AUTSSAR

Document Title Specification of GPT Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 30

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR

2025-11-27 | R25-11 Release * No content changes
Management

* Gpt notification defined in [SWS_Gpt_
00292] shall be available into header
Gpt_Externals.h.

» Remove multicore constraint [SWS_

AUTOSAR Gpt_CONSTR_00005].
2024-11-27 | R24-11 ll?/lelease ; » Remove reference of [SRS_BSW _
anagemen 00334] from list of Non applicable
requirements (Appendix A).

* Naming of BSW module component is
defined into CP SWS BSWGeneral
instead of CP TR BSWModuleList.

AUTOSAR
2023-11-23 | R23-11 Release * No content changes

Management

AUTOSAR Rename [SWS_Gpt_00381] into [SWS_
2022-11-25 | R22-11 Release Gpt NA 00381]

Management PLANA '

AUTOSAR Uodat ional intert \at
2021-11-25 | R21-11 Release pdate optional interfaces relative to

Management

EcuM.

AUTSSAR

* Delete requirement [SWS_Gpt_00270].

* Replace requirements defined for each

QUITOSAR error by global requirement for each
2020-11-30 | R20-11 elease error table defined in §7.4.
Management
* Move chapter Error detection in
chapter 8.
AUTOSAR
2019-11-28 | R19-11 Release « editorial changes
Management
AUTOSAR . Incorporatiqn gf cqncept MCAL
2018-10-31 | 4.4.0 Release Multicore Distribution (Draft).
Management « Header File Cleanup.
* Ensure consistency between default
AUTOSAR error tracer and development errors.
2017-12-08 | 4.3.1 Release » Add support of runtime errors and
Management change type of errors GPT_E_MODE
and GPT_E_BUSY.
* Variant chapter reworked.
AUTOSAR * Remove redundant requirement [SWS_
2016-11-30 | 4.3.0 Release G
pt_00342].
Management
» Remove any reference to Dem.
 Det renaming and extension
incorporation.
AUTOSAR
2015-07-31 422 Release » Debugging support marked as obsolete.
Management)))
* Remove duplicated requirements in
traceability.
* Init pointer check harmonized with
BSW_General, redundant [SWS_GPT_
AUTOSAR 00294], [SWS_GPT_00340] items
2014-10-31 421 Release removed.
Management
» Added new error code
GPT_E_INIT_FAILED.
AUTOSAR
2013-10-31 412 Release « editorial changes

Management

AUTSSAR

* GPT Predef Timer functionality added

AUTOSAR » Gpt_GetTimeElapsed and
2013-03-15 | 4.1.1 Release Gpt_GetTimeRemaining are fully
Management reentrant now
* MemMap.h renamed to Gpt_MemMap.h
» Range added to [ECUC_Gpt_00331].
AUTOSAR » module short name replaced by module
2011-12-22 | 4.0.3 Release abbreviation.
Management ,
 Chapter 6 revised and chapter 13 added
due to new traceability mechanism.
« GPT208, GPT376 and GPT378
removed.
AUTOSAR » Multiplicity changed in [ECUC_Gpt_
2011-04-15 | 4.0.2 Release 00312] (chapter 10.2.6 updated).
Management * [SWS_Gpt_00256] rephrased.
* [SWS_Gpt_00256] changed according
to changed [SRS_BSW_00004].
* Revised completely, a lot of SWS items
deleted, replaced, changed and added.
» Gpt_Cbk_CheckWakeup renamed to
Gpt_CheckWakeup.
» Parameter names of API services
renamed.
AUTOSAR + Configuration parameters renamed,
2009-12-18 | 4.0.1 Release deleted and added.
Management » Debugging Concept incorporated.
* ClockReferencePoint mechanism
incorporated.
* Traceability tables updated.
* Legal disclaimer revised.
» Chapter 10.3 revised.
AUTOSAR
2008-08-13 | 3.1.1 Release * legal disclaimer revised.

Management

AUTSSAR

2007-12-21

3.0.1

AUTOSAR
Release
Management

* Introduction of consistent description of
wakeup concept (as evaluated in
Startup/ Wakeup Taskforce). This
includes modifications and extensions of
textual descriptions as well as the
modification of sequence charts related
to wakeup.

* SWS Improvement: improvement of
wording, alignment of API description.

* Introduction of additional development
error in case of already initialized
module.

« Document meta information extended.

» Small layout adaptations made.

2007-01-24

2.1.15

AUTOSAR
Release
Management

» Header file structure changed
significantly.

* Return values and development errors
for Gpt_GetTimeRemaining() and
Gpt_GetTimeElapsed() changed.

» Development error checking of ConfigPtr
in Gpt_Init() changed.

» Configuration container structure and
configuration parameters.

* Interface Dem_ReportErrorEvent()
removed.

* Legal disclaimer revised.
* Release Notes added.
» Advice for users revised.

* Revision Information added.

2006-05-16

2.0

AUTOSAR
Release
Management

» Document structure adapted to common
Release 2.0 SWS Template.

» Added wake-up functionality.

* For more details see chapter 11.

2005-05-31

1.0

AUTOSAR
Release
Management

« Initial release.

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 9
2 Acronyms and Abbreviations 10
3 Related documentation 11
3.1 Input documents & related standardsandnorms 11
3.2 Related specification oo o 11

4 Constraints and assumptions 12
4.1 Assumptions L e 12
4.2 Limitations e 12
4.3 Applicabilitytocardomains 12

5 Dependencies to other modules 13
6 Requirements Tracing 14
7 Functional specification 17
71 GPT Predef Timers 20
7.2 Versionchecking 21
7.3 Error Classification 22
7.3.1 DevelopmentErrors 22
7.3.2 RuntimeErrors 22
7.3.3 ProductionErrors 22
7.3.4 Extended Production Errors 22

8 API specification 23
8.1 Importedtypes 23
8.2 Typedefinitions 23
8.2.1 Gpt_ConfigType 23
8.22 Gpt_ChannelType 24
8.2.3 Gpt_ ValueType 24
8.24 Gpt_ModeType 25
8.2.5 Gpt_PredefTimerType 25

8.3 Function definitions 25
8.3.1 Gpt_GetVersioninfo 26
832 Gpt_Init 26
8.3.3 Gpt Delnit 28
8.3.4 Gpt_GetTimeElapsed 30
8.3.5 Gpt GetTimeRemaining. 31
8.3.6 Gpt_StartTimer. 33
8.3.7 Gpt_StopTimer 34

8.3.8 Gpt_EnableNotification 36

AUTSSAR

8.3.9 Gpt_DisableNotification,
8.3.10Gpt_SetMode
8.3.11 Gpt_DisableWakeup
8.3.12Gpt_EnableWakeup v v v v v v i et e e e e e e
8.3.13Gpt_CheckWakeup
8.3.14 Gpt_GetPredefTimerValue
8.4 Callback notifications
8.5 Scheduled functions o
8.6 Expectedinterfaceso
8.6.1 Mandatoryinterfaces
8.6.2 Optionalinterfaces
8.6.3 Configurable interfaces
8.6.3.1 GPT Notification.
8.7 Errordetection.

9 Sequence diagrams

9.1 Gpt_Init
9.2 GPTcontinuousmode
9.3 GPTone-shotmode
9.4 Disable/Enable Notifications
9.5 Wakeup o

10 Configuration specification

10.1How toread thischapter
10.2Containers and configuration parameters
1021 GPt o e e
10.2.2 GptDriverConfiguration,
10.2.3 GptClockReferencePoint
10.2.4 GptChannelConfigSet
10.2.5 GptChannelConfiguration,
10.2.6 GptWakeupConfiguration
10.2.7 GptConfigurationOfOptApiServices
10.3Published Information.

A Not applicable requirements

B Change history of AUTOSAR traceable items

70

B.1 Change History of this document according to AUTOSAR Release R25-11 70

B.1.1 Added Specification ltemsin R25-11
B.1.2 Changed Specification Itemsin R25-11
B.1.3 Deleted Specification Itemsin R25-11
B.1.4 Added Constraints in R25-11
B.1.5 Changed Constraintsin R25-11
B.1.6 Deleted Constraints in R25-11

70

70

B.2 Change History of this document according to AUTOSAR Release R24-11 71

AUTSSAR

B.2.1 Added Specification ltemsin R24-11 71
B.2.2 Changed Specification ltemsin R24-11 71
B.2.3 Deleted Specification ltemsin R24-11 71
B.2.4 Added Constraintsin R24-11 71
B.2.5 Changed Constraintsin R24-11 71
B.2.6 Deleted Constraintsin R24-11 71
B.3 Change History of this document according to AUTOSAR Release R23-11 71
B.3.1 Added Constraints in R23-11 71
B.3.2 Changed Constraints in R23-11 71

B.3.3 Deleted Constraints in R23-11

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the AU-
TOSAR Basic Software module GTP driver.

The GPT driver is part of the microcontroller abstraction layer (MCAL). It initializes and
controls the internal General Purpose Timer(s) (GPT) of the microcontroller.

The GPT driver provides services and configuration parameters for
« Starting and stopping hardware timers
» Getting timer values
« Controlling time triggered interrupt notifications, if supported by hardware
+ Controlling time triggered wakeup interrupts, if supported by hardware

The tick duration of a timer channel depends on channel specific settings (part of GPT
driver) as well as on system clock and settings of the clock tree controlled by the MCU
module. The tick duration is not limited by this specification.

Not all hardware timers must be controlled by the GPT module. Some timers may be
controlled by AUTOSAR Operating System or Complex Drivers directly. The number
of timer channels controlled by the GPT driver depends on hardware, implementation
and system configuration.

Beside the possibility to configure individual timer channels with individual properties,
some free running up counters - so-called GPT Predef Timers - are defined. These
timers have predefined tick durations and predefined number of bits (physical time
units and ranges). The GPT Predef Timers are used by the Time Service module.

The GPT driver only generates time bases. Further time based functionality on driver
level is covered by other MCAL modules like:

* PWM Diriver (driver for pulse width modulation)
* ICU Driver (driver for input capture unit)

» OCU Driver (driver for output compare unit)

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the GPT driver
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

BSW Basic Software

DET Default Error Tracer
ECU Electronic Control Unit
GPT General Purpose Timer
ICU Input Capture Unit
MCU Micro Controller Unit
NOP, nop Null Operation

oS Operating System

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Term: Description:

Timer channel Represents a logical timer entity assigned to a timer hardware

Target time Time, something shall occur, when the value is reached. The behavior depends
on the configuration and the enabled functionality.

Tick Defines the timer resolution, the duration of a timer increment

GPT Predef Timer A GPT Predef Timer is a free running up counter provided by the GPT driver.

Which GPT Predef Timer(s) are available depends on hardware (clock, hardware
timers, prescaler, width of timer register, ...) and configuration. A GPT Predef
Timer has predefined physical time unit and range.

Table 2.2: Terms used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of Default Error Tracer
AUTOSAR_CP_SWS_ DefaultErrorTracer

[4] Specification of MCU Driver
AUTOSAR_CP_SWS_ MCUDriver

[5] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[6] Requirements on GPT Driver
AUTOSAR_CP_RS GPTDriver

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2], which is
also valid for GPT driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for GPT driver.

AUTSSAR

4 Constraints and assumptions
4.1 Assumptions

No assumptions.

4.2 Limitations

No limitations.

4.3 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

Module DET

In development mode the Error hook-function of module DET [3] will be called.

Module MCU

The GPT depends on the system clock, prescaler(s) and PLL. Thus, changes of the
system clock (e.g. PLL on PLL off) also affect the clock settings of the GPT hardware.
Module GPT will not take care of settings which configure the clock, prescaler(s) and
PLL in its init function. This has to be done by the MCU module [4].

Hence the conversions between time and ticks shall be part of an upper layer.

Module EcuM

The GPT driver reports the wakeup interrupts to the ECU State Manager [5] for further
processing.

File structure

The file structure is not defined within this specification completely. It depends on
the implementation. The GPT driver shall provide at least the following files, if the
conditions described are fulfilled:

[SWS_Gpt_00261]

Upstream requirements: SRS_BSW_00164
[Gpt_lIrg.c shall include Gpt.h for the prototype declaration of the natification func-
tions. |

[SWS_Gpt_00375] [Gpt.c shall include Det.h in any case to be able to raise runtime
error. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [6, SRS documents] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Gpt_00006] [SWS_Gpt_00280]

[SRS_BSW_00164]

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_Gpt_00261]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Gpt_00194] [SWS_Gpt_00195]
[SWS_Gpt_00196] [SWS_Gpt_00199]
[SWS_Gpt_00200] [SWS_Gpt_00201]
[SWS_Gpt_00202] [SWS_Gpt_00203]

[SRS_BSW_00305]

Data types naming convention

[SWS_Gpt_00357] [SWS_Gpt_00358]
[SWS_Gpt_00359] [SWS_Gpt_00360]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Gpt_00218] [SWS_Gpt_00338]
[SWS_Gpt_00399] [SWS_Gpt_00403]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Gpt_00008] [SWS_Gpt_00281]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Gpt_00278]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_Gpt_00280]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Gpt_00403]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_Gpt_00209] [SWS_Gpt_00292]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Gpt_00280] [SWS_Gpt_00357]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Gpt_00280] [SWS_Gpt_00357]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Gpt_00220] [SWS_Gpt_00222]
[SWS_Gpt_00223] [SWS_Gpt_00224]
[SWS_Gpt_00225] [SWS_Gpt_00226]
[SWS_Gpt_00227] [SWS_Gpt_00228]
[SWS_Gpt_00229] [SWS_Gpt_00230]
[SWS_Gpt_00325] [SWS_Gpt_00398]
[SWS_Gpt_00402]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Gpt_00279]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Gpt_00280] [SWS_Gpt_00357]

vV

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00438]

Configuration data shall be defined in
a structure

[SWS_Gpt_00280] [SWS_Gpt_00357]

[SRS_BSW_00441]

Naming convention for type, macro
and function

[SWS_Gpt_00360]

[SRS_Gpt_12116]

The GPT Driver shall provide the
functionality to deinitialize timer
channels to their power on reset state

[SWS_Gpt_00008] [SWS_Gpt_00162]
[SWS_Gpt_00281] [SWS_Gpt_00308]

[SRS_Gpt_12117]

The GPT Driver shall provide a
synchronous service for reading the
current timer value of each timer
channel

[SWS_Gpt_00010] [SWS_Gpt_00083]
[SWS_Gpt_00282] [SWS_Gpt_00283]

[SRS_Gpt_12119]

The GPT driver shall provide the
service for stopping each channel of
the timer

[SWS_Gpt_00013] [SWS_Gpt_00285]

[SRS_Gpt_12120]

The GPT Driver shall provide a
notification per channel that is called
when the time period has elapsed

[SWS_Gpt_00233]

[SRS_Gpt_12121]

The GPT Driver shall provide the
functionality to enable the call of a
notification function per channel
during the runtime

[SWS_Gpt_00014] [SWS_Gpt_00286]

[SRS_Gpt_12122]

The GPT Driver shall provide the
functionality to disable the call of a
notification function per channel
during the runtime

[SWS_Gpt_00015] [SWS_Gpt_00287]

[SRS_Gpt_12128]

The GPT driver shall provide a
service for starting a timer with
specific parameters

[SWS_Gpt_00274] [SWS_Gpt_00275]
[SWS_Gpt_00284]

[SRS_Gpt_12328]

The GPT driver shall use the time
unit ticks for all API services which
are related to GPT timer channels

[SWS_Gpt_00359]

[SRS_Gpt_13601]

The GPT Driver shall be capable of
performing wakeup events, whenever
a predefined wakeup period has
expired

[SWS_Gpt_00127]

[SRS_Gpt_13602]

The GPT driver shall provide a
service for enabling / disabling the
wake-up capability of single timer
channels

[SWS_Gpt_00159] [SWS_Gpt_00160]
[SWS_Gpt_00289] [SWS_Gpt_00290]

[SRS_Gpt_13603]

The GPT driver shall provide a
service for selecting the Wake-up
mode

[SWS_Gpt_00151] [SWS_Gpt_00152]
[SWS_Gpt_00153] [SWS_Gpt_00288]

[SRS_Gpt_13604]

The GPT driver shall support special
free running up counters, so-called
GPT Predef Timers

[SWS_Gpt_00382]

[SRS_Gpt_13605]

Different types of GPT Predef Timers
shall be supported by the GPT driver

[SWS_Gpt_00383] [SWS_Gpt_00389]

[SRS_Gpt_13606]

The GPT driver shall make it possible
to configure statically which GPT
Predef Timers are enabled

[SWS_Gpt_00385]

[SRS_Gpt_13607]

The GPT Predef Timers shall be
started/stopped automatically by the

[SWS_Gpt_00390] [SWS_Gpt_00391]
[SWS_Gpt_00392] [SWS_Gpt_00393]

GPT driver
\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Gpt_13608]

The GPT driver shall provide a
synchronous service for reading the
current timer value of each GPT
Predef Timer

[SWS_Gpt_00394] [SWS_Gpt_00395]
[SWS_Gpt_00397]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Gpt_00014] [SWS_Gpt_00015]
[SWS_Gpt_00406]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Gpt_00006] [SWS_Gpt_00280]

[SRS_SPAL_12063]

All driver modules shall only support
raw value mode

[SWS_Gpt_00359]

[SRS_SPAL_12067]

All driver modules shall set their
wake-up conditions depending on the
selected operation mode

[SWS_Gpt_00014] [SWS_Gpt_00015]
[SWS_Gpt_00233]

[SRS_SPAL_12069]

All drivers of the SPAL that wake up
from a wake-up interrupt shall report
the wake-up reason

[SWS_Gpt_00209] [SWS_Gpt_00292]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Gpt_00068]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_Gpt_00206] [SWS_Gpt_00327]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Gpt_00008] [SWS_Gpt_00281]

[SRS_SPAL_12169]

All driver modules that provide
different operation modes shall
provide a service for mode selection

[SWS_Gpt_00151] [SWS_Gpt_00288]

[SRS_SPAL_12263]

The implementation of all driver
modules shall allow the configuration
of specific module parameter types at
link time

[SWS_Gpt_00357]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_Gpt_00332]

[SRS_SPAL_12461]

Specific rules regarding initialization
of controller registers shall apply to all
driver implementations

[SWS_Gpt_00352] [SWS_Gpt_00353]
[SWS_Gpt_00354] [SWS_Gpt_00355]
[SWS_Gpt_00356]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

The GPT driver provides services for starting and stopping timer channels (logical timer
instances assigned to a timer hardware), individual for each channel by calling of:

* Gpt_StartTimer
* Gpt_StopTimer

The "target time" is passed as a parameter to Gpt_StartTimer. So, for each start
of a timer channel, the target time can be set individually. The states and the state
transitions of a timer channel are shown in 7.1

stopped Gpt_StopTimer() or Gpt_SetMode() *
— “
mde' hasreached its target time i

* for details, see specification of Gpt_SethMode() I_\}

stm GPT timer channel states /

for each timer channel
{module slready initialized)

Gpt_StardTimer)

Gpt_StardTimer)

Figure 7.1: Channel states and state transitions
A timer channel can be configured in "one-shot mode" or in "continuous mode".
[SWS_Gpt_00329] [A timer channel starts counting at value zero. |

[SWS_Gpt_00185] [If a timer channel is configured in "one-shot mode™:

If the timer has reached the target time (timer value = target time), the timer shall stop
automatically and maintain its timer value unchanged. The channel state shall change
from "running" to "expired". |

AUTSSAR

timer value

-

initialized 1 running « expired running stopped running e pited
1

targettime?

targettime®

1

1

1

' '
: 1
1 1
i i
targettime ¥ : :
‘ ‘
1 1
1 1
1 1
: ‘
1 [

Gpt_StartTirmer® Gpt_StartTimer? Gpt_StopTimer Gpt_StartTirmer?

Figure 7.2: Timer channel in "one-shot mode"

[SWS_Gpt_00186] [If a timer channel is configured in "continuous mode":

If the timer has reached the target time (timer value = target time), the timer shall con-
tinue running with the value "0" at next timer tick. So, the time interval of the recurrence
is: target time + 1. This interval shall be independently of implementation, e.g. interrupt
delays. |

[SWS_Gpt_00330] [If a timer channel is configured in "continuous mode":

If supported by hardware, it shall be possible to realize a free running timer. This
means: A timer which rolls over automatically by hardware, if the target time is set to
the maximum value the timer is able to count (max value = 2n -1, n=number of bits). |

timer value
F
initialized running 1 stopped running

1 1 1
' i :
1 1 1
1 1 1
1 1 1

targettime ¥ H H .
1 1 1

targettime 2 ' : :
1 1 1
: '
1 1
1 1
1 1

0 1 ! -
T T t
Gpt_startTimer? Gpt_StopTirer Gpt_startTimer?

Figure 7.3: Timer channel in "continuous mode"

Both, the relative time elapsed and the time remaining can be queried by calling:
* Gpt_GetTimeElapsed

* Gpt_GetTimeRemaining

AUTSSAR

Gpt_StartTimer Target time reached Target time reached

Time elapsed

Perind 1 Period 2 AN Perind 3

-

r
Y
L

L L

Time elapsed | Time remaining Time remaining
-

Bl
L

h 4

- L |

Gpt_GetTimeElapsed Gpt_GetTimeElaps ed

Gpt_GetTimeRemaining Gpt_GetTimeRemaining

Figure 7.4: of time elapsed / time remaining for a timer channel in "continuous mode"

[SWS_Gpt_00331] [If supported by hardware, a timer channel shall be able to be
configured to call a notification function. If enabled, the function is called when the
target time is reached (timer value = target time). |

Interrupt notifications can be enabled and disabled at runtime individually for each
channel by calling of:
* Gpt_EnableNotification
* Gpt_DisableNotification
[SWS_Gpt_00127]
Upstream requirements: SRS_Gpt_13601

[If supported by hardware, a timer channel shall be able to be configured as wakeup
source of the ECU. If enabled, the wakeup occurs when the target time is reached
(timer value = target time). |

Wakeup interrupts can be enabled and disabled at runtime individually for each channel
by calling of:

* Gpt_EnableWakeup
* Gpt_DisableWakeup

After initialization the GPT driver is in "normal mode". A wakeup interrupt can only
occur when the driver is switched to "sleep mode". The operation mode can be set by
calling of:

* Gpt_SetMode

For a detailled description on wakeup handling please refer to the ECU State Manager
specification [5]. The operation modes and the possible mode transitions of the GPT
driver are shown in 7.5.

AUTSSAR

stm GPT driver modes /

. - uninifialized
initial

Gpt_Delnit)

GPT_MODE_SLEEP

Gpt_Init)
Gpt_Delnit)

Gpt_SetMode(GPT_MODE_SLEER)

m GPT_MODE_NORMAL

Gpt_SetMode(GPT_MODE_NORMAL)

Figure 7.5: GPT driver modes

7.1 GPT Predef Timers

Beside the possibility to configure individual timer channels with individual properties,
some GPT Predef Timers are defined. The API specified for "GPT timer channels" can
not be used for GPT Predef Timers.

[SWS_Gpt_00382] Types of GPT Predef Timers
Upstream requirements: SRS_Gpt_13604

[A GPT Predef Timer is a free running up counter (user point of view). If the timer
has reached the maximum value (max value = 2n -1, n=number of bits), the timer shall
continue running with the value "0" at next timer tick. |

[SWS_Gpt_00383]
Upstream requirements: SRS_Gpt_13605

Name of GPT Predef Timer Tick duration Maximum tick Number of Maximum time
value bits span (circa
values)
GPT_PREDEF_TIMER_1US_16BIT 1us 65535 16 bit 65 ms
GPT_PREDEF_TIMER_1US_24BIT 16777215 24 bit 16 s
GPT_PREDEF_TIMER_1US_32BIT 4294967295 32 bit 71 minutes
GPT_PREDEF_TIMER_100US_32BIT 100 ps 4294967295 32 bit 4.9 days

[SWS_Gpt_00384] [A GPT Predef Timer shall have a maximum tick tolerance of +/- 1
tick to ensure accuracy of time based functionality. |

AUTSSAR

Which GPT Predef Timer(s) can be enabled depends on clock and available timer
hardware (prescaler, width of timer register). It is recommended to enable all GPT
Predef Timers to ensure compatibility of time based functionality for all platforms.

It is recommended to use one hardware timer per tick duration and to supply the hard-
ware timer directly with the clock source "fclock = 1 / (tick duration)" by good choice of
clock and prescaler(s). By this, the values of the timer counter register can be used di-
rectly without any need of adaptation (computation) for performance reasons. A lower
bit timer can be derived from a higher bit timer by a simple software mask operation.

For implementation of GPT Predef Timers, special hardware features may be used:
» Timers may be cascaded asynchronously to use a timer as a prescaler

« Timers may be cascaded synchronously to extend the timer range (number of
bits)

» Timers with bit number greater than 32 bit may be used

» Assembler code may be used to perform 64 bit arithmetic, if necessary GPT
internal, e.g. if a 48 bit timer with tick duration 250 ns or 1 ps is used for all GPT
Predef Timers

[SWS_Gpt_00385]
Upstream requirements: SRS_Gpt_13606

[It shall be possible to configure which GPT Predef Timers are enabled. |

[SWS_Gpt_00386] [If a GPT Predef Timer is enabled, the timer(s) with the same tick
duration and lower bit number(s) shall be enabled also. |

Implementation specific configuration parameters are allowed if needed, e.g. to select
the used hardware unit. All enabled GPT Predef Timers run after calling of:

* Gpt_Init ([SWS_Gpt _00390])
* Gpt_SetMode(GPT_MODE_NORMAL) ([SWS_Gpt_00392])
All enabled GPT Predef Timers are stopped by calling of:
* Gpt_DelInit ([SWS_Gpt 00391])
* Gpt_SetMode(GPT_MODE_SLEEP) ([SWS_Gpt_00393])
The current time value of the GPT Predef Timers can be got by calling of:

* Gpt_GetPredefTimerValue ([SWS_Gpt_00394])

7.2 \Version checking

For details refer to [2] Chapter 5.1.8 “Version check”.

AUTSSAR

7.3 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.3.1 Development Errors

[SWS_Gpt_91000] Definition of development errors in module Gpt |

Type of error Related error code Error value
API service called without module initialization GPT_E_UNINIT 0x0A

API service for initialization called when already GPT_E_ALREADY_INITIALIZED 0x0D
initialized

API error return code: Init function failed GPT_E_INIT_FAILED 0x0E

API parameter checking: invalid channel GPT_E_PARAM_CHANNEL 0x14

API parameter checking: invalid value GPT_E_PARAM_VALUE 0x15

API parameter checking: invalid pointer GPT_E_PARAM_POINTER 0x16

API parameter checking: invalid Predef Timer GPT_E_PARAM_PREDEF_TIMER 0x17

API| parameter checking: invalid mode GPT_E_PARAM_MODE Ox1F

7.3.2 Runtime Errors

[SWS_Gpt_91001] Definition of runtime errors in module Gpt |

Type of error Related error code Error value
API service called when timer channel is still busy GPT_E_BUSY 0x0B
(running)

API service called when driver is in wrong mode GPT_E_MODE 0x0C

7.3.3 Production Errors

There are no production errors.

7.3.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter all types included from the following files are listed.

[SWS_Gpt_00278] Definition of imported datatypes of module Gpt
Upstream requirements: SRS_BSW_00348

[
Module Header File Imported Type
EcuM EcuM.h EcuM_WakeupSourceType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

8.2 Type definitions

8.2.1 Gpt_ConfigType

[SWS_Gpt_00357] Definition of datatype Gpt_ConfigType

Upstream requirements: SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00438, SRS_BSW_
00305, SRS BSW 00414, SRS_SPAL_12263

[

Name Gpt_ConfigType

Kind Structure

Elements
Type -
Comment Implementation specific configuration data structure, see chapter 10

for configurable parameters.

Description This is the type of the data structure including the configuration set required for initializing the
GPT timer unit.

Available via Gpt.h

AUTSSAR

8.2.2 Gpt_ChannelType

[SWS_Gpt_00358] Definition of datatype Gpt_ChannelType
Upstream requirements: SRS_BSW_00305

Name Gpt_ChannelType

Kind Type

Derived from uint

Range - - Implementation specific. But not
all values may be valid within this
type. This type shall be chosen in
order to have the most efficient
implementation on a specific
micro controller platform.

Description Numeric ID of a GPT channel.

Available via Gpt.h

8.2.3 Gpt_ValueType

[SWS_Gpt_00359] Definition of datatype Gpt_ValueType
Upstream requirements: SRS_BSW_00305, SRS_SPAL_12063, SRS_Gpt_12328

Name Gpt_ValueType

Kind Type

Derived from uint

Range - - The range of this type is uC
dependent (width of the timer
register) and has to be described
by the supplier.

Description Type for reading and setting the timer values (in number of ticks).

Available via Gpt.h

AUTSSAR

8.2.4 Gpt_ModeType

[SWS_Gpt_00360] Definition of datatype Gpt_ModeType
Upstream requirements: SRS_BSW_00441, SRS_BSW_00305

Name Gpt_ModeType
Kind Enumeration
Range GPT_MODE_NORMAL 0x00 Normal operation mode of the GPT
GPT_MODE_SLEEP 0x01 Operation for reduced power operation mode.
In sleep mode only wakeup capable channels
are available.
Description Modes of the GPT driver.

Available via

Gpt.h

8.2.5 Gpt_PredefTimerType

[SWS_Gpt_00389] Definition of datatype Gpt_PredefTimerType
Upstream requirements: SRS_Gpt_13605

Name Gpt_PredefTimerType

Kind Enumeration

Range GPT_PREDEF_TIMER_1 0x00 GPT Predef Timer with tick duration 1us and
US_16BIT range 16bit
GPT_PREDEF_TIMER_1 0x01 GPT Predef Timer with tick duration 1us and
US_24BIT range 24bit
GPT_PREDEF_TIMER_1 0x02 GPT Predef Timer with tick duration 1us and
US_32BIT range 32bit
GPT_PREDEF_TIMER_100 | 0x03 GPT Predef Timer with tick duration 100us
US 32BIT and range 32bit

Description Type for GPT Predef Timers

Available via Gpt.h

8.3 Function definitions

This is a list of functions provided for upper layer modules.

AUTSSAR

8.3.1 Gpt_GetVersioninfo

[SWS_Gpt_00279] Definition of API function Gpt_GetVersioninfo
Upstream requirements: SRS_BSW_00407

[

Service Name

Gpt_GetVersionInfo

Syntax void Gpt_GetVersionInfo (
Std_VersionInfoTypex VersionInfoPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out)

VersionInfoPtr Pointer to where to store the version information of this module.

Return value None
Description Returns the version information of this module.
Available via Gpt.h

]

[SWS_Gpt_00338]

Upstream requirements: SRS _BSW_00323

[If development error detection is enabled for the GPT module:

If the parameter versionInfoPtr is a null pointer, the function Gpt_GetVersion-
Info shall raise the error GPT_E_PARAM POINTER. |

8.3.2 Gpt_Init

[SWS_Gpt_00280] Definition of API function Gpt_Init
Upstream requirements: SRS_BSW_00404, SRS_BSW_00405, SRS_BSW 00438, SRS_BSW _

[

00101, SRS_BSW_00358, SRS_BSW_00414, SRS_SPAL_12057

Service Name

Gpt_Init

Syntax void Gpt_Init (
const Gpt_ConfigTypex ConfigPtr

)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr ‘ Pointer to a selected configuration structure
Parameters (inout) None
Parameters (out) None

V

AUTSSAR

A
Return value None
Description Initializes the GPT driver.
Available via Gpt.h
]

[SWS_Gpt_00006]

Upstream requirements: SRS_BSW_00101, SRS_SPAL_12057
[The function Gpt_Init shall initialize the hardware timer module according to a con-
figuration set referenced by Configptr. |

[SWS_Gpt_00107] [The function Gpt_Init shall disable all interrupt notifications,
controlled by the GPT driver. |

[SWS_Gpt_00068]

Upstream requirements: SRS_SPAL_12125
[The function Gpt_Init shall only initialize the configured resources. Resources that
are not configured in the configuration file shall not be touched. |

The following rules regarding initialization of controller registers shall apply to this driver
implementation:

- [SWS_Gpt_00352]
Upstream requirements: SRS_SPAL_12461

[If the hardware allows for only one usage of the register, the driver module
implementing that functionality is responsible for initializing the register. |

- [SWS_Gpt_00353]
Upstream requirements: SRS_SPAL_12461

[If the register can affect several hardware modules and if it is an I/O register it
shall be initialized by the PORT driver. |

- [SWS_Gpt_00354]
Upstream requirements: SRS_SPAL_12461

[If the register can affect several hardware modules and if it is not an 1/O register
it shall be initialized by the MCU driver. |

* [SWS_Gpt_00355]
Upstream requirements: SRS_SPAL_12461

[One-time writable registers that require initialization directly after reset shall be
initialized by the startup code. |

AUTSSAR

- [SWS_Gpt_00356]
Upstream requirements: SRS_SPAL_12461

[All other registers shall be initialized by the startup code. |

[SWS_Gpt_00307] [If development error detection is enabled for the GPT module:
If the GPT driver is not in operation mode "uninitialized", the function Gpt_1Init shall
raise the error GPT_E_ALREADY_INITIALIZED.|

[SWS_Gpt_00258] [The function Gpt_1Init shall disable all wakeup interrupts, con-
trolled by the GPT driver. |

[SWS_Gpt_00339] [The function Gpt_Init shall set the operation mode of the GPT
driver to "normal mode". This leads to a behavior like Gpt_SetMode is called with
parameter GPT_MODE_NORMAL. |

[SWS_Gpt_00309] [A re-initialization of the GPT driver by executing the Gpt_Init
function requires a de-initialization before by executing a Gpt_DeInit. |

[SWS_Gpt_00390]
Upstream requirements: SRS_Gpt_13607

[The function Gpt_Init shall start all enabled GPT Predef Timers at value "0". |

8.3.3 Gpt_Delnit

[SWS_Gpt_00281] Definition of API function Gpt_Delnit
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163, SRS_Gpt_12116

[
Service Name Gpt_Delnit
Syntax void Gpt_DelInit (
void
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Deinitializes the GPT driver.

Available via

Gpt.h

AUTSSAR

[SWS_Gpt_00008]
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163, SRS_Gpt_12116

[The function Gpt_DeInit shall deinitialize the hardware used by the GPT driver
(depending on configuration to the power on reset state. Values of registers which are
not writeable are excluded. It's the responsibility of the hardware design that the state
does not lead to undefined activities in the pC. |

[SWS_Gpt_00105] [The function Gpt_DeInit shall disable all interrupt notifications
and wakeup interrupts, controlled by the GPT driver. |

[SWS_Gpt_00162]
Upstream requirements: SRS_Gpt_12116

[The function Gpt_DeInit shall influence only the peripherals, which are allocated
by the static configuration. |

[SWS_Gpt_00308]
Upstream requirements: SRS_Gpt_12116

[If a postbuild multiple selectable configuration variant was used, the function Gpt_
DeInit shall further influence only the peripherals, which are allocated by the runtime
configuration set passed by the previous call of the function Gpt_Init.|

[SWS_Gpt_00194]

Upstream requirements: SRS_BSW_00171
[The function Gpt_DeInit shall be pre compile time configurable On/Off by the con-
figuration parameter: GptDeinitApi. |

[SWS_Gpt_00363] [The function Gpt_DeInit shall set the operation mode of the
GPT driver to "uninitialized". |

[SWS_Gpt_00234] [If any timer channel is in state "running", the function Gpt_-
DeInit shall raise the runtime error GPT_E_BUSY. |

[SWS_Gpt_00220]
Upstream requirements: SRS_BSW_00406
[If development error detection is enabled for the GPT module:

If the driver is not initialized, the function Gpt_DeInit shall raise the error GPT_E_
UNINIT.]

[SWS_Gpt_00391]
Upstream requirements: SRS_Gpt_13607

[The function Gpt_DeInit shall stop all enabled GPT Predef Timers. |

AUTSSAR

8.3.4 Gpt_GetTimeElapsed

[SWS_Gpt_00282] Definition of API function Gpt_GetTimeElapsed
Upstream requirements: SRS_Gpt_12117

[

Service Name

Gpt_GetTimeElapsed

Syntax Gpt_ValueType Gpt_GetTimeElapsed (
Gpt_ChannelType Channel

)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel | Numeric identifier of the GPT channel.
Parameters (inout) None
Parameters (out) None

Return value

Gpt_ValueType | Elapsed timer value (in number of ticks)

Description

Returns the time already elapsed.

Available via

Gpt.h

]

[SWS_Gpt_00010]
Upstream requirements: SRS_Gpt_12117

[The function Gpt_GetTimeElapsed shall return the time already elapsed. When
the Channel is in mode "one-shot mode", this is the value relative to the point in time,
the Channel has been started. |

[SWS_Gpt_00361] [When the Channel is in mode "continuous mode", the return
value of Gpt_GetTimeElapsed is the value relative to the last recurrence (target
time reached) or to the start of the Channel before the first recurrence occurs. |

[SWS_Gpt_00295] [If the function Gpt_GetTimeElapsed is called on atimer Chan-
nel in state "initialized" (Channel started never before), the function shall return the
value "0". |

[SWS_Gpt_00297] [If the function Gpt_GetTimeElapsed is called on a timer Chan-
nel in state "stopped", the function shall return the time value at the moment of stop-

ping. |

[SWS_Gpt_00299] [If the function Gpt_GetTimeElapsed is called on a Channel
configured for "one-shot mode" in state "expired" (timer has reached the target time),
the function shall return the target time. |

[SWS_Gpt_00113] [The function Gpt_GetTimeElapsed shall be fully reentrant, this
means even for the same timer channel. |

AUTSSAR

[SWS_Gpt_00195]
Upstream requirements: SRS_BSW_00171

[The function Gpt_GetTimeElapsed shall be pre compile time configurable On/Off
by the configuration parameter: Gpt TimeElapsedApi. |
[SWS_Gpt_00222]
Upstream requirements: SRS_BSW_00406
[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_GetTimeElapsed shall raise the error
GPT_E_UNINIT.]

[SWS_Gpt_00210] [If development error detection is enabled for GPT module:

If the parameter Channel is invalid (not within the range specified by configuration),
the function Gpt_GetTimeElapsed shall raise the error GPT_E_PARAM_CHANNEL. |

State / Circumstance Timer channel state Return value Development error (if
enabled)
Driver uninitialized - 0 GPT_E_UNINIT
Driver initialized initialized 0
running elapsed time
stopped elapsed time at moment of
stopping
expired (only one-shot target time
mode)
Invalid parameter "Channel" | all 0 GPT_E_PARAM_CHANNEL

Table 8.1: Return values and DET errors of Gpt_GetTimeElapsed

8.3.5 Gpt_GetTimeRemaining

[SWS_Gpt_00283] Definition of API function Gpt_GetTimeRemaining
Upstream requirements: SRS_Gpt_12117

[
Service Name Gpt_GetTimeRemaining
Syntax Gpt_ValueType Gpt_GetTimeRemaining (
Gpt_ChannelType Channel
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel | Numeric identifier of the GPT channel.
Parameters (inout) None

Y%

AUTSSAR

A
Parameters (out) None
Return value Gpt_ValueType ‘ Remaining timer value (in number of ticks)
Description Returns the time remaining until the target time is reached.
Available via Gpt.h
]

[SWS_Gpt_00083]
Upstream requirements: SRS_Gpt_12117

[The function Gpt_GetTimeRemaining shall return the timer value remaining until
the target time will be reached next time. The remaining time is the "target time" minus
the time already elapsed. |

[SWS_Gpt_00301] [If the function Gpt_GetTimeRemaining is called on a timer
Channel in state "initialized" (Channe1 started never before), the function shall return
the value "0". |

[SWS_Gpt_00303] [If the function Gpt_GetTimeRemaining is called on a timer
Channel in state "stopped", the function shall return the remaining time value at the
moment of stopping. |

[SWS_Gpt_00305] [If the function Gpt_GetTimeRemainingis called on a Channel
configured for "one-shot mode" in state "expired" (timer has reached the target time),
the function shall return the value "0". |

[SWS_Gpt_00114] [The function Gpt_GetTimeRemaining shall be fully reentrant,
this means even for the same timer Channel. |

[SWS_Gpt_00196]
Upstream requirements: SRS_BSW_00171

[The function Gpt_GetTimeRemaining shall be pre compile time configurable
On/Off by the configuration parameter: Gpt TimeRemainingApi. |

[SWS_Gpt_00223]
Upstream requirements: SRS_BSW_00406
[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_GetTimeRemaining shall raise the
error GPT_E_UNINIT. |

[SWS_Gpt_00211] [If development error detection is enabled for GPT module:

If the parameter Channel is invalid (not within the range specified by configuration), the
function Gpt_GetTimeRemaining shall raise the error GPT_E_PARAM_CHANNEL. |

AUTSSAR

State / Circumstance

Timer channel state Return value

Development error (if
enabled)

Driver uninitialized 0 GPT_E_UNINIT
Driver initialized initialized 0
running remaining time
stopped remaining time at moment of
stopping
expired (only one-shot 0
mode)
Invalid parameter "Channel” | all 0 GPT_E_PARAM_CHANNEL

Table 8.2: Return values and DET errors of Gpt_GetTimeRemaining

8.3.6 Gpt_StartTimer

[SWS_Gpt_00284] Definition of API function Gpt_StartTimer

Upstream requirements: SRS_Gpt_12128

[

Service Name

Gpt_StartTimer

Syntax void Gpt_StartTimer (
Gpt_ChannelType Channel,
Gpt_ValueType Value
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same timer channel)
Parameters (in) Channel Numeric identifier of the GPT channel.
Value Target time in number of ticks.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Starts a timer channel.

Available via

Gpt.h

|
[SWS_Gpt_00274]

Upstream requirements: SRS_Gpt_12128
[The function Gpt_StartTimer shall start the selected timer Channel with a defined
target time. |
[SWS_Gpt_00275]

Upstream requirements: SRS_Gpt_12128

[If configured and enabled, an interrupt notification or a wakeup interrupt occurs, when
the target time is reached. |

AUTSSAR

[SWS_Gpt_00115] [The function Gpt_sStartTimer shall be reentrant, if the timer
Channels used in concurrent calls are different. |

[SWS_Gpt_00364] [The state of the selected timer Channel shall be changed to
"running" if Gpt_StartTimer is called.]

[SWS_Gpt_00212] [If development error detection is enabled for GPT module:

If the parameter Channel is invalid (not within the range specified by configuration),
the function Gpt_StartTimer shall raise the error GPT_E_PARAM CHANNEL. |

[SWS_Gpt_00218]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled for GPT module:

The function Gpt_StartTimer shall raise the error GPT_E_PARAM_VALUE if the pa-
rameter Value is "0" or not within the allowed range (exceeding the maximum timer
resolution). |

[SWS_Gpt_00224]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_StartTimer shall raise the error GPT__
E_UNINIT.]

[SWS_Gpt_00084] [If the function Gpt_StartTimer is called on a Channel in state
"running”, the function shall raise the runtime error GPT_E_BUSY. |

8.3.7 Gpt_StopTimer

[SWS_Gpt_00285] Definition of API function Gpt_StopTimer
Upstream requirements: SRS_Gpt_12119

[
Service Name Gpt_StopTimer
Syntax void Gpt_StopTimer (
Gpt_ChannelType Channel
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same timer channel)
Parameters (in) Channel | Numeric identifier of the GPT channel.
Parameters (inout) None
Parameters (out) None

\Y

AUTSSAR

A
Return value None
Description Stops a timer channel.
Available via Gpt.h
]

[SWS_Gpt_00013]
Upstream requirements: SRS_Gpt_12119

[The function Gpt_StopTimer shall stop the selected timer Channel. |

[SWS_Gpt_00343] [The state of the selected timer Channel shall be changed to
"stopped" if Gpt_StopTimer is called. |

[SWS_Gpt_00099] [If development error detection is enabled for GPT module:

If the function Gpt_StopTimer is called on a Channel in state "initialized", "stopped"
or "expired", the function shall not raise a development error. |

[SWS_Gpt_00344] [If the function Gpt_StopTimer is called on a Channel in state
“initialized", "stopped" or "expired", the function shall leave without any action (no
change of the Channel state). |

[SWS_Gpt_00116] [The function Gpt_StopTimer shall be reentrant, if the timer
Channels used in concurrent calls are different. |

[SWS_Gpt_00213] [If development error detection is enabled for GPT module:

If the parameter Channel is invalid (not within the range specified by configuration),
the function Gpt_StopTimer shall raise the error GPT_E_PARAM CHANNEL. |

[SWS_Gpt_00225]
Upstream requirements: SRS_BSW_00406
[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_StopTimer shall raise the error GPT_
E_UNINIT.]

AUTSSAR

8.3.8 Gpt_EnableNotification

[SWS_Gpt_00286] Definition of API function Gpt_EnableNotification
Upstream requirements: SRS_Gpt_12121

[

Service Name

Gpt_EnableNotification

Syntax void Gpt_EnableNotification (
Gpt_ChannelType Channel

)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same timer channel)
Parameters (in) Channel Numeric identifier of the GPT channel.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Enables the interrupt notification for a channel (relevant in normal mode).

Available via

Gpt.h

|
[SWS_Gpt_00014]
Upstream requirements: SRS_SPAL_00157, SRS_SPAL_12067, SRS_Gpt_12121

[The function Gpt_EnableNotification shall enable the interrupt notification of
the referenced Channel configured for notification (see also [SWS_Gpt_00233]). The
function shall save an attribute like "notification enabled" of the Channel. |

Comment: This attribute affects the interrupt notification always when the driver is in
"normal mode". In "sleep mode" the attribute has no influence.

[SWS_Gpt_00117] [The function Gpt_EnableNotification shall be reentrant, if
the timer Channels used in concurrent calls are different. |

[SWS_Gpt_00199]
Upstream requirements: SRS_BSW_00171

[The function Gpt_EnableNotification shall be pre compile time configurable
On/Off by the configuration parameter: GptEnableDisableNotificationApi. |

[SWS_Gpt_00226]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_EnableNotification shall raise the
error GPT_E_UNINIT. |

[SWS_Gpt_00214] [If development error detection is enabled for GPT module:

AUTSSAR

If the parameter Channel is invalid (not within the range specified by configuration), the
function Gpt_EnableNotification shallraise the error GPT_E_PARAM CHANNEL. |

[SWS_Gpt_00377] [If development error detection is enabled for GPT module:

If no valid notification function is configured (GptNoatification), the function Gpt_En-
ableNotification shall raise the error GPT_E_PARAM CHANNEL. |

8.3.9 Gpt_DisableNotification

[SWS_Gpt_00287] Definition of API function Gpt_DisableNotification
Upstream requirements: SRS_Gpt_12122

[

Service Name

Gpt_DisableNotification

Syntax void Gpt_DisableNotification (
Gpt_ChannelType Channel
)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant (but not for the same timer channel)

Parameters (in) Channel Numeric identifier of the GPT channel.
Parameters (inout) None

Parameters (out) None

Return value None

Description

Disables the interrupt notification for a channel (relevant in normal mode).

Available via

Gpt.h

]

[SWS_Gpt_00015]
Upstream requirements: SRS_SPAL_00157, SRS_Gpt_12122, SRS_SPAL_12067

[The function Gpt_DisableNotification shall disable the interrupt notification of
the referenced channel configured for notification (see also [SWS_Gpt_00233]). The
function shall save an attribute like "notification disabled" of the Channe1l. |

Comment: This attribute affects the interrupt notification always when the driver is in
"normal mode". In "sleep mode" the attribute has no influence.

[SWS_Gpt_00118] [The function Gpt_DisableNotification shall be reentrant, if
the timer Channels used in concurrent calls are different. |

[SWS_Gpt_00200]
Upstream requirements: SRS_BSW_00171

[The function Gpt_DisableNotification shall be pre compile time configurable
On/Off by the configuration parameter: GptEnableDisableNotificationApi. |

AUTSSAR

[SWS_Gpt_00227]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_DisableNotification shall raise the

error GPT_E_UNINIT. |

[SWS_Gpt_00217] [If development error detection is enabled for GPT module:

If the parameter Channel is invalid (not within the range specified by configuration), the
function Gpt_DisableNotification shall raise the error GPT_E_PARAM CHAN-

NEL. |

[SWS_Gpt_00379] [If development error detection is enabled for GPT module:

If no valid notification function is configured (GptNotification), the function Gpt_Dis-

ableNotification shall raise the error GPT_E_PARAM CHANNEL. |

8.3.10 Gpt_SetMode

[SWS_Gpt_00288] Definition of API function Gpt_SetMode
Upstream requirements: SRS_SPAL_12169, SRS_Gpt_13603

[

Service Name

Gpt_SetMode

Syntax void Gpt_SetMode (
Gpt_ModeType Mode
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Mode GPT_MODE_NORMAL: Normal operation mode of the GPT
grllz\’/'?EMODE_SLEEP: Sleep mode of the GPT driver (wakeup
capable).
See also Gpt_ModeType.
Parameters (inout) None
Parameters (out) None
Return value None
Description Sets the operation mode of the GPT.
Available via Gpt.h

]

[SWS_Gpt_00151]
Upstream requirements: SRS_SPAL_12169, SRS_Gpt_13603

[The function Gpt_SetMode shall set the operation mode of the GPT driver to the

given Mode parameter. |

AUTSSAR

[SWS_Gpt_00255] [The function Gpt_SetMode is only available if the configuration
parameter Gpt ReportWakeupSource is enabled. |

[SWS_Gpt_00152]
Upstream requirements: SRS_Gpt_13603

[If the parameter Mode has the value GPT_MODE_NORMAL:

The function Gpt_SetMode shall enable the interrupt notification for all channels which
are configured for notification and the notification is enabled (stored attribute) via the
function Gpt_EnableNotification prior. All other interrupt notifications shall be
disabled. |

[SWS_Gpt_00153]
Upstream requirements: SRS_Gpt_13603

[If the parameter Mode has the value GPT_MODE_SLEEP:

The function Gpt_SetMode shall enable the wakeup interrupts for all channels which
are configured for wakeup and the wakeup is enabled (stored attribute) via the function
Gpt_EnableWakeup prior. All other wakeup interrupts shall be disabled. |

[SWS_Gpt_00164] [If the function Gpt_SetMode is called with parameter Mode has
the value GPT_MODE_SLEEP: All timer channels in state "running" which are not
configured for wakeup or not enabled for wakeup interruption (stored attribute) via
Gpt_EnableWakeup shall be stopped and their state shall be changed to "stopped". |

[SWS_Gpt_00165] [If the parameter Mode has the value GPT_MODE_NORMAL, the
function Gpt_SsetMode shall not restart automatically the timer channels which have
been stopped by entering the sleep Mode. |

[SWS_Gpt_00341] [If the parameter has the value GPT_MODE_SLEEP the function
Gpt_SetMode shall not start a wakeup timer automatically. First, the user shall call
Gpt_StartTimer to start a wakeup timer, after this the user shall call Gpt_SetMode
with parameter GPT_MODE_SLEERP |

[SWS_Gpt_00228]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_SetMode shall raise the error GPT_E__
UNINIT.|

[SWS_Gpt_00231] [If development error detection is enabled for GPT module:

The function Gpt_setMode shall raise the error GPT_E_PARAM_MODE if the parameter
Mode is invalid. |

AUTSSAR

[SWS_Gpt_00201]

Upstream requirements: SRS_BSW_00171

[The function Gpt_sSetMode shall be pre compile time configurable On/Off by the

configuration parameter: GptWakeupFunctionalityApi.|

[SWS_Gpt_00392]

Upstream requirements: SRS_Gpt_13607
[If the parameter Mode has the value GPT_MODE_NORMAL:

If the driver is in "sleep mode", the function Gpt_SetMode shall restart all enabled

GPT Predef Timers at value "0". |

[SWS_Gpt_00393]

Upstream requirements: SRS_Gpt_13607
[If the parameter Mode has the value GPT_MODE_SLEEP:

The function Gpt_setMode shall stop all enabled GPT Predef Timers. |

8.3.11 Gpt_DisableWakeup

[SWS_Gpt_00289] Definition of API function Gpt_DisableWakeup
Upstream requirements: SRS_Gpt_13602

[

Service Name

Gpt_DisableWakeup

Syntax void Gpt_DisableWakeup (
Gpt_ChannelType Channel

)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same timer channel)
Parameters (in) Channel Numeric identifier of the GPT channel.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Disables the wakeup interrupt of a channel (relevant in sleep mode).

Available via

Gpt.h

]

[SWS_Gpt_00159]
Upstream requirements: SRS_Gpt_13602
[The function Gpt_DisableWakeup shall disable the wakeup interrupt of the ref-

erenced Channel configured for wakeup. The function shall save an attribute like
"wakeup disabled" of the Channel. |

AUTSSAR

Comment: This attribute affects the wakeup interrupt always when the driver is in "sleep
mode". In "normal mode" the attribute has no influence.

[SWS_Gpt_00157] [The function Gpt_DisableWakeup is only feasible, if GptRe-
portWakeupSource is statically configured available. |

[SWS_Gpt_00155] [The function Gpt_DisableWakeup shall be reentrant, if the
timer channels used in concurrent calls are different. |

[SWS_Gpt_00202]

Upstream requirements: SRS_BSW_00171
[The function Gpt_DisableWakeup shall be pre compile time configurable On/Off by
the configuration parameter: GptWakeupFunctionalityApi. |

[SWS_Gpt_00215] [If development error detection is enabled for GPT module:

If the parameter Channel is invalid (not within the range specified by configuration)
or channel wakeup is not enabled by configuration (GptEnableWakeup), the function
Gpt_DisableWakeup shall raise the error GPT_E_PARAM_CHANNEL. |

[SWS_Gpt_00229]
Upstream requirements: SRS_BSW_00406
[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_DisableWakeup shall raise the error
GPT_E_UNINIT.]

8.3.12 Gpt_EnableWakeup

[SWS_Gpt_00290] Definition of API function Gpt_EnableWakeup
Upstream requirements: SRS_Gpt_13602

[
Service Name Gpt_EnableWakeup
Syntax void Gpt_EnableWakeup (
Gpt_ChannelType Channel
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same timer channel)
Parameters (in) Channel Numeric identifier of the GPT channel.
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A

Description Enables the wakeup interrupt of a channel (relevant in sleep mode).

Available via Gpt.h

]

[SWS_Gpt_00160]
Upstream requirements: SRS_Gpt_13602

[The function Gpt_EnableWakeup shall enable the wakeup interrupt of the refer-
enced Channel configured for wakeup. The function shall save an attribute like
"wakeup enabled" of the channel. |

Comment: This attribute affects the wakeup interrupt always when the driver is in "sleep
mode". In "normal mode" the attribute has no influence.

[SWS_Gpt_00158] [The function Gpt_EnableWakeup is only feasible, if GptReport-
WakeupSource is statically configured available. |

[SWS_Gpt_00156] [The function Gpt_EnableWakeup shall be reentrant, if the timer
Channels used in concurrent calls are different. |

[SWS_Gpt_00203]
Upstream requirements: SRS_BSW_00171
[The function Gpt_EnableWakeup shall be pre compile time configurable On/Off by
the configuration parameter: GptiWakeupFunctionalityApi. |
[SWS_Gpt_00230]
Upstream requirements: SRS_BSW_00406
[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_EnableWakeup shall raise the error
GPT_E_UNINIT.]

[SWS_Gpt_00216] [If development error detection is enabled for GPT module:

If the parameter channel is invalid (not within the range specified by configuration)
or channel wakeup is not enabled by configuration (GptEnableWakeup), the function
Gpt_EnableWakeup shall raise the error GPT_E_PARAM_CHANNEL. |

AUTSSAR

8.3.13 Gpt_CheckWakeup

[SWS_Gpt_00328] Definition of API function Gpt_CheckWakeup |

Service Name

Gpt_CheckWakeup

Syntax void Gpt_CheckWakeup (
EcuM_WakeupSourceType WakeupSource
)
Service ID [hex] 0x0c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WakeupSource Information on wakeup source to be checked. The associated
GPT channel can be determined from configuration data.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Checks if a wakeup capable GPT channel is the source for a wakeup event and calls the ECU
state manager service EcuM_SetWakeupEvent in case of a valid GPT channel wakeup event.

Available via

Gpt.h

]

[SWS_Gpt_00321] [The function Gpt_CheckWakeup shall check if a wakeup capable
GPT channel is the source for a wakeup event and call EcuM_SetWakeupEvent to

indicate a valid timer wakeup event to the ECU State Manager [5]. |

[SWS_Gpt_00322] [The function Gpt_CheckWakeup is only feasible, if GptReport-

WakeupSource is statically configured available. |

[SWS_Gpt_00323] [The function Gpt_CheckWakeup shall be reentrant, by reason of

possible usage in concurrent interrupt service routines. |

[SWS_Gpt_00324] [The function Gpt_CheckWakeup shall be pre compile time con-

figurable On/Off by the configuration parameter: GptWakeupFunctionalityApi.]

[SWS_Gpt_00325]

Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_CheckWakeup shall raise the error

GPT_E_UNINIT.]

AUTSSAR

8.3.14 Gpt_GetPredefTimerValue

[SWS_Gpt_00394] Definition of API function Gpt_GetPredefTimerValue
Upstream requirements: SRS_Gpt_13608

[
Service Name Gpt_GetPredefTimerValue
Syntax Std_ReturnType Gpt_GetPredefTimerValue (
Gpt_PredefTimerType PredefTimer,
uint32+ TimeValuePtr
)
Service ID [hex] 0xod
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) PredefTimer GPT Predef Timer
Parameters (inout) None
Parameters (out) TimeValuePtr Pointer to time value destination data in RAM
Return value Std_ReturnType E_OK: no error has been detected
E_NOT_OK: aborted due to errors
Description Delivers the current value of the desired GPT Predef Timer.
Available via Gpt.h
|

Note: It is strongly recommended to check the return value of the function Gpt_-
GetPredefTimerValue on user software level. When E_NOT_OX is returned the
time value - pointed by TimevaluePtr - may be invalid and must not be used.

[SWS_Gpt_00395]
Upstream requirements: SRS_Gpt_13608

[The function Gpt_GetPredefTimerValue shall return the current value of the GPT
Predef Timer passed by PredefTimer. |

[SWS_Gpt_00396] [If the timer value of the function Gpt_GetPredefTimervValue
is less than 32 bit (16bit or 24bit timer), the upper bits shall be filled with zero. |

[SWS_Gpt_00397]
Upstream requirements: SRS_Gpt_13608

[The function Gpt_GetPredefTimerValue shall be fully reentrant, this means even
for the same GPT Predef Timer. |

[SWS_Gpt_00402]
Upstream requirements: SRS_BSW_00406

[If the GPT driver is not initialized, in "sleep mode" or the GPT Predef Timer is not
enabled, the function Gpt_GetPredefTimerVvalue shall return E_NOT_OK. |

Note: This is to inform user software if the hardware timer is not running, independent
of development error detection is enabled for GPT module enabled/disabled for the
GPT module. The function Gpt_GetPredefTimerValue is used by the Time Service

AUTSSAR

module which is part of the Services Layer. The user of the Time Service module shall
have a chance to cope with missed timer support.

[SWS_Gpt_00398]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for GPT module:

If the driver is not initialized, the function Gpt_GetPredefTimerValue shall raise the
error GPT_E_UNINIT. |

[SWS_Gpt_00399]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for GPT module:

If the parameter PredefTimer is invalid, the function Gpt_GetPredefTimervValue
shall raise the development error GPT_E_PARAM _PREDEF_TIMER. |

[SWS_Gpt_00400] [If development error detection is enabled for GPT module:

If the GPT Predef Timer passed by the parameter PredefTimer is not enabled, the
function Gpt_GetPredefTimerValue shall raise the development error GPT_E_-
PARAM_PREDEF_TIMER.

[SWS_Gpt_00401] [If the driver is in "sleep mode", the function Gpt_GetPredef-
TimerValue shall raise the runtime error GPT_E_MODE. |

[SWS_Gpt_00403]
Upstream requirements: SRS_BSW_00369, SRS_BSW_00323

[If development error detection is enabled for GPT module:

If the parameter TimevaluePtr is a null pointer, the function Gpt_GetPredef-
TimerValue shall raise the error GPT_E_PARAM POINTER. |

8.4 Callback notifications

Since the GPT is a driver module it doesn’t provide any callback functions for lower
layer modules.

8.5 Scheduled functions

None.

AUTSSAR

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

[SWS_Gpt_91002] Definition of mandatory interfaces required by module Gpt |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Gpt_00406] Definition of optional interfaces requested by module Gpt
Upstream requirements: SRS_SPAL_00157

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

EcuM_CheckWakeup EcuM.h This function can be called to check the given
wakeup sources. It will pass the argument to the
integrator function EcuM_CheckWakeupHook. It can
also be called by the ISR of a wakeup source to set
up the PLL and check other wakeup sources that
may be connected to the same interrupt.

EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.

]

[SWS_Gpt_00326] [EcuM_CheckWakeup shall be called within the Interrupt Service
Routine, servicing the GPT channel wakeup event on wakeup-capable channels. |

[SWS_Gpt_00327]
Upstream requirements: SRS_SPAL_12129

[The ISR’s, providing the wakeup events, shall be responsible for resetting the interrupt
flags (if needed by hardware). |

AUTSSAR

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

8.6.3.1 GPT Notification
[SWS_Gpt_00292] Definition of configurable interface Gpt_Notifica-

tion_<channel>
Upstream requirements: SRS_BSW_00375, SRS_SPAL_12069

[
Service Name Gpt_Notification_<channel>
Syntax void Gpt_Notification_<channel> (
void
)
Sync/Async Synchronous
Reentrancy GPT user implementation dependant.
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Callback routine provided by the user to notify the caller when defined target time of the
channel is reached.
Available via Gpt_Externals.h
J

The GPT module’s environment shall declare a separate notification for each channel
to avoid parameters in notification services and to improve run time efficiency.

[SWS_Gpt_00086] [The callback notifications Gpt_Notification_<channel>
shall be configurable as pointers to user defined functions within the configuration
structure. |

[SWS_Gpt_00209]
Upstream requirements: SRS_BSW_00375, SRS_SPAL_12069

[Each channel shall provide its own notification if configured. |
[SWS_Gpt_00093] [When disabled, the GPT Driver will send no natification. |

[SWS_Gpt_00233]
Upstream requirements: SRS_SPAL_12067, SRS_Gpt_12120

[The GPT Driver shall invoke a notification whenever the defined target time of the
channel is reached. |

AUTSSAR

[SWS_Gpt_00206]

Upstream requirements: SRS_SPAL_12129
[The ISR’s, providing the timer events, shall be responsible for resetting the interrupt
flags (if needed by hardware) and calling the according notification function. |

[SWS_Gpt_00362] [For all available channels, callback functions have to be declared
by the configuration tool. |

8.7 Error detection
[SWS_Gpt_00332]

Upstream requirements: SRS_SPAL_12448
[If the GptDevErrorDetect switch is enabled:

When a development error occurs the corresponding GPT function shall skip the de-
sired functionality (leave service without any action). |

AUTSSAR

9 Sequence diagrams

All functions except Gpt_Init, Gpt_Delnit, Gpt_GetVersionInfo and Gpt_SetMode are
synchronous and re-entrant.

9.1 Gpt_Init

The ECU State Manager (EcuM) is responsible for calling the init function.

«module» «module»
EcuM Gpt
O

| Gpt_lInit(const |

Gpt_ConfigType*)
Gpt_Init()

Figure-9.1: Sequence Diagram - Gpt_lnit

9.2 GPT continuous mode

Channel 2 is configured as "Continuous Mode"

AUTSSAR

Gpt User «module» «Peripheral»
Gpt GPT Hardware

I Gpt_EnableNotification(Gpt_ChannelType) |

Gpt_EnableNotification()

Gpt_StarntTimer(Gpt_ChannelType, L
Gpt_ValueType)

start Channel2

Gpt_StartTimer()
R e R Timer hasreached

target time (set by
Gpt_StartTimer) and
continuous running.

<------ fsteme
. Gpt_Notification_Channel2() :
([I
I T !
_________ Gpt_Nofification_Channel20 _ __ _ _ _ _>|£| !
|
ne | |
| | |
I I I
| Gpt_GetTimeElapsed(Gpt_ValueType | I
Gpt_ChannelType): Gpt_ValueType read Channel2 :

Gpt_GetTimeElapsed()
e S e Timer hasreached

target time (set by
Gpt_StartTimer) and
continuous running.

1 | Timer is stopped by the user.

e ————— larget time reached
2nd time
L Gpt_Notification_Channel2()
LI
U T
Gpt_Notification_Channel2() |
T I
| | Timer hasreached
| | target time (set by
I I Gpt_StartTimer) and
: : continuous running.
I I
| |
| |
I I .
target time reached
I rM<------2 S — - — - —
| o 3rd time —[.IJ
I Gpt_Notification_Channel2() I
|
I
Gpt_Notification_Channel2() I
———————————————————————————— > |
- L |
| Gpt_StopTimer(Gpt_ChannelType) I I
I
stop Channel2 |
< Gpt_StopTimer() |
Description: :
|
|

Figure 9.2: Sequence Diagram - GPT continuous mode

9.3 GPT one-shot mode

Channel 1 is configured for "One-shot Mode"

AUTSSAR

Gpt User «module» «Peripheral»
Gpt GPT Hardware

I Gpt_EnableNotification(Gpt_ChannelType) |

T
|
|
I
|
Gpt_EnableNotification !
<_ ____________ E__ _——————— _O _____________ :
Gpt_StartTimer(Gpt_ChannelType, : :
Gpt_ValueType) start Channelt !
L Gpt_StartTimer()
Timer hasreached target
time(set by Gpt_StartTimer)
timer expired
e ———————————————
L Gpt_Notification_Channel1()]
([I
Gpt_Notification_Channel1() I I
____________________________________ >|:| |
.] |
| |
| |
Note: ! !
Notification can be used to start the timer again : :
| |
| AN | |
! Gpt_StartTimer(Gpt_ChannelType, ! :
Gpt_valueType) start Channel1 |
Gpt_StartTimer(L'J
e o eee_____S pLStartTimer 0] :
T I
| |
Gpt_GetTimeRemaining(Gpt_ValueType, : :
Gpt_ChannelType): Gpt_ValueType |
|
read Channell |
. - [}
Gpt_GetTimeRemaining() |
- T e |
. T 1
Gpt_StopTimer(Gpt_ChannelType) 1 1
stop Channell :
U
|
Gpt_StopTimer() |
ke e e e L]
Description: :
T Gpt_Delnit() T Timer is stopped by the user |
before the timer has expired |
I
Gpt_Delnit() |
(S ——— - ——mm T T e m — — —— — — = — 1
|
I
I
|
|

Figure 9.3: Sequence Diagram - GPT one-shot mode

9.4 Disable/Enable Notifications

The sequence diagram shown in this chapter explains the behavior of the driver, when
the notification is disabled, while the timer is still running in continuous mode. If the
notification is disabled, the user will not be informed, when the timer reaches the target
time the 2nd time (period 2).

This notification is discarded and not made up again, when the notification is re-
enabled.

AUTSSAR

Gpt User «module» «Peripheral»
Gpt GPT Hardware

I Gpt_EnableNotification(Gpt_ChannelType) |

T
|
|
I
|
Gpt_EnableNotification !
<_ _——— e —— _p e —— 0 ________ 1
L I
Gpt_StartTimer(Gpt_ChannelType, : :
Gpt_ValueT
pt_valueType) start Channel !
Gpt_StartTimer()
R sy
Timer hasreached
target time (set by
Gpt_StartTimer) and
continuous running.
lc _ _targettime reached _ >———
1st time (period 1)
Gpt_Notification_<channel>()]
<t
(] I
- T !
Gpt_Notification_<channel>() | |
_________________________ >|:| |
T | |
| | |
: Gpt_DisableNotification(Gpt_ChannelType) : !
Timer hasreached
. target time (set by
Description: Gpt_DisableNotification() Gpt_StartTimer) and
Notification is disabled, no et OIS running.
notification is performed. -
|
|
|
I
|
|
|
Description:] e
Notification for period 2 is discarded. | Gpt_EnableNotification(Gpt_ChannelType)
Timer hasreached
Gpt_EnableNotification() target time (set by
________________________ Gpt_StartTimer) and
continuous running.
|
|
I
I
|
: L Gpt_Notification_<channel>() 3rd time (period 3)
<

Gpt_Notifi catio _<channel>()

n
____________ [ty iy g ZS N,

o
l
|
|
|
I

Description:

Notification is re-enabled.
Notification for period 3 will be
performed.

Figure 9.4: Sequence Diagram - Disable/Enable Notifications

9.5 Wakeup

Note: Sequence charts on timer wakeup can be found in the ECU state manager
specification [5].

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
GPT.

Chapter 10.3 specifies published information of the module GPT.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Gpt_00407] [The GPT module shall reject configurations with partition map-
pings which are not supported by the implementation. |

10.2.1 Gpt

[ECUC_Gpt_00336] Definition of EcucModuleDef Gpt |

Module Name Gpt

Description Configuration of the Gpt (General Purpose Timer) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency
GptChannelConfigSet 1 This container is the base of a Configuration Set which contains

the configured GPT channels. This way, different configuration
sets can be defined for post-build process.

GptConfigurationOfOptApiServices | 1 This container contains all configuration switches for configuring
optional API services of the GPT driver.

GptDriverConfiguration 1 This container contains the module-wide configuration
(parameters) of the GPT Driver

AUTSSAR

10.2.2 GptDriverConfiguration

[ECUC_Gpt_00183] Definition of EcucParamConfContainerDef GptDriverConfig-

uration [
Container Name GptDriverConfiguration
Parent Container Gpt

Description

This container contains the module-wide configuration (parameters) of the GPT Driver

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

GptDevErrorDetect 1 [ECUC_Gpt_00321]
GptPredefTimer100us32bitEnable 1 [ECUC_Gpt_00335]
GptPredefTimeriusEnablingGrade 1 [ECUC_Gpt_00334]
GptReportWakeupSource 1 [ECUC_Gpt_00322]
GptEcucPartitionRef 0..* [ECUC_Gpt_00337]
GptKernelEcucPartitionRef 0..1 [ECUC_Gpt_00338]

Included Containers

Container Name Multiplicity Dependency

GptClockReferencePoint 1.7 This container contains a parameter, which represents a

reference to a container of the type McuClockReferencePoint
(defined in module MCU).

]

[ECUC_Gpt_00321] Definition of EcucBooleanParamDef GptDevErrorDetect |

Parameter Name

GptDevErrorDetect

Parent Container

GptDriverConfiguration

Description Switches the development error detection and natification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

[ECUC_Gpt_00335]

Definition of

Timer100us32bitEnable |

EcucBooleanParamDef

GptPredef

Parameter Name

GptPredefTimer100us32bitEnable

Parent Container

GptDriverConfiguration

Description Enables/disables the GPT Predef Timer 100us32bit.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Gpt_00334] Definition of EcucEnumerationParamDef GptPredefTimerius

EnablingGrade |

Parameter Name

GptPredefTimeriusEnablingGrade

Parent Container GptDriverConfiguration

Description Specifies the grade of enabling the GPT Predef Timers with 1us tick duration.
Multiplicity 1

Type EcucEnumerationParamDef

Range GPT_PREDEF_TIMER_1US_16 16bit timer enabled

BIT_ENABLED

GPT_PREDEF_TIMER_1US_16_
24BIT_ENABLED

16 and 24bit timers enabled

GPT_PREDEF_TIMER_1US_16_
24_32BIT_ENABLED

16, 24 and 32bit timers enabled

GPT_PREDEF_TIMER_1US_ disabled
DISABLED
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Gpt_00322]
Source |

Definition of EcucBooleanParamDef GptReportWakeup

Parameter Name

GptReportWakeupSource

Parent Container GptDriverConfiguration

Description Enables/Disables wakeup source reporting.
Multiplicity 1

Type EcucBooleanParamDef

Default value

\Y%

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Gpt_00337] Definition of EcucReferenceDef GptEcucPartitionRef |

Parameter Name

GptEcucPartitionRef

Parent Container

GptDriverConfiguration

Description

Maps the GPT driver to zero or multiple ECUC partitions to make the driver API
available in the according partition. Depending on the addressed timer resource the
interfaces operate as follows:

a) In case of partition local timer resources (n:1 mapping) the API operates as an
independent instance in the according ECUC partition.

b) In case of global timer resources (1:m mapping) the API operates on the global timer
resource either by protected access to the resource or by implementing an according
kernel.

Multiplicity

0..*

Type

Reference to EcucPartition

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Gpt_00338] Definition of EcucReferenceDef GptKernelEcucPartitionRef

[

Parameter Name

GptKernelEcucPartitionRef

Parent Container

GptDriverConfiguration

Description Maps the GPT kernel to zero or one ECUC partitions to assign the driver kernel to a
certain core. The ECUC partition referenced is a subset of the ECUC partitions where
the GPT driver is mapped to.

Note: The kernel reference shall not be set in case the GPT driver is implemented
without a kernel (refer to definition of GptEcucPartitionRef).

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

GptConfigurationOfOptApiServices:

EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

GptChannelConfigSet:
EcucParamConfContainerDef

GptChannelConfiguration:

+subContainer| EcucParamConfContainerDef

+container

+container

Gpt: EcucModuleDef goontainer
upperMultiplicity = 1
lowerMultiplicity = 0

>

GptDriverConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

lowerMultiplicity = 1
upperMultiplicity = 1

>—

upperMultiplicity = *
lowerMultiplicity = 1

GptChannelEcucPartitionRef:

EcucReferenceDef

+reference

lowerMultiplicity = 0
upperMultiplicity = *

GptEcucPartitionRef:

+destination\|/

EcucPartition:

GPT_PREDEF _TIMER 1US 16 24 32BIT_ENABLED:

+reference EcucReferenceDef +destination | £y cparamGonfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
+destination
GptKemelEcucPartitionRef:
+reference EcucReferenceDef
oo Multiplicitgeo PT_PREDEF_TIMER DISABLED:
upperMultiplicity = 1 GPT_| _TIMER_1US_DIS B
. EcucEnumerationLiteral Def
+literal S eSS
GptPredefTimer1usEnablingGrade:|
EcucEnumerationParamDef
+literal| GPT_PREDEF_TIMER_1US_16BIT_ENABLED:
+parameter
+literal |[GPT_PREDEF_TIMER_1US_16_24BIT_ENABLED:
EcucEnumerationLiteral Def
+literal
EcucEnumerationLiteral Def
+parameter| GptPredefTimer100us32bitEnable:
EcucBooleanParamDef
GptDevErrorDetect:
;-parameter EcucBooleanParamDef
defaultValue = false
+parameter

GptReportWakeupSource:

EcucBooleanParamDef

+subContainer

EcucParamConfContainerDef

GptClockReferencePoint:

lowerMultiplicity = 1
upperMultiplicity = *

Figure 10.1: Scope of the GPT Driver configuration

AUTSSAR

HW 1Tick=xg
Qﬂi Configurator

O Hardware 05
Prescaler valu Abstraction
Ticks
MCU Driver GPT Driver
Configuration of Configuration of
shared resources GPT resources

Imit

GPT
< -

Figure 10.2: Scope of the GPT Clock Configuration

[SWS_Gpt_CONSTR_00001] [The ECUC partitions referenced by GptKernelEcuc-
PartitionRef shall be a subset of the ECUC partitions referenced by GptEcucPartition-
Ref. |

[SWS_Gpt_CONSTR_00003] [If GptEcucPartitionRef references one or more ECUC
partitions, GptKernelEcucPartitionRef shall have a multiplicity of one and reference one
of these ECUC partitions as well. |

10.2.3 GptClockReferencePoint

[ECUC_Gpt_00329] Definition of EcucParamConfContainerDef GptClockRefer-
encePoint |

Container Name GptClockReferencePoint
Parent Container GptDriverConfiguration
Description This container contains a parameter, which represents a reference to a container of the

type McuClockReferencePoint (defined in module MCU). A container is needed to
support multiple clock references (hardware dependent).

Multiplicity 1.r

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name

Multiplicity ECUC ID

GptClockReference

1 [ECUC_Gpt_00330]

| No Included Containers

]

[ECUC_Gpt_00330] Definition of EcucReferenceDef GptClockReference |

Parameter Name

GptClockReference

Parent Container

GptClockReferencePoint

Description Reference to a container of the type McuClockReferencePoint, to select an input clock.
The configuration editor for the GPT module can support the integrator by only allowing
a selection of those clock reference points that can be connected physically to the GPT
hardware peripheral. The desired frequency (desired by GPT) has to be the same as
the selected and provided frequency of the MCU configuration. This has to be checked
automatically.

Multiplicity 1

Type Reference to McuClockReferencePoint

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

GptClockReferencePoint: L McuClockReferencePoint:
EcucParamConfContainerDef +reference | GptClockReference: +destination EcucParamConfContainerDef

EcucReferenceDef

lowerMultiplicity = 1
upperMultiplicity = *

upperMultiplicity = *
lowerMultiplicity = 1

Figure 10.3: GptClockreferencePoint

10.2.4 GptChannelConfigSet

[ECUC_Gpt_00269] Definition of EcucParamConfContainerDef GptChannelCon-

figSet |
Container Name GptChannelConfigSet
Parent Container Gpt

Description

This container is the base of a Configuration Set which contains the configured GPT
channels. This way, different configuration sets can be defined for post-build process.

Multiplicity

1

Configuration Parameters

No Included Parameters

AUTSSAR

Included Containers

Container Name

Multiplicity

Dependency

GptChannelConfiguration

1.7

This container contains the channel specific configuration of the
GPT Driver.

10.2.5 GptChannelConfiguration

[ECUC_Gpt_00184] Definition of EcucParamConfContainerDef GptChannelCon-

figuration |

Container Name

GptChannelConfiguration

Parent Container

GptChannelConfigSet

Description

Configuration of an individual GPT channel.

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
GptChannelld 1 [ECUC_Gpt_00308]
GptChannelMode 1 [ECUC_Gpt_00309]
GptChannelTickFrequency 1 [ECUC_Gpt_00331]
GptChannelTickValueMax 1 [ECUC_Gpt_00332]
GptEnableWakeup 1 [ECUC_Gpt_00311]
GptNotification 0..1 [ECUC_Gpt_00312]
GptChannelClkSrcRef 1 [ECUC_Gpt_00333]
GptChannelEcucPartitionRef 0..” [ECUC_Gpt_00339]
Included Containers

Container Name Multiplicity Dependency

GptWakeupConfiguration 0..1 Function pointer to callback function (for non-wakeup

notification).

]

[ECUC_Gpt_00308] Definition of EcucintegerParamDef GptChannelld |

Parameter Name

GptChannelld

Parent Container

GptChannelConfiguration

Description Channel Id of the GPT channel. This value will be assigned to the symbolic name
derived of the GptChannelConfiguration container short name.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 4294967295 |

Default value

Y%

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]
[ECUC_Gpt_00309] Definition of EcucEnumerationParamDef GptChannelMode |

Parameter Name GptChannelMode
Parent Container GptChannelConfiguration
Description Specifies the behavior of the timer channel after the target time is reached.
Multiplicity 1
Type EcucEnumerationParamDef
Range GPT_CH_MODE_CONTINUOUS | After reaching the target time, the timer
continues running with the value "zero" again.
GPT_CH_MODE_ONESHOT After reaching the target time, the timer stops
automatically (timer expired).
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]

[ECUC_Gpt_00331] Definition of EcucFloatParamDef GptChannelTickFrequency
[

Parameter Name GptChannelTickFrequency

Parent Container GptChannelConfiguration

Description Specifies the tick frequency of the timer channel in Hz.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Gpt_00332] Definition of EcucintegerParamDef GptChannelTickValue

Max |
Parameter Name GptChannelTickValueMax
Parent Container GptChannelConfiguration

Description Maximum value in ticks, the timer channel is able to count. With the next tick, the timer
rolls over to zero.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Gpt_00311] Definition of EcucBooleanParamDef GptEnableWakeup [

Parameter Name GptEnableWakeup

Parent Container GptChannelConfiguration

Description Enables wakeup capability of MCU for a channel.
Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Gpt_00312] Definition of EcucFunctionNameDef GptNotification [

Parameter Name

GptNotification

Parent Container

GptChannelConfiguration

Description Function pointer to callback function (for non-wakeup notification)
Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

AUTSSAR

Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

J
[ECUC_Gpt_00333] Definition of EcucReferenceDef GptChannelClkSrcRef |

Parameter Name GptChannelClkSrcRef
Parent Container GptChannelConfiguration
Description Reference to the GptClockReferencePoint from which the channel clock is derived.
Multiplicity 1
Type Reference to GptClockReferencePoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]

[ECUC_Gpt_00339] Definition of EcucReferenceDef GptChannelEcucPartition
Ref |

Parameter Name GptChannelEcucPartitionRef
Parent Container GptChannelConfiguration
Description Maps a GPT channel to zero or multiple ECUC partitions to limit the access to this

channel group. The ECUC partitions referenced are a subset of the ECUC partitions
where the GPT driver is mapped to.

Multiplicity 0..*
Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

Gpt: EcucModuleDef i . X .
+container GptDriverConfiguration:
upperMultiplicity = 1 ® EcucParamConfContainerDef

lowerMultiplicity = 0
lowerMultiplicity = 1

upperMultiplicity = 1

+c0maine1 +subComaine$

GptChannelConfigSet: GptClockReferencePoint:
EcucParamConfContainerDef EcucParamConfContainerDef
lowerMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = *
+destination

+subContainer

GptChannelConfiguration: +reference GptChannelCIkSrcRef:
EcucParamConfContainerDef g EcucReferenceDef
upperMultiplicity = *
lowerMultiplicity = 1
GptChannelld:
+parameter EcucintegerParamDef
. min =0
max = 4294967295
symbolicNameValue = true
GptEnableWakeup:
+parameter| EcucBooleanParamDef
>
GptNotification:
+parameter EcucFunctionNameDef
lowerMultiplicity = 0
upperMultiplicity = 1
Hliteral GPT_CH_MODE_CONTINUOUS:
GptChannelMode: & EcucEnumerationLiteral Def
+parameter EcucEnumerationParamDef
+literal | GPT_CH_MODE_ONESHOT:
“@—| “EcucEnumerationLiteralDef
) GE!WakeuEConfiguration: +reference GptWakeupSourceRef:
+subContainer| EcucParamConfContainerDef > EcucReferenceDef
lowerMultiplicity = 0 requiresSymbolicNameValue = true|
upperMultiplicity = 1
+destination\|/
GptChannelTickFrequency: EcuMWakeupSource:
+parameter EcucFloatParamDef EcucParamConfContainerDef
min =0 lowerMultiplicity = 1
max = INF upperMultiplicity = 32
" GptChannelTickvalueMax:
+parameter
EcuclntegerParamDef
>
min =0
max = 18446744073709551615
GptChannelEcucPartitionRef: EcucPartition:
+reference +destinati cucPartition:
P EcucReferenceDef eSiNaiY EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *

Figure 10.4: GptChannelConfiguration

[SWS_Gpt_CONSTR_00002] [The ECUC partitions referenced by GptGroupEcuc-
PartitionRef shall be a subset of the ECUC partitions referenced by GptEcucPartition-
Ref. |

[SWS_Gpt_CONSTR_00004] [If GptEcucPartitionRef references one or more ECUC
partitions, GptKernelEcucPartitionRef shall have a multiplicity of greater than zero and
reference one or several of these ECUC partitions as well. |

AUTSSAR

10.2.6 GptWakeupConfiguration

[ECUC_Gpt_00235] Definition of EcucParamConfContainerDef GptWakeupCon-
figuration |

Container Name GptWakeupConfiguration

Parent Container GptChannelConfiguration

Description Function pointer to callback function (for wakeup notification).
Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

GptWakeupSourceRef 1 [ECUC_Gpt_00313]

No Included Containers

]
[ECUC_Gpt_00313] Definition of EcucReferenceDef GptWakeupSourceRef |

Parameter Name GptWakeupSourceRef

Parent Container GptWakeupConfiguration

Description In case the wakeup-capability is true this value is transmitted to the Ecu State Manager.
Implementation Type: reference to EcuM_WakeupSourceType

Multiplicity 1

Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.7 GptConfigurationOfOptApiServices

[ECUC_Gpt_00193] Definition of EcucParamConfContainerDef GptConfiguration
OfOptApiServices |

Container Name GptConfigurationOfOptApiServices

Parent Container Gpt

Description This container contains all configuration switches for configuring optional API services
of the GPT driver.

Multiplicity 1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
GptDeinitApi 1 [ECUC_Gpt_00314]
GptEnableDisableNotificationApi 1 [ECUC_Gpt_00315]
GptTimeElapsedApi 1 [ECUC_Gpt_00317]
GptTimeRemainingApi 1 [ECUC_Gpt_00318]
GptVersionInfoApi 1 [ECUC_Gpt_00319]
GptWakeupFunctionalityApi 1 [ECUC_Gpt_00320]

No Included Containers

J
[ECUC_Gpt_00314] Definition of EcucBooleanParamDef GptDeinitApi [

Parameter Name GptDeinitApi

Parent Container GptConfigurationOfOptApiServices

Description Adds / removes the service Gpt_Delnit() from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Gpt_00315] Definition of EcucBooleanParamDef GptEnableDisableNoti-
ficationApi |

Parameter Name GptEnableDisableNotificationApi

Parent Container GptConfigurationOfOptApiServices

Description Adds / removes the services Gpt_EnableNotification() and Gpt_DisableNotification
from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Gpt_00317] Definition of EcucBooleanParamDef GptTimeElapsedApi [

Parameter Name GptTimeElapsedApi

Parent Container GptConfigurationOfOptApiServices
Description Adds / removes the service Gpt_GetTimeElapsed() from the code
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Gpt_00318] Definition of EcucBooleanParamDef GptTimeRemainingApi
[

Parameter Name GptTimeRemainingApi
Parent Container GptConfigurationOfOptApiServices
Description Adds / removes the service Gpt_GetTimeRemaining() from the code.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

J
[ECUC_Gpt_00319] Definition of EcucBooleanParamDef GptVersioninfoApi |

Parameter Name GptVersionInfoApi

Parent Container GptConfigurationOfOptApiServices

Description Adds / removes the service Gpt_GetVersionlnfo() from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Gpt_00320] Definition of EcucBooleanParamDef GptWakeupFunctional-
ityApi |

Parameter Name GptWakeupFunctionality Api

Parent Container GptConfigurationOfOptApiServices

Description Adds / removes the services Gpt_SetMode(), Gpt_EnableWakeup() Gpt_Disable
Wakeup() and Gpt_CheckWakeup() from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency
GptiFcucModulehed GptConfigurationOfOptApiServices:
+container i

upperMultiplicity = 1 EcucParamConfContainerDef
lowerMultiplicity = 0 upperMultiplicity = 1

lowerMultiplicity = 1

+parameter GptDeinitApi:
L | EcucBooleanParamDef

GptEnableDisableNotificationApi:
EcucBooleanParamDef +parameter

+parameter GptTimeElapsedApi:

EcucBooleanParamDef

GptWakeupFunctionalityApi: +parameter

EcucBooleanParamDef

. . GptTimeRemainingApi:
GptVersoninoApi; +parameter +parameter| "EcucBooleanParamDef
EcucBooleanParamDef -

defaultValue = false

Figure 10.5: GptConfigurationOfOptApiServices

10.3 Published Information
For details refer to [2] Chapter 10.3 “Published Information”.

[SWS_Gpt_00380] [The standardized common published parameters as required by
[SRS_BSW_00402] shall be published within the header file of this module and need
to be provided in the BSW Module Description. The according module abbreviation is
defined into General Specification of Basic Software Modules [2]. |

Additional module-specific published parameters are listed below if applicable.

AUTSSAR

A Not applicable requirements

[SWS_Gpt_NA_00381]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_
00170, SRS_BSW_00398, SRS_BSW_00416, SRS_BSW_00437,
SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW _
00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428,
SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_
00422, SRS_BSW 00417, SRS_BSW_00161, SRS _BSW_00162,
SRS_BSW_00005, SRS_BSW_00415, SRS_BSW_00325, SRS_BSW _
00342, SRS_BSW_00160, SRS_BSW_00007, SRS_BSW_00413,
SRS_BSW_00347, SRS_BSW_00307, SRS_BSW_00373, SRS_BSW_
00335, SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00328,
SRS_BSW_00006, SRS_BSW_00439, SRS_BSW_00357, SRS_BSW_
00377, SRS_BSW_00378, SRS_BSW_00306, SRS_BSW_00308,
SRS_BSW_00309, SRS_BSW_00359, SRS_BSW_00360, SRS_BSW _
00440, SRS_BSW_00330, SRS_BSW_00331, SRS_BSW_00009,
SRS_BSW_00172, SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_
00321, SRS BSW 00341, SRS_SPAL 12462, SRS SPAL_12463,
SRS _SPAL_12068, SRS _SPAL_12075, SRS _SPAL_12064, SRS_
SPAL_12077, SRS_SPAL_ 12078, SRS_SPAL 12092, SRS _SPAL_
12265

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Change History of this document according to AUTOSAR Re-
lease R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

AUTSSAR

B.2 Change History of this document according to AUTOSAR Re-
lease R24-11

B.2.1 Added Specification Items in R24-11
[SWS_Gpt_91002]

B.2.2 Changed Specification Items in R24-11
[SWS_Gpt_00194] [SWS_Gpt_00292] [SWS_Gpt_00380]

B.2.3 Deleted Specification Items in R24-11
[SWS_Gpt_00405]

B.2.4 Added Constraints in R24-11

none

B.2.5 Changed Constraints in R24-11

none

B.2.6 Deleted Constraints in R24-11
[SWS_Gpt_ CONSTR_00005]

B.3 Change History of this document according to AUTOSAR Re-
lease R23-11

B.3.1 Added Constraints in R23-11

[SWS_Gpt_ CONSTR_00001] [SWS_Gpt CONSTR_00002] [SWS_Gpt CONSTR_-
00003] [SWS_Gpt_ CONSTR_00004] [SWS_Gpt_CONSTR_00005]

B.3.2 Changed Constraints in R23-11

none

AUTSSAR

B.3.3 Deleted Constraints in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Assumptions
	4.2 Limitations
	4.3 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 GPT Predef Timers
	7.2 Version checking
	7.3 Error Classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Production Errors
	7.3.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Gpt_ConfigType
	8.2.2 Gpt_ChannelType
	8.2.3 Gpt_ValueType
	8.2.4 Gpt_ModeType
	8.2.5 Gpt_PredefTimerType

	8.3 Function definitions
	8.3.1 Gpt_GetVersionInfo
	8.3.2 Gpt_Init
	8.3.3 Gpt_DeInit
	8.3.4 Gpt_GetTimeElapsed
	8.3.5 Gpt_GetTimeRemaining
	8.3.6 Gpt_StartTimer
	8.3.7 Gpt_StopTimer
	8.3.8 Gpt_EnableNotification
	8.3.9 Gpt_DisableNotification
	8.3.10 Gpt_SetMode
	8.3.11 Gpt_DisableWakeup
	8.3.12 Gpt_EnableWakeup
	8.3.13 Gpt_CheckWakeup
	8.3.14 Gpt_GetPredefTimerValue

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 GPT Notification

	8.7 Error detection

	9 Sequence diagrams
	9.1 Gpt_Init
	9.2 GPT continuous mode
	9.3 GPT one-shot mode
	9.4 Disable/Enable Notifications
	9.5 Wakeup

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Gpt
	10.2.2 GptDriverConfiguration
	10.2.3 GptClockReferencePoint
	10.2.4 GptChannelConfigSet
	10.2.5 GptChannelConfiguration
	10.2.6 GptWakeupConfiguration
	10.2.7 GptConfigurationOfOptApiServices

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Change History of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	B.2 Change History of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Change History of this document according to AUTOSAR Release R23-11
	B.3.1 Added Constraints in R23-11
	B.3.2 Changed Constraints in R23-11
	B.3.3 Deleted Constraints in R23-11

