier byte field as detailed in [1] (see Lin_
SendFrame). |

[SWS_Lin_00018] [The LIN driver shall be able to send a LIN header and response. |

[SWS_Lin_00021] [The LIN driver shall start transmission of the new LIN header when
Lin_SendFrame is called, even if an ongoing transmission may be still in progress or
unsuccessfully completed. |

Note: As a result of [SWS_Lin_00021] ongoing frame transmission and receptions are
terminated.

[SWS_Lin_00022] [The function Lin_GetsStatus shall return the status of the cur-
rent frame transmission request for the channel. |

[SWS_Lin_00024]
Upstream requirements: SRS_Lin_01555, SRS_Lin_01503

[The LIN driver shall make received data available to the LIN interface module. After
successful reception of a whole LIN frame, the received data shall be prepared for
function call of the LIN interface (see Lin_GetStatus).]

[SWS_Lin_00025]
Upstream requirements: SRS_Lin_01522, SRS_Lin_01503

[The LIN driver shall send response data as provided by the LIN interface module (see
Lin_SendFrame).]

7.4.2.2 LIN Slave specific

Following requirements are only appicable for LIN Slave nodes.

AUTSSAR

[SWS_Lin_00272]
Upstream requirements: SRS_Lin_01578

[The LIN driver shall be able to receive a LIN header at any time in
LIN_CH_OPERATIONAL state. The header is composed of the break field, synch
byte field, and protected identifier byte field as detailed in [1]. |

[SWS_Lin_00280] [On LIN header reception, the LIN driver shall call the header in-
dication callback function LinIf_HeaderIndication with PduPtr->Pid set to the
received PID value and PduPtr->SduPtr set to the (hardware or shadow) buffer of the
LIN driver, to which the slave response shall be written by the upper layer. |

Note: If the LIN hardware unit provides the ID (frame identifier without parity bits)
instead of the PID, the LIN driver is responsible to calculate the PID from the ID to
comply with the callback interface.

[SWS_Lin_00271] [If the LIN hardware unit cannot detect invalid PIDs, the LIN driver
shall not evaluate the PID value (i.e. it shall not verify parity bits in software). The LIN
driver shall provide the PID as-received to the LIN interface module. |

[SWS_Lin_00281] [While waiting for a new LIN header, the LIN driver shall call the
error indication callback function LinIf_LinErrorIndication with error parame-
ter LIN_ERR_HEADER when it detects bus events that do not comply to a valid LIN
header (e.g incomplete LIN header). |

[SWS_Lin_00273]
Upstream requirements: SRS_Lin_01578

[The LIN driver shall be able to send, receive or ignore a LIN response. |

[SWS_Lin_00282] [After the call of LinIf_ HeaderIndication when the return
value is E_OK, the LIN driver shall evaluate the PduPtr->Drc to determine the type
of LIN response. |

[SWS_Lin_00284] ([If the LIN response is going to be received
(LIN_FRAMERESPONSE_RX), the LIN driver shall evaluate the Cs and DI members
in parameter PduPtr (after the call of LinIf_HeaderIndication with return value
E_OK) to configure the LIN response reception. |

[SWS_Lin_00274]
Upstream requirements: SRS_Lin_01555, SRS Lin_01503

[After successful reception of a LIN response, the LIN driver shall directly make the
received data available to the LIN interface module by calling the Rx indication callback
function LinIf_RxIndication with the Lin_SduPtr parameter set to the reception
data. |

AUTSSAR

[SWS_Lin_00283]
Upstream requirements: SRS_Lin_01503, SRS_Lin_01522

[If the LIN response is going to be transmitted (LIN_FRAMERESPONSE_TX), the LIN
driver shall evaluate the Cs, DI and SduPtr members in parameter PduPtr (after the
callof LinIf_HeaderIndication with return value E_OK) to setup and transmit the
LIN response. |

[SWS_Lin_00286] [If the return value of LinIf_HeaderIndicationis E_NOT_OK
or the returned PduPir->Drc is LIN. FRAMERESPONSE_IGNORE, the LIN driver shall
ignore the response. |

[SWS_Lin_00275]
Upstream requirements: SRS_Lin_01555

[After successful transmission of a LIN response, the transmission shall be directly
confirmed to the LIN Interface module by calling the Tx confirmation callback function
LinIf_ TxConfirmation.]

[SWS_Lin_00276] [The LIN driver shall not report any events to the LIN interface
module if the LIN response is ignored until the reception of a new LIN header. |

[SWS_Lin_00277] [The LIN driver shall detect communication errors during response
transmission and response reception. Once an error is detected, the current frame
handling shall be aborted and the error indication callback function LinIf_Lin-
ErrorIndication shall be called. |

[SWS_Lin_00285] [The handling of each relevant (i.e. not ignored) LIN response
must be completed by a call to either LinIf_RxIndication, LinIf_TxConfirma-—
tionorLinIf_LinErrorIndication, latest before a new LIN header reception is
indicated by a call of LinIf_HeaderIndication.]|

7.4.2.3 Common

[SWS_Lin_00019] [The LIN driver shall be able to calculate either a ’classic’ or an
‘'enhanced’ checksum depending upon the checksum model for the current LIN PDU. |

[SWS_Lin_00026] [If the LIN hardware unit cannot queue the bytes for transmission or
reception (e.g. simple UART implementation), the LIN driver shall provide a temporary
communication buffer. |

[SWS_Lin_00027] [The LIN driver shall initiate transmission without blocking, includ-
ing the check of the next byte transmission only upon successful reception of the pre-
vious one (receive-back). |

[SWS_Lin_00028] [The LIN driver shall receive data without blocking. |

AUTSSAR

7.4.3 Data Consistency

7.4.3.1 Transmit Data Consistency:

[SWS_Lin_00053]
Upstream requirements: SRS_Lin_01522, SRS_Lin_01526

[The LIN driver shall directly copy the data from the upper layer buffers. |

[SWS_Lin_00210] [For LIN Master nodes, the upper layer of the LIN Driver has to
keep the buffer data consistent until return of function call.

For LIN Slave nodes, the upper layer of the LIN Driver has to keep the buffer data
consistent until end of response transmission. |

7.4.3.2 Receive Data Consistency:

Following is applicable for LIN master and LIN slave nodes:

For the LIN response reception the bytes of the SDU buffer shall be allocated in in-
creasingly consecutive address order. The LIN frame data length information defines
the minimum SDU buffer length.

[SWS_Lin_00060]
Upstream requirements: SRS_Lin_01522

[The complete LIN frame receive processing (including copying to destination layer)
can be implemented in an ISR. The received data shall be consistent until either next
LIN frame has been received successfully or LIN channel state has changed. |

As long as it is guaranteed that neither the ISRs nor L.in_Getstatus (Master only)
can be interrupted by itself, the LIN hardware (or shadow) buffer is always consistent,
because it is written and read in sequence in exactly one function that is never inter-
rupted by itself.

7.4.3.2.1 Receive data consistency (Master only)

[SWS_Lin_00211] [The complete LIN frame receive processing (including copying to
destination layer) can be implemented in the Lin_GetStatus function. The received
data shall be consistent until either next LIN frame has been received successfully or
LIN channel state has changed. |

AUTSSAR

7.4.4 Data byte mapping

[SWS_Lin_00096] [Data mapping between memory and the LIN frame is defined in a
way that the array element 0 is containing the LSB (the data byte to send/receive first)
and the array element (n-1) is containing the MSB (the data byte to send/receive last). |

7.5 Sleep and wake-up functionality

There are two different possibilities to wake-up a LIN hardware channel:
1. Internal (Top-Down) wake-up
The upper layer requests a wake-up through a call to Lin_Wakeup.
2. External (Bottom-Up) wake-up

A bus wake-up event is detected and forwarded to the upper layer through the
Lin_CheckWakeup APl which has to be called by module Linlf. After a success-
ful validation of the wake-up source, Lin_WakeupInternal is also called.

The selection of the wake-up modes is controlled by configuration parameter Lin-
ChannelWakeupSupport:

» Both internal and external wake-up modes are supported by a LIN hardware
channel having LinChannelWakeupSupport = TRUE

* Only internal wake-up mode is supported by a LIN hardware channel having
LinChannelWakeupSupport = FALSE.

7.5.1 Background & Rationale

Following is applicable for LIN master nodes only:

The LIN Master node can be awakened either by a wake-up signal generated
by one of the slaves, or by a request from the higher layer (LIN interface) (see
[SWS_Lin_00209]). The LIN interface controls the message schedule table and so
must be able to instruct the LIN driver to put the hardware unit to sleep, or to wake it
up (see [SWS_Linlf_00296], [SWS_Linlf_00488]).

For this purpose, the LIN driver provides functions to put the LIN channel into its
LIN_CH_SLEEP state (see Lin_GoToSleep/Lin_GoToSleepInternal).

Following is applicable for LIN slave nodes only:

The LIN slave can be awakened either by a wake-up signal generated by the master
node or any other slave node on the same channel, or by a request from the higher
layer (LIN interface) (see [SWS_Lin_00209]).

AUTSSAR

The LIN Interface detects the conditions to enter sleep mode and instructs the LIN
driver to put the hardware unit to sleep, or to wake it up (see [SWS_Linlf_00296],
[SWS_Linlf_00488]).

For this purpose, the LIN driver provides a function to put the LIN channel into its
LIN. CH _SLEEP state (see Lin_GoToSleep / Lin_GoToSleepInternal). Be-
cause the slave node cannot transmit a go-to-sleep-command, the function Lin_-
GoToSleep is not applicable for slave nodes.

Following is applicable for LIN master and LIN slave nodes:

Upon sleep or wake-up the master must communicate the status change with the rest
of the network.

7.5.2 Requirements

[SWS_Lin_00032]
Upstream requirements: SRS_Lin_01524

[When the LIN channel enters sleep mode, it shall perform the transition to low-power
mode of the LIN hardware unit (if available) (see Lin_GoToSleep/Lin_GoToSleep—
Internal).|

[SWS_Lin_00033]
Upstream requirements: SRS_Lin_01560, SRS_Lin_01566

[Each LIN channel shall be able to accept a sleep request independently of the other
channel states (see Lin_GoToSleep/Lin_GoToSleepInternal).]

[SWS_Lin_00037] [When a LIN channel is in LIN_CH_SLEEP state and wake-up de-
tection is supported by configuration parameter L.inChannelWakeupSupport, the
LIN hardware unit shall monitor the bus for a wake-up request on that channel. |

[SWS_Lin_00043] [Lin_Wakeup: If the LIN driver receives a wake-up request from
the LIN interface, the requested channel shall send a wake-up pulse to the LIN bus.
(see Lin_Wakeup) |

[SWS_Lin_00262] [Lin_Wakeuplinternal: If the LIN driver receives an internal wake-
up request from the LIN interface, the requested channel shall send no wake-up pulse
to the LIN bus. (see Lin_WakeupInternal)]

For LIN Master nodes, the function Lin_GetStatus returns the current state of a
given LIN channel.

AUTSSAR

7.6 Error Classification

Chapter [3, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in

the respective subsections below.

7.6.1 Development Errors

[SWS_Lin_00048] Definition of development errors in module Lin

Upstream requirements: SRS_BSW_00323, SRS_BSW_00327, SRS_BSW_00337, SRS_BSW _

00385
[

Type of error Related error code Error value
API service used without module initialization LIN_E_UNINIT 0x00

API service used with an invalid or inactive LIN_E_INVALID_CHANNEL 0x02
channel parameter

API service called with invalid configuration pointer | LIN_E_INVALID_POINTER 0x03

Invalid state transition for the current state LIN_E_STATE_TRANSITION 0x04

API service called with a NULL pointer LIN_E PARAM_POINTER 0x05

7.6.2 Runtime Errors

There are no runtime errors.

AUTSSAR

7.6.3 Production Errors

7.6.3.1 LIN_E_TIMEOUT

[SWS_Lin_00290] This error is reported when time out caused by hardware error
occurs.
Upstream requirements: SRS_BSW_00458

[

Diagnostic Event (Error Name) LIN_E_TIMEOUT

Description If a change to the LIN hardware control registers results in the need to wait for a status
change, this shall be protected by a configurable time out mechanism. If such a time
out is detected the LIN_E_TIMEOUT error shall be raised. This situation should only
arise in the event of a LIN hardware unit fault and should be communicated to the rest
of the system.

Failed condition A LIN hardware control register has changed and the configured time (see LinTimeout
Duration) has elapsed without a status change of the LIN Hardware.

Passed condition A LIN hardware control register has changed and the status change is done within the
configured time (see LinTimeoutDuration).

]

[SWS_Lin_00058] [The only production error that can be reported by the LIN driver is
the LIN_E_TIMEOUT error. |

7.6.4 Extended Production Errors

There are no extended production errors.

7.7 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter all types included from the following files are listed.

[SWS_Lin_00226] Definition of imported datatypes of module Lin |

Module Header File Imported Type

Comtype ComStack_Types.h NetworkHandleType

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

EcuM EcuM.h EcuM_WakeupSourceType

lcu lcu.h Icu_ChannelType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

[SWS_Lin_00245] [The content of Lin_GeneralTypes.h shall be protected by a
LIN_GENERAL_TYPES define. |

[SWS_Lin_00246] [If different LIN drivers are used, only one instance of this file has to

be included in the source tree. For implementation all Lin_GeneralTypes.h related
types in the documents mentioned before shall be considered. |

8.2.1 Lin_ConfigType

[SWS_Lin_00227] Definition of datatype Lin_ConfigType |

Name Lin_ConfigType

Kind Structure

Elements Hardware and Implementation dependent structure
Type -
Comment The contents of the initialization data structure are LIN hardware

specific

Description This is the type of the external data structure containing the overall initialization data for the LIN
driver and the SFR settings affecting the LIN channels. A pointer to such a structure is provided to
the LIN driver initialization routine for configuration of the driver, LIN hardware unit and LIN
hardware channels.

Available via Lin.h

AUTSSAR

8.2.2 Lin_FramePidType

[SWS_Lin_00228] Definition of datatype Lin_FramePidType |

Name Lin_FramePidType

Kind Type

Derived from uint8

Range 0...0xFE - The LIN identifier (0...0x3F)
together with its two parity bits.

Description Represents all valid protected identifier used by Lin_SendFrame().

Available via Lin_GeneralTypes.h

8.2.3 Lin_FrameCsModelType

[SWS_Lin_00229] Definition of datatype Lin_FrameCsModelType |

Name Lin_FrameCsModelType

Kind Enumeration

Range LIN_ENHANCED_CS 0x0 Enhanced checksum model
LIN_CLASSIC_CS 0x1 Classic checksum model

Description This type is used to specify the Checksum model to be used for the LIN Frame.

Available via Lin_GeneralTypes.h

8.2.4 Lin_FrameResponseType

[SWS_Lin_00230] Definition of datatype Lin_FrameResponseType |

Name Lin_FrameResponseType

Kind Enumeration

Range LIN_FRAMERESPONSE _ 0x0 Response is generated from this node
TX
LIN_FRAMERESPONSE _ 0x1 Response is generated from another node
RX and is relevant for this node.
LIN_FRAMERESPONSE_ 0x2 Response is generated from another node
IGNORE and is irrelevant for this node

Description This type is used to specify whether the frame processor is required to transmit the response part
of the LIN frame.

Available via Lin_GeneralTypes.h

]

Note: For LIN master nodes, the mapping to the previous definition is
as follows: LIN._MASTER_RESPONSE <-> LIN_FRAMERESPONSE_ TX
LIN_SLAVE_RESPONSE <-> LIN._ FRAMERESPONSE RX LIN_SLAVE TO_ SLAVE
<-> LIN_FRAMERESPONSE_IGNORE

AUTSSAR

8.2.5 Lin_FrameDIType

[SWS_Lin_00231] Definition of datatype Lin_FrameDIType |

Name Lin_FrameDIType

Kind Type

Derived from uint8

Range 1.8 - Data length of a LIN Frame
Description This type is used to specify the number of SDU data bytes to copy.

Available via

Lin_GeneralTypes.h

8.2.6 Lin_PduType

[SWS_Lin_00232] Definition of datatype Lin_PduType |

Name

Lin_PduType

Kind

Structure

Elements

Pid

Type Lin_FramePidType

Comment -

Cs

Type Lin_FrameCsModelType

Comment -

Drc

Type Lin_FrameResponseType

Comment -

DI

Type Lin_FrameDIType

Comment -

SduPtr

Type uint8*

Comment -

Description

This Type is used to provide PID, checksum model, data length and SDU pointer from the LIN
Interface to the LIN driver.

Available via

Lin_GeneralTypes.h

]

Description for each element of Lin_PduType is given in:
- Section 8.2.2 for Lin_FramePidType

- Section 8.2.3 for Lin_FrameCsModelType

- Section 8.2.4 for Lin_FrameResponseType

- Section 8.2.5 for Lin_FrameD1Type

AUTSSAR

8.2.7 Lin_StatusType

[SWS_Lin_00233] Definition of datatype Lin_StatusType |

Name

Lin_StatusType

Kind

Enumeration

Range

LIN_NOT_OK

0x0

LIN frame operation return value.
Development or production error occurred

LIN_TX_OK

0x1

LIN frame operation return value. Successful
transmission.

LIN_TX_BUSY

0x2

LIN frame operation return value. Ongoing
transmission (Header or Response).

LIN_TX_HEADER_ERROR

0x3

LIN frame operation return value. Erroneous
header transmission such as:
» Mismatch between sent and read back
data

* |dentifier parity error or
* Physical bus error

LIN_TX_ERROR

0x4

LIN frame operation return value. Erroneous
response transmission such as:
» Mismatch between sent and read back
data

* Physical bus error

LIN_RX_OK

0x5

LIN frame operation return value. Reception
of correct response.

LIN_RX_BUSY

0x6

LIN frame operation return value. Ongoing
reception: at least one response byte has
been received, but the checksum byte has
not been received.

LIN_RX_ERROR

0x7

LIN frame operation return value. Erroneous
response reception such as:
* Framing error

« Overrun error
» Checksum error or
* Short response

LIN_RX_NO_RESPONSE

0x8

LIN frame operation return value. No
response byte has been received so far.

LIN_OPERATIONAL

0x9

LIN channel state return value. Normal
operation; the related LIN channel is ready to
transmit next header. No data from previous
frame available (e.g. after initialization)

LIN_CH_SLEEP

0xA

LIN channel state return value. Sleep state
operation; in this state wake-up detection
from slave nodes is enabled.

Description

LIN operation states for a LIN channel or frame, as returned by the API service Lin_GetStatus().

Available via

Lin_GeneralTypes.h

AUT<

SAR

8.2.8 Lin_SlaveErrorType

[SWS_Lin_91140] Definition of datatype Lin_SlaveErrorType |

transmission / reception.

Name Lin_SlaveErrorType
Kind Enumeration
Range LIN_ERR_HEADER 0x0 Error in header
LIN_ERR_RESP_STOPBIT 0x1 Framing error in response
LIN_ERR_RESP_CHKSUM | 0x2 Checksum error
LIN_ERR_RESP_DATABIT 0x3 Monitoring error of transmitted data bit in
response
LIN_ERR_NO_RESP 0x4 No response
LIN_ERR_INC_RESP 0x5 Incomplete response
Description This type represents the slave error types that are detected during header reception and response

Available via

Lin_GeneralTypes.h

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Services affecting the complete LIN hardware unit

8.3.1.1 Lin_Init

[SWS_Lin_00006] Definition of API function Lin_Init
Upstream requirements: SRS_BSW_00406, SRS BSW_ 00101

Service Name

Lin_Init

Syntax void Lin_Init
const Lin_ConfigTypex Config

)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Config Pointer to LIN driver configuration set.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initializes the LIN module.

Available via

Lin.h

AUTSSAR

[SWS_Lin_00084] [The function Lin_Init shall initialize the Lin module (i.e. static vari-
ables, including flags and LIN HW Unit global hardware settings), as well as the LIN
channels. |

Different sets of static configuration may have been configured.

[SWS_Lin_00150] [The function Lin_Init shall initialize the module according to the
configuration set pointed to by the parameter Config. |

[SWS Lin_00008]
Upstream requirements: SRS_Lin_01556

[The function Lin_lInit shall invoke initializations for relevant hardware register settings
common to all channels available on the LIN hardware unit. |

[SWS_Lin_00190]
Upstream requirements: SRS_Lin_01556

[The function Lin_lInit shall also invoke initializations for LIN channel specific settings. |

[SWS_Lin_00106] [The Lin module’s environment shall not call any function of the Lin
module before having called Lin_Init except Lin_GetVersioninfo. |

[SWS_Lin_00099] [If development error detection for the Lin module is enabled: the
function Lin_Init shall check the parameter Config for being within the allowed range.
If Config is not in the allowed range, the function Lin_Init shall raise the development
error LIN_E_INVALID_POINTER. |

[SWS_Lin_00105] [If development error detection for the Lin module is enabled: the
function Lin_Init shall check the Lin driver for being in the state LIN_UNINIT. If the Lin
driver is not in the state LIN_UNINIT, the function Lin_lInit shall raise the development
error LIN_E_STATE_TRANSITION. |

[SWS_Lin_00097] [If a change to the LIN hardware control registers results in the
need to wait for a status change, this shall be protected by a configurable time out
mechanism (LinTimeoutDuration). If such a time out is detected the LIN_E_TIMEOUT
error shall be raised to DEM. This situation should only arise in the event of a LIN
hardware unit fault, and should be communicated to the rest of the system. |

A LIN_E_TIMEOUT will affect the complete LIN stack in a way that the LIN driver must
be re-initialized or the LIN functionality must be switched off.

AUTSSAR

8.3.1.2 Lin_CheckWakeup

[SWS_Lin_00160] Definition of API function Lin_CheckWakeup |

Service Name

Lin_CheckWakeup

Syntax Std_ReturnType Lin_CheckWakeup (
uint8 Channel
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in) Channel LIN channel to be addressed
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

Description

This function checks if a wakeup has occurred on the addressed LIN channel.

Available via

Lin.h

]

There are two methods in which wake up detection shall happen, one is from LIN
controller hardware [Micro peripheral device] and/or another from LinTranceiver.

[SWS_Lin_00098]
Upstream requirements: SRS_BSW_00375, SRS_Lin_01563

[The function Lin_CheckWakeup shall evaluate the wakeup on the addressed LIN
channel. When a wake-up event on the addressed LIN channel (e.g. RxD pin has
constant low level) is detected, the function Lin_CheckWakeup shall notify the ECU
State Manager module immediately via the EcuM_SetWakeupEvent and the Lin Inter-
face module via Linlf_WakeupConfirmation callback function. |

[SWS_Lin_00251] [If development error detection for the LIN module is enabled:
if the channel parameter is invalid, the function Lin_CheckWakeup shall raise the
development error LIN_E _INVALID_CHANNEL otherwise (if DET is disabled) return
E_NOT_OK.|

[SWS_Lin_00107] [If development error detection for the LIN module is enabled: if the
function Lin_CheckWakeup is called before the LIN module was initialized, the function
Lin_CheckWakeup shall raise the development error LIN_E_UNINIT. |

AUTSSAR

8.3.1.3 Lin_GetVersioninfo

[SWS_Lin_00161] Definition of API function Lin_GetVersioninfo |

Service Name Lin_GetVersionInfo

Syntax void Lin_GetVersionInfo (
Std_VersionInfoTypex versioninfo

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where is stored the version information of this module.

Return value None

Description Returns the version information of this module.

Available via Lin.h

]

[SWS_Lin_00001]
Upstream requirements: SRS_BSW_00407

[The function Lin_GetVersionInfo shall return the version information of the LIN mod-
ule. The version information includes:

 Two bytes for the vendor ID
 Two byte for the module ID

» Three bytes version number The numbering shall be vendor specific; it consists
of:

— The major, the minor and the patch version number of the module.

— The AUTOSAR specification version number shall not be included. The AU-
TOSAR specification version number is checked during compile time and
therefore not required in this API.

]

[SWS_Lin_00248] [If development error detection for the LIN module is enabled: If the
parameter versioninfo is a NULL pointer, the function Lin_GetVersionInfo shall raise the
error LIN_E_PARAM_POINTER. |

8.3.2 Services affecting a single LIN channel
8.3.2.1 Lin_SendFrame

Note: This service is only applicable for LIN master node (available only if the ECU has
any LIN master channel).

AUTSSAR

[SWS_Lin_00191] Definition of API function Lin_SendFrame |

Service Name Lin_SendFrame
Syntax Std_ReturnType Lin_SendFrame (
uint8 Channel,
const Lin_PduTypex PdulnfoPtr
)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Non Reentrant for the same Channel. Reentrant for different Channel.
Parameters (in) Channel LIN channel to be addressed
PdulnfoPtr Pointer to PDU containing the PID, checksum model, response
type, DI and SDU data pointer
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Send command has been accepted.
E_NOT_OK: Send command has not been accepted, development
or production error occurred.
Description Sends a LIN header and a LIN response, if necessary. The direction of the frame response
(master response, slave response, slave-to-slave communication) is provided by the PdulnfoPtr.
Only used for LIN master nodes.
Available via Lin.h

[SWS_Lin_00192] [The function Lin_SendFrame shall send the header part (Break
Field, Synch Byte Field and PID Field) and, depending on the direction of the frame
response, a complete LIN response part of a LIN frame on the addressed LIN channel. |

[SWS_Lin_00193] [In case of receiving data the LIN Interface has to wait for the cor-
responding response part of the LIN frame by polling with the function Lin_GetStatus()
after using the function Lin_SendFrame(). |

[SWS_Lin_00194] [The Lin module’s environment shall only call Lin_SendFrame on
a channel which is in state LIN. CH_OPERATIONAL or in one of the sub-states of

LIN_CH_OPERATIONAL. |

[SWS_Lin_00239] [In case of errors during header transmission, it is up to the im-
plementer how to handle these errors (stop/continue transmission) and to decide if the
corresponding response is valid or not. |

[SWS_Lin_00240] [In case of response transmission errors, the ISO 17987 specifica-
tions describe within the frame processor state machine how to handle such errors. It
is stated that a mismatch between sent and readback data shall be detected not later
than after the completion of the byte field containing the mismatch. Furthermore, ISO
17987 specifications specify that the transmission shall be aborted. |

[SWS_Lin_00195] [If development error detection for the LIN module is enabled: if the
function Lin_SendFrame is called before the LIN module was initialized, the function
Lin_SendFrame shall raise the development error LIN_E_UNINIT otherwise (if DET is
disabled) return E_NOT_OK |

AUTSSAR

[SWS_Lin_00197] [If development error detection for the LIN module is enabled: if the
channel parameter is invalid, the function Lin_SendFrame shall raise the development
error LIN_E_INVALID_CHANNEL otherwise (if DET is disabled) return E_NOT_OK. |

[SWS_Lin_00198] [If development error detection for the LIN module is enabled: the
function Lin_SendFrame shall check the parameter PdulnfoPtr for not being a NULL
pointer. If PdulnfoPtr is a NULL pointer, the function Lin_SendFrame shall raise the
development error LIN_E_PARAM_POINTER otherwise (if DET is disabled) return
E_NOT_OK.|

[SWS_Lin_00199] [If development error detection for the LIN module is enabled: if the
LIN channel state-machine is in the state LIN._CH_SLEEP, the function Lin_SendFrame
shall raise the development error LIN_E_STATE_TRANSITION otherwise (if DET is
disabled) return E_NOT_OK |

[SWS_Lin_00287] [The function Lin_SendFrame is only available if the Lin module is
configured as LIN master node on at least one channel. In a pure LIN slave config-
uration, this function is not available. This depends on the configuration parameters
LinNodeType. |

8.3.2.2 Lin_GoToSleep

Note: This service is only applicable for LIN master node (available only if the ECU has
any LIN master channel).

[SWS_Lin_00166] Definition of API function Lin_GoToSleep |

Service Name Lin_GoToSleep
Syntax Std_ReturnType Lin_GoToSleep (
uint8 Channel
)
Service ID [hex] 0x06
Sync/Async Asynchronous
Reentrancy Non Reentrant for the same Channel. Reentrant for different Channel.
Parameters (in) Channel LIN channel to be addressed
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Sleep command has been accepted
E_NOT_OK: Sleep command has not been accepted,
development or production error occurred
Description The service instructs the driver to transmit a go-to-sleep-command on the addressed LIN
channel.
Only used for LIN master nodes.
Available via Lin.h

]

[SWS_Lin_00089] [The function Lin_GoToSleep shall send a go-to-sleep-command
on the addressed LIN channel as defined in LIN Specification 2.1. |

AUTSSAR

[SWS_Lin_00266]
Upstream requirements: SRS_Lin_01566

[The function Lin_GoToSleep shall set the <channel state to
LIN_ CH _SLEEP_PENDING, even in case of an erroneous transmission of the
go-to-sleep-command. |

[SWS_Lin_00220] [If external wake-up detection is supported by configuration param-
eter LinChannelWakeupSupport, then the function Lin_GoToSleep shall enable bus
monitoring for a wake-up request on that channel, even in case of an erroneous trans-
mission of the go-to-sleep command. |

[SWS_Lin_00221] [The function Lin_GoToSleep shall optionally set the LIN hardware
unit to reduced power operation mode (if supported by HW), even in case of an erro-
neous transmission of the go-to-sleep-command. |

[SWS_Lin_00255] [The LIN channel shall enter the state LIN_CH_SLEEP the next
time Lin_GetStatus is called, independent of the success of the transmission of the
goto-sleep-command on the bus. |

[SWS_Lin_00074] [The function Lin_GoToSleep shall terminate ongoing frame trans-
mission of prior transmission requests, even if the transmission is unsuccessfully com-
pleted. |

[SWS_Lin_00129] [If development error detection for the LIN module is enabled: if
the function Lin_GoToSleep is called before the LIN module was initialized, the function
Lin_GoToSleep shall raise the development error LIN_E_UNINIT. |

[SWS_Lin_00131] [If development error detection for the LIN module is enabled: the
function Lin_GoToSleep shall raise the development error LIN_E_INVALID_CHANNEL
if the channel parameter is invalid. |

[SWS_Lin_00288] [The function Lin_GotoSleep is only available if the Lin module is
configured as LIN master node on at least one channel. In a pure LIN slave config-
uration, this function is not available. This depends on the configuration parameters
LinNodeType. |

8.3.2.3 Lin_GoToSleepinternal

[SWS_Lin_00167] Definition of API function Lin_GoToSleepinternal |

Service Name Lin_GoToSleepinternal

Syntax Std_ReturnType Lin_GoToSleepInternal (
uint8 Channel

)

Y%

AUTSSAR

A
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Non Reentrant for the same Channel. Reentrant for different Channel.
Parameters (in) Channel LIN channel to be addressed
Parameters (inout) None
Parameters (out) None

Return value Std_ReturnType E_OK: Command has been accepted
E_NOT_OK: Command has not been accepted,

development or production error occurred

Description Sets the channel state to LIN_CH_SLEEP, enables the wake-up detection and optionally sets
the LIN hardware unit to reduced power operation mode (if supported by HW).
Available via Lin.h

[SWS_Lin_00095] [The function Lin_GoToSleeplnternal shall set the channel state to
LIN_CH_SLEERP |

[SWS_Lin_00222] [If external wake-up detection is supported by configuration param-
eter LinChannelWakeupSupport, then the function Lin_GoToSleeplinternal shall enable
bus monitoring for a wake-up request on that channel. |

[SWS_Lin_00223] [The function Lin_GoToSleeplnternal shall optionally set the LIN
hardware unit to reduced power operation mode (if supported by HW). |

[SWS_Lin_00133] [If development error detection for the LIN module is enabled: if
the function Lin_GoToSleeplnternal is called before the LIN module was initialized, the
function Lin_GoToSleeplnternal shall raise the development error LIN_E_UNINIT. |

[SWS_Lin_00135] [If development error detection for the LIN module is en-
abled: the function Lin_GoToSleeplinternal shall raise the development error
LIN_E_INVALID_CHANNEL if the channel parameter is invalid. |

8.3.2.4 Lin_Wakeup

[SWS_Lin_00169] Definition of API function Lin_Wakeup |

Lin_Wakeup

Service Name

Syntax Std_ReturnType Lin_Wakeup (
uint8 Channel

)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant for the same Channel. Reentrant for different Channel.
Parameters (in) Channel ‘ LIN channel to be addressed
Parameters (inout) None

Y%

AUTSSAR

A
Parameters (out) None
Return value Std_ReturnType E_OK: Wake-up request has been accepted
E_NOT_OK: Wake-up request has not been accepted,
development or production error occurred
Description Generates a wake up pulse and sets the channel state to LIN_CH_OPERATIONAL.
Available via Lin.h

[SWS_Lin_00137] [If development error detection for the LIN module is enabled: if
the function Lin_Wakeup is called before the LIN module was initialized, the function
Lin_Wakeup shall raise the development error LIN_E_UNINIT. |

[SWS_Lin_00139] [If development error detection for the LIN module is enabled: the
function Lin_Wakeup shall raise the development error LIN_E_INVALID_CHANNEL if
the channel parameter is invalid or the channel is inactive. |

[SWS_Lin_00140] [If development error detection for the LIN module is enabled: the
function Lin_Wakeup shall raise the development error LIN_E_STATE_TRANSITION if
the LIN channel state-machine is not in the state LIN_CH_SLEERP |

Note: The Lin driver’s environment shall only call Lin_Wakeup when the LIN channel is
in state LIN_CH_SLEEP.

8.3.2.5 Lin_Wakeupinternal

[SWS_Lin_00256] Definition of API function Lin_Wakeuplinternal |

Service Name Lin_Wakeuplnternal
Syntax Std_ReturnType Lin_WakeupInternal (
uint8 Channel
)
Service ID [hex] 0x0b
Sync/Async Asynchronous
Reentrancy Non Reentrant for the same Channel. Reentrant for different Channel.
Parameters (in) Channel LIN channel to be addressed
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Wake-up request has been accepted
E_NOT_OK: Wake-up request has not been accepted,
development or production error occurred
Description Sets the channel state to LIN_CH_OPERATIONAL without generating a wake up pulse.
Available via Lin.h
]

[SWS_Lin_00257] [The function Lin_Wakeuplnternal sets the addressed LIN channel
to state LIN_CH_OPERATIONAL without generating a wake up pulse. |

AUTSSAR

[SWS_Lin_00258] [If development error detection for the LIN module is enabled: if
the function Lin_Wakeuplnternal is called before the LIN module was initialized, the
function Lin_Wakeuplnternal shall raise the development error LIN_E_UNINIT. |

[SWS_Lin_00259] [If development error detection for the LIN module is en-
abled: the function Lin_Wakeuplnternal shall raise the development error
LIN_E_INVALID_CHANNEL if the channel parameter is invalid or the channel is in-
active. |

[SWS_Lin_00260] [If development error detection for the LIN module is en-
abled: the function Lin_Wakeuplnternal shall raise the development error
LIN_E_STATE_TRANSITION if the LIN channel state-machine is not in the state
LIN_CH_SLEERP |

Note: The Lin driver’'s environment shall only call Lin_Wakeuplnternal when the LIN
channel is in state LIN. CH_SLEEP.

8.3.2.6 Lin_GetStatus

Note: This service is only applicable for LIN master node (available only if the ECU has
any LIN master channel).

[SWS_Lin_00168] Definition of API function Lin_GetStatus |

Service Name Lin_GetStatus

Syntax Lin_StatusType Lin_GetStatus (
uint8 Channel,
const uint8xx Lin_SduPtr

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Non Reentrant for the same Channel. Reentrant for different Channel.

Parameters (in) Channel | LIN channel to be checked

Parameters (inout) None

Parameters (out) Lin_SduPtr Pointer to pointer to a shadow buffer or memory mapped LIN

Hardware receive buffer where the current SDU is stored.

Y%

AUTSSAR

A

Return value Lin_StatusType LIN_NOT_OK: Development or production error occurred
LIN_TX_OK: Successful transmission

LIN_TX_BUSY: Ongoing transmission (Header or Response)
LIN_TX_HEADER_ERROR: Erroneous header transmission such
as:

- Mismatch between sent and read back data

- Identifier parity error or Physical bus error

LIN_TX_ERROR: Erroneous response transmission such as:

- Mismatch between sent and read back data

- Physical bus error

LIN_RX_OK: Reception of correct response

LIN_RX_BUSY: Ongoing reception: at least one response byte
has been received, but the checksum byte has not been received
LIN_RX_ERROR: Erroneous response reception such as:

- Framing error

- Overrun error

- Checksum error or Short response

LIN_RX_NO_RESPONSE: No response byte has been received so
far

LIN_OPERATIONAL: Normal operation; the related LIN channel
is woken up from the LIN_CH_SLEEP and no data has been sent.
LIN_CH_SLEEP: Sleep state operation; in this state wake-up
detection from slave nodes is enabled.

Description Gets the status of the LIN driver.
Only used for LIN master nodes.

Available via Lin.h

]

[SWS_Lin_00091] [The function Lin_GetStatus shall return the current transmission,
reception or operation status of the LIN driver. |

[SWS_Lin_00200] [The return states LIN_TX OK, LIN_TX BUSY,
LIN. TX HEADER_ERROR, LIN_TX ERROR, LIN_ RX OK, LIN_RX BUSY,
LIN. RX ERROR , LIN. RX NO RESPONSE and LIN OPERATIONAL are sub-
states of the channel state LIN_CH_OPERATIONAL. |

[SWS_Lin_00092] [If a SDU has been successfully received, the function
Lin_GetStatus shall store the SDU in a shadow buffer or memory mapped LIN Hard-
ware receive buffer referenced by Lin_SduPtr. The buffer will only be valid and must
be read until the next Lin_SendFrame function call. |

[SWS_Lin_00238] [The function Lin_GetStatus shall return LIN_TX_OK, when

» A Master Response Type frame is send and LIN header as well as LIN response
of the frame are transmitted successfully or

» A Slave to Slave Response Type frame is send and the LIN header of the frame
is transmitted successfully.

]

[SWS_Lin_00141] [If development error detection for the LIN module is enabled: if
the function Lin_GetStatus is called before the LIN module was initialized, the function
Lin_GetStatus shall raise the development error LIN_E_UNINIT otherwise (if DET is
disabled) return LIN_NOT_OK. |

AUTSSAR

[SWS_Lin_00143] [If development error detection for the LIN module is enabled: if the
channel parameter is invalid or the channel is inactive, the function Lin_GetStatus shall
raise the development error LIN_E_INVALID_CHANNEL otherwise (if DET is disabled)
return LIN_NOT_OK. |

[SWS_Lin_00144] [If development error detection for the LIN module is enabled: the
function Lin_GetStatus shall check the parameter Lin_SduPtr for not being a NULL
pointer. If Lin_SduPtr is a NULL pointer, the function Lin_GetStatus shall raise the
development error LIN_E_PARAM_POINTER otherwise (if DET is disabled) return
LIN_NOT_OK. |

[SWS_Lin_00289] [The function Lin_GetStatus is only available if the Lin module is
configured as LIN master node on at least one channel. In a pure LIN slave config-
uration, this function is not available. This depends on the configuration parameters
LinNodeType. |

8.4 Callback notifications

There are no callback functions within the LIN driver.

8.5 Scheduled functions

There are no scheduled functions within the LIN driver.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

This section defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_Lin_00234] Definition of mandatory interfaces required by module Lin |

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

AUTSSAR

A
API Function Header File Description
EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.
Linlf_WakeupConfirmation Linlf.h The LIN Driver or LIN Transceiver Driver will call this

function to report the wake up source after the
successful wakeup detection during CheckWakeup
or after power on by bus.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Lin_00235] Definition of optional interfaces requested by module Lin |

API Function Header File Description
Det_ReportError Det.h Service to report development errors.
EcuM_CheckWakeup EcuM.h This function can be called to check the given

wakeup sources. It will pass the argument to the
integrator function EcuM_CheckWakeupHook. It can
also be called by the ISR of a wakeup source to set
up the PLL and check other wakeup sources that
may be connected to the same interrupt.

Icu_DisableNotification Icu.h This function disables the notification of a channel.

Icu_EnableNoatification Icu.h This function enables the notification on the given
channel.

Linlf_HeaderIndication Linlf.h The LIN Driver will call this function to report a

received LIN header. This function is only applicable
for LIN slave nodes (available only if the ECU has
any LIN slave channel).

Linlf_LinErrorindication Linlf.h The LIN Driver will call this function to report a
detected error event during header or response
processing. This function is only applicable for LIN
slave nodes (available only if the ECU has any LIN
slave channel).

Linlf_RxIndication Linlf.h The LIN Driver will call this function to report a
successfully received response and provides the
reception data to the LIN Interface. This function is
only applicable for LIN slave nodes (available only if
the ECU has any LIN slave channel).

Linlf_TxConfirmation Linlf.h The LIN Driver will call this function to report a
successfully transmitted response. This function is
only applicable for LIN slave nodes (available only if
the ECU has any LIN slave channel).

]

[SWS_Lin_00176] [The Lin module shall invoke the callback function EcuM_Check
Wakeup from within the wake-up ISR of the corresponding LIN channel when a valid
LIN wake-up pulse has been detected. |

Restrictions:

AUTSSAR

A wake-up ISR can only be raised if supported by the LIN hardware (with or without
Icu; up to the LIN driver implementation and the LIN hardware design). Therefore, Ecu
M_CheckWakeup is supported if at least for one channel wake-up is supported (see
configuration parameter LinChannelWakeupSupport).

8.6.3 Configurable interfaces

There is no configurable target for the LIN driver. The LIN driver always reports to LIN
interface.

AUTSSAR

9 Sequence diagrams

Complete sequence diagrams for transmission, reception and error handling can be
found in [4, LIN Interface Specification].

9.1 Receiving a LIN Frame

9.1.1 LIN Master

User «module» «Peripheral»
Lin LinController/lUART

alt Hardware support /

[Hardware LIN dontroller]
|

|
:Lin_GetStatus(Lin_StatusType, uint8, const uint8***)

I

|

|

|

|

|

|

|

|

|

|

[If HW Buffer is not accessible from |
COM]:Copy Data from Hardware to frame |
buffer in RAM() :
|

|

|

|

|

1

|

|

|

|

Lin_GetStatus()

|

|
R e TR TR e CE R R
[Simple UART] |

loop Per received byte/ [

|

| Interrupt()

T

Copy byte from UART

[Complete frame for this ECU

]<—_| has been received]:Set flag()

Interrupt()

|
|
1
|
|
|
|
|
|
|
|
| Hardware to buffer()
|
|
|
|
|
|
|
|
|
|
|
|
|
1

T
|
|
Lin_GetStatus(Lin_StatusT ype, uint8, const uintS***)I

Check
Flag()
Lin_GetStatus()

Figure 9.1: LIN Frame Receiving Sequence Chart for LIN Master

AUTSSAR

9.1.2 LIN Slave

User «module» «Peripheral»
Lin LinController/UART
SO
I I I
| | |
alt Hardware support / : :
[Hardware LIN Qontroller] L@ Interrupt(1
|
|
| [If HW Buffer is not accessible from
| [; COM]:Copy Data from Hardware to
: frame buffer in RAM()
| Linlf_RxIndication(Lin_SduPtr)
____________________ >
_____________________________ >
| L
| |
| |
| |
cLoTTTet T Tttt T T T-oTTTTTTTTTT STt Tttt T
[Simple UART] |
loop Perreceived byte) |
|
| 1 Interrupt()
|
|
|
| Copy byte from UART Hardware to buffer()
' L
|
|
| [Complete frame for this ECU has
: |: been received]:Set flag()
|
opt Last byte received)
|
| Linlf_RxIndication(Lin_SduPtr)
[—— -
]
|
P e e e e e e e e >
|
|
|
|
|

L
|
|
|

Figure 9.2: LIN Frame Receiving Sequence Chart for LIN Slave

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
LIN Driver.

Chapter 10.3 specifies published information of the module LIN Driver.

10.1 How to read this chapter

For details refer to [3] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

The described parameters are inputs for the LIN driver configurator.
[SWS_Lin_00029]

Upstream requirements: SRS_BSW_00159
[The code configurator of the LIN driver is LIN hardware Unit specific. |
[SWS_Lin_00039]

Upstream requirements: SRS_BSW_00167
[Values that can be configured are hardware dependent. Therefore, the rules and
constraints cannot be given in the standard. |

[SWS_Lin_00224] [The configuration tool is responsible to do a static configuration
checking, also regarding dependencies between modules (e.g. Port driver, MCU driver
etc.)]

[SWS_Lin_00269] [The Lin Driver module shall reject configurations with partition
mappings which are not supported by the implementation. |

AUTSSAR

Lin: EcucModuleDef

upperMultiplicity = *
lowerMultiplicity = 0

+container

LinDemEventParameterRefs:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+referenceY

¢

+container

LinGlobalConfig: EcucParamConfContainerDef

LIN_E_TIMEOUT: EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

requiresSymbolicNameValue = true +subContainer

+destination

LinChannel: EcucParamConfContainerDef

upperMultiplicity = *

DemEventParameter:
EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 65535
lowerMultiplicity = 1

[X 3K)

(from Dem) +parameter +parameter
LinChannelld: LinChannelWakeupSupport: +parameter
EcucintegerParamDef EcucBooleanParamDef
. LinChannelBaudRate:
min =0 EcucintegerParamDef
max = 65535
withAuto = true max = 20000
symbolicNameValue = true min = 1000
+reference
+parameter +reference
LinNodeType: LinChannelEcuMWakeupSource: LinClockRef: EcucReferenceDef
EcucEnumerationParamDef EcucReferenceDef
lowerMultiplicity = 0
+Hliteral , +Iiteral, uppnguItllemty =1
requiresSymbolicNameValue = true
MASTER: SLAVE:

EcucEnumerationLiteralDef

EcucEnumerationLiteral Def

EcucPartition:

EcucParamConfContainerDef | “destination

R +destination
+dedtination
+reference
inchannelEcucParttionker. EcuMWaleupSource: EaucParamConiComamerber
EinehannelFclicRaiitonRef: EcucParamConfContainerDef —_—
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

(from EcucPartition)

lowerMultiplicity = 1

lowerMultiplicity = 0 upperMultiplicity = 32

upperMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 1

(from EcuM)

(from MCU)

Figure 10.1: Configuration structure for the LIN driver

10.2.1 Lin

[ECUC_Lin_00190] Definition of EcucModuleDef Lin |

Module Name

Lin

Description

Configuration of the Lin (LIN driver) module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

AUTSSAR

Included Containers

Container Name

Multiplicity Dependency

LinDemEventParameterRefs

0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

LinGeneral

1 This container contains the parameters related to each LIN
Driver Unit.

LinGlobalConfig

1 This container contains the global configuration parameter of the
Lin driver.

10.2.2 LinGeneral

[ECUC_Lin_00183] Definition of EcucParamConfContainerDef LinGeneral |

Container Name

LinGeneral

Parent Container

Lin

Description

This container contains the parameters related to each LIN Driver Unit.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinDevErrorDetect 1 [ECUC_Lin_00066]
Linlndex 1 [ECUC_Lin_00179]
LinTimeoutDuration 1 [ECUC_Lin_00093]
LinVersionInfoApi 1 [ECUC_Lin_00067]
LinEcucPartitionRef 0.* [ECUC_Lin_00192]

No Included Containers

]

[ECUC_Lin_00066] Definition of EcucBooleanParamDef LinDevErrorDetect |

Parameter Name

LinDevErrorDetect

Parent Container

LinGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
- false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time | X | All Variants

\Y%

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_Lin_00179] Definition of EcucintegerParamDef Linindex |

Parameter Name

Linindex

Parent Container

LinGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Lin_00093] Definition of EcucintegerParamDef LinTimeoutDuration [

Parameter Name

LinTimeoutDuration

Parent Container

LinGeneral

Description Specifies the maximum number of loops for blocking function until a timeout is raised in
short term wait loops

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Lin_00067] Definition of EcucBooleanParamDef LinVersioninfoApi |

Parameter Name

LinVersionInfoApi

Parent Container

LinGeneral

Description Switches the Lin_GetVersionInfo function ON or OFF.
Multiplicity 1
Type EcucBooleanParamDef

Default value

false

\Y%

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]
[ECUC_Lin_00192] Definition of EcucReferenceDef LinEcucPartitionRef |

Parameter Name LinEcucPartitionRef

Parent Container LinGeneral

Description Maps the Lin driver to zero or multiple ECUC partitions to make the modules API
available in this partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

10.2.3 LinChannel

[ECUC_Lin_00069] Definition of EcucParamConfContainerDef LinChannel [

Container Name LinChannel

Parent Container LinGlobalConfig

Description This container contains the configuration (parameters) of the LIN Controller(s).
Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

LinChannelBaudRate 1 [ECUC_Lin_00180]
LinChannelld 1 [ECUC_Lin_00181]
LinChannelWakeupSupport 1 [ECUC_Lin_00182]
LinNodeType 1 [ECUC_Lin_00191]
LinChannelEcucPartitionRef 0..1 [ECUC_Lin_00193]
LinChannelEcuMWakeupSource 0..1 [ECUC_Lin_00185]
LinClockRef 1 [ECUC_Lin_00094]

AUTSSAR

| No Included Containers

]

[ECUC_Lin_00180] Definition of EcucintegerParamDef LinChannelBaudRate |

Parameter Name

LinChannelBaudRate

Parent Container

LinChannel

Description Specifies the baud rate of the LIN channel

Multiplicity 1

Type EcuclntegerParamDef

Range 1000 .. 20000

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Lin_00181] Definition of EcuclntegerParamDef LinChannelid |

Parameter Name LinChannelld

Parent Container LinChannel

Description Identifies the LIN channel. Replaces LIN_CHANNEL_INDEX_NAME from the LIN
SWS.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Implicit from each CommunicationConnector on the ECU representing a LIN channel.
Increase the LinChannelld for each LIN channel created on the same Communication
Controller, for each CommunicationController start indexing at zero.

withAuto = true

]

[ECUC_Lin_00182] Definition of EcucBooleanParamDef LinChannelWakeupSup-

port [

Parameter Name

LinChannelWakeupSupport

Parent Container

LinChannel

Description Specifies if the LIN hardware channel supports wake up functionality
Multiplicity 1
Type EcucBooleanParamDef

\Y%

AUTSSAR

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Lin_00191] Definition of EcucEnumerationParamDef LinNodeType |

Parameter Name

LinNodeType

Parent Container

LinChannel

Description Specifies the LIN node type of this channel.
Multiplicity 1
Type EcucEnumerationParamDef
Range MASTER Master node
SLAVE Slave node
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Lin_00193] Definition of EcucReferenceDef LinChannelEcucPartitionRef

[

Parameter Name

LinChannelEcucPartitionRef

Parent Container

LinChannel

Description Maps one single Lin channel to zero or one ECUC partitions. The ECUC partition
referenced is a subset of the ECUC partitions where the Lin driver is mapped to.
Multiplicity 0..1
Type Reference to EcucPartition
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Lin_00185] Definition of EcucReferenceDef LinChannelEcuMWakeup

Source |

Parameter Name

LinChannelEcuMWakeupSource

Parent Container

LinChannel

Description This parameter contains a reference to the Wakeup Source for this channel as defined
in the ECU State Manager. This reference is only needed if LinChannelWakeup
Support is true.

Multiplicity 0..1

Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency LinChannelWakeupSupport

[ECUC_Lin_00094] Definition of EcucReferenceDef LinClockRef |
Parameter Name LinClockRef
Parent Container LinChannel

Description Reference to the LIN clock source configuration, which is set in the MCU driver
configuration.

Multiplicity 1

Type Reference to McuClockReferencePoint

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

LIN clock source configuration in MCU Driver

]

The configuration parameter LinChannelWakeupSupport can be ignored during valida-
tion of wakeup signal.

[SWS_Lin_CONSTR_00278] [The ECUC partitions referenced by LinChannelEcuc-
PartitionRef shall be a subset of the ECUC partitions referenced by LinEcucPartition-
Ref. |

[SWS_Lin_CONSTR_00291] [If LinEcucPartitionRef references one or more ECUC
partitions, LinChannelEcucPartitionRef shall have a multiplicity of one and reference
one of these ECUC partitions as well. |

[SWS_Lin_CONSTR_00279] [LinChannel and LinTrcvChannel of one communication
channel shall all reference the same ECUC partition. |

AUTSSAR

10.2.4 LinGlobalConfig

[ECUC_Lin_00184] Definition of EcucParamConfContainerDef LinGlobalConfig |

Container Name

LinGlobalConfig

Parent Container

Lin

Description

This container contains the global configuration parameter of the Lin driver.

Multiplicity

1

Configuration Parameters

No Included Parameters

Included Containers

Container Name

Multiplicity Dependency

LinChannel

1.* This container contains the configuration (parameters) of the LIN
Controller(s).

10.2.5 LinDemEventParameterRefs

[ECUC_Lin_00188] Definition of EcucParamConfContainerDef LinDemEventPa-

rameterRefs |

Container Name

LinDemEventParameterRefs

Parent Container

Lin

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

LIN_E_TIMEOUT

0..1 [ECUC_Lin_00189]

| No Included Containers

]

[ECUC_Lin_00189] Definition of EcucReferenceDef LIN_E_TIMEOUT |

Parameter Name

LIN_E_TIMEOUT

Parent Container

LinDemEventParameterRefs

Description

Reference to the DemEventParameter which shall be issued when the error "Timeout
caused by hardware error" has occurred.

V

AUTSSAR

A
Multiplicity 0..1
Type Symbolic name reference to DemEventParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.3 Published Information

For details refer to [3] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_Lin_NA_00999]

Upstream requirements: SRS_BSW_00336, SRS_BSW_00339, SRS_BSW_00383, SRS_BSW _
00395, SRS_BSW_00397, SRS_BSW_00398, SRS_BSW_00399,
SRS_BSW_00400, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_
00422, SRS_BSW_00423, SRS _BSW_00424, SRS_BSW_00425,
SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_
00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00168,
SRS _Lin_01551, SRS_Lin 01568, SRS_Lin_01569, SRS_Lin_01570,
SRS_Lin_01564, SRS_Lin_01546, SRS_Lin_01561, SRS_Lin_01549,
SRS_Lin_01571, SRS_Lin_01514, SRS_Lin_01515, SRS_Lin_01502,
SRS_Lin_01558, SRS_Lin_01523, SRS_Lin_01540, SRS_Lin_01545,
SRS_Lin_01534, SRS_Lin_01574, SRS_Lin_01539, SRS_Lin_01544,
SRS_Lin_01590, SRS_Lin_01594, SRS_Lin_01595, SRS_Lin_01596,
SRS _Lin_01597

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Constraints in R25-11

none

B.1.2 Changed Constraints in R25-11

none

B.1.3 Deleted Constraints in R25-11

none

B.1.4 Added Specification Iltems in R25-11

none

B.1.5 Changed Specification Items in R25-11

Number Heading
[SWS_Lin_00021]
[SWS_Lin_00290] This error is reported when time out caused by hardware error occurs.

Table B.1: Changed Specification Items in R25-11

B.1.6 Deleted Specification Iltems in R25-11

none

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Constraints in R24-11

none

AUTSSAR

B.2.2 Changed Constraints in R24-11

none

B.2.3 Deleted Constraints in R24-11

Number Heading

[SWS_Lin_
CONSTR_
00270]

Table B.2: Deleted Constraints in R24-11

B.2.4 Added Specification Iltems in R24-11

none

B.2.5 Changed Specification ltems in R24-11

Number

Heading

[ECUC_Lin_00192]

Definition of EcucReferenceDef LinEcucPartitionRef

[SWS_Lin_00166]

Definition of API function Lin_GoToSleep

[SWS_Lin_00167]

Definition of API function Lin_GoToSleeplinternal

[SWS_Lin_00168]

Definition of API function Lin_GetStatus

[SWS_Lin_00169]

Definition of API function Lin_Wakeup

[SWS_Lin_00191]

Definition of API function Lin_SendFrame

[SWS_Lin_00229]

Definition of datatype Lin_FrameCsModelType

[SWS_Lin_00230]

Definition of datatype Lin_FrameResponseType

[SWS_Lin_00233]

Definition of datatype Lin_StatusType

[SWS_Lin_00256]

Definition of API function Lin_Wakeuplnternal

[SWS_Lin 91140]

Definition of datatype Lin_SlaveErrorType

Table B.3: Changed Specification Items in R24-11

B.2.6 Deleted Specification Iltems in R24-11

none

AUTSSAR

B.3 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.3.1 Added Constraints in R23-11

Number Heading

[SWS_Lin_
CONSTR_
00270]

[SWS_Lin_
CONSTR_
00278]

[SWS_Lin_
CONSTR_
00279]

[SWS_Lin_
CONSTR_
00291]

Table B.4: Added Constraints in R23-11

B.3.2 Changed Constraints in R23-11

none

B.3.3 Deleted Constraints in R23-11

none

B.3.4 Added Specification Items in R23-11

Number Heading

[SWS_Lin_00001]

[SWS_Lin_00005]

[SWS_Lin_00006] Definition of API function Lin_Init

[SWS_Lin_00008]

[SWS_Lin_00011]

[SWS_Lin_00013]

[SWS_Lin_00014]

[SWS_Lin_00015]

[SWS_Lin_00016]

AUTSSAR

Number

Heading

[SWS_Lin_00017]

[SWS_Lin_00018]

[SWS_Lin_00019]

[SWS_Lin_00021]

[SWS_Lin_00022]

[SWS_Lin_00024]

[SWS_Lin_00025]

[SWS_Lin_00026]

[SWS_Lin_00027]

[SWS_Lin_00028]

[SWS_Lin_00029]

[SWS_Lin_00032]

[SWS_Lin_00033]

[SWS_Lin_00037]

[SWS_Lin_00039]

[SWS_Lin_00043]

[SWS_Lin_00045]

[SWS_Lin_00048]

Definiton of development errors in module Lin

[SWS_Lin_00053]

[SWS_Lin_00054]

[SWS_Lin_00055]

[SWS_Lin_00058]

[SWS_Lin_00060]

[SWS_Lin_00063]

[SWS_Lin_00074]

[SWS_Lin_00084]

[SWS_Lin_00089]

[SWS_Lin_00091]

[SWS_Lin_00092]

[SWS_Lin_00095]

[SWS_Lin_00096]

[SWS_Lin_00097]

[SWS_Lin_00098]

[SWS_Lin_00099]

[SWS_Lin_00105]

[SWS_Lin_00106]

[SWS_Lin_00107]

[SWS_Lin_00129]

AUTSSAR

Number

Heading

[SWS_Lin_00131]

[SWS_Lin_00133]

[SWS_Lin_00135]

[SWS_Lin_00137]

[SWS_Lin_00139]

[SWS_Lin_00140]

[SWS_Lin_00141]

[SWS_Lin_00143]

[SWS_Lin_00144]

[SWS_Lin_00145]

[SWS_Lin_00146]

[SWS_Lin_00150]

[SWS_Lin_00155]

[SWS_Lin_00156]

[SWS_Lin_00157]

[SWS_Lin_00160]

Definition of API function Lin_CheckWakeup

[SWS_Lin_00161]

Definition of API function Lin_GetVersionInfo

[SWS_Lin_00166]

Definition of API function Lin_GoToSleep

[SWS_Lin_00167]

Definition of API function Lin_GoToSleeplinternal

[SWS_Lin_00168]

Definition of API function Lin_GetStatus

[SWS_Lin_00169]

Definition of API function Lin_Wakeup

[SWS_Lin_00171]

[SWS_Lin_00174]

[SWS_Lin_00176]

[SWS_Lin_00177]

[SWS_Lin_00184]

[SWS_Lin_00190]

[SWS_Lin_00191]

Definition of API function Lin_SendFrame

[SWS_Lin_00192]

[SWS_Lin_00193]

[SWS_Lin_00194]

[SWS_Lin_00195]

[SWS_Lin_00197]

[SWS_Lin_00198]

[SWS_Lin_00199]

[SWS_Lin_00200]

[SWS_Lin_00201]

[SWS_Lin_00207]

AUTSSAR

Number

Heading

[SWS_Lin_00209]

[SWS_Lin_00210]

[SWS_Lin_00211]

[SWS_Lin_00220]

[SWS_Lin_00221]

[SWS_Lin_00222]

[SWS_Lin_00223]

[SWS_Lin_00224]

[SWS_Lin_00225]

[SWS_Lin_00226]

Definition of imported datatypes of module Lin

[SWS_Lin_00227]

Definition of datatype Lin_ConfigType

[SWS_Lin_00228]

Definition of datatype Lin_FramePidType

[SWS_Lin_00229]

Definition of datatype Lin_FrameCsModelType

[SWS_Lin_00230]

Definition of datatype Lin_FrameResponseType

[SWS_Lin_00231]

Definition of datatype Lin_FrameDIType

[SWS_Lin_00232]

Definition of datatype Lin_PduType

[SWS_Lin_00233]

Definition of datatype Lin_StatusType

[SWS_Lin_00234]

Definition of mandatory interfaces in module Lin

[SWS_Lin_00235]

Definition of optional interfaces in module Lin

[SWS_Lin_00238]

[SWS_Lin_00239]

[SWS_Lin_00240]

[SWS_Lin_00245]

[SWS_Lin_00246]

[SWS_Lin_00248]

[SWS_Lin_00251]

[SWS_Lin_00255]

[SWS_Lin_00256]

Definition of API function Lin_Wakeuplnternal

[SWS_Lin_00257]

[SWS_Lin_00258]

[SWS_Lin_00259]

[SWS_Lin_00260]

[SWS_Lin_00261]

[SWS_Lin_00262]

[SWS_Lin_00263]

[SWS_Lin_00264]

[SWS_Lin_00265]

[SWS_Lin_00266]

AUTSSAR

Number

Heading

[SWS_Lin_00268]

[SWS_Lin_00269]

[SWS_Lin_00271]

[SWS_Lin_00272]

[SWS_Lin_00273]

[SWS_Lin_00274]

[SWS_Lin_00275]

[SWS_Lin_00276]

[SWS_Lin_00277]

[SWS_Lin_00280]

[SWS_Lin_00281]

[SWS_Lin_00282]

[SWS_Lin_00283]

[SWS_Lin_00284]

[SWS_Lin_00285]

[SWS_Lin_00286]

[SWS_Lin_00287]

[SWS_Lin_00288]

[SWS_Lin_00289]

[SWS_Lin_00290]

[SWS_Lin_91140]

Definition of datatype Lin_SlaveErrorType

[SWS_Lin_NA_
00999]

Table B.5: Added Specification Iltems in R23-11

B.3.5 Changed Specification ltems in R23-11

none

B.3.6 Deleted Specification Iltems in R23-11

none

	1 Introduction and functional overview
	1.1 Scope
	1.2 Architectural overview

	2 Acronyms, abbreviations and glossary
	2.1 Acronyms and abbreviations
	2.2 Glossary
	2.3 LIN hardware unit classification

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.1.1 Driver scope

	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General Requirements
	7.2 Version Check
	7.2.1 Requirements

	7.3 LIN driver and Channel Initialization
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.3 State diagrams

	7.4 Frame processing
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.2.1 LIN Master specific
	7.4.2.2 LIN Slave specific
	7.4.2.3 Common

	7.4.3 Data Consistency
	7.4.3.1 Transmit Data Consistency:
	7.4.3.2 Receive Data Consistency:

	7.4.4 Data byte mapping

	7.5 Sleep and wake-up functionality
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Production Errors
	7.6.3.1 LIN_E_TIMEOUT

	7.6.4 Extended Production Errors

	7.7 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Lin_ConfigType
	8.2.2 Lin_FramePidType
	8.2.3 Lin_FrameCsModelType
	8.2.4 Lin_FrameResponseType
	8.2.5 Lin_FrameDlType
	8.2.6 Lin_PduType
	8.2.7 Lin_StatusType
	8.2.8 Lin_SlaveErrorType

	8.3 Function definitions
	8.3.1 Services affecting the complete LIN hardware unit
	8.3.1.1 Lin_Init
	8.3.1.2 Lin_CheckWakeup
	8.3.1.3 Lin_GetVersionInfo

	8.3.2 Services affecting a single LIN channel
	8.3.2.1 Lin_SendFrame
	8.3.2.2 Lin_GoToSleep
	8.3.2.3 Lin_GoToSleepInternal
	8.3.2.4 Lin_Wakeup
	8.3.2.5 Lin_WakeupInternal
	8.3.2.6 Lin_GetStatus

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Receiving a LIN Frame
	9.1.1 LIN Master
	9.1.2 LIN Slave

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Lin
	10.2.2 LinGeneral
	10.2.3 LinChannel
	10.2.4 LinGlobalConfig
	10.2.5 LinDemEventParameterRefs

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Constraints in R25-11
	B.1.2 Changed Constraints in R25-11
	B.1.3 Deleted Constraints in R25-11
	B.1.4 Added Specification Items in R25-11
	B.1.5 Changed Specification Items in R25-11
	B.1.6 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Constraints in R24-11
	B.2.2 Changed Constraints in R24-11
	B.2.3 Deleted Constraints in R24-11
	B.2.4 Added Specification Items in R24-11
	B.2.5 Changed Specification Items in R24-11
	B.2.6 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Constraints in R23-11
	B.3.2 Changed Constraints in R23-11
	B.3.3 Deleted Constraints in R23-11
	B.3.4 Added Specification Items in R23-11
	B.3.5 Changed Specification Items in R23-11
	B.3.6 Deleted Specification Items in R23-11

