AUTSSAR

Document Title Specification of ICU Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 23

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 | R24-11 Release « Editorial Changes
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
0009-11-04 R29-11 gg; Ca)feAR » Changed [SWS_Icu_00380] to [SWS_
i M lcu_NA_00380]
anagement
* Clean up of ITcu_ConfigType related
AUTOSAR requirements regarding the data
2021-11-25 | R21-11 | Release structure.
Management * Correct sequence diagrams in chapter
9.4
* Error table cleanup in Error classification
AUTOSAR + Removed "7.y Error Detection”
2020-11-30 | R20-11 Release
Management * Moved [SWS_Icu_00022] to new
requirement number in "8.3 Function
definitions”
AUTOSAR * Incorporation of validation results
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management pUbIlShed
AUTOSAR « MCAL Multicore Distribution (Draft)
2018-11-31 4.4.0 Release

Management

» Header File Cleanup

AUTSSAR

AUTOSAR

2017-12-08 | 4.3.1 Release
Management

» Removed [SWS_Icu_00116] and [SWS_
Icu_00190]

+ Added [SRS_BSW_00450] to the list of
non applicable requirements

« Renamed "default error" to
"development error"

* [SWS_Icu_00201]: Icu_StartTimestamp:
Parameter (IN): Icu_ValueType*
BufferPtr changed to Parameters (OUT)

type

» Changed ICU_E_NOT_STARTED from
development error to runtime error

» Editorial Changes

AUTOSAR
4.3.0 Release
Management

2016-11-30

* Removed chapter "10.2.1 Variants"

» Changed upper multiplicity of the
ICU_EcuModuleDef to 1 in fugure of
section 10.2.2

* Removed config parameter Iculndex
([ECUC_Icu_00221]) from IcuGeneral
section 10.2.3 and in figure of section
10.2.3

* Requirement ID [SWS_Icu_00383] given
to additional test
"EcuM_WakeupSourceType shal be
imported from EcuM_Types.h"

» Removed requirement [SWS_Icu_
00346]

« Editorial changes

AUTOSAR

2015-07-31 4.2.2 Release
Management

« Editorial changes

* DET renamed from "Development Error
Tracer" to "Default Error Tracer"

* All references to obsolete [SWS_lcu_
00048] removed from the document

AUTSSAR

2014-10-31

4.2.1

AUTOSAR
Release
Management

* IcuChannelld: postBuildVariantValue set
to false

» SWS IDs with respect to NULL_PTR
check for Icu_Init removed

e ICU_E_PARAM POINTER and
ICU_E_PARAM BUFFER_PTR removed
from Error classification

2013-10-31

41.2

AUTOSAR
Release
Management

+ |CU00354 - Check for a valid notification
interval rephrased

« ICU078 - Removed the sentence "This is
done by the hardware." from the note

+ ICU295 - Removed ICU_ACTIVE_TIME
from the range of enumeration Icu_
SignalMeasurementPropertyType

« Editorial changes

* Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

» Modified the scope of the parameters
from ECU/Module to local

» Reworked according to the new
SWS_BSWGeneral

» Changed MemMap.h to lcu_MemMap.h

2011-12-22

4.0.3

AUTOSAR
Administration

* Corrected Type errors

» Updated description of Tcu_IndexType

2010-09-30

AUTOSAR
Administration

* Services ’Icu_DisableEdgeDetection’
and ’lcu_EnableEdgeDetection’ were
added.

 Configuration parameters
‘lcuEdgeDetectApi’ and
‘lcuWakeupFunctionalityApi’ has been
added

» Definition of 'duty cycle’ has been
corrected

» Corrected values of the parameter
‘lcu_SignalMeasurementProperty Type’

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

AUTSSAR

2008-02-01

3.0.2

AUTOSAR
Administration

» The code file structure of the module
was completely reworked

* The following requirements were added:
[SWS_lcu_00088], [SWS_lcu_00220],
[SWS_Icu_00221], [SWS_Icu_00228],
[SWS_lIcu_00229]

* The flow charts related to the ECU
Wake-Up moved to the

« SWS document of the ECU State
Manager

» Document meta information extended

» Small layout adaptations made

2007-12-21

3.0.1

AUTOSAR
Administration

» Default start edge is now used for edge
configuration

« Enable and Disable Notification can now
be used for Timestamp functionality

» Edge detection functionality is now pre
complie time configurable On/Off

* Legal disclaimer revised
* Release notes added
« "Advice for users" revised

* "Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

» Added the following services
— Icu_SetActivationCondition
— Icu_StartTimestamp
— Icu_StopTimestamp
— Icu_GetTimestampIndex
— Icu_ResetEdgeCount
— Icu_EnableEdgeCount
— Icu_DisableEdgeCount
— Icu_GetEdgeNumbers
— Icu_GetTimeElapsed
— Icu_GetDutyCycleValues

— Icu_GetVersionInfo

AUTSSAR

2005-05-31

1.0

AUTOSAR
Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standards and norms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to car domains

5 Dependencies to other modules

5.1 Module DET (Default Error Tracer)
5.2 Module MCU
5.3 OS (Operating System)
5.4 Module PORT
55 Module EcuM e

6 Requirements Tracing

7 Functional specification

7.1 General behavior

7.1.1
7.1.2

Background & Rationale L.
Requirements

713 TimeUnitTicks
7.1.3.1 Background & Rationale
7.1.3.2 Requirements

7.2 Error Classification

7.21
7.2.2
7.2.3
7.2.4

DevelopmentErrorso
Runtime Errors
ProductionErrors o
Extended ProductionErrors oo

8 API specification

8.1 Importedtypes e
8.2 Type definitions

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7

lcu_ModeType e
lcu_ChannelType
lcu_InputStateType
lcu_ConfigType e
lcu_ActivationType
lcu_ValueType
lcu_DutyCycleType

AUTSSAR

8.2.8 lcu_IndexType 24
8.2.9 Icu_EdgeNumberType 24
8.2.10 Ilcu_MeasurementModeType 25
8.2.11 lcu_SignalMeasurementPropertyType 25
8.2.12 Icu_TimestampBufferType 25
8.3 Function definitions 26
8.3.1 leu_Init 26
832 lcuDelnit.o 28
8.3.3 lcu SetMode 29
8.3.4 Icu_DisableWakeup L. 31
8.3.5 lcu_EnableWakeup 32
8.3.6 lcu CheckWakeup 33
8.3.7 lcu_SetActivationCondition 34
8.3.8 lIcu_DisableNotification 35
8.3.9 lIcu_EnableNotification 36
8.3.10lcu_GetlnputState 37
8.3.11 lcu_StartTimestamp 38
8.3.12Icu_StopTimestamp 41
8.3.13 lcu_GetTimestamplndex 42
8.3.14 Icu_ResetEdgeCount 43
8.3.15Icu_EnableEdgeCount 44
8.3.16 Ilcu_EnableEdgeDetection L. 45
8.3.17 Icu_DisableEdgeDetection 46
8.3.18 Icu_DisableEdgeCount 47
8.3.19 lcu_GetEdgeNumbers L 48
8.3.20 Icu_StartSignalMeasurement 49
8.3.21 lcu_StopSignalMeasurement 50
8.3.22 lcu_GetTimeElapsed oL 51
8.3.23 Icu_GetDutyCycleValues 53
8.3.24 Icu_GetVersionInfo.o 55
8.3.25 Icu_DisableNotificationAsync 55
8.3.26 Icu_EnableNotificationAsync 56
8.4 Callback notifications 56
8.5 Scheduled functions 56
8.6 Expectedinterfaces 56
8.6.1 Mandatory Interfaces 56
8.6.2 Optional Interfaces 57
8.6.3 Configurable interfaces 57
9 Sequence diagrams 60
9.1 leu_lnit e e 60
9.2 lcu Delnit 60
9.3 Check WakeupEvents 60

9.4 lcu SetMode e 61

AUTSSAR

10

9.5 lcu_DisableWakeup
9.6 lcu_EnableWakeup
9.7 lcu_SetActivationCondition, .
9.8 lcu_DisableNotification
9.9 lcu_EnableNotification
9.10lcu_GetlnputState
911lcu Timestamping
9.12lcu Edge Counting
9.13lcu_GetTimeElapsed
9.14Icu_GetDutyCycleValues
9.15lcu_DisableNotificationAsync
9.16lcu_SignalNotification and Icu_GetlnputState
9.17lcu_EnableNotificationAsynco oL

Configuration specification

10.1How toread thischapter
10.2Containers and configuration parameters
10.2.110CU e e e
10.2.21cuGeneral
10.2.3 lcuOptionalApis
10.2.4 lcuChannel
10.2.5 lcuSignalEdgeDetection
10.3Published Information.,

Not applicable requirements

Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
B.1.1 Added Specification Itemsin R25-11
B.1.2 Changed Specification Itemsin R25-11
B.1.3 Deleted Specification Itemsin R25-11
B.1.4 Added Constraintsin R25-11
B.1.5 Changed Constraintsin R25-11
B.1.6 Deleted Constraintsin R25-11

100
101

102

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and configuration of the AUTOSAR
Basic Software module ICU driver.

The ICU driver is a module using the input capture unit (ICU) for demodulation of
a PWM signal, counting pulses, measuring of frequency and duty cycle, generating
simple interrupts and also wakeup interrupts.

The ICU driver provides services for
+ Signal edge notification
 Controlling wakeup interrupts
* Periodic signal time measurement

» Edge time stamping, usable for the acquisition of non-periodic signals

Edge counting

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the ICU driver
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Active Time This depends on the starting edge of the signal to be captured.
» Start edge = falling edge => Active Time = Low Time

« Start edge = rising edge => Active Time = High Time
« Start edge = both edges => Active Time = High Time (if rising edge occurs initially)
« Start edge = both edges => Active Time = Low Time (if falling edge occurs initially)

DEM Diagnostic Event Manager [2]

DET Default Error Tracer [3]

EcuM ECU State Manager [4]

Enumeration This can be in "C" programming language an enum or a #define.

ICU Input Capture Unit (not Intensive Care Unit)

ICU Channel Represents a logical ICU entity bound to one input signal and the hardware resources for
the configured measurement mode.

ICU State Logical input state of an ICU Channel.
It can be ICU_ACTIVE or ICU_IDLE.

ICU_ACTIVE Input state of an ICU Channel, an activation edge has been detected.

ICU_IDLE Input state of an ICU Channel, no activation edge has been detected since the last call of

lcu_GetlnputState() or lcu_Init().

Symbolic name for a channel A symbolic name is a substitution of a handle with a name.

With this handle each channel and its related properties can be found within the
configuration structure.

In "C" programming language this can be realized e.g. by #defines and enums.

Wakeup event A wakeup event is understood as a pattern of edges, which will lead to the wake up of this
driver. Nevertheless the decision whether a pattern is valid or not isn’t done by this driver.
This shall be done by an upper layer.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[3] Specification of Default Error Tracer
AUTOSAR_CP_SWS_ DefaultErrorTracer

[4] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[5] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[6] Specification of Operating System
AUTOSAR_CP_SWS_0OS

[7] Specification of Port Driver
AUTOSAR_CP_SWS PortDriver

[8] Requirements on ICU Driver
AUTOSAR_CP_RS_ICUDriver

[9] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[10] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [5, SWS BSW

General], which is also valid for ICU driver.

Thus, the specification SWS BSW General shall be considered as additional and re-

quired specification for ICU driver.

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

5.1 Module DET (Default Error Tracer)

The detailed description of the detected errors can be found in chapter 7.2 and chap-
ter 8.

5.2 Module MCU

The ICU driver depends on the system clock, prescaler(s) and PLL. Hence the length
of an ICU timer tick depends on the clock settings made in the module MCU.

The ICU driver will not take care of setting the registers which configure the global
clock, global prescaler(s) and PLL in its Init function. This has to be done by the
MCU module. The ICU driver only configures local (ICU peripheral specific) clocks,
prescalers and so on.

5.3 OS (Operating System)

The ICU driver uses interrupts and therefore there is a dependency on the OS [6] which
configures the interrupt sources. It will provide the call-back functions only.

The ICU driver will not take care of setting the registers for interrupt association in its
Init function. The overall assignment and activation of the interrupt system is done by
the Operating System.

5.4 Module PORT

The configuration of port pins used for the ICU as inputs is done by the PORT driver [7].
Hence the PORT driver has to be initialized prior to the use of ICU functions. Otherwise
ICU functions will exhibit undefined behaviour.

5.5 Module EcuM

[SWS_lIcu_00244] [The ICU driver will do the reporting of wakeup interrupts to the
EcuM. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [8], [9], [10] and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_lcu_00006]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_lcu_00092] [SWS_lcu_00095]
[SWS_lcu_00096] [SWS_Icu_00097]
[SWS_lcu_00098] [SWS_Icu_00099]
[SWS_lcu_00100] [SWS_Icu_00101]
[SWS_Icu_00102] [SWS_Icu_00103]
[SWS_lcu_00104] [SWS_Icu_00105]
[SWS_lcu_00106] [SWS_Icu_00122]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_lcu_00024] [SWS_lcu_00043]
[SWS_lcu_00125] [SWS_Icu_00385]
[SWS_lcu_00386] [SWS_Icu_00387]
[SWS_lcu_00388] [SWS_Icu_00389]
[SWS_lcu_00390] [SWS_Icu_00391]
[SWS_lcu_00392] [SWS_lcu_00393]
[SWS_lcu_00394] [SWS_Icu_00395]
[SWS_lcu_00396] [SWS_lcu_00397]
[SWS_lcu_00398] [SWS_Icu_00399]
[SWS_lcu_00400] [SWS_lcu_00401]
[SWS_lcu_00402] [SWS_Icu_00403]
[SWS_lcu_00404]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_lcu_00037]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Icu_00006]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_lcu_00187]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_lcu_00049]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_lcu_00131]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Icu_00006]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Icu_00006]

[SRS_BSW_00406]

API handling in uninitialized state

SWS_lcu_00385] [SWS_Icu_00386]
SWS_lcu_00387] [SWS_Icu_00388]
[SWS_lcu_00389] [SWS_Icu_00390]
[SWS_lcu_00391] [SWS_Icu_00392]
[SWS_lcu_00393] [SWS_lcu_00394]
[SWS_lcu_00395] [SWS_Icu_00396]
[SWS_lcu_00397] [SWS_Icu_00398]
[SWS_lcu_00399] [SWS_Icu_00400]
[SWS_lcu_00401] [SWS_lcu_00402]
[SWS_lcu_00403] [SWS_Icu_00404]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00410]

Compiler switches shall have defined
values

[SWS_lcu_00055] [SWS_Icu_00063]
[SWS_lcu_00090] [SWS_lcu_00092]
[SWS_Icu_00095] [SWS_Icu_00096]
[SWS_lcu_00097] [SWS_lcu_00099]
[SWS_lcu_00100] [SWS_Icu_00101]
[SWS_lcu_00102] [SWS_lcu_00103]
[SWS_lcu_00104] [SWS_Icu_00105]
[SWS_lcu_00106] [SWS_lcu_00122]

[SRS_Icu_12305]

The ICU driver shall allow to enable/
disable the notification for an ICU
channel at runtime

[SWS_lcu_00009] [SWS_Icu_00010]
[SWS_lcu_00042] [SWS_Icu_00044]

[SRS_lcu_12369]

The ICU driver shall provide
notification for an ICU Channel at the
configured signal edge

[SWS_lcu_00021]

[SRS_Icu_12370]

The ICU driver shall provide a service
for selecting the sleep mode

[SWS_lcu_00008]

[SRS_lcu_12371]

The ICU driver shall provide a
synchronous service that returns the
status of the ICU input

[SWS_lcu_00030] [SWS_lcu_00031]
[SWS_lcu_00032]

[SRS_Icu_12407]

After initialization of the ICU driver all
notifications shall be disabled

[SWS_Icu_00040] [SWS_Icu_00061]

[SRS_Icu_12408]

The ICU driver shall provide a service
for enabling / disabling the wake-up
capability of single ICU channels

[SWS_lcu_00013] [SWS_Icu_00014]

[SRS_lcu_12425]

For each ICU Channel the 'property’
that could be measured shall be
configurable

[SWS_lIcu_00088]

[SRS_lcu_12429]

The ICU Driver shall provide the
functionality to deinitialize ICU
channels to their power on reset state

[SWS_lcu_00036]

[SRS_Icu_12430]

The ICU driver shall provide an
asynchronous service for starting the
timestamp measurement on an ICU
channel

[SWS_lcu_00063] [SWS_Icu_00066]

[SRS_Icu_12431]

The ICU driver shall provide a
synchronous service for canceling
the timestamp measurement on an
ICU channel

[SWS_Icu_00067]

[SRS_Icu_12432]

Edge counting service shall be
available on an ICU channel

[SWS_lIcu_00078]

[SRS_lcu_12433]

Edge counting service on a ICU
channel shall be disabled

[SWS_Icu_00079]

[SRS_lcu_12434]

Edge counting read service shall be
available

[SWS_lcu_00080]

[SRS_Icu_12435]

The elapsed Signal High Time for
each ICU Channel shall be provided

[SWS_lcu_00082]

[SRS_Icu_12436]

The High time and Period Time of an
ICU Channel shall be provided

[SWS_lIcu_00084]

[SRS_Icu_12438]

The ICU driver shall provide the
functionality to capture timer values
on configurable edges to an external
buffer

[SWS_Icu_00063]

[SRS_Icu_12439]

Edges of a signal shall be counted by
the ICU

[SWS_lcu_00072] [SWS_lcu_00073]
[SWS_lcu_00074]

[SRS_Icu_12442]

The elapsed Signal Low Time for
each ICU Channel shall be provided

[SWS_lcu_00081]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_lcu_12443]

The elapsed Period Time for an ICU
Channel shall be provided

[SWS_Icu_00083]

[SRS_lcu_12444]

The ICU driver shall provide a
notification if the number of requested
timestamps are acquired

[SWS_lcu_00215]

[SRS_lcu_12453]

The Timestamp index service shall
be provided by ICU

[SWS_lIcu_00071]

[SRS_Icu_12456]

If linear buffer handling is configured,
the driver shall stop capturing timer
values, when the end of the buffer is
reached

[SWS_lcu_00065]

[SRS_Icu_13100]

Reseting the value of counted edges
of an ICU channel shall be available

[SWS_lcu_00072]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Icu_00021] [SWS_Icu_00030]

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_lcu_00018]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Icu_00006] [SWS_lIcu_00040]
[SWS_lcu_00060] [SWS_lcu_00061]

[SRS_SPAL_12063]

All driver modules shall only support
raw value mode

[SWS_lcu_00063] [SWS_Icu_00081]
[SWS_Icu_00082] [SWS_Icu_00083]

[SRS_SPAL_12064]

All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running
operations

[SWS_lcu_00133]

[SRS_SPAL_12067]

All driver modules shall set their
wake-up conditions depending on the
selected operation mode

[SWS_lcu_00008] [SWS_Icu_00011]
[SWS_lcu_00012]

[SRS_SPAL_12069]

All drivers of the SPAL that wake up
from a wake-up interrupt shall report
the wake-up reason

[SWS_lcu_00055] [SWS_Icu_00056]
[SWS_lcu_00057]

[SRS_SPAL_12075]

All drivers with random streaming
capabilities shall use application
buffers

[SWS_lcu_00063]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_lcu_00054]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_lcu_00119]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Icu_00036] [SWS_Icu_00037]

[SRS_SPAL_12169]

All driver modules that provide
different operation modes shall
provide a service for mode selection

[SWS_lIcu_00008]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_lcu_00049] [SWS_Icu_00107]
[SWS_lcu_00108]

[SRS_SPAL_12461]

Specific rules regarding initialization
of controller registers shall apply to all
driver implementations

[SWS_Icu_00006] [SWS_lcu_00051]
[SWS_lcu_00052] [SWS_Icu_00053]
[SWS_lcu_00128] [SWS_Icu_00129]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General behavior

7.1.1 Background & Rationale

To ensure data consistency re-entrant code shall be provided.

7.1.2 Requirements
[SWS_lIcu_00050] [The Icu module functions for different channel numbers shall be
re-entrant, except for:

* ITcu_Init

e Icu_Delnit

* Tcu_SetMode

e Tcu_GetVersionInfo

]

[SWS_lIcu_00149] [The Icu module’s environment shall check the integrity if several
calls for the same ICU channel are used during runtime in different tasks or ISRs. |

[SWS_lcu_00150] [The Icu module shall not check the integrity if several calls for the
same ICU channel are used during runtime in different tasks or ISRs. |

[SWS_lcu_00258] [The Icu module has 2 modes:
e ICU_MODE_NORMAL

* ICU_MODE_SLEEP

]

[SWS_Icu_00011]
Upstream requirements: SRS_SPAL_12067

[In 1cu_MODE_NORMAL mode all notifications are available as configured by service
Icu_SetActivationCondition or IcuDefaultStartEdge. |

[SWS_lcu_00259] [In Icu_MODE_NORMAL mode all notifications are available as se-
lected by the Tcu_DisableNotification and Icu_EnableNotification ser-
vices before or after the call of Icu_SetMode. |

AUTSSAR

[SWS_Icu_00012]
Upstream requirements: SRS_SPAL_12067

[In Icu_MODE_SLEEP mode only those wakeup events are available which are config-
ured as wakeup capable, enabled via Tcu_EnableWakeup after Icu_Init and which
are not disabled via service Icu_DisableWakeup |

[SWS_lcu_00260] [In 1cu_MODE_SLEEP mode all other interrupts handled by this
module are disabled and must not lead to an exit from the reduced power mode state
(e.g. idle, halt) of the MCU if the event occurs. |

[SWS_lIcu_00261] [All channels are stopped except those channels
» which have been configured as wakeup capable and

» which were explicitly enabled by the call of Tcu_EnableWakeup.

]

[SWS_Icu_00088]
Upstream requirements: SRS_lcu_12425

[The module Icu shall allow the configuration per channel of the definition on which
edge the period starts. |

7.1.3 Time Unit Ticks
7.1.3.1 Background & Rationale

To get times out of register values it is necessary to know the oscillator frequency,
prescalers and so on. Since these settings are made in the MCU module and/or in
other modules it is not possible to calculate such times.

Hence the conversions between time and ticks shall be part of an upper layer.

7.1.3.2 Requirements

All time units used within the API services of the ICU driver are unit ticks.

7.2 Error Classification

Chapter [5, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

AUTSSAR

7.2.1 Development Errors

[SWS_Icu_00382] Definition of development errors in module Icu |

parameter versioninfo is is invalid (e.g. NULL)

Type of error Related error code Error value
API IS called with invalid pointer. ICU_E_PARAM_POINTER 0x0A
API service used with an invalid channel identifier ICU_E_PARAM_CHANNEL 0x0B
or channel was not configured for the functionality

of the calling API.

API service used with an invalid or not feasible ICU_E_PARAM_ACTIVATION 0x0C
activation.

Init function failed. ICU_E_INIT_FAILED 0x0D
API service used with an invalid buffer size. ICU_E_PARAM_BUFFER_SIZE 0x0E
API service Icu_SetMode used with an invalid ICU_E_PARAM_MODE 0xOF
mode.

API service used without module initialization. ICU_E_UNINIT 0x14
API service Icu_SetMode is called while a running ICU_E_BUSY_OPERATION 0x16
operation.

API Icu_Init service is called and when the ICU ICU_E_ALREADY_INITIALIZED 0x17
driver and the Hardware are already initialized.

API lcu_StartTimeStamp is called and the ICU_E_PARAM_NOTIFY_INTERVAL 0x18
parameter NotifyInterval is invalid (e.g."0", Notify

Interval < 1)

API Icu_GetVersioninfo is called and the ICU_E_PARAM_VINFO 0x19

7.2.2 Runtime Errors

[SWS_Icu_91004] Definition of runtime errors in module Icu |

Type of error

Related error code

Error value

API service Icu_StopTimestamp called on a
channel which was not started or already stopped

ICU_E_NOT_STARTED

0x15

7.2.3 Production Errors

There are no production errors.

7.2.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:

[SWS_Icu_00276] Definition of imported datatypes of module Icu [

Module Header File Imported Type

EcuM EcuM.h EcuM_WakeupSourceType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Icu_ModeType

[SWS_Icu_00277] Definition of datatype lcu_ModeType |

Name lcu_ModeType

Kind Enumeration

Range ICU_MODE_NORMAL 0x00 Normal operation, all used interrupts are
enabled according to the notification
requests.

ICU_MODE_SLEEP 0x01 Reduced power operation. In sleep mode
only those notifications are available which
are configured as wakeup capable.

Description Allow enabling / disabling of all interrupts which are not required for the ECU wakeup.

Available via

lcu.h

8.2.2 Icu_ChannelType

[SWS_lIcu_00278] Definition of datatype Icu_ChannelType |

Name Icu_ChannelType

Kind Type

Derived from uint

Range - This is implementation specific but

not all values may be valid within
the type. This type shall be
chosen in order to have the most
efficient implementation on a
specific microcontroller platform.

AUTSSAR

A

Description Numeric identifier of an ICU channel

Available via Icu.h

8.2.3 Icu_lnputStateType

[SWS_lcu_00279] Definition of datatype Icu_InputStateType |

Name lcu_InputStateType

Kind Enumeration

Range ICU_ACTIVE 0x00 An activation edge has been detected

ICU_IDLE 0x01 No activation edge has been detected since

the last call of Icu_GetInputState() or lcu_
Init().

Description Input state of an ICU channel

Available via Icu.h

8.2.4 Icu_ConfigType

[SWS_Icu_00280] Definition of datatype Icu_ConfigType |

Name lcu_ConfigType
Kind Structure
Elements
Type -
Comment Hardware and implementation dependent structure. The contents of
the initialization data structure are microcontroller specific.
Description This type contains initialization data.
Available via lcu.h

]

[SWS_lcu_00287] [If in the definition for each Channel within the Tcu_ConfigType
the channel is configured as wakeup capable then the function called for validation of
wakeup reason shall be EcuM_CheckWakeup. |

AUTSSAR

8.2.5 Icu_ActivationType

[SWS_Icu_00289] Definition of datatype Icu_ActivationType |

Name Icu_ActivationType
Kind Enumeration
Range ICU_RISING_EDGE 0x00 An appropriate action shall be executed when
a rising edge occurs on the ICU input signal.
ICU_FALLING_EDGE 0x01 An appropriate action shall be executed when
a falling edge occurs on the ICU input signal.
ICU_BOTH_EDGES 0x02 An appropriate action shall be executed when
either a rising or falling edge occur on the
ICU input signal.
Description Definition of the type of activation of an ICU channel.
Available via lcu.h

8.2.6 Icu_ValueType

[SWS_Icu_00290] Definition of datatype Icu_ValueType |

Name lcu_ValueType

Kind Type

Derived from uint

Range 0 ... <width of the timer - Implementation specific. This type

register> shall be chosen in order to have

the most efficient implementation
on a specific microcontroller
platform.

Description Width of the buffer for timestamp ticks and measured elapsed timeticks.

Available via lcu.h

8.2.7 Icu_DutyCycleType

[SWS_lIcu_00291] Definition of datatype Icu_DutyCycleType |

Name lcu_DutyCycleType
Kind Structure
Elements ActiveTime
Type lcu_ValueType
Comment This shall be the coherent active-time measured on a channel
PeriodTime
Type Icu_ValueType
Comment This shall be the coherent period-time measured on a channel
Description Type which shall contain the values, needed for calculating duty cycles.

Y%

AUTSSAR

| Available via

Icu.h

]

8.2.8 Icu_IndexType

[SWS_lcu_00292] Definition of datatype Icu_IndexType |

Name Icu_IndexType

Kind Type

Derived from uint

Range - - Implementation specific. This type

shall be chosen in order to have
the most efficient implementation
on a specific microcontroller
platform.

Description Type, to abstract the return value of the service Icu_GetTimestamplndex().Since circular buffer
handling is supported and Icu_GetTimestamplndex can return 0’ as a legally true value (not as an
error according to ICU107 and ICU135), Icu_IndexType may be implemented to have values 1..xyz.

Available via lcu.h

8.2.9 Icu_EdgeNumberType

[SWS_lcu_00293] Definition of datatype Icu_EdgeNumberType |

Name Icu_EdgeNumberType

Kind Type

Derived from uint

Range -- - Implementation specific. This type
shall be chosen in order to have
the most efficient implementation
on a specific microcontroller
platform.

Description Type, to abstract the return value of the service Icu_GetEdgeNumbers().

Available via Icu.h

AUTSSAR

8.2.10 Icu_MeasurementModeType

[SWS_Icu_00294] Definition of datatype lcu_MeasurementModeType |

Name lcu_MeasurementModeType

Kind Enumeration

Range ICU_MODE_SIGNAL_ 0x00 Mode for detecting edges
EDGE_DETECT
ICU_MODE_SIGNAL_ 0x01 Mode for measuring different times between
MEASUREMENT various configurable edges
ICU_MODE_TIMESTAMP 0x02 Mode for capturing timer values on

configurable edges

ICU_MODE_EDGE_ 0x03 Mode for counting edges on configurable
COUNTER edges

Description Definition of the measurement mode type

Available via Icu.h

8.2.11 Icu_SignalMeasurementPropertyType

[SWS_Icu_00295] Definition of datatype Icu_SignalMeasurementPropertyType |

Name lcu_SignalMeasurementProperty Type
Kind Enumeration
Range ICU_LOW_TIME 0x00 The channel is configured for reading the
elapsed Signal Low Time
ICU_HIGH_TIME 0x01 The channel is configured for reading the
elapsed Signal High Time
ICU_PERIOD_TIME 0x02 The channel is configured for reading the
elapsed Signal Period Time
ICU_DUTY_CYCLE 0x03 The channel is configured to read values
which are needed for calculating the duty
cycle (coherent Active and Period Time).
Description Definition of the measurement property type
Available via lcu.h

8.2.12 Icu_TimestampBufferType

[SWS_Icu_00296] Definition of datatype Icu_TimestampBufferType |

Name Icu_TimestampBufferType
Kind Enumeration
Range ICU_LINEAR_BUFFER 0x00 The buffer will just be filled once
ICU_CIRCULAR_BUFFER 0x01 After reaching the end of the buffer, the driver
restarts at the beginning of the buffer

AUTSSAR

A

Description Definition of the timestamp measurement property type

Available via Icu.h

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 lcu_lInit

[SWS_Icu_00191] Definition of API function lcu_lInit |

Service Name lcu_Init
Syntax void Icu_Init (
const Icu_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to a selected configuration structure
Parameters (inout) None
Parameters (out) None
Return value None
Description This function initializes the driver.
Available via lcu.h
]

[SWS_lcu_00297] [The function Icu_Init shall be non re-entrant. |
[SWS_lIcu_00298] [The function Icu_Init initializes the driver. |

[SWS_lcu_00006]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_
00101, SRS _SPAL_12057, SRS_SPAL_12461

[The function Icu_Init shallinitialize all relevant registers of the configured hardware
with the values of the structure referenced by the parameter ConfigPtr. |

The following rules regarding initialization of controller registers shall apply to this driver
implementation:

* [SWS_lIcu_00051]
Upstream requirements: SRS_SPAL_12461

[If the hardware allows for only one usage of the register, the driver module
implementing that functionality is responsible for initializing the register. |

AUTSSAR

* [SWS_Icu_00052]
Upstream requirements: SRS_SPAL_12461

[If the register can affect several hardware modules and if it is an I/O register it
shall be initialized by the PORT driver. |

- [SWS_Icu_00053]
Upstream requirements: SRS_SPAL_12461

[If the register can affect several hardware modules and if it is not an 1/O register
it shall be initialized by the MCU driver. |

* [SWS_Icu_00128]
Upstream requirements: SRS_SPAL_12461

[One-time writable registers that require initialization directly after reset shall be
initialized by the start-up code. |

« [SWS_Icu_00129]
Upstream requirements: SRS_SPAL_12461

[All other registers shall be initialized by the startup code. |

[SWS_Icu_00061]
Upstream requirements: SRS_SPAL_12057, SRS_Icu_12407

[The function Icu_Init shall disable all notifications. |

[SWS_lcu_00121] [The function Tcu_1Init shall disable the wakeup-capability of all
channels. |

[SWS_Icu_00040]

Upstream requirements: SRS_SPAL_12057, SRS_Icu_12407
[The function Icu_Init shall set all used ICU channels to status ICU_IDLE. |
[SWS_Icu_00060]

Upstream requirements: SRS_SPAL_12057
[The function Icu_Init shall set the module mode to ICU_MODE_NORMAL. |
[SWS Icu_00054]

Upstream requirements: SRS_SPAL_12125

[The function Icu_1Init shall only set the resources that are configured in the config-
uration file (including clearing of pending interrupt flags).

The Icu module’s environment shall not call Tcu_TInit during a running operation (e.g.
timestamp measurement or edge counting). |

AUTSSAR

[SWS_lIcu_00220] [If development error detection for the ICU module is enabled and
the function Tcu_Init is called when the ICU driver and hardware are already ini-
tialized, the function Tcu_1Init shall raise development error ICU_E_ALREADY_INI-—
TIALIZED and return without any action. |

[SWS_lcu_00138] [The initialization function of this module shall always have a
pointer as a parameter, even though for Variant PC no configuration set shall be given.
Instead a NULL pointer shall be passed to the initialization function. |

Note: Parameter checking for the initialization function is specified within BSW Gen-
eral [5].

8.3.2 Icu_Delnit

[SWS_Icu_00193] Definition of API function Icu_Delnit |

Service Name Icu_Delnit
Syntax void Icu_DelInit (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This function de-initializes the ICU module.
Available via lcu.h
]

[SWS_Icu_00036]

Upstream requirements: SRS_SPAL 12163, SRS _Icu 12429
[The function ITcu_DeInit shall set the state of the peripherals used by configuration
as the same after power on reset. |

[SWS_lIcu_00300] [Values of registers which are not writeable are excluded from set-
ting the state by the function Tcu_DeInit.]

[SWS_lcu_00091] [The function Icu_DeInit shall influence only the peripherals
which are allocated by static configuration and/or the runtime configuration set passed
by the previous call of Tcu_Init.]

[SWS_Icu_00037]
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163

[The function Icu_DeInit shall disable all used interrupts and notifications. |

AUTSSAR

[SWS_lcu_00152] [The Icu module’s environment shall not call Tcu_DeInit during
a running operation (e.g. timestamp measurement or edge counting) |

[SWS_lIcu_00092]

Upstream requirements: SRS_BSW_00410, SRS_BSW_00171
[The function Icu_DeInit shall be pre compile time configurable by configuration
parameter IcuDelnitApi. |

[SWS_lcu_00301] [The function Tcu_DeInit shall be configurable ON/OFF by con-
figuration parameter IcuDelnitApi. |

[SWS_Icu_00221] [A re-initialization of the ICU module by executing the Tcu_Init
function requires a de-initialization before by executing the Icu_DeInit function. |

[SWS_lcu_00299] [Icu_DeInit operation is non re-entrant. |

[SWS_Icu_00385]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has not been called. |

8.3.3 lcu_SetMode

[SWS_Icu_00194] Definition of API function Icu_SetMode |

Service Name Icu_SetMode
Syntax void Icu_SetMode (
Icu_ModeType Mode
)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Mode ICU_MODE_NORMAL: Normal operation, all used interrupts are
enabled according to the notification requests. ICU_MODE_
SLEEP: Reduced power mode. In sleep mode only those
notifications are available which are configured as wakeup
capable.

Parameters (inout) None

Parameters (out) None

Return value None

Description This function sets the ICU mode.

Available via lcu.h

AUTSSAR

[SWS_Icu_00008]
Upstream requirements: SRS_SPAL_12067, SRS_SPAL_12169, SRS_Icu_12370

[The function Icu_setMode shall set the operation mode to the given mode param-
eter. The function Tcu_sSetMode shall set the operation mode to the given mode
parameter. This function influences the functionality of the ICU channels. Therefore
the mode switching of the module shall be compatible to the overall state of the ECU. |

[SWS_Icu_00302] [The function Icu_SetMode shall be non re-entrant.

This function influences the functionality of the ICU channels. Therefore the mode
switching of the module shall be compatible to the overall state of the ECU. |

[SWS_Icu_00095]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Tcu_SetMode shall be pre-compile time configurable by the configura-
tion parameter IcuSetModeApi. |

[SWS_lcu_00303] [The function Icu_setMode shall be configurable ON/OFF by the
configuration parameter IcuSetModeApi. |

[SWS_Icu_00125]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled for the module Icu the function Icu_Set-

Mode shall check the parameter Mode and shall raise the error TCU_E_PARAM_MODE
if the parameter Mode is not within the allowed range set in the configuration. |

[SWS_Icu_00133]

Upstream requirements: SRS_SPAL_12064
[This service can be called during running operations. If so, an ongoing operation that
generates interrupts on a wakeup capable channel like e.g. time stamping or edge

counting might lead to the ICU module not being able to properly enter sleep mode.
This is then a system or ECU configuration issue not a problem of this specification. |

[SWS_Icu_00386]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called.

AUTSSAR

8.3.4 Icu_DisableWakeup

[SWS_Icu_00195] Definition of API function Icu_DisableWakeup |

Service Name

Icu_DisableWakeup

Syntax void Icu_DisableWakeup (
Icu_ChannelType Channel
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function disables the wakeup capability of a single ICU channel.
Available via lcu.h
]

[SWS_Icu_00013]
Upstream requirements: SRS _lcu_12408

[The function Tcu_DisableWakeup shall disable the wakeup capability of a single
ICU channel. |

[SWS_Icu_00305] [The function Icu_DisableWakeup shall disable the wakeup ca-
pability of a single ICU channel only for ICU channels configured statically as wakeup
capable true. |

[SWS_lcu_00304] [The function Icu_DisableWakeup shall be re-entrant. |
[SWS_Icu_00096]

Upstream requirements: SRS _BSW_00410, SRS BSW_00171
[The function Icu_DisableWakeup shall be pre compile time configurable by the
configuration parameter IcuDisableWakeupApi. |
[SWS_lcu_00306] [The function Icu_DisableWakeup shall be configurable
ON/OFF by the configuration parameter IcuDisableWakeupApi.
The settings done by this function are only relevant after the ICU_MODE_SLEEP is
set. |
[SWS_Icu_00024]

Upstream requirements: SRS_BSW_00323

[If development error detection is enabled: The function Icu_DisableWakeup shall
check the parameter Channel and shall raise development error ICU_E_PARAM_-
CcHANNEL if Channel is not within the allowed range set in the configuration. |

AUTSSAR

[SWS_lIcu_00059] [If development error detection is enabled: The function ITcu_Dis—
ableWakeup shall check the parameter Channel. The function Tcu_bDisableWakeup
shall raise development error ICU_E_PARAM_CHANNEL if Channel is indexing an ICU
channel statically not configured as wakeup capable. |

[SWS Icu 00387]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the lcu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has not been called. |

8.3.5 Icu_EnableWakeup

[SWS_lIcu_00196] Definition of API function Icu_EnableWakeup |

Service Name

Icu_EnableWakeup

Syntax void Icu_EnableWakeup (
Icu_ChannelType Channel
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function (re-)enables the wakeup capability of the given ICU channel.
Available via lcu.h
]

[SWS_lcu_00307] [The function Icu_EnableWakeup shall be re-entrant. |

[SWS_Icu_00014]
Upstream requirements: SRS_lcu_12408

[The function Tcu_EnableWakeup shall re-enable the wakeup capability of a single
ICU channel for the following ICU mode selection(s). This service is only feasible for
ICU channels configured as wakeup capable true.

To make the selection effective a call of the function Icu_sSetMode, requesting the
mode ICU_MODE_SLEEP is required. |

[SWS_Icu_00097]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Icu_EnableWakeup shall be pre compile time configurable by configu-
ration parameter IcuEnableWakeupApi. |

AUTSSAR

[SWS_lcu_00308] [The function Tcu_EnableWakeup shall be configurable ON/OFF
by configuration parameter IcuEnableWakeupApi. |

[SWS_Icu_00155] [If development error detection is enabled: The function Icu_-
EnableWakeup shall check the parameter Channel and shall raise the error ICU_E_
PARAM_CHANNEL if Channel is invalid. |

[SWS_lcu_00156] [If development error detection is enabled: The function Icu_En-
ableWakeup shall check the parameter Channel. The function Icu_EnableWakeup
shall raise the error ICU_E_PARAM_CHANNEL if Channel is indexing an ICU channel
statically not configured as wakeup capable. |

[SWS_Icu_00388]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has notbeen called. |

8.3.6 Icu_CheckWakeup

[SWS_Icu_00358] Definition of API function Icu_CheckWakeup |

Service Name

lcu_CheckWakeup

Syntax void Icu_CheckWakeup (
EcuM_WakeupSourceType WakeupSource
)
Service ID [hex] 0x15
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) WakeupSource Informatin on wakeup source to be checked. The associated ICU
channel can be determined from configuration data.
Parameters (inout) None
Parameters (out) None
Return value None
Description Checks if a wakeup capable ICU channel is the source for a wakeup event and calls the ECU
state manager service EcuM_SetWakeupEvent in case of a valid ICU channel wakeup event.
Available via lcu.h
]

[SWS_lcu_00359] [The function Icu_CheckWakeup shall check if a wakeup capable
ICU channel is the source for a wakeup event and call EcuM_SetWakeupEvent to
indicate a valid timer wakeup event to the ECU State Manager. |

[SWS_Icu_00360] [The function Icu_CheckWakeup is only feasible, if lcuReport-
WakeupSource is statically configured available. |

[SWS_lIcu_00361] [The ICU module’s environment shall only use the re-entrant capa-
bility of the function Icu_cCheckWakeup if the ICU module’s environment takes care
that there is no simultaneous usage of the same channel. |

AUTSSAR

[SWS_lcu_00362] [The function Icu_CheckWakeup shall be pre compile time con-
figurable On/Off by the configuration parameter: IcuWakeupFunctionalityApi |

[SWS_Icu_00363] [If development error detection for the ICU module is enabled: if
the function Icu_CheckWakeup is called before the ICU module was initialized, the
function Icu_CheckWakeup shall raise the development error ICU_E_UNINIT. |

8.3.7 Icu_SetActivationCondition

[SWS_lIcu_00197] Definition of API function Icu_SetActivationCondition |

Service Name

Icu_SetActivationCondition

Syntax void Icu_SetActivationCondition (
Icu_ChannelType Channel,
Icu_ActivationType Activation

)

Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)

Parameters (in)

Channel Numeric identifier of the ICU channel

Activation Type of activation (if supported by hardware)
* ICU_RISING_EDGE

» ICU_FALLING_EDGE
« ICU_BOTH_EDGES

Parameters (inout) None
Parameters (out) None
Return value None

Description

This function sets the activation-edge for the given channel.

Available via

lcu.h

]

[SWS_Icu_00090]
Upstream requirements: SRS_BSW_00410

[The function Tcu_SetActivationCondition shall setthe activation-edge accord-
ing to Activation parameter for the given channel. This service shall support channels
which are configured for the following Tcu_MeasurementModeType:

e ICU_MODE_SIGNAL_EDGE_DETECT
e ICU_MODE_TIMESTAMP

e ICU_MODE_EDGE_COUNTER

]

[SWS_lcu_00139] [The function Icu_SetActivationCondition shall reset the
state for the given channel to ICU_IDLE. |

AUTSSAR

[SWS_lcu_00309] [The function Icu_SetActivationCondition shall be re-
entrant. |

[SWS_Icu_00159] [If development error detection is enabled the function Tcu_Se-
tActivationCondition shall check the parameter Channel and shall raise the error
ICU_E_PARAM_CHANNEL if Channel is not within the range set in the configuration. |

[SWS_Icu_00043]
Upstream requirements: SRS _BSW_00323

[If development error detection is enabled the function Tcu_SetActivationCondi-
tion shall check the parameter Activation. The function ITcu_SetActivationCon-
dition shall raise the error ICU_E_PARAM_ACTIVATION if Activation is invalid but
only for the requested ICU channel. |

8.3.8 Icu_DisableNotification

[SWS_Icu_00198] Definition of API function Icu_DisableNotification |

Service Name

Icu_DisableNotification

Syntax void Icu_DisableNotification (
Icu_ChannelType Channel
)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant (limited according to ICU050)

Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None

Parameters (out) None

Return value None

Description

This function disables the notification of a channel.

Available via

Icu.h

]

[SWS_Icu_00009]
Upstream requirements: SRS_lcu_12305

[The function Icu_DisableNotification shall disable the notification on the given
channel. |
[SWS_lcu_00310] [The function Tcu_DisableNotification shall be re-entrant.]

[SWS_lIcu_00160] [If development error detection is enabled the function Tcu_Dis-
ableNotification shall check the parameter channel and shall raise the error
ICU_E_PARAM_CHANNEL if Channel is invalid (invalid identifier). |

AUTSSAR

[SWS_Icu_00389]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called. |

8.3.9 Icu_EnableNotification

[SWS_Icu_00199] Definition of API function Icu_EnableNotification |

Service Name

Icu_EnableNotification

Syntax void Icu_EnableNotification (
Icu_ChannelType Channel
)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Reentrant (limited according to ICU050)

Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None

Parameters (out) None

Return value None

Description

This function enables the notification on the given channel.

Available via

Icu.h

]
[SWS_Icu_00010]

Upstream requirements: SRS _lcu_12305
[The function Icu_EnableNotification shall enable the notification on the given
channel. |
[SWS_lcu_00311] [The function Icu_EnableNotification shall be re-entrant.]

[SWS_lIcu_00161] [If development error detection is enabled the function Icu_En-
ableNotification shall check the parameter Channel and shall raise the error
ICU_E_PARAM_CHANNEL if Channel is invalid (invalid identifier). |

[SWS_Icu_00390]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called. |

AUTSSAR

8.3.10 Icu_GetinputState

[SWS_Icu_00200] Definition of API function Icu_GetlnputState |

Service Name lcu_GetInputState
Syntax Icu_InputStateType Icu_GetInputState (
Icu_ChannelType Channel
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value lcu_InputStateType ICU_ACTIVE: An activation edge has been detected
1cu_1DLE: No activation edge has been detected since the last
call of Icu_GetlnputState() or Icu_Init().
Description This function returns the status of the ICU input.
Available via lcu.h
]

[SWS_Icu_00313] [Icu_GetInputState shall return Icu_InputStateType
which will have value TCU_IDLE when no activation edge has been detected since
the last call of Icu_GetInputState or Icu_Init.]

[SWS_Icu_00030]
Upstream requirements: SRS_SPAL 00157, SRS _Icu_12371

[The function Icu_GetInputState shall return the status of the ICU input. Only
channels which are configured for the following IcuMeasurementMode shall be sup-
ported:

. ICU_MODE_SIGNAL_EDGE_DETECT
. ICU_MODE_SIGNAL_MEASUREMENT

]

[SWS_lcu_00312] [The function Icu_GetInputState shall be re-entrant.]

[SWS_Icu_00031]

Upstream requirements: SRS_lcu_12371

[If an activation edge has been detected the function Icu_GetInputstate shall re-
turn 1cu_AcCTIVE for Edge Detection channels. |

[SWS_lIcu_00314] [For Signal Measurement a channel should be setto ICU_ACTIVE
not until this measurement has completed and the driver is able to provide useful infor-
mation on the input signal. |

AUTSSAR

[SWS_Icu_00032]

Upstream requirements: SRS_lcu_12371

[Once the function Icu_GetInputState has returned the status ICU_ACTIVE, the
function Tcu_GetInputState shall set the stored status to 1CU_IDLE until the next
edge is detected. |

[SWS_Icu_00122]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Icu_GetInputsState shall be pre compile time configurable by the
configuration parameter IcuGetlnputStateApi. |

[SWS_lcu_00315] [The function Icu_GetInputState shall be configurable
ON/OFF by the configuration parameter IcuGetlnputStateApi. |

[SWS_lcu_00162] [If development error detection is enabled the function
Icu_GetInputState shall check the parameter Channel and shall raise
the error 1CU_E_PARAM_CHANNEL if Channel is invalid (invalid identifier or
channel not configured for modes ICU MODE_SIGNAL EDGE _DETECT or
ICU_MODE_SIGNAL_MEASUREMENT) |

[SWS_Icu_00049]
Upstream requirements: SRS_SPAL_12448, SRS_BSW_00369

[If development error detection is enabled the function Icu_GetInputState shall
return ICU_IDLE if an error is detected. |

[SWS Icu 00391]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the lcu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has not been called. |

8.3.11 Icu_StartTimestamp

[SWS_lIcu_00201] Definition of API function Icu_StartTimestamp |

Service Name lcu_StartTimestamp

Syntax void Icu_StartTimestamp (
Icu_ChannelType Channel,
Icu_ValueTypex BufferPtr,
uintlé6 BufferSize,
uintlé NotifyInterval

)

Service ID [hex] 0x09
Sync/Async Asynchronous
Reentrancy Reentrant (limited according to ICU050)

\Y

AUTSSAR

A
Parameters (in) Channel Numeric identifier of the ICU channel
BufferSize Size of the external buffer (number of entries)
NotifyInterval Notification interval (number of events). This parameter can not
be checked in a reasonable way.
Parameters (inout) None
Parameters (out) BufferPtr Pointer to the buffer-array where the timestamp values shall be
placed.
Return value None
Description This function starts the capturing of timer values on the edges.
Available via Icu.h
]

[SWS_lcu_00317] [The function Icu_startTimestamp shall start the capturing of
timer values on the edges to an external buffer, at the beginning of the buffer. |

[SWS_Icu_00063]

Upstream requirements: SRS_BSW_00410, SRS_SPAL 12063, SRS _SPAL 12075, SRS lcu_-
12430, SRS _Icu_12438

[The function Icu_StartTimestamp shall start the capturing of timer values on the
edges activated by the service Icu_SetActivationCondition (rising/falling/both
edges) |

[SWS_lcu_00316] [The function Icu_StartTimestamp shall be re-entrant. |

[SWS_lcu_00064] [If circular buffer handling is configured (for the given channel),
when the capture functionality reaches the end of the buffer, the Icu module shall start
at the beginning of the buffer. |

[SWS_lIcu_00065]

Upstream requirements: SRS_lcu_12456
[If linear buffer handling is configured, when the capture functionality reaches the end
of the buffer, the lcu module shall stop capturing timer values. |

[SWS_lIcu_00134] [The Icu module shall only call a notification function if a notification
function is configured. |

[SWS_Icu_00318] [The Icu module shall only call a notification function if the notifica-
tion has been enabled by the call of Icu_EnableNotification.]

[SWS_lIcu_00319] [The Icu module shall only call a notification function if NotifyInter-
val is greater than "0". |

[SWS_lcu_00320] [The Icu module shall only call a notification function if the number
of events specified by Notifylnterval has been captured. |

AUTSSAR

[SWS_Icu_00066]

Upstream requirements: SRS_lcu_12430

[The function Icu_StartTimestamp shall only be available in Measurement Mode
"ICU_MODE_TIMESTAMP". |

[SWS_Icu_00098]
Upstream requirements: SRS_BSW_00171

[The function Icu_StartTimestamp shall be pre-compile time configurable by the
configuration parameter: ICU_TIMESTAMP_API. |

[SWS_lcu_00321] [The function Icu_StartTimestamp shall be configurable
ON/OFF by the configuration parameter: ICU_TIMESTAMP_API. |

[SWS_lcu_00163] [If development error detection is enabled the function Icu_-
StartTimestamp shall check the parameter Channel and shall raise the error TCU_
E_PARAM_CHANNEL if Channel is invalid (invalid identifier or channel not configured for
mode ICU_MODE_TIMESTAMP). |

[SWS_lIcu_00354] [If development error detection is enabled and a notification func-
tion has been configured for the addressed channel, the function Tcu_StartTimes-
tamp shall check the parameter Notifylnterval for validity and raise the error TICU_E_
PARAM_NOTIFY_INTERVAL if the parameter Notifylnterval is "0". |

[SWS_lIcu_00108]
Upstream requirements: SRS_SPAL_12448
[If development error detection is enabled the function Icu_sStartTimestamp shall

check the parameter BufferSize (check that size > 0). The function Tcu_StartTimes-
tamp shall raise the error ICU_E_PARAM BUFFER_SIZE if BufferSize is invalid (e.g.

"O").J
[SWS_Icu_00392]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called. |

AUTSSAR

8.3.12 Icu_StopTimestamp

[SWS_Icu_00202] Definition of API function lcu_StopTimestamp |

Service Name

lcu_StopTimestamp

Syntax void Icu_StopTimestamp (
Icu_ChannelType Channel
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function stops the timestamp measurement of the given channel.
Available via lcu.h
]

[SWS_Icu_00067]

Upstream requirements: SRS _lcu_12431

[The function Icu_StopTimestamp shall stop the timestamp measurement of the
given channel. |

[SWS_lcu_00322] [Icu_StopTimestamp operation is Re-entrant.

In production mode the function Tcu_sStopTimestamp shall not return an error when
the Channel is not active (has not started or has already stopped). |

[SWS_lcu_00165] [The function Icu_StopTimestamp shall only be available in
Measurement Mode: ICU_MODE_TIMESTAMP. |

[SWS_Icu_00099]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Icu_StopTimestamp shall be pre-compile time configurable by the
configuration parameter: IcuTimestampApi. |

[SWS_lIcu_00164] [If development error detection is enabled the function Tcu_Stop-
Timestamp shall check the parameter Channel and shall raise development error
ICU_E_PARAM_CHANNEL if Channel is invalid (invalid identifier or channel not config-
ured for mode ICU_MODE_TIMESTAMP). |

[SWS_Icu_00323] [The function Icu_StopTimestamp shall be configurable
ON/OFF by the configuration parameter: IcuTimestampApi. |

[SWS_lcu_00166] [The function Icu_StopTimestamp shall raise runtime error
ICU_E_NOT_STARTED if Channel is not active (has not started or is already stopped). |

AUTSSAR

[SWS_Icu_00393]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called. |

8.3.13

Icu_GetTimestamplndex

[SWS_Icu_00203] Definition of API function lcu_GetTimestamplindex [

Service Name lcu_GetTimestamplIndex
Syntax Icu_IndexType Icu_GetTimestampIndex (
Icu_ChannelType Channel
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None

Return value

lcu_IndexType | Abstract return type to cover different microcontrollers.

Description

This function reads the timestamp index of the given channel.

Available via

Icu.h

]

[SWS_Icu_00071]
Upstream requirements: SRS_lcu_12453

[The function Icu_GetTimestampIndex shall read the timestamp index of the given
channel, which is the next to be written. |
[SWS_lcu_00324] [The function Icu_GetTimestampIndex shall be re-entrant. |

[SWS_lcu_00135] [The function Icu_GetTimestampIndex shall return "0" in case
the service is called before Icu_startTimestamp (no buffer is defined in this case). |

[SWS_lcu_00170] [The function Tcu_GetTimestampIndex shall only be available
in Measurement Mode ICU_MODE_TIMESTAMP, |

[SWS_Icu_00100]

Upstream requirements: SRS_BSW_00410, SRS_BSW_00171
[The function Icu_GetTimestampIndex shall be pre compile time configurable by
the configuration parameter: IcuTimestampApi. |

[SWS_lcu_00325] [The function Icu_GetTimestampIndex shall be configurable
ON/OFF by the configuration parameter: lcuTimestampApi. |

AUTSSAR

[SWS_lIcu_00169] [If development error detection is enabled the function Icu_Get-
TimestampIndex shall check the parameter Channel. If Channel is invalid (invalid
identifier or channel not configured for mode ICU_MODE_TIMESTAMP), the function
Icu_GetTimestampIndex shall raise development error ICU_E_PARAM CHANNEL.

[SWS Icu _00107]
Upstream requirements: SRS_SPAL_12448
[If development error detection is enabled the function Tcu_GetTimestampIndex
shall return "0" if an error is detected. |
[SWS_lIcu_00394]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has not been called. |

8.3.14 Icu_ResetEdgeCount

[SWS_Icu_00204] Definition of API function Icu_ResetEdgeCount |

lcu_ResetEdgeCount

Service Name

Syntax void Icu_ResetEdgeCount (

Icu_ChannelType Channel

)
Service ID [hex] 0x0c
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function resets the value of the counted edges to zero.
Available via lcu.h
]

[SWS_Icu_00072]
Upstream requirements: SRS_lcu_12439, SRS_Icu_13100

[The function Icu_ResetEdgeCount shall reset the value of the counted edges to
zero. |

[SWS_lcu_00326] [The function Icu_ResetEdgeCount shall be re-entrant. |

[SWS Icu 00101]
Upstream requirements: SRS_BSW_00410, SRS BSW_00171

[The function Icu_ResetEdgeCount shall be pre-compile time configurable by the
configuration parameter lcu_ EDGE_COUNT_API. |

AUTSSAR

[SWS_lcu_00327] [The function Icu_ResetEdgeCount shall be configurable
ON/OFF by the configuration parameter: ICU_EDGE_COUNT_API.]

[SWS_Icu_00171] [If development error detection is enabled the function Tcu_Re-
setEdgeCount shall check the parameter Channel. If Channel is invalid (invalid
identifier or channel not configured for mode ICU_MODE_EDGE_COUNTER), then
Icu_ResetEdgeCount shall raise development error ICU_E_PARAM CHANNEL. |

[SWS_Icu_00395]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called. |

8.3.15 Icu_EnableEdgeCount

[SWS_Icu_00205] Definition of API function Icu_EnableEdgeCount |
Icu_EnableEdgeCount

Service Name

Syntax void Icu_EnableEdgeCount (
Icu_ChannelType Channel
)

Service ID [hex] 0x0d

Sync/Async Synchronous

Reentrancy Reentrant (limited according to ICU050)

Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None

Parameters (out) None

Return value None

Description

This function enables the counting of edges of the given channel.

Available via

Icu.h

]

[SWS_Icu_00078]
Upstream requirements: SRS_lcu_12432

[The function Icu_EnableEdgeCount shall enable the counting of edges of the given
channel. |
Note: This service does not do the real counting itself.

[SWS_Icu_00073]
Upstream requirements: SRS _lcu_12439

[The function Icu_EnableEdgeCount shall only count the configured' edges (rising
edge / falling edge / both edges). |

'Configured edge after the call of Tcu_Init (default-edge) or Tcu_SetActivationCondition.

AUTSSAR

[SWS_Icu_00074]
Upstream requirements: SRS_lcu_12439

[The function Icu_EnableEdgeCount shall be available for each ICU channel in
Measurement Mode "Edge Counter". |
[SWS_lcu_00328] [The function Icu_EnableEdgeCount shall be re-entrant. |

[SWS_Icu_00102]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Icu_EnableEdgeCount shall be pre-compile time configurable by the
configuration parameter lcu_ EDGE_COUNT_API. |

[SWS_lcu_00329] [The function Icu_EnableEdgeCount shall be configurable
On/Off by the configuration parameter: ICU_EDGE_COUNT_API. |

[SWS_lcu_00172] [If development error detection is enabled, the function ITcu_En-
ableEdgeCount shall check the parameter Channel. If Channel is invalid (invalid
identifier or channel not configured for mode ICU_MODE_EDGE_COUNTER), then
the function Icu_EnableEdgeCount shall raise development error ICU_E_PARAM
CHANNEL. |

[SWS_Icu_00396]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the lcu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has not been called. |

8.3.16 Icu_EnableEdgeDetection

[SWS_Icu_00364] Definition of API function Icu_EnableEdgeDetection |

Service Name Icu_EnableEdgeDetection
Syntax void Icu_EnableEdgeDetection (
Icu_ChannelType Channel

)
Service ID [hex] 0x16
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function enables / re-enables the detection of edges of the given channel.
Available via lcu.h

AUTSSAR

[SWS_lcu_00365] [The function Tcu_EnableEdgeDetection shall enable the de-
tection of edges for the given channel. |

[SWS_Icu_00366] [The function Icu_EnableEdgeDetection shall only detect the
configured edges (rising edge / falling edge / both edges). |

[SWS_lcu_00367] [The function Icu_EnableEdgeDetection shall be available for
each ICU Channel in Measurement Mode "Edge Detection". |

[SWS_lIcu_00368] [The function Icu_EnableEdgeDetection shall be re-entrant. |

[SWS_lcu_00369] [The function Icu_EnableEdgeDetection shall be pre-compile
time configurable by the configuration parameter IcuEdgeDetectApi. |

[SWS_lcu_00370] [The function Icu_EnableEdgeDetection shall be configurable
ON/OFF by the configuration parameter: IcuEdgeDetectApi. |

[SWS_lcu_00371] [If development error detection is enabled; the func-
tion Icu_EnableEdgeDetection shall check the parameter Channel. If
Channel is invalid (invalid identifier or channel not configured for mode
ICU_MODE_SIGNAL_EDGE_DETECT), then the function Icu_EnableEdgeDetec-
tion shall raise development error ICU_E_PARAM CHANNEL. |

[SWS_Icu_00397]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has not been called. |

8.3.17 Icu_DisableEdgeDetection

[SWS_Icu_00377] Definition of API function Icu_DisableEdgeDetection |

Service Name Icu_DisableEdgeDetection
Syntax void Icu_DisableEdgeDetection (
Icu_ChannelType Channel

)
Service ID [hex] 0x17
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function disables the detection of edges of the given channel.
Available via lcu.h

AUTSSAR

[SWS_lcu_00372] [The function Icu_DisableEdgeDetection shall disable the
detection of edges of the given channel |

[SWS_Icu_00373] [The function Icu_DisableEdgeDetection shall be re-
entrant. |

[SWS_lcu_00374] [The function Icu DisableEdgeDetection shall be pre-
compile time configurable by the configuration parameter IcuEdgeDetectApi. |

[SWS_lcu_00375] [The function Icu_DisableEdgeDetection shall be config-
urable ON/OFF by the configuration parameter IcuEdgeDetectApi. |

[SWS_lcu_00376] [If development error detection is enabled the function
Icu_DisableEdgeDetection shall check the parameter Channel. If
Channel is invalid (invalid identifier or channel not configured for mode
ICU_MODE_SIGNAL_EDGE_DETECT), the function Icu_DisableEdgeDetec-
tion shall raise development error ICU_E_PARAM_CHANNEL. |

[SWS_Icu_00398]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the lcu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has not been called. |

8.3.18 Icu_DisableEdgeCount

[SWS_Icu_00206] Definition of API function Icu_DisableEdgeCount |

Service Name

lcu_DisableEdgeCount

Syntax void Icu_DisableEdgeCount (
Icu_ChannelType Channel
)
Service ID [hex] 0x0e
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)

Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None
Description This function disables the counting of edges of the given channel.
Available via lcu.h

]

[SWS_lcu_00079]

Upstream requirements: SRS_lcu_12433

[The function Icu_DisableEdgeCount shall disable the counting of edges of the

given channel. |

AUTSSAR

[SWS_lcu_00330] [The function Tcu_DisableEdgeCount shall be re-entrant.

To reset the edge counter, the service Icu_ResetEdgeCount is available. |

[SWS_Icu_00103]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Icu_DisableEdgeCount shall be pre-compile time configurable by the
configuration parameter IcuEdgeCountApi. |

[SWS_Icu_00331] [The function Icu_DisableEdgeCount shall be configurable
ON/OFF by the configuration parameter IcuEdgeCountApi. |

[SWS_lIcu_00173] [If development error detection is enabled the function ITcu_Dis-
ableEdgeCount shall check the parameter Channel. If Channel is invalid (invalid
identifier or channel not configured for mode ICU_MODE_EDGE_COUNTER), the
function Icu_DisableEdgeCount shall raise development error ICU_E_PARAM -
CHANNEL. |

[SWS_Icu_00399]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has notbeen called. |

8.3.19 Icu_GetEdgeNumbers

[SWS_Icu_00207] Definition of API function Icu_GetEdgeNumbers |

Service Name

lcu_GetEdgeNumbers

Syntax Icu_EdgeNumberType Icu_GetEdgeNumbers (
Icu_ChannelType Channel
)
Service ID [hex] 0xOf
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None

Return value

Icu_EdgeNumberType | Abstract return type to cover different microcontrollers.

Description

This function reads the number of counted edges.

Available via

Icu.h

]
[SWS_Icu_00080]

Upstream requirements: SRS_lcu_12434

[The function Icu_GetEdgeNumbers shall read the number of counted edges after
the last call of Icu_ResetEdgeCount. |

AUTSSAR

[SWS_lcu_00332] [The function Icu_GetEdgeNumbers shall be re-entrant. |
[SWS_Icu_00104]

Upstream requirements: SRS_BSW_00410, SRS_BSW_00171
[The function Icu_GetEdgeNumbers shall be pre compile time configurable by the
configuration parameter: lcu_EDGE_COUNT_API. |

[SWS_lcu_00333] [The function Icu_GetEdgeNumbers shall be configurable
ON/OFF by the configuration parameter: ICU_EDGE_COUNT_API.]

[SWS_lIcu_00174] [If development error detection is enabled, the function Tcu_Get-
EdgeNumbers shall check the parameter Channel. If Channel isinvalid (invalid iden-
tifier or channel not configured for mode ICU_MODE_EDGE_COUNTER), the function
Icu_GetEdgeNumbers shall raise development error ICU_E_PARAM_CHANNEL. |

[SWS_lIcu_00175] [If development error detection is enabled the function Icu_Get-
EdgeNumbers shall return "0" if an error is detected. |

[SWS_Icu_00400]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called. |

8.3.20 Icu_StartSignalMeasurement

[SWS_lIcu_00208] Definition of API function Icu_StartSignalMeasurement |

Service Name

lcu_StartSignalMeasurement

Syntax void Icu_StartSignalMeasurement (
Icu_ChannelType Channel

)
Service ID [hex] 0x13
Sync/Async Asynchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None

Description

This function starts the measurement of signals.

Available via

Icu.h

]

[SWS_lcu_00334] [The function Icu_StartSignalMeasurement shall be re-

entrant. |

AUTSSAR

[SWS_lcu_00140] [The function Icu_StartSignalMeasurement shall start the
measurement of signals beginning with the configured default start edge which occurs
first after the call of this service. |

[SWS_lcu_00141] [The function Icu_StartSignalMeasurement shall only be
available in Measurement Mode "ICU_MODE_SIGNAL_MEASUREMENT". |

[SWS_lcu_00146] [The function Icu_StartSignalMeasurement shall reset the
state for the given channel to ICU_IDLE. |

[SWS_lcu_00142] [The function Icu_sStartSignalMeasurement shall be pre-
compile time configurable by the configuration parameter IcuSignalMeasurementApi. |

[SWS_lcu_00335] [The function Icu_StartSignalMeasurement shall be config-
urable ON/OFF by the configuration parameter IcuSignalMeasurementApi. |

[SWS_Icu_00176] [If development error detection is enabled, the function
Icu_StartSignalMeasurement shall check the parameter Channel. If
Channel is invalid (invalid identifier or channel not configured for mode
ICU_MODE_SIGNAL_MEASUREMENT), the function ITcu_StartSignalMeasure-
ment shall raise development error ICU_E_PARAM_CHANNEL. |

[SWS_Icu_00401]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the lcu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has notbeen called.

8.3.21 Icu_StopSignalMeasurement

[SWS_Icu_00209] Definition of API function Icu_StopSignalMeasurement |

Service Name

Icu_StopSignalMeasurement

Syntax void Icu_StopSignalMeasurement (
Icu_ChannelType Channel

)
Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) None
Return value None

Description

This function stops the measurement of signals of the given channel.

Available via

Icu.h

AUTSSAR

[SWS_lcu_00336] [The function Icu_sStopSignalMeasurement shall be re-
entrant. |

[SWS_Icu_00143] [The function Icu_StopSignalMeasurement shall stop the
measurement of signals of the given channel. |

[SWS_lcu_00144] [The function Icu_StopSignalMeasurement shall only be avail-
able in Measurement Mode: "ICU_MODE_SIGNAL_MEASUREMENT". |

[SWS_lIcu_00145] [The function Tcu_StopSignalMeasurement shall be pre com-
pile time configurable by the configuration parameter IcuSignalMeasurementApi. |

[SWS_lcu_00337] [The function Icu_StopSignalMeasurement shall be config-
urable ON/OFF by the configuration parameter IcuSignalMeasurementApi. |

[SWS_lcu_00177] [If development error detection is enabled the function
Tcu_StopSignalMeasurement shall check the parameter Channel. If
Channel is invalid (invalid identifier or channel not configured for mode
ICU_MODE_SIGNAL_MEASUREMENT), the function Icu_StopSignalMeasure-
ment shall raise development error ICU_E_PARAM_CHANNEL. |

[SWS_Icu_00402]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has not been called. |

8.3.22 Icu_GetTimeElapsed

[SWS_Icu_00210] Definition of API function Icu_GetTimeElapsed |

Service Name

lcu_GetTimeElapsed

Syntax Icu_ValueType Icu_GetTimeElapsed (
Icu_ChannelType Channel
)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Reentrant (limited according to ICU050)

Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None

Parameters (out) None

Return value

lcu_ValueType | see Description

Description

This function reads the elapsed Signal Low Time for the given channel.

Available via

Icu.h

]

[SWS_lcu_00338] [The function Icu_GetTimeElapsed shall be re-entrant. |

AUTSSAR

[SWS_lcu_00081]

Upstream requirements: SRS_SPAL_12063, SRS_Icu_12442
[The function Icu_GetTimeElapsed shall read the elapsed Signal Low Time for the
given channel that is configured in Measurement Mode "Signal Measurement, Signal

Low Time". The elapsed time is measured between a falling edge and the consecutive
rising edge of the channel. |

[SWS_Icu_00082]

Upstream requirements: SRS_SPAL_12063, SRS_Icu_12435
[The function Icu_GetTimeElapsed shall read the elapsed Signal High Time for the
given channel that is configured in Measurement Mode "Signal Measurement, Signal

High Time". The elapsed time is measured between a rising edge and the consecutive
falling edge of the channel. |

[SWS_Icu_00083]
Upstream requirements: SRS_SPAL_12063, SRS_Icu_12443

[The function Tcu_GetTimeElapsed shall read the elapsed Signal Period Time for
the given channel that is configured in Measurement Mode "Signal Measurement, Sig-
nal Period Time". The elapsed time is measured between consecutive rising (or falling)
edges of the channel. The period start edge is configurable. |

[SWS_lcu_00136] [The function Icu_GetTimeElapsed shall return "0" in case no
requested time has been captured. |

Hint: See Figure 9.19, Letter "A" for more details.

[SWS_lcu_00339] [The function Icu_GetTimeElapsed shall return "0" in case the
capturing of a requested time is ongoing and not finished. |

Hint: See Figure 9.19, Letter "B" for more detalils.

[SWS_lcu_00340] [The function Tcu_GetTimeElapsed shall return "0" in case a
captured time was already returned once by this service and this service is called
again. |

Hint: See Figure 9.19, Letter "D" for more details.

[SWS_Icu_00105]

Upstream requirements: SRS_BSW_00410, SRS_BSW_00171
[The function Icu_GetTimeElapsed shall be pre compile time configurable by the
configuration parameter IcuGetTimeElapsedApi. |

[SWS_lcu_00341] [The function Icu_GetTimeElapsed shall be configurable
ON/OFF by the configuration parameter lcuGetTimeElapsedApi. |

AUTSSAR

[SWS_lcu_00178] [If development error detection is enabled, the parameter Channel
shall be checked by this service. If Channel is invalid (invalid identifier or channel not
configured for mode ICU_MODE_SIGNAL_MEASUREMENT), then the error TCU_E_
PARAM_CHANNEL shall be reported to the Default Error Tracer. |

[SWS_lcu_00179] [If development error detection is enabled and an error is detected
this service shall return "0". |

[SWS_Icu_00403]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the Icu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Icu_Init has not been called. |

8.3.23 Icu_GetDutyCycleValues

[SWS_lIcu_00211] Definition of API function lcu_GetDutyCycleValues |

Service Name Icu_GetDutyCycleValues
Syntax void Icu_GetDutyCycleValues (

Icu_ChannelType Channel,

Icu_DutyCycleTypex DutyCycleValues

)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel | Numeric identifier of the ICU channel
Parameters (inout) None
Parameters (out) DutyCycleValues Pointer to a buffer where the results (high time and period time)
shall be placed.
Return value None
Description This function reads the coherent active time and period time for the given ICU Channel.
Available via lcu.h
|

[SWS_lcu_00342] [The function Icu_GetDutyCycleValues shall be re-entrant. |

[SWS Icu_00084]
Upstream requirements: SRS _lcu_12436

[The function Tcu_GetDutyCycleValues shall read the coherent active time and
period time for the given ICU Channel, if it is configured in Measurement Mode "Signal
Measurement, Duty Cycle Values". |

[SWS_lcu_00137] [The function Icu_GetDutyCycleValues shall return "0"in case
no coherent active- and period time has been captured. |

Hint: See Figure 9.19, Letter "A" for more detalils.

AUTSSAR

[SWS_lcu_00343] [The function Icu_GetDutyCycleValues shall return "0"in case
the capturing of a requested high- and period time is ongoing and not finished (meant:
the function shall return "0" until the first valid value has been captured and the cap-
tured value shall be stored until a new value is captured). |

Hint: See Figure 9.19, Letter "B" for more details.

[SWS_Icu_00344] [The function Icu_GetDutyCycleValues shall return"0"in case
captured duty cycle values were already returned once by this service and this service
is called again. |

Hint: See Figure 9.19, Letter "D" for more details.

[SWS_Icu_00106]
Upstream requirements: SRS_BSW_00410, SRS_BSW_00171

[The function Icu_GetDutyCycleValues shall be pre compile time configurable by
the configuration parameter IcuGetDutyCycleValuesApi. |

[SWS_lcu_00345] [The function Icu_GetDutyCyclevValues shall be configurable
ON/OFF by the configuration parameter IcuGetDutyCycleValuesApi. |

[SWS_lIcu_00180] [If development error detection is enabled: the function Tcu_Get-
DutyCycleValues shall check the parameter Channel. If Channel is invalid (invalid
identifier or channel not configured for mode ICU_MODE_SIGNAL_MEASUREMENT,
Duty Cycle Values), the function Tcu_GetDutyCycleValues shall raise development
error ICU_E_PARAM_CHANNEL. |

[SWS_lIcu_00181] [If development error detection is enabled, the function Icu_Get-
DutyCycleValues shall check the parameter DutyCyclevalues. If DutyCycle-
Values is invalid, the function Tcu_GetDutyCycleValues shall raise development
error ICU_E_PARAM_POINTER.]

[SWS_Icu_00404]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00406

[If development error detection for the lcu module is enabled: This function shall raise
development error ICU_E_UNINIT when the function Tcu_Init has not been called. |

AUTSSAR

8.3.24 Icu_GetVersioninfo

[SWS_Icu_00212] Definition of API function Icu_GetVersioninfo |

Service Name

Icu_GetVersioninfo

Syntax void Icu_GetVersionInfo (
Std_VersionInfoTypex versioninfo

)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None

Description

This function returns the version information of this module.

Available via

Icu.h

]

[SWS_Icu_00356] [If development error detection for the lcu module is enabled: The
function Icu_GetVersionInfo shall check the parameter versioninfo for not being
NULL and shall raise the development error code ICU_E_PARAM_VINFO if the check

fails. |

8.3.25 Icu_DisableNotificationAsync

[SWS_Icu_91002] Definition of API function Icu_DisableNotificationAsync |

Service Name

Icu_DisableNotificationAsync

Syntax void Icu_DisableNotificationAsync (
Icu_ChannelType Channel
)
Service ID [hex] 0x18
Sync/Async Asynchronous
Reentrancy Reentrant (limited according to ICU050)
Parameters (in) Channel Numeric identifier of the ICU channel.
Parameters (inout) None
Parameters (out) None
Return value None

Description

This function disables the notification of a channel.

Available via

Icu.h

AUTSSAR

8.3.26 Icu_EnableNotificationAsync

[SWS_lIcu_91003] Definition of API function Icu_EnableNotificationAsync |

Service Name lcu_EnableNotificationAsync
Syntax void Icu_EnableNotificationAsync (
Icu_ChannelType Channel
)
Service ID [hex] 0x19
Sync/Async Asynchronous
Reentrancy Non Reentrant Reentrant (limited according to ICU050)
Parameters (in) Channel | Numeric identifier of the ICU channel.
Parameters (inout) None
Parameters (out) None
Return value None
Description This function enables the notification on the given channel.
Available via lcu.h

8.4 Callback notifications

Since the ICU is a driver module, it doesn’t provide any callback functions for lower
layer modules.

8.5 Scheduled functions

None.

8.6 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required, in order to fulfill the core func-
tionality of the module.

[SWS_lIcu_91001] Definition of mandatory interfaces required by module Icu |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

AUTSSAR

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfil an optional functionality
of the module.

[SWS_Icu_00213] Definition of optional interfaces requested by module lcu |

API Function Header File Description
Det_ReportError Det.h Service to report development errors.
EcuM_CheckWakeup EcuM.h This function can be called to check the given

wakeup sources. It will pass the argument to the
integrator function EcuM_CheckWakeupHook. It can
also be called by the ISR of a wakeup source to set
up the PLL and check other wakeup sources that
may be connected to the same interrupt.

EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.

]

The service EcuM_CheckWakeup will be called if all of the following are true:
* [SWS_Icu_00055]
Upstream requirements: SRS_SPAL_12069, SRS_BSW_00410
[The static configuration parameter IcuReportWakeupSource is set to "ON"|

- [SWS_Icu_00056]
Upstream requirements: SRS_SPAL_12069

[The module is in mode ICU_MODE_SLEEP |

* [SWS_Icu_00057]
Upstream requirements: SRS_SPAL_12069

[A wakeup event occurs on a wakeup capable ICU channel. |

[SWS_lcu_00228] [EcuM_CheckWakeup shall be called within the Interrupt Service
Routine servicing the ICU channel wakeup event on wakeup-capable channel. |

[SWS_lcu_00229] [The ISR’s, providing the wakeup events, shall be responsible for
resetting the interrupt flags if required by hardware. |

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kinds of inter-
faces are not fixed because they are configurable.

AUTSSAR

[SWS_Icu_00119]
Upstream requirements: SRS_SPAL_12129

[The ISRs shall reset the interrupt flags (if needed by hardware) and call the corre-
sponding notification functions. |
[SWS_Icu_00018]
Upstream requirements: SRS_SPAL_12056
[The Icu notification functions shall be configurable as function pointers within the ini-
tialization data structure (Icu_ConfigType).]
[SWS Icu 00187]
Upstream requirements: SRS _BSW_00359
[The Icu module’s notification functions shall have no parameters and no return value. |

[SWS_Icu_00214] Definition of configurable interface Icu_SignalNotifica-
tion_<Channel> [

Service Name lcu_SignalNotification_<Channel>
Syntax void Icu_SignalNotification_<Channel> (
void
)
Sync/Async Synchronous
Reentrancy Reentrancy of interface not relevant for this module. (in general it is in this case not reentrant).
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description According to the last call of lcu_EnableNotification, this notification function to be called if the
requested signal edge (rising / falling / both edges) occurs (once per edge).
Available via Icu_Externals.h
]

[SWS_lIcu_00348] [Re-entrancy of operation lcu_SignalNotification_<Channel> is not
relevant for this module (In general it is in this case not re-entrant). |

[SWS_Icu_00021]
Upstream requirements: SRS_SPAL_00157, SRS _Icu_12369

[According to the last call of Tcu_EnableNotification, the lcu module shall call
the notification function Icu_SignalNotification_<Channel> if the requested signal edge
(rising / falling / both edges) occurs (once per edge). |

[SWS_lcu_00044]

Upstream requirements: SRS_lcu_12305

[Only those edge notifications shall be provided, which are supported by hardware. |

AUTSSAR

[SWS_Icu_00042]
Upstream requirements: SRS_lcu_12305

[After a call of Icu_DisableNotification, the lcu module shall not call the notifi-
cation function Icu_SignalNotification_<Channel>. |

[SWS_lIcu_00215] Definition of configurable interface Icu_TimestampNotifica-
tion_<Channel>
Upstream requirements: SRS_lcu_12444

[
Service Name lcu_TimestampNotification_<Channel>
Syntax void Icu_TimestampNotification_<Channel> (
void
)
Sync/Async Synchronous
Reentrancy Reentrancy of interface not relevant for this module. (in general it is in this case not reentrant).
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This notification to be called if the number of requested timestamps (Notification interval > 0)
are acquired and if the notification has been enabled by the call of Icu_EnableNotification().
Available via lcu_Externals.h
]

[SWS_lcu_00349] [Re-entrancy of the Icu_TimestampNotification_<Channel> is not
relevant for this module (in general it is in this case not re-entrant). |

[SWS_Icu_00216] [The Icu module shall call the notification
Icu_TimestampNotification_<Channel> if the number of requested timestamps
(Notification interval > 0) are acquired and if the notification has been enabled by the
call of Icu_FEnableNotification.|

[SWS_lcu_00217] [After a call of Icu_DisableNotification the Icu module shall
NOT call the notification Icu_TimestampNotification_<Channel>. |

[SWS_lcu_00218] [The lcu module’s notification Icu_TimestampNotification_<Channel>
depends on pre-processor switch lcuTimestampApi. |

AUTSSAR

9 Sequence diagrams

9.1 lcu_Init

EcuM ICU Driver

| lcu_Int(ConfigPtr) |

H<_ ____________ ewm0____ _________ ﬂ

Module operates in ICU_MODE_NORMAL Iﬁ

|
|
|
|
|
Used HW is configured according to referenced |
configuration structure. |
|
|
|
|
|
1

a) All notifications are disabled.
b) All used interrupts are disabled.

Figure 9.1: Initialization of the ICU driver

9.2 Icu_Delnit

EcuM ICU Driver

| Icu_Delnit() !

H(return()

| Used HW is configured according to referenced |
' configuration structure. '

a) All nofifications are disabled.
b) All used interrupts are disabled.

Figure 9.2: De-Initialization of the ICU driver

9.3 Check Wakeup Events

Note: The Sequence charts for the ICU can be found in the ECU State Manager
specification [4].

AUTSSAR

9.4

Icu_SetMode

EcuM lcu User (e.g. SW-C) Icu Driver
T T T
| | |
| | lcu_Init(ConfigPtr) o !
t L
|
! t
_____________ bmm Um0
I
I I I
I I I
I I
ICU driver is initialized: | Module operates in Sleep mode |
a) Module operates in Mode ICU_MODE_NORMAL ! !
b) Notifications are disabled ! !
| lcu_EnableWakeup(Channel #2) |
cchanfelig/fnotiakeluplcanable No notification for Channel #1 is called because of sleep mode.
d) Channel #2, wake up capable | .
€) ICU_REPORT_WAKEUP_SOURCE = ON 5
T T lcu_SetActivationCondition(Channel #1, ICU_FALLING_EDGE) T
I
I
1 < e
I
: : Icu_SetActivationCondition(Channel #2, ICU_RISING_EDGE) :
I
I
| <----———————=—————————————"—"—"—"————-
I L L
| 1 Icu_EnableNotification(Channel #1) 1
I
|
1 g
I
| T lcu_EnableNotification(Channel #2) T
I
I
| <--—-——————— - ———————————
I n n
I I I
. T : : Icu_SignalNotification_Channel1(void) :
Falling edge notification "
(Channel#1 | || _______ o _____)
I
» . ! T lou_SignalNotification_Channel2(void) T
Rising edge notification I L L
I
1 Channel #2
e [oottt >
I a a
| I lcu_SetMode(ICU_MODE_SLEEP) I
T
I
I
_____________ g
I LJ
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
i Channel #1 I I
I I I
I I I
I I I
I I I
Wakeup event detected I Channel #2 : EcuM_CheckWakeup(Channel #2) |
I
I lcu_CheckWakeup(Channel #2)
i ! u
| | EcuM_SetWakeupEvent(Channel #2)
I
I
______________ FeuM_SetWakeupEvent(Channel #2) _ _ _ _ _ __ _______3
LJ I
I I
A 1 _lcu_CheckWakeup(Channel #2)_ _ _ _ _ _ __ ________]
I
|
| EcuM_CheckWakeup(Channel #2)
e ettt >
T 1 T
| | |
| Icu_SetMode(Mode:= ICU_MODE_NORMAL) |
T
|
| Icu_SetMode:
e d o lewseMeseg __________________|
LJ | LJ

Figure 9.3: Enabled notifications in SLEEP mode

AUTSSAR

EcuM ICU User (e.g. SW-C), Icu

Driver

Icu_Init(ConfigPtr)

ICU driver is initialized:

b) Notifications are disabled
¢) Channel #1, not wake up capable
d) Channel #2, wake up capable

a) Module operates in Mode ICU_MODE_NORMAL

e) |CU_REPORT WAKEUP_SOURCE = OFF

Falling edge notification

Rising edge notification

Rising edge notification

_____________ e —
|

| | |
| |
| |
| Icu input signal #1 and #2 are on low level. |
| |
| |
| Icu_EnableWakeup(Channel #2) >l

< -]

i T Icu_SetActivationCondition(Channel #1, T

| ICU_FALLING_EDGE) >

|

|

| e it

| L L

| | lcu_SetActivationCondition(Channel #2, _!_

: ICU_RISING_EDGE) >

| e e]

|

[T Icu_EnableNotification(Channel T

: ! #1) >k

|

| <---—-————"—"—-"—-"—-"—-"—-"—-""-"—-"—"—"—"—"—"—"—"——————

: T Icu_EnableNotification(Channel I

I #2) g

I <]

|

| T T

| | |

1 | < lcu_SignalNotification_Channel1 |

| M void

i Channel #1] (void)

- |lr------—-—-—-—-—-—-"—-""-""-"-"-"-"—-"—"—"—"—"—-—-=— >

|

| I< Icu_SignalNotification_Channel2 T

| (void)

i Channel #2 _|

1 I e >

| L L

| | |

. : Icu_SetMode(ICU_MODE_SLEEP) >
|
|
|

Channel #1 |

Channel #2 | |

Module operates in Sleep mode Iﬁ

No notification for Channel #1 is called because of sleep mode. Iﬁ

ICU_REPORT_WAKEUP_SOURCE == QFF

EcuM_CheckWakeup is not called because preprocessor switch Ij

Icu_SignalNotification_Channel2

e |

(void)

Figure 9.4: Disabled reporting of wakeup sources in SLEEP mode

AUTSSAR

EcuM ICU User

(e.g. SW-C) Icu Driver

ICU driver is initialized:
b) Notifications are disabled

d) Channel #2, wake up capable

a) Module operates in Mode ICU_ MODE_NORMAL

T
|
1 Icu_Init(ConfigPtr) |
T
|
|

c) Channel #1, not wake up capable

e) ICU_REPORT WAKEUP_SOURCE = ON

Falling edge notification

Rising edge notification

Valid wakeup event detected

»
H return()
|
| | |
| | |
| 1 lcu input signal #1 and #2 are on low level. 1
| |
| |
: Icu_EnableWakeup(Channel #2) :
Ry
T | Icu_SetActivationCondition(Channel #1, ICU_FALLING_EDGE) |
|
|
|
| <--————————— e ————————
|
| | lcu_SetActivationCondition(Channel #2, ICU_RISING_EDGE) |
|
|
I g
|
1 T Icu_EnableNotification(Channel #1) T
| 1 1
|
I e —
|
: ! lcu_EnableNotification(Channel #2) !
|
|
1 < _______________________________
| - -
| | |
: : Icu_SignalNotification_Channel1 (void) :
|
|
_______________________________ >
I Channel #1
: Icu_SignalNotification_Channel2(void) B
|
I mpcccce qwmwns N | e e e e e
i Channel #2 >
| T . o T
| | Icu_DisableNotification(Channel #2) |
|
|
| e e ey
| T T
| | lcu_SetMode(ICU_MODE_SLEEP) |
T
|
|
_____________ e]
| L
	Module operates in Sleep mode.
Channel #1	
: _L : No notification for Channel #1 is called because of sleep mode. :	
i Channel #2 [[
	EcuM_CheckWakeup(Channel#2)
T	
N Icu_CheckWakeup(Channel#2)	
i . g	m
: : EcuM_SetWakeupEvent(Channel#2)	
EcuM_SetWakeupEvent(Channel#2	
______________ JI____:____p___(_____)_______________>	
T	
	Icu_CheckWakeup(Channel#2)
_<_____________I_ ________________________________	
I	
EcuM_CheckWakeup(Channel#2) =	

No rising-edge-notification for Channel #2 is called because this notification was disabled. Iﬁ

L
|
|
|
|

L
|
|
|
|

Figure 9.5: Disabled edge notification in SLEEP mode

AUTSSAR

EcuM ICU User Icu Driver
I I I
| | |
| | lcu_Init(&configPtr) |
T
|
I t
____________ Ao ____wm0______ ____________
|
| | |
L | |
| lcu input signal #1 and #2 are on low level. |
ICU driver is initialized: | |
a) Module operates in Mode ICU_MODE_NORMAL | |
b) Notifications are disabled | lcu_EnableWakeup(Channel #2) >L
c) Channel #1, not wake up capable
d) Channel #2, wake up capable
e) |ICU_REPORT WAKEUP_SOURCE = ON = —m——m T o —— s — - — - —— = —
T lcu_SetActivationCondition(Channel #1, ICU_FALLING_EDGE) T
I w
|
| <--—-—-—-——-"—""—""—""—""—"—"—"—"—"—"—"—"—"—"—"—"—"—————
| L L]
: ! lcu_SetActivationCondition(Channel #2, ICU_RISING_EDGE) >_[_
|
R
| <<
: T lcu_EnableNotification(Channel #1) T
I >
| e — e
|
1 T T
| | lcu_EnableWakeup(Channel #2) »L
|
|
! ittt
I T T
| | |
. o | | Icu_SignalNotification_Channel1 (void) |
Falling edge notification | T
' Channel# ||| ______________________________. N
| L L
r		
cu_SetMode(ICU_MODE_SLEEP)		

Module operates in Sleep mode Iﬁ

Channel #1 |_

No notification for Channel #1 is called because of sleep mode. Iﬁ

Channel #2 | | EcuM_CheckWakeup(Channel#2)

Valid wakeup event detected T
|
! lcu_CheckWakeup(Channel#2)
t -T]
L |
| |
1< | EcuM_SetWakeupEvent(Channel#2)
|
: EcuM_SetWakeupEvent(Channel#2) >
|
T |
| | Icu_CheckWakeup(Channel#2)
_<_____________I _________________________________
|
|
| EcuM_CheckWakeup(Channel#2) >
______________ e e

No rising-edge-notification for Channel #2 is called because this notification was NOT enabled.

L
|
|
|
| |

Figure 9.6: Un-Enabled reporting of notifications in SLEEP mode

AUTSSAR

9.5

Icu_DisableWakeup

Ecu State ICU User ICU Driver
Manager
T T T
| | |
| lcu_Init(ConfigPtr) o !
ICU driver is initialized: L
a) Module operates in Mode ICU_MODE_NORMAL
b) Channel #1, wake up capable, default start edge = ICU_RISING_EDGE
c) Channel #2, wake up capable, default start edge = ICU_RISING_EDGE
d) Channel #1 nofification in wake-up = disabled
e) Channel #2 notification in wake-up = disabled retum()
f) ICUNOTIFY_WAKEUP_REASON=ON | e e
T I I
I I I
| | Icu input signal #1 and #2 are on low level. |
I I I
I I I
I I I
1 1 lcu_EnableWakeup(Channel #1) 1
I
I
| K- — e e —
I LJ -
| | lcu_EnableNotification(Channel |
! #1)
I
1 <
I
: : lcu_EnableNotification(Channel :
| #2)
O
| <
| T T
" . . | | lcu_DisableWakeup(Channel #1) I
Request for disableing the wake-up capability of ICU T
channel #1 is stored |
e ———————— — — B e e T
L] ! L
.) ’ : : lcu_SetMode(ICU_MODE_SLEEP) :
Wakeup capability of ICU channel #1 will be disabled. 1
I
e ———————— e - = A
L | L
I I I
: : Module operates in Sleep mode. :
I I I
I I I
I I I
1Channel #1 J_L ! because of disabled wakeup for Channel #1: !
! ! * no wakeup-notification is called and also !
: : *no rising edge notification is called :
I I I
I I I
1 Channel #2 1 I
I I I
I I I
! ! EcuM_CheckWakeup(WakeupSource !
Wake-up notification is called. L + — pW P) L
I
____________ L S
I
o o T I Icu_SignalNotification_Channel2
Rising edge notification I (void)
I
[e >
I
I

Figure 9.7: Disabling of wakeup-capabilities

AUTSSAR

9.6 Icu_EnableWakeup

Ecu State ICU User ICU Driver
Manager

lcu_Init(ConfigPtr) |

T
|
|
t L
|
':_ retum()
|
I I I
I I
|CU driver is initialized: | Icu input signal #1 and #2 are on low level. |
a) Module operates in Mode ICU_MODE_NORMAL : :
b) Channel #1, wake up capable, default start edge = ICU_RISING_EDGE | Icu_EnableNotification(Channel |
c) Channel #2, wake up capable, default start edge = ICU_RISING_EDGE #1)
d) Channel #1 notification in wake-up = disabled
€) Channel #2 notification in wake-up = disabled <———————m e mmm - ——
f) ICU_NOTIFY_WAKEUP_REASON = ON m m
I lcu_EnableNotification(Channel I
T #2)
I
l SK-———————— e mmmm - —— =
I - -
. . ! ! Icu_EnableWakeup(Channel #2) !
Request for enabling the wake-up capability of ICU L + L
channel #2 is stored :
S e e
nn I T
» . , 1 I lcu_SetMode(ICU_MODE_SLEEP) 1
Wakeup capability of ICU channel #1 will be disabled. T
I
e]
I
T | T
I I I
I I I
| | |
| | |
1 1 Module operates in Sleep mode. 1
I I I
I I I
I I I
I |_! I
'Channel #1 because of disabled wakeup for Channel #1: 1
I *no wakeup-notification is called and also I
| | *no rising edge notification is called |
I I I
I I
I I
e | Channel #2 —l !— EcuM_CheckWakeup(WakeupSource) |
Wake-up notification is called. <t]
I
——————————— T
= o | ! lcu_SignalNotification_Channel2
Rising edge notification | (void)
e >
I
I I I
: : After the previous valid wakeup, :
1 | | the driver works a certain time in mode ICU_MODE_NORMAL 1
I I I
I I I
- ! ! lcu_EnableWakeup(Channel #1) !
Re-enable the wake-up capability of Channel #1. t
I
e - ——————— — B e T T
L] ! L
I I I
! ! lcu_SetMode(ICU_MODE_SLEEP) !
I
e - ——————— — B e e T
L] ! L
I I I
I I I
I I I
I | I
! Channel #1 | !
EcuM_CheckWakeup(WakeupSource:
Wakeup notification is called. L | — P P) !
I
——————————— o s s s =
= P | lcu_SignalNotification_Channel1
Rising edge notification (void)
____________________________ >

Figure 9.8: Enabling of wakeup-capabilities

AUTSSAR

9.7 Ilcu_SetActivationCondition

EcuM ICU User lcu Driver
I I I
| | |
| | Icu_Init(ConfigPtr) |
T »_._
|
S [S
L
Icu_EnableNotification(Channel
ICU driver is initilized: ' #1) >4
Channel #1, wake up capable,
default start edge = ICU_BOTH_EDGES
T T
Channel #1 _ o '
= L Icu_SignalNotification_Channel1
Rising edge notification
N I e e >
. -
Falling edge notification
T
T T
: : Icu_SetActivationCondition(Channel #1, JI_
ICU_FALLING_EDGE) >
I <- - ——— - —
L -
Channel #1 _
. L | lcu_SignalNotification_Channel1 |
Falling edge notification ¢ (void) L
________________________________ >

Icu_SetActivationCondition(Channel #1,
ICU_RISING_EDGE)

CHannel #1

Rising edge notification

Figure 9.9: Setting up the activation condition for a channel

AUTSSAR

9.8 Icu_DisableNotification

Falling Edge Notification

Rising Edge Notification

Disables all notifications for

this channel

EcuM ICU User ICU Driver
ICU driver is initialized:
Channel #1, wake up capable,
' ' default start edge = ICU_BOTH_EDGES '
	; :
. lcu_Init(ConfigPtr) >l	
:_ return()	
I - T	
lcu_EnableNotification(Channel #1) >	

Channel #1

Channel #1 J_

Channel #1

-

No Notifications are called. Iﬁ

Figure 9.10: Disabling of the notification for a channel

AUTSSAR

9.9 Icu_EnableNotification

Falling Edge Notification

Rising Edge Notification

Rising Edge Notification

Falling Edge notification

EcuM ICU User . § . ICU Driver
Used HW is configured according to
referenced configuration structure.
All notifications are disabled.
I I I
| | |
| | Icu_Init(ConfigPtr) > |
t .
|
I retum
__________ e __ewmo_]
| L
| | |
| | Icu_SetActivationCondition(Channel, |
: ICU_BOTH_EDGES) P
|
| <---——-"-——-"—-"-"—-"—-"—-"—-"—-\ -\ -\ -\ -~ - - - -« -« —\—(— - ——— — -
| L L
| | e |
| \ Icu_EnableNotification >l
| (Channel)
: e — —m
| T T
| | |
| | |
l L l
| | Icu_SignalNotification_<Channel> |
I T (oid)
|
- |\ F-------""—"—"—"—"—" == === — = ————— = — = =
| L L
| | |
| | |
| | ’ o |
| 1 IcuTS|gnalNot|f|cat|on_<ChanneI> .
| (void)
e |
|
| T Icu_SetActivationCondition(Channel, T
: ICU_RISING_EDGE) >
| < ——m e m e —m— e — e ——————————
| T T
| | |
| | |
| | |
| | |
| | |
e :
| | f ot |
| 1 IcuTS|gnalNot|f|cat|on_<ChanneI> .
| (void)
| e >
|
: ! Icu_SetActivationCondition(Channel, JI_
| ICU_FALLING_EDGE) >
|
| <---——-"-——-"—-"-"—-"—-"—-"—-"—-\ -\ -\ -\ -~ - - - -« -« —\—(— - ——— — -
| L L
| | |
| | |
| 1 | |
| | Icu_SignalNotification_<Channel> |
! < (oid)
. >
|
|
|
|
|
|
|
|
|
|

—— o

Figure 9.11: Enabling of the edge-notification for a channel

——m A

AUTSSAR

Used HW is configured according to
referenced configuration structure.
All notifications are disabled.

Falling Edge Notification

Rising Edge Notification

EcuM ICU User ICU Driver
I I I
| | |
| | Icu_Init(ConfigPtr) |

t — S—
|
! return
________ e _fewm0_]
| L
I I _ - !
| lcu_SetActivationCondition(Channel, |
ICU_BOTH_EDGES) Ll
< __________________________________
: Icu_EnableNotification JI_
(Channel) -
e -]
L T
| |
| |
| |
| |
| lcu_SignalNotification_<Channel> |
rTe woid)
__________________________________ >
| T T
| |
| . e |
1 Icu__SlgnalNot|f|cat|0n_<ChanneI> |
(void)
__________________________________ >
L T
| | Icu_DisableNotification |
(Channel) B
< __________________________________

’_l

_‘

Re-enabling of the edge-
notification....

Falling Edge notification

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rising Edge Notification :
|
|
|
|
|
|
1

When disabled, the user will not be informed
about the 2 occured edges.

This notification is discarded and not made up again,
when the notification is re-enabled.

Icu_EnableNotification

(Channel)

lcu_SignalNotification_<Channel>

(void)

lcu_SignalNotification_<Channel>

(void)

Figure 9.12: Re-enabling of the notification for a channel

AUTSSAR

9.10 Icu_GetinputState

EcuM ICU User ICU Driver
ICU driver is initialized:

a) Module operates in Mode ICU_MODE_NORMAL
b) Notification function is configured as NULL-Pointer.

Icu_Init(ConfigPtr) |

I
|
|
i
_________ om0 ____
|
|
|
|
|
|
|
|

Icu input signal is on high level Iﬁ

Icu_SetActivationCondition(Channel,

|

|

|

|

|

|

|

| - ICU_FALLING_EDGE) -

|

FE—

| S e el

| L L
| | |
: : lcu_EnableNotification »JI_
| (Channel)

|

|

| < ————— - ————— === — = — = — == —]

| T T
| | |
| | |
I I |_'__|
| | No notification is called becalise of NULL-pointer
: : configuration. :
| | |
| | lcu_GetlnputState(Channel) .
|

l e relum(CU_ACTIVE) ___ _ ________

|

| T T
: : lcu_GetlnputState(Channel) >J|_
|

l e ____ewmioumol®) |
|

| T T
|

|

Figure 9.13: Polling of the channel status

9.11 Icu Timestamping

The following figure shall show the interactions between the different timestamp API-
services.

AUTSSAR

EcuM ICU User Application Buffe ICU Driver

:Hardware

I I
| |
| | lcu_Init(ConfigPtr) | |
T T
| |
| |

retumn()

a) all notifications are disabled.
b) all used interrupts are disabled. |
T Icu_SetActivationCondition(Channel #1,

|
|
|

1 ICU_FALLING_EDGE)—+ P

Interrupt()

I
I Iﬁ
I N . - .
ICU driver is initialized: | Icu input signal is on high level
I

Channel #1 | |

Interrupt()

|
|

Channel #1 | | | |
|

T
|

| |

| |

| <—-————-————————= T————————— ===

| L | L

| lcu_StartTimestamp(Channel #1, *BufferPtr, BufferSize, |

: NotifyInterval) : L

| |

| L

| nn | nn

| | | |

I I I t e T
| | | capture value

| | < ISR
| | | T

| | |

| | | |

| | | |

| | | |

| | | |

| | | |

: : T
| | | capture value

| | | <m—— === ISR
| | |

| | |

| | |

| | |

! ! ! capture value()

| | | o _ ZePie vaiiey) |

| | |< ISR
| | |

| | |

| | |

| | Icu_StopTimestamp(Channel #1)

| T >

| |

| L

| T | T

| | : : |

| | Icu_GetTimestamplndex(Channel #1) >l

| |

| e o ___ ewm(@® ___________

| L] | L]

|

|

Figure 9.14: Overview of the timestamping functionality of the ICU driver

The Timestamping in general is shown in the following figure:

AUTSSAR

OXFFFF

Timestamp
Timer

High

Input

Signal

A
-
2 N ~ N~ O
- -
mrm236958%
z f£98 o o ~ © <= o 3
5 wEgd o 4 o4 o o © @
4 9= - N ® < < 10
£
T
®
o
o —
o9°s 3z £ 3 £ 3 5 3
Sw.mvo.mvo.mvo.mqo
s = © 24 T 4 T 4
o
o

Ing overview

imestampi

T

Figure 9.15

AUTSSAR

9.12

Icu Edge Counting

EcuM

ICU User

Global buffer

T
|
Icu_Init(ConfigPtr)

ICU Driver

:Hardware

ICU driver is initialized:
a) all notifications are disabled.
b) all used interrupts are disabled.

return()

lcu_SetActivationCondition(Channel #1,

Counter hasn't
been reseted.

Icu input signal is on high level Iﬁ

ICU_RISING_EDGE)
I

|

|

|
L

___________________________|

count edge()

|

|

|

|
|<S----m-eo-
|

|

|

|

|

|

|

|

|

| count edge()
ST mmoTo o
|

|

|

|

|

| o« _ _ cOuntedge()
<

|

|

Yy
-1

Interrupt()

Channel #1 ||

Interrupt()

|
|

Channel #1 | | | |
|

ISR

ISR

IcufGetEdgelilumbers(ChanneI #1)

return(3)

- ——— _—————————— — —

|
Icu_GetEdgeNumbers(ChanneI #1)

1
return (3)

e ——— e e e - —

|
1
lcu_ResetEdgeCount(Channel #1)

L

lcu_GetEdgeNumbers(Channel #1)
T
|

return(0)

< ———— —————————— = —

Figure 9.16: Inquire the number of counted edges

- -0
o

Channel#1 [| []

AUTSSAR

9.13 Icu_GetTimeElapsed

EcuM ICU User ICU Driver

Icu_Init(ConfigPtr) !

return()

ICU driver is initialized.

Channel #1 has the following configuration:

a) Measurement Mode within driver configuration = SignalMeasurement
b) Signal Measurement Property = LowTime

Channel #1 |

—— 1 150 ticks re——

lcu_GetTimeElapsed(Channel #1)

Read the elapsed low time

return(150)

Signal on Channel #1 is still on low level Iﬁ

lcu_GetTimeElapsed(Channel #1)

Read again the elapsed low time

return(0)

Returns "0" because
a) the signal is still low-level and
b) there was no following rising

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
edge detected :
|
|
|
|
|

Figure 9.17: Inquire the elapsed level-time of a channel

AUTSSAR

EcuM

ICU User

Icu_Init(ConfigPtr)

ICU Driver

[—

started with a falling edge

Read the period time,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Read the period time, :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
started with a falling edge |
|

|

|

|

|

return()

S

ICU driver is initialized.

Channel #1 has the following configuration:

a) Measurement Mode within driver configuration = SignalMeasurement
b) Signal Measurement Property = PeriodTime

¢) Default Period Startedge = ICU_FALLING_EDGE

Channel #1

[I

—: 100 ticks ‘=

lcu_GetTimeElapsed(Channel #1)

return(100)

Channel #1 | | |

fe 210 ticks —»

Icu_GetTimeElapsed(Channel #1)

return(210)

Figure 9.18: Inquire the elapsed period time of a channel

The following example shows the exemplary behaviour before, while and after captur-

ing the "high" time of a signal.

The shown behaviour is also appropriate for the service Tcu_GetDutyCycleValues.

AUTSSAR

EcuM

ICU User

Icu_Init(ConfigPtr)

ICU Driver

ICU driver is initialized.
Channel #1 has the following

a) Measurement Mode within driver configuration = SignalMeasurement

configuration:

b) Signal Measurement Property = HighTime

$—

start

— ©

200 ticks

—

-

return()

lcu_GetTimeElapsed(Channel

#1)

return(0)

No valid "high time" has been captured

Icu_GetTimeElapsed(Channel

#1)
return(0)

No valid "high time" has been captured

lcu_GetTimeElapsed(Channel

#1)
return(200)

lcu_GetTimeElapsed(Channel

#1)
return(0)

No “new" high time has been captured

Figure 9.19: Inquire the elapsed high time of a channel

AUTSSAR

9.14 Icu_GetDutyCycleValues

EcuM

DCValueBuffer

ICU User

T
|
lcu_Init(ConfigPtr)

ICU Driver

Read the values needed
for duty cycle calculation
to an application buffer.

Read the values needed
for duty cycle calculation

T

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

to an application buffer. :
|
|
|
|
|
|
|
|
|

Icu_Init(ConfigPtr)

|
!
L]
!

ICU driver is initialized.

Channel #1 has the following configuration:

a) Measurement Mode within driver configuration = SignalMeasurement
b) Signal Measurement Property = DutyCycle

c) Default Period Start edge = ICU_RISING_EDGE

Channel #1 | | | |

—! 40

!

¢
— 110 ticks j=—

lcu_GetDutyCycleValues(Channel #1,

|
|
|
|
|
|
|
|
|
|
|
|
|
: DCValueBuffer_p)

write to buffer(ActiveTime =
40, PeriodTime = 110)

Chann

1#1 7] [LI

60 e i

YoX.

110 ticks -

Icu_GetDutyCycleValues(Channel #1,
DCValueBuffer_p)

I - N

< ________________________

write to buffer(ActiveTime =
50, PeriodTime = 110)

A
i

L
|
|
|
|
|

Figure 9.20: Measure the values needed for calculation of duty cycles

< ________________________

AUTSSAR

9.15 Icu_DisableNotificationAsync

Falling Edge Notification

Rising Edge Notification

Disables all notifications

for thischannel

EcuM ICU User ICU Driver
ICU driver is initialized:
Channel #1, wake up capable,
I I default start edge = ICU_BOTH_EDGES I
| | |
| | |
! ! lcu_Init(ConfigPtr) >J'_
|
:_ return()
|
| o T
| lcu_EnableNotification(Channel #1) >L

Figure 9.21: Async Disabling of the notification for a channel

Channel #1 |

Channel #1 |

Channel #1

No Notifications are called. Iﬁ

AUTSSAR

9.16 Icu_SignalNotification and Icu_GetIlnputState

lcu: lcu Hardware: ICU
Hardware

User: lcu User Used HW is configured

according to referenced
configuration structure.

| lcu_Init(ConfigPtr) |

lcu_Init()

e e e e
|

T
|
|
|
|
|
|
|
|
|
[T —
Icu input signal is on high level Iﬁ |
|
|
|
|
|
|
|
|
|

Icu_SetActivationCondition(Channel, JI_

Activation) >

lcu_SignalNotification_<Channel>

<____'() ____________________

Icu_EnableNotification |
(Channel) >

lcu_EnableNotification()

e ———— - e - —

Icu input signal turns to low Ieveﬁ

i
Channe:l #

|
Interrupt() !

}————{

Set Flag()
" ISR

11
lcu_SignalNotification_<Channel>

0

Icu_SignalNotification_Channel1

return from ISR()

e e e e e e e e D

lcu_GetlInputState(return, Channel) > |

check and
D reset Flag()
00
< lcu_GetlnputState=ICU_ACTIVE()

lcu_GetlInputState(return, Channel) >_L

Checkand
(reset) Flag

00

lcu_GetlnputState=ICU_IDLE
e — — — — — — b ___p_____:__(l ______

e -

| |
Figure 9.22: Cooperative usage of notification and polling mechanism

______________________.l

AUTSSAR

9.17 Icu_EnableNotificationAsync

EcuM ICU User . § . ICU Driver
Used HW is configured according to

referenced configuration structure.
All notifications are disabled.

L
|
|
|
|
|
|
|

I I
| |
| | Icu_Init(ConfigPtr) > |
t .
|
I retum
__________ A _____fewmo_____________________
| L
| | |
| | Icu_SetActivationCondition(Channel, ICU_BOTH_EDGES) > |
| .
|
|
| <---——-"-——-"—-"-"—-"—-"—-"—-"—-\ -\ -\ -\ -~ - - - -« -« —\—(— - ——— — -
| L L
| | e |
| | Icu_EnableNotificationAsync(Channel) >l
|
|
| L ettt it
| T T
| | |
| | |
: L :
: I | | Icu_SignalNotification_<Channel>(void) |
Falling Edge Notification —d
|
|
- |\ F-------""—"—"—"—"—" == === — = ————— = — = =
| L L
| | |
| | |
| | ; e : |
Icu_SignalNotification_<Channel>(void
Rising Edge Notification | - =9 = (void) 1
|
e
| =
| T Icu_SetActivationCondition(Channel, ICU_RISING_EDGE) >'r
| -
e
| <<
| T T
| | |
| | |
| | |
| | |
| | |
I |
| | |
Icu_SignalNotification_<Channel>(void
Rising Edge Notification : - =19 = (void) 1
| e >
|
: : Icu_SetActivationCondition(Channel, ICU_FALLING_EDGE) >JI_
|
|
| <---——-"-——-"—-"-"—-"—-"—-"—-"—-\ -\ -\ -\ -~ - - - -« -« —\—(— - ——— — -
| L L
| | |
| | |
| 1 | |
, L | | Icu_SignalNotification_<Channel>(void) |
Falling Edge notification | < = =
|
1 e >
|
|
|
|
|
|
|
|
|

—— o

|
Figure 9.23: Enabling of the edge-notification for a channel via asynchronous API

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
ICU.

Chapter 10.3 specifies published information of the module ICU.

10.1 How to read this chapter

For details refer to [5] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_lIcu_00384] [The Icu module shall reject configurations with partition mappings
which are not supported by the implementation. |

10.2.1 lcu

[ECUC_Icu_00357] Definition of EcucModuleDef Icu |

Module Name lcu

Description Configuration of the Icu (Input Capture Unit) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

IcuConfigSet 1 This container contains the configuration parameters and sub
containers of the AUTOSAR Icu module.

IcuGeneral 1 Configuration of general ICU parameters.

IcuOptionalApis 1 This container contains all configuration switches for configuring
optional API services of the ICU driver.

AUTSSAR

lcu: EcucModuleDef +container IcuGeneral:

upperMultiplicity = 1
lowerMultiplicity = 0

EcucParamConfContainerDef

+container IcuOptionalApis:
EcucParamConfContainerDef

+container| IcuConfigSet: EcucParamConfContainerDef

10.2.2 IcuGeneral

Figure 10.1: Icu

[ECUC_lcu_00026] Definition of EcucParamConfContainerDef IcuGeneral |

Container Name

IcuGeneral

Parent Container

Icu

Description

Configuration of general ICU parameters.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

IcuDevErrorDetect 1 [ECUC_Icu_00232]
IcuReportWakeupSource 1 [ECUC_Icu_00233]
IcuEcucPartitionRef 0..* [ECUC_Icu_00358]
IcuKernelEcucPartitionRef 0..1 [ECUC_Icu_00359]

| No Included Containers

]

[ECUC_lcu_00232] Definition of EcucBooleanParamDef IcuDevErrorDetect |

Parameter Name

IcuDevErrorDetect

Parent Container

IcuGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -
Post-build time -

Dependency

]

[ECUC_lcu_00233] Definition of EcucBooleanParamDef IcuReportWakeup
Source |

Parameter Name IcuReportWakeupSource

Parent Container IcuGeneral

Description Switch for enabling Wakeup source reporting. true: Report Wakeup source. false: Do
not report Wakeup source.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
[ECUC_Icu_00358] Definition of EcucReferenceDef IcuEcucPartitionRef |

Parameter Name IcuEcucPartitionRef

Parent Container lcuGeneral

Description Maps the ICU driver to zero or multiple ECUC partitions to make the driver API
available in the according partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Dependency

AUTSSAR

[ECUC_Icu_00359] Definition of EcucReferenceDef IcuKernelEcucPartitionRef |

Parameter Name IcuKernelEcucPartitionRef
Parent Container IlcuGeneral
Description Maps the ICU kernel to zero or one ECUC partitions to assign the driver kernel to a

certain core. The ECUC partition referenced is a subset of the ECUC partitions where
the ICU driver is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
lcu: EcucModuleDef IcuGeneral:
upperMultiplicity = 1 wm Ec%mef

lowerMultiplicity =0 | +container
defaultValue = false

+parameter| |cuReportWakeupSource:
t EcucBooleanParamDef

EcucPartition:
+destination| EcucParamConfContainerDef

lcuEcucPartitionRef:

+reference EcucReferenceDef

lowerMultiplicity = 0

lowerMultiplicity = 0 A
upperMultiplicity = *

upperMultiplicity = *

IcuKernelEcucPartitionRef:

EcucReferenceDef +destination

+reference

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.2: IcuGeneral

[SWS_Icu_CONSTR_00001] [The ECUC partitions referenced by IcuKernelEcucPar-
titionRef shall be a subset of the ECUC partitions referenced by IcuEcucPartitionRef. |

[SWS_lcu_CONSTR_00003] [If lcuEcucPartitionRef references one or more ECUC
partitions, lcuKernelEcucPartitionRef shall have a multiplicity of one and reference one
of these ECUC partitions as well. |

10.2.3 IcuOptionalApis

[ECUC_Icu_00114] Definition of EcucParamConfContainerDef IcuOptionalApis [

AUTSSAR

Container Name

IcuOptionalApis

Parent Container

Icu

Description

This container contains all configuration switches for configuring optional API services
of the ICU driver.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

IcuDelnitApi 1 [ECUC_Icu_00234]
IcuDisableWakeupApi 1 [ECUC_Icu_00235]
IcuEdgeCountApi 1 [ECUC_Icu_00124]
IcuEdgeDetectApi 1 [ECUC_Icu_00356]
IcuEnableWakeupApi 1 [ECUC_Icu_00236]
IlcuGetDutyCycleValuesApi 1 [ECUC_Icu_00237]
IcuGetlnputStateApi 1 [ECUC_Icu_00238]
IcuGetTimeElapsedApi 1 [ECUC_Icu_00239]
IcuGetVersionInfoApi 1 [ECUC_Icu_00240]
lcuSetModeApi 1 [ECUC_Icu_00241]
IcuSignalMeasurementApi 1 [ECUC_Icu_00242]
lcuTimestampApi 1 [ECUC_lcu_00123]
IcuWakeupFunctionalityApi 1 [ECUC_Icu_00355]

No Included Containers

]

[ECUC_lcu_00234] Definition of EcucBooleanParamDef IcuDelnitApi |

Parameter Name IcuDelnitApi

Parent Container IcuOptionalApis

Description Adds / removes the service Icu_Delnit() from the code. true: Icu_Delnit() can be used.
false: Icu_Delnit() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Icu_00235] Definition of EcucBooleanParamDef IcuDisableWakeupApi |

Parameter Name

IcuDisableWakeupApi

Parent Container

IcuOptionalApis

Description Adds / removes the service Icu_DisableWakeup() from the code. true: Icu_Disable
Wakeup() can be used. false: Icu_DisableWakeup() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Icu_00124] Definition of EcucBooleanParamDef IcuEdgeCountApi |

Parameter Name

IcuEdgeCountApi

Parent Container

IcuOptionalApis

Description

Adds / removes all services related to the edge counting functionality as listed below,
from the code: Icu_ResetEdgeCount(), Icu_EnableEdgeCount(), Icu_DisableEdge
Count(), lcu_GetEdgeNumbers(). true: The services listed above can be used. false:

The services listed above can not be used.

Multiplicity

1

Type

EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Icu_00356] Definition of EcucBooleanParamDef IcuEdgeDetectApi |

Parameter Name

IcuEdgeDetectApi

Parent Container

IcuOptionalApis

Description Adds / removes the services related to the edge detection functionality, from the code:
Icu_EnableEdgeDetection() and Icu_DisableEdgeDetection().
true: These services can be used. false: These services can not be used.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Icu_00236] Definition of EcucBooleanParamDef IcuEnableWakeupApi |

Parameter Name

IcuEnableWakeupApi

Parent Container

IcuOptionalApis

Description Adds / removes the service Icu_EnableWakeup() from the code. true: Icu_Enable
Wakeup() can be used. false: Icu_EnableWakeup() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC _Icu_00237] Definition of EcucBooleanParamDef IcuGetDutyCycleValues

Api |
Parameter Name IcuGetDutyCycleValuesApi
Parent Container IcuOptionalApis

Description Adds / removes the service Icu_GetDutyCycleValues() from the code. true: Icu_Get
DutyCycleValues() can be used. false: Icu_GetDutyCycleValues() can not be used.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

If IcuSignalMeasurementApi==false this switch shall also be set to false.

]

[ECUC_Icu_00238] Definition of EcucBooleanParamDef IcuGetlnputStateApi |

Parameter Name

lcuGetlnputStateApi

Parent Container

IcuOptionalApis

Description Adds / removes the service Icu_GetlnputState() from the code. true: lcu_Getlnput
State() can be used. false: Icu_GetlnputState() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Icu_00239] Definition of EcucBooleanParamDef IcuGetTimeElapsedApi [

Parameter Name

IcuGetTimeElapsedApi

Parent Container

IlcuOptionalApis

Description Adds / removes the service Icu_GetTimeElapsed() from the code. true: Icu_GetTime
Elapsed() can be used. false: Icu_GetTimeElapsed() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

If lcuSignalMeasurementApi==false this switch shall also be set to false.

]

[ECUC_Icu_00240] Definition of EcucBooleanParamDef IcuGetVersionIinfoApi |

Parameter Name

IcuGetVersionInfoApi

Parent Container

lcuOptionalApis

Description Adds / removes the service lcu_GetVersionlnfo() from the code. true: Icu_GetVersion
Info() can be used. false: Icu_GetVersionInfo() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Icu_00241] Definition of EcucBooleanParamDef IcuSetModeApi |

Parameter Name

lcuSetModeApi

Parent Container

IcuOptionalApis

Description Adds / removes the service Icu_SetMode() from the code. true: Icu_SetMode() can be
used. false: Icu_SetMode() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_lcu_00242] Definition of EcucBooleanParamDef IcuSignalMeasurement

Api |

Parameter Name

IcuSignalMeasurementApi

Parent Container

IlcuOptionalApis

Description Adds / removes the services Icu_StartSignalMeasurement() and Icu_StopSignal
Measurement() from the code. true: Icu_StartSignalMeasurement() and Icu_Stop
SignalMeasurement() can be used. false: lcu_StartSignalMeasurement() and Icu_Stop
SignalMeasurement() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Icu_00123] Definition of EcucBooleanParamDef IcuTimestampApi |

Parameter Name

lcuTimestampApi

Parent Container

IcuOptionalApis

Description Adds / removes all services related to the timestamping functionality as listed below
from the code: Icu_StartTimestamp(), Icu_StopTimestamp(), Icu_GetTimestamp
Index(). true: The services listed above can be used. false: The services listed above
can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_lcu_00355] Definition of EcucBooleanParamDef IcuWakeupFunctionality

Api |

Parameter Name

IcuWakeupFunctionalityApi

Parent Container lcuOptionalApis

Description Adds / removes the service lcu_CheckWakeup() from the code. true: lcu_Check
Wakeup() can be used. false: lcu_CheckWakeup() cannot be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time | -

Dependency

lcuGetlnputStateApi:

EcucBooleanParamDef

IcuSignalMeasurementApi:

EcucBooleanParamDef

IcuGetTimeElapsedApi:

EcucBooleanParamDef

IcuGetDutyCycleValuesApi:

EcucBooleanParamDef

lcuGetVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

IcuEdgeCountApi:

EcucBooleanParamDef

Icu: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

10.2.4 IcuChannel

[ECUC_Icu_00027] Definition of EcucParamConfContainerDef IcuChannel |

+container
+parameter . A
P IcuOptionalApis: +parameter
EcucParamConfContainerDef
+parameter +parameter
+parameter
+parameter
+parameter
+parameter
+parameter +parameter
+parameter +parameter
+parameter

IcuDelnitApi:
EcucBooleanParamDef

IcuSetModeApi:

EcucBooleanParamDef

IcuDisableWakeupApi:
EcucBooleanParamDef

IcuEnableWakeupApi:

EcucBooleanParamDef

lcuTimestampApi:
EcucBooleanParamDef

IcuWakeupFunctionalityApi:

EcucBooleanParamDef

IcuEdgeDetectApi:

Figure 10.3: IcuOptional Apis

EcucBooleanParamDef

Container Name

IcuChannel

Parent Container

IlcuConfigSet

Description

Configuration of an individual ICU channel.

Multiplicity

1*

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

IcuChannelld 1 [ECUC_Icu_00354]
IcuDefaultStartEdge 1 [ECUC_Icu_00222]
IcuMeasurementMode 1 [ECUC_Icu_00223]
IcuWakeupCapability 1 [ECUC_Icu_00224]
IcuChannelEcucPartitionRef 0..* [ECUC_Icu_00360]

Included Containers

Container Name Multiplicity Dependency

IcuSignalEdgeDetection 0..1 This container contains the configuration (parameters) in case

the measurement mode is "lcuSignalEdgeDetection"

IcuSignalMeasurement

0..1 This container contains the configuration (parameters) in case
the measurement mode is "lcuSignalMeasurement"

IcuTimestampMeasurement

0..1 This container contains the configuration (parameters) in case
the measurement mode is "lcuTimestamp"

IcuWakeup

0..1 This container contains the configuration (parameters) needed to
configure a wakeup capable channel

]

[ECUC_Ilcu_00354] Definition of EcuclntegerParamDef IcuChannelld |

Parameter Name

IcuChannelld

Parent Container

IcuChannel

Description Channel Id of the ICU channel. This value will be assigned to the symbolic name
derived of the IcuChannel container short name.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Icu_00222] Definition of EcucEnumerationParamDef IcuDefaultStartEdge

[

Parameter Name

IcuDefaultStartEdge

Parent Container

IcuChannel

Description Configures the default-activation-edge which shall be used for this channel if there was
no activation-edge configured by the call of service Icu_SetActivationCondition().
In case the Measurement Mode is "lcuSignalMeasurement" and the properties "Duty
Cycle" or "Period" are set, the edge configured here is used as Default Period Start
Edge.
Implementation Type: Icu_ActivationType

Multiplicity 1

Type EcucEnumerationParamDef

\Y%

AUTSSAR

A
Range ICU_BOTH_EDGES As default, both edges are used.
ICU_FALLING_EDGE As default, falling edge is the used.
ICU_RISING_EDGE As default, rising edge is the used.
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]

[ECUC Icu 00223] Definition of EcucEnumerationParamDef IcuMeasurement

Mode |
Parameter Name IcuMeasurementMode
Parent Container IcuChannel
Description Configures the measurement mode of this channel.
Implementation Type: Icu_MeasurementModeType
Multiplicity 1
Type EcucEnumerationParamDef
Range ICU_MODE_EDGE_COUNTER The channnel is used to count the edges which

are configured by the call of the service Icu_Set
ActivationCondition(). The following API services
support this mode:

* lcu_EnableEdgeCount()

* lcu_DisableEdgeCount|()
* lcu_GetEdgeNumbers()
* lcu_ResetEdgeCount()

This mode can only be configured if IcuEdge
VountApi is switched on.

ICU_MODE_SIGNAL_EDGE_ The channel is used for detecting the edges
DETECT which are configured by the call of the service
lcu_SetActivationCondition(). The following API
services support this mode:

* lcu_EnableNotification()

* lcu_DisableNotification()
* lcu_GetInputState()

ICU_MODE_SIGNAL_ The channel is used to measure different times
MEASUREMENT between various configurable edges. The
configuration of the period-start edges are done
by configuration and cannot be changed during
runtime. The following API services support this
mode:

* lcu_GetTimeElapsed()

* lcu_GetDutyCycleValues()
* lcu_GetInputState()

This mode can only be configured if at least one
of the following switches are set to "true":

* lcuGetDutyCycleValuesApi

* lcuGetTimeElapsedApi

AUTSSAR

A
ICU_MODE_TIMESTAMP The channel is used to capture timer values on
the edges which are configured by the call of the
service lcu_SetActivationCondition(). The
following API services support this mode:
* lcu_StartTimestamp()
* lcu_StopTimestamp()
* lcu_GetTimestamplIndex()
This mode can only be configured if IcuTime
StampApi is switched on.
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency The possible measurement modes are depending on the pre-processor switches,
which enable/disable optional API services.

]
[ECUC_Ilcu_00224] Definition of EcucBooleanParamDef IcuWakeupCapability |

Parameter Name IcuWakeupCapability

Parent Container IcuChannel

Description Information about the wakeup-capability of this channel. true: Channel is wakeup
capable. false: Channel is not wakeup capable.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC Icu_00360] Definition of EcucReferenceDef IcuChannelEcucPartitionRef
[

Parameter Name IcuChannelEcucPartitionRef
Parent Container IcuChannel
Description Maps an ICU channel to zero or multiple ECUC partitions to limit the access to this

channel. The ECUC partitions referenced are a subset of the ECUC partitions where
the ICU driver is mapped to.

Multiplicity 0..r
Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

AUTSSAR

Link time -
Post-build time -

Dependency

leu: EcucModuleDef +container lcuConfigSet: +parameter IcuMaxChannel:
—— EcucParamConfContainerDef —[@————— EcuclIntegerParamDef
upperMultiplicity = 1
lowerMultiplicity = 0 min =0
max = 65535

+subContainer

IcuChannelld:
leuChannel: EcuclntegerParamDef
EcucParamConfContainerDef | +parameter
IcuSignalEdgeDetection: G . —— - min =0
EcucParamConfContainerDef | *SubContainer upperMultiplicity = max = 65535
lowerMultiplicity = 1 symbolicNameValue = true
upperMultiplicity = 1
lowerMultiplicity = 0
+parameter IcuWakeupCapability:
EcucBooleanParamDef
IcuSignalMeasurement: .
EcucParamGonfContainerDef | *SUbContainer
upperMultiplicity = 1 lcuDefaultStartEdge: ""“e'a' ICU_RISING_EDGE:
lowerMultiplicity = 0 EcucEnumerationParamDef EcucEnumerationLiteral Def
lcuTimestampMeasurement:) *"“e'a' ICU_FALLING_EDGE:
EcucParamConfContainerDef |*SubContainer EcucEnumerationLiteral Def
upperMultiplicity = 1
lowerMultiplicity = 0 .
+parameter *""e'a' ICU_BOTH_EDGES:
EcucEnumerationLiteral Def
IcuChannelEcucPartitionRef: .
EcucReferenceDef + 'ce
<
lowerMultiplicity = 0 IcuWakeup:
upperMultiplicity = * +subContainer| g, cparamConfContainerDef
o upperMultiplicity = 1
+destination lowerMultiplicity = 0
EcucPartition:
EcucParamConfContainerDef +parameter
lowerMultiplicity = 0 IcuMeasurementMode: +literal
Multiolicity = * e ICU_MODE_SIGNAL_EDGE_DETECT:
upperMultiplicity = EcucEnumerationParamDef A n
EcucEnumerationLiteral Def

+literal | 61 MODE_SIGNAL_MEASUREMENT:
EcucEnumerationLiteral Def
Hiteral ICU_MODE_TIMESTAMP:
EcucEnumerationLiteral Def
+literal

ICU_MODE_EDGE_COUNTER:
EcucEnumerationLiteral Def

Figure 10.4: IcuChannel

[SWS_lcu_CONSTR_00002] [The ECUC partitions referenced by IcuChannelEcuc-
PartitionRef shall be a subset of the ECUC partitions referenced by IcuEcucPartition-
Ref. |

[SWS_lcu_CONSTR_00004] [If IcuEcucPartitionRef references one or more ECUC
partitions, lcuChannelEcucPartitionRef shall have a multiplicity of greater than one and
reference one or several of these ECUC partitions as well. |

AUTSSAR

10.2.5 IcuSignalEdgeDetection

[ECUC_Icu_00219] Definition of EcucParamConfContainerDef IcuConfigSet |

Container Name

lcuConfigSet

Parent Container

Icu

Description

This container contains the configuration parameters and sub containers of the

AUTOSAR Icu module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
IcuMaxChannel 1 [ECUC_Icu_00220]
Included Containers

Container Name Multiplicity Dependency

IcuChannel 1.* Configuration of an individual ICU channel.

]

[ECUC_Icu_00220] Definition of EcucintegerParamDef IcuMaxChannel |

Parameter Name

IcuMaxChannel

Parent Container

IcuConfigSet

Description This parameter contains the number of Channels configured. It will be gathered by
tools during the configuration stage. calculationFormula = Number of configured Icu
Channels
Implementation Type: Icu_ChannelType

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Icu_00126] Definition of EcucParamConfContainerDef IcuWakeup [

Container Name

IcuWakeup

Parent Container

IcuChannel

Description This container contains the configuration (parameters) needed to configure a wakeup
capable channel
Multiplicity 0..1

Configuration Parameters

AUTSSAR

Included Parameters
Parameter Name Multiplicity ECUC ID

IcuChannelWakeuplnfo 0..1 [ECUC_Icu_00231]

| No Included Containers

]
[ECUC_lcu_00231] Definition of EcucReferenceDef IcuChannelWakeuplinfo |

Parameter Name IcuChannelWakeuplnfo
Parent Container lcuWakeup
Description If the wakeup-capability is true the wakeup source referenced is transmitted to the ECU

State Manager (EcuM) .
Implementation Type: reference to EcuM_WakeupSourceType

Multiplicity 0..1
Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency IcuWakeupCapability and IcuReportWakeupSource

]

[ECUC_Icu_00228] Definition of EcucParamConfContainerDef IcuTimestamp
Measurement |

Container Name IcuTimestampMeasurement

Parent Container IcuChannel

Description This container contains the configuration (parameters) in case the measurement mode
is "lcuTimestamp"

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
lcuTimestampMeasurementProperty 1 [ECUC_Icu_00229]
IcuTimestampNotification 0..1 [ECUC_Icu_00230]

No Included Containers

AUTSSAR

[ECUC_lcu_00229] Definition of EcucEnumerationParamDef IcuTimestampMea-

surementProperty [

Parameter Name

IcuTimestampMeasurementProperty

Parent Container

IcuTimestampMeasurement

Description Configures the handling of the buffer in case the mode is "Timestamp"
Implementation Type: Icu_TimestampBufferType

Multiplicity 1

Type EcucEnumerationParamDef

Range ICU_CIRCULAR_BUFFER After reaching the end of the buffer, the driver

restarts at the beginning of the buffer

ICU_LINEAR_BUFFER The buffer will just be filled once

Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency IcuMeasurementMode

]

[ECUC_Icu_00230] Definition of EcucFunctionNameDef IcuTimestampNotifica-

tion [

Parameter Name

IcuTimestampNotification

Parent Container

lcuTimestampMeasurement

Description Notification function if the number of requested timestamps (Notification interval > 0)
are acquired.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

lcuTimestampApi

]

[ECUC_Icu_00226]
surement [

Definition of EcucParamConfContainerDef IcuSignalMea-

Container Name

IcuSignalMeasurement

Parent Container

IcuChannel

Description

This container contains the configuration (parameters) in case the measurement mode
is "lcuSignalMeasurement"

\Y%

AUTSSAR

A
Multiplicity 0..1
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID

IcuSignalMeasurementProperty

1

[ECUC_lcu_00227]

| No Included Containers

]

[ECUC_lcu_00227] Definition of EcucEnumerationParamDef IcuSignalMeasure-

mentProperty |

Parameter Name

IcuSignalMeasurementProperty

Parent Container

IcuSignalMeasurement

Description Configures the property that could be measured in case the mode is "IcuSignal
Measurement". This property can not be changed during runtime.
Implementation Type: Icu_SignalMeasurementProperty Type

Multiplicity 1

Type EcucEnumerationParamDef

Range ICU_DUTY_CYCLE The channel is configured to read values which

are needed for calculating the duty cycle
(coherent Active and Period Time).

ICU_HIGH_TIME The channel is configured for reading the
elapsed Signal High Time
ICU_LOW_TIME The channel is configured for reading the

elapsed Signal Low Time

ICU_PERIOD_TIME

The channel is configured for reading the
elapsed Signal Period Time

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

IcuMeasurementMode, IcuGetDutyCycleValuesApi, IcuGetTimeElapsedApi

]

[ECUC_Icu_00021] Definition of EcucParamConfContainerDef IcuSignalEdgeDe-

tection |
Container Name IcuSignalEdgeDetection
Parent Container IcuChannel

Description This container contains the configuration (parameters) in case the measurement mode
is "lcuSignalEdgeDetection"
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

IcuSignalNotification

0..1

[ECUC_lcu_00225]

AUTSSAR

| No Included Containers

J
[ECUC_Icu_00225] Definition of EcucFunctionNameDef IcuSignalNotification |

Parameter Name

IcuSignalNotification

Parent Container IcuSignalEdgeDetection

Description Notification function for signal notification.
Multiplicity 0..1

Type EcucFunctionNameDef

Default value

Regular Expression

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency IcuMeasurementMode

10.3 Published Information

[SWS_Icu_00131]
Upstream requirements: SRS_BSW_00384

[The ICU driver shall describe which other modules (in which versions) are required.
This description shall be done by the implementer. |

AUTSSAR

A Not applicable requirements

[SWS_Icu_NA_00999]

Upstream requirements: SRS_BSW_00300, SRS_BSW_00301, SRS_BSW_00302, SRS_BSW _
00304, SRS_BSW_00305, SRS_BSW_00306, SRS_BSW_00307,
SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00310, SRS_BSW_
00312, SRS_BSW_00314, SRS_BSW_00318, SRS_BSW_00321,
SRS_BSW_00325, SRS_BSW_00327, SRS_BSW_00328, SRS_BSW_
00330, SRS_BSW_00331, SRS_BSW_00333, SRS_BSW_00335,
SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00347, SRS_BSW_
00348, SRS_BSW_00350, SRS_BSW_00353, SRS_BSW_00357,
SRS_BSW_00358, SRS_BSW_00360, SRS_BSW_00373, SRS_BSW_
00377, SRS_BSW_00378, SRS_BSW_00379, SRS_BSW_00383,
SRS_BSW_00395, SRS_BSW_00397, SRS_BSW_00398, SRS_BSW_
00399, SRS_BSW_00400, SRS_BSW_00408, SRS_BSW_00409,
SRS_BSW_00413, SRS_BSW_00414, SRS_BSW_00005, SRS_BSW_
00006, SRS_BSW_00007, SRS_BSW_00009, SRS_BSW_00010,
SRS_BSW_00160, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_
00164, SRS_BSW_00167, SRS_BSW_00168, SRS_BSW_00170,
SRS BSW_00171, SRS _BSW_00172, SRS _BSW _00415, SRS_BSW _
00416, SRS_BSW_00417, SRS_BSW_00422, SRS_BSW_00423,
SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_
00427, SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00432,
SRS_BSW_00433, SRS_BSW_00437, SRS_BSW_00439, SRS_BSW_
00440, SRS _BSW _ 00441, SRS _SPAL 12068, SRS_SPAL 12077,
SRS _SPAL 12092, SRS_SPAL_12265, SRS_SPAL_12463, SRS _
BSW_00450

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Module DET (Default Error Tracer)
	5.2 Module MCU
	5.3 OS (Operating System)
	5.4 Module PORT
	5.5 Module EcuM

	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.3 Time Unit Ticks
	7.1.3.1 Background & Rationale
	7.1.3.2 Requirements

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Icu_ModeType
	8.2.2 Icu_ChannelType
	8.2.3 Icu_InputStateType
	8.2.4 Icu_ConfigType
	8.2.5 Icu_ActivationType
	8.2.6 Icu_ValueType
	8.2.7 Icu_DutyCycleType
	8.2.8 Icu_IndexType
	8.2.9 Icu_EdgeNumberType
	8.2.10 Icu_MeasurementModeType
	8.2.11 Icu_SignalMeasurementPropertyType
	8.2.12 Icu_TimestampBufferType

	8.3 Function definitions
	8.3.1 Icu_Init
	8.3.2 Icu_DeInit
	8.3.3 Icu_SetMode
	8.3.4 Icu_DisableWakeup
	8.3.5 Icu_EnableWakeup
	8.3.6 Icu_CheckWakeup
	8.3.7 Icu_SetActivationCondition
	8.3.8 Icu_DisableNotification
	8.3.9 Icu_EnableNotification
	8.3.10 Icu_GetInputState
	8.3.11 Icu_StartTimestamp
	8.3.12 Icu_StopTimestamp
	8.3.13 Icu_GetTimestampIndex
	8.3.14 Icu_ResetEdgeCount
	8.3.15 Icu_EnableEdgeCount
	8.3.16 Icu_EnableEdgeDetection
	8.3.17 Icu_DisableEdgeDetection
	8.3.18 Icu_DisableEdgeCount
	8.3.19 Icu_GetEdgeNumbers
	8.3.20 Icu_StartSignalMeasurement
	8.3.21 Icu_StopSignalMeasurement
	8.3.22 Icu_GetTimeElapsed
	8.3.23 Icu_GetDutyCycleValues
	8.3.24 Icu_GetVersionInfo
	8.3.25 Icu_DisableNotificationAsync
	8.3.26 Icu_EnableNotificationAsync

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Icu_Init
	9.2 Icu_DeInit
	9.3 Check Wakeup Events
	9.4 Icu_SetMode
	9.5 Icu_DisableWakeup
	9.6 Icu_EnableWakeup
	9.7 Icu_SetActivationCondition
	9.8 Icu_DisableNotification
	9.9 Icu_EnableNotification
	9.10 Icu_GetInputState
	9.11 Icu Timestamping
	9.12 Icu Edge Counting
	9.13 Icu_GetTimeElapsed
	9.14 Icu_GetDutyCycleValues
	9.15 Icu_DisableNotificationAsync
	9.16 Icu_SignalNotification and Icu_GetInputState
	9.17 Icu_EnableNotificationAsync

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Icu
	10.2.2 IcuGeneral
	10.2.3 IcuOptionalApis
	10.2.4 IcuChannel
	10.2.5 IcuSignalEdgeDetection

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

