AUTSSAR

Document Title Spemﬂce}tmn of I/O Hardware
Abstraction

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 47

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
AUTOSAR
2023-11-23 R23-11 Release * No content changes
Management
AUTOSAR
» Changed [SWS_loHwAb_00145] to
2022-11-24 R22-11 IIi{/lelease [SWS._ loHwAb_NA_00145]
anagement
AUTOSAR
2021-11-25 | R21-11 Release * No content changes
Management
AUTOSAR
2020-11-30 R20-11 Release * No content changes
Management
» EcuAbstractionComponentType
AUTOSAR changed to
2019-11-28 | R19-11 Release EcuAbstractionSwComponentType
Management - Changed Document Status from Final to
published
AUTOSAR
2018-10-31 440 Release » Debugging section removed

Management

AUTSSAR

AUTOSAR » minor corrections / clarifications /
2016-11-30 4.3.0 Release editorial changes; For details please
Management refer to the ChangeDocumentation
AUTOSAR _ .
2015-07-31 400 Release Ur%?;tedeIOHwAb_Inlt function
Management P P
AUTOSAR
2014-10-31 4.2.1 Release « Editorial changes
Management
AUTOSAR
2014-03-31 41.3 Release * Adapted the requirement format
Management
AUTOSAR « Editorial changes
2013-10-31 4.1.2 'I\%Aelease * Removed chapter(s) on change
anagement documentation
2011-12-22 | 4.0.3 AUTQ.SAR , + Update Version Check requirement
Administration
» Names of callback notification APls have
been corrected
AUTOSAR
2010-09-30 | 3.1.5 Administration * Exported files <ModuleName>.h of
underlying modules are used, instead of
<ModuleName>_Types.h
« /O Hardware Abstraction configuration
has been removed from the
EcucParamDef
* Functional Diagnostics’ interface has
AUTOSAR ,
2010-02-02 | 3.1.4 Administration been added (DCM controls 1/O signals)
» Unnecessary classes, attributes and
types removed
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTQ.SAR . * Legal disclaimer revised
Administration
* Auto generation of chapters 8 and 10
with the Metamodel
AUTOSAR Update of tables and some chapters of
2007-12-21 3.0.1 Administration the document to stay compliant with
correlated documents
» Document meta information extended
5007-01-24 5115 AUTOSAR » Various images corrected in PDFversion

Administration

(printing problems)

AUTSSAR

2006-11-28

2.1.14

AUTOSAR
Administration

* File structure updated
« Traceability matrix corrected

* Restriction for the usage of the SWC
template

» Chapter about IOHWAB Runnable
concept reworked

» Chapter about IOHWAB description
reworked

* Adjustments in the configuration chapter
* Legal disclaimer revised

* Release Notes added

* "Advice for users" revised

« "Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation
3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicabilitytocardomains o oo

5 Dependencies to other modules

5.1 Interface with MCAL drivers
51.1 Overview e e e e
5.1.2 Summary of interfaces with MCAL drivers

5.2 Interface with the communicationdrivers

5.3 Interface with System Services

5.4 InterfacewithDCM

55 Filestructure
5.5.1 Codefilestructure
5.5.2 Headerfilestructure

6 Requirements Tracing

7 Functional specification

7.1 Integrationcode
7.1.1 Background & Rationale
7.1.2 Requirements for integration code implementation
7.2 ECUSignals Concept o
7.2.1 Background & Rationale
7.2.2 Requirements about ECUsignals
7.3 Attributes
7.3.1 Background & Rationale,
7.3.2 Requirements about ECU signal attributes
7.3.2.1 Filtering/Debouncing Attribute
7.3.2.2 AgeAttribute

7.4 1/0O Hardware Abstraction and Software Component Template
7.4.1 Background & Rationale
7.4.2 Requirements about the usage of Software Component template . .
7.4.2.1 Ports concept and I/O Hardware Abstraction
7.4.2.2 Software Component and Runnable concept

7.5 Scheduling concept for I/O Hardware Abstraction
7.5.1 Background & Rationale

AUTSSAR

7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept. 26

7.5.2.1 Operations for interfaces provided by Ports 26
7.5.2.2 Notification and/or Callback 27
7.5.2.3 Main function / job processing function 28
7.5.2.4 Initialization, De-initialization and/or Callout 28
7.5.2.5 1/0O Hardware Abstraction scheduling examples 28
7.6 ErrorClassification, 31
7.6.1 DevelopmentErrors Lo 31
7.6.2 RuntimeErrors o 31
7.6.3 ProductionErrors 32
7.6.4 Extended ProductionErrors 32
7.7 Otherrequirements 32
7.8 1/0 Hardware Abstraction layer description 32
7.8.1 Background & Rationale L. 32
7.8.2 Requirements 33
7.8.2.1 1/O Hardware Abstraction Ports definition 33
7.9 Examples 33
7.9.1 EXAMPLE 1: Use case of on-board hardware 33
7.9.2 EXAMPLE 2: Use case of failure monitoring 35
7.9.3 EXAMPLE 3: Output powerstage 36
7.9.4 EXAMPLE 4: Setting sensor and controlling periphery in low power
state 38
8 API specification 40
8.1 Importedtypes 40
8.2 Typedefinitions 41
8.2.1 loHwADb<Init_Id>_ConfigType 41
8.3 Functiondefinitions o 41
8.3.1 loHwWADb Init<Init_ Id> 42
8.3.2 loHwAb GetVersioninfo 43
8.4 Callback notifications o 43
8.4.1 loHwADb_AdcNotification<#grouplD> 43
8.4.2 loHwAb_Pwm_Notification<#channel>. 44
8.4.3 loHwADb_ IcuNotification<#channel> 45
8.4.4 loHwAb_GptNotification<#channel> 45
8.4.5 loHwAb_ OcuNotification<#channel> 46
8.4.6 loHwAb_ Pwm_NotifyReadyForPowerState<#MODE> 46
8.4.7 loHwAb_Adc NotifyReadyForPowerState<#MODE> 47
8.5 Scheduled functions 47
8.5.1 <Name of scheduled function> 47
8.6 Functional Diagnostics Interface 47
8.6.1 loHwAb_Dcm_<EcuSignalName> 48
8.6.2 loHwWAb_Dcm_Read<EcuSignalName> 49

8.7 Power State Functions 50

AUTSSAR

8.7.1 loHwAb_PreparePowerState<#MODE>
8.7.2 loHwAb EnterPowerState <#MODE>
8.8 Expectedinterfaces
8.8.1 Mandatory Interfaces
8.8.2 Optional Interfaces,
8.8.3 Job End Notification

9 Sequence diagrams
9.1 ECU-signal provided by the 1/0O Hardware Abstraction (example)
9.2 Setting ADC and PWM in a low consumption power state as a result of a
request for an application low power mode (example)

10 Configuration specification
10.1Published Information L

A Not applicable requirements

B Change history of AUTOSAR traceable items
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
B.1.1 Added Specification Itemsin R25-11
B.1.2 Changed Specification ltemsin R25-11
B.1.3 Deleted Specification Itemsin R25-11

57

59
59

60
61

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality and the configuration of the AUTOSAR
Basic Software 1/0 Hardware Abstraction. The I/O Hardware Abstraction is part of the
ECU Abstraction Layer.

The I/O Hardware Abstraction shall not be considered as a single module, as it can
be implemented as more than one module. This specification for the I/O Hardware
Abstraction is not intended to standardize this module or group of modules. Instead,
it is intended to be a guideline for the implementation of its functional interfaces with
other modules.

Aim of the I/O Hardware Abstraction is to provide access to MCAL drivers by mapping
I/O Hardware Abstraction ports to ECU signals. The data provided to the software com-
ponent is completely abstracted from the physical layer values. Therefore, the software
component designer does not need detailed knowledge about the MCAL driver’'s API
and the units of the physical layer values anymore.

The I/O Hardware Abstraction is always an ECU specific implementation, because the
requirements of the software components to the basic software have to be fitted to the
features of a certain MCAL implementation.

The I/O Hardware Abstraction shall provide the service for initializing the whole 1/0
Hardware Abstraction.

The intention of this document is:

+ to determine which part of the Software Component template shall be used when
defining an 1/O Hardware Abstraction.

* to explain the way to define generic ports, where ECU signals are mapped.
The intention of this document is not:
* to provide C-APls

* to provide a specific formalization for every ECU signal, like it is done via the
standardization of functional data (body domain, powertrain, chassis domain)

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the IOHWAB
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

AUTOSAR AUTomotive Open System ARchitecture
API Application Programming Interface
BSW Basic SoftWare

BSWMD Basic SoftWare Module Description
C/S Client/Server

DET Default Error Tracer

ECU Electronic Control Unit

HW HardWare

loHwADb Input/Output Hardware Abstraction

ISR Interrupt Service Routine

MCAL MicroController Abstraction Layer

oS Operating System

RTE RunTime Environment

S/R Sender/Receiver

SW SoftWare

SWC SoftWare Component (see [2] for further information)
XML eXtensible Markup Language

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Expression Description Example
Callback Within this document, the term ’callback’ is used for API
services, which are intended for notifications to other BSW
modules.
Callout Callouts are function stubs, which can be filled at
configuration time, with the purpose to add functionality to
the module that provides the callout.
Class A class represents a set of signals that has similar Analogue class,

electrical characteristics.

Discrete class, ...

Client / Server
communication

This definition is an extract from [3]:

Client-server communication involves two entities, the
client which is the

requirer (or user) of a service and the server that provides
the service.

The client initiates the communication, requesting that the
server performs a service, transferring a parameter set if
necessary. The server, in the form of the RTE, waits for
incoming communication requests from a client, performs
the requested service and dispatches a response to the
client’s request. So, the direction of initiation is used to
categorize whether an AUTOSAR Software Component is
a client or a server.

Electrical Signal

An electrical signal is the physical signal on the pin of the
ECU.

Physical input voltage at an
ECU-Pin

ECU pin

An ECU pin is an electrical hardware connection of the
ECU with the rest of the electronic system.

\Y

AUTSSAR

A

Expression

Description

Example

ECU Signal

An ECU Signal is the software representation of an
electrical signal. An ECU signal has attributes and a
symbolic name

Input voltage ,Discrete
Output, PWM Input

ECU Signal Group

An ECU Signal Group is the software representation of a
group of electrical signals.

Attributes

Characteristics that can be Software (SW) and Hardware
(HW) for each kind of ECU signals existing in an ECU.
Some of the Attributes are fixed by the port definitions,
others can be configured in the 1/0 Hardware Abstraction.

Range,
Lifetime / delay

Sender-receiver
communication

This definition is an extract from [3]:

Sender-receiver communication involves the transmission
and reception of signals consisting of atomic data
elements that are sent by one component and received by
one or more components. A sender-receiver interface can
contain multiple data elements. Sender-receiver
communication is one-way - any reply sent by the receiver
is sent as a separate sender-receiver communication. A
port of a component that requires an AUTOSAR
sender-receiver interface can read the data elements
described in the interface and a port that provides the
interface can write the data elements.

Symbolic name

The symbolic name of a ECU signal is used by the I/O
Hardware Abstraction to make a link (function, pin)

Table 2.2: Expressions used in this document

Expression Description Example
Range This is a functional range and not an electrical range. All [-12Volts...+12Volts] (voltage)
the range is used either for functional needs or for [0,1]
diagnosis detections (discrete signals)
For analogue ECU signals [lowerLimit...upperLimit] [0...upperLimit]
(Voltage, current). For the particular case of a resistance (period timing signal)
signal and a timing signal (period), the lowerLimit value [-100...100%)]
can not be negative. (Duty Cycle based timing
signal)
Resolution This attribute is for many Classes dependent on the range [-12 Volts...+12Volts]
and the Data Type. Data Type : 16 bits
Example: (upperLimit - lowerLimit) / (2datatypelength _{) Resolution => 24 / 65535
For the others classes, it is known and defined.
Accuracy It depends of hardware peripheral used for acquisition ADC converter could be a
and/or generation. 8/10/12/16 bits converter
Inversion Inversion between the physical value and the logical value. Physical HighState

This attribute is not visible but done by 1/0 Hardware
Abstraction to deliver expected values to users.

(signal=False)
Physical LowState
(signal=True)

Sampling rate

Time period required to get a signal value.

Sampling rate for a sampling
windows (burst)

Table 2.3: ECU signal attributes

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[3] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[5] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[6] Requirements on I/O Hardware Abstraction
AUTOSAR_CP_RS_IOHWADbstraction

[7] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

[8] Specification of ECU Resource Template
AUTOSAR_CP_TPS_ECUResourceTemplate

[9] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[10] Specification of ADC Driver
AUTOSAR_CP_SWS_ ADCDriver

[11] Specification of DIO Driver
AUTOSAR_CP_SWS_DIODriver

[12] Specification of ICU Driver
AUTOSAR_CP_SWS_ICUDriver

[13] Specification of PWM Driver
AUTOSAR_CP_SWS_PWMDriver

[14] Specification of Port Driver
AUTOSAR_CP_SWS_ PortDriver

[15] Specification of GPT Driver
AUTOSAR_CP_SWS_GPTDriver

[16] Specification of SPI Handler/Driver
AUTOSAR_CP_SWS SPIHandlerDriver

[17] Specification of OCU Driver

AUTSSAR

AUTOSAR_CP_SWS_OCUDriver

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [4, CP SWS
BSW General], which is also valid for IO Hardware Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for 10 Hardware Abstraction.

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions

AUTSSAR

5 Dependencies to other modules

5.1 Interface with MCAL drivers

5.1.1 Overview

The following picture shows the /O Hardware Abstraction. It is located above MCAL
drivers. That means the I/O Hardware Abstraction will call the driver’s APIs for manag-
ing on chip devices. The configuration of the MCAL drivers depends on the quality of
the ECU signals that is required by the SWCs. For instance, it could be necessary to
have notifications when a relevant change occurs on the pin level (rising edge, falling
edge). The system designer has to configure the MCAL drivers to allow notifications
for a given signal. Notifications are generated by MCAL drivers and are handled within
the 1/0 Hardware Abstraction.

Please notice that I1/0 Hardware Abstraction is not intended to abstract GPT function-
alities, but rather to use them to perform its own functionalities. The interfacing with
GPT driver is shown because it is part of the MCAL.

The following picture shows all interfaces with MCAL drivers:

Appication Actuator Sensor
Software Software Saltware
Component Component Component
AUTOSAR AUTOSAR AUTOSAR
Interface Intwrince Interince

i

Microcontroller

ECU Hardware

Figure 5.1: Interfaces with MCAL drivers

AUTSSAR

5.1.2 Summary of interfaces with MCAL drivers

[SWS_loHwAb_00078]
Upstream requirements: SRS_BSW_00384

[The I/O Hardware Abstraction implementation shall provide Software Components
with access to all MCAL drivers. |

MCAL drivers
loHwWADb ADC driver OCU driver PWM driver | ICU driver DIO driver PORT GPT driver
driver
Calls APl of | X X X X X X X
Receives X X X X - - X
notifica-
tions from

The table above must be read as following:
» The I/0 Hardware Abstraction calls API of the ADC driver
» The I/O Hardware Abstraction receives notifications from the ADC driver.
» The I/O Hardware Abstraction does not receive notifications from the DIO driver.

A complete list of all APIs is given in chapter 8.8.

5.2 Interface with the communication drivers

[SWS_loHwADb_00079]
Upstream requirements: SRS_BSW_00384, SRS_loHwAb_12242

[The 1/O Hardware Abstraction implementation shall provide Software Components
with access to communication drivers (for instance by SPI), if on-board devices are
managed. |

The following picture shows the 1/0O Hardware Abstraction, where some signals come
from / are set via the SPI handler / driver.

According to the Layered Software Architecture [5] (ID03-16), the I/O Hardware Ab-
straction contains dedicated drivers to manage external devices for instance:

« A driver for external ADC driver, connected via SPI.

« A driver for external 1/0O realized on an ASIC device, connected via SPI.

AUTSSAR

Application Actuator Sensor
Software Software Software
Component Component Component
AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

7Y r'Y r'y
Y v ¥

10 Signal Interface

Driver for ext.
10 ASIC

§PI Hand‘!‘et Driver
v

Communication
drivers

|
|
he—

Microcontroller

ECU Hardware

Figure 5.2: Interfaces with communication drivers

5.3 Interface with System Services

[SWS_loHwAb 00044]
Upstream requirements: SRS_BSW_ 00336, SRS BSW 00384, SRS BSW 00101

[The I/O Hardware Abstraction implementation shall interface with the following system
services:

« ECU State Manager (init function)
» DET: Default Error Tracer
« BSW Scheduler

AUTSSAR

PP A Sensor
Software Software Software
C Comp: t Component
AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface
3 % x
A 4 Y h 4
'y
A
T icey AUTOSAR
j Interface

| ECU Stale Manager
| cem

| Diagnoshc Event

| Managar

AUTOSAR O3

MCAL
drivers

Microcontroller

ECU Hardware

Figure 5.3: Interfaces with system services

5.4 Interface with DCM

The I/O Hardware Abstraction shall provide interfaces to DCM, for functional diagnos-
tics of the software components. DCM will use functional diagnostics for reading and
controlling the implemented ECU signals.

The prototypes of the interfaces provided to DCM shall be within a header file lo-
HwAb_Dcm.h.

For details of the interfaces, refer section 8.6.

5.5 File structure

5.5.1 Code file structure

[SWS_loHwAb_00097] [The code file structure shall not be defined within this speci-
fication. |

AUTSSAR

5.5.2 Header file structure

As there can be multiple, project-specific instances of the 1/0 Hardware Abstraction,
the file structure cannot be specified.

[SWS_IoHwAb_00112] [File names should be prefixed with ’lo-
HwAb_<ComponentName>_<reference>’ (where the field <reference> can be
an implementation-specific category and the field <ComponentName> is the name of
the atomic software component, i.e. the instance of the /O Hardware Abstraction) in
order to avoid name clashes. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4], [6], [7] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[SRS_BSW_00101] The Basic Software Module shall be [SWS_loHwAb_00036] [SWS_loHwAb_00044]
able to initialize variables and [SWS_loHwAb_00059] [SWS_loHwAb_00060]
hardware in a separate initialization [SWS_loHwAb_00061]
function

[SRS_BSW_00333] For each callback function it shall be [SWS_loHwAb_00033]

specified if it is called from interrupt
context or not

[SRS_BSW_00336] Basic SW module shall be able to [SWS_loHwAb_00036] [SWS_loHwAb_00044]
shutdown
[SRS_BSW_00384] The Basic Software Module [SWS_loHwAb_00044] [SWS_loHwAb_00078]

specifications shall specify at least in [SWS_loHwAb_00079]
the description which other modules
they require

[SRS_BSW_00414] Init functions shall have a pointertoa | [SWS_loHwAb_00157] [SWS_loHwAb_00158]
configuration structure as single
parameter

[SRS_BSW_00423] BSW modules with AUTOSAR [SWS_loHwAb_00001]

interfaces shall be describable with
the means of the SW-C Template

[SRS_BSW_00440] The callback function invocation by [SWS_loHwAb_00143]
the BSW module shall follow the
signature provided by RTE to invoke
servers via Rte_Call API

[SRS_BSW_00441] Naming convention for type, macro [SWS_loHwAb_00102]
and function

[SRS_BSW_00450] A Main function of a un-initialized [SWS_loHwAb_00035]
module shall return immediately

[SRS_loHwAb_00002] The I/O Hardware Abstraction shall [SWS_loHwAb_00135] [SWS_loHwAb_00136]
provide an interface to the DCM that [SWS_loHwAb_00138] [SWS_loHwAb_00139]
allows to control and read the [SWS_loHwAb_00140] [SWS_loHwAb_00142]
configured signals

[SRS_loHwAb_12242] The |0 Hardware Abstraction shall [SWS_loHwAb_00079]

hide any communication over ECU
internal onboard peripherals to
access Signals

[SRS_loHwAb_12248] The |0 Hardware Abstraction module | [SWS_loHwAb_00038]
shall keep the ECU hardware safe

[SRS_loHwAb_12451] The |0 Hardware Abstraction module | [SWS_loHwAb_00039]
shall not decide on its own to switch
an output on again that has been
switched off for hardware protection
reasons

[SRS_SPAL_12056] All driver modules shall allow the [SWS_loHwAb_00032] [SWS_loHwAb_00033]
static configuration of notification [SWS_loHwAb_00034]
mechanism

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Integration code

The I/O Hardware Abstraction, as a part of the ECU abstraction, has been defined as

integration code.

Actuator

Sensor

Application

Application
AUTOSAR Software Software Software AUTOSAR Software
Software Component Component Component S it Component
|Cemeenent| W AUTosAR ortware mwreorrs
cooInterface
In
I I T T
Software Standardized Standardized ~AUTOSAR AUTOSAR
Interface Interface - Interface - Interface
I API 2 ECU
\rglsvinTTE Services Communication Abstraction
API 1 o Standardized Standardized Standardized
II RTE =8 Interface Interface Interface
3
relevant ; ?a Complex
. Operaing |32
API O o = Drivers
o N i
o Standardized
API 3 Private Interface
"g"”.“"s TETED Microcontroller
asic Software .
possible Abstraction

ECU-Hardware
Figure 7.1: AUTOSAR architecture

7.1.1 Background & Rationale

According to the AUTOSAR glossary [1], integration code is ECU schematic dependent
software located below the AUTOSAR RTE.

7.1.2 Requirements for integration code implementation

The following requirements for the 1/0O Hardware Abstraction are related to hardware
protection.

[SWS_loHwAb_00038]
Upstream requirements: SRS_loHwAb_12248

[Integration code usually means that this software is designed to suite a specific ECU
hardware layout. All strategies to protect the hardware shall be included in this soft-
ware. This document does not intend to standardize or give a recommendation for
such hardware protection. |

AUTSSAR

Hardware protection means, that the 1/0O Hardware Abstraction is able to cut off an
output signal, when a failure (short circuit to ground/power supply, over temperature,
overload ...) is detected on the certain output.

[SWS_loHwAb_00039]

Upstream requirements: SRS_loHwAb_12451
[The I/0O Hardware Abstraction shall not contain strategies for failure recovery. Failure
recovery actions can only be decided by the responsible SWC. |

The internal behavior of the 1/0O Hardware Abstraction is project-specific and cannot be
standardized.

There is no I/O Hardware Abstraction scalability. The SWC specifies what is needed
(quality of signal) and the 1/0O Hardware Abstraction has to provide it.

7.2 ECU Signals Concept

7.2.1 Background & Rationale

The 1/0O Hardware Abstraction cannot provide Standardized AUTOSAR Interfaces to
AUTOSAR SW-Cs, as its interfaces to the upper layer strongly depend on the chain
of signal acquisition. Instead, the /0O Hardware Abstraction provides AUTOSAR Inter-
faces.

These AUTOSAR Interfaces represent an abstraction of electrical signals coming from
the ECU inputs / addressed to ECU outputs.

Alternatively, these electrical signals may also come from other ECUs or be addressed
to other ECUs (e.g. via a CAN network).

Ports are entry points of AUTOSAR components. They are typified by an AUTOSAR
interface. These interfaces correspond to "ECU signals".

The concept of ECU signals comes from the necessity to guarantee the interchange-
ability of hardware platforms.

AUTSSAR

Applicstion Actuator Sensor
s ® 8 Software ‘
Componant Component Componant
AUTOSAR AUTOSAR AUTOSAR AUTOSAR
Intarfacs Interface Intarface Signal
VFB
AUTOSAR Interface ECU Signal
ECU
Abstraction

Electrical
Signal

Microcontroller

Microcontroller
Abstraction

Electrical

ECU Hardware A
Signal

Figure 7.2: ECU signals

7.2.2 Requirements about ECU signals

The I/O Hardware Abstraction handles all inputs and outputs directly connected to
the ECU (except those that have a dedicated driver, like CAN, see requirement
[SWS_IoHwWAb_00063]).

It includes all inputs and outputs, directly mapped to microcontroller ports, or to an
onboard peripheral. All communication between the microcontroller and the peripher-
als (except sensors and actuators and peripherals managed by complex drivers) are
hidden by the I/O Hardware Abstraction, while considering the provided interfaces.

An ECU is connected to the rest of the system through networks and inputs and output
pins. Networks are out of scope of this document.

[SWS_loHwAb_00063] [An ECU signal represents one electrical signal, which means
at least one input or output ECU pin. |

The software in this layer shall abstract the ECU pins. Looking from this place (for
example using an oscilloscope) inputs and outputs are only electrical signals. Hence,
all that is defined in this document is related to this concept of electrical signals. One
extension of this concept is diagnosis (electrical failure status). Diagnosis is not visible
from ECU connectors but is provided by the I/O Hardware Abstraction.

Electrical signals with similar behavior may form a class. Therefore, ECU signals,
which denote the software representation of electrical signals may have an association
to an implementation-specific class.

AUTSSAR

7.3 Attributes

7.3.1 Background & Rationale

Even though most of the characteristics of each ECU Signal are defined by the SWC,
some properties have to be added to each signal to provide the signal quality the SWC
expects.

7.3.2 Requirements about ECU signal attributes

To detail the chain of signal-acquisition, a list of Attributes is defined to identify config-
urable characteristics of ECU signals.

7.3.2.1 Filtering/Debouncing Attribute

[SWS_loHwAb_00019] [All ECU Signals shall have a Filtering/Debounce Attribute, so
that the captured raw’ - values can be filtered or debounced before passing them to
the upper layer. This attribute is only reasonable for input signals. It influences the
implementation of acquisition and access to the signal values. |

7.3.2.2 Age Attribute

All ECU signals handled by I/O Hardware Abstraction depend on the ECU hardware
design. This means that the time to set ECU Output signals and the time to get ECU
Input signals could be different from one to other ECU signal. So to guarantee a
template behavior for all kind of ECU signals (Input / Output) a common Age Attribute
is defined and it shall be configured for each ECU signal.

[SWS_loHwAb_00021] [All ECU signals shall have an Age Attribute. The Age At-
tribute has two specific names according to the direction of ECU signal (Input / Output).
Anyway, it always contains a maximum time value. Following descriptions explain the
meaning of this Attribute for each kind of ECU signals.

» ECU Input signals: the specific functionality of this attribute is to limit the signals
lifetime. The value defines the maximum allowed age for data of this signal. If the
lifetime is 0, the signal has to be retrieved from the physical register, immediately.
If the lifetime is greater than 0, the signal is valid for the specified time.

» ECU Output signals: the specific functionality of this attribute is to limit the signal
output to a maximum delay. The value defines the maximum allowed time until
this signal is actually set. If delay is 0, then the signal has to be set to the physical
register, immediately. If the delay is greater than 0, the signal can be set until the
configured time has elapsed.

AUTSSAR

7.4 1/0 Hardware Abstraction and Software Component Template

Note about this chapter: This chapter refers to document [8].

Changes inside this document may influence the content of this chapter.

7.4.1 Background & Rationale

This approach allows defining the standardization deepness. As explained previously,
the implementation is integration code. Therefore, this chapter only summarizes how
to define the I/O Hardware Abstraction as a Software Component (SWC), and gives a
short overview of the internal behavior. The internal behavior description mainly covers
BSW scheduling mechanisms.

7.4.2 Requirements about the usage of Software Component template

[SWS_loHwAb_00001]
Upstream requirements: SRS_BSW_00423

[The I/O Hardware Abstraction shall be based upon the Software Component Template
as specified in document [8].]

In the same manner as in any other Software Component, the I/O Hardware Abstrac-
tion might be sub-structured, depending on the complexity of an ECU.

Indeed, the 1/0 Hardware Abstraction is a classical Component Prototype, that can be
atomic or composed and that provides and requires interfaces. Moreover, |/O Hard-
ware Abstraction may only interact by means of their PortPrototypes with other Soft-
ware Components above the RTE. Hidden dependencies that are not expressed by
means of PortPrototypes are not allowed.

However, the 1/0 Hardware Abstraction interfaces on one side the MCAL drivers via
Standardized Interfaces and on the other side the RTE. Hence, I/O Hardware Abstrac-
tion shall respect the virtual ports concept.

[SWS_loHwAb_00025] [The I/O Hardware Abstraction shall be implemented as one
or more instances of the EcuAbstractionSwComponentType. |

See [8] for further information about the EcuAbstractionSwComponentType.

An instantiation of EcuAbstractionSwComponentType provides a set of ports. During
RTE Generation, only those that are connected with Software Components are taken
into account.

This chapter gives an overview of the virtual ports concept and runnable entities ap-
plied to the 1/0 Hardware Abstraction needs. The following chapters of this document
describe the points set out here in more detalil.

AUTSSAR

7.4.2.1 Ports concept and I/O Hardware Abstraction

This is an overview of recommendations for defining Ports of I/O Hardware Abstraction
using the Software Component template.

Further chapters in this document go deeper in usage of ports for I/O Hardware Ab-
straction. Nevertheless, it is advised to read the Software Component Template docu-
ment [8] to be aware of all terms and all concepts used.

The attributes described in chapter 7.3 shall be defined by annotating the ports of
the 1/0O Hardware Abstraction components with an loHwAbstractionServerAnnotation
(see [8]).

7.4.2.2 Software Component and Runnable concept

Software Components have functions to realize their strategies and internal behav-
iors. These are partly described using runnable entities. The former is contained in
runnables and the latter depends of runnables design. Runnable entities are provided
by the Atomic Software Component and are (at least indirectly) a subject for scheduling
by the underlying operating system.

An implementation of an atomic Software Component has to provide an entry-point to
code for each Runnable in its "InternalBehavior". For more information, please refer to
the specification [8].

The runnable entities are the smallest code-fragments, which can be activated inde-
pendently. They are provided by the Atomic Software Component and are activated by
the RTE. Runnables are for instance set up to respond to data exchange or operation
invocation on a server.

The runnable entities have three possible states: Suspended, Enabled and Running.
During run-time, each runnable of an atomic Software Component is (by being a mem-
ber of an OS task) in one of these states.

For a sight of available choices and attributes to define each runnables of the Atomic
Software Component, please refer to specification [8].

7.5 Scheduling concept for I/O Hardware Abstraction

7.5.1 Background & Rationale

The I/O Hardware Abstraction may consist of several BSW modules (e.g. onboard
device driver).

Each of these BSW modules can provide BSW runnable entities (also called BswMod-
uleEntity in the RTE Specification (see [3]).

AUTSSAR

To make a parallel, a BswModuleEntity is the equivalent of SWC runnable entities, for
which the AUTOSAR glossary [1] gives the following definition: "A Runnable Entity
is a part of an Atomic Software-Component (definition) which can be executed and
scheduled independently from the other Runnable Entities of this Atomic Software-
Component".

This means that the 1/0O Hardware Abstraction can use Runnable Scheduling and BSW
Scheduling simultaneously. The Runnable Scheduling handles the Runnable Entities
and is mandatory. Unlike the Runnable Scheduling, the BSW Scheduling is optional
and the interfacing with the BSW Scheduler has to be done manually.

In case of SWC runnable entities, these are called in AUTOSAR OS Tasks bodies.
Runnables are given in the SWC description. Activation of SWC runnables strongly
depends on RTE events.

In the same way than SWCs are most often activated by RTEEvents, the schedulables
BswModuleEntities can be activated by BswEvents. There is also a kind of BswMod-
uleEntity which can be activated in interrupt context. This leads to two sub-classes:
BswSchedulableEntity and BswinterruptEntity.

7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept
7.5.2.1 Operations for interfaces provided by Ports

The 1/0 Hardware Abstraction, described from the interfaces point of view, implements
the counterpart of the Portinterfaces defined by the SW-C, i.e. it provides Runnable
Entities that implement the Provide Ports (Server port, Sender/Receiver port) required
by the SW-C.

[SWS_loHwAb_00068] [The implementation behind the service of the 1/O Hardware
Abstraction’s Provide Ports is ECU specific and the mapping to the corresponding
"Portinterface" shall be documented in the Software Component description. |

7.5.2.1.1 Get operation

[SWS_loHwAb_00069] [For an ECU Signal associated with a PortInterface config-
ured as an input signal, the 1/0 Hardware Abstraction shall provide a GET operation,
and the operation short name can be freely choose. |

7.5.2.1.2 Set operation

[SWS_loHwAb_00070] [For an ECU Signal associated with a PortInterface config-
ured as an output signal, the I/O Hardware Abstraction shall provide an SET operation,
and the operation shortname can be freely choose. |

AUTSSAR

7.5.2.2 Notification and/or Callback

[SWS_loHwAb_00032]
Upstream requirements: SRS_SPAL_12056

[The I/O Hardware Abstraction shall define BswinterruptEntities (a sub-class class of
BswModuleEntity by opposition to BswSchedulableEntity) to fulfill notification and/or
callback mechanisms to exchange data with other modules below the RTE within an
interrupt context. |

The 1/0O Hardware Abstraction may contain one or several callback functions. The
available callback functions need to be hooked up to the notification interfaces of the
MCAL drivers. Therefore, they have to respect the prototype definition of the MCAL
drivers (no passing parameter, no return parameter).

[SWS_loHwADb_00033]
Upstream requirements: SRS_BSW_00333, SRS_SPAL_12056

[The implementation has to take into consideration, that the callback functions will be
executed in interrupt context. |

Callback functions can additionally provide the capability to trigger Software Compo-
nents outside of the I/O Hardware Abstraction. These notifications need to be handled
through the RTE (sender port).

[SWS_loHwAb_00034]
Upstream requirements: SRS_SPAL_12056
[The number of available callback functions and the order of execution will be im-

plementation dependent and must be documented in the /O Hardware Abstraction
BSWMD. |

[SWS_loHwAb_00143]
Upstream requirements: SRS_BSW_00440

[The function prototype for the callback function functions of the I/O Hardware Ab-
straction which are routed via RTE shall be implemented according to the following
rule: StdReturnType Rte_Call_<p>_<o>(<parameters>) |

The callback functions have to be to be compatible to Rte_Call_<p>_<o> API of the
RTE to enable a type safe configuration and implementation of AUTOSAR Services
and IO Hardware Abstraction.

AUTSSAR

7.5.2.3 Main function / job processing function

[SWS_loHwAb_00035]
Upstream requirements: SRS_BSW_00450

[The 1/0O Hardware Abstraction may contain one or several job processing functions
that are BswSchedulableEntities (a sub-class of BswModuleEntity by opposition to
BswinterruptEntity, e.g. one for each device driver). They shall be activated according
to their use.

They will be time-triggered by the BSW Scheduler. They could be synchronized to the
execution of the other runnable entities.

The number of BswSchedulableEntities and their order of execution will be implementa-
tion dependent and must be documented in the I/0O Hardware Abstraction description. |

7.5.2.4 Initialization, De-initialization and/or Callout

[SWS_loHwAb_00036]
Upstream requirements: SRS_BSW_00336, SRS_BSW_00101

[The 1/0 Hardware Abstraction shall define BswModuleEntries to exchange data with
other software below the RTE outside interrupt context, for example in case of BSW
initialization/de-initialization. |

These BswModuleEntries are linked to a dedicated BswModuleEntity, which will be
called to perform the service / exchange the data.

The 1/0 Hardware Abstraction may contain one or several initialization and de-
initialization functions (e.g. one for each device driver). Similar to the MCAL drivers
the initialization functions shall contain a parameter to be able to pass different config-
urations to the device drivers. This function shall initialize all local and global variables
used by the 1/0O Hardware Abstraction driver to an initial state.

[SWS_loHwAb_00037] [The initialization/de-initialization functions shall be used/han-
dled by the ECU State Manager, exclusively. For more information, refer to [9].

The number of available functions and the order of execution are implementation-
dependent and must be documented in the I/O Hardware Abstraction description. |

7.5.2.5 1/0 Hardware Abstraction scheduling examples
7.5.2.5.1 Interface provided by ADC and I/O Hardware Abstraction

The following example shows a scheduling example for an ADC conversion.

The 1/O Hardware Abstraction shall provide two P-ports.

AUTSSAR

The Software Component interface in this example is af_pressure.

The ECU state manager is able to trigger a BswModuleEntry for initialization of the
ADC driver (Call of Adc_Init() with the Adc_ConfigType structure).

Use Case: The software component needs the af_pressure value.
1. RTE triggers the OP_GET operation of the dedicated P-Port.
2. R1is a runnable entity and it allows to call the appropriated ADC driver services
+ ADC_EnableNotification
« ADC_StartGroupConversion

3. At the end of conversion, the ADC triggers the BswModuleEntry R2, within inter-
rupt context. This is possible since the notification is allowed for this interface.
The ADC_ NotificationGroup() function is specified in the ADC driver.

4. The notification is then "sent" to the Software Component via an RTEevent.

AUTSSAR

ATOMIC SOFTWARE COMPONENT

Pressure Sensor

component

R-PORE PROTOTYPE CLIENF SERVER INTERFACE
SHORT NAME
OPERATION PROTOTYPE '

P-PORE PROTOTYPE
PORT SHORT NAME ECU PIN 23
PORT ANNOTATION

SIGNAL_DATA_TYPE: Voltage Tipe
(CCERS: DataReadAvoess
RUNNARLE ENTITY BSW rumerablel

. CLIENE SERVER INTERFACE TREI

BEW- RANGE: [...]
Unit

BSW. Accuracy
|"|'|[|:|‘Eng: Yes
Lifetime:

BswihModuleEntry
INIT Adc_Init()

Triggered by
ECU state manager

1 I
1 [}
ADC_EnableMotification ADC NaotifieationUaroap
A SlartGrouplanyersion
] ADC ReadC hannel AI?C
Adc_ConfigType driver

v
Microcontroller

Figure 7.3: Example of loHwAb runnables

The sequence diagram of this example is in chapter 9.

7.5.2.5.2 Synchronous scheduling with Runnable Entities and BswSchedula-
bleEntities

The following example shows a scheduling example for setting a Lamp linked to a
SMART power.

The SMART power is connected to the microcontroller by SPI bus. Hence, the dedi-
cated piece of code uses the SPI Handler/Driver.

The FrontLeftLamp value to be set by the RTE is in an I/O Hardware Abstraction buffer.

An output line to another SMART power is set synchronously to trigger an ADC con-
version of the same electrical signal by the ADC driver.

AUT SAR Specification of I/O Hardware Abstraction

AUTOSAR CP R25-11

At the end of conversion, the converted result is available and the notification is set
to the Analog input manager to store the value inside a buffer, available for diagnosis
purpose.

In this example, the periodical treatment is realized by a BswSchedulableEntity.

ApplicationLayer

VFB Concept
- Client/Server
- Sender/Receiver

Set a Powered Output

Get the Diagnosis Status
ConnectToPort FrontLeftLamp

ConnectToPorf StFrontLeftLamp

AUTOSAR Runtime Environment (RTE

RTE Mapping Rte Sel FrontLeftLamp Rte_Get(StFrontLeftLamg
- Serwces Asynchfonous

/O HW Abstraction Interfaces

|screte Inputs
Manager

Microcontroller

SMART Powers outputy SMART Powen1 Output)

By SPlwith Status with iSense satus

Figure 7.4: Example of loHwWADb runnable - cyclic setting of output and diagnosis

7.6 Error Classification

7.6.1 Development Errors

[SWS_loHwAb_91001] Definition of development errors in module loHwAb |

Type of error Related error code Error value
Up to the implementer to define error he wants to Up to the implementer 0x01
report

7.6.2 Runtime Errors

There are no runtime errors.

31 of 61 Document ID 47: AUTOSAR_CP_SWS_IOHardwareAbstraction

AUTSSAR

7.6.3 Production Errors

There are no production errors.

7.6.4 Extended Production Errors

Error Name: Up to the implementer to define error he wants to report
IOHWAB_E_<DESCRIPTIVE_NAME>[<INSTANCE>]

Short Description: Up to the implementer

Long Description: Up to the implementer

Detection Criteria: Fail Up to the implementer
Pass Up to the implementer

Secondary Parameters: Up to the implementer

Time Required: Up to the implementer

Monitor Frequency Up to the implementer

7.7 Other requirements

For details refer to [4] Chapter 5.1.8 “Version check”.

7.8 1/0 Hardware Abstraction layer description

7.8.1 Background & Rationale

The 1/0O Hardware Abstraction layer has some analogies with a Software Component,
especially regarding port definition for communication through the RTE. The main dif-
ference is that the 1/O Hardware Abstraction is below the RTE (in the ECU Abstraction
Layer). The I/0O Hardware Abstraction is a kind of interface between Basic Software
modules and Application Software.

For the I/O Hardware Abstraction, but also for Services, the current methodology re-
quires filling out two different templates. For example, in order to integrate an NVRAM
Manager on an AUTOSAR ECU one would use the BSWMD to document its needs for
the BSW Scheduler, OS Resources and so on. In addition, one would use the SWC to
describe the ports towards the RTE.

The 1/0O Hardware Abstraction is a part of BSW. It could be considered as a group of
modules. Although IOHWAB is integration code, each module of IOHWAB could fit
to the BSWDT. Today, it is known that this point is not sufficiently documented in the
current specification.

However, it is agreed that ECU signal will be mapped to a VFB Port (See chapter
7.2 and chapter 7.4). Moreover, to describe the interfaces between an 1/O Hard-

AUTSSAR

ware Abstraction implementation and applicative Software Components implementa-
tions (above RTE), one shall use the Software Component Template.

The intention of this chapter is to summarize all recommendations to define Ports, In-
terfaces and all other Software Component like elements during configuration process.

7.8.2 Requirements

7.8.2.1 1/0 Hardware Abstraction Ports definition

[SWS_loHwAb_00075] [The I/O Hardware Abstraction specification defines only rec-
ommendations for the Port usage. The instantiation of the Ports shall be done during
the configuration process and is specific to the ECU electronic design. |

The I/O Hardware Abstraction proposes to create one Port for each ECU signal iden-
tified, exception made for ECU Diagnosis signals that are connected to ECU Output
signals. A relationship between this ECU signal and the Port shall be created.

Example: The ECU has 10 Analog input pins, 15 PWM output pins, 15 Digital output
pins. The I/0O Hardware Abstraction defines at least one Port for each ECU signal. In
this simple example, Ports are instantiated 40 times.

7.9 Examples

7.9.1 EXAMPLE 1: Use case of on-board hardware

This example is derived from a power supplier ECU.

AUTSSAR

Sensor SW-C Application SW-C

Switch Evaluation User Logic

[GetDebouncedDI() |

Notification

Figure 7.5: Use case of on-board hardware

The ECU has a high number of Digital Inputs (DI). One main group is the "slow DI's"
for mechanical switches. The second main group is the "fast DI’s" for the diagnosis of
the Power IC (this DI indicates that the output current is to high "over current", these
DI’'s are not led out of the ECU). The MCU has not enough PIN’s -> the slow DI’s are
connected to 8 bit multiplexers (3 address lines and 1 data line for each multiplexer)
the maximum time between the occurrence of an "over current” and the switch of the
Power IC is 1 ms. One OEM requirement is that the reaction of a switch must be not

AUTSSAR

later than 100 ms. One other OEM requirement is that each DI must be debounced
by 3 of 5 voting. However the practice shows that the kind of debouncing is not
really important because the mechanical switches and the power IC do not generate

disturbing signals.

The solution today is that all DI (slow and fast) are read every 0,8 ms (cyclic task)
(The scan rate for the slow DI could be lower but the overhead for an additional task is
higher than the runtime savings). The debouncing for the slow DI's is 1 time in every
loop (so the worst cast delay to the debounced value is 3,2 ms). If an overcurrent is
detected the pin will read again several times but in the same loop and the power IC will
switched off immediately. The application runs every 10 ms and reads the debounced
DI for the switches and the diagnosis information’s.

Layer Multiplexed I/O Power IC

Application Runnable reads the data every 10 ms Gets a notification if the power IC
detects overcurrent.

RTE Handles runnables

1/0 Hardware Abstraction

8 signal mapped on ports, definition of
port feature and Client/Server interface
signal abstraction gives the debounce
time (better than a debounce voting
rule)

A cyclic task performs a reading of
input via DIO service call

I/O Hardware Abstraction

makes decision to switch off the Power
IC if an overcurrent is detected (in the
driver of the external ASIC)

A cyclic task performs a reading of
input via DIO service call.

MCAL driver

DIO driver: address lines, 1 data line

DIO driver: 1 feedback line from power
IC
PWM driver: 1 line to the power IC

ECU hardware

Multiplexer: Mapping of 8 electrical
signal

Power IC: Controls the power supply of
the multiplexer

Table 7.1: Decomposition on the AUTOSAR architecture

7.9.2 EXAMPLE 2: Use case of failure monitoring

In this example, a diagnostic output signal shall be defined with the diagnosis attribute
on the level of the 1/0O Hardware Abstraction.

Therefore, an input is used to perform the diagnosis of the output.

N =) N Specification of I/O Hardware Abstraction
uT = R AUTOSAR CP R25-11

SwW.C SwW-C Sw.C

RTE

ECU hardware

ECU pins
Figure 7.6: Use case of failure monitoring managed by SPI
When the 1/0 Hardware Abstraction asks for positioning one output

(Dio_WriteChannel), a read-out of the channel is done via an ECU pin configured as
input.

The ICU driver sends a naotification to the 1/0 Hardware Abstraction.
The protection strategy is located in the integration code.

Software Component can get the diagnosis value through the port using the diagnosis
operation.

7.9.3 EXAMPLE 3: Output power stage

The ECU hardware has a power stage ASIC.

36 of 61 Document ID 47: AUTOSAR_CP_SWS_IOHardwareAbstraction

AUTSSAR

Therefore, all ECU pins shall be available as "signals" at the level on the 1/0 Hardware
Abstraction, just below the RTE.

SwC SwW-C SwW-C

S/R diagnosis
information

ECU pins

Figure 7.7: Use case of output power stage

Some outputs are controlled via the SPI driver/handler.
Some inputs are directly controlled via the DIO driver.
Some voltages, frequencies are set via the PWM driver.

A power stage driver provides the view of all outputs. It calls services of PWM, DIO
drivers and SPI handler. The signal abstraction makes all these outputs "visible" from
the point of view of Software Component (signals are mapped on Ports). The "Power
stage driver" can be configurable.

AUTSSAR

Diagnosis: Every failure can be detected on the level of the power stage. The diagnosis
data flow goes through the SPI communication to the Power stage driver. Then, the
diagnosis is provided to all Software Component via an S/R interface.

7.9.4 EXAMPLE 4: Setting sensor and controlling periphery in low power state

The ECU controls a sensor through its ADC and its DIO Peripherals. Under specific
circumstances, the ECU enters an operation mode in which the sensor is shut down
and the ADC is set in low power state.

Application Sensor
Power Mode SWC
Manager

T

Service Layer

Signal Abstraction and Mode Management

I/O Abstraction Sensor Driver

/O Drivers
DIO Driver | ADC Driver |

External Sensor

Figure 7.8: Use case low power mode setting

AUTSSAR

The sequence of actions is as follows:

The Application Power Mode Manager issues a Mode Request to BswM to switch to
"LowPowerMode".

BswM evaluates the requests and, if the all pre-conditions are met, issues a mode
switch to the Power Mode Manager and to the Sensor SWC.

The sensor SWC stops reading the sensory data (i.e. doesn’t request any Get opera-
tion to the loHwAbs anymore).

The loHwADbs deregisters its notifications from the ADC and eventually stop HW cyclical
acquisitions.

The loHwAbs commands external sensory HW into a low power mode or shut it off.

The loHwADbs calls its Low Power Mode preparation Callouts and then its Low Power
Mode setting Callouts, as defined in the configuration in order to attain the ADC (in this
case) power state related to the requested Application Low Power mode "LowPower-
Mode".

The process can be controlled step by step by introducing more fine granular mode
requests and reacting on the acknowledgements and/or switches.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter, all types included from the following modules are listed:

[SWS_loHwAb_91005] Definition of imported datatypes of module loHwADb |

Module Header File Imported Type

Adc Adc.h Adc_GroupType
Adc.h Adc_StatusType
Adc.h Adc_StreamNumSampleType
Adc.h Adc_ValueGroupType

Dio Dio.h Dio_ChannelGroupType
Dio.h Dio_ChannelType
Dio.h Dio_LevelType
Dio.h Dio_PortLevelType
Dio.h Dio_PortType

EcuM EcuM.h EcuM_WakeupSourceType

Gpt Gpt.h Gpt_ChannelType
Gpt.h Gpt_ModeType
Gpt.h Gpt_ValueType

lcu Icu.h Icu_ActivationType
lcu.h lcu_ChannelType
Icu.h Icu_DutyCycleType
lcu.h Ilcu_EdgeNumberType
lcu.h lcu_IndexType
Icu.h Icu_InputStateType
Icu.h Icu_ValueType

Ocu Ocu.h Ocu_ChannelType
Ocu.h Ocu_PinStateType
Ocu.h Ocu_ReturnType
Ocu.h Ocu_ValueType

Port Port.h Port_PinDirectionType
Port.h Port_PinModeType
Port.h Port_PinType

Pwm Pwm.h Pwm_ChannelType
Pwm.h Pwm_OutputStateType

Spi Spi.h Spi_AsyncModeType
Spi.h Spi_ChannelType
Spi.h Spi_DataBufferType
Spi.h Spi_HWUnitType
Spi.h Spi_JobResultType
Spi.h Spi_JobType

\Y

AUTSSAR

A

Module Header File Imported Type
Spi.h Spi_NumberOfDataType
Spi.h Spi_SeqResultType
Spi.h Spi_SequenceType
Spi.h Spi_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 loHwAb«<Init_Id>_ConfigType

[SWS_loHwAb_00157] Definition of datatype loHwAb{Init_Id} ConfigType
Upstream requirements: SRS_BSW_00414

[
Name loHwADb{Init_Id}_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the loHwAb module.
Available via loHwADb.h
]

8.3 Function definitions
This is a list of functions provided for upper layer modules.
NOTE FOR I/O0 HARDWARE ABSTRACTION:

As explained in the previous chapters, no functional API will be specified for the 1/0
Hardware Abstraction.

AUTSSAR

8.3.1 loHwADb_Init<Init_Id>

[SWS_loHwAb_00119] Definition of API function loHwADb_Init<Init_ld> |

Service Name

loHwWADb_ Init<Init_ld>

Syntax void IoHwAb_Init<Init_Id> (
const IoHwAb{Init_Id}_ConfigType* ConfigPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes either all the 10 Hardware Abstraction software or is a part of the 10 Hardware
Abstraction.
Available via loHwWADb.h
]

[SWS_loHwAb_00158]

Upstream requirements: SRS_BSW_00414
[The Configuration pointer ConfigPtr shall always have a NULL_PTR value. |

The Configuration pointer ConfigPtr is currently not used and shall therefore be set
NULL_PTR value.

[SWS_loHwADb_00059]
Upstream requirements: SRS_BSW_00101

[This kind of function initializes either all the I/O Hardware Abstraction software, or a
part of the I/O Hardware Abstraction. |

[SWS_loHwAb_00060]

Upstream requirements: SRS_BSW_00101
[The multiplicity of 1/O devices managed by the 1/0O Hardware Abstraction software
shall be handled via several init functions. Each init function shall be tagged with an

<Init_ID>. Therefore, an external device, having its driver encapsulated inside the 1/0
Hardware Abstraction, can be separately initialized. |

[SWS_loHwADb_00061]
Upstream requirements: SRS_BSW_00101

[This kind of init function shall called by the ECU State Manager. The ECU integrator
is able to configure the init sequence order called by the ECU State manager. |

AUTSSAR

[SWS_loHwAb_00102]
Upstream requirements: SRS_BSW_00441

[After having finished the module initialization, the 1/O Hardware Abstraction state shall
be set to TOHWAB_IDLE, the job result shall be set to IOHWAB_JOB_OK. |

8.3.2 loHwADb_GetVersioninfo

[SWS_loHwAb_00120] Definition of API function loHwAb_GetVersioninfo |

Service Name loHwAb_GetVersionInfo
Syntax void IoHwAb_GetVersionInfo (

Std_VersionInfoType* versioninfo

)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this
implementation of IO Hardware Abstraction.

Return value None
Description Returns the version information of this module.
Available via loHwADb.h

8.4 Callback notifications

This is a list of functions provided for lower layer modules.

8.4.1 loHwADb_AdcNotification<#grouplD>

[SWS_loHwAb_00121] Definition of callback function loHwAb_AdcNotifica-
tion<#grouplD> |

Service Name loHwAb_AdcNotification<#grouplD>
Syntax void IoHwAb_AdcNotification<#groupID> (
void
)
Service ID [hex] 0x20
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None

AUTSSAR

Parameters (out)

None

Return value

None

Description

Will be called by the ADC Driver when a group conversion is completed for group <#group|D>.

Available via

loHwWAb_Adc.h

]

[SWS_loHwAb_00104] [The function loHwAb_AdcNotification<#grouplD> is intended
to be called by the ADC driver when a group conversion is completed for group

<#grouplD>. |

8.4.2 loHwAb_Pwm_Notification<#channel>

[SWS_loHwAb_00122] Definition of callback function loHwAb_ PwmNotifica-

tion<#channel> |

Service Name

loHwAb_PwmNotification<#channel>

Syntax void IoHwAb_PwmNotification<#channel> (
void
)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Will be called by the PWM Driver when a signal edge occurs on channel <#channel>.

Available via

loHWAb_Pwm.h

]

[SWS_loHwAb_00105] [The function loHwAb_PwmNotification<#channel> is in-
tended to be called by the PWM driver when a signal edge occurs on channel <#chan-

nel>. |

AUTSSAR

8.4.3 IloHwAb IcuNotification<#channel>

[SWS_loHwAb_00123]
tion<#channel> |

Definition of callback function loHwAb IcuNotifica-

Service Name

loHwAb_IcuNotification<#channel>

Syntax void IoHwAb_IcuNotification<#channel> (
void
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Will be called by the ICU driver when a signal edge occurs on channel <#channel>.

Available via

loHWADb_lcu.h

]

[SWS_loHwAb_00106] [The function loHwAb_IcuNotification<#channel> is intended
to be called by the ICU driver when a signal edge occurs on channel <#channel>. |

8.4.4 IloHwAb_GptNotification<#channel>

[SWS_loHwAb 00124] Definition of callback function loHwAb_GptNotifica-
tion<#channel> |

Service Name

loHwAb_GptNotification<#channel>

Syntax void IoHwAb_GptNotification<#channel> (
void
)
Service ID [hex] 0x50
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Will be called by the GPT driver when a timer value expires on channel <#channel>.

Available via

loHwAb_Gpt.h

]

[SWS_loHwAb_00107] [The function loHwAb_GptNotification<#channel> is intended
to be called by the GPT driver when a timer value expires on channel <#channel>. |

AUTSSAR

8.4.5 IloHwAb OcuNotification<#channel>

[SWS_loHwAb _00155] Definition of callback function loHwAb_ OcuNotifica-
tion<#channel> |

Service Name

loHwAb_OcuNotification<#channel>

Syntax void IoHwAb_OcuNotification<#channel> (
void
)
Service ID [hex] 0xa0
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Will be called by the OCU driver when the current value of the threshold matches the threshold
on the channel<#channel>.

Available via

loHwAb_Ocu.h

]

[SWS_loHwAb_00156] [The function loHwAb_OcuNotification<#channel> is in-
tended to be called by the OCU driver when the current value of the counter matches
the threshold on channel <#channel>. |

8.4.6 loHwAb_Pwm_NotifyReadyForPowerState<#MODE>

[SWS_loHwAb_91002] Definition of APl function loHwAb_Pwm_NotifyReadyFor
PowerState<#Mode> |

Service Name

loHwAb_Pwm_NotifyReadyForPowerState<#Mode>

Sﬁﬂﬂax void IoHwAb_Pwm_NotifyReadyForPowerState<#Mode> (
void
)
Service ID [hex] 0x60
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

The API shall be invoked by the PWM Driver when the requested power state preparation for
mode <#Mode> is completed.

Available via

loHWAb_Pwm.h

]

This interface provided by CDD or loHwAbs is needed if the PWM Driver is configured
to support power state control in asynchronous mode.

AUTSSAR

8.4.7 loHwAb_Adc_NotifyReadyForPowerState<#MODE>

[SWS_loHwAb_00154] Definition of callback function loHWAb_Adc_NotifyReady
ForPowerState<#Mode> |

Service Name loHwAb_Adc_NotifyReadyForPowerState<#Mode>
Syntax void IoHwAb_Adc_NotifyReadyForPowerState<#Mode> (
void

)

Service ID [hex] 0x70

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The API shall be invoked by the ADC Driver when the requested power state preparation for
mode <#Mode> is completed.

Available via loHwWAb_Adc.h

]

This interface provided by CDD or loHwAbs is needed if the ADC Driver is configured
to support power state control in asynchronous mode.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non-reentrant.

8.5.1 <Name of scheduled function>

Service name: <Name of API call>

Service ID [hex]: <Number of service ID. This ID is used as parameter for the error report API of Default Error
Tracer. The ID shall not be equal to an ID within chapter [REF]>

Description: <Set of local software requirements including ID that define the operation of this API call.>

Timing: <fixed cyclic / variable cyclic / on pre condition>

Pre condition: <List of assumptions about the environment in which the API call must operate.>

Configuration: <Description of statically configurable attributes that affect this API call. For instance cycle time(s)

in case of fixed cyclic timing.>

8.6 Functional Diagnostics Interface

This chapter describes the interface the I/O Hardware Abstraction provides to the DCM
module to realize 'Functional Diagnostics of Software Components’.

AUTSSAR

"Functional Diagnostics of Software Components’ means, that by the provided inter-
face, the DCM module is able to control and read each implemented ECU signal.

8.6.1 loHwAb_Dcm_<EcuSignalName>

[SWS_loHwAb_00135] Definition of APl function loHwAb_Dcm_<EcuSignal

Name>

Upstream requirements: SRS_loHwAb_00002

[

Service Name

loHwAb_Dcm_<EcuSignalName>

Syntax void IoHwAb_Dcm_<EcuSignalName> (
uint8 action,
<EcuSignalDataType> signal

)

Service ID [hex] 0xB0

Sync/Async Synchronous

Reentrancy -

Parameters (in) action IOHWAB_RETURNCONTROLTOECU: Unlock the signal
IOHWAB_RESETTODEFAULT: Lock the signal and set it to a
configured default value IOHWAB_FREEZECURRENTSTATE:
Lock the signal to the current value IOHWAB_
SHORTTERMADJUSTMENT: Lock the signal and adjust it to a
value given by the DCM module

signal Value to adjust the signal to (only used for 'short term
adjustment’).

Parameters (inout) None

Parameters (out) None

Return value None

Description

This function provides control access to a certain ECU Signal to the DCM module (<Ecu
Signalname> is the symbolic name of an ECU Signal). The ECU signal can be locked and
unlocked by this function. Locking ‘freezes’ the ECU signal to the current value, the configured
default value or a value given by the parameter 'signal’.

Available via

loHWAb_Dcm.h

]

[SWS_loHwAb_00136]
Upstream requirements: SRS_loHwAb_00002

[This function allows controlling the associated ECU Signal, i.e. the ECU Signal can
be locked, unlocked, and adjusted to a certain value. |

[SWS_loHwADb_00138]
Upstream requirements: SRS_loHwAb 00002

[This function shall be pre compile time configurable On/Off. |

Locking a signal means, that the certain signal is software-locked towards the SW-
C, i.e. the SW-C’s requests have no effect on the hardware in the locked state. In
case C/S-communication is used for input signals, it might be necessary to have an
loHwAb-internal buffer, whose value can be adjusted by the DCM.

AUTSSAR

8.6.2 loHwAb_Dcm_Read<EcuSignalName>

[SWS_loHwAb_00139] Definition of API function loHwAb_Dcm_Read<EcuSignal
Name>

Upstream requirements: SRS_loHwAb 00002

[
Service Name loHwAb_Dcm_Read<EcuSignalName>
Syntax void IoHwAb_Dcm_Read<EcuSignalName> (
<EcuSignalDataType>* signal
)
Service ID [hex] 0xC0
Sync/Async Synchronous
Reentrancy -
Parameters (in) None
Parameters (inout) None
Parameters (out) signal Pointer to the variable where the current signal value shall be
stored
Return value None
Description This function provides read access to a certain ECU Signal to the DCM module (<Ecu
Signalname> is the symbolic name of an ECU Signal).
Available via loHwWAb_Dcm.h
]

[SWS_loHwADb_00140]
Upstream requirements: SRS_loHwAb_00002

[This function provides read access to a certain ECU Signal to the DCM module. The
read access is independent from the ECU Signal’s current state (locked/unlocked) and
shall always read the current physical value from the hardware. |

[SWS_loHwADb_00142]
Upstream requirements: SRS_loHwAb_00002

[This function shall be pre compile time configurable On/Off. |

AUTSSAR

8.7 Power State Functions

8.7.1 loHwAb_PreparePowerState<#MODE>

[SWS _lIoHwADb 00146] Definition of APl function loHwAb_PreparePower
State<#Mode> |

Service Name loHwAb_PreparePowerState<#Mode>
Syntax void IoHwAb_PreparePowerState<#Mode> (
void

)

Service ID [hex] 0x80

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The API shall be invoked by the loHwAbs in order to prepare the transition to a given power
state. The aim of this APl is to incapsulate all actions to prepare the HW for a predefined power
mode, decoupling application power definition from HW power states.

Available via loHwWADb.h

[SWS_loHwAb_00149] [This API is a configurable callout and shall be defined per
configuration once per Power Mode to be managed. |

[SWS_loHwAb_00150] [This callout shall be executed in the context of the loHwAbs
SWC, meaning that it has full access to the MCAL. |

Many peripheral power state transition requests can be connected to a given Power
Mode transition to be implemented by this callout, along with any other action needed
to bring the peripherals in the desired power state (cross dependencies between pe-
ripherals can be solved in this context).

8.7.2 loHwAb EnterPowerState <#MODE>

[SWS loHwAb 00147] Definition of APl function loHwAb_EnterPower
State<#Mode> |

Service Name loHwAb_EnterPowerState<#Mode>
Syntax void IoHwAb_EnterPowerState<#Mode> (
void
)
Service ID [hex] 0x90
Sync/Async Asynchronous
Reentrancy Non Reentrant

AUTSSAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description The API shall be invoked by the loHwAbs in order to effectively enter a power state which was

prepared by the APl loHwAb_PreparePowerState<#Mode>() . The aim of this APl is to
incapsulate all actions to set the HW in a power state corresponding to a predefined power
mode, decoupling application power definition from HW power states.

Available via loHwWADb.h

]

[SWS_loHwAb_00151] [This APl is a configurable callout and shall be defined per
configuration once per Power Mode to be managed. |

[SWS_loHwAb_00152] [This callout shall be executed in the context of the loHwAbs
SWC, meaning that it has full access to the MCAL. |

[SWS_loHwAb_00153] [This APl executes all power state transition prepared by the
preceding call to the correposonding loHwAb_PreparePowerState<#Mode>. |

8.8 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

8.8.1 Mandatory Interfaces

There are no mandatory interfaces for I/O Hardware Abstraction. Which interfaces the
I/O Hardware Abstraction uses depends on the expected functionality of the channels
that are defined by the SWC.

Example of an 1/0 Hardware Abstraction using all MCAL drivers APIs :

Note that <module_name>_Init and <module_name>_Delnit functions are not listed
below. The initialization sequence is called by the ECU state manager, and not by the
I/O Hardware Abstraction.

<module_name>_GetVersionInfo functions are also not listed here.
This table has been built according to following documents
* Driver ADC document [10]
Driver DIO document [11]
Driver ICU document [12]
Driver PWM document [13]
Driver PORT document [14]

AUTSSAR

* Driver GPT document [15]
* Driver SPI document [16]
* Driver OCU document [17]

[SWS_loHwAb_91003] Definition of mandatory interfaces required by module lo

HwADb |

API Function

Header File

Description

Adc_GetGroupStatus

Adc.h

Returns the conversion status of the requested ADC
Channel group.

Adc_GetStreamLastPointer

Adc.h

Returns the number of valid samples per channel,
stored in the result buffer. Reads a pointer, pointing
to a position in the group result buffer. With the
pointer position, the results of all group channels of
the last completed conversion round can be
accessed. With the pointer and the return value, all
valid group conversion results can be accessed (the
user has to take the layout of the result buffer into
account).

Adc_ReadGroup

Adc.h

Reads the group conversion result of the last
completed conversion round of the requested group
and stores the channel values starting at the Data
BufferPtr address. The group channel values are
stored in ascending channel number order (in
contrast to the storage layout of the result buffer if
streaming access is configured).

Adc_SetupResultBuffer

Adc.h

Initializes ADC driver with the group specific result
buffer start address where the conversion results
will be stored. The application has to ensure that the
application buffer, where DataBufferPtr points to,
can hold all the conversion results of the specified
group. The initialization with Adc_SetupResultBuffer
is required after reset, before a group conversion
can be started.

Adc_StartGroupConversion

Adc.h

Starts the conversion of all channels of the
requested ADC Channel group.

Adc_StopGroupConversion

Adc.h

Stops the conversion of the requested ADC Channel
group.

Dio_ReadChannel

Dio.h

Returns the value of the specified DIO channel.

Dio_ReadChannelGroup

Dio.h

This Service reads a subset of the adjoining bits of a
port.

Dio_ReadPort

Dio.h

Returns the level of all channels of that port.

Dio_WriteChannel

Dio.h

Service to set a level of a channel.

Dio_WriteChannelGroup

Dio.h

Service to set a subset of the adjoining bits of a port
to a specified level.

Dio_WritePort

Dio.h

Service to set a value of the port.

Gpt_CheckWakeup

Gpt.h

Checks if a wakeup capable GPT channel is the
source for a wakeup event and calls the ECU state
manager service EcuM_SetWakeupEvent in case of
a valid GPT channel wakeup event.

Gpt_DisableWakeup

Gpt.h

Disables the wakeup interrupt of a channel (relevant
in sleep mode).

Gpt_EnableWakeup

Gpt.h

Enables the wakeup interrupt of a channel (relevant
in sleep mode).

Gpt_GetTimeElapsed

Gpt.h

Returns the time already elapsed.

AUTSSAR

API Function Header File Description

Gpt_GetTimeRemaining Gpt.h Returns the time remaining until the target time is
reached.

Gpt_SetMode Gpt.h Sets the operation mode of the GPT.

Icu_DisableEdgeCount Icu.h This function disables the counting of edges of the
given channel.

Icu_DisableNotification Icu.h This function disables the notification of a channel.

Icu_DisableWakeup lcu.h This function disables the wakeup capability of a
single ICU channel.

Icu_EnableEdgeCount lcu.h This function enables the counting of edges of the
given channel.

Icu_EnableNoatification Icu.h This function enables the notification on the given
channel.

Icu_EnableWakeup Icu.h This function (re-)enables the wakeup capability of
the given ICU channel.

Icu_GetDutyCycleValues lcu.h This function reads the coherent active time and
period time for the given ICU Channel.

Icu_GetEdgeNumbers lcu.h This function reads the number of counted edges.

Icu_GetInputState lcu.h This function returns the status of the ICU input.

Icu_GetTimeElapsed Icu.h This function reads the elapsed Signal Low Time for
the given channel.

Icu_GetTimestamplndex Icu.h This function reads the timestamp index of the given
channel.

Icu_ResetEdgeCount lcu.h This function resets the value of the counted edges
to zero.

Icu_SetActivationCondition Icu.h This function sets the activation-edge for the given
channel.

Icu_StartSignalMeasurement Icu.h This function starts the measurement of signals.

Icu_StartTimestamp lcu.h This function starts the capturing of timer values on
the edges.

Icu_StopSignalMeasurement Icu.h This function stops the measurement of signals of
the given channel.

Icu_StopTimestamp Icu.h This function stops the timestamp measurement of
the given channel.

Ocu_DisableNotification Ocu.h This service is used to disable notifications from an
OCU channel.

Ocu_EnableNoatification Ocu.h This service is used to enable notifications from an
OCU channel.

Ocu_GetCounter Ocu.h Service to read the current value of the counter.

Ocu_SetAbsoluteThreshold Ocu.h Service to set the value of the channel threshold
using an absolute input data.

Ocu_SetPinState Ocu.h Service to set immediately the level of the pin
associated to an OCU channel.

Ocu_SetRelativeThreshold Ocu.h Service to set the value of the channel threshold
relative to the current value of the counter.

Ocu_StartChannel Ocu.h Service to start an OCU channel.

Ocu_StopChannel Ocu.h Service to stop an OCU channel.

Port_RefreshPortDirection Port.h Refreshes port direction.

Port_SetPinDirection Port.h Sets the port pin direction

Port_SetPinMode Port.h Sets the port pin mode.

AUTSSAR

A

API Function Header File Description

Pwm_GetOutputState Pwm.h Service to read the internal state of the PWM output
signal.

Spi_AsyncTransmit Spi.h Service to transmit data on the SPI bus.

Spi_Cancel Spi.h Service cancels the specified on-going sequence
transmission.

Spi_GetHWUnitStatus Spi.h This service returns the status of the specified SPI
Hardware microcontroller peripheral.

Spi_GetJobResult Spi.h This service returns the last transmission result of
the specified Job.

Spi_GetSequenceResult Spi.h This service returns the last transmission result of
the specified Sequence.

Spi_GetStatus Spi.h Service returns the SPI Handler/Driver software
module status.

Spi_MainFunction_Handling SchM_Spi.h -

Spi_ReadIB Spi.h Service for reading synchronously one or more data
from an IB SPI Handler/Driver Channel specified by
parameter.

Spi_SetAsyncMode Spi.h Service to set the asynchronous mechanism mode
for SPI busses handled asynchronously.

Spi_SetupEB Spi.h Service to setup the buffers and the length of data
for the EB SPI Handler/Driver Channel specified.

Spi_SyncTransmit Spi.h Service to transmit data on the SPI bus

Spi_WritelB Spi.h Service for writing one or more data to an 1B SPI
Handler/Driver Channel specified by parameter.

8.8.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the 1/0 Hardware Abstraction.

[SWS_loHwAb 91004] Definition of optional interfaces requested by module lo
HwADb |

API Function Header File Description
Det_ReportError Det.h Service to report development errors.
EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.

8.8.3 Job End Notification

None

AUTSSAR

9 Sequence diagrams

9.1
ple)

This sequence diagram explains the example of chapter 7.5.2.5.

In this example, the Sensor / Actuator Component is the client, the 1/0O Hardware Ab-

straction is the server.

The Sensor/Actuator Component asks for a new value of the af_pressure AUTOSAR

ECU-signal provided by the I/0 Hardware Abstraction (exam-

signal that is an ECU signal on the level of the /O Hardware Abstraction.

After Adc conversion is finished, a notification coming from MCAL driver is converted
into a RTE event for the Sensor / Actuator Component. Then, it can perform a syn-

chronous read of the value present in the af_pressure signal buffer.

* Notification mechanism is activated

«SensorActuatorHW» «module» «module» «module» «Peripheral»
Sensor / Actuator EcuM loHWAb Adc ADC Conversion Unit
Component
T T T T T
| | | | |
I | Adc_Init(const Adc_ConfigType*) - | !
I t Ll I
| | |
! ! Adc_Init !
1 e ———_—— — —— —H——— = i~ 1
| loHWAb_Init<Init_Id>(const | |
: IoHwAb<Init_ld>_ConfigType*l) : :
loHWAb_Init<Init_ld>()	
I I I	
T L	
1 1	Adc_EnableGroupNotification(Adc_GroupType) 1 1
I I I	
I I I	
	Adc_EnableGroupNotification()
I I DS I	
	L -
loHWAb_GetVoltage(af_pressure)	: :
t	
: Adc_StartGroupConversion(Adc_GroupType) : :	
: start conversion !	
Adc_StartGroupConversion()	
loHwAb_GetVoltage() ettty	
< --—-————--- T ——	
I	
Interrupt()	
: loHWAb_Adc_Notification_Group1()	
I] I	
I	
Adc_OnDemandReadChannel(Adc_ChannelType):!	
: Adc_ValueType : :	
I I	
! = _ _ _ Adc_OnDemandReadChannel0 _ _ _ _	!
SetRTEEvent() :	
L] i L	
loHWAb_ReadVoltage(af_pressue, &buffer)) ! : :	
'
loHwAb_ReadVoltage()
<__________'i' _____________ Group 1:
T | T * Channel 1
' ' ' * Channel 2

Figure 9.1: Sequence diagram - ADC conversion

AUTSSAR

Notes: APIs loHwAb_GetVoltage(af_pressure) and loHwAbReadVoltage(af_pressure,
&buffer) are not specified interfaces, and are given only for the example.

The diagram in this example is intended to show the runnables and is not intended to
show the server port to runnable mapping.

AUTSSAR

9.2 Setting ADC and PWM in a low consumption power state as a
result of a request for an application low power mode (exam-

ple)

«module» «module» «module» «module» «module»
BswM Rte loHWAb Adc Pwm
SO

T
RTE/SchMSwitch(cha)) | :

L
____________ I
1
OnEntryRunnable_LowPowerModeA()
>
>

T
|
|
I
|
|
|
IonAbiPreparePowerstalteiLowPowerModeA() :
| |
Adc_GetCurrentPowerState() | |
»l |
=] I
e —————m—————— |
|
Pwm_GetCurrentPowerState() |
I
Ke —————————— —— — i e ——|
I
Adc_PreparePowerState(PwrSts_1) —
1
> At the moment in witch the API
<MSN>_PreparePowerState retums, the
e ——————— preparation process is started and runs in
background, driven by the
I <MSN>_Main_PowerStateTransitionManager
: API.
Pwm_PreparePowerState(PwrSts_3) |
t
I
e ————————————— = ——
T 0 - o
< ——= loHwAbs_PollForResults just indicates a periodic runnable of
R —— the loHwWAbs which checks if all notifications have been sent
L o and, if so, activates the second phase of the power state
i PeriodicTask() ey transition: power state setting.
>
loHwAb_PollForResults() | 1
I I
L L
! This Callback is called by the
O — MCAL_B_Main_PowerStateTransitionManager. The same is
valid for MCAL_A.

loHWAb_Pwm_NotifyReadyForPowerStateLowPowerModeA() !

b]
I
I
|
|
I
I
I
|
|
I
I
I
|
|
-
I
|
|
I
I
|
|
|
I
I
|
|
I
I

PeriodicTask() | |

y

|

I

I

|

|

|

I I

loHWAb_PollForResults() | |
| |

'

IoHwAbiEmerPowerStatgLPl() :
I
|
|
|
I
I
L

Adc_SetPowerState() :
»

RTE/SchMSwitch(LowPowerModeA_Transition_End)

UpdateModePorts()

<
¢

4

- - -

Figure 9.2: Asynchronous power state setting

The sequence diagram in figure 9.2 refers to a power state transition, where the periph-
erals are configured for asynchronous power state transitions. After having received

AUTSSAR

a request to prepare a power state, the peripheral’s driver issues a notification to the
caller (in this case loHwADs) to inform it of being ready to transition to the new power
state.

In the following sequence diagram a synchronous transition is shown (the peripheral is
immediately ready to transition, as soon as the preparation APIs return):

«module» «module» «module» «module» «module»
BswM Rte loHWAb Adc Pwm
oo

I
| OnEntryRunnable_LowPowerModeA()

|
loHWAb_PreparePowerState_LowPowerModeA()
|

Adc_GetCurrentPowerState() :

< _____________

Pwm_GetCurrentPowerState()

T -
< - o U

Adc_PreparePowerState(PwrSts_1)

B 4]

|
Pwm_PreparePowerState(PwrSrs_3)
T

return, the preparation is completed and the peripherals

- | At the moment the <MSN>_PreparePowerTransition APIs
are ready to be set in the new power state.

T
loHwAbs_EnterPowerStateLowPowerModeA()

|

Adc_SetPowerState() |

RTE/SchMSwitch(LowPowerModeA_Transition_End)

)
]
I
I
I
|
]
I
I
I
]
|
I
_d
]
I
I
I
|
]
I
]
I
]
]
I
|
]
4
] N —

UpdateModePorts()

Figure 9.3: Synchronous power state setting

AUTSSAR

10 Configuration specification

The 1/0 Hardware Abstraction has no standardized configuration parameters and is
therefore not part of the AUTOSAR ECU-C Parameter Definition. All parameters are
vendor specific parameters.

10.1 Published Information

For details refer to [4] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_loHwAb_NA_00999]

Upstream requirements: SRS_BSW_00300, SRS_BSW_00321, SRS_BSW_00325, SRS_BSW _
00341, SRS_BSW_00342, SRS_BSW_00343, SRS_BSW_00398,
SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00404, SRS_BSW_
00405, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00424,
SRS_BSW_00428, SRS_BSW_00432, SRS_BSW_00439, SRS_BSW_
00005, SRS_BSW_00007, SRS_BSW_00160, SRS_BSW_00161,
SRS_BSW_00162, SRS_BSW_00164, SRS_BSW_00167, SRS_BSW_
00168, SRS_BSW _ 00170, SRS_SPAL_12057, SRS_SPAL_12063,
SRS_SPAL_12064, SRS_SPAL_12067, SRS_SPAL_12068, SRS_
SPAL_12069, SRS_SPAL_12075, SRS_SPAL_12077, SRS_SPAL_
12078, SRS_SPAL_12092, SRS_SPAL_12125, SRS_SPAL_12129,
SRS _SPAL 12163, SRS_SPAL_12169, SRS_SPAL_12263, SRS _
SPAL_12264, SRS_SPAL_12265, SRS_SPAL_12267, SRS _SPAL_
12461, SRS_SPAL_12462, SRS_SPAL_12463, SRS_SPAL_00157

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Interface with MCAL drivers
	5.1.1 Overview
	5.1.2 Summary of interfaces with MCAL drivers

	5.2 Interface with the communication drivers
	5.3 Interface with System Services
	5.4 Interface with DCM
	5.5 File structure
	5.5.1 Code file structure
	5.5.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Integration code
	7.1.1 Background & Rationale
	7.1.2 Requirements for integration code implementation

	7.2 ECU Signals Concept
	7.2.1 Background & Rationale
	7.2.2 Requirements about ECU signals

	7.3 Attributes
	7.3.1 Background & Rationale
	7.3.2 Requirements about ECU signal attributes
	7.3.2.1 Filtering/Debouncing Attribute
	7.3.2.2 Age Attribute

	7.4 I/O Hardware Abstraction and Software Component Template
	7.4.1 Background & Rationale
	7.4.2 Requirements about the usage of Software Component template
	7.4.2.1 Ports concept and I/O Hardware Abstraction
	7.4.2.2 Software Component and Runnable concept

	7.5 Scheduling concept for I/O Hardware Abstraction
	7.5.1 Background & Rationale
	7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept
	7.5.2.1 Operations for interfaces provided by Ports
	7.5.2.2 Notification and/or Callback
	7.5.2.3 Main function / job processing function
	7.5.2.4 Initialization, De-initialization and/or Callout
	7.5.2.5 I/O Hardware Abstraction scheduling examples

	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Production Errors
	7.6.4 Extended Production Errors

	7.7 Other requirements
	7.8 I/O Hardware Abstraction layer description
	7.8.1 Background & Rationale
	7.8.2 Requirements
	7.8.2.1 I/O Hardware Abstraction Ports definition

	7.9 Examples
	7.9.1 EXAMPLE 1: Use case of on-board hardware
	7.9.2 EXAMPLE 2: Use case of failure monitoring
	7.9.3 EXAMPLE 3: Output power stage
	7.9.4 EXAMPLE 4: Setting sensor and controlling periphery in low power state

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 IoHwAb<Init_Id>_ConfigType

	8.3 Function definitions
	8.3.1 IoHwAb_Init<Init_Id>
	8.3.2 IoHwAb_GetVersionInfo

	8.4 Callback notifications
	8.4.1 IoHwAb_AdcNotification<#groupID>
	8.4.2 IoHwAb_Pwm_Notification<#channel>
	8.4.3 IoHwAb_IcuNotification<#channel>
	8.4.4 IoHwAb_GptNotification<#channel>
	8.4.5 IoHwAb_OcuNotification<#channel>
	8.4.6 IoHwAb_Pwm_NotifyReadyForPowerState<#MODE>
	8.4.7 IoHwAb_Adc_NotifyReadyForPowerState<#MODE>

	8.5 Scheduled functions
	8.5.1 <Name of scheduled function>

	8.6 Functional Diagnostics Interface
	8.6.1 IoHwAb_Dcm_<EcuSignalName>
	8.6.2 IoHwAb_Dcm_Read<EcuSignalName>

	8.7 Power State Functions
	8.7.1 IoHwAb_PreparePowerState<#MODE>
	8.7.2 IoHwAb_ EnterPowerState <#MODE>

	8.8 Expected interfaces
	8.8.1 Mandatory Interfaces
	8.8.2 Optional Interfaces
	8.8.3 Job End Notification

	9 Sequence diagrams
	9.1 ECU-signal provided by the I/O Hardware Abstraction (example)
	9.2 Setting ADC and PWM in a low consumption power state as a result of a request for an application low power mode (example)

	10 Configuration specification
	10.1 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

