AUTSSAR

Specification of Hardware Test

Document Title | Manager on start up and
shutdown

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 703

Document Status obsolete

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release Marked the document as obsolete
Management
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
AUTOSAR
2023-11-23 R23-11 Release * No content changes
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
AUTOSAR
2021-11-25 | R21-11 Release * No content changes
Management
AUTOSAR » Chapter 7.3.1 generated from BSW UML
2020-11-30 | R20-11 | Release model
Management « Chapter 7.1 structure updated
» Chapter 8 generated from BSW UML
2019-11-28 | R19-11 Release
Management » Changed Document Status from Final to
published
AUTOSAR
2018-10-31 440 Release * Headerfile cleanup

Management

AUTSSAR

2016-11-30

4.3.0

AUTOSAR
Release
Management

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of

Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standards and norms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations

4.2 Applicability to cardomains L.

5 Dependencies to other modules
51 EcuM e

5.2 Appl
5.3 RTE

ication SWC

5.4 Dependencies withMSTP
55 MCU e
5.6 Default Error Tracer (Det) o o
57 Filestructure e

5.7.1

Code file structure

6 Requirements Tracing

7 Functional specification

7.1 Generalbehavior
7.2 Hardware Test Management

7.21
7.2.2
7.2.3

Background & Rationale L.
Requirements
States of HTMSS module

7.3 Error Classification

7.3.1
7.3.2
7.3.3
7.3.4

DevelopmentErrors oo
Runtime Errors
ProductionErrors
Extended ProductionErrors oL

7.4 Security Events

8 API specification

8.1 Importedtypes
8.2 Typedefinitions

8.2.1
8.2.2
8.2.3
8.2.4

HTMSS_ TestCfgType i .
HTMSS TestStatusType
HTMSS_TestGroupType i
HTMSS_TestResultType o o ..

10

10
10

11

11
11

12

12
12
12
12
13
13
13
13

14

AUTSSAR

8.3 Functiondefinitions 21
8.3.1 HTMSS Init. 21
8.3.2 HTMSS StartTest e 23
8.3.3 HTMSS GetTestStatus 24
8.3.4 HTMSS GetVersioninfo 26

8.4 Callback notifications 26

8.5 Scheduled functions 26

8.6 Expectedinterfaces 26
8.6.1 Mandatory Interfaces 27
8.6.2 Optional Interfaces 27
8.6.3 Configurable interfaces 27

8.7 Servicelnterfaceso 27
8.7.1 Client server interface - GetTestStatus 27

8.8 Callout Definitions 28
8.8.1 HTMSS_StartupTestErrorHook 29
8.8.2 HTMSS_ ShutdownTestErrorHook 29

9 Sequence diagrams 31

9.1 Sequence diagram example of HTMSS Initialization 31

9.2 Sequence diagram example of startup test execution 32

9.3 Sequence diagram example of shutdown test execution. 33

9.4 Sequence diagram example handling the last shutdown test results

immediately after the ECU reset raised by MSTP module 34

9.5 Sequence diagram example of collecting the shutdown testresults . . . 35

9.6 Sequence diagram example of ECU shutdown when HTMSS is inte-

grated inthe system 36
9.7 Sequence diagram example of application SWC collecting the test results 37
10 Configuration specification 38

10.1Containers and configuration parameters 38
10.1.1HTMSS e 38
10.1.2HTMSSGeneral 39
10.1.3HTMSSConfigSet L 40

10.2Published Information. 41

A Not applicable requirements 42

B Change history of AUTOSAR traceable items 43
B.1 Traceable item history of this document according to AUTOSAR Release

R24-25 e 43

B.1.1 Added Specification ltemsin R25-11 43

B.1.2 Changed Specification ltemsin R25-11 43

B.1.3 Deleted Specification ltemsin R25-11 43

AUTSSAR

1 Introduction and functional overview

This specification describes the concept, interfaces and the configuration of the module
Hardware Test Management start up and shutdown (HTMSS).

The module HTMSS [1] is a basic software module at the service layer of the standard-
ized basic software architecture of AUTOSAR.

The HTMSS [1] module shall provide the test status/results for the application SWC
usages.

The purpose of this module is to provide an infrastructure for integrating/transforming
the microcontroller manufacturer specific start up and shutdown tests (e.g. BIST) test
results/status within the AUTOSAR standard software platform.

The basic functionalities of this module includes collecting the test results/status from
the MSTP, configure MSTP tests, start tests execution, provide the MSTP test status to
EcuM module and application SWC to evaluate the test results for the system behavior.

The HTMSS [1] module integrates on the level of the AUTOSAR BSW service layer.
Below figure shows the functional integration of the HTMSS [1] module in AUTOSAR
software platform.

power on reset _—
_______________ . Application
SW-C

HC firmware/boot strap ‘

BSWservice layer Select shutdown target for
shutdown tests execution

MC specific BIST execution
(automatic on every POR)

Get HTMSS test results

Microcontroller
Specific Test Package *HTMSS Init, configure htmss tests
* HTMSS start test

*HTMSS Get test result.

A

|
|
|
I 1
| 1
I 1
| :
1 EcuM <« BswM 1
| |
! :
| 1
| |
I 1
|
|

< HTMSS
MSTPWrapper |- - - e e e e e e e e e = = — >
ST LT L LT 1-->
« Configure tests
! -Start tests MCU
| *Get test results Mcu_GetResetReason
|
| Hardware
|
Non-AUTOSAR Environment | AUTOSAR SW Platform

Figure 1.1: HTMSS interaction overview

Note: MSTP wrapper is an intermediate module for accessing the MSTP module from
an AR standardized module HTMSS. The MSTP wrapper can be implemented manu-
ally or can be generated/configured using AUTOSAR methodology/process.

The HTMSS module pre-integration requirements are:

AUTSSAR

+ It shall be possible to run Microcontroller Specific Test Package (MSTP) startup
and shutdown tests on the device under development

* The test results/status are available to the HTMSS module access

+ It shall be possible to configure the MSTP start up and shutdown tests via HTMSS
module

The role of HTMSS module in different phases of the standard AUTOSAR software
execution platform is depicted below.

Note: The HTMSS concept may be considered for integration in AUTOSAR architec-
ture to achieve safety goals for a safety relevant ECU, but it is NOT mandatory always.

ECU Startup ECU Runtime ECU Shutdown
Phase 3: Phase 4:
Phase 1: Phase 2: .
Before AUTOSAR OS AUTOSAR Initialization | AUTOSAR Executing | AUTOSAR
Safety Function Shutdown

Safe State ensured via System Design

i
1
: i

l_ ucC _| Bootstrap + AUTOSAR +|_ AUTOSAR + \ AUTOSAR _“_ AUTOSAR 'ID
Firmware Code HW/SW Initialization SW-C Initialization Safety Function Shutdown
i i =
]
1| *HW-BIST *HW Initialization «Start of OS 1| SW-Components *SW-Deinit !
1| *HW-Reset *Driver Initialization *System Services 1! in control of *HW-Deinit H
1| sLow-Level Initialization *SW Initialization *Software Components ||| Safety Functions H
I i 1
b e e e —————————— I — Y I

Not AUTOSAR

\ HTMSS role AUTOSAR

Figure 1.2: HTMSS phases overview

Note: The HTMSS phases described below are for explaining the functionalities of
HTMSS module in a typical AUTOSAR ECU software execution environment. These
phases shall NOT be referred to the phases defined in EcuM [2].

HTMSS Phase 1 Before AUTOSAR OS [3] - This phase is delimited by the MCU reset
to the call to StartOS() function. During this state there a wide range of possibil-
ities for execution of various types of tests. The MCU periphery and AUTOSAR
is not initialized at first, this provides potential opportunity for executing destruc-
tive tests, MCU built-in tests, fault injection tests etc. That phase is also used to
evaluate the results obtained by tests during shutdown phase, through the reset
logic.

During AUTOSAR HW/SW lInitialization by EcuM_Init(), it is possible to execute
further diagnostic tests within the AUTOSAR context. Rather non-destructive
tests can be executed within EcuM [2].

The HTMSS will be fully available at the end of Phase 2, since it requires integral
parts of AUTOSAR to be executed as a System Service.

AUTSSAR

HTMSS Phase 2 AUTOSAR OS and SW-C initialization - the phase is delimited by
the start of AUTOSAR OS [3] using the function call StartOS() until the complete
AUTOSAR is initialized including application software components.

During this phase, the diagnostic test results can be provided by HTMSS and
consumed by Safety SW-C for further decisions.

HTMSS Phase 3 AUTOSAR executing safety function - During this phase, the system
has started the intended functionality and safety function is part of it. The phase
is suitable for monitoring mechanisms accommodation as well as some built-in
diagnostic mechanisms, which could be single or latent fault contributors - ECC
fault detection mechanisms, ADC operational capabilities etc. The HTMSS con-
cept does not support Runtime Tests yet (which is a different set of tests), there-
fore HTMSS can only provide test results from the previously executed Startup
and Shutdown tests during Phase 3.

HTMSS Phase 4 AUTOSAR shutdown. This phase offers a possibility to execute
tests, which are not preferable to be executed at any other phase (for example the
execution time is too long) and which are able to communicate their results over
an MCU reset. The results can be evaluated during a subsequent MCU startup.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the HWTestMan-
ager module that are not included in the [4, AUTOSAR glossary].

Abbreviation / Acronym: Description:

ADC Analog to Digital converter

BIST Built In Self Test

BSW Basic Software

DET Default error tracer

ECU Electronic Control Unit

ECUM Electronic Control Unit Manager
HTMSS Hardware Test Management startup shutdown
MCU Micro Controller Unit

MSTP Microcontroller Specific Test Package
RTE Run Time Environment

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Specification of Hardware Test Manager on start up and shutdown
AUTOSAR_CP_SWS_HWTestManager

[2] Specification of ECU State Manager
AUTOSAR_CP_SWS_ ECUStateManager

[3] Specification of Operating System
AUTOSAR_CP_SWS_0OS

[4] Glossary
AUTOSAR_FO_TR_Glossary

[5] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[6] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[7] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [5, SWS BSW
General], which is also valid for HWTestManager.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for HWTestManager.

AUTSSAR

4 Constraints and assumptions

This document is applicable for AUTOSAR release 4.3.0

4.1 Limitations

The use of this module is optional and only in case where the provided functionality is
required.

To integrate needed range of testing capabilities for specific solution, it has required
that all affected modules need to implement interfaces with HTMSS.

Example: The MSTP (microcontroller specific test package) module from the semi
manufacturer is a mandatory module for integrating the HTMSS module in AUTOSAR
software platform

The start up/shutdown test configurations are up to the system integrator and based
on the MSTP test configuration capabilities and features.

The module HTMSS shall interact with the assumed test module (MSTP) via a wrapper
implementation (in this spec named as MSTP wrapper) using AR methodology/pro-
cess.

The test results storage in NV memory and DEM error reporting requirements are out of
scope from HTMSS module. Integrator shall manage these requirements at respective
application SWC level, if needed.

4.2 Applicability to car domains

Each ECU is designed to provide predefined functionality in the context of given system
architecture. Then it is of great importance that this ECU operates without failures,
which in turn can be avoided or detected before they appear, by simple monitoring of
expected faults. One strategy to check the operability of ECU is to execute destructive
tests (during start up and shutdown of ECU) that check the given logic and conditions,
and keep the results for further analysis. The HTMSS module depicts the need to
address results from such tests on ECU, and to provide their status on request.

AUTSSAR

5 Dependencies to other modules

The HTMSS has interfaces to some BSW Modules [5] and application SWC in the
AUTOSAR architecture [6]. Additionally HTMSS has interfaces with Microcontroller
Specific Test Package (MSTP) outside the AUTOSAR architecture. However, the inter-
actions with MSTP are implementation specific.

5.1 EcuM

The ECU State Manager [2] shall access the HTMSS services to start the tests, and
collect test results/status from the device under test.

The ECUM STARTUP phase and SHUTDOWN phase incorporates the main function-
alities of HTMSS module in AUTOSAR software platform.

5.2 Application SWC

The application software component shall collect the HTMSS test results (via RTE [7])
for evaluations and then to determine the software behavior. Additionally, if needed the
test results shall be stored in the non-volatile memory for later use.

5.3 RTE

Through the RTE [7] data exchange the test result/status are shared between the
HTMSS module and the application software layer.

5.4 Dependencies with MSTP

The HTMSS [1] may access the MSTP module (could be a non-AR software module,
being synchronous and/or asynchronous) to manage the below functionalities/ features
within the AUTOSAR software platform.

+ To configure the start up and shutdown tests configured in the HTMSS module
* To trigger the MSTP tests during the ECUM start up and shutdown phases
+ To collect the test results and provide to application software for its usage

Note: HTMSS module shall interact with MSTP module through wrapper module/-
source code (named in this spec MSTP wrapper) configurated/generated using AU-
TOSAR methodology and process.

AUTSSAR

5.5 MCU

The HTMSS receives the reset reason from the MCU driver (e.g. reset caused by
shutdown tests execution)

5.6 Default Error Tracer (Det)

If the DET is enabled, the HTMSS module informs the Default error tracer about the
detected development errors.

5.7 File structure

5.7.1 Code file structure

[SWS_HTMSS_00001]
Upstream requirements: SRS_BSW_00346

[The code file structure shall contain one or more source files HTMSS_<xxx>.c, which
contains the entire parts of the HTMSS code. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [5] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_HTMSS_00016]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_HTMSS_00012]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_HTMSS_00038]

[SRS_BSW_00337]

Classification of development errors

[SWS_HTMSS_00011]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_HTMSS_00006] [SWS_HTMSS_00016]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a basic
set of module files

[SWS_HTMSS_00001]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_HTMSS_00040]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_HTMSS_00029] [SWS_HTMSS_00037]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_HTMSS_00015]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_HTMSS_00039]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_HTMSS_00024]

[SRS_HTMSS_00001]

The HTMSS shall allow configuration
of start up and shutdown tests

[SWS_HTMSS_00014] [SWS_HTMSS_00017]
[SWS_HTMSS_00018] [SWS_HTMSS_00023]
[SWS_HTMSS_91006] [SWS_HTMSS_91007]
[SWS_HTMSS_91008] [SWS_HTMSS_91009]

[SRS_HTMSS_00002]

The HTMSS shall allow the
configuration of tests at individual
hardware resource level

[SWS_HTMSS_00008] [SWS_HTMSS_00009]
[SWS_HTMSS_00014] [SWS_HTMSS_00017]
[SWS_HTMSS_00018] [SWS_HTMSS_00022]
[SWS_HTMSS_91006] [SWS_HTMSS_91007]
[SWS_HTMSS_91008] [SWS_HTMSS_91009]

[SRS_HTMSS_00003]

The HTMSS shall provide a service
to collect the MSTP tests results

[SWS_HTMSS_00005] [SWS_HTMSS_00010]
[SWS_HTMSS_00032] [SWS_HTMSS_00033]
[SWS_HTMSS_00034] [SWS_HTMSS_00035]
[SWS_HTMSS_00036]

[SRS_HTMSS_00004]

The HTMSS shall provide a
mechanism to share the test results
with the application layer software

[SWS_HTMSS_00031] [SWS_HTMSS_00032]
[SWS_HTMSS_00042]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_HTMSS_00005]

The HTMSS shall provide a service
to configure/Initialise the MSTP tests
during ECUM start up phase

[SWS_HTMSS_00019] [SWS_HTMSS_00020]
[SWS_HTMSS_00021] [SWS_HTMSS_00030]

[SRS_HTMSS_00006]

The HTMSS shall provide a service
to trigger the tests execution

[SWS_HTMSS_00025] [SWS_HTMSS_00026]
[SWS_HTMSS_00027] [SWS_HTMSS_00028]
[SWS_HTMSS_00030]

[SRS_HTMSS_00007]

HTMSS shall provide callout options
to handle the test failure conditions

[SWS_HTMSS_00043] [SWS_HTMSS_00044]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General behavior

The basic functionalities of HTMSS can be divided into the following main groups:
* Initialization of HTMSS module
+ Configure the MSTP tests based on HTMSS configuration (start up/shutdown)
* Interface for starting the MSTP tests (startup and shutdown)
* Provide the MSTP tests status to the other autosar modules (incl. appln SWC)

Note: The HTMSS shall not add any test functionality corresponding to MSTP tests.
The tests implementation and execution is out of HTMSS scope.

7.2 Hardware Test Management

7.2.1 Background & Rationale

The overall objective is to provide a fault status of the microcontroller operation by
means of hardware test execution in safety-related systems, built on standard AU-
TOSAR platform.

The concept shall provide a facility to execute and log a predefined set of tests. Addi-
tionally shall support HW monitoring activities in the context of microcontroller in use,
obtain tests results and propagate them to stakeholder software components in AU-
TOSAR environment.

The goal of HTMSS module is to standardize the accessible interfaces that can perform
the microcontroller specific start up/shutdown tests outside the AUTOSAR environment
and then to collect & evaluate the test results within AUTOSAR software execution
context.

7.2.2 Requirements

[SWS_HTMSS_00005]
Upstream requirements: SRS_HTMSS_00003

[The HTMSS shall be able to read the microcontroller specific start up and shutdown
test results/status, on the requested hardware. |

Note: It is the responsibility of user/integrator to evaluate the HTMSS provided start
up and shutdown test results (i.e. in case of failure) and then to define the software
reactions. The error hooks (start up & shutdown) shall evaluate the test results.

AUTSSAR

HINT: Integrator may have prioritised the tests handling the test results based on the
criticality/relevance in the system/safety goals etc. In case of a critical error integrator
shall decide to go back to reset state or shutdown sate.

[SWS_HTMSS_00006]
Upstream requirements: SRS_BSW_00345

[The pre-compile time configuration parameters shall be checked statically (at least
during compile time) for correctness. |

[SWS_HTMSS_00008]
Upstream requirements: SRS_HTMSS_00002

[In one configuration, there shall be more than one test per module for testing. These
tests could be executed in parallel. |

Note: The configuration parameter to handle above requirement shall be adapted in
HTMSSConfigSet Chapter 10.1.3

[SWS_HTMSS 00009]
Upstream requirements: SRS_HTMSS_00002

[It shall be possible to test the individual hardware resources (e.g. selected via module
/ channel ID) on the given hardware.

HINT: A microcontroller may contain two hardware unit for the ADC peripheral. There
shall be a support to test / obtain test results for each ADC unit individually.

Note: There can be no guarantee that errors in unused hardware resources do not
propagate or have influence on the rest of the microcontroller. Therefore, a complete
hardware tests may need to be executed and the test results shall be considered ap-
propriately based on the safety requirements of the ECU. |

Refer Chapter 10.1.3 HTMSSConfigSet for configuration parameter implementations.

7.2.3 States of HTMSS module

[SWS_HTMSS_00010]
Upstream requirements: SRS_HTMSS_00003

[
State Description
HTMSS_UINIT HTMSS module uninitialized(default value before module initialization)
HTMSS_INIT HTMSS module initialized
HTMSS_BUSY The HTMSS requested tests are not completed/progressing/initiated
HTMSS_IDLE HTMSS requested tests are completed/ NO pending tests are running

AUTSSAR

7.3 Error Classification

Chapter [5, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.3.1 Development Errors

[SWS_HTMSS_00011] Definition of development errors in module HTMSS
Upstream requirements: SRS_BSW_00337

[
Type of error Related error code Error value
A service was called prior to initialization HTMSS_E_NOT _INIT 0x01
A null pointer was passed as an argument HTMSS_E_NULL_POINTER 0x02
A parameter was invalid (unspecific) HTMSS_E_PARAM_INVALID 0x03
Function called when test request is running HTMSS_E_BUSY 0x04

]

7.3.2 Runtime Errors

There are no runtime errors.

7.3.3 Production Errors

There are no production errors.

7.3.4 Extended Production Errors

There are no extended production errors.

7.4 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter, all types included from the following files are listed:

The HTMSS shall use only the following imported types of other modules:

[SWS_HTMSS_00012] Definition of imported datatypes of module HTMSS
Upstream requirements: SRS_BSW_00301

[
Module Header File Imported Type
Mcu Mcu.h Mcu_ResetType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
|

8.2 Type definitions

The following Data Types shall be used for the functions defined in this specification

8.2.1 HTMSS_TestCfgType

[SWS_HTMSS_91006] Definition of datatype HTMSS_TestCfgType
Upstream requirements: SRS_HTMSS 00001, SRS _HTMSS 00002

[
Name HTMSS_TestCfgType
Kind Structure
Elements Implementation specific
Type -
Comment The content of the configuration data structure is implementation
specific.
Description Configuration data structure of HTMSS module
Available via HTMSS.h

AUTSSAR

8.2.2 HTMSS_TestStatusType

[SWS_HTMSS_91009] Definition of datatype HTMSS_TestStatusType
Upstream requirements: SRS_HTMSS 00001, SRS_HTMSS_ 00002

Name HTMSS_TestStatusType

Kind Enumeration

Range HTMSS_STATUS OK - Test status PASS
HTMSS_STATUS_NOK - Test status FAIL
HTMSS_STATUS_INVALID - Test status is Invalid
HTMSS_STATUS_UNINIT — Test status is not initialized

Description HTMSS_TestStatusType describes status of test.

Available via HTMSS.h

8.2.3 HTMSS_TestGroupType

[SWS_HTMSS_91007] Definition of ImplementationDataType HTMSS_TestGroup
Type
Upstream requirements: SRS_HTMSS 00001, SRS_HTMSS 00002

Name HTMSS_TestGroupType

Kind Enumeration

Range HTMSS_STARTUP - Test to be executed at startup only
HTMSS_SHUTDOWN - Test to be executed at shutdown only
HTMSS_STARTUP_ - Test to be executed at start up and shutdown
SHUTDOWN

Description HTMSS_ TestGroupType describes the test group type

Variation -

Available via HTMSS.h

AUTSSAR

8.2.4 HTMSS_TestResultType

[SWS_HTMSS_91008] Definition of ImplementationDataType HTMSS_TestResult

Type

Upstream requirements: SRS_HTMSS 00001, SRS HTMSS 00002

[

Name HTMSS_TestResultType
Kind Structure
Elements TestResult
Type uint8
Comment The test result (e.g. pass, fail, invalid)
TestSignature
Type uint8
Comment The identifier of the tested resource
Description It describes the current test result
Variation -

Available via

HTMSS.h

8.3 Function definitions

The following sections specify the provided API functions of the HTMSS module.

8.3.1

HTMSS_Init

[SWS_HTMSS_00014] Definition of API function HTMSS _Init
Upstream requirements: SRS_HTMSS 00001, SRS HTMSS 00002

[

Service Name

HTMSS_Init

Syntax void HTMSS_Init
const HTMSS_TestCfgTypex ConfigPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to configuration set in Variant PB (Variant PC requires a
NULL_PTR).
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initializes the HTMSS module

Y

AUTSSAR

| Available via HTMSS.h

]

[SWS_HTMSS_00015]
Upstream requirements: SRS_BSW_00404

[In case of Variant PB: The function HTMSS_1Init shall initialize the HTMSS module
and according to the configuration set referenced by ConfigPtr. |

[SWS_HTMSS_00016]

Upstream requirements: SRS_BSW_00345, SRS_BSW_00159
[In case of Variant PC: The function HTMSS_Init shall initialize the HTMSS according
to the pre-compile configuration set. |
[SWS_HTMSS_00017]

Upstream requirements: SRS_HTMSS_00001, SRS_HTMSS_00002
[The service HTMSS_Init shall initialize the global variables and data structures of
the HTMSS including flags and buffers. |
[SWS_HTMSS_00018]

Upstream requirements: SRS_HTMSS_00001, SRS_HTMSS_00002
[The function HTMSS_Init shall initialize MSTP module and configure the MSTP
tests. |
[SWS_HTMSS_00019]

Upstream requirements: SRS_HTMSS_00005
[The HTMSS is not functional until this function has been called. |
[SWS_HTMSS_00020]

Upstream requirements: SRS_HTMSS_00005
[The function HTMSS_Init shall determine the last reset reason by calling the
Mcu_GetResetReason of the MCU driver. |
[SWS_HTMSS_00021]

Upstream requirements: SRS_HTMSS_00005
[The function HTMSS_Init shall configure the MSTP tests (both start up and shut-
down), if the last reset reason is not MCU_HWTEST_RESET. |
[SWS_HTMSS_00022]

Upstream requirements: SRS_HTMSS_00002
[The function HTMSS_ Init shall configure the start up and shutdown tests individually.

Hint: The interfaces and test configurations with MSTP module are implementation
specific. There may be some cases to configure the same type of tests for execution

AUTSSAR

in both start up and shutdown slots. HTMSS_TestGroupType can be used in this
context. |

[SWS_HTMSS_00023]

Upstream requirements: SRS_HTMSS_00001
[The function HTMSS_Init shall set the HTMSS state to HTMSS_UNINIT, if the con-
figuration of MSTP tests fails for any reason. |

[SWS_HTMSS 00024]
Upstream requirements: SRS_BSW_00480

[If DET for the HTMSS is enabled: the function HTMSS_Init shall check for valid
pointer. In case of an error, HTMSS_Init shall raise the development error HTMSS__
E_NULL_POINTER.]

8.3.2 HTMSS_StartTest

[SWS_HTMSS_00025] Definition of APl function HTMSS_StartTest
Upstream requirements: SRS_HTMSS_00006

[

Service Name

HTMSS_StartTest

Syntax Std_ReturnType HTMSS_StartTest (
HTMSS_TestGroupType GrpIld

)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Grpld ‘ The test group type (e.g. start up or shut down)
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType ‘ Standard return from function execution

Description

Starts the MSTP configured tests

Available via

HTMSS.h

]

[SWS_HTMSS_00026]

Upstream requirements: SRS_HTMSS_00006
[The function HTMSS_StartTest shall trigger the MSTP test operation on the re-
quested hardware. If this is successful, E_OK shall be returned. |
[SWS_HTMSS_00027]

Upstream requirements: SRS_HTMSS_00006

[The function HTMSS_StartTest shall set the HTMSS state to HTMSS_BUSY, if the
MSTP status confirm that, test trigger is successful. |

AUTSSAR

[SWS_HTMSS_00028]
Upstream requirements: SRS_HTMSS_00006

[The function HTMSS_StartTest shall handle the start up and shutdown test re-
quests for the device under test.

Hint: The interface between HTMSS and the MSTP module is implementation spe-
cific. Because the semi manufacturer may define the method of interacting with MSTP
module for the device. |

[SWS_HTMSS_00029]
Upstream requirements: SRS _BSW_00386

[If DET for the HTMSS is enabled: the function HTMSS_StartTest shall check for
valid initialization. In case of failure HTMSS_StartTest shall raise the development
error HTMSS_E_NOT_INIT and return E_NOT_OK |

[SWS HTMSS 00030]
Upstream requirements: SRS_HTMSS 00005, SRS HTMSS_ 00006

[If DET for the HTMSS is enabled: the function HTMSS_StartTest shall check for
the valid input parameter. In case of an error, HTMSS_StartTest shall raise the
development error HTMSS_E_PARAM_INVALID and return E_NOT_OK|

[SWS_HTMSS_00031]
Upstream requirements: SRS_HTMSS_ 00004

[If DET for the HTMSS is enabled: when called while a start request is already in
place, is not in the state HTMSS_IDLE, the function HTMSS_StartTest shall raise the
development error HTMSS_E_BUSY and return E_NOT_OK. |

8.3.3 HTMSS GetTestStatus

[SWS_HTMSS_00032] Definition of API function HTMSS_GetTestStatus
Upstream requirements: SRS_HTMSS 00003, SRS HTMSS 00004

[

Service Name HTMSS_GetTestStatus

Syntax HTMSS_TestStatusType HIMSS_GetTestStatus (
HTMSS_TestGroupType Grpld,
HTMSS_TestResultType* RequestTestResultPtr

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Grpld ‘ The test group type (e.g. start up or shutdown)

Parameters (inout) None

\Y

AUTSSAR

A
Parameters (out) RequestTestResultPtr Pointer to store the request result
Return value HTMSS_TestStatusType -
Description Returns current test status on requested test
Available via HTMSS.h
]

[SWS_HTMSS_00033]
Upstream requirements: SRS_HTMSS_00003

[The function HTMSS_GetTestStatus shall collect the test status from the MSTP
and store the read data in the out parameter RequestTestResultPtr, if OUT parameter
is not a NULL_PTR and return HTMSS_TestStatusType with test status result. |

[SWS_HTMSS_00034]
Upstream requirements: SRS_HTMSS_ 00003

[If the OUT parameter is NULL_PTR, the function HTMSS_GetTestStatus shall NOT
update the OUT parameter but shall return HTMSS_TestStatusType With the test
status result. |

[SWS_HTMSS_00035]
Upstream requirements: SRS_HTMSS_ 00003

[The function HTMSS_GetTestStatus shall set the HTMSS state to HTMSS_IDLE, if
the MSTP provided status confirm the test completion. |

[SWS_HTMSS 00036]
Upstream requirements: SRS_HTMSS_00003

[The function HTMSS_GetTestStatus shall provide the start up and shutdown test
status depend on the input parameter GrpId.

Hint: The integrator/user shall ensure that a valid test status is readily available before
invoking this API function.

Note: The methods/mechanisms to read/collect the requested test status are imple-
mentation specific and depending on the MSTP interfaces and microcontroller manu-
facturer specific guidelines. |

[SWS_HTMSS_00037]
Upstream requirements: SRS_BSW_00386
[If DET for the HTMSS is enabled the function HTMSS_GetTestStatus shall check

for valid initialization. In case of failure HTMSS_GetTest Status shall raise the devel-
opment error HTMSS_E_NOT_INIT and return HTMSS_STATUS_UNINIT. |

AUTSSAR

[SWS_HTMSS_00038]
Upstream requirements: SRS_BSW_00323

[If DET for the HTMSS is enabled: the function HTMSS_GetTestStatus shall check
for the valid input parameter. In case of an error, HTMSS_GetTestStatus shall raise
the development error HTMSS_E_PARAM_INVALID and return HTMSS_STATUS_IN-

VALID.]

8.3.4 HTMSS_ GetVersioninfo

[SWS_HTMSS 00039] Definition of API function HTMSS_GetVersioninfo
Upstream requirements: SRS_BSW_00407

[
Service Name HTMSS_GetVersionInfo
Syntax void HTMSS_GetVersionInfo (
Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description -

Available via HTMSS.h

8.4 Callback notifications

None

8.5 Scheduled functions

None

8.6 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

AUTSSAR

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_HTMSS_00040] Definition of mandatory interfaces required by module
HTMSS

Upstream requirements: SRS_BSW_00384

API Function Header File Description
Mcu_GetResetReason Mcu.h The service reads the reset type from the hardware,
if supported.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_HTMSS_00041] Definition of optional interfaces requested by module
HTMSS |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

]

8.6.3 Configurable interfaces

There are no configurable interfaces.

8.7 Service Interfaces

This chapter formally specifies the corresponding AUTOSAR service in terms of the
SWC template. The interface described here is used to generate the RTE between
application software and the HTMSS module.

8.7.1 Client server interface - GetTestStatus

[SWS_HTMSS_00042] Definition of ClientServerinterface GetTestStatus
Upstream requirements: SRS_HTMSS_00004

[

AUTSSAR

Name GetTestStatus
Comment -
IsService true
Variation -
Possible Errors 0 HTMSS_STATUS_OK Test status PASS
0 HTMSS_STATUS_NOK Test status FAIL
0 HTMSS_STATUS UNINIT | Test status is not initialized
0 HTMSS_STATUS _ Test status is Invalid
INVALID
Operation GetTestStatus
Comment Returns current test status on requested test
Relates to HTMSS_GetTestStatus
Variation -
Parameters Grpld
Type HTMSS_TestGroupType
Direction IN
Comment The test group type (e.g. start up or shutdown)
Variation -
RequestTestResultPtr
Type HTMSS_TestResultType
Direction ouT
Comment Pointer to provide Test results along with Test
Variation —
Possible Errors HTMSS_STATUS_OK
HTMSS_STATUS_NOK
HTMSS_STATUS_INVALID
HTMSS_STATUS_UNINIT

]
[SWS_HTMSS 91011] Definition of Port GetTestStatus required by module

HTMSS |

Name GetTestStatus

Kind RequiredPort | Interface | GetTestStatus
Description -

Variation -

8.8 Callout Definitions

Callouts are code fragments that must be added to the HTMSS module during ECU
integration. The content of most callouts is hand-written code. The HTMSS module
configuration tool generates a default implementation for some callouts which is edited
manually by the integrator. Conceptually, these callouts belong to the ECU integration
code.

AUTSSAR

Note: The error hook is an integration code to control the ECU processing in case of
any tests failure.lt may be a critical error for the system under development, so the
integrator can react to the test failure (e.g. reset, halt, safe state)

8.8.1 HTMSS_StartupTestErrorHook

[SWS_HTMSS_00043] Definition of APl function HTMSS_StartupTestErrorHook
Upstream requirements: SRS_HTMSS_00007

[

Service Name HTMSS_StartupTestErrorHook
Syntax void HTMSS_StartupTestErrorHook (
void

)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The ECU State Manager will call the error hook if the HTMSS provided startup test results have
a failure. In this situation, the integrator has to control the CPU processing based on the system
requirements, i.e. reset, safe state etc...

Available via

8.8.2 HTMSS_ShutdownTestErrorHook

[SWS_HTMSS 00044] Definition of callout function HTMSS ShutdownTestError
Hook

Upstream requirements: SRS_HTMSS_ 00007

[

Service Name HTMSS_ShutdownTestErrorHook
Syntax void HTMSS_ShutdownTestErrorHook (
void
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

AUTSSAR

A

Return value

None

Description

The ECU State Manager will call the error hook if the HTMSS provided shutdown test results
have a failure. In this situation, the integrator has to control the CPU processing based on the
system requirements, i.e. reset, safe state etc...

Available via

HTMSS.h

AUTSSAR

9 Sequence diagrams

9.1 Sequence diagram example of HTMSS Initialization

uC reset

startup code «module»

EcuM

Integration Code

«module»
HTMSS

«module»

«C» MSTP
Wrapper

MSTP

uC firmware bootstrap code |ll

|
Selftest()

Jump()

EcuM_Init()

«Pre-condition»

{SELF TEST == OK i.e.

No critical errors}

Init Block 1

EcuM_AL_DriverInitOne()

<___

HTMSS_Init(const HTMSS_TestCfgType*)
'
McufGelResetRealson(M cu_ResetType

A e]

alt

[if (McuGetReason != MCU_HWITEST_RESET)]
Config MSTP tests()

»
L

Config tests()

If reset reason is '"MCU_HWTEST_RESET"
then tests shall not be re-configured.

==

Note: HTMSS initialization sequence shall not affect last shutdown test results. ﬁ

Figure 9.1: HTMSS Initialization

AUTSSAR

9.2 Sequence diagram example of startup test execution

HC reset startup code «module» «module» «module» «C» MSTP MSTP Integration Code
EcuM Mcu HTMSS Wrapper

T T T T T T T T

| | | | | | |

| | | | | | |

Boot strap code 1 1 | | | | |
| |

BIST ! t ! Note: Wait state for checking MSTP is implementation specific (e.g. MSTP integration guide may provide some
execlu e() : timing requirements or polling mechanisms for integrator considerations)

Jump() | 1 T T T I !

[EcuM_lnit() _ | . 1 1 1 1 1

HTMSS_Init(const HTMSS_TestCfgType*) I I I

pre-condition {SELF TEST : MSTPWrapperflni;t() : :

== QIR M @i o] | Initialize Module() | |

| |

Mcu_GetResetReason |

(Mcu_ResetType) | e — — — — — | !

yp =3 |

|

|

HTMSS requires the last reset reason to determine whether 1

T to configure the MSTP tests or NOT. |

I T T I

| T T |

I el I I I

: [ifMcu| ResetType 1= MCUJILIWTESTJRESET)] : :

I t t I

1 loop 1 1 1

| | | |

| [Logp|to configure MSTP|Tests] | |

1 Config MSTP tests() 1 1

| t |

| | |

I <------- r———----1 I

I ! I

[S | [[|

| [else] |

| |

<= TP B Tests should not be re-configured. |

I T T I

|

L

os

EcuM requires the last reset reason to collect shutdown test
results (i.e. reset caused by shutdown test execution)

I
T T | |
alt | L | |
- I I |
[if(Mcu_Rese{Type == MCU_HWT[EST_RESET)] 1 Refer: HTMSS Get shutdown test result sequence|l| 1 1
| | |
['] -]' """ B N L | | | |
else T T 1 1 !
loop I I I I I
[Loop fprfall configured Startu!) tests] ! ! : :
HTMSS_StartTest(Std_ReturnType, HTMSS_TestGroupType) \ \
T o Start MSTP tests() ! !
| > |
| | |
| <- -~ -r---—--- B I
<------- T-———- I I
| | | |
]]
loop : : If MSTP tests are asynchronous, HTMSS shall consider
[Loop fof collecting test results] \ wait state/status che:ck to collect completed test results
HTMSS?GetTeslStlatus(HTMSS?TeStStlatusType, HT SS;I'IestGroupType, HTMlsszestResultType")
'
! MSTP_GetTestResult) | | :
Wait for test completion \ Ll L
. S —
< ———— === B | Critical fault judgement shall be
| | | done the user integrated
L L ! | shutdown hook function.
alt I I I I
I I
[if(Startup|Tpst Status == Fail) ; HTMSS_StartupTestErrortiook) ;
L L L L
alt | | | |
I I I I
[Fail =5 QRITICAL STATE] | | | |
| Halt or Reset State() | |
T T T T
O T 1T - 1 re T LE— S . -
felse] | e __ R, Lo SRyl U N
|
T
I

|
T
I
StartOs() |
:
I I

Figure 9.2: Startup test execution

y
SN o

AUTSSAR

9.3 Sequence diagram example of shutdown test execution

HC reset «module» Integration Code «module» «module» «C» MSTP MSTP
BswM EcuM HTMSS Wrapper
T T T [e] T T T T
. . . f . '
Elcu MfSeIectShutdO\INnTarget(StdeeturnIType, EcquShutdownTargetType, EcquShutdownModeque) : :
T T > I
<

EcuM_ShutdownTargetType shall be
HWTEST_OFF or HWTEST_RESET in order to
execute shutdown tests.

|]
EcuM_GoDownHaltPoll(Std_ReturnType, EcuM_UserType)

! ShutdownOS()

!
I
| ShutdownHook)

EcuM_Shutdown()

]
|
I
I
|
|
!
alt |
I

I
[ifEcuMShutdownTarget == (HWTEST_OFF || HWTEST_RESET))]
1
HTMSS_StartTest(Shutdown)

loop

MSTP_StartTest()

 J

Execution of Shutdown Tests causes Ecu RESET. After
this RESET, control comes back to EcuM.

|
|
I
I
|
|
|
I
I
|
| [Loop fof gl Shutdown tests]
|
I
|
|
|
I
I
|
|
|

< ----—- 4------- m-—--———-
| |

Refer ECU Shutdown Sequence starting from EcuM_Init() to follow the [else] | |
sequence immediately after the reset caused by shutdown tests execution | Refer ECU shutdown sequence second part, |
| : EcuM_SelectShutdownTarget with OFF or RESET :

| |

Figure 9.3: Shutdown test execution

AUTSSAR

9.4 Sequence diagram example handling the last shutdown test
results immediately after the ECU reset raised by MSTP mod-
ule

«module» «module» «C» MSTP MSTP Integration Code Safety SW-C
EcuM HTMSS Wrapper

T T T T T os

| | | Start0S() |
I

T
|
|
Refer ECU Shutdown Sequence (first part) with the shutdown target HWTEST_OFF/HWTEST_RESET for the previous sequenc(!.l| |
|
|
|

| |
1 1 : L | Initialize SW-C()
I

I I I I
‘EcuMfGetLastShutdownTarget(StdeeturnType, EcuM_ShutdownTargetType**, EcuM_ShutdownModeType**)

_________ l'________T_________________>

T
1
I
1
alt : |
[if(EcuLastShutdownTarget == (HWTEST_OFF || HWTEST| RESET))] |

' | '

: __HTMSS_GetTestStatus(HTMSS_TestStatusType, HTMSS_TestGroupType, HTMSS_TestResultType**)
<

| 1 1 |

|
: Collect last shutdown test results for application usage. Evaluate last
e Tt - - {ft---- >1 | shutdown results()

Application is responsible to evaluate the test results and take necessary actions Ij L

|
: eg. store in NVM, DEM reporting for non-critical faults for later diagnosis.
I

|
[else] ! . .
: __HTMSS_GetTestStatus(HTMSS_TestStatusType, HTMSS_TestGroupType, HTMSS_TestResultType**)
d
I I I
H ________ P e g >
|
I |
| Refer: HTMSS StartTest sequence |
1 T T 1
| | | |
Initialize SW-C()
Refer ECU Shutdown Sequence (second part) with the shutdown target ECUM_OFF/ECUM RESET to continue. &< — — — — — -
T | | 1 1 T T

Figure 9.4: Handling the last shutdown test results

AUTSSAR

9.5 Sequence diagram example of collecting the shutdown test
results

uC reset «module» «module» «module» «C» MSTP MSTP Integration Code
EcuM Mcu HTMSS Wrapper

T T 0os

McufGetlF{esemeason(M cufRIesetType)
>

alt I

[if(Mcu_HedetType == MCUfH\?VTESTfRESET)] |

HTMSS_GetTestStatusHTMSS_TestStatusType, HTMSS_TestGroupType, HTMSS_TestResultType**)
L

a |
“ 11

i
o

1
alt InteractionFragment1 /
|

Test results shall be MSTP_GetTestResult()

stored in HTMSS buffer.

I
T T
_______ A I I
< I I I
T T T T
alt | | | |
.) ' .
lif(Shufdgwn Test Status == Fail)] HTMSS_ShutdownT estErrorHook() !
I i i I
I I 1 I
I I _/| I
I Halt o resef state(| [if(Fail == CRITICAL_FAULTI]
: 1 1 1 1
I T PR [L]
| | [else] ! |
_______ oA i __
< I I I
]] t T
...... X N R AR [N IR PR
lelse] : :

______________E_______________________________

|
|
|
|
Refer: HTMSS Start StartUp Test Execution Sequence I
|
I
|
|
T
|

I

I I

| StartoS() -
| | =

Note: Test status reporting a *fail' has to be evaluated in the integrator code (error hook routine) to judge the criticality and then to determine the behavoir of the system.lﬁ

Figure 9.5: Collecting the shutdown test results

AUTSSAR

9.6 Sequence diagram example of ECU shutdown when HTMSS is
integrated in the system

sd ECU Shutdown Sequence J
HC reset BswM RTE Sw_C EcuM Integrator HTMSS MSTP wrapper| MSTP MCU
Code
T T T T 0s T T T T T T
| | | | | 1 1 1 | 1 1
: EcuM_ T | nTargetType, : : : : : :
1 ! EcuM_ ! Type) _i | L L s L H
: “ EcuM_ShutdownTargetType shall be HWTEST_OFF or HWTEST_RESET in order to
| manage shutdown tests, which causes a reset. [Please refer Note 1 for details]
1 T - - - - -
: ! i ’ . : : : : :
! ! ! ShutdownOS|)| i i i ! |
: : : ShutdownHook 1 : : : :
| | | EcuM_Shutdown(| ' | |
| | | [H — | | 1 1
| | | I | | |
1 | | T T T 1 1
| | | 1 alt 4 | | | | |
' | | ! Targdt == (HWTEST_OFF || HWTEST|RESET))] | |
! ! : : ; : : ! !
| 1 i ! HTMSS_StartTest(Shutdown) | 1 | |
i i i i i i i
| | | | 1
I | I |) |
1 | | | i 1
1 | | | 1
[N [q___Statest) | |\ .l _______ B iH |
| I I | Cl | |
1 | T T | T 1
1 Ecu Reset after Shutdown test execution ! 1 1 1 H H
(reset is to be triggered by MSTP)| | | | : | |
T T T 1 1 1 1
i | | EcuM_Init() | | i | i i |
T T T ! ' 1 |
i i j] MCU_GetResetReason(Mcu_ResetType) | i
| | T T T
| | | |
| | | ' —— i [- fo—m ‘LJ
| | | T T | 1
| | I H alt | | | | |
| | | ! [TifMcu |ResetType == MEU_HWTEST |RESET)] ' ! !
| | | | | | | 1 1
1 H H ! HTMSS_GetTestStatus(Shutdown, NULLPTR) 1 | 1
| | i i i i i
| 1 | | | 1 1
| | | 1 1 1 1
i | | | | | 1
| i i | _Stan0s() i i i i i
| 1 | 1 1 | 1 1
1 ! Initialize SW- C() | | | | |
| | 1 | | 1 1
| | | | 1 1 1
| T T T | | 1
1 alt | | | | | |
| | | | | 1 1
: [If(EcuLalstShutdownT get == (HW]EST_OFF || H| fTEST_RESET))IJ : : : :
} RteTCaII(Grpld‘ DstPtr) : : : : :
| 1 1 1 1 1
i | | | | 1
} HTMSS_GetT . ! ! : : :
| *ResultPtr) | | | |
i | | | 1
HTMSS_GetT: , *ResultPt
! o s . GetTesttatus(Sutdown, Resul®ty) _____ ! ! !
I | | 1 1
i | | | | | |
| | 1 | | | |
| | 1 1 | 1 1
| 1 1 | | 1 1
i | 1 | 1 1 1
H H Evaluates Shutdown TestResult() | H 1 1 H
| | 1 | 1 1
i Rte_| l | | | 1
} At this stage, application user can store the : : : :
! Rte_Wiite(Shutdown) test results in NVM, report DEM, if needed ! ! ! !
R I 1 ZInitialize SW- C() 1 H 1 1 H
| 1 1 1 | 1 1
i | | | | | 1
| | [| | I 1 1
| L L + | 1 1
! BswM_MainFunction() : : : : :
Rte_Read(SHutdown) : : : : : :
| 1 | | | 1
| 1 | | | |
Rte_Read(Shutdown) : : : : : :
<-—-—- | | | ! ! !
| | | | | |
| | 1 | | 1 1
EcuM_SelectShutdownTarget(OFF || RESET) 1 H 1 1 1
EI M_Sel sr'| downT: | : : : : :
1 1 I 1 1
e ————— EcuM_SelectShutdownTarget() ___ _ _ | H H H H H
| | 1 | | 1 1
! EcuM_GoDown() : : : : :
| i 1 | 1 1 1
} : : ShutdownOS() : : : : :
: : : ShutdownHook() ! : : : :
H H | EcuM_Shutdown(] 1 1 1 H
| 1 | | | 1 1
T | ! | T ! ! ! |
1 | | | | | | 1 | 1 1
1 1 | | | 1 1 | | 1 1
1 | | | 1 1 1 | 1 1 1
| i | | | | | | | | |
1 | | | | | 1 | | | 1
1 | | | | 1 1 1 | 1 1
| i | | | 1 1 1 | 1 1
| i | | | | | | | | |
| | | | | | 1 | | 1 1
Notel:
In case HTMSS is integrated and shutdown tests are to be executed by the system, then two time application intervention is needed (i.e. shutdown tests causes a
Ecu reset) to manage the shutdown process.
1. At first application shall select the shutdown target ECUM_SHUTDOWN_HWTEST_RESET/ECUM_SHUTDOWN_HWTEST_OFF.
Important!
Above shutdown target shall be stored in the Non Volatile Memory (Implementation specific)for the second time application intervention to complete the
shutdown process.
Follow above sequence to understand step 1 processing until the control comes back to application SWC.
2. At this point of time application shall select ECUM_SHUTDOWN_TARGET_OFF/ECUM_SHUTDOWN_TARGET_RESET to complete the actual ECU shutdown

Figure 9.6: ECU shutdown with HTMSS integrated

AUTSSAR

9.7 Sequence diagram example of application SWC collecting the
test results

Any SW-C «module» «module»
Rte HTMSS

T
I
e I
Rte_Call_<p>_<o0>(Rte_Instance, void) | HTMSS_GetTestStatusHTMSS_TestStatusType,

> HTMSS_TestGroupType, HTMSS_TestResultType**)
>
H< l< ________________________ “
|

Note: A client-server interaction between application and HTMSS shall be followed for collecting start up and shutdown test results!ﬁ

Figure 9.7: Application SWC collecting the test results

AUTSSAR

10 Configuration specification

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in the Chapters below.

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. However, the content
of this chapter is, intended to provide as an example for reference purposes.

The actual implementation is up to the specification user.

10.1.1 HTMSS

[ECUC_HTMSS_00001] Definition of EcucModuleDef HTMSS
Status: OBSOLETE

Module Name HTMSS
Description Configuration of the Hardware Test Management start up and shutdown
(HTMSS) module.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

HTMSSConfigSet 1.7 This is the base container that contains the configuration
parameters & sub containers of HTMSS module.
Tags: atp.Status=obsolete

HTMSSGeneral 1 This container holds the general parameters of the HTMSS
module.
Tags: atp.Status=obsolete

AUTSSAR

AUT OSARParameterDefinition:
EcucDefinitionCollection

(from ECUCParafreterDefinitions)

+module

HTMSS: SSG I HTMSSDevErrorDetect:
EcucModuleDef HTM—enera_' +parameter EcucBooleanParamDef

I — . EcucParamConfContainerDef (€@
lowerMultiplicity = 0 . +container defaultValue = false

upperMultiplicity = 1

+parameter .)
P P HTMSSVersioninfoApi:
EcucBooleanParamDef
defaultValue = false

HTMSSConfigSet:
EcucParamConfContainerDef

+container

lowerMultiplicity = 1
upperMultiplicity = *

Figure 10.1: HTMSS ECUC Parameters

10.1.2 HTMSSGeneral

[ECUC_HTMSS_00619] Definition of EcucParamConfContainerDef HTMSSGen-
eral

Status: OBSOLETE

Container Name HTMSSGeneral
Parent Container HTMSS
Description This container holds the general parameters of the HTMSS module.

Tags: atp.Status=obsolete

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
HTMSSDevErrorDetect 1 [ECUC_HTMSS_00002]
HTMSSVersionInfoApi 1 [ECUC_HTMSS_00003]

| No Included Containers

AUTSSAR

[ECUC_HTMSS 00002] Definition of EcucBooleanParamDef HTMSSDevErrorDe-

tect
Status: OBSOLETE

Parameter Name

HTMSSDevErrorDetect

Parent Container

HTMSSGeneral

Description Switch for enabling the DET.
Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_HTMSS 00003] Definition of EcucBooleanParamDef HTMSSVersioninfo

Api
Status: OBSOLETE

Parameter Name

HTMSSVersionInfoApi

Parent Container

HTMSSGeneral

Description Activate/Deactivate the version information API.
Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

10.1.3 HTMSSConfigSet

[ECUC_HTMSS_00012] Definition of EcucParamConfContainerDef HTMSSConfig

Set
Status: OBSOLETE

AUTSSAR

Container Name

HTMSSConfigSet

Parent Container

HTMSS

Description This is the base container that contains the configuration parameters & sub containers
of HTMSS module.
Tags: atp.Status=obsolete

Multiplicity 1.*

Configuration Parameters

No Included Parameters

No Included Containers

class HTMSS_Configset example J

HTM

Lower Muliplicity = 0
Upper Multiplicity = 1

+subcontainer

+subcontainer

tags
Multiplicity = 1

HTMSSGetTestStatusAPI:
fContainerDef

E onl

tags
Multiplicity = 1

+destination

Def HTMSSConfigSet: HTMSSTestGrp: HTMSSTestGrpType:
Ecuck onfC Ecuck onfContainerDef ionParamDef
tags
tags -
Lower Multiplicity = 0 e tags tags
Upper Mulipiciy = 1 o Mubipicity gy HTMSSTest: Lower Mutiplicity = 1 Mottplcity = 1~
Upper Multiplicity = EcucP: onfContai Upper Muttiplicity = 2 Range = STARTUP/SHUTDOWN
tags .
Lower Multipicity = 1 HTMS STestReference:
Upper Multiplicity = HTMSSTestld: EcucReferenceDef
+parameter EcucintegerParamDef
tags
tags Lower Multiplicity = 1
Multiplicity = 1 Upper Multiplicity = *
+container
Range =
. +subcontainer ange =0.255
HTMSSTestConfigAPI:
EcucP. onfContai HTMSSStarTestAPI:
E onfCi inerDef
tags

Figure 10.2: HTMSS Configuration

10.2 Published Information

For details refer to [5] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_HTMSS_NA_00999]

[SRS_BSW_00406], [SRS_BSW_00416], [SRS_BSW_00417], [SRS_BSW_00419],
[SRS_BSW_00422], [SRS_BSW_00425], [SRS_BSW_00432], [SRS_BSW_00452],
[SRS_BSW_00403], [SRS_BSW_00461], [SRS_BSW_00466], [SRS_BSW_00469],
[SRS_BSW_00470], [SRS_BSW_00471], [SRS_BSW_00472], [SRS_BSW_00478],
[SRS_BSW_00490], [SRS_BSW_00492], [SRS_BSW_00399], [SRS_BSW_00396],
[SRS_BSW_00395], [SRS_BSW_00393], [SRS_BSW_00392], [SRS_BSW_00390],
[SRS_BSW_00389], [SRS_BSW_00388], [SRS_BSW_00385], [SRS_BSW_00383],
[SRS_BSW_00375], [SRS_BSW_00369], [SRS_BSW_00336], [SRS_BSW_00170],
[SRS_BSW_00168], [SRS_BSW_00458]

These requirements are not applicable to this specification.

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R24-25

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

[ECUC_HTMSS_00001] [ECUC_HTMSS_00002] [ECUC_HTMSS_00003] [ECUC_
HTMSS_00012] [ECUC_HTMSS_00619] [SWS_HTMSS_00032] [SWS_HTMSS_
00039] [SWS_HTMSS 00042] [SWS_HTMSS 00043] [SWS_HTMSS_00044]
[SWS_HTMSS_91006] [SWS_HTMSS_91007] [SWS_HTMSS 91008] [SWS_
HTMSS_91009] [SWS_HTMSS_91011]

B.1.3 Deleted Specification Items in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 EcuM
	5.2 Application SWC
	5.3 RTE
	5.4 Dependencies with MSTP
	5.5 MCU
	5.6 Default Error Tracer (Det)
	5.7 File structure
	5.7.1 Code file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.2 Hardware Test Management
	7.2.1 Background & Rationale
	7.2.2 Requirements
	7.2.3 States of HTMSS module

	7.3 Error Classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Production Errors
	7.3.4 Extended Production Errors

	7.4 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 HTMSS_TestCfgType
	8.2.2 HTMSS_TestStatusType
	8.2.3 HTMSS_TestGroupType
	8.2.4 HTMSS_TestResultType

	8.3 Function definitions
	8.3.1 HTMSS_Init
	8.3.2 HTMSS_StartTest
	8.3.3 HTMSS_GetTestStatus
	8.3.4 HTMSS_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	8.7 Service Interfaces
	8.7.1 Client server interface - GetTestStatus

	8.8 Callout Definitions
	8.8.1 HTMSS_StartupTestErrorHook
	8.8.2 HTMSS_ShutdownTestErrorHook

	9 Sequence diagrams
	9.1 Sequence diagram example of HTMSS Initialization
	9.2 Sequence diagram example of startup test execution
	9.3 Sequence diagram example of shutdown test execution
	9.4 Sequence diagram example handling the last shutdown test results immediately after the ECU reset raised by MSTP module
	9.5 Sequence diagram example of collecting the shutdown test results
	9.6 Sequence diagram example of ECU shutdown when HTMSS is integrated in the system
	9.7 Sequence diagram example of application SWC collecting the test results

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 HTMSS
	10.1.2 HTMSSGeneral
	10.1.3 HTMSSConfigSet

	10.2 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R24-25
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

