AUTSSAR

D t Titl Specification of Fixed Point
grelinnisnis iz Interpolation Library

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 396

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description

AUTOSAR
2025-11-27 R25-11 Release « Editorial changes
Management

AUTOSAR

2024-11-27 | R24-11 Release + Fixed CheckDocumentSource errors
Management

AUTOSAR

2023-11-23 R23-11 Release * Fixed CheckDocumentSource errors
Management

* Functions updated: SWS_Ifx_00014,
SWS _Ifx_00017, SWS_Ifx 00022,
SWS_Ifx_00027, SWS_Ifx_00032,
SWS_Ifx_00209, SWS_Ifx_00041,
SWS_Ifx_00051, SWS_Ifx_00062,
SWS _Ifx_00077, SWS_Ifx 00087,
SWS_Ifx_00097, SWS_Ifx_00110,

AUTOSAR SWS_Ifx_00122, SWS_Ifx_00222,
2022-11-24 | R22-11 Release SWS_lfx_00136, SWS_Ifx_00151,
Management SWS_Ifx_00236, SWS_lfx_00166,

SWS_Ifx_00181, SWS_Ifx_00247,
SWS_Ifx_00185, SWS_Ifx_00186,
SWS_Ifx_00006 and SWS_Ifx_00821.

 Functions added: SWS_Ifx 91002,
SWS_Ifx_91003, SWS_Ifx_ 91004 and
SWS_ Ifx_91005.

AUTSSAR

» No content changes (only converted to

AUTOSAR LaTex)
2021-11-25 | R21-11 Release
Management « Artifact inclusion based on
ArtifactAnalysis corrected
AUTOSAR
2020-11-30 | R20-11 Release » Chapter 7.1 Error sections updated
Management
AUTOSAR « Editorial changes
2019-11-28 | R19-11 | Release - Changed Document Status from Final to
Management pUbllShed
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
* A new requirement (SWS_Ifx_00251)
has been added under Section 7.6 to
provide clarity on the rounding
AUTOSAR mechanism for intermediate result
2017-12-08 | 4.3.1 Release calculation.
Management
* A requirement (SWS_Ifx_00250) has
been removed as it is not realizable for
all the scenarios
» Added a new requirement (SWS_Ifx_
00250) to provide info on symmetricity
for interpolation services
A note has been added in SWS_Ifx_
00016 as a suggestion to provide
hardware independent solution too
* Section 2 has been updated to include
AUTOSAR ?rt;t;reerwatlon for (DET) Default Error
2016-11-30 | 4.3.0 Release
Management Updated IFX document to support

MISRA 2012 standard. (Removed
redundant statements in SWS_Ifx_
00809 which already exist in SWS_BSW
document and SWS_SRS document)

» Modified the reference to SRS_BSW _
General (SRS_BSW_00437) & (SRS _
BSW_00448) for SWS_Ifx_00436 &
SWS_Ifx_00999 requirements

AUTSSAR

» Added a new statement in Section 8.5
below the formula to provide more clarity
to the users

» Updated the “Requirements tracea-bility“

AUTOSAR section
2015-07-31 4.2.2 Release
Management » Updated Record layouts for distributed
interpolation routines in SWS_Ifx_00185
» Updated SWS_Ifx_00001 for naming
convetion under Section 5.1, File
Structure
* IFX RecordLayout Blueprint reference in
section 3.1
» The usage of const is corrected in
function parameters for SWS_Ifx_00004,
AUTOSAR SWS_Ifx_00014, SWS_Ifx_00015,
2014-10-31 4.2.1 Release SWS_Ifx_00017, SWS_Ifx_00020,
Management SWS Ifx 00022, SWS_Ifx 00025,
SWS_Ifx_00027, SWS_Ifx_00030,
SWS_Ifx_00032, SWS_Ifx_00205 &
SWS_Ifx_00209
» Modified serial numbers in Section 3.2
AUTOSAR * Removed columns Element6 &
2014-03-31 41.3 Release Element7 in the Record Layout table of
Management SWS_Ifx_00186
* Corrections made for IntMap_s16u8_s8
function in Record Layout Table of
AUTOSAR SWS_Ifx_00186
2013-10-31 | 4.1.2 Release « Corrected array-out-of-bounds for Ifx_
Management

IpoMap function

« Editorial changes

AUTSSAR

* Rounding mechanism specified for
DPRatio calculation

» Corrected the formula for integrated map
interpolation and map interpolation

« Removed unwanted Ratio calculation for
integrated fix-1 map look up with

AUTOSAR rounding and Integrated fix-map look up
2013-03-15 | 4.1.1 Administration without rounding and integrated map
look-up without rounding
» Modified the reference to non-existant
metamodel
elementCalprmElementPrototype to
Parameter-DataPrototype
* Corrected for 'DependencyOnArtifact’
AUTOSAR * Removal of rounding off feature from
2011-12-22 4.0.3 Administration "MAP lookup routines’
AUTOSAR » DPSearch function optimised using
2010-09-30 | 3.1.5 Administration structure pointer
2010-02-02 | 3.1.4 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

Dependencies to other modules
51 Filestructure
Requirements Tracing

Functional specification

7.1 Error Classification
7.1.1 DevelopmentErrors
7.1.2 Runtime Errors e
7.1.3 Production Errors
7.1.4 Extended ProductionErrors

7.2 Initialization and shutdown

7.3 Using Library APl o

7.4 library implementation

API specification

8.1 Importedtypes e
8.2 Type definitions
8.3 Commentaboutrounding
8.4 Comment about routines optimization
8.4.1 Targetoptimization.,
8.4.2 Optimization for routine numbers
8.5 Interpolation routines definitions o oo
8.5.1 Distributed data point search and interpolation
8.5.1.1 DataPointSearch
8.5.1.2 Curveinterpolation
8.5.1.3 Curvelook-up
8.5.1.4 Mapinterpolation L.
8515 Maplook-up
8.5.1.6 Map look-up withoutrounding
8.5.2 Integrated data point search and interpolation.
8.5.2.1 Integrated curve interpolation

10

11

11
11

12

12
12

13
13
14

AUTSSAR

10

8.5.2.2 Integratedcurvelook-up 34
8.5.2.3 Integrated fix-curve interpolation 36
8.5.2.4 Integrated fix-curve lookup L. 37
8.5.2.5 Integrated fix- | curve interpolation 40
8.5.2.6 Integrated fix- I curvelookup 41
8.5.2.7 Integrated map interpolation oL 44
8.5.2.8 Integrated maplook-up L. 48
8.5.2.9 Integrated map look-up withoutrounding 51
8.5.2.10 Integrated fix- map interpolation 53
8.5.2.11 Integrated fix-map lookup oL 55
8.5.2.12 Integrated fix- map look up without rounding 58
8.5.2.13 Integrated fix- | map interpolation 60
8.5.2.14 Integrated fix- Imaplookup 62
8.5.2.15 Integrated fix- | map look up without rounding 65
8.5.2.16 Cuboid 3D interpolation 67
8.5.3 Record layouts for interpolation routines 68
8.5.3.1 Record layoutsformapvalues 68
8.5.3.2 Record layout definitionso 69
8.6 Examplesofuseoffunctions. 70
8.7 Version APl e 71
8.7.1 Ifx_GetVersioninfo o 71
8.8 Callback notifications 71
8.9 Scheduled functions 71
8.10Expected Interfaces 72
8.10.1 Mandatory Interfaces 72
8.10.2 Optional Interfaces 72
8.10.3 Configurable interfaces, 72
Sequence diagrams 73
Configuration specification 74
10.1How toread thischapter 74
10.2Containers and configuration parameters 74
10.3Published Information 74
Not applicable requirements 75
Change history of AUTOSAR traceable items 76
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 76
B.1.1 Added Specification ltemsin R25-11 76
B.1.2 Changed Specification Itemsin R25-11 76
B.1.3 Deleted Specification ltemsin R25-11 76

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . e 76

AUTSSAR

B.2.1 Added Specification ltemsin R24-11 76
B.2.2 Changed Specification ltemsin R24-11 76
B.2.3 Deleted Specification ltemsin R24-11 76
B.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e 77
B.3.1 Added Specification ltemsin R23-11 77
B.3.2 Changed Specification Itemsin R23-11 77

B.3.3 Deleted Specification ltemsin R23-11 77

AUTSSAR

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
and below figure shows position of AUTOSAR library in layered architecture.

ArnOo4CP

W—-r

Figure 1.1: Layered Architecture

Ifx routines specification specifies the functionality, APl and the configuration of the
AUTOSAR library dedicated to interpolation routines for fixed point values.

The interpolation library contains the following routines:
+ Distributed data point search and interpolation
* Integrated data point search and interpolation

All routines are re-entrant and can be used by multiple applications at the same time.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the IFX Library

module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Cur Curve for Interpolation

DET Default Error Tracer

DPSearch Data point search

DPResult Data point result

Ifx Interpolation Fixed point

IpoCur Interpolation of curve used for distributed search and
interpolation

LkUpCur Curve look-up used for distributed search and interpolation

IpoMap Interpolation of map used for distributed search and
interpolation

LkUpMap Map look-up used for distributed search and interpolation

IntlpoCur Integrated interpolation of curve

IntLkUpCur Integrated curve look-up

IntlpoFixCur Integrated interpolation of fixed curve

IntLkUpFixCur Integrated fixed curve look-up

IntlpoFixICur Integrated interpolation of fixed interval curve

IntLkUpFixICur Integrated fixed interval curve look-up

IntlpoMap Integrated interpolation of map

IntLkUpMap Integrated map look-up

IntlpoFixMap Integrated interpolation of fixed map

IntLkUpFixMap Integrated fixed map look-up

IntlpoFixIMap Integrated interpolation of fixed interval map

IntLkUpFixIMap Integrated fixed interval map look-up

Lib Library

Map Map for Interpolation

s8 Mnemonic for the sint8, specified in AUTOSAR_SWS_
PlatformTypes

s16 Mnemonic for the sint16, specified in AUTOSAR_SWS
PlatformTypes

s32 Mnemonic for the sint32, specified in AUTOSAR_SWS _
PlatformTypes

u8 Mnemonic for the uint8, specified in AUTOSAR_SWS _
PlatformTypes

ulé Mnemonic for the uint16, specified in AUTOSAR_SWS_
PlatformTypes

u32 Mnemonic for the uint32, specified in AUTOSAR_SWS_
PlatformTypes

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] IFX_RecordLayout_Blueprint
AUTOSAR_MOD _IFX_RecordLayout Blueprint.arxml

[3] ISO/IEC 9899:1990 Programming Language - C
https://www.iso.org

[4] ASAM MCD-2MC Version 1.6
http://www.asam.net

[5] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[6] Requirements on Libraries
AUTOSAR_CP_RS_Libraries

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [5, SWS BSW
General], which is also valid for IFX Library.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for IFX Library.

https://www.iso.org
http://www.asam.net

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

5.1 File structure

[SWS_Ifx_00001] [The Ifx module shall provide the following files:

 C files, Ifx_<name>.c used to implement the library. All C files shall be prefixed
with ’Ifx_".

Implementation & grouping of routines with respect to C files is recommended as per
below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,
eg.: Ifx_IntlpoMap_u16u8_u8.c etc.
Option 2 : <Name> can have common name of group of functions:
» 2.1 Group by object family:
eg.:Ifx_IpoMap.c, Ifx_IpoCur.c, Ifx_DPSearch.c
+ 2.2 Group by routine family:
eg.: Ifx_IpoMap.c, Ifx_IntlpoMap.c, Ifx_lpoCur.c etc.
+ 2.3 Group by method family:
eg.: Ifx_lIpo.c, Ifx_Intlpo.c, Ifx_Lkup.c, Ifx_IntLkup.c, etc.
» 2.4 Group by architecture:
eg.: Ifx_IpoMap8.c, Ifx_IpoMap16.c
» 2.5 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Ifx functions,
eg.: Ifx.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Linking only on-demand is also possible in case of some
options. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [6] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Ifx_00815]

[SRS_BSW_00007]

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_lfx_00809]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data

types

[SWS_Ifx_00812]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Ifx_00813]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_lfx_00815]

[SRS_BSW_00321]

The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_lfx_00815]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Ifx_00811]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_Ifx_00814]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean
type

[SWS_Ifx_00812]

[SRS_BSW_00379]

All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_Ifx_00814]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Ifx_00814]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Ifx_00815] [SWS_lfx_00816]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Ifx_00816]

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_lx_00810]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other modules

[SWS_Ifx_00999]

[SRS_LIBS_00001]

The functional behavior of each
library functions shall not be
configurable

[SWS_Ifx_00818]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_LIBS_00002]

A library shall be operational before
all BSW modules and application
SW-Cs

[SWS_Ifx_00800]

[SRS_LIBS_00003]

A library shall be operational until the
shutdown

[SWS_lfx_00801]

[SRS_LIBS_00015]

It shall be possible to configure the
microcontroller so that the library
code is shared between all callers

[SWS_Ifx_00806]

[SRS_LIBS_00017]

Usage of macros should be avoided

[SWS_lfx_00807]

[SRS_LIBS_00018]

A library function may only call library
functions

[SWS_lfx_00808]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Error Classification

[SWS_Ifx_00823] [Chapter [5, General Specification of Basic Software Modules] 7.2
“Error Handling” describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules. |

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

7.2 Initialization and shutdown

[SWS_Ifx_00800]
Upstream requirements: SRS_LIBS_ 00002

[Ifx library shall not require initialization phase. A Library function may be called at the
very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall
be ready. |

[SWS_Ifx_00801]
Upstream requirements: SRS_LIBS_00003

[Ifx library shall not require a shutdown operation phase. |

AUTSSAR

7.3 Using Library API

Ifx API can be directly called from BSW modules or SWC. No port definition is required.
It is a pure function call.

The statement ’Ifx.h’ shall be placed by the developer or an application code generator
but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library,
the developer should add an Implementation-DependencyOnAtrtifact in the BSW/SWC
template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on a library behaviour, not on a supplier implementation. However,
the SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated.

7.4 library implementation

[SWS_Ifx_00806]
Upstream requirements: SRS_LIBS_00015

[The Ifx library shall be implemented in a way that the code can be shared among
callers in different memory partitions. |
[SWS_Ifx_00807]

Upstream requirements: SRS_LIBS_00017
[Usage of macros should be avoided. The function should be declared as function or
inline function. Macro #define should not be used. |
[SWS_Ifx_00808]

Upstream requirements: SRS_LIBS 00018
[A library function can call other library functions because all library functions shall be
re-entrant. A library function shall not call any BSW modules functions, e.g. the DET. |
[SWS_Ifx_00809]

Upstream requirements: SRS_BSW_00007

[The library, written in C programming language, should conform to the MISRA C
Standard.

Please refer to SWS_BSW_00115 for more details. |

[SWS_Ifx_00810]
Upstream requirements: SRS_BSW_00437

[Each AUTOSAR library Module implementation <library>*.c and

AUTSSAR

<library>*.h shall map their code to memory sections using the AUTOSAR memory
mapping mechanism. |

[SWS Ifx_00811]
Upstream requirements: SRS_BSW_00348

[Each AUTOSAR library Module implementation <library>*.c, that uses AUTOSAR in-
teger data types and/or the standard return, shall include the header file Std_Types.h. |

[SWS_Ifx_00812]
Upstream requirements: SRS_BSW_00304, SRS_BSW_00378

[All AUTOSAR library Modules should use the AUTOSAR data types (integers,
boolean) instead of native C data types, unless this library is clearly identified to be
compliant only with a platform. |

[SWS_Ifx_00813]
Upstream requirements: SRS_BSW_00306

[All AUTOSAR library Modules should avoid direct use of compiler and platform spe-
cific keyword, unless this library is clearly identified to be compliant only with a platform.
eg. #pragma, typeof etc. |

[SWS_Ifx_00820] [If input value is less than first distribution entry then first value of
the distribution array shall be returned or used in the interpolation routines. If input
value is greater than last distribution entry then last value of the distribution array shall
be returned or used in the interpolation routines. |

[SWS_Ifx_00821] [Axis distribution passed to Ifx routines shall have normal monotony
sequence. |

[SWS_Ifx_00251] [The intermediate results during unscaling in interpolation calcula-
tion shall be Rounded towards zero. |

AUTSSAR

8 API specification

8.1 Imported types

In this chapter, all types included from the following modules are listed :

[SWS_Ifx_91001] Definition of imported datatypes of module Ifx [

Module

Header File

Imported Type

Std

Std_Types.h

Std_VersionInfoType

]

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

Thus, in order to improve the portability of the software these types are defined in Plat-
form_Types.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in
the library routine names.

Size Platform Type Mnemonic Range

unsigned 8-Bit boolean NA [TRUE, FALSE]

signed 8-Bit sint8 s8 [-128, 127]

signed 16-Bit sint16 s16 [-32768, 32767]

signed 32-Bit sint32 s32 % -2147483648, 2147483647
unsigned 8-Bit uint8 u8 [0,255]

unsigned 16-Bit uint16 ul6 [0, 65535]

unsigned 32-Bit uint32 u32 [0, 4294967295]

Table 8.1: Mnemonic for Base Types

As a convention in the rest of the document:

* mnemonics will be used in the name of the routines (using <InTypeMn1> that

means Type Mnemonic for Input)

+ the real type will be used in the description of the prototypes of the routines (using
<InType> or <OutType>).

AUTSSAR

8.2 Type definitions

Structure definition :

[SWS_Ifx_00002] Definition of datatype Ifx_DPResultU16_Type |

Name Ifx_DPResultU16_Type

Kind Structure

Elements Index
Type uint16
Comment Data point index
Ratio
Type uint16
Comment Data point ratio

Description Structure used for data point search for index and ratio

Available via Ifx.h

]

[SWS_Ifx_00003] [Ratio shall have resolution of 27|
[SWS_Ifx_00248] [Ratio shall be rounded towards zero |

[SWS_Ifx_00200] [Ifx_DPResultU16_Type structure shall not be read/write/modified
by the user directly. Only Ifx routines shall have access to this structure. |

8.3 Comment about rounding

Two types of rounding can be applied:

Results are 'rounded off’, it means:
* 0 <=X<0.5rounded to 0
* 0.5 <= X < 1 rounded to 1
* -0.5<X<=0roundedto 0
* -1 < X <=-0.5 rounded to -1

Results are rounded towards zero.
e 0<=X<1roundedto O
e -1 <X <=0roundedto 0

AUTSSAR

8.4 Comment about routines optimization

8.4.1 Target optimization

The routines described in this library may be realized as regular routines or inline func-
tions. For ROM optimization purposes, it is recommended that the c routines be real-
ized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:
+ 00302
Some routines can be replaced by another routine using integer promotion

« Some routines can be replaced by the combination of a limiting routine and a
routine with a different signature.

8.4.2 Optimization for routine numbers

Many routines can be omitted by exchanging ’X’ and ’Y’ data types. With this method,
reduction in total number of routines is possible in case of Map interpolation routines.
This optimization of routine numbers is done based on below mentioned rules.

» Rule 1: Bigger data type of X’ and Y’ comes first . (16 Bit before 8 Bit)
* Rule 2: unsigned before signed (u16 before s16)
» Order: u32, s32, u16, s16, u8, s8

In this case, below routine can be replaced as :

Ifx_IntlpoMap_s8u16_u16

With

Ifx_IntlpoMap_u16s8_u16

Note: swapped inputs need another map value order in memory, see record layout
section

8.5 Interpolation routines definitions

Interpolation between two given points is calculated as shown below.
where: X is the input value

x0 = data point before X

x1 = data point after X

y0 = value at x0

AUTSSAR

y1 = value at x1

Quantization error is by design and shall not be compensated in implementation.

W 4 — Linear interpolation f— 1
— - Lookup - '
@ Data points

- - original curve

Y

L - X
Figure 8.1: Linear and lookup interpolation
There are two interpolation methods.
* Linear interpolation
* Lookup interpolation

Above figure differentiates linear and lookup integration method. Linear method inter-
polates result considering two data points, whereas lookup interpolation returns entry
data point.

Data point arrays can be grouped as one array or one structure for all elements as
shown below.

one array for all elements :

uint8 Curve_u8 []={5,0,10,26,36,64,1,12,17,11,6};
one structure for all elements :

struct

{sint16 N = 5;

uint8 X[] ={0,10,26,36,64};

uint8 Y[] ={1,12,17,11,6};

} Curve_us8;

where, number of samples = 5

X axis distribution = 0 to 64

Y axis distribution = 1 to 6

AUTSSAR

Interpolation routines accepts arguments separately to support above scenarios. Rou-
tine call example is given below for array and structure grouping respectively.

Example :

uint8 Ifx_IntlpoCur_u8_u8 (15, Curve_u8[0], &Curve_u8[1], &Curve_u8[6]);
uint8 Ifx_IntlpoCur_u8_u8 (15, Curve_u8.N, &Curve _u8.X, &Curve_u8.Y);
Interpolation can be calculated in two ways as shown below:

1. Distributed data point search and interpolation

2. Integrated data point search and interpolation

8.5.1 Distributed data point search and interpolation

In this interpolation method data point search (e.g. index and ratio) is calculated using
routine Ifx_DPSearch_<InTypeMn> which returns result structure Ifx_DPResultU16_
Type. It contains index and ratio information. This result can be used by curve interpo-
lation, curve look-up interpolation, map interpolation and map look-up interpolation.

8.5.1.1 Data Point Search

[SWS_Ifx_00004] Definition of API function Ifx_DPSearch_<InTypeMn> |

Service Name Ifx_DPSearch_<InTypeMn>

Syntax void Ifx_DPSearch_<InTypeMn> (
Ifx_DPResultUl6_Typex dpResult,
<InType> Xin,

<InType> N,

const <InType>x X_array

)

Service ID [hex] 0x0001 to 0x0004

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Xin Input value
N Number of samples
X_array Pointer to the X axis distribution array

Parameters (inout) None

Parameters (out) dpResult Pointer to the result structure

Return value None

Description Ifx_DPSearch_<InTypeMn> routine searches the position of input Xin within the given
distribution array X_array, and returns index and ratio necessary for interpolation.

Available via Ifx.h

]

[SWS_Ifx_00006] [If (X_array[0] <= Xin <= X_array[N-1]), then returned Index shall be
the lowest index.

AUTSSAR

dpResult ->Index = index- dpResult ->Ratio = (Xin - X_array[index]) / (X_array [index+1]
- X_array [index]) |

[SWS_Ifx_00008] [If the input value matches with one of the distribution array values,
then return the respective index and ratio = 0.

If (Xin == X_array[index]), then
dpResult ->Index = index

dpResult ->Ratio = 0]

[SWS_Ifx_00009] [If (Xin < X_array[0]), then return first index of an array and ratio = 0
dpResult ->Index = 0
dpResult ->Ratio = 0]

[SWS_Ifx_00010] [If (Xin > X_array[N-1]), then return last index of an array and ratio
=0

dpResult ->Index = N - 1
dpResult ->Ratio = 0]

[SWS_Ifx_00011] [The minimum value of N shall be 1]

[SWS_Ifx_00013] [This routine returns index and ratio through the structure of type
Ifx_DPResultU16_Type |

[SWS_Ifx_00014] [Here is the list of implemented routines. |

Service ID[hex] Service prototype

0x001 void Ifx_DPSearch_u8 (Ifx_DPResultU16_Type*, uint8,
uint8, const uint8 *)

0x002 void Ifx_DPSearch_s8 (Ifx_DPResultU16_Type*, sint8, sint8,
const sint8 *)

0x003 void Ifx_DPSearch_u16 (Ifx_DPResultU16_Type*, uint16,
uint16, const uint16 *)

0x004 void Ifx_DPSearch_s16 (Ifx_DPResultU16_Type*, sint16,
sint16, const sint16 *)

0x0CH1 void Ifx_DPSearch_u32 (lfx_DPResultU16_Type* dpResult,
uint32 Xin, uint32 N, const uint32 * X_array)

0x0C2 void Ifx_DPSearch_s32 (Ifx_DPResultU16_Type* dpResult,

sint32 Xin, sint32 N, const sint32 * X_array)

AUTSSAR

8.5.1.2 Curve interpolation

[SWS_Ifx_00015] Definition of API function Ifx_IpoCur_<OutTypeMn> |

Service Name Ifx_lpoCur_<OutTypeMn>
Syntax <QutType> Ifx_IpoCur_<OutTypeMn> (
const Ifx_DPResultUl6_Typex dpResult,
const <InType>x Val_array
)
Service ID [hex] 0x0005 to 0x0008
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResult Data point search result
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Interpolation
Description Based on searched index and ratio information, this routine calculates and returns interpolation
for curve.
Available via Ifx.h
]

[SWS_Ifx_00016] [index = dpResult->Index

if dPResult->Ratio == 0

Result = Val_array[index]

else

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio
Note:

In case of missing HW support the Software solution mentioned below could also be
used to avoid 64-bit arithmetic operation.

if (Val_array[index] <= Val_array[index+1]) then
Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio
if (Val_array[index] > Val_array[index+1]) then

Result = Val_array[index] - (Val_array[index] - Val_array[index+1]) * dpResult->Ratio |

[SWS_Ifx_00201] [Do not call this routine until you have searched the axis using the
Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResult
U16_Type) contains valid data and is not used uninitialized. |

AUTSSAR

[SWS_Ifx_00017] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x005 sint8 Ifx_IpoCur_s8 (const Ifx_DPResultU16_Type*, const
sint8 *)

0x006 sint16 Ifx_IpoCur_s16 (const Ifx_DPResultU16_Type*, const
sint16 *)

0x007 uint16 Ifx_lpoCur_u16 (const Ifx_DPResultU16_Type*, const
uint16 *)

0x008 uint8 Ifx_IpoCur_u8 (const Ifx_DPResultU16_Type*, const
uint8 *)

0x0C3 uint32 Ifx_lpoCur_u32 (const Ifx_DPResultU16_
Type*dpResult, const uint32* Val_array)

0x0C4 sint32 Ifx_IpoCur_s32 (const Ifx_DPResultU16_
Type*dpResult, const sint32* Val_array)

8.5.1.3 Curve look-up

[SWS_Ifx_00020] Definition of API function Ifx_LkUpCur_<OutTypeMn> |

Service Name

Ifx_LkUpCur_<OutTypeMn>

Syntax <OutType> Ifx_LkUpCur_<OutTypeMn> (
const Ifx_DPResultUl6_Typex dpResult,
const <InType>* Val_array
)
Service ID [hex] 0x000A to 0x000D
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResult Data point search result
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array

Description

Based on searched index and ratio information, this routine calculates and returns entry point
of the result array.

Available via

Ifx.h

J
[SWS_Ifx_00021] [Result = Val_array[dpResult->Index] |

[SWS_Ifx_00202] [Do not call this routine until you have searched the axis using the
Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResult
U16_Type) contains valid data and is not used uninitialized. |

AUTSSAR

[SWS_Ifx_00022] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x00A sint8 Ifx_LkUpCur_s8 (const Ifx_DPResultU16_Type*, const
sint8 *)

0x00B sint16 Ifx_LkUpCur_s16 (const Ifx_DPResultU16_Type*,
const sint16 *)

0x00C uint16 Ifx_LkUpCur_u16 (const Ifx_DPResultU16_Type*,
const uint16 *)

0x00D uint8 Ifx_LkUpCur_u8 (const Ifx_DPResultU16_Type*, const
uint8 *)

0x0C5 sint32 Ifx_LkUpCur_s32 (const Ifx_DPResultU16_Type*
dpResult, const sint32 * Val_array)

0x0C6 uint32 Ifx_LkUpCur_u32 (const Ifx_DPResultU16_Type*
dpResult, const uint32 * Val_array)

8.5.1.4 Map interpolation

[SWS_Ifx_00025] Definition of API function Ifx_IpoMap_<OutTypeMn> |

Service Name Ifx_IpoMap_<OutTypeMn>

Syntax <OutType> Ifx_IpoMap_<OutTypeMn> (
const Ifx_DPResultUl6_Typex dpResultX,
const Ifx_DPResultUl6_Typex dpResulty,
uintl6 num_value,

const <InType>x Val_array

)

Service ID [hex] 0x0010 to 0x0013

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) dpResultX Data point search result for x axis
dpResultY Data point search result for y axis
num_value Number of y axis points
Val_array Pointer to the result axis distribution array

Parameters (inout) None

Parameters (out) None

Return value <OutType> Result of the Interpolation

Description Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this

routine calculates and returns the interpolation result for map.

Available via Ifx.h

]

[SWS_Ifx_00026] [Based on searched indices and ratios information using the rele-
vant Ifx_DPSearch routine, this routine calculates and returns the interpolation result
for map.

Baselndex = dpResultX->Index * num_value + dpResultY->Index
if (dpResultX->Ratio == 0)
if (dpResultY->Ratio == 0)

AUTSSAR

Result = Val_array [Baselndex]

else

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio
else

if (dpResultY->Ratio == 0)

LowerX = Val_array[Baselndex]

UpperX = Val_array[Baselndex + num_value]

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio
else

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
LowerY = Val_array[Baselndex + num_value]

UpperY = Val_array[Baselndex + num_value + 1]

UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio |

[SWS_Ifx_00203] [Do not call this routine until you have searched the axis using the
Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResult
U16_Type) contains valid data and is not used uninitialized. |

[SWS_Ifx_00027] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x010 uint8 Ifx_IpoMap_u8 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,

uint16,

const uint8 *)

0x011 uint16 Ifx_IlpoMap_u16 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,

uint16,
const uint16 *)

0x012 sint8 Ifx_IpoMap_s8 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,

uint16,

const sint8 *)

AUTSSAR

Routine ID[hex] Routine prototype

0x013 sint16 Ifx_IpoMap_s16 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,

uint16,

const sint16)

0x0C7 sint32 Ifx_IpoMap_s32 (const Ifx_DPResultU16_
Type*dpResultX,

const Ifx_DPResultU16_Type*dpResultY,

uint16 num_value,

const sint32 * Val_array)

0x0C8 uint32 Ifx_lpoMap_u32 (const Ifx_DPResultU16_
Type*dpResultX,

const Ifx_DPResultU16_Type*dpResultY,

uint16 num_value,

const uint32 * Val_array)

8.5.1.5 Map look-up

[SWS_Ifx_00030] Definition of API function Ifx_LkUpMap_<OutTypeMn> |

Service Name Ifx_LkUpMap_<OutTypeMn>

Syntax <OutType> Ifx_LkUpMap_<OutTypeMn> (
const Ifx_DPResultUl6_Typex dpResultX,
const Ifx_DPResultUl6_Typex dpResulty,
uintl6 num_value,

const <InType>x Val_array

)

Service ID [hex] 0x0015 to 0x0018

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) dpResultX Data point search result for x axis
dpResultY Data point search result for y axis
num_value Number of y axis points
Val_array Pointer to the result axis distribution array

Parameters (inout) None

Parameters (out) None

Return value <OutType> Entry point of the result array

Description Based on searched index and ratio information, this routine calculates and returns entry value

of the result distribution array.

Available via Ifx.h

]

[SWS_Ifx_00031] [Baselndex = dpResultX->Index * num_value + dpResultY->Index |
[SWS_Ifx_00033] [if(dpResultX->Ratio < 0.5 && dpResultY->Ratio < 0.5) then

return Val_array [Baselndex]

if(dpResultX->Ratio > 0.5 && dpResultY->Ratio < 0.5) then

return Val_array [Baselndex + num_value]

AUTSSAR

if(dpResultX->Ratio < 0.5 && dpResultY->Ratio > 0.5) then
return Val_array [Baselndex + 1]
if(dpResultX->Ratio > 0.5 && dpResultY->Ratio > 0.5) then

return Val_array [Baselndex + num_value + 1]|

[SWS_Ifx_00204] [Do not call this routine until you have searched the axis to ensure
the search result contains valid data and is not used uninitialized. |

[SWS_Ifx_00032] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype
0x015 uint8 Ifx_LkUpMap_u8 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,
uint16,
const uint8 *)
0x016 uint16 Ifx_LkUpMap_u16 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,
uint16,
const uint16 *)
0x017 sint8 Ifx_LkUpMap_s8 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,
uint16,
const sint8 *)
0x018 sint16 Ifx_LkUpMap_s16 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,
uint16,
const sint16)
0x0C9 sint32 Ifx_LkUpMap_s32 (const Ifx_DPResultU16_
Type*dpResultX,
const Ifx_DPResultU16_Type*dpResultY,
uint16 num_value,
const sint32* Val_array)
0x0CA uint32 Ifx_LkUpMap_u32 (const Ifx_DPResultU16_Type*
dpResultX,
const Ifx_DPResultU16_Type*dpResultY,
uint16 num_value,
const uint32* Val_array)

8.5.1.6 Map look-up without rounding

[SWS_Ifx_00205] Definition of API function Ifx_LkUpBaseMap_<OutTypeMn> |

Service Name Ifx_LkUpBaseMap_<OutTypeMn>

Syntax <OutType> Ifx_LkUpBaseMap_<OutTypeMn> (
const Ifx_DPResultUl6_Typex dpResultX,
const Ifx_DPResultUlé6_Typex dpResulty,
uintl1l6 num_value,

const <InType>x Val_array

)
Service ID [hex] 0x00AS5 to 0x00A8

\Y

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResultX Data point search result for x axis
dpResultY Data point search result for y axis
num_value Number of y axis points
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array
Description Based on searched index and ratio information, this routine calculates and returns entry value
of the result distribution array.
Available via Ifx.h

]

[SWS_Ifx_00206] [Baselndex = dpResultX->Index * num_value + dpResultY->Index |

[SWS_Ifx_00207] [Return Value = Val_array [Baselndex] |

[SWS_Ifx_00208] [Do not call this routine until you have searched the axis using the
Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResult
U16_Type) contains valid data and is not used uninitialized. |

[SWS_Ifx_00209] [Here is the list of implemented routines. |

Routine ID[hex]

Routine prototype

0x0A5

uint8 Ifx_LkUpBaseMap_u8 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,

uint16,

const uint8 *)

0x0A6

uint16 Ifx_LkUpBaseMap_u16 (const Ifx_DPResultU16_
Type*,

const Ifx_DPResultU16_Type*,

uint16,

const uint16 *)

0x0A7

sint8 Ifx_LkUpBaseMap_s8 (const Ifx_DPResultU16_Type*,
const Ifx_DPResultU16_Type*,

uint16,

const sint8 *)

0x0A8

sint16 Ifx_LkUpBaseMap_s16 (const Ifx_DPResultU16_
Type*,

const Ifx_DPResultU16_Type*,

uint16,

const sint16 *)

0x0CB

sint32 Ifx_LkUpBaseMap_s32 (const Ifx_DPResultU16_
Type* dpResultX,

const Ifx_DPResultU16_Type* dpResultY,

uint16 num_value,

const sint32* Val_array)

0x0CC

uint32 Ifx_LkUpBaseMap_u32 (const Ifx_DPResultU16_
Type* dpResultX,

const Ifx_DPResultU16_Type* dpResultY,

uint16 num_Val,

const uint32* Val_array)

AUTSSAR

8.5.2 Integrated data point search and interpolation

In this method of interpolation, single routine does data point search (e.g. Index and
ratio) and interpolation for curve, map or look-up table.

8.5.2.1 Integrated curve interpolation

[SWS_Ifx_00035] Definition of API function Ifx_IntlpoCur_<InTypeMn>_<OutType
Mn> |

Service Name

Ifx_IntlpoCur_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntIpoCur_<InTypeMn>_<OutTypeMn> (
<InType> Xin,

<InType> N,

const <InType>x X_array,

const <InType>x Val_array

)

Service ID [hex] 0x001A to 0x0029
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value
N Number of samples
X_array Pointer to the X axis distribution array
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Interpolation
Description This routine calculates interpolation of a curve at position Xin using below equation.
Available via Ifx.h
]

[SWS_Ifx_00036] [If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).
RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index])*RatioX |

[SWS_Ifx_00037] [Input value matches with one of the distribution array value then
result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,

Result = Val_array[index] |

[SWS_Ifx_00038] [If (Xin < X_array[0]) then,
Result = Val_array[0] |

AUTSSAR

[SWS_Ifx_00039] [If (Xin > X_array[N-1]) then,

Result = Val_array[N-1]]

[SWS_Ifx_00040] [The minimum value of N shall be 1 |

[SWS_Ifx_00041] [Here is the list of implemented routines. |

Routine ID[hex]

Routine prototype

0x01A

uint8 Ifx_IntlpoCur_u8_u8 (uint8, uint8, const uint8 *, const
uint8 *)

0x01B uint16 Ifx_IntlpoCur_u8_u16 (uint8, uint8, const uint8 *,
const uint16 *)

0x01C sint8 Ifx_IntlpoCur_u8_s8 (uint8, uint8, const uint8 *, const
sint8 *)

0x01D sint16 Ifx_IntlpoCur_u8_s16 (uint8, uint8, const uint8 *,
const sint16 *)

0x01E uint8 Ifx_IntlpoCur_u16_u8 (uint16, uint16, const uint16 *,
const uint8 *)

0x01F uint16 Ifx_IntlpoCur_u16_u16 (uint16, uint16, const uint16
*, const uint16 *)

0x020 sint8 Ifx_IntlpoCur_u16_s8 (uint16, uint16, const uint16 *,
const sint8 *)

0x021 sint16 Ifx_IntlpoCur_u16_s16 (uint16, uint16, const uint16 *,
const sint16)

0x022 uint8 Ifx_IntlpoCur_s8_u8 (sint8, sint8, const sint8 *, const
uint8 *)

0x023 uint16 Ifx_IntlpoCur_s8 u16 (sint8, sint8, const sint8 *,
const uint16 *)

0x024 sint8 Ifx_IntlpoCur_s8_s8 (sint8, sint8, const sint8 *, const
sint8 *)

0x025 sint16 Ifx_IntlpoCur_s8_s16 (sint8, sint8, const sint8 *,
const sint16)

0x026 uint8 Ifx_IntlpoCur_s16_u8 (sint16, sint16, const sint16 *,
const uint8 *)

0x027 uint16 Ifx_IntlpoCur_s16_u16 (sint16, sint16, const sint16 *,
const uint16 *)

0x028 sint8 Ifx_IntlpoCur_s16_s8 (sint16, sint16, const sint16 *,
const sint8 *)

0x029 sint16 Ifx_IntlpoCur_s16_s16 (sint16, sint16, const sint16 *,
const sint16 *)

0x0CD sint32 Ifx_IntlpoCur_s32_s32 (sint32 Xin, sint32 N, const
sint32* X_array, const sint32* Val_array)

0x0CE uint32 Ifx_IntlpoCur_u32_u32 (uint32 Xin, uint32 N, const

uint32* X_array, const uint32* Val_array)

AUTSSAR

8.5.2.2 Integrated curve look-up

[SWS_Ifx_00045] Definition of API function Ifx_IntLkUpCur_<InTypeMn>_<Out
TypeMn> |

Service Name Ifx_IntLkUpCur_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpCur_<InTypeMn>_<OutTypeMn> (
<InType> Xin,

<InType> N,

const <InType>x X_array,

const <InType>x Val_array

)

Service ID [hex] 0x0030 to 0x003F
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value
N Number of samples
X_array Pointer to the X axis distribution array
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array

Description

This routine returns respective entry value of the result at position Xin based on below

equations.

Available via

Ifx.h

]

[SWS_Ifx_00046] [If (X_array[0] < Xin < X_array[N -1]), then

index = lowest index for which (Xin < X_array[index + 1]).

Result = Val_array[index] |

[SWS_Ifx_00047] [Input value matches with one of the distribution array value then

result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,

Result = Val_array[index] |

[SWS_Ifx_00048] [If (Xin < X_array[0]) then,

Result = Val_array[0] |

[SWS_Ifx_00049] [If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]|

[SWS_Ifx_00050] [The minimum value of N shall be 1]

AUTSSAR

[SWS_Ifx_00051] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x030 uint8 Ifx_IntLkUpCur_u8_u8 (uint8 , uint8, const uint8 *,
const uint8 *)

0x031 uint16 Ifx_IntLkUpCur_u8 u16 (uint8 , uint8, const uint8 *,
const uint16 *)

0x032 sint8 Ifx_IntLkUpCur_u8_s8 (uint8 , uint8, const uint8 *,
const sint8 *)

0x033 sint16 Ifx_IntLkUpCur_u8_s16 (uint8 , uint8, const uint8 *,
const sint16 *)

0x034 uint8 Ifx_IntLkUpCur_u16_u8 (uint16 , uint16, const uint16
*, const uint8 *)

0x035 uint16 Ifx_IntLkUpCur_u16_u16 (uint16 , uint16, const
uint16 *, const uint16 *)

0x036 sint8 Ifx_IntLkUpCur_u16_s8 (uint16 , uint16, const uint16
*, const sint8 *)

0x037 sint16 Ifx_IntLkUpCur_u16_s16 (uint16 , uint16, const
uint16 *, const sint16 *)

0x038 uint8 Ifx_IntLkUpCur_s8_u8 (sint8 , sint8, const sint8 *,
const uint8 *)

0x039 uint16 Ifx_IntLkUpCur_s8_u16 (sint8 , sint8, const sint8 *,
const uint16 *)

0x03A sint8 Ifx_IntLkUpCur_s8_s8 (sint8, sint8, const sint8 *, const
sint8 *)

0x03B sint16 Ifx_IntLkUpCur_s8_s16 (sint8, sint8, const sint8 *,
const sint16 *)

0x03C uint8 Ifx_IntLkUpCur_s16_u8 (sint16, sint16, const sint16 *,
const uint8 *)

0x03D uint16 Ifx_IntLkUpCur_s16_u16 (sint16, sint16, const sint16
*, const uint16 *)

0x03E sint8 Ifx_IntLkUpCur_s16_s8 (sint16, sint16, const sint16 *,
const sint8 *)

0x03F sint16 Ifx_IntLkUpCur_s16_s16 (sint16, sint16, const sint16
*, const sint16 *)

0x0CF sint32 Ifx_IntLkUpCur_s32_s32 (sint32 Xin, sint32 N, const
sint32* X_array, const sint32* Val_array)

0x0D0 uint32 Ifx_IntLkUpCur_u32_u32 (uint32 Xin, uint32 N, const
uint32* X_array, const uint32* Val_array)

AUTSSAR

8.5.2.3 Integrated fix-curve interpolation

[SWS_Ifx_00055] Definition of API function Ifx_IntlpoFixCur_<InTypeMn>_<Out
TypeMn> |

Service Name Ifx_IntlpoFixCur_<InTypeMn>_<OutTypeMn>
Syntax <OutType> Ifx_IntIpoFixCur_<InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> N,
const <InType>x Val_array,
<InType> Offset,
<InType> Shift
)
Service ID [hex] 0x0040 to 0x0043
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value
N Number of samples
Val_array Pointer to the result axis distribution array
Offset Offset of the first sampling value for X-axis
Shift "Shift’ is the power of 2, (2°Shift) represents X-axis distribution
point interval
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Interpolation
Description This routine calculates interpolation of a curve at position Xin using below equations.
Available via Ifx.h

[SWS_Ifx_00056] [X axis distribution points shall be calculated based on Offset and
Shift values.

X_array [index] = Offset + index * 2Shift
If Offset = 10, Shift =2 and N = 5 then,
X_array[5] = {10, 14, 18, 22, 26} |

[SWS_Ifx_00057] [If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).
RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * RatioX |

[SWS_Ifx_00058] [Input value matches with one of the distribution array value then
result shall be respective Y array element indicated by index.

If (Xin == X_array[index])

Result = Val_array[index] |

AUTSSAR

[SWS_Ifx_00059] [If (Xin < X_array[0]) then,
Result = Val_array[0] |

[SWS_Ifx_00060] [If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]|

[SWS_Ifx_00061] [The minimum value of N shall be 1]

[SWS_Ifx_00062] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x040 uint8 Ifx_IntlpoFixCur_u8_u8 (uint8, uint8, const uint8 *,
uint8, uint8)

0x041 uint16 Ifx_IntlpoFixCur_u16_u16 (uint16, uint16, const
uint16 *, uint16, uint16)

0x042 sint8 Ifx_IntlpoFixCur_s8_s8 (sint8, sint8, const sint8 *,
sint8, sint8)

0x043 sint16 Ifx_IntlpoFixCur_s16_s16 (sint16, sint16, const
sint16 *, sint16, sint16)

0x0D1 sint32 Ifx_IntlpoFixCur_s32_s32 (sint32 Xin, sint32 N, const
sint32* Val_array, sint32 offset, sint32 shift)

0x0D2 uint32 Ifx_IntlpoFixCur_u32_u32 (uint32 Xin, uint32 N,
const uint32* Val_array, uint32 offset, uint32 shift)

8.5.2.4 Integrated fix-curve look up

[SWS_Ifx_00070] Definition of API function Ifx_IntLkUpFixCur_<InType
Mn>_<OutTypeMn> |

Service Name Ifx_IntLkUpFixCur_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpFixCur_<InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> N,
const <InType>x Val_array,
<InType> Offset,
<InType> Shift
)

Service ID [hex] 0x0045 to 0x0048
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value
N Number of samples
Val_array Pointer to the result axis distribution array
Offset Offset of the first sampling value for X-axis
Shift "Shift’ is the power of 2, (2°Shift) represents X-axis distribution
point interval
Parameters (inout) None

\Y

AUTSSAR

A
Parameters (out) None
Return value <OutType> | Entry point of the result array
Description This routine returns respective entry value of the result distribution array at position Xin based
on below equations.
Available via Ifx.h

]

[SWS_Ifx_00071] [X axis distribution points shall be calculated based on Offset and
Shift values.

X_array [index] = Offset + index * 2Shift
If Offset = 10, Shift =2 and N = 5 then,
X_array[5] = {10, 14, 18, 22, 26} |

[SWS_Ifx_00072] [If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).

Result = Val_array[index] |

[SWS_Ifx_00073] [Input value matches with one of the distribution array value then
result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,

Result = Val_array[index] |

[SWS_Ifx_00074] [If (Xin < X_array[0]) then,
Result = Val_array[0] |

[SWS_Ifx_00075] [If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]|

[SWS_Ifx_00076] [The minimum value of N shall be 1]

[SWS_Ifx_00077] [Here is the list of implemented routines |

Routine ID[hex] Routine prototype

0x045 uint8 Ifx_IntLkUpFixCur_u8_u8 (uint8, uint8, const uint8 *,
uint8, uint8)

0x046 uint16 Ifx_IntLkUpFixCur_u16_u16 (uint16, uint16, const
uint16 *, uint16, uint16)

0x047 sint8 Ifx_IntLkUpFixCur_s8_s8 (sint8, sint8, const sint8 *,
sint8, sint8)

AUTSSAR

Routine ID[hex]

Routine prototype

0x048 sint16 Ifx_IntLkUpFixCur_s16_s16 (sint16, sint16, const
sint16 *, sint16, sint16)

0x0D3 sint32 Ifx_IntLkUpFixCur_s32_s32 (sint32 Xin, sint32 N,
const sint32* Val_array, sint32 offset, sint32 shift)

0x0D4 uint32 Ifx_IntLkUpFixCur_u32_u32 (uint32 Xin, uint32 N,

const uint32* Val_array, uint32 offset, uint32 shift)

AUTSSAR

8.5.2.5 Integrated fix- | curve interpolation

[SWS_Ifx_00080] Definition of API function Ifx_IntlpoFixICur_<InTypeMn>_<Out
TypeMn> |

Service Name Ifx_IntlpoFixICur_<InTypeMn>_<OutTypeMn>
Syntax <OutType> Ifx_IntIpoFixICur_<InTypeMn>_ <OutTypeMn> (
<InType> Xin,
<InType> N,
const <InType>x Val_array,
<InType> Offset,
<InType> Interval
)
Service ID [hex] 0x004A to 0x004D
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value
N Number of samples
Val_array Pointer to the result axis distribution array
Offset Offset of the first sampling value for X-axis
Interval represents X-axis distribution point fix interval
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Interpolation
Description This routine calculates interpolation of a curve at position Xin using below equations.
Available via Ifx.h

[SWS_Ifx_00081] [X axis distribution points shall be calculated based on Offset and
Interval values.

X_array [index] = offset + index * Interval
If Offset = 5, Interval = 12 and N = 5 then,
X_array[5] = {5, 17, 29, 41, 53} |

[SWS_Ifx_00082] [If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).
RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * RatioX]

[SWS_Ifx_00083] [Input value matches with one of the distribution array value then
result shall be respective Y array element indicated by index.

If (Xin == X_array[index])

Result = Val_array[index] |

AUTSSAR

[SWS_Ifx_00084] [If (Xin < X_array[0]) then,
Result = Val_array[0] |

[SWS_Ifx_00085] [If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]|

[SWS_Ifx_00086] [The minimum value of N shall be 1]

[SWS_Ifx_00087] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x04A uint8 Ifx_IntlpoFixICur_u8_u8 (uint8, uint8, const uint8 *,
uint8, uint8)

0x04B uint16 Ifx_IntlpoFixICur_u16_u16 (uint16, uint16, const
uint16 *, uint16, uint16)

0x04C sint8 Ifx_IntlpoFixICur_s8_s8 (sint8, sint8, const sint8 *,
sint8, sint8)

0x04D sint16 Ifx_IntlpoFixICur_s16_s16 (sint16, sint16, const
sint16 *, sint16, sint16)

0x0D5 sint32 Ifx_IntlpoFixICur_s32_s32 (sint32 Xin, sint32 N,
const sint32 * Val_array, sint32 offset, sint32 Interval)

0x0D6 uint32 Ifx_IntlpoFixICur_u32_u32 (uint32 Xin, uint32 N,
const uint32 * Val_array, uint32 offset, uint32 Interval)

8.5.2.6 Integrated fix- | curve look up

[SWS_Ifx_00090] Definition of API function Ifx_IntLkUpFixICur_<InType
Mn>_<OutTypeMnt> |

Service Name Ifx_IntLkUpFixICur_<InTypeMn>_<OutTypeMnt>

Syntax <OutType> Ifx_IntLkUpFixICur_<InTypeMn>_<OutTypeMnt> (
<InType> Xin,

<InType> N,

const <InType>x Val_array,

<InType> Offset,

<InType> Interval

)

Service ID [hex] 0x0050 to 0x0053

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Xin Input value
N Number of samples
Val_array Pointer to the result axis distribution array
Offset Offset of the first sampling value for X-axis
Interval represents X-axis distribution point fix interval

Parameters (inout) None

Parameters (out) None

Y%

AUTSSAR

A
Return value <OutType> | Entry point of the result array
Description This routine returns respective entry value of the result distribution array at position Xin based

on below equations.

Available via Ifx.h

]

[SWS_Ifx_00091] [X axis distribution points shall be calculated based on Offset and
Interval values.

X_array [index] = offset + index * Interval

If Offset = 5, Interval = 12 and N = 5 then,

X_array[5] = {5, 17, 29, 41, 53} |

[SWS_Ifx_00092] [If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).

Result = Val_array[index] |

[SWS_Ifx_00093] [Input value matches with one of the distribution array value then
result shall be respective Y array element indicated by index.

If (Xin == X_array[index])

Result = Val_array[index] |

[SWS_Ifx_00094] [If (Xin < X_array[0]) then,
Result = Val_array[0] |

[SWS_Ifx_00095] [If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]|

[SWS_Ifx_00096] [The minimum value of N shall be 1]

[SWS_Ifx_00097] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x050 uint8 Ifx_IntLkUpFixICur_u8_u8 (uint8, uint8, const uint8 *,
uint8, uint8)

0x051 uint16 Ifx_IntLkUpFixICur_u16_u16 (uint16, uint16, const
uint16 *, uint16, uint16)

0x052 sint8 Ifx_IntLkUpFixICur_s8_s8 (sint8, sint8, const sint8 *,
sint8, sint8)

0x053 sint16 Ifx_IntLkUpFixICur_s16_s16 (sint16, sint16, const
sint16 *, sint16, sint16)

AUTSSAR

A
Routine ID[hex] Routine prototype
0x0D7 sint32 Ifx_IntLkUpFixICur_s32_s32 (sint32 Xin, sint32 N,
const sint32 * Val_array, sint32 offset, sint32 Interval)
0x0D8 uint32 Ifx_IntLkUpFixICur_u32_u32 (uint32 Xin, uint32 N,
const uint32 * Val_array, uint32 offset, uint32 Interval)

AUTSSAR

8.5.2.7 Integrated map interpolation

[SWS_Ifx_00098] Definition of API function Ifx_IntlpoMap_<InTypeMn><InType
Mn>_<OutTypeMn> |

Service Name Ifx_IntlpoMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntIpoMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,

<InType> Yin,

<InType> Nx,

<InType> Ny,

const <InType>x X_array,

const <InType>x Y_array,

const <InType>* Val_array

)

Service ID [hex] 0x0060 to 0x0087
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number of X axis samples
Ny Number of Y axis samples
X_array Pointer to the X axis distribution array
Y_array Pointer to the Y axis distribution array
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Map Interpolation

Description This routine calculates Interpolation of a map at position X and Y using below equations.

Available via Ifx.h

]

[SWS_Ifx_00099] [Index calculation :

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00100] [Ratio calculation :
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) |

[SWS_Ifx_00101] [LowerY = Val_array [Baselndex]
UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * RatioY
LowerY = Val_array [Baselndex + Ny]

UpperY = Val_array [Baselndex + Ny + 1]

AUTSSAR

UpperX = LowerY + (UpperY - LowerY) * RatioY
Result = LowerX + (UpperX - LowerX) * RatioX |

[SWS_Ifx_00102] [If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_ar-
ray[indexY+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+1] - Val_array[Baselndex]) *
RatioY |

[SWS_Ifx_00103] [If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_ar-
ray[indexX+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+Ny] - Val_array[Baselndex]) *
RatioX|

[SWS_Ifx_00104] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [Baselndex] |

[SWS_Ifx_00105] [If Xin < X_array[0], then

indexX =0,

RatioX =0|

[SWS_Ifx_00106] [If Xin > X_array[Nx-1], then

indexX = Nx - 1,

RatioX = 0|

[SWS_Ifx_00107] [If Yin < Y_array[0], then

indexY =0,

RatioY = 0|

[SWS_Ifx_00108] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1,

RatioY = 0|

[SWS_Ifx_00109] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00110] [Here is the list of implemented routines. |

AUTSSAR

Routine ID[hex]

Routine prototype

0x060 uint8 Ifx_IntlpoMap_u16u8_u8 (uint16, uint8, uint16, uint16,
const uint16 *, const uint8 *, const uint8 *)

0x061 uint16 Ifx_IntlpoMap_u16u8_u16 (uint16, uint8, uint16,
uint16, const uint16 *, const uint8 *, const uint16 *)

0x062 sint8 Ifx_IntlpoMap_u16u8_s8 (uint16, uint8, uint16, uint16,
const uint16 *, const uint8 *, const sint8 *)

0x063 sint16 Ifx_IntlpoMap_u16u8_s16 (uint16, uint8, uint16,
uint16, const uint16 *, const uint8 *, const sint16 *)

0x064 uint8 Ifx_IntlpoMap_u16u16_u8 (uint16, uint16, uint16,
uint16, const uint16 *, const uint16 *, const uint8 *)

0x065 uint16 Ifx_IntlpoMap_u16u16_u16 (uint16, uint16, uint16,
uint16, const uint16 *, const uint16 *, const uint16 *)

0x066 sint8 Ifx_IntlpoMap_u16u16_s8 (uint16, uint16, uint16,
uint16, const uint16 *, const uint16 *, const sint8 *)

0x067 sint16 Ifx_IntlpoMap_u16u16_s16 (uint16, uint16, uint16,
uint16, const uint16 *, const uint16 *, const sint16 *)

0x068 uint8 Ifx_IntlpoMap_u16s8_u8 (uint16, sint8, uint16, uint16,
const uint16 *, const sint8 *, const uint8 *)

0x069 uint16 Ifx_IntlpoMap_u16s8_u16 (uint16, sint8, uint16,
uint16, const uint16 *, const sint8 *, const uint16 *)

0x06A sint8 Ifx_IntlpoMap_u16s8_s8 (uint16, sint8, uint16, uint16,
const uint16 *, const sint8 *, const sint8 *)

0x06B sint16 Ifx_IntlpoMap_u16s8_s16 (uint16, sint8, uint16,
uint16, const uint16 *, const sint8 *, const sint16 *)

0x06C uint8 Ifx_IntlpoMap_u16s16_u8 (uint16, sint16, uint16,
uint16, const uint16 *, const sint16 *, const uint8 *)

0x06D uint16 Ifx_IntlpoMap_u16s16_u16 (uint16, sint16, uint16,
uint16, const uint16 *, const sint16 *, const uint16 *)

0x06E sint8 Ifx_IntlpoMap_u16s16_s8 (uint16, sint16, uint16,
uint16, const uint16 *, const sint16 *, const sint8 *)

0x06F sint16 Ifx_IntlpoMap_u16s16_s16 (uint16, sint16, uint16,
uint16, const uint16 *, const sint16 *, const sint16 *)

0x070 uint8 Ifx_IntlpoMap_s16u8_u8 (sint16, uint8, sint16, sint16,
const sint16 *, const uint8 *, const uint8 *)

0x071 uint16 Ifx_IntlpoMap_s16u8_u16 (sint16, uint8, sint16,
sint16, const sint16 *, const uint8 *, const uint16 *)

0x072 sint8 Ifx_IntlpoMap_s16u8_s8 (sint16, uint8, sint16, sint16,
const sint16 *, const uint8 *, const sint8 *)

0x073 sint16 Ifx_IntlpoMap_s16u8_s16 (sint16, uint8, sint16,
sint16, const sint16 *, const uint8 *, const sint16 *)

0x074 uint8 Ifx_IntlpoMap_s16s8_u8 (sint16, sint8, sint16, sint16,
const sint16 *, const sint8 *, const uint8 *)

0x075 uint16 Ifx_IntlpoMap_s16s8_u16 (sint16, sint8, sint16,
sint16, const sint16 *, const sint8 *, const uint16 *)

0x076 sint8 Ifx_IntlpoMap_s16s8_s8 (sint16, sint8, sint16, sint16,
const sint16 *, const sint8 *, const sint8 *)

0x077 sint16 Ifx_IntlpoMap_s16s8_s16 (sint16, sint8, sint16,
sint16, const sint16 *, const sint8 *, const sint16 *)

0x078 uint8 Ifx_IntlpoMap_s16s16_u8 (sint16, sint16, sint16,
sint16, const sint16 *, const sint16 *, const uint8 *)

0x079 uint16 Ifx_IntlpoMap_s16s16_u16 (sint16, sint16, sint16,

sint16, const sint16 *, const sint16 *, const uint16 *)

AUTSSAR

Routine ID[hex]

Routine prototype

0x07A sint8 Ifx_IntlpoMap_s16s16_s8 (sint16, sint16, sint16,
sint16, const sint16 *, const sint16 *, const sint8 *)

0x07B sint16 Ifx_IntlpoMap_s16s16_s16 (sint16, sint16, sint16,
sint16, const sint16 *, const sint16 *, const sint16 *)

0x07C uint8 Ifx_IntlpoMap_u8u8_u8 (uint8, uint8, uint8, uint8, const
uint8 *, const uint8 *, const uint8 *)

0x07D uint16 Ifx_IntlpoMap_u8u8_u16 (uint8, uint8, uint8, uint8,
const uint8 *, const uint8 *, const uint16 *)

0x07E sint8 Ifx_IntlpoMap_u8u8_s8 (uint8, uint8, uint8, uint8, const
uint8 *, const uint8 *, const sint8 *)

0x07F sint16 Ifx_IntlpoMap_u8u8_s16 (uint8, uint8, uint8, uint8,
const uint8 *, const uint8 *, const sint16 *)

0x080 uint8 Ifx_IntlpoMap_u8s8_u8 (uint8, sint8, uint8, uint8, const
uint8 *, const sint8 *, const uint8 *)

0x081 uint16 Ifx_IntlpoMap_u8s8_u16 (uint8, sint8, uint8, uint8,
const uint8 *, const sint8 *, const uint16 *)

0x082 sint8 Ifx_IntlpoMap_u8s8_s8 (uint8, sint8, uint8, uint8, const
uint8 *, const sint8 *, const sint8 *)

0x083 sint16 Ifx_IntlpoMap_u8s8_s16 (uint8, sint8, uint8, uint8,
const uint8 *, const sint8 *, const sint16 *)

0x084 uint8 Ifx_IntlpoMap_s8s8_u8 (sint8, sint8, sint8, sint8, const
sint8 *, const sint8 *, const uint8 *)

0x085 uint16 Ifx_IntlpoMap_s8s8_u16 (sint8, sint8, sint8, sint8,
const sint8 *, const sint8 *, const uint16 *)

0x086 sint8 Ifx_IntlpoMap_s8s8_s8 (sint8, sint8, sint8, sint8, const
sint8 *, const sint8 *, const sint8 *)

0x087 sint16 Ifx_IntlpoMap_s8s8_s16 (sint8, sint8, sint8, sint8,
const sint8 *, const sint8 *, const sint16 *)

0x0D9 sint32 Ifx_IntlpoMap_s32s32_s32 (sint32 Xin, sint32 Yin,
sint32 Nx, sint32 Ny, const sint32 * X_array, const sint32 *
Y_array, const sint32 * Val_array)

0xODA uint32 Ifx_IntlpoMap_u32u32_u32 (uint32 Xin, uint32 Yin,

uint32 Nx, uint32 Ny, const uint32 * X_array, const uint32 *
Y_array, const uint32 * Val_array)

AUTSSAR

8.5.2.8 Integrated map look-up

[SWS_Ifx_00111] Definition of API function Ifx_IntLkUpMap_<InTypeMn><InType
Mn>_<OutTypeMn> |

Service Name Ifx_IntLkUpMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,

<InType> Yin,

<InType> Nx,

<InType> Ny,

const <InType>x X_array,

const <InType>x Y_array,

const <InType>* Val_array

)

Service ID [hex] 0x008A to 0x008D
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number of X axis samples
Ny Number of Y axis samples
X_array Pointer to the X axis distribution array
Y_array Pointer to the Y axis distribution array
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array
Description This routine returns respective entry value of the result distribution array at position Xin and Yin

based on below equations.

Available via Ifx.h

]

[SWS_Ifx_00112] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00113] [Ratio calculation:

if (indexX < (Nx - 1))

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
else

RatioX =0

if (indexY < (Ny - 1))

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])

AUTSSAR

else
RatioY = 0|

[SWS_Ifx_00114] [if(RatioX < 0.5 && RatioY < 0.5) then

Result = Val_array [Baselndex]
if(RatioX > 0.5 && RatioY < 0.5) then
Result = Val_array [Baselndex + Ny]
if(RatioX < 0.5 && RatioY > 0.5) then
Result = Val_array [Baselndex + 1]
if(RatioX > 0.5 && RatioY > 0.5) then

Result = Val_array [Baselndex + Ny + 1]]

[SWS_Ifx_00116] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [Baselndex] |

[SWS_Ifx_00117] [If Xin < X_array[0], then
indexX = 0]

[SWS_Ifx_00118] [If Xin > X_array[Nx-1], then

indexX = Nx - 1|

[SWS_Ifx_00119] [If Yin < Y_array[0], then
indexY = 0|

[SWS_Ifx_00120] [If Yin > Y_array[Ny-1], then

indexY =Ny - 1|

[SWS_Ifx_00121] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00122] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x08A uint8 Ifx_IntLkUpMap_u8u8_u8(uint8, uint8, uint8, uint8,
const uint8 *, const uint8 *, const uint8 *)

0x08B sint8 Ifx_IntLkUpMap_s8s8_s8 (sint8, sint8, sint8, sint8,
const sint8 *, const sint8 *, const sint8 *)

0x08C uint16 Ifx_IntLkUpMap_u16u16_u16 (uint16, uint16, uint16,
uint16, const uint16 *, const uint16 *, const uint16 *)

0x08D sint16 Ifx_IntLkUpMap_s16s16_s16 (sint16, sint16, sint16,
sint16, const sint16 *, const sint16 *, const sint16 *)

AUTSSAR

Routine ID[hex] Routine prototype

0x0DB sint32 Ifx_IntLkUpMap_s32s32_s32 (sint32 Xin, sint32 Yin,
sint32 NXx, sint32 Ny, const sint32 * X_array, const sint32 *
Y_array, const sint32 * Val_array)

0x0DC uint32 Ifx_IntLkUpMap_u32u32_u32 (uint32 Xin, uint32 Yin,
uint32 Nx, uint32 Ny, const uint32 * X_array, const uint32 *
Y_array, const uint32 * Val_array)

AUTSSAR

8.5.2.9 Integrated map look-up without rounding

[SWS_Ifx_00211] Definition of API function Ifx_IntLkUpBaseMap_<InTypeMn><In
TypeMn>_<OutTypeMn> |

Service Name Ifx_IntLkUpBaseMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpBaseMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,

<InType> Yin,

<InType> Nx,

<InType> Ny,

const <InType>x X_array,

const <InType>x Y_array,

const <InType>* Val_array

)

Service ID [hex] 0x00AA to 0x00AD
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number of X axis samples
Ny Number of Y axis samples
X_array Pointer to the X axis distribution array
Y_array Pointer to the Y axis distribution array
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array
Description This routine returns respective entry value of the result distribution array at position Xin and Yin
based on below equations.
Available via Ifx.h

]

[SWS_Ifx_00212] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00214] [Return Value = Val_array [Baselndex] |
[SWS_Ifx_00216] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [Baselndex] |

[SWS_Ifx_00217] [If Xin < X_array[0], then

indexX = 0|

[SWS_Ifx_00218] [If Xin > X_array[Nx-1], then
indexX = Nx - 1|

AUTSSAR

[SWS_Ifx_00219] [If Yin < Y_array[0], then
indexY = 0]

[SWS_Ifx_00220] [If Yin > Y_array[Ny-1], then
indexY = Ny - 1]

[SWS_Ifx_00221] [The minimum value of Nx and Ny shall be 1|

[SWS_Ifx_00222] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x0AA uint8 Ifx_IntLkUpBaseMap_u8u8_u8(uint8, uint8, uint8,
uint8, const uint8 *, const uint8 *, const uint8 *)

0x0AB sint8 Ifx_IntLkUpBaseMap_s8s8_s8 (sint8, sint8, sint8,
sint8, const sint8 *, const sint8 *, const sint8 *)

0x0AC uint16 Ifx_IntLkUpBaseMap_u16u16_u16 (uint16, uint16,
uint16, uint16, const uint16 *, const uint16 *, const uint16 *)

0x0AD sint16 Ifx_IntLkUpBaseMap_s16s16_s16 (sint16, sint16,
sint16, sint16, const sint16 *, const sint16 *, const sint16 *)

0x0DD sint32 Ifx_IntLkUpBaseMap_s32s32_s32 (sint32 Xin, sint32
Yin, sint32 NXx, sint32 Ny, const sint32 * X_array, const sint32
*Y_array, const sint32 * Val_array)

0xODE uint32 Ifx_IntLkUpBaseMap_u32u32_u32 (uint32 Xin, uint32
Yin, uint32 Nx, uint32 Ny, const uint32 * X_array, const
uint32 * Y_array, const uint32 * Val_array)

AUTSSAR

8.5.2.10 Integrated fix- map interpolation

[SWS_Ifx_00123] Definition of API function Ifx_IntlpoFixMap_<InTypeMn><In
TypeMn>_<OutTypeMn> |

Service Name Ifx_IntlpoFixMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntIpoFixMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> Yin,
<InType> Nx,
<inType> Ny,
const <InType>x Val_array,
<InType> OffsetX,
<InType> ShiftX,
<InType> OffsetY,
<InType> ShiftY
)

Service ID [hex] 0x0090 to 0x0093
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number to X axis samples
Ny Number to Y axis samples
Val_array Pointer to the result axis distribution array
OffsetX Offset of the first sampling value for X-axis
ShiftX 'Shift’ is the power of 2, (2°ShiftX) represents X-axis distribution
point interval
OffsetY Offset of the first sampling value for Y-axis
ShiftY "Shift’ is the power of 2, (2°ShiftY) represents Y-axis distribution
point interval
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Interpolation
Description This routine calculates Interpolation of a map at position X and Y using below equations.
Available via Ifx.h

]

[SWS_Ifx_00124] [X and Y axis distribution points shall be calculated based on Offset
and Shift values.

X_array[index] = OffsetX + index * 2ShiftX
Y_array[index] = OffsetY + index * 2ShiftY

If Offset = 10, Shift =2 and N = 5 then,

axis = {10, 14, 18, 22, 26} (applicable to X and Y axis) |

[SWS_Ifx_00125] [Index calculation :
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

AUTSSAR

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00126] [Ratio calculation :
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) |

[SWS_Ifx_00127] [LowerY = Val_array [Baselndex]
UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * RatioY
LowerY = Val_array [Baselndex + Ny]

UpperY = Val_array [Baselndex + Ny + 1]

UpperX = LowerY + (UpperY - LowerY) * RatioY
Result = LowerX + (UpperX - LowerX) * RatioX |

[SWS_Ifx_00128] [If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_ar-
ray[indexY+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+1] - Val_array[Baselndex]) *
RatioY |

[SWS_Ifx_00129] [If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_ar-
ray[indexX+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+Ny] - Val_array[Baselndex]) *
RatioX |

[SWS_Ifx_00130] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [Baselndex] |

[SWS_Ifx_00131] [If Xin < X_array[0], then
indexX = 0,
RatioX = 0|

[SWS_Ifx_00132] [If Xin > X_array[Nx-1], then
indexX = Nx - 1,

RatioX = 0|

[SWS_Ifx_00133] [If Yin < Y_array[0], then
indexY =0,

RatioY = 0|

AUTSSAR

[SWS_Ifx_00134] [If Yin > Y_array[Ny-1], then

indexY =Ny - 1,

RatioY = 0|

[SWS_Ifx_00135] [The minimum value of Nx and Ny shall be 1|

[SWS_Ifx_00136] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x090 uint8 Ifx_IntlpoFixMap_u8u8_u8 (uint8, uint8, uint8, uint8,
const uint8 *, uint8, uint8, uint8, uint8)

0x091 uint16 Ifx_IntlpoFixMap_u16u16_u16 (uint16, uint16,
uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)

0x092 sint8 Ifx_IntlpoFixMap_s8s8_s8 (sint8, sint8, sint8, sint8,
const sint8 *, sint8, sint8, sint8, sint8)

0x093 sint16 Ifx_IntlpoFixMap_s16s16_s16 (sint16, sint16, sint16,
sint16, const sint16 *, sint16, sint16, sint16, sint16)

0xODF sint32 Ifx_IntlpoFixMap_s32s32_s32 (sint32 Xin, sint32 Yin,
sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX,
sint32 ShiftX, sint32 offsetY, sint32 shifty)

0x0EOQ uint32 Ifx_IntlpoFixMap_u32u32_u32 (uint32 Xin, uint32 Yin,
uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX,
uint32 ShiftX, uint32 offsetY, uint32 shiftY)

8.5.2.11 Integrated fix- map look up

[SWS_Ifx_00139] Definition of API function Ifx_IntLkUpFixMap_<InTypeMn><In
TypeMn>_<OutTypeMn> |

Service Name

Ifx_IntLkUpFixMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpFixMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> Yin,
<InType> Nx,
<InType> Ny,
const <InType>x Val_array,
<InType> OffsetX,
<InType> ShiftX,
<InType> OffsetY,
<InType> ShiftY
)
Service ID [hex] 0x0095 to 0x0098
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number to X axis samples
Ny Number to Y axis samples
Val_array Pointer to the result axis distribution array

V

AUTSSAR

A
OffsetX Offset of the first sampling value for X-axis
Shiftx "Shift’ is the power of 2, (2°ShiftX) represents X-axis distribution
point interval
OffsetY Offset of the first sampling value for Y-axis
Shifty 'Shift’ is the power of 2, (2°ShiftY) represents Y-axis distribution
point interval
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array
Description This routine returns respective entry value of the result distribution array at position Xin and Yin
based on below equations.
Available via Ifx.h
|

[SWS_Ifx_00140] [X and Y axis distribution points shall be calculated based on Offset
and Shift values.

X_array[index] = offsetX + index * 2ShiftX
Y_array[index] = offsetY + index * 2ShiftY

If Offset = 10, shift =2 and N = 5 then,

axis = {10, 14, 18, 22, 26} (applicable to X and Y axis) |

[SWS_Ifx_00141] [Index calculation:
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00143] [Ratio calculation:

if (indexX < (Nx - 1))

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
else

RatioX =0

if (indexY < (Ny - 1))

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
else

RatioY = 0|

[SWS_Ifx_00144] [if(RatioX < 0.5 && RatioY < 0.5) then

Result = Val_array [Baselndex]

AUTSSAR

if(RatioX > 0.5 && RatioY < 0.5) then

Result = Val_array [Baselndex + Ny]

if(RatioX < 0.5 && RatioY > 0.5) then

Result = Val_array [Baselndex + 1]

if(RatioX > 0.5 && RatioY > 0.5) then

Result = Val_array [Baselndex + Ny + 1]]

[SWS_Ifx_00145] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [Baselndex] |

[SWS_Ifx_00146] [If Xin < X_array[0], then

indexX = 0|

[SWS_Ifx_00147] [If Xin > X_array[Nx-1], then

indexX = Nx - 1|

[SWS_Ifx_00148] [If Yin < Y_array[0], then

indexY = 0]

[SWS_Ifx_00149] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1|

[SWS_Ifx_00150] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00151] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x095 uint8 Ifx_IntLkUpFixMap_u8u8_u8 (uint8, uint8, uint8, uint8,
const uint8 *, uint8, uint8, uint8, uint8)

0x096 uint16 Ifx_IntLkUpFixMap_u16u16_u16 (uint16, uint16,
uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)

0x097 sint8 Ifx_IntLkUpFixMap_s8s8_s8 (sint8, sint8, sint8, sint8,
const sint8 *, sint8, sint8, sint8, sint8)

0x098 sint16 Ifx_IntLkUpFixMap_s16s16_s16 (sint16, sint16,
sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

0x0E1 sint32 Ifx_IntLkUpFixMap_s32s32_s32 (sint32 Xin, sint32
Yin, sint32 NXx, sint32 Ny, const sint32 * Val_array, sint32
offsetX, sint32 ShiftX, sint32 offsetY, sint32 shiftY)

0x0E2 uint32 Ifx_IntLkUpFixMap_u32u32_u32 (uint32 Xin, uint32
Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32
offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)

AUTSSAR

8.5.2.12 Integrated fix- map look up without rounding

[SWS_Ifx_00225] Definition of API function Ifx_IntLkUpFixBaseMap_<InType
Mn><InTypeMn>_<OutTypeMn> |

Service Name Ifx_IntLkUpFixBaseMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpFixBaseMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> Yin,
<InType> Nx,
<InType> Ny,
const <InType>x Val_array,
<InType> OffsetX,
<InType> ShiftX,
<InType> OffsetY,
<InType> ShiftY
)

Service ID [hex] 0x00BO0 to 0x00B3
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number to X axis samples
Ny Number to Y axis samples
Val_array Pointer to the result axis distribution array
OffsetX Offset of the first sampling value for X-axis
Shiftx "Shift’ is the power of 2, (2°ShiftX) represents X-axis distribution
point interval
OffsetY Offset of the first sampling value for Y-axis
Shifty 'Shift’ is the power of 2, (2°ShiftY) represents Y-axis distribution
point interval
Parameters (inout) None
Parameters (out) None
Return value <OutType> Entry point of the result array
Description This routine returns respective entry value of the result distribution array at position Xin and Yin

based on below equations.

Available via Ifx.h

]

[SWS_Ifx_00226] [X and Y axis distribution points shall be calculated based on Offset
and Shift values.

X_array[index] = offsetX + index * 2ShiftX
Y_array[index] = offsetY + index * 2ShiftY

If Offset = 10, shift =2 and N = 5 then,

axis = {10, 14, 18, 22, 26} (applicable to X and Y axis) |

[SWS_Ifx_00227] [Index calculation:
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

AUTSSAR

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00229] [Return Value = Val_array [Baselndex] |

[SWS_Ifx_00230] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [Baselndex] |

[SWS_Ifx_00231] [If Xin < X_array[0], then
indexX = 0|

[SWS_Ifx_00232] [If Xin > X_array[Nx-1], then

indexX = Nx - 1]

[SWS_Ifx_00233] [If Yin < Y_array[0], then
indexY = 0|

[SWS_Ifx_00234] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1|

[SWS_Ifx_00235] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00236] [Here is the list of implemented routines |

Routine ID[hex] Routine prototype

0x0B0 uint8 Ifx_IntLkUpFixBaseMap_u8u8_u8 (uint8, uint8, uint8,
uint8, const uint8 *, uint8, uint8, uint8, uint8)

0x0B1 uint16 Ifx_IntLkUpFixBaseMap_u16u16_u16 (uint16, uint16,
uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)

0x0B2 sint8 Ifx_IntLkUpFixBaseMap_s8s8_s8 (sint8, sint8, sint8,
sint8, const sint8 *, sint8, sint8, sint8, sint8)

0x0B3 sint16 Ifx_IntLkUpFixBaseMap_s16s16_s16 (sint16, sint16,
sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

0x0E3 sint32 Ifx_IntLkUpFixBaseMap_s32s32_s32 (sint32 Xin,
sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array,
sint32 offsetX, sint32 ShiftX, sint32 offsetY, sint32 shiftY)

0x0E4 uint32 Ifx_IntLkUpFixBaseMap_u32u32_u32 (uint32 Xin,
uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array,
uint32 offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)

AUTSSAR

8.5.2.13

[SWS_Ifx_00153] Definition of API function Ifx_IntlpoFixIMap_<InTypeMn><In

TypeMn>_<OutTypeMn> |

Integrated fix- | map interpolation

Service Name

Ifx_IntlpoFixIMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Shnnax <OutType> Ifx_IntIpoFixIMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> Yin,
<InType> Nx,
<InType> Ny,
const <InType>x Val_array,
<InType> OffsetX,
<InType> IntervalkX,
<InType> OffsetY,
<InType> IntervalyY
)
Service ID [hex] 0x009A to 0x009D
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number to X axis samples
Ny Number to Y axis samples
Val_array Pointer to the result axis distribution array
OffsetX Offset of the first sampling value for X-axis
IntervalX represents X-axis distribution point interval
OffsetY Offset of the first sampling value for Y-axis
IntervalY represents Y-axis distribution point interval
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the Interpolation

Description

This routine calculates Interpolation of a map at position X and Y using below equations.

Available via

Ifx.h

]

[SWS_Ifx_00154] [X and Y axis distribution points shall be calculated based on Offset
and Interval values.

X_array[index] = offsetX + index * IntervalX

Y_array[index] = offsetY + index * IntervalY
If Offset = 10, Interval = 2 and N = 5 then,
axis = {10, 12, 14, 16, 18} (applicable to X and Y axis) |

[SWS_Ifx_00155] [Index calculation :

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

Baselndex = IndexX * Ny + indexY |

AUTSSAR

[SWS_Ifx_00156] [Ratio Calculation :
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) |

[SWS_Ifx_00157] [LowerY = Val_array [Baselndex]
UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * RatioY
LowerY = Val_array [Baselndex + Ny]

UpperY = Val_array [Baselndex + Ny + 1]

UpperX = LowerY + (UpperY - LowerY) * RatioY
Result = LowerX + (UpperX - LowerX) * RatioX |

[SWS_Ifx_00158] [If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_ar-
ray[indexY+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+1] - Val_array[Baselndex]) *
RatioY |

[SWS_Ifx_00159] [If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_ar-
ray[indexX+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+Ny] - Val_array[Baselndex]) *
RatioX |

[SWS_Ifx_00160] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [Baselndex] |

[SWS_Ifx_00161] [If Xin < X_array[0], then
indexX = 0,
RatioX = 0|

[SWS_Ifx_00162] [If Xin > X_array[Nx-1], then
indexX = Nx - 1,

RatioX = 0|

[SWS_Ifx_00163] [If Yin < Y_array[0], then
indexY =0,

RatioY = 0|

AUTSSAR

[SWS_Ifx_00164] [If Yin > Y_array[Ny-1], then
indexY = Ny - 1,
RatioY = 0|

[SWS_Ifx_00165] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00166] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x09A uint8 Ifx_IntlpoFixIMap_u8u8_u8 (uint8, uint8, uint8, uint8,
const uint8 *, uint8, uint8, uint8, uint8)

0x09B uint16 Ifx_IntlpoFixIMap_u16u16_u16 (uint16, uint16,
uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)

0x09C sint8 Ifx_IntlpoFixIMap_s8s8_s8 (sint8, sint8, sint8, sint8,
const sint8 *, sint8, sint8, sint8, sint8)

0x09D sint16 Ifx_IntlpoFixIMap_s16s16_s16 (sint16, sint16, sint16,
sint16, const sint16 *, sint16, sint16, sint16, sint16)

0x0E5 sint32 Ifx_IntlpoFixIMap_s32s32_s32 (sint32 Xin, sint32 Yin,
sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX,
sint32 ShiftX, sint32 offsetY, sint32 shifty)

0x0E6 uint32 Ifx_IntlpoFixIMap_u32u32_u32 (uint32 Xin, uint32
Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32
offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)

8.5.2.14 Integrated fix- | map look up

[SWS_Ifx_00169] Definition of API function Ifx_IntLkUpFixIMap_<InTypeMn><In
TypeMn>_<OutTypeMn> |

Service Name Ifx_IntLkUpFixIMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpFixIMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> Yin,
<InType> Nx,
<InType> Ny,
const <InType>x Val_array,
<InType> OffsetX,
<InType> IntervalkX,
<InType> OffsetY,
<InType> IntervalyY

)

Service ID [hex] 0x00AO to 0x00A3
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number to X axis samples
Ny Number to Y axis samples
Val_array Pointer to the result axis distribution array

V

AUTSSAR

A

OffsetX Offset of the first sampling value for X-axis
IntervalX represents X-axis distribution point interval
OffsetY Offset of the first sampling value for Y-axis
IntervalY represents Y-axis distribution point interval

Parameters (inout) None

Parameters (out) None

Return value <OutType> Entry point of the result array

Description This routine returns respective entry value of the result distribution array at position Xin and Yin
based on below equations.

Available via Ifx.h

]

[SWS_Ifx_00170] [X and Y axis distribution points shall be calculated based on Offset
and Interval values.

X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis) |

[SWS_Ifx_00171] [Index calculation:
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00173] [Ratio calculation:

if (indexX < (Nx - 1))

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
else

RatioX =0

if (indexY < (Ny - 1))

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
else

RatioY = 0|

[SWS_Ifx_00174] [if(RatioX < 0.5 && RatioY < 0.5) then
Result = Val_array [Baselndex]
if(RatioX > 0.5 && RatioY < 0.5) then

AUTSSAR

Result = Val_array [Baselndex + Ny]

if(RatioX < 0.5 && RatioY > 0.5) then

Result = Val_array [Baselndex + 1]

if(RatioX > 0.5 && RatioY > 0.5) then

Result = Val_array [Baselndex + Ny + 1]]

[SWS_Ifx_00175] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [Baselndex] |

[SWS_Ifx_00176] [If Xin < X_array[0], then

indexX = 0|

[SWS_Ifx_00177] [If Xin > X_array[Nx-1], then

indexX = Nx - 1]

[SWS_Ifx_00178] [If Yin < Y_array[0], then

indexY = 0|

[SWS_Ifx_00179] [If Yin > Y_array[Ny-1], then

indexY =Ny - 1|

[SWS_Ifx_00180] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00181] [Here is the list of implemented routines. |

Routine ID[hex] Routine prototype

0x0A0 uint8 Ifx_IntLkUpFixIMap_u8u8_u8 (uint8, uint8, uint8,
uint8, const uint8 *, uint8, uint8, uint8, uint8)

0x0A1 uint16 Ifx_IntLkUpFixIMap_u16u16_u16 (uint16, uint16,
uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)

0x0A2 sint8 Ifx_IntLkUpFixIMap_s8s8_s8 (sint8, sint8, sint8, sint8,
const sint8 *, sint8, sint8, sint8, sint8)

0x0A3 sint16 Ifx_IntLkUpFixIMap_s16s16_s16 (sint16, sint16,
sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

0x0E7 sint32 Ifx_IntLkUpFixIMap_s32s32_s32 (sint32 Xin, sint32
Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32
offsetX, sint32 IntervalX, sint32 offsetY, sint32 IntervalY)

0x0E8 uint32 Ifx_IntLkUpFixIMap_u32u32_u32 (uint32 Xin, uint32
Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32
offsetX, uint32 IntervalX, uint32 offsetY, uint32 IntervalY)

AUTSSAR

8.5.2.15 Integrated fix- | map look up without rounding

[SWS_Ifx_00249] Definition of API function Ifx_IntLkUpFixIBaseMap_<InType
Mn><InTypeMn>_<OutTypeMn> |

Service Name Ifx_IntLkUpFixIBaseMap_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Ifx_IntLkUpFixIBaseMap_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> Xin,
<InType> Yin,
<InType> Nx,
<InType> Ny,
const <InType>x Val_array,
<InType> OffsetX,
<InType> IntervalkX,
<InType> OffsetY,
<InType> IntervalyY

)

Service ID [hex] 0x00B4 to 0x00B7

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number to X axis samples
Ny Number to Y axis samples
Val_array Pointer to the result axis distribution array
OffsetX Offset of the first sampling value for X-axis
IntervalX represents X-axis distribution point interval
OffsetY Offset of the first sampling value for Y-axis
IntervalY represents Y-axis distribution point interval

Parameters (inout) None

Parameters (out) None

Return value <OutType> Entry point of the result array

Description This routine returns respective entry value of the result distribution array at position Xin and Yin

based on below equations.

Available via Ifx.h

]

[SWS_Ifx_00237] [X and Y axis distribution points shall be calculated based on Offset
and Interval values.

X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis) |

[SWS_Ifx_00238] [Index calculation:
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

AUTSSAR

Baselndex = IndexX * Ny + indexY |

[SWS_Ifx_00240] [Return Value = Val_array [Baselndex] |

[SWS_Ifx_00241] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [Baselndex] |

[SWS_Ifx_00242] [If Xin < X_array[0], then
indexX = 0|

[SWS_Ifx_00243] [If Xin > X_array[Nx-1], then

indexX = Nx - 1]

[SWS_Ifx_00244] [If Yin < Y_array[0], then
indexY = 0|

[SWS_Ifx_00245] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1|

[SWS_Ifx_00246] [The minimum value of Nx and Ny shall be 1 |

[SWS_Ifx_00247] [Here is the list of implemented routines. |

Routine ID[hex]

Routine prototype

0x0B4

uint8 Ifx_IntLkUpFixIBaseMap_u8u8_u8 (uint8, uint8, uints,
uint8, const uint8 *, uint8, uint8, uint8, uint8)

0x0B5

uint16 Ifx_IntLkUpFixIBaseMap_u16u16_u16 (uint16,
uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16,
uint16)

0x0B6

sint8 Ifx_IntLkUpFixIBaseMap_s8s8_s8 (sint8, sint8, sint8,
sint8, const sint8 *, sint8, sint8, sint8, sint8)

0x0B7

sint16 Ifx_IntLkUpFixIBaseMap_s16s16_s16 (sint16, sint16,
sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

0x0E9

sint32 Ifx_IntLkUpFixIBaseMap_s32s32_s32 (sint32 Xin,
sint32 Yin, sint32 NXx, sint32 Ny, const sint32 * Val_array,
sint32 offsetX, sint32 IntervalX; sint32 offsetY, sint32
IntervalY)

OxO0EA

uint32 Ifx_IntLkUpFixIBaseMap_u32u32_u32 (uint32 Xin,
uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array,
uint32 offsetX, uint32 IntervalX, uint32 offsetY, uint32
IntervalY)

AUTSSAR

8.5.2.16 Cuboid 3D interpolation

[SWS_Ifx_91002] Definition of API function Ifx_IpoCub_<OutTypeMn> |

Service Name Ifx_lpoCub_<OutTypeMn>

Syntax <QutType> Ifx_IpoCub_<OutTypeMn> (

const Ifx_DPResultUl6_Typex dpResultX,
const Ifx DPResultUl6_Typex dpResulty,
const Ifx_ DPResultUl6_Typex dpResultZ,
uintl6 num_x,

uintl6é num_y,

const <InType>x Val_array

)

Service ID [hex] 0x0100
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResultX Data point search result for X axis
dpResultY Data point search result for Y axis
dpResultZ Data point search result for Z axis
num_x Number of X axis points
num_y Number of Y axis points
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the interpolation
Description Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this

routine calculates and returns the interpolation result for a 3D cuboid.

Available via Ifx.h

|
[SWS_Ifx_91003] [

Based on searched indices and ratios information using the relevant Ifx_DPSearch
routine, this routine calculates and returns the interpolation result for 3D cuboids.

The axis order memory representation is [z][x][y]. This is the column-major orientation
COLUMN_DIR from the ASAM standard. The first axis z specifies the selected slice.

Implementation:

Linear interpolation along x-axis between the result of two 2D interpolations between
neighbouring X/Y Maps.

num_slice = num_x * num_y
if(dpResultZ->Ratio==0)

Result=Ifx_IpoMap_<OutTypeMn> (dpResultX, dpResultY, num_y, Val_array[num_
slice * dpResultZ->Index])

else

LowerXY=Ifx_IpoMap_<OutTypeMn> (dpResultX, dpResultY, num_y, Val_array[num_
slice * dpResultZ ->Index])

AUTSSAR

UpperXY=Ifx_IpoMap_<OutTypeMn> (dpResultX, dpResultY, num_y, Val_array[num_
slice * dpResultZ ->Index + 1])

Result=LowerXY + dpResultZ->Ratio * (UpperXY - LowerXY)

]
[SWS_lfx_91004] [

Do not call this routine without using the Ifx_DPSearch routine. It is ensures a valid
search result (Ifx_DPResultU16_Type) and initialization.

|
[SWS_Ifx_91005] [

Routine ID[hex] Routine prototype

0x0F1 sint8 Ifx_IpoCub_s8 (const Ifx_DPResultU16_Type *
dpResultX, const Ifx_DPResultU16_Type * dpResultY, const
Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16
num_y, const sint8 * Val_array)

0x0F2 uint8 Ifx_IpoCub_u8 (const Ifx_DPResultU16_Type *
dpResultX, const Ifx_DPResultU16_Type * dpResultY, const
Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16
num_y, const uint8 * Val_array)

0x0F3 sint16 Ifx_IpoCub_s16 (const Ifx_DPResultU16_Type *
dpResultX, const Ifx_DPResultU16_Type * dpResultY, const
Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16
num_y, const sint16 * Val_array)

0x0F4 uint16 Ifx_lpoCub_u16 (const Ifx_DPResultU16_Type *
dpResult, const Ifx_DPResultU16_Type * dpResultY, const
Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16_
num y, const uint16 * Val_array)

8.5.3 Record layouts for interpolation routines

Record layout specifies calibration data serialization in the ECU memory which de-
scribes the shape of the characteristics. Single record layout can be referred by multi-
ple instances of interpolation ParameterDataPrototype. Record layouts can be nested
particular values refer to the particular property of the object. With different properties
of record layouts it is possible to specify complex objects.

8.5.3.1 Record layouts for map values

Due to optimization, the orientation of map values in memory is different depending on
the usage of the inputs. See section 8.4.2.

1. If the "X" and "Y" inputs are not swapped then, values "Val" of maps have to be in
COLUMN_DIR order.

AUTSSAR

2. Ifthe "X" and "Y" inputs are swapped then, values "Val" of maps have to be in ROW _
DIR order.

According to ASAM standard [ASAM MCD-2MC Version 1.5.1 and 1.6], COLUMN_DIR
and ROW_DIR are formats of storing map values (Val[]) and more information can be
found in ASAM standard.

The "Z" input of cuboids is the third dimension and selects the slice X/ Y orY /X -2D
maps.

Example for cuboids order:

2x2x2 cuboid representation in memory shall be COLUMN_DIR according to the ASAM
standard : [123456 7 8]

COLUMN_DIR order [z][x][y]:
Slice 1:

12

3 4]

Slice 2:

56

7 8]

8.5.3.2 Record layout definitions
Below table specifies record layouts supported for distributed interpolation routines.

[SWS_Ifx_00185] [

Record layout Name Element1 Element2
Distr_s8 sint8 N sint8 X([]
Distr_u8 uint8 N uint8 X[]
Distr_s16 sint16 N sint16 X]]
Distr_u16 uint16 N uint16 X[]
Cur_u8 uint8 Vall]

Cur_u16 uint16 Val[]

Cur_s8 sint8 Val[]

Cur_s16 sint16 Val[]

Map_u8 uint8 Val[]

Map_u16 uint16 Val[]

Map_s8 sint8 Val[]

Map_s16 sint16 Val[]

Cur_u32 uint32 Val[]

AUTSSAR

A

Cur_s32 sint32 Val[]
Map_u32 uint32 Val[]
Map_s32 sint32 Val[]
Cub_s8 sint8 Val[]

Cub_s16 sint16 Val[]
Cub_u8 uint8 Val[]

Cub_u16 uint16 Val[]

]

Below table specifies record layouts supported for integrated interpolation routines.

[SWS_Ifx_00186] |

For IntTypeMn, OutTypeMN of {s8, u8,s16, u16,s32, u32}
IntCur_<nTypeMn>_<OutTypeMn>
FixIntCur_<InTypeMn>_<OutTypeMn>
IntMap_<InTypeMn><InTypeMn>_<OutTypeMn>
FixIntMap_<InTypeMn><InTypeMn>_<OutTypeMn>

For InTypeMn, OutTypeMn of {s8, u8, s16, u16}
IntCub_<InTypeMn><InTypeMn><InTypeMn>_<OutTypeMn>
Remark:

All combinations have to be defined in IFX_RecordLayout Blueprint, AUTOSAR _
MOD _IFX_RecordLayout_Blueprint.arxml

Note: As mentioned in in chapter 8.4, interpolation routines optimization is achieved
by swaping X and Y axis during function call for Call-back notifications for below men-
tioned record layouts.

From Map_u8u16_u8 (S. No 61) to Map_s16u16_s16 (S. No 84) |

8.6 Examples of use of functions

None

AUTSSAR

8.7 Version API

8.7.1 Ifx_GetVersioninfo

[SWS_Ifx_00815] Definition of API function Ifx_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_

00321
Service Name Ifx_GetVersionInfo
Syntax void Ifx_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] Oxff
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]
Return value None
Description Returns the version information of this library.
Available via Ifx.h
The version information of a BSW module generally contains:
Module Id
Vendor Id

Vendor specific version numbers (SRS_BSW_00407).

[SWS_Ifx_00816]
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[If source code for caller and callee of Ifx_GetVersioninfo is available, the Ifx library
should realize Ifx_GetVersionInfo as a macro defined in the module’s header file. |

8.8 Callback notifications

None

8.9 Scheduled functions

The Ifx library does not have scheduled functions.

AUTSSAR

8.10 Expected Interfaces

None

8.10.1 Mandatory Interfaces

None

8.10.2 Optional Interfaces

None

8.10.3 Configurable interfaces

None

AUTSSAR

9 Sequence diagrams

Not applicable.

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Ifx.

Chapter 10.3 specifies published information of the module Ifx.

10.1 How to read this chapter

For details refer to [5] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

[SWS_Ifx_00818]
Upstream requirements: SRS_LIBS_00001

[The Ifx library shall not have any configuration options that may affect the functional
behavior of the routines. l.e. for a given set of input parameters, the outputs shall
be always the same. For example, the returned value in case of error shall not be
configurable. |

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

10.3 Published Information
For details refer to [5] Chapter 10.3 “Published Information”.

[SWS_Ifx_00814]
Upstream requirements: SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379

[The standardized common published parameters as required by SRS_BSW_00402 in
the General Requirements on Basic Software Modules [REF] shall be published within
the header file of this module and need to be provided in the BSW Module Description.
The according module abbreviation can be found in the List of Basic Software Modules
[REF].|

AUTSSAR

A Not applicable requirements

[SWS_Ifx_00999]
Upstream requirements: SRS_BSW_00448

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11

none

B.2.2 Changed Specification Items in R24-11

none

B.2.3 Deleted Specification Items in R24-11

none

AUTSSAR

B.3 Traceable item history of this document
AUTOSAR Release R23-11

B.3.1 Added Specification Iltems in R23-11

none

B.3.2 Changed Specification Items in R23-11

according to

Number Heading

[SWS_Ifx_00002] Definition of datatype Ifx_DPResultU16_Type

[SWS_Ifx_00014]

[SWS_Ifx_00017]

[SWS_Ifx_00022]

[SWS_Ifx_00027]

[SWS_Ifx_00032]

[SWS_Ifx_00041]

[SWS_Ifx_00051]

[SWS_Ifx_00062]

[SWS_Ifx_00077]

[SWS_Ifx_00087]

[SWS_Ifx_00097]

[SWS_Ifx_00110]

[SWS_Ifx_00122]

[SWS_Ifx_00136]

[SWS_lfx_00151]

[SWS_lfx_00166]

[SWS_Ifx_00181]

[SWS_Ifx_00209]

[SWS_Ifx_00222]

[SWS_Ifx_00236]

[SWS_Ifx_00247]

[SWS_Ifx_91001] Definition of imported datatypes of module Ifx

Table B.1: Changed Specification Items in R23-11

B.3.3 Deleted Specification Items in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	7.2 Initialization and shutdown
	7.3 Using Library API
	7.4 library implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about rounding
	8.4 Comment about routines optimization
	8.4.1 Target optimization
	8.4.2 Optimization for routine numbers

	8.5 Interpolation routines definitions
	8.5.1 Distributed data point search and interpolation
	8.5.1.1 Data Point Search
	8.5.1.2 Curve interpolation
	8.5.1.3 Curve look-up
	8.5.1.4 Map interpolation
	8.5.1.5 Map look-up
	8.5.1.6 Map look-up without rounding

	8.5.2 Integrated data point search and interpolation
	8.5.2.1 Integrated curve interpolation
	8.5.2.2 Integrated curve look-up
	8.5.2.3 Integrated fix-curve interpolation
	8.5.2.4 Integrated fix-curve look up
	8.5.2.5 Integrated fix- I curve interpolation
	8.5.2.6 Integrated fix- I curve look up
	8.5.2.7 Integrated map interpolation
	8.5.2.8 Integrated map look-up
	8.5.2.9 Integrated map look-up without rounding
	8.5.2.10 Integrated fix- map interpolation
	8.5.2.11 Integrated fix- map look up
	8.5.2.12 Integrated fix- map look up without rounding
	8.5.2.13 Integrated fix- I map interpolation
	8.5.2.14 Integrated fix- I map look up
	8.5.2.15 Integrated fix- I map look up without rounding
	8.5.2.16 Cuboid 3D interpolation

	8.5.3 Record layouts for interpolation routines
	8.5.3.1 Record layouts for map values
	8.5.3.2 Record layout definitions

	8.6 Examples of use of functions
	8.7 Version API
	8.7.1 Ifx_GetVersionInfo

	8.8 Callback notifications
	8.9 Scheduled functions
	8.10 Expected Interfaces
	8.10.1 Mandatory Interfaces
	8.10.2 Optional Interfaces
	8.10.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11

