AUTSSAR

. Specification of Floating Point
Document Title Interpolation Library
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 398
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release » Added import type
Management
AUTOSAR
2023-11-23 R23-11 Release * No content changes.
Management
* Requirements added SWS_Ifl_91000 to
SWS_Ifl_91003
* Requirements added SWS_Ifl_00226
AUTOSAR — ’
SWS_Ifl_00228, SWS_Ifl_00229, SWS_
2022-11-24 | R22-11 m'r?:;gmem Ifl_00231, SWS_Ifl_00232, SWS_Ifl_
00234, SWS_Ifl_00235
» Modified SWS_Ifl_00170 , SWS_Ifl_
00011 and SWS_Ifl_00221
AUTOSAR
2021-11-25 | R21-11 Release « Editorial changes
Management
AUTOSAR
2020-11-30 | R20-11 Release » Chapter 7.1 Error sections updated
Management
AUTOSAR » Editorial changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management

published

AUTSSAR

AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
* Section 2 has been revisited to update
Default Error Tracer instead of
Development Error tracer
» Updated IFL document to support
AUTOSAR MISRA 2012 standard.. (Removed
2016-11-30 43.0 Release redundant statements in SWS_Ifl_00209
= Management which already exist in SWS_BSW
9 document and SWS_SRS document)
» Updated the correct reference to SRS_
BSW_General (SRS_BSW_00437) &
(SRS_BSW_00448) for SWS_Ifl_00210
& SWS_Ifl_00224 requirements.
» Updated Record layouts definitions for
SWS_Ifx_00170
AUTOSAR » Updated SWS_Ifl_00001 for naming
2015-07-31 422 Release convention under Section 5.1, File
Management Structure
» Updated valid range for float32 in Table
1 of Section 8.1
» Added IFL RecordLayout Blueprint
reference in section 3.1
» The usage of const is updated in
AUTOSAR function parameters for SWS_Ifl_00010,
2014-10-31 | 4.2.1 Release SWS_Ifl_00021 & SWS_Ifl_00025
Management
* IFL Blueprint modified for the schema
version
* Serial numbers in Section 3.2
AUTOSAR * Corrected arr.ay—out-of-bounds for Ifl_
2013-10-31 | 412 | Release IpoMap function
Management « Editorial changes

AUTSSAR

2013-03-15

411

AUTOSAR
Administration

» Corrected the formula for integrated map
interpolation and map interpolation

» Corrected array out-of-bounds for curve
interpolation

» Modified the reference to non-existant
metamodel
elementCalprmElementPrototype to
Param-eterDataPrototype

* Corrected for 'DependencyOnArtifact’

2011-12-22

4.0.3

AUTOSAR
Administration

* Error classification support and
defi-nition removed as DET call not
sup-ported by library

» Configuration parameter description /
support removed for XXX_
GetVersionlInfo routine.

* XXX_GetVersionInfo routine name
corrected.

2010-09-30

AUTOSAR
Administration

» DPSearch function optimised using
structure pointer

* Removal of normalised functions

2010-02-02

3.1.4

AUTOSAR
Administration

* Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

Dependencies to other modules
51 Filestructure
Requirements Tracing

Functional specification

7.1 Error Classification
7.1.1 DevelopmentErrors
7.1.2 Runtime Errors e
7.1.3 Production Errors
7.1.4 Extended ProductionErrors

7.2 Errordetection. e

7.3 Error notification

7.4 Initialization and shutdown

7.5 Using Library APlo

7.6 Library implementation o o

API specification

8.1 Importedtypes
8.2 Type definitions
8.3 Commentaboutrounding
8.4 Comment about routines optimized fortarget.
8.5 Interpolation routines definitionso o000
8.5.1 Distributed data point search and interpolation
8.5.1.1 DataPointSearch
8.5.1.2 Curveinterpolation
8.5.1.3 Mapinterpolation L.
8.5.1.4 Single pointinterpolation
8.5.2 Integrated data point search and interpolation.
8.5.2.1 Integrated curve interpolation
8.5.2.2 Integrated map interpolation oL
8.5.2.3 Cuboid 3D interpolation

© o © (o]

10
10

11
11
12

AUTSSAR

8.5.2.4 Mixed type interpolation of integercurve 30
8.5.2.5 Mixed type interpolation of integermap 31
8.5.2.6 Mixed type interpolation of integer 3D Cuboid 33
8.5.3 Record layouts for interpolation routines 34
8.5.3.1 Record layoutformapvalues 34
8.5.3.2 Record layout definitions o L. 35
8.6 Examplesofuseoffunctions. 35
8.7 Version APl e 36
8.7.1 Ifl_ GetVersioninfo 36
8.8 Callback notifications 36
8.9 Scheduledroutines 36
8.10Expectedinterfaces L 37
8.10.1 Mandatory interfaces L. 37
8.10.2 Optionalinterfaces 37
8.10.3 Configurable interfaces, 37
9 Sequence diagrams 38
10 Configuration specification 39
10.1Published Information. 39
10.2Configuration option. Lo 39
A Not applicable requirements 40
B Change history of AUTOSAR traceable items 41
B.1 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e 41
B.1.1 Added Specification ltemsin R23-11 41
B.1.2 Changed Specification ltemsin R23-11 41
B.1.3 Deleted Specification temsin R23-11 41
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 42
B.2.1 Added Specification ltemsinR24-11 42
B.2.2 Changed Specification ItemsinR24-11 42
B.2.3 Deleted Specification ltemsin R24-11 42
B.3 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 42
B.3.1 Added Specification ltemsin R25-11 42
B.3.2 Changed Specification Itemsin R25-11 42

B.3.3 Deleted Specification ltemsin R25-11 42

AUTSSAR

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
and below figure shows position of AUTOSAR library in layered architecture.

ArnOo4CP

W—-r

Figure 1.1: Layered Architecture

This specification specifies the functionality, APl and the configuration of the AUTOSAR
library dedicated to interpolation and lookup routines for floating point values.

The interpolation library contains the following routines:
+ Distributed data point search and interpolation
* Integrated data point search and interpolation

All routines are re-entrant. They may be used by multiple runnables at the same time.

AUTSSAR

2 Acronyms and Abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not contained
in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation / Acronym Description

DET Default Error Tracer

ROM Read only memory

hex Hexadecimal

Rev Revision

32 Mnemonic for the float32, specified in AUTOSAR_SWS_ PlatformTypes
IFL Interpolation Floating point Library

Mn Mnemonic

Lib Library

s16 Mnemonic for the sint16, specified in AUTOSAR_SWS_PlatformTypes
s32 Mnemonic for the sint32, specified in AUTOSAR_SWS_PlatformTypes
s8 Mnemonic for the sint8, specified in AUTOSAR_SWS_PlatformTypes
ulé Mnemonic for the uint16, specified in AUTOSAR_SWS_PlatformTypes
u32 Mnemonic for the uint32, specified in AUTOSAR_SWS_PlatformTypes
u8 Mnemonic for the uint8, specified in AUTOSAR_SWS_PlatformTypes

Table 2.1: Acronyms and Abbreviations

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] IFL_RecordLayout_Blueprint
AUTOSAR_MOD_IFL_RecordLayout_Blueprint.arxml

[2] ISO/IEC 9899:1990 Programming Language - C
https://www.iso.org

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for IFL Library.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for IFL Library.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

5.1 File structure

[SWS_IfI_00001] [The Ifl module shall provide the following files:

 C files, Ifl_<name>.c used to implement the library. All C files shall be prefixed
with "Ifl_.

Implementation & grouping of routines with respect to C files is recommended as per
below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,
eg.: Ifl_IntlpoMap_f32{32_f32.c etc.
Option 2 : <Name> can have common name of group of functions:

+ 2.1 Group by object family: eg.:Ifl_lpoCur.c, Ifl_DPSearch.c

2.2 Group by routine family: eg.: Ifl_IpoMap.c

» 2.3 Group by method family: eg.: Ifl_Ipo.c etc.

» 2.4 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Ifl functions,
eg.: Ifl.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Linking only on-demand is also possible in case of some
options. |

AUTSSAR

6 Requirements Tracing

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Ifl_00215]

[SRS_BSW_00007]

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_Ifl_00209]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data

types

[SWS_Ifl_00212]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Ifl_00213]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Ifl_00215]

[SRS_BSW_00321]

The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_Ifl_00215]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Ifl_00211]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_Ifl_00214]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean
type

[SWS_Ifl_00212]

[SRS_BSW_00379]

All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_Ifl_00214]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Ifl_00214]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Ifl_00215] [SWS_If|_00216]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Ifl_00216]

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_Ifl_00210]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other modules

[SWS_Ifl_00224]

[SRS_LIBS_00001]

The functional behavior of each
library functions shall not be
configurable

[SWS_Ifl_00218]

[SRS_LIBS_00002]

A library shall be operational before
all BSW modules and application
SW-Cs

[SWS_Ifl_00200]

[SRS_LIBS_00003]

A library shall be operational until the

[SWS_Ifl_00201]

shutdown
\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_LIBS_00005]

Each library shall provide one header
file with its public interface

[SWS_Ifl_91000] [SWS_Ifl_91001] [SWS_Ifl_91002]
[SWS_Ifl_91003]

[SRS_LIBS_00009]

All library functions shall be re-entrant

[SWS_Ifl_91000] [SWS_If_91001] [SWS_Ifl_91002]
[SWS_If_91003]

[SRS_LIBS_00011]

All function names and type names
shall start with "Library short name_'

[SWS_Ifl_91000] [SWS_If_91001] [SWS_If_91002]
[SWS_Ifl_91003]

[SRS_LIBS_00013]

The error cases, resulting in the
check at runtime of the value of input
parameters, shall be listed in SWS

[SWS_If_00217] [SWS_Ifl_00219]

[SRS_LIBS_00015] It shall be possible to configure the [SWS_Ifl_00206]
microcontroller so that the library
code is shared between all callers
[SRS_LIBS_00017] Usage of macros should be avoided [SWS_Ifl_00207]
[SRS_LIBS_00018] A library function may only call library | [SWS_Ifl_00208]

functions

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Error Classification

[SWS_IfI_00223] [Chapter [3, General Specification of Basic Software Modules] 7.2
“Error Handling” describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules. |

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

7.2 Error detection

[SWS_Ifl_00219]
Upstream requirements: SRS_LIBS 00013

[Error detection: Function should check at runtime (both in production and develop-
ment code) the value of input parameters, especially cases where erroneous value
can bring to fatal error or unpredictable result, if they have the values allowed by the
function specification. All the error cases shall be listed in SWS and the function should
return a specified value (in SWS) that is not configurable. This value is dependant of
the function and the error case so it is determined case by case.

AUTSSAR

If values passed to the routines are not valid and out of the function specification, then
such error are not detected. |

E.g. If passed value > 32 for a bit-position

or a negative number of samples of an axis distribution is passed to a routine.

7.3 Error notification

[SWS_Ifl_00217]
Upstream requirements: SRS_LIBS 00013

[The functions shall not call the DET for error notification. |

7.4 Initialization and shutdown

[SWS_Ifl_00200]
Upstream requirements: SRS_LIBS_00002

[Ifl library shall not require initialization phase. A Library function may be called at the
very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall
be ready. |

[SWS_Ifl_00201]
Upstream requirements: SRS_LIBS_00003

[Ifl library shall not require a shutdown operation phase. |

7.5 Using Library API

Ifl API can be directly called from BSW modules or SWC. No port definition is required.
It is a pure function call.

The statement 'Ifl.h’ shall be placed by the developer or an application code generator
but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library,
the developer should add an Implementation-DependencyOnAtrtifact in the BSW/SWC
template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on a library behaviour, not on a supplier implementation. However,
the SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated.

AUTSSAR

7.6 Library implementation

[SWS_Ifl_00206]

Upstream requirements: SRS_LIBS_00015
[The Ifl library shall be implemented in a way that the code can be shared among
callers in different memory partitions. |

[SWS_Ifl_00207]
Upstream requirements: SRS_LIBS_00017

[Usage of macros should be avoided. The function should be declared as function or
inline function. Macro #define should not be used. |

[SWS_Ifl_00208]

Upstream requirements: SRS_LIBS 00018
[A library function can call other library functions because all library functions shall be
re-entrant. A library function shall not call any BSW modules functions, e.g. the DET. |

[SWS_Ifl_00209]
Upstream requirements: SRS_BSW_00007

[The library, written in C programming language, should conform to the MISRA C
Standard.

Please refer to SWS_BSW_00115 for more details. |

[SWS_Ifl_00210]
Upstream requirements: SRS_BSW_00437

[Each AUTOSAR library Module implementation <library>*.c and

<library>*.h shall map their code to memory sections using the AUTOSAR memory
mapping mechanism. |

[SWS_Ifl_00211]
Upstream requirements: SRS _BSW_00348

[Each AUTOSAR library Module implementation <library>*.c, that uses AUTOSAR in-
teger data types and/or the standard return, shall include the header file Std_Types.h. |

[SWS_Ifl_00212]
Upstream requirements: SRS_BSW_00304, SRS_BSW_00378
[All AUTOSAR library Modules should use the AUTOSAR data types (integers,

boolean) instead of native C data types, unless this library is clearly identified to be
compliant only with a platform. |

AUTSSAR

[SWS_Ifl_00213]
Upstream requirements: SRS_BSW_00306

[All AUTOSAR library Modules should avoid direct use of compiler and platform spe-
cific keyword, unless this library is clearly identified to be compliant only with a platform.
eg. #pragma, typeof etc. |

[SWS_Ifl_00220] [If input value is less than first distribution entry then first value of the
distribution array shall be returned or used in the interpolation routines. If input value
is greater than last distribution entry then last value of the distribution array shall be
returned or used in the interpolation routines. |

[SWS_Ifl_00221] [Axis distribution passed to Ifx routines shall have normal monotony
sequence. |

AUTSSAR

8 API specification

8.1 Imported types

In this chapter, all types included from the following modules are listed:

Module file
Std_Types.h

Imported Type
sint8, uint8, sint16, uint16, sint32, uint32, float32

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

Thus in order to improve the portability of the software these types are defined in Plat-
form_Types.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in
the library routine names.

Size Platform Type Mnemonic Range

unsigned 8-Bit boolean NA [TRUE, FALSE]

signed 8-Bit sint8 s8 [-128, 127]

signed 16-Bit sint16 s16 [-32768, 32767 |

signed 32-Bit sint32 s32 [-2147483648, 2147483647 |
unsigned 8-Bit uint8 u8 [0,255]

unsigned 16-Bit uint16 ul6é [0,65535]

unsigned 32-Bit uint32 u32 [0, 4294967295]

32-Bit float32 f32 [-3.4028235E38, 3.4028235E38]

Table 8.1: Mnemonic for Base Types

As a convention in the rest of the document:

* mnemonics will be used in the name of the routines (using <InType> that means
Type Mnemonic for Input)

» The real type will be used in the description of the prototypes of the routines
(using <InTypeMn1> or <OutType>).

[SWS_Ifl_91004] Definition of imported datatypes of module Ifl |

Module Header File
Std Std_Types.h

Imported Type

Std_VersionInfoType

8.2 Type definitions

Structure definition:

AUTSSAR

[SWS_Ifl_00005] Definition of datatype Ifl_DPResultF32_Type |

Name Ifl_DPResultF32_Type

Kind Structure

Elements Index
Type uint32
Comment Data point index
Ratio
Type float32
Comment Data point ratio

Description Structure used for data point search for index and ratio

Available via Ifl.h

]

[SWS_Ifl_00006] [Ifl_DPResultF32_Type structure shall not be read/write/modified by
the user directly. Only Ifl routines shall have access to this structure. |

8.3 Comment about rounding

Two types of rounding can be applied:
Results are rounded off’, it means:

* 0<=X<0.5roundedto 0

* 0.5<=X<1roundedto 1

* -0.5< X <=0roundedto 0

* -1 < X <=-0.5rounded to -1
Results are rounded towards zero.

* 0<=X<1roundedto 0

* -1 <X<=0roundedto 0

8.4 Comment about routines optimized for target

The routines described in this library may be realized as regular routines or inline func-
tions. For ROM optimization purposes, it is recommended that the c routines be real-
ized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:
« Some routines can be replaced by another routine using integer promotion.

» Some routines can be replaced by the combination of a limiting routine and a
routine with a different signature.

AUTSSAR

8.5 Interpolation routines definitions

Interpolation between two given points is calculated as shown below.

T — g

result = yo + (y1 — yo) - . .
1 — Zo

where: z is the input value
xo = data point before x
x1 = data point after z

yo = value at xq

y; = value at z;

Val @ Data points

F

— - Original curve

—— Linear interpolation

Figure 8.1: Linear interpolation

Data point arrays can be grouped as one array or one structure for all elements as
shown below.

one array for all elements :

float32 Curve_f32 []={5,0.0,10.0,26.0,36.0,64.0,1.0,12.0,17.0,11.0,6.0};
one structure for all elements :

struct

{uint32 N = 5;

float32 X[] ={0.0,10.0,26.0,36.0,64.0};

float32 Y[] ={1.0,12.0,17.0,11.0,6.0};

} Curve {32;

where, number of samples = 5

X axis distribution = 0.0 to 64.0

AUTSSAR

Y axis distribution = 1.0 t0 6.0

Interpolation routines accepts arguments separately to support above scenarios. Rou-
tine call example is given below for array and structure grouping respectively.

Example :

float32 Ifl_IntlpoCur_f32_ 32 (15, Curve_f32[0], &Curve_£32[1], &Curve_{32[6]);
float32 Ifl_IntlpoCur_f32_{32 (15, Curve_f32.N, &Curve_f32.X, &Curve_{32.Y);
Interpolation can be calculated in two ways as shown below:

1. Distributed data point search and interpolation

2. Integrated data point search and interpolation

8.5.1 Distributed data point search and interpolation

In this interpolation method data point search (e.g. index and ratio) is calculated using
routine Ifl_DPSearch_f32 which returns result structure Ifl_DPResultF32_Type. It con-
tains index and ratio information. This result can be used by curve interpolation and
map interpolation.

8.5.1.1 Data Point Search

[SWS_Ifl_00010] Definition of API function Ifl_DPSearch_{32 |

Service Name Ifl_DPSearch_{32

Syntax void Ifl_DPSearch_£32 (
Ifl_DPResultF32_Typex dpResult,
float32 Xin,

uint32 N,

const float32x X_array

)

Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value
N Number of samples
X_array Pointer to distribution array
Parameters (inout) None
Parameters (out) dpResult Pointer to the result structure
Return value None
Description This routine searches the position of input Xin within the given distribution array X_array, and
returns index and ratio necessary for interpolation.
Available via Ifl.h
]

[SWS_Ifl_00011] [Returned Index shall be the lowest index for which (X_array[index]
< Xin < X_array[index + 1]).

AUTSSAR

If (X_array[0] <=Xin <= X_array[N-1]), then returned Index shall be the lowest index.
dpResult ->Index = index

dpResult ->Ratio = (Xin - X_array[index]) / (X_array [index+1] - X_array [index]) |

Example:

For a given array float32 X[] ={0.0,10.0,26.0,36.0,64.0}:
If Xin = 20.0 then

dpResult ->Index = 1

dpResult ->Ratio = (20.0 - 10.0) / (26.0 - 10.0) = 0.625

[SWS_Ifl_00012] [If the input value matches with one of the distribution array values,
then

return respective index and ratio as 0.0.
If Input Xin == X_array[index], then
dpResult ->Index = index (Index of the set point)

dpResult ->Ratio = 0.0 |

[SWS_Ifl_00013] [If (Xin < X_array[0]), then return first index of an array and ratio =
0.0

dpResult ->Index = 0
dpResult ->Ratio = 0.0 |

[SWS_IfI_00014] [If (Xin > X_array[N-1]), then return last index of an array and ratio =
0.0

dpResult ->Index = N - 1
dpResult ->Ratio = 0.0 |

[SWS_IfI_00015] [The minimum value of N shall be 1 |

[SWS_IfI_00016] [If X_array[Index+1] == X_array[Index], then the Ratio shall be zero.
dpResult->Ratio = 0.0}

[SWS_Ifl_00017] [This routine returns index and ratio through the structure of type Ifl_
DPResultF32_Type |

AUTSSAR

8.5.1.2 Curve interpolation

[SWS_Ifl_00021] Definition of API function Ifl_IpoCur_f32 |

Service Name Ifl_lpoCur_f32
Syntax float32 Ifl_IpoCur_£32 (
const Ifl_DPResultF32_Typex dpResult,
const float32x Val_array
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResult Data point search result
Val_array Pointer to the result distribution array
Parameters (inout) None
Parameters (out) None
Return value float32 Result of the Interpolation

Description

Based on searched index and ratio information, this routine calculates and returns interpolation
for curve.

Available via

Ifl.h

]

[SWS_Ifl_00022] [index = dPResult->Index
if dPResult->Ratio == 0.0

Result = Val_array[index]

else

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio |

[SWS_Ifl_00180] [Do not call this routine until you have searched the axis using the
Ifl_DPSearch routine. Only then it is ensured that the search result (If_DPResultF32_
Type) contains valid data and is not used uninitialized. |

AUTSSAR

8.5.1.3 Map interpolation

[SWS_Ifl_00025] Definition of API function Ifl_IpoMap_f32 |

Service Name Ifl_lpoMap_£32

Syntax float32 Ifl_TIpoMap_f32 (
const Ifl_DPResultF32_Typex dpResultX,
const Ifl_DPResultF32_Typex dpResulty,
uint32 num_value,
const float32+ Val_array

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) dpResultX Data point search result for x axis
dpResultY Data point search result for y axis
num_value Number of y axis points
Val_array Pointer to result distribution array

Parameters (inout) None

Parameters (out) None

Return value float32 Result of the Interpolation

Description Based on searched indices and ratios information using the Ifl_DPSearch_f32 routine, this

routine calculates and returns the interpolation result for map.

Available via Ifl.h

]

[SWS_Ifl_00026] [Based on searched indices and ratios information using the Ifl_
DPSearch_£32 routine, this routine calculates and returns the interpolation result for
map.

Baselndex = dpResultX->Index * num_value + dpResultY->Index
if (dpResultX->Ratio == 0)

if (dpResultY->Ratio == 0)

Result = Val_array [Baselndex]

else

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio
else

if (dpResultY->Ratio == 0)

LowerX = Val_array [Baselndex]

UpperX = Val_array [Baselndex + num_value]

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio

AUTSSAR

else

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
LowerY = Val_array [Baselndex + num_value]

UpperY = Val_array [Baselndex + num_value + 1]

UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio |

[SWS_Ifl_00181] [Do not call this routine until you have searched the axis using the
Ifl_DPSearch routine. Only then it is ensured that the search result (If_DPResultF32_
Type) contains valid data and is not used uninitialized. |

8.5.1.4 Single point interpolation

[SWS_Ifl_00030] Definition of API function Ifl_Interpolate_f32 |

Service Name

Ifl_Interpolate_{32

Syntax float32 Ifl_Interpolate_£f32 (
float32 Valuel,
float32 Value?2,
float32 Coef

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Valuet First value to be used in the interpolation.
Value2 Second value to be used in the interpolation.
Coef Interpolation coefficient.

Parameters (inout) None

Parameters (out) None

Return value float32 Iterpolated value

Description Returns the result of the linear interpolation (Result), determined according to the following
equation.

Available via Ifl.h

]

[SWS_Ifl_00031] [Result = Value1 + (Coef * (Value2 - Value1)) |

8.5.2 Integrated data point search and interpolation

In this method of interpolation, single routine does data point search (e.g. Index and
ratio) and interpolation for curve, map.

AUTSSAR

8.5.2.1 Integrated curve interpolation

[SWS_Ifl_00035] Definition of API function Ifl_IntlpoCur_f32_f32 |

Service Name

Ifl_IntlpoCur_f32_{32

Syntax float32 Ifl_IntIpoCur_£32_f£32 (
float32 X_in,
uint32 N,
const float32+ X_array,
const float32+ Val_array
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_in Input value
N Number of samples
X_array Pointer to X distribution
Val_array Pointer to Y values
Parameters (inout) None
Parameters (out) None
Return value float32 Result of the Interpolation

Description

This routine calculates interpolation of a curve at position Xin using below equa-tion.

Available via

Ifl.h

]

[SWS_Ifl_00036] [index = minimum value of integer index if (X_array[index] < Xin <
X_array[index+1])

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index])*RatioX |

[SWS_Ifl_00037] [If the input value matches with one of the distribution array values,

then result will be the respective Y array element indicated by the index.

If (Xin == X_array[index]),
Result = Val_array[index] |

[SWS_Ifl_00038] [If Xin < X_array[0], then
Result = Val_array[0] |

[SWS_Ifl_00039] [If Xin > X_array[N-1], then
Result = Val_array[N-1]|

[SWS_Ifl_00040] [The minimum value of N shall be 1]

AUTSSAR

8.5.2.2 Integrated map interpolation

[SWS_Ifl_00041] Definition of API function Ifl_IntipoMap_f32f32_f32 |

Service Name Ifl_IntlpoMap_£32f32_{32
Syntax float32 Ifl_IntIpoMap_£f32£32_£32 (
float32 Xin,
float32 Yin,
uint32 Nx,
uint32 Ny,
const float32+ X_array,
const float32+ Y_array,
const float32+ Val_array
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xin Input value for X axis
Yin Input value for Y axis
Nx Number of X axis intervals
Ny Number of Y axis intervals
X_array Pointer to the X axis distribution array
Y_array Pointer to the Y axis distribution array
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value float32 Result of the Map Interpolation
Description This routine calculates Interpolation of a map at position X and Y using below equations.
Available via Ifl.h

]

[SWS_Ifl_00042] [indexX = minimum value of index if (X_array[indexX] < Xin < X_
array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
Baselndex = IndexX * Ny + indexY

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * RatioY

LowerY = Val_array [Baselndex + Ny]

UpperY = Val_array [Baselndex + Ny + 1]

UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX |

AUTSSAR

[SWS_Ifl_00043] [If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_ar-
ray[indexY+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+1] - Val_array[Baselndex]) *
RatioY |

[SWS_Ifl_00044] [If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_ar-
ray[indexX+1])

Result = Val_array [Baselndex] + (Val_array [Baselndex+Ny] - Val_array[Baselndex]) *
RatioX |

[SWS_Ifl_00045] [If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [Baselndex] |

[SWS_Ifl_00046] [If Xin < X_array[0], then
indexX =0,
RatioX = 0.0]

[SWS_Ifl_00047] [If Xin > X_array[Nx-1], then
indexX = Nx - 1,

RatioX = 0.0}

[SWS_Ifl_00048] [If Yin < Y_array[0], then
indexY =0,

RatioY = 0.0}

[SWS_Ifl_00049] [If Yin > Y_array[Ny-1], then
indexY = Ny - 1,

RatioY = 0.0]

[SWS_IfI_00050] [The minimum value of N shall be 1 |

AUTSSAR

8.5.2.3 Cuboid 3D interpolation

[SWS_Ifl_91000] Definition of API function Ifl_IpoCub_f{32
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011

[

Service Name Ifl_lpoCub_f32

Syntax float32 Ifl_IpoCub_£32 (
const Ifl_DPResultF32_Typex* dpResultX,
const Ifl_DPResultF32_Typex dpResulty,
const Ifl_DPResultF32_Typex dpResultZ,
uintl6 num_x,
uintl6é num_y,
const float32x Val_array

)

Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResultX Data point search result for X axis
dpResultY Data point search result for Y axis
dpResultZ Data point search result for Z axis
num_x Number of X axis points
num_y Number of Y axis points
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value float32 Result of the interpolation
Description Based on searched indices and ratios information using the relevant Ifl_DPSearch_{32 routine,

this routine calculates and returns the interpolation result for a 3D cuboid.

Available via Ifl.h

]

[SWS_Ifl_00226] [Based on searched indices and ratios information using the Ifl_
DPSearch_£32 routine, this routine calculates and returns the interpolation result for
3D cuboids.

The axis order memory representation is [z][x][y]. This is the column-major orientation
COLUMN_DIR from ASAM standard. The first axis z specifies the selected slice.

Implementation:

Linear interpolation along x-axis between the result of two 2D interpolations between
neighbouring X/Y Maps.

num_slice = num_x * num_y
if(dpResultZ->Ratio==0.0)

Result=Ifl_IlpoMap_f32 (dpResultX, dpResultY, num_y, Val_array[num_slice *
dpResultZ->Index])

else

AUTSSAR

LowerXY=Ifl_IlpoMap_f32 (dpResultX, dpResultY, num_y, Val_array[num_slice * dpRe-
sultZ ->Index])

UpperXY=Ifl_IpoMap_£32 (dpResultX, dpResultY, num_y, Val_array[num_slice * dpRe-
sultZ ->Index + 1])

Result=Ifl_Interpolate_f32 (LowerXY, UpperXY, dpResultZ->Ratio) |

8.5.2.4 Mixed type interpolation of integer curve

[SWS_Ifl_91001] Definition of API function Ifl_IpoCur_<InTypeMn>_f£32
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_ 00011

[
Service Name Ifl_lpoCur_<InTypeMn>_{32
Syntax float32 Ifl_IpoCur_<InTypeMn>_f32 (
const Ifl_DPResultF32_Typex* dpResult,
const <InType>* Val_array
)
Service ID [hex] 0x13 to 0x16
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResult Data point search result
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value float32 Result of the interpolation
Description Based on searched indices and ratios information using the relevant Ifl_DPSearch_f32 routine,
this routine calculates and returns the interpolation result for a curve.
Available via Ifl.h
]

[SWS_Ifl_00228] [index=dpResult->Index
if dpResult->Ratio==0.0
Result=Val_array[index]

else

Result=Val_array[index] + (Val_array[index + 1]- Val_array[index]) * dpResult->Ratio |

Here is the list of implemented routines:

AUTSSAR

[SWS_Ifl_00229] [

Routine ID[hex] Routine prototype

0x013 float32 Ifl_IpoCur_u8_f32 (const Ifl_DPResultF32_Type*
dpResult, const uint8* Val_array)

0x014 float32 Ifl_IpoCur_u16_f32 (const Ifl_DPResultF32_Type*
dpResult, const uint16™ Val_array)

0x015 float32 Ifl_IpoCur_s8_f32 (const Ifl_DPResultF32_Type*
dpResult, const sint8* Val_array)

0x016 float32 Ifl_IpoCur_s16_f32 (const If_DPResultF32_Type*
dpResult, const sint16* Val_array)

8.5.2.5 Mixed type interpolation of integer map

[SWS_Ifl_91002] Definition of API function Ifl_IpoMap_<InTypeMn>_f£32
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

Service Name Ifl_lpoMap_<InTypeMn>_{32

Syntax float32 Ifl_IpoMap_<InTypeMn>_£32 (
const Ifl_DPResultF32_Typex dpResultX,
const Ifl_DPResultF32_Typex dpResulty,
uint32 num_value,

const <InType>x Val_array

)

Service ID [hex] 0x18 to Ox1b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) dpResultX Data point search result for X axis
dpResultY Data point search result for Y axis
num_value Number of Y axis points
Val_array Pointer to the result axis distribution array

Parameters (inout) None

Parameters (out) None

Return value float32 Result of the interpolation

Description Based on searched indices and ratios information using the relevant Ifl_DPSearch_f32 routine,

this routine calculates and returns the interpolation result for a map.

Available via Ifl.h

]

[SWS_Ifl_00231] [Based on searched indices and ratios information using the Ifl_
DPSearch_f32 routine, this routine calculates and returns the interpolation result for
map.

Baselndex = dpResultX->Index * num_value + dpResultY->Index
if (dpResultX->Ratio == 0.0)
if (dpResultY->Ratio == 0.0)

AUTSSAR

Result = Val_array [Baselndex]

else

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio
else

if (dpResultY->Ratio == 0.0)

LowerX = Val_array [Baselndex]

UpperX = Val_array [Baselndex + num_value]

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio
else

LowerY = Val_array [Baselndex]

UpperY = Val_array [Baselndex + 1]

LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
LowerY = Val_array [Baselndex + num_value]

UpperY = Val_array [Baselndex + num_value + 1]

UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio |

Here is the list of implemented routines.

[SWS_Ifl_00232] [

Routine ID[hex] Routine prototype

0x018

float32 Ifl_IpoMap_u8_f32 (const Ifl_DPResultF32_Type*
dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32
num_value, const uint8* Val_array)

0x019

float32 Ifl_IpoMap_u16_f32 (const Ifl_DPResultF32_Type*
dpResultX, const If_DPResultF32_Type* dpResultY, uint32
num_value, const uint16* Val_array)

0x01A

float32 Ifl_IpoMap_s8_f32 (const Ifl_DPResultF32_Type*
dpResultX, const If_DPResultF32_Type* dpResultY, uint32
num_value, const sint8* Val_array)

0x01B

float32 Ifl_IpoMap_s16_f32 (const Ifl_DPResultF32_Type*
dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32
num_value, const sint16* Val_array)

AUTSSAR

8.5.2.6 Mixed type interpolation of integer 3D Cuboid

[SWS_Ifl_91003] Definition of API function Ifl_IpoCub_<InTypeMn>_{32
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011

[

Service Name Ifl_lpoCub_<InTypeMn>_{32

Syntax float32 Ifl_IpoCub_<InTypeMn>_f£32 (
const Ifl_DPResultF32_Typex* dpResultX,
const Ifl_DPResultF32_Typex dpResulty,
const Ifl_DPResultF32_Typex dpResultZ,
uintl6 num_x,

uintl6é num_y,

const <InType>* Val_array

)

Service ID [hex] 0x1C to Ox1F
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dpResultX Data point search result for X axis
dpResultY Data point search result for Y axis
dpResultZ Data point search result for Z axis
num_x Number of X axis points
num_y Number of Y axis points
Val_array Pointer to the result axis distribution array
Parameters (inout) None
Parameters (out) None
Return value float32 Result of the interpolation
Description Based on searched indices and ratios information using the relevant Ifl_DPSearch_{32 routine,

this routine calculates and returns the interpolation result for a 3D cuboid.

Available via Ifl.h

]

[SWS_Ifl_00234] [Based on searched indices and ratios information using the Ifl_
DPSearch_£32 routine, this routine calculates and returns the interpolation result for
3D cuboids.

The axis order memory representation is [z][x][y]. This is the column-major orientation
COLUMN_DIR from the ASAM standard. The first axis z specifies the selected slice.

Implementation:

Linear interpolation along x-axis between the result of two 2D interpolations between
neighboring X/Y Maps.

num_slice = num_x*num_y
if (dpResultZ->Ratio == 0.0)

Result = Ifl_IpoMap_<InTypeMn>_f32 (dpResultX, dpResultY, num_y, Val_array[num_
slice*dpResultZ->Index])

else

AUTSSAR

LowerXY = Ifl_IpoMap_<InTypeMn>_{32 (dpResultX, dpResultY, num_y, Val_ar-
ray[num_slice*dpResultZ->Index])

UpperXY = Ifl_IpoMap_ <InTypeMn>_ 32 (dpResultX, dpResultY, num_y, Val ar-
ray[num_slice*dpResultZ->Index + 1])

Result = Ifl_Interpolate_f32 (LowerXY, UpperXY, dpResultZ->Ratio) |
Here is the list of implemented routines.

[SWS_Ifl_00235] [

Routine ID[hex] Routine prototype

0x01C float32 Ifl_IpoCub_u8_{32 (const Ifl_DPResultF32_Type*
dpResultX, const Ifl_DPResultF32_Type* dpResultY, const
Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16
num_y, const uint8* Val_array)

0x01D float32 Ifl_IpoCub_u16_f32 (const Ifl_DPResultF32_Type*
dpResultX, const Ifl_DPResultF32_Type* dpResultY, const
Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16
num_y, const uint16™ Val_array)

0x01E float32 Ifl_IpoCub_s8_f32 (const Ifl_DPResultF32_Type*
dpResultX, const Ifl_DPResultF32_Type* dpResultY, const
Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16
num_y, const sint8* Val_array)

0x01F float32 Ifl_IpoCub_s16_f32 (const Ifl_DPResultF32_Type*
dpResultX, const Ifl_DPResultF32_Type* dpResultY, const
Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16
num_y, const sint16™ Val_array)

8.5.3 Record layouts for interpolation routines

Record layout specifies calibration data serialization in the ECU memory which de-
scribes the shape of the characteristics. Single record layout can be referred by multi-
ple instances of interpolation ParameterDataPrototype. Record layouts can be nested
particular values refer to the particular property of the object. With different properties
of record layouts it is possible to specify complex objects.

8.5.3.1 Record layout for map values

Due to optimization, the orientation of map values in memory is different depending on
the usage of the inputs. See section 8.4.2.

1. If the "X" and "Y" inputs are not swapped then, values "Val" of maps have to be in
COLUMN_DIR order.

2. If the "X" and "Y" inputs are swapped then, values "Val" of maps have to be in ROW _
DIR order.

AUTSSAR

According to ASAM standard [ASAM MCD-2MC Version 1.5.1 and 1.6], COLUMN_DIR
and ROW_DIR are formats of storing map values (Val[]) and more information can be
found in ASAM standard.

The "Z" input of cuboids is the third dimension and selects the slice X/ Y orY /X -2D
maps.

Example for cuboids order:

2x2x2 cuboid representation in memory
Example: cub=[1234567 8]
COLUMN_DIR order [z][x][y]:

Slice 1:

[12

34]

Slice 2:

56

7 8]

8.5.3.2 Record layout definitions
Below table specifies record layouts supported for interpolation routines.

[SWS_Ifl_00170] [

Record layout Element1 Element2 Element3 Element4 Element5
Name
Distr_f32 uint32 N float32 X[]
Curve_f32 float32 Vall[]
Map_f32 float32 Vall]
Cub_f32 float32 Vall]
IntCurve_f32_f32 | uint32 N float32 X[] float32 Val[]
IntMap_{32f32_ uint32 Nx uint32 Ny float32 X[] float32 Y[] float32 Val[]
32
]
Remark:

All combinations have to be defined in IFL_RecordLayout_Blueprint, AUTOSAR_
MOD_IFL_RecordLayout_Blueprint.arxml

8.6 Examples of use of functions

None

AUTSSAR

8.7 Version API

8.7.1 Ifl_GetVersioninfo

[SWS _Ifl_00215] Definition of API function Ifl_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_

00321
Service Name Ifl_GetVersionInfo
Syntax void Ifl_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] Oxff
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]
Return value None
Description Returns the version information of this library.
Available via Ifl.h
The version information of a BSW module generally contains:
* Module Id
» Vendor Id

» Vendor specific version numbers (SRS_BSW_00407).

[SWS_Ifl_00216]
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[If source code for caller and callee of Ifl_GetVersionInfo is available, the Ifl library
should realize Ifl_GetVersionInfo as a macro defined in the module’s header file. |

8.8 Callback notifications

None.

8.9 Scheduled routines

The Ifl library does not have scheduled routines.

AUTSSAR

8.10 Expected interfaces

None.

8.10.1 Mandatory interfaces

None.

8.10.2 Optional interfaces

None.

8.10.3 Configurable interfaces

None.

AUTSSAR

9 Sequence diagrams

Not applicable.

AUTSSAR

10 Configuration specification

10.1 Published Information

[SWS_Ifl_00214]

Upstream requirements: SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379
[The standardized common published parameters as required by SRS_BSW_00402
in the General Requirements on Basic Software Modules [4] shall be published within

the header file of this module and need to be provided in the BSW Module Description.
The according module abbreviation can be found in the List of Basic Software Modules

[3].]

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration option

[SWS_Ifl_00218]
Upstream requirements: SRS_LIBS_00001

[The Ifl library shall not have any configuration options that may affect the functional
behavior of the routines. l.e. for a given set of input parameters, the outputs shall
be always the same. For example, the returned value in case of error shall not be
configurable. |

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

AUTSSAR

A Not applicable requirements

[SWS_Ifl_00224]
Upstream requirements: SRS_BSW_00448

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.1.1 Added Specification Iltems in R23-11

none

B.1.2 Changed Specification Items in R23-11

Number Heading

[SWS_Ifl_00005] Definition of datatype Ifl_DPResultF32_Type
[SWS_Ifl_00021] Definition of API function Ifl_lpoCur_f32
[SWS_Ifl_00025] Definition of API function Ifl_lpoMap_f32
[SWS_Ifl_00030] Definition of API function Ifl_Interpolate_f32
[SWS_Ifl_00035] Definition of API function Ifl_IntlpoCur_f32_f32
[SWS_Ifl_00041] Definition of API function Ifl_IntlpoMap_f32f32_f32
[SWS_Ifl_00170]

[SWS_Ifl_91000] Definition of API function Ifl_lpoCub_f32
[SWS_Ifl_91001] Definition of API function Ifl_lpoCur_<InTypeMn>_f32
[SWS_Ifl_91002] Definition of API function Ifl_IpoMap_<InTypeMn>_{32
[SWS_Ifl_91003] Definition of API function Ifl_IpoCub_<InTypeMn>_{32

Table B.1: Changed Specification Items in R23-11

B.1.3 Deleted Specification Iltems in R23-11

none

AUTSSAR

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

Number Heading

[SWS_Ifl_91004] Definition of imported datatypes of module Ifl

Table B.2: Added Specification Iltems in R24-11

B.2.2 Changed Specification ltems in R24-11

Number Heading

[SWS_Ifl_00214]

Table B.3: Changed Specification Items in R24-11

B.2.3 Deleted Specification ltems in R24-11

none

B.3 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.3.1 Added Specification Iltems in R25-11

none

B.3.2 Changed Specification ltems in R25-11

none

B.3.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	7.2 Error detection
	7.3 Error notification
	7.4 Initialization and shutdown
	7.5 Using Library API
	7.6 Library implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about rounding
	8.4 Comment about routines optimized for target
	8.5 Interpolation routines definitions
	8.5.1 Distributed data point search and interpolation
	8.5.1.1 Data Point Search
	8.5.1.2 Curve interpolation
	8.5.1.3 Map interpolation
	8.5.1.4 Single point interpolation

	8.5.2 Integrated data point search and interpolation
	8.5.2.1 Integrated curve interpolation
	8.5.2.2 Integrated map interpolation
	8.5.2.3 Cuboid 3D interpolation
	8.5.2.4 Mixed type interpolation of integer curve
	8.5.2.5 Mixed type interpolation of integer map
	8.5.2.6 Mixed type interpolation of integer 3D Cuboid

	8.5.3 Record layouts for interpolation routines
	8.5.3.1 Record layout for map values
	8.5.3.2 Record layout definitions

	8.6 Examples of use of functions
	8.7 Version API
	8.7.1 Ifl_GetVersionInfo

	8.8 Callback notifications
	8.9 Scheduled routines
	8.10 Expected interfaces
	8.10.1 Mandatory interfaces
	8.10.2 Optional interfaces
	8.10.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Published Information
	10.2 Configuration option

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R25-11
	B.3.1 Added Specification Items in R25-11
	B.3.2 Changed Specification Items in R25-11
	B.3.3 Deleted Specification Items in R25-11

