AUTSSAR

Document Title Specification of Flash EEPROM
Emulation

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 286

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Updated init sequence: Fee_Init is
now synchronous, but explicitly exclude
internal management operations, in
AUTOSAR scope of Fee_MainFunction
2025-11-27 R25-11 Release
Management * Fixed typo in [SWS_Fee_00056]
* Removed redundant memory layout
table
AUTOSAR * Removed draft status of
2024-11-27 | R24-11 Release MemAcc_Compare in
Management [SWS_Fee_00105]
AUTOSAR « Fixed incorrect description of return
2023-11-23 | R23-11 Release value in Fee_InvalidateBlock and
Management Fee_FraseImmediateBlock
* Removed obsolete items
» Changed [SWS_Fee_00999] to
AUTOSAR [SWS_Fee_NA_00999]
2022-11-24 | R22-11 Release » Set items to valid:
Management — [SWS_Fee_00194]
— [SWS_Fee 00195]
— [SWS_Fee_00196]
. k
AUTOSAR Updated for new memory stac
2021-11-25 | R21-11 Release » Removed return codes for Det errors
Management

* Removed definitions of NVM functions




AUTSSAR

AUTOSAR * Fixed inconsistency in the example of
2020-11-30 | R20-11 | Release [SWS_Fee_00100]
Management * Removed FEE_E_INIT_FAILED
» Added diagrams in chapter 10
AUTOSAR » Added limitation about parallel access to
2019-11-28 | R19-11 Release Flash Driver
Management ,
» Changed Document Status from Final to
published
AUTOSAR
2018-10-31 440 Release * Fixed typo in sequence diagram
Management
AUTOSAR « Introduction of runtime errors
2017-12-08 | 4.3.1 Release
Management * Adjusted references
» Updated tracing information
AUTOSAR * Behaviour during MEMIF_BUSY
2016-11-30 | 4.3.0 Release INTERNAL reworked -
Management
* Range of main function adapted
» Behaviour during FEE_BUSY_ INTERNAL
reworked
AUTOSAR * Error classification reworked
2015-07-31 422 Release
Management » Debugging support marked as obsolete
« Job result clarified if requested block
can’t be found
AUTOSAR » Requirement for blank checking added
2014-10-31 | 4.2.1 Release « Requirements linked to features, general
Management and module specific requirements
AUTOSAR
2014-03-31 4.1.3 Release » Editorial changes
Management




AUTSSAR

2013-10-31

41.2

AUTOSAR
Release
Management

* Timing requirement removed from
module’s main function

« "const" qualifier added to prototype of
function Fee_wWrite

* New configuration parameter
FeeMainFunctionPeriod

« Editorial changes

* Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

* Reworked according to the new
SWS_BSWGeneral

* Scope attribute in tables in chapter 10
added

* Published parameter
FeeMaximumBlockingTime
deprecated

+ Configuration parameter FeeIndex
deprecated

2011-12-22

4.0.3

AUTOSAR
Administration

* DET errors added / removed

» Handling of internal management
operations detailed

* Module short name changed

+ Consistency checking reformulated

2010-09-30

AUTOSAR
Administration

* Inter-module checks clarified [SWS_
Fee_00013]

» Sequence diagram for Fee_Cancel
replaced for generated one

* Naming in [ECUC_Fee_00150]
corrected to
NVM_DATASET_SELECTION_BITS

» Sequence diagram for Fee_TInit
extended

» Handling of internal management
operations refined ([SWS_Fee_00022],
[SWS_Fee 00025], [SWS_Fee 00173],

[SWS_Fee_00174], [SWS_Fee_00183])
v




AUTSSAR

A
* Inter module checks detailed ([SWS_

Fee_00013])

* NvM_Cbk.h added to file include
structure ([SWS_Fee_00002])

* Ranges for FeeBlockNumber
([ECUC_Fee_00150]) and
FeeBlockSize ([ECUC_Fee 00148])
adjusted

* Initialization might not be finished within
Fee_TInit, state machine adapted
accordingly ((SWS_Fee 00120], [SWS_
Fee_00168], [SWS_Fee_00169])

* Handling of internal management
operations refined ([SWS_Fee_00170] ..
[SWS_Fee 00182] e.a.)

» Configuration variants clarified

* Job result handling re-formulated

AUTOSAR
2010-02-02 | 3.1.4 Administration « Range of configuration parameters
restricted
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTOSAR - Legal disclaimer revised
Administration
» Small reformulations resulting from table
generation
* Tables in chapters 8 and 10 generated
AUTOSAR
2007-12-21 3.0.1 UTOS from UML model

Administration

» Document meta information extended

» Small layout adaptations made




AUTSSAR

* File include structure updated
* API of initialization function adapted
* Range of FEE block numbers adapted

* Various API descriptions enhanced

2007-01-24 2.1.15 AUTQ.SAR .
Administration « Legal disclaimer revised
* Release Notes added
* "Advice for users" revised
* "Revision Information" added
2006-05-16 | 2.0 AUTOSAR * Initial release

Administration




AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.



AUTSSAR

Table of Contents

—

Introduction and functional overview

Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standardsandnorms . . . . . ... ... ...
3.2 Related specification . . . ... ... .. ... ... ... . .

Constraints and assumptions

4.1 Limitations . . . . . . . ..
4.2 Applicability to cardomains . . . . ... ... ... L.

Dependencies to other modules

Requirements Tracing

Functional specification

7.1 General behavior . . . . . . ...

711
7.1.2
7.1.3
714
7.1.5
7.1.6

Addressing scheme and segmentation. . . . . . ... ... .....
Address calculation . . . ... ... Lo

Limitation oferasecycles . . . . . . .. .. ... .. .. ... ..
Handling of "immediate"data . . . . . ... ... ...........
Managing block correctness information . . . . . .. ... ... ...
Buffer Alignment . . . . . .. ... Lo

7.2 Error Classification . . . . . . . . . . . . .

7.2.1
7.2.2
7.2.3
7.2.4

Development Errors . . . . . . . ... oo
Runtime Errors . . . . . . . . . . .. .o
ProductionErrors . . . . . . . .. ..
Extended ProductionErrors . . . . . . . .. ... L.

API specification

8.1 Importedtypes . . . . . . . . . . ...
8.2 Type definitions . . . . . . . . ...
8.3 Function definitions . . . . . . .. .. ...

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9

Fee Init . . . . . . . . . . .
Fee Read . ... . .. . . . . . . . . . e
Fee Write. . . . . . . . . . . . . e
Fee Cancel. . . . . . . . . . . . . . . e
Fee GetStatus . . . . . . . . . . . . . . ...
Fee GetdJobResult . . . . .. ... ... ... ... .. ........
Fee InvalidateBlock . . . . ... ... ... ... .. .........
Fee GetVersioninfo . ... ... .. .. ... . ... . ... . ...,
Fee EraselmmediateBlock . ... .. ... ... ... ........

11

12

12
12

13

13
13

14



AUTSSAR

8.4 Callback notifications . . . . . ... ... ... ... ... . ... ... . 36
8.4.1 Fee JobEndNotification . . . . . . ... ... ... ... ....... 37
8.5 Scheduled functions . . . ... ... ... ... ... . 37
8.5.1 Fee MainFunction . . . . . .. .. .. ... ... .. .. .. .. ... 38
8.6 Expectedinterfaces . . . . . . . . .. ... 39
8.6.1 Mandatory Interfaces . . . . . .. .. ... ... . 39
8.6.2 Optional Interfaces . . . . . . . . . . . ... ... . 40
8.6.3 Configurable interfaces . . ... ... ... ... ... ........ 40
9 Sequence diagrams 42
9.1 Fee Init . . . . . . e 42
9.2 Fee Write . . . . . . . . . e 42
9.3 Fee Cancel . . . . . . . . . . . . e 43
10 Configuration specification 46
10.1Containers and configuration parameters . . . . . ... ... .. ... .. 46
1011 Fee . . . . . e e 46
10.1.2FeeGeneral . . . . . . . . . ... 47
10.1.3 FeeBlockConfiguration. . . . . . . . .. .. ... ... ... 51
10.2Published Information . . . . . . . . . .. .. ... ... ... 55
10.2.1 FeePublishedInformation . . . . ... .. ... ... ... ...... 55
A Not applicable requirements 57
B Change history of AUTOSAR traceable items 58
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 58
B.1.1 Added Specification Itemsin R25-11 . . . . . . ... ... ... ... 58
B.1.2 Changed Specification ltemsin R25-11 . . . . ... ... ... ... 58
B.1.3 Deleted Specification Itemsin R25-11 . . . .. ... ... ... ... 58
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 58
B.2.1 Added Specification ltemsinR24-11 . . . . . ... ... ... .. .. 58
B.2.2 Changed Specification ltemsin R24-11 . . . . ... ... ... ... 59

B.2.3 Deleted Specification Itemsin R24-11 . . . . . ... ... ... ... 59



AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and configuration of the Flash EEP-
ROM Emulation Module.

Mem Services |
«module» El
NvM
O
T
|
|
|
{(U_SE?)
MemHwA |
1
V
«module» El
Foo=== Memlf T F—=—=—=— 1
| |
«usen «usen
| |
Vv V
«module» El «module» E
Fee Ea
| |
| |
| |
L e J
«use» | | «usen
MemAcc | |
V V
«module» El
MemAcc
I |
T T
| |
7 eusew ! oo 1
Mem | «use» «use» |
V Vi
«module» El «module» E
Mem_Fls Mem_Eep
T T
1 |

«Peripheral» «Peripheral »
Flash Memory EEPROM

Figure 1.1: Module overview of memory stack




AUTSSAR

The Flash EEPROM Emulation (FEE) shall abstract from the device specific address-
ing scheme and segmentation and provide the upper layers with a virtual addressing
scheme and segmentation as well as a "virtually" unlimited number of erase cycles.



AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Fee module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

EA

EEPROM Abstraction

Address Area Contiguous memory area in the logical address space typically multiple physical
memory sectors are combined to one logical address area.

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here, "bit" is meant.

Mem Memory Driver

MemAcc Memory Access

Memlf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here, "bit" is meant.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

NVRAM block Management unit as seen by the NVRAM Manager

(Logical) block

Smallest writable / erasable unit as seen by the modules user. Consists of one or
more virtual pages.

Virtual page

May consist of one or several physical pages to ease handling of logical blocks
and address calculation.

Internal residue

Unused space at the end of the last virtual page if the configured block size isn’t
an integer multiple of the virtual page size (see Figure 7.1).

Virtual address

Consisting of 16 bit block number and 16 bit offset inside the logical block.

Physical address

Address information in device specific format (depending on the underlying
EEPROM driver and device) that is used to access a logical block.

Dataset

Concept of the NVRAM manager: A user addressable array of blocks of the
same size.

E.g. could be used to provide different configuration settings for the CAN driver
(CAN IDs, filter settings, ...) to an ECU which has otherwise identical application
software (e.g. door module).

Redundant copy

Concept of the NVRAM manager: Storing the same information twice to enhance
reliability of data storage.

Table 2.1: Acronyms and abbreviations used in the scope of this Document




AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[4] Specification of Memory Abstraction Interface
AUTOSAR_CP_SWS_MemoryAbstractioninterface

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for Flash EEPROM Emulation.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Flash EEPROM Emulation.



AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.



AUTSSAR

5 Dependencies to other modules

This module depends on the capabilities of the underlying flash driver as well as the
configuration of the NVRAM manager.



AUTSSAR

6 Requirements Tracing

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Fee_00085]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS _Fee 00068] [SWS_Fee 00134]
[SWS_Fee_00135] [SWS_Fee_00136]
[SWS_Fee 00137] [SWS_Fee 00138]
[SWS_Fee_00139] [SWS_Fee_00140]
[SWS_Fee 00141] [SWS_Fee 00147]

[SRS_BSW_00327]

Error values naming convention

[SWS_Fee_00010]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Fee_00010]

[SRS_BSW_00337]

Classification of development errors

[SWS_Fee 00010]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_Fee_00095]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Fee_00095]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Fee 00097]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_Fee_00104] [SWS_Fee_00105]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Fee 00010]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_Fee_00016] [SWS_Fee_00084]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Fee_00010] [SWS_Fee_00034]
[SWS_Fee_00090] [SWS_Fee_00120]
[SWS_Fee 00122] [SWS_Fee 00123]
[SWS_Fee_00124] [SWS_Fee_00125]
[SWS_Fee 00126] [SWS_Fee 00127]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Fee_00093]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Fee_00188]

[SRS_MemHwAb_
14001]

The FEE and EA modules shall allow
the configuration of the alignment of
the start and end addresses of logical
blocks

[SWS_Fee 00005] [SWS_Fee 00071]
[SWS_Fee_00076]

[SRS_MemHwAb__
14002]

The FEE and EA modules shall allow
the configuration of a required
number of write cycles for each
logical block

[SWS_Fee 00102] [SWS_Fee_00103]

[SRS_MemHwAb_
14005]

The FEE and EA modules shall
provide upper layer modules with a
virtual 32bit address space

[SWS_Fee_00076]

Y




AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_MemHwAb_
14006]

The start address for a block erase or
write operation shall always be
aligned to the virtual 64K boundary

[SWS_Fee_00024]

[SRS_MemHwAb__
14007]

The start address and length for
reading a block shall not be limited to
a certain alignment

[SWS_Fee_00021]

[SRS_MemHwAb__
14009]

The FEE and EA modules shall
provide a conversion between the
logical linear addresses and the
physical memory addresses

[SWS_Fee_00007] [SWS_Fee_00036]
[SWS_Fee_00066] [SWS_Fee_00100]

[SRS_MemHwAb_
14010]

The FEE and EA modules shall
provide a write service that operates
only on complete configured logical
blocks

[SWS_Fee 00025] [SWS_Fee_00026]

[SWS_Fee_00088]

[SRS_MemHwAb_
14012]

Spreading of write access

[SWS_Fee_00102] [SWS_Fee_00103]

[SRS_MemHwAb_
14013]

Writing of immediate data shall not be
delayed by internal management
operations nor by erasing the
memory area to be written to

[SWS_Fee_00009] [SWS_Fee_00067]

[SRS_MemHwAb_
14014]

The FEE and EA modules shall
detect possible data inconsistencies
due to aborted / interrupted write
operations

[SWS_Fee 00023] [SWS_Fee_00049]
[SWS_Fee_00153] [SWS_Fee_00154]
[SWS_Fee_00159] [SWS_Fee_00197]

[SRS_MemHwAb__
14015]

The FEE and EA modules shall
report possible data inconsistencies

[SWS_Fee_00023]

[SRS_MemHwAb_
14016]

The FEE and EA modules shall not
return inconsistent data to the caller

[SWS_Fee 00023]

[SRS_MemHwAb_
14026]

The block numbers 0x0000 and 0x
FFFF shall not be used

[SWS_Fee_00006]

[SRS_MemHwAb_
14028]

The FEE and EA modules shall
provide a service to invalidate a
logical block

[SWS_Fee_00037] [SWS_Fee_00075]
[SWS_Fee 00092] [SWS_Fee 00160]
[SWS_Fee_00165] [SWS_Fee_00192]

[SRS_MemHwAb_
14029]

The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical block

[SWS_Fee_00022] [SWS_Fee_00087]

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_Fee_00080] [SWS_Fee_00081]
[SWS_Fee_00089] [SWS_Fee_00157]

[SWS_Fee 00184]

[SRS_MemHwAb_
14032]

The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

[SWS_Fee_00094] [SWS_Fee_00166]

[SRS_MemHwAb_
14040]

MemAcc module and Mem driver
shall provide a synchronous status
function

[SWS_Fee_00091]

[SRS_MemHwAb_
14041]

MemAcc module shall provide a job
notification mechanism for the upper
layer modules

[SWS_Fee_00055] [SWS_Fee_00056]

Table 6.1: Requirements Tracing




AUTSSAR

7 Functional specification

7.1 General behavior

7.1.1 Addressing scheme and segmentation

The Flash EEPROM Emulation (FEE) module provides upper layers with a 32bit virtual
linear address space and uniform segmentation scheme. This virtual 32bit addresses
shall consist of

+ a 16bit block number - allowing a (theoretical) number of 65536 logical blocks
+ a 16bit block offset - allowing a (theoretical) block size of 64KByte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The val-
ues for this address alignment can be derived from that of the underlying flash driver
and device. This virtual paging shall be configurable via the parameter FeevVirtual-
PageSize.

[SWS_Fee 00076]
Upstream requirements: SRS_MemHwAb_14001, SRS_MemHwAb_14005

[ The configuration of the Fee module shall be such that the virtual page size (defined
in FeeVirtualPageSize) is an integer multiple of the physical page size, i.e. it is not
allowed to configure a smaller virtual page than the actual physical page size. |

Note: This specification requirement allows the physical start address of a logical block
to be calculated rather than making a lookup table necessary for the address mapping.

Example:

The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

[SWS_Fee_00005]

Upstream requirements: SRS_MemHwAb_ 14001
[Each configured logical block shall take up an integer multiple of the configured virtual
page size (see also Chapter configuration parameter FeevVirtualPageSize).|

[SWS_Fee 00071]
Upstream requirements: SRS_MemHwAb_14001

[Logical blocks must not overlap each other and must not be contained within one
another. |



AUTSSAR

[SWS_Fee_00006]
Upstream requirements: SRS_MemHwAb_14026

[ The block numbers 0x0000 and OxFFFF shall not be configurable for a logical block. |

7.1.2 Address calculation

[SWS_Fee_00007]
Upstream requirements: SRS_MemHwAb_ 14009

[Depending on the implementation of the FEE module and the exact address format
used, the functions of the FEE module shall combine the 16bit block number and 16bit
address offset to derive the physical flash address needed for the underlying flash
driver. |

Note: The exact address format needed by the underlying flash driver and therefore
the mechanism how to derive the physical flash address from the given 16bit block
number and 16bit address offset depends on the flash device and the implementation
of this module and shall therefore not be standardized.

[SWS_Fee 00100]
Upstream requirements: SRS_MemHwAb_ 14009

[Only those bits of the 16bit block number, that do not denote a specific dataset or
redundant copy shall be used for address calculation. |

Note: Since this information is needed by the NVRAM manager, the number of
bits to encode this can be configured for the NVRAM manager with the parameter
NVM_DATASET SELECTION_BITS.

Example:

Dataset information is configured to be encoded in the four LSB’s of the 16bit block
number (allowing for a maximum of 16 datasets per NVRAM block and a total of 4094
NVRAM blocks). An implementer decides to store all datasets of a NVRAM block
directly adjacent and using the length of the block and a pointer to access each dataset.
To calculate the start address of the block (the address of the first dataset) she/he
uses only the 12 MSB’s, to access a specific dataset she/he adds the size of the block
multiplied by the dataset index (the four LSB’s) to this start address (Figure 7.1).



AUTSSAR

NVM_DATASET SELECTION_BITS configured
to be four (bits), leaving twelve bit for the block
number. Each NVRAM block thus can be

subdivided in up to 16 datasets.

N ~ )LY_J

Block Dataset
number mndex

—

—
-~ .
—

,,.ndexed"
addressing

Address conversion

Figure 7.1: Block number and dataset index

7.1.3 Limitation of erase cycles

[SWS_Fee 00102]
Upstream requirements: SRS_MemHwAb_14002, SRS_MemHwAb_14012

[ The configuration of the FEE module shall define the expected number of erase/write
cycles for each logical block in the configuration parameter FeeNumberOfWriteCy-
cles.]

[SWS_Fee 00103]
Upstream requirements: SRS_MemHwAb_14002, SRS_MemHwAb_14012

[If the underlying flash device or device driver does not provide at least the config-
ured number of erase/write cycles per physical memory cell, the FEE module shall
provide mechanisms to spread the write access such that the physical device is not
overstressed. This shall also apply to all management data used internally by the FEE
module. |



AUTSSAR

Example:

The logical block number 1 is configured for an expected 500.000 write cycles, the
underlying flash device and device driver are only specified for 100.000 erase cycles.
In this case, the FEE module has to provide (at least) five separate memory areas
and alternate the access between those areas internally so that each physical memory
location is only erased for a maximum of the specified 100.000 cycles.

7.1.4 Handling of "immediate" data

[SWS_Fee_00009]
Upstream requirements: SRS_MemHwAb_ 14013

[Blocks containing immediate data have to be written instantaneously, i.e. the FEE
module has to ensure that it can write such blocks without the need to erase the corre-
sponding memory area (e.g. by using pre-erased memory) and that the write request
is not delayed by currently running module internal management operations. |

Note: An ongoing lower priority read / erase / write or compare job shall be canceled
by the NVRAM manager before immediate data is written. The FEE module has only
to ensure that this write request can be performed immediately.

Note: A running operation on the hardware (e.g. writing one page or erasing one
sector) can usually not be aborted once it has been started. The maximum time of the
longest hardware operation thus has to be accepted as delay even for imnmediate data.

Example:

Three blocks with 10 bytes each have been configured for immediate data. The FEE
module / configuration tool reserves these 30 bytes (plus the implementation specific
overhead per block / page if needed) for use by this immediate data only. That is, this
memory area shall not be used for storage of other data blocks.

Now, the NVRAM manager has requested the FEE module to write a data block of 100
bytes. While this block is being written, a situation occurs that one (or several) of the
immediate data blocks need to be written. Therefore the NVRAM manager cancels the
ongoing write request and subsequently issues the write request for the (first) block
containing immediate data. The cancelation of the ongoing write request is performed
synchronously by the FEE module and the underlying flash driver (i.e. the write request
for the immediate data) can be started without any further delay. However, before the
first bytes of immediate data can be written, the FEE module or rather the underlying
flash driver have to wait for the end of an ongoing hardware access from the previous
write request (e.g. writing of a page, erasing of a sector, transfer via SPI, ...).



AUTSSAR

7.1.5 Managing block correctness information

[SWS_Fee 00049]
Upstream requirements: SRS_MemHwAb_14014

[The FEE module shall manage for each block the information, whether this block is
correct (i.e. "not corrupted") from the point of view of the FEE module or not. This infor-
mation shall only concern the internal handling of the block, not the block’s contents. |

[SWS_Fee 00153]
Upstream requirements: SRS_MemHwAb_14014

[When a block write operation is started, the FEE module shall mark the corresponding
block as "corrupted"'. |

[SWS_Fee 00154]
Upstream requirements: SRS_MemHwAb_14014

[Upon the successful end of the block write operation, the block shall be marked as
"not corrupted" (again). |

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Fee_InvalidateBlock
service, i.e. the FEE shall be able to distinguish between a corrupted block and a block
that has been deliberately invalidated by the upper layer.

7.1.6 Buffer Alignment

[SWS_Fee_00195] [The Fee shall align internal buffers to the value of FeeBuffer-
AlignmentValue|

[SWS_Fee_00196] [The Fee shall align read request to the value of FeeMinimum-
ReadPageSize]

7.2 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

'This does not necessarily mean a write operation on the physical device, if there are other means
to detect the consistency of a logical block.



AUTSSAR

7.2.1 Development Errors

[SWS_Fee_00010] Definition of development errors in module Fee

Upstream requirements: SRS_BSW_00406, SRS_BSW_00337, SRS_BSW_00386, SRS_BSW_
00327, SRS BSW 00331

Type of error Related error code Error value
API service called when module was not initialized | FEE_E_UNINIT 0x01
API service called with invalid block number FEE_E_INVALID_BLOCK_NO 0x02
API service called with invalid block offset FEE_E_INVALID_BLOCK_OFS 0x03
API service called with invalid data pointer FEE_E_PARAM_POINTER 0x04
API service called with invalid length information FEE_E_INVALID_BLOCK_LEN 0x05

7.2.2 Runtime Errors

[SWS_Fee_91002] Definition of runtime errors in module Fee |

Type of error Related error code Error value
API service called while module is busy FEE_E_BUSY 0x06
processing a user request

Fee_Cancel called while no job was pending. FEE_E_INVALID_CANCEL 0x08

7.2.3 Production Errors

There are no production errors.

7.2.4 Extended Production Errors

There are no extended production errors.



AUTSSAR

8 API specification

8.1 Imported types

[SWS_Fee_00084] Definition of imported datatypes of module Fee
Upstream requirements: SRS_BSW_00392

Module Header File Imported Type

MemAcc MemAcc_GeneralTypes.h | MemAcc_AddressArealdType

MemAcc_GeneralTypes.h | MemAcc_AddressType

MemAcc_GeneralTypes.h | MemAcc_DataType

MemAcc_GeneralTypes.h MemAcc_JobResultType

MemAcc_GeneralTypes.h | MemAcc_LengthType

Memlf Memlf.h Memlf_JobResultType
Memlf.h Memlf_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

]

[SWS_Fee 00016]
Upstream requirements: SRS_BSW_00392

[ The types mentioned in [SWS_Fee_00084] shall not be changed or extended for a
specific FEE module or hardware platform. |

8.2 Type definitions

[SWS_Fee_00188] Definition of datatype Fee_ConfigType
Upstream requirements: SRS_BSW_00414

[

Name Fee_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the Fee module.
Available via Fee.h




AUTSSAR

8.3 Function definitions

8.3.1 Fee_lInit

[SWS_Fee 00085] Definition of API function Fee_Init
Upstream requirements: SRS_BSW_00101

[
Service Name Fee_Init
Syntax void Fee_Init (
const Fee_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to initialize the FEE module.
Available via Fee.h

]

[SWS_Fee_00120] Fee init module status change

Upstream requirements: SRS_BSW_00406

[The function Fee_1Init shall set the module status from MEMIF_UNINIT to MEMIF_
BUSY_INTERNAL once it starts the module’s initialization. |

Note: The completion of Fee_Tnit does not imply that the Fee module can process
jobs immediately. There might be some pending internal management operations. This
will be determined and handled transparently by Fee_MainFunction.

Note: The FEE module’s environment shall not call the function Fee_Tnit during a
running operation of the FEE module.



AUTSSAR

8.3.2 Fee Read

[SWS_Fee_00087] Definition of API function Fee_Read
Upstream requirements: SRS_MemHwAb_ 14029

Service Name Fee_Read
Syntax Std_ReturnType Fee_Read (
uintl6 BlockNumber,
uintl6 BlockOffset,
uint8x DataBufferPtr,
uintl6é Length
)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in flash memory.
BlockOffset Read address offset inside the block
Length Number of bytes to read
Parameters (inout) None
Parameters (out) DataBufferPtr Pointer to data buffer
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Service to initiate a read job.
Available via Fee.h

[SWS Fee 00021]
Upstream requirements: SRS_MemHwAb_ 14007

[ The function Fee_Read shall take the block start address and offset and calculate the
corresponding memory read address. |

Note: The address offset and length parameter can take any value within the given
types range. This allows reading of an arbitrary number of bytes from an arbitrary start
address inside a logical block.

[SWS_Fee_00022]
Upstream requirements: SRS_MemHwAb_14029

[If the current module status is MEMIF_IDLE or if the current module status is
MEMIF_BUSY_INTERNAL, the function Fee_Read shall accept the read request, copy
the given / computed parameters to module internal variables, initiate a read job, set
the FEE module status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING
and return with E_OX. |

[SWS_Fee_00172] [If the current module status is MEMIF_UNINIT or MEMIF_BUSY,
the function Fee_Read shall reject the job request and return with E_NOT_OK. |



AUTSSAR

[SWS_Fee_00073] [ The FEE module shall execute the read operation asynchronously
within the FEE module’s main function. |

[SWS_Fee 00122]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for the module: the function Fee_Read shall
check if the module state is MEMIF_UNINIT. If this is the case, the function Fee_Read
shall raise the development error FEE_E_UNINIT. |

[SWS_Fee_00133] [The function Fee_Read shall check if the module state is
MEMIF_BUSY. If this is the case, the function Fee_Read shall reject the read request,
raise the runtime error FEE_E_BUSY and return with E_NOT_OK. |

[SWS Fee 00134]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Read shall
check that the given block number is valid (i.e. it has been configured). If this is not the
case, the function Fee_Read shall raise the development error FEE_E_INVALID_-—
BLOCK_NO. |

[SWS_Fee_00135]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Read
shall check that the given block offset is valid (i.e. that it is less than the block length
configured for this block). If this is not the case, the function Fee_Read shall raise the
development error FEE_E_INVALID_BLOCK_OFS. |

[SWS_Fee 00136]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Read shall
check that the given data pointer is valid (i.e. that it is not NULL). If this is not the case,
the function Fee_Read shall raise the development error FEE_E_PARAM_POINTER. |

[SWS_Fee 00137]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Read shall
check that the given length information is valid, i.e. that the requested length informa-
tion plus the block offset do not exceed the block end address (block start address plus
configured block length). If this is not the case, the function Fee_Read shall raise the
development error FEE_E_INVALID_BLOCK_LEN. |

[SWS_Fee_00162] [If a read request is rejected by the function Fee_Read,
i.e. requirements [SWS_Fee 00122], [SWS_Fee 00133], [SWS_Fee 00134],
[SWS_Fee 00135], [SWS_Fee 00136] or [SWS_Fee _00137] apply, the function
Fee_Read shall not change the current module status or job result. |



AUTSSAR

[SWS_Fee_00187] [The function Fee_Read shall call the function MemAcc_ -
BlankCheck to determine in advance whether a given memory area can be read
without encountering e.g. ECC errors due to trying to read erased but not programmed
flash cells. |

8.3.3 Fee_Write

[SWS_Fee_00088] Definition of API function Fee_Write
Upstream requirements: SRS_MemHwAb_ 14010

Service Name Fee_Write
Syntax Std_ReturnType Fee_Write (
uintl6 BlockNumber,
const uint8x DataBufferPtr
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.
DataBufferPtr Pointer to data buffer
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Service to initiate a write job.
Available via Fee.h

[SWS_Fee_00024]
Upstream requirements: SRS_MemHwAb_14006

[The function Fee_write shall take the block start address and calculate the corre-
sponding memory write address. The block address offset shall be fixed to zero. |

[SWS_Fee_00025]
Upstream requirements: SRS_MemHwAb_ 14010

[If the current module status is MEMIF_IDLE or if the current module status is
MEMIF_BUSY_INTERNAL, the function Fee_wWrite shall accept the write request,
copy the given / computed parameters to module internal variables, initiate a write
job, set the FEE module status to MEMIF_BUSY, set the job result to MEMIF_JOB_
PENDING and return with E_OX. |

[SWS_Fee_00174] [If the current module status is MEMIF_UNINIT or MEMIF_BUSY,
the function Fee_Wwrite shall reject the job request and return with E_NOT_OK. |



AUTSSAR

[SWS_Fee_00026]
Upstream requirements: SRS_MemHwAb_14010,

[The FEE module shall execute the write operation asynchronously within the FEE
module’s main function. |

[SWS_Fee 00123]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for the module: the function Fee_urite
shall check if the module state is MEMIF_UNINIT. If this is the case, the function Fee__
Write shall raise the development error FEE_E_UNINIT. |

[SWS_Fee_00144] [The function Fee_turite shall check if the module state is
MEMIF_BUSY. If this is the case, the function Fee_Turite shall reject the write request,
raise the runtime error FEE_E_BUSY and return with E_NOT_OK. |

[SWS_Fee 00138]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_turite
shall check that the given block number is valid (i.e. it has been configured). If this
is not the case, the function Fee_write shall raise the development error FEE_E__
INVALID_BLOCK_NO. ]

[SWS_Fee 00139]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_tuirite
shall check that the given data pointer is valid (i.e. that it is not NULL). If this is not
the case, the function Fee_Wwrite shall raise the development error FEE_E_PARAM
POINTER.

[SWS_Fee_00163] [If a write request is rejected by the function Fee wWrite,
i.e. requirements [SWS Fee 00123], [SWS_Fee 00144], [SWS_Fee 00138] or
[SWS_Fee_00139] apply, the function Fee_Wwrite shall not change the current mod-
ule status or job result. |



AUTSSAR

8.3.4 Fee Cancel

[SWS_Fee 00089] Definition of API function Fee_Cancel
Upstream requirements: SRS_MemHwAb_14031

[
Service Name Fee_Cancel
Syntax void Fee_Cancel (
void
)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to call the cancel function of the underlying flash driver.
Available via Fee.h
]

[SWS_Fee 00124]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for the module: the function Fee_Cancel
shall check if the module state is MEMIF_UNINIT. If this is the case the function Fee_
Cancel shall raise the development error FEE_E_UNINIT. |

[SWS_Fee 00080]
Upstream requirements: SRS_MemHwAb_14031

[If the current module status is MEMIF_BUSY (i.e. the request to cancel a pending
job is accepted by the function Fee_Cancel), the function Fee_Cancel shall call the
cancel function of the underlying flash driver. |

[SWS_Fee 00081]
Upstream requirements: SRS_MemHwAb_14031

[If the current module status is MEMIF_BUSY (i.e. the request to cancel a pending job
is accepted by the function Fee_Cancel), the function Fee_Cancel shall reset the
FEE module’s internal variables to make the module ready for a new job request from
the upper layer, i.e. it shall set the module status to MEMIF_IDLE. |

[SWS_Fee_00164] [If the current module status is not MEMIF_BUSY (i.e. the request
to cancel a pending job is rejected by the function Fee_Cancel), the function Fee_
Ccancel shall not change the current module status or job result. |



AUTSSAR

[SWS_Fee 00184]
Upstream requirements: SRS_MemHwAb_14031

[If the current module status is not MEMIF_BUSY (i.e. there is no job to cancel and
therefore the request to cancel a pending job is rejected by the function Fee_Cancel),
the function Fee_Cancel shall raise the runtime error FEE_E_INVALID_CANCEL.]

8.3.5 Fee GetStatus

[SWS_Fee_00090] Definition of API function Fee_GetStatus
Upstream requirements: SRS_BSW_00406

Service Name Fee_GetStatus
Syntax MemIf_ StatusType Fee_GetStatus (
void
)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Memlf_StatusType MEMIF_UNINIT: The FEE module has not been initialized.
MEMIF_IDLE: The FEE module is currently idle.
MEMIF_BUSY: The FEE module is currently busy.
MEMIF_BUSY_INTERNAL: The FEE module is busy with internal
management operations.

Description Service to return the status.

Available via Fee.h

[SWS_Fee 00034]
Upstream requirements: SRS_BSW_00406

[The function Fee_GetStatus shall return MEMIF_UNINIT if the module has not
(yet) been initialized. |

[SWS_Fee_00128] [The function Fee_GetStatus shall return MEMIF_IDLE if the
module is neither processing a request from the upper layer nor is it doing an internal
management operation. |

[SWS_Fee_00129] [The function Fee_GetsStatus shall return MEMIF_BUSY if it is
currently processing a request from the upper layer. |

[SWS_Fee_00074] [The function Fee_GetStatus shall return MEMIF_BUSY_IN-
TERNAL, if an internal management operation is currently ongoing. |



AUTSSAR

Note: Internal management operation may e.g. be a re-organization of the used flash
memory (garbage collection). This may imply that the underlying device driver is - at
least temporarily - busy.

8.3.6 Fee_GetJobResult

[SWS_Fee_00091] Definition of API function Fee_GetJobResult
Upstream requirements: SRS_MemHwAb_14040

Service Name Fee GetJobResult
Syntax MemIf_ JobResultType Fee_GetJobResult (
void
)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Memlf_JobResultType MEMIF_JOB_OK: The last job has been finished successfully.
MEMIF_JOB_PENDING: The last job is waiting for execution or
currently being executed.
MEMIF_JOB_CANCELED: The last job has been canceled (which
means it failed).
MEMIF_JOB_FAILED: The last job has not been finished
successfully (it failed).
MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested read operation can not be performed.

Description Service to query the result of the last accepted job issued by the upper layer software.

Available via Fee.h

[SWS_Fee_00035] [The function Fee_GetJobResult shall return MEMIF_JOB_OK
if the last job has been finished successfully. |

[SWS_Fee_00156] [The function Fee_GetJobResult shall return MEMIF_JOB_-—
PENDING if the requested job is still waiting for execution or is currently being exe-
cuted. |

[SWS_Fee_00157]

Upstream requirements: SRS_MemHwAb_14031
[ The function Fee_GetJobResult shall return MEMIF_JOB_CANCELED if the last job
has been canceled by the upper layer. |

[SWS_Fee_00158] [The function Fee_GetJobResult shall return MEMIF_JOB_-
FAILED if the last job has failed. |



AUTSSAR

[SWS_Fee 00159]
Upstream requirements: SRS_MemHwAb_14014

[ The function Fee_Get JobResult shall return MEMIF_BLOCK_INCONSISTENT if the
requested block is found to be inconsistent. |

The management of block inconsistency is specified in chapter 7.1.5.

[SWS_Fee_00160]
Upstream requirements: SRS_MemHwAb_14028

[The function Fee_GetJobResult shall return MEMIF_BLOCK_INVALID if the re-
quested block has been invalidated by the upper layer. |

[SWS_Fee_00155] [Only those jobs which have been requested directly by the upper
layer shall have influence on the job result returned by the function Fee_Get JobRe-
sult. l.e. jobs which are issued by the FEE module itself in the course of internal
management operations shall not alter the job result. |

[SWS_Fee 00125]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for the module: the function Fee_GetJo-
bResult shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Fee_GetJobResult shall raise the development error FEE_E_UNINIT. ]

8.3.7 Fee_InvalidateBlock

[SWS_Fee 00092] Definition of API function Fee_InvalidateBlock
Upstream requirements: SRS_MemHwAb_14028

Service Name Fee_InvalidateBlock
Syntax Std_ReturnType Fee_InvalidateBlock (
uint1l6 BlockNumber
)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in flash memory.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description Service to invalidate a logical block.

\Y



AUTSSAR

| Available via Fee.h

]

[SWS_Fee_00036]
Upstream requirements: SRS_MemHwAb_ 14009

[ The function Fee_InvalidateBlock shall take the block number and calculate the
corresponding memory block address. |

[SWS_Fee 00037]
Upstream requirements: SRS_MemHwAb_14028

[The function Fee_InvalidateBlock shall invalidate the requested block Block-
Number by calling the erase function of the underlying device driver and / or by chang-
ing some module internal management information accordingly. |

Note: How exactly the requested block is invalidated depends on the module’s imple-
mentation and will not be further detailed in this specification. The internal manage-
ment information has to be stored in NV memory since it has to be resistant against
resets. What this information is and how it is stored will not be further detailed in this
specification.

[SWS_Fee 00126]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for the module: the function Fee_Invali-
dateBlock shall check if the module status is MEMIF_UNINIT. If this is the case, the
function Fee_InvalidateBlock shall raise the development error FEE_E_UNINIT. |

[SWS_Fee_00145] [The function Fee_InvalidateBlock shall check if the module
status is MEMIF_BUSY. If this is the case, the function Fee_TInvalidateBlock shall
reject the request, raise the runtime error FEE_E_BUSY and return with E_NOT_OK. |

[SWS_Fee 00192]
Upstream requirements: SRS_MemHwAb_ 14028

[The function Fee_InvalidateBlock shall check if the module state is MEMIF_-
IDLE or MEMIF_BUSY_INTERNAL. If this is the case the module shall accept the in-
validation request and shall return E_OK to the caller. The block invalidation shall be
executed asynchronously in the module’s main function as soon as the module has
finished the internal management operation. |

[SWS_Fee_00193] [The FEE module shall execute the block invalidation request
asynchronously within the FEE module’s main function. |



AUTSSAR

[SWS_Fee 00140]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Inval-
idateBlock shall check that the given block number is valid (i.e. it has been con-
figured). If this is not the case, the function Fee_InvalidateBlock shall raise the
development error FEE_E_INVALID_BLOCK_NO. |

[SWS_Fee 00165]
Upstream requirements: SRS_MemHwAb_14028

[If an invalidation request is rejected by the function Fee_InvalidateBlock, i.e.
requirements [SWS_Fee 00126], [SWS_Fee_00140] or [SWS_Fee_00145] apply, the
function Fee_InvalidateBlock shall not change the current module status or job
result. |

8.3.8 Fee GetVersioninfo

[SWS_Fee 00093] Definition of API function Fee GetVersioninfo
Upstream requirements: SRS_BSW_00407

[

Service Name

Fee_GetVersionlnfo

Syntax void Fee_GetVersionInfo (
Std_VersionInfoTypex VersionInfoPtr
)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfoPtr Pointer to standard version information structure.
Return value None

Description

Service to return the version information of the FEE module.

Available via

Fee.h

]

[SWS_Fee 00147]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Getver-
sionInfo shall check that the given data pointer is valid (i.e. that it is not NULL). If
this is not the case, the function Fee_GetVersionInfo shall raise the development
error FEE_E_PARAM_POINTER.



AUTSSAR

8.3.9 Fee EraselmmediateBlock

[SWS_Fee 00094] Definition of API function Fee EraselmmediateBlock
Upstream requirements: SRS_MemHwAb_14032

Service Name Fee_EraselmmediateBlock
Syntax Std_ReturnType Fee_EraseImmediateBlock (
uintl6 BlockNumber
)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description Service to erase a logical block.

Available via Fee.h

Note: The function Fee_EraseImmediateBlock shall only be called by e.g. diag-
nostic or similar system service to pre-erase the area for immediate data if necessary.

[SWS_Fee 00066]
Upstream requirements: SRS_MemHwAb_ 14009

[The function Fee_EraseImmediateBlock shall take the block number and calcu-
late the corresponding memory block address. |

[SWS_Fee 00067]
Upstream requirements: SRS_MemHwAb_14013

[The function Fee_EraseImmediateBlock shall ensure that the FEE module can
write immediate data. Whether this involves physically erasing a memory area and
therefore calling the erase function of the underlying driver depends on the implemen-
tation of the module. |

[SWS_Fee 00127]
Upstream requirements: SRS_BSW_00406

[If development error detection is enabled for the module: the function Fee_Era-
seImmediateBlock shall check if the module state is MEMIF_UNINIT. If this is the
case, the function Fee_EraseImmediateBlock shall raise the development error
FEE_E_UNINIT.]

[SWS_Fee_00146] [The function Fee_EraseImmediateBlock shall check if the
module state is MEMIF_BUSY. If this is the case, the function Fee_EraseImmedi-



AUTSSAR

ateBlock shall reject the erase request, raise the runtime error FEE_E_BUSY and
return with E_NOT_OK. |

[SWS_Fee 00068]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Era-
seImmediateBlock shall check whether the addressed logical block is configured
as containing immediate data (FeeImmediateData == TRUE). If not, the function
Fee_FEraseImmediateBlock shall raise the development error FEE_E_INVALID_
BLOCK_NO. |

[SWS_Fee 00141]
Upstream requirements: SRS_BSW_00323

[If development error detection is enabled for the module: the function Fee_Era-
seImmediateBlock shall check that the given block number is valid (i.e. it has been
configured). If this is not the case, the function Fee_EraseImmediateBlock shall
raise the development error FEE_E_INVALID_BLOCK_NO. |

[SWS_Fee_00166]
Upstream requirements: SRS_MemHwAb_14032

[If a erase request is rejected by the function Fee_EraseImmediateBlock,
i.e. requirements [SWS_Fee 00068], [SWS_Fee 00127], [SWS_Fee 00141] or
[SWS_Fee_00146] apply, the function Fee_EraseImmediateBlock shall not change
the current module status or job result. |

8.4 Callback notifications

This chapter lists all functions provided by the Fee module to lower layer modules.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided by the FEE module may be called on interrupt level.
The implementation of the FEE module therefore has to make sure that the runtime
of those routines is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore, system design has to make sure that the
configuration of the involved modules meets those requirements.



AUTSSAR

8.4.1 Fee_JobEndNotification

[SWS_Fee 00095] Definition of callback function Fee_JobEndNotification
Upstream requirements: SRS_BSW_00359, SRS_BSW_00360

[
Service Name Fee_JobEndNotification
Syntax void Fee_JobEndNotification (
void
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Service to report to this module the successful end of an asynchronous operation.

Available via

Fee.h

]

The underlying flash driver shall call the function Fee_JobEndNotification to re-
port the successful end of an asynchronous operation.

[SWS_Fee_00052] [The function Fee_JobEndNotification shall perform any
necessary block management operations and subsequently call the job end notification
routine of the upper layer module if configured. |

[SWS_Fee_00142] [If the job result is currently MEMIF_JOB_PENDING, the function
Fee_JobEndNotification shall set the job result to MEMIF_JOB_OK, else it shall
leave the job result untouched. |

[SWS_Fee_00194] [The function Fee_JobEndNotification shall perform any
necessary block management and error handling operations and subsequently call
the job error notification routine of the upper layer module if configured. |

Note: The function Fee_JobEndNotification shall be callable on interrupt level.

8.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non re-
entrant.



AUTSSAR

8.5.1 Fee_ MainFunction

[SWS_Fee 00097] Definition of scheduled function Fee_MainFunction
Upstream requirements: SRS_BSW_00373

Service Name Fee_MainFunction
Syntax void Fee_MainFunction (
void
)
Service ID [hex] 0x12
Description Service to handle the requested read / write / erase jobs and the internal management
operations.
Available via SchM_Fee.h

[SWS_Fee_00197] Main function module status change
Upstream requirements: SRS_MemHwAb_14014

[In case there are no internal management operations needed or the internal man-
agement operations are done, the function Fee_MainFunction shall set the module
status from MEMIF_BUSY_INTERNAL to MEMIF_IDLE. |

Note: handling of internal management operations can take more than 1 call of the
Fee MainFunction.

[SWS_Fee_00057] [The function Fee_MainFunction shall asynchronously handle
the read / write / erase / invalidate jobs requested by the upper layer and internal
management operations. |

[SWS_Fee_ 00075]
Upstream requirements: SRS_MemHwAb_14028

[ The function Fee_MainFunction shall check, whether the block requested for read-
ing has been invalidated by the upper layer module. If so, the function Fee_Main-
Function shall set the job result to MEMIF_BLOCK_INVALID and call the error notifi-
cation routine of the upper layer if configured. |

[SWS_Fee_00023]
Upstream requirements: SRS_MemHwAb_14014, SRS_MemHwAb_14015, SRS_MemHwAb_-
14016

[The function Fee_MainFunction shall check the consistency of the logical block
being read before notifying the caller. If an inconsistency of the read data is detected
or if the requested block can’t be found, the function Fee_MainFunction shall set
the job result to MEMIF_BLOCK_INCONSISTENT and call the error notification routine
of the upper layer if configured. |

Note: In this case, the upper layer must not use the contents of the data buffer.



AUTSSAR

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_Fee_00105] Definition of mandatory interfaces required by module Fee
Upstream requirements: SRS_BSW_00384

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

MemAcc_Cancel MemAcc.h Triggers a cancel operation of the pending job for
the address area referenced by the addressAreald.
Cancelling affects only jobs in pending state. For
any other states, the request will be ignored.

MemAcc_Compare MemAcc.h Triggers a job to compare the passed data to the
memory content of the provided address area. The
job terminates, if all bytes matched or a difference
was detected. The result of this service can be
retrieved using the MemAcc_GetJobResult() API. If
the compare operation determined a mismatch, the
result code is MEMACC_INCONSISTENT.

MemAcc_Erase MemAcc.h Triggers an erase job of the given area.

Triggers an erase job of the given area defined by
targetAddress and length. The result of this service
can be retrieved using the Mem_GetJobResult API.
If the erase operation was successful, the result of
the job is MEM_JOB_OK. If the erase operation
failed, e.g. due to a hardware issue, the result of the
job is MEM_JOB_FAILED.

MemAcc_GetJobResult MemAcc.h Returns the consolidated job result of the address
area referenced by addressAreald.

MemAcc_Read MemAcc.h Triggers a read job to copy data from the source
address into the referenced destination data buffer.
The result of this service can be retrieved using the
MemAcc_GetJobResult API. If the read operation
was successful, the result of the job is MEMACC_
OK. If the read operation failed, the result of the job
is either MEMACC_FAILED in case of a general
error or MEMACC_ECC_CORRECTED/MEMACC _
ECC_UNCORRECTED in case of a correctable/
uncorrectable ECC error.

MemAcc_Write MemAcc.h Triggers a write job to store the passed data to the
provided address area with given address and
length. The result of this service can be retrieved
using the MemAcc_GetJobResult API. If the write
operation was successful, the job result is
MEMACC_OK. If there was an issue writing the
data, the result is MEMACC_FAILED.




AUTSSAR

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Fee_00104] Definition of optional interfaces requested by module Fee
Upstream requirements: SRS_BSW_00384

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

MemAcc_BlankCheck MemAcc.h Checks if the passed address space is blank, i.e.
erased and writeable. The result of this service can
be retrieved using the MemAcc_GetJobResult API.
If the address area defined by targetAddress and
length is blank, the result is MEMACC_OK,
otherwise the result is MEMACC_INCONSISTENT.

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines invoked by the FEE module may be called on interrupt level.
The implementor of the module providing these routines therefore has to make sure
that their runtime is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore system design has to make sure that the
configuration of the involved modules meets those requirements.

[SWS_Fee 00055]
Upstream requirements: SRS_MemHwAb_ 14041

[ The FEE module shall call the function defined in the configuration parameter FeeN-
vmJobEndNotification upon successful end of an asynchronous operation and
after performing all necessary internal management operations:

* Read job finished & OK
» Write job finished & OK & block marked as valid
+ Erase job for immediate data finished & OK (see [SWS_Fee_00067])

* Invalidation of memory block finished & OK



AUTSSAR

The function defined in the configuration parameter FeeNvmJobEndNotification
shall be callable on interrupt level.

[SWS_Fee_00056] Fee job error notification
Upstream requirements: SRS_MemHwAb_ 14041

[ The FEE module shall call the function defined in the configuration parameter FeeN-
vmJobErrorNotification upon failure of an asynchronous operation and after per-
forming all necessary internal management and error handling operations:

» Read job finished & failed (e.g. block invalid or inconsistent)
» Write job finished & failed & block marked as invalid
* Erase job for immediate data finished & failed (see [SWS_Fee 00067])

* Invalidation of memory block finished & failed
]

The function defined in the configuration parameter FeeNvmJobErrorNotifica-
tion shall be callable on interrupt level.



AUTSSAR

9 Sequence diagrams

Note: For a vendor specific library, the following sequence diagrams are valid only inso-
far as they show the relation to the calling modules (Ecu_StateManager[3] and memory
abstraction interface[4]). The calling relations from a memory abstraction module to an
underlying driver are not relevant / binding for a vendor specific library.

9.1 Fee_lInit

The following figure shows the call sequence for the Fee_Init routine. It is different
from that of all other services of this module as it is not called by the NVRAM manager

and not called via the memory abstraction interface.

«module»
EcuM

«module»
SchM

«module»

|
Fee_lInit(const Fee_ConfigType*)

|
Fee_Init()

After Fee_Init, module status is set to
MEMIF_BUSY_INTERNAL. Jobs can be accepted.

?

loop / Fee_MainFunction()
= L
Fee_MainFunction()
e — = T T ]
|
|
Fee_MainFunction() |
Fee_MainFunction()
R e >~|:|

9.2 Fee_ Write

L
|

Figure 9.1: Sequence diagram of Fee_Init

If internal management operations are
needed, module status remains
MEMIF_BUSY_INTERNAL

Internal management operations finished or
not needed, module status set to MEMIF_IDLE

The following figure shows exemplarily the call sequence for the Fee_Write service.
This sequence diagram also applies to the other asynchronous services of this module.



AUTSSAR

«module» «module» «module» «module» «module»
NvM Memlf Fee MemAcc Mem
[es o)

T BSW Task (OS task T T T
! or cyclic call) 1 1 |
| | I | |
: MemIf_Write(Std_| ReturnType uintl6, umtls const uint8*) ! :

Fee_Write(Std_ ReturnType uintlé, const uint8*) |

MemAcc_Write(Std_ ReturnType MemAcc_AddressArealdType,
MemAcc_AddressType, const MemAcc_DataType*, MemAcc LengthType)
»

- > |
Fee_Write() ez — _MemaAcc_wite) |

Memlf_Write() e - — T — — — |
_________________ |
|

|

T

|
MemAcc_MainFunction()
t

Mem_Write(Std_ReturnType, |
Mem_lInstanceldType, Mem_AddressType,
const Mem_DataType*, MemeelngthType)

Mem_Write()
ke = 2 - —

Mem_MainFunction() T

'
Mem_GetJobResuIt(Mem_JobR'esuItType,
Mem_InstanceldType) |

|

|

|

|

|

| Mem_MainFunction()
[ <
|

|

|

|

|

Mem_GetJobResult()

< T T 5 oy

T | | T |

| | | | |

] I I I I

| | | | |

| | MemAcc_MainFunction() | | |

t t |

L I Fee_JobEndNotification() [

NvM_JobEndNotification() -t |

-t t |
NvM_JobEndNotification() |

———————— B el il Fee JobEndNotlflcatlon() |

I |

| | MemAcc_MainFunction() |
I -~ [ i Il I
| = | | - |
| | |

Figure 9.2: Sequence diagram of Fee_Write

9.3 Fee Cancel

The following figure shows as an example the call sequence for a canceled Fee_ -
Write service and a subsequent new Fee_Write request. This sequence diagram
shows that Fee_Cancel is asynchronous w.r.t. the underlying hardware while itself
being synchronous.



AUTSSAR

«module» «module» «module» «module» «module» «Peripheral»
NvM Memlf Fee MemAcc Mem Flash Memory

BSW Task (OS task
or cyclic call)

T T T

I I I

| | | |
Memlf_Write(uint8, uintl6, uint8*) | |
|

T
I
|
| |
MemAcc_Write(Std_RetumType, MemAcc_AddressArealdType,
MemAcc_AddressType, const MemAcc_DataType*, MemAcc_LengthType)
1

P Fee_Wiite(uint16, uint8*)

MemAcc_Write()
Fee_Write)  |[S——~—~—~—-————
Memlf_Write() A

Mem_Write(Std_RetumType,
Mem_lInstanceldType, |
Mem_AddressType, const
Mem_DataType*, !
Mem_LengthType), :

_ Memwite) _ | ——————>])

loop MemAcc_MainFunction /
I

. ) T
Mem_MainFunctionQ _ | check if hardware is free (idle);

if so, issue first write command

Mem_MainFunction()

-
Mem_GetJobResult(Mem_JobResultType,
Mem_lInstanceldType) |

Mem_GetJobResult() =
( __________

7777777777777777777777777777777 1
= T |

check HW status,

check job status,

if HW is finished and job is not
finished issue next write command

o
|
|
|
|

-
|
I
|
|
Memlf_CanceI;(Devicelndex) :

Fee_Cancel(void) _

MemAccﬁCanceI(MemAlccfAddresArealdType)

MemAcc_Cancel()

MemAcc_MainFunclionOI | The curment pending

physical write operation
is still being completed
but MemAcc will not
request further physical
write operations.

|

|

|

|

|

|
.

I
| Fee_JobEndNotifi calionOT
-

|
|
| R
Fee_JobEndNotificati
! Fee_Cancel() ee_JobEndhotfica @n}
= Memlif_Cancel() ke - — === — —

To be continued...

I

I

I

I

I

I

I

I

'z

lo

13
>

'3

I

S
QD

=%

I

13

IS

<

I

I

I

I

I

I

I

I

I

|

- |
| | |
| |
| |
| |
| |

Figure 9.3: Part 1 of sequence diagram of Fee_Cancel



AUTSSAR

«module» «module» «module» «module» «module» «Peripheral»

NvM Memif Fee MemAcc Mem Flash Memory
O

BSW Task (OS task
or cyclic call)

Continuation from previous page...

alt request pending )

|

|

I

I

[no flrther request until net main function cycle] '
| 1

MemAcc_MailnFunctionO

/

I
MemAcc_MainFunction()

|
|
|
|
|
el St b et i Attt e | i | Sttt 1=
[request issued before nexj main function cyclejis due] I
: Memlf_Write(Std_ReturType, uint16, u;intle, const uint8*) :
I Fee_Write(Std_RetumType, uintl6, const uint8*)

MemAcc_Write(Std_RetumType, MemAcc_AddressArealdType,
MemAcc_AddressType, clonst MemAcc_DataType*, MemAcc_LengthType)

MemAcc_Write()
. Fee_Write() <———————=—-
MemIf_Write() (<———"——=—-

,,,,,,,, T Ve

| I
| MemAccﬁMainFunctionlo

F——

Mem_Write(Std_RetumT:ype, Mem_lnstanceldTyp:e,
Mem_AddressType, conls Mem_DataType*, Mem_rLengthType)

| _Mem_write0__| g

N N .
Mem_MainFunction |

check if hardware is free (idle);

Mem_MainFunction() if so, issue first write command

MemfGetJobResult(MenilfJobRewltType. Memflr:wxanceldT pe)
|

! Mem_GetJobResult()
<

! check HW status,

| check job status,

! if HW is finished and
! job is not finished issue
: next write command
t

I

|

S A

Figure 9.4: Part 2 of sequence diagram of Fee_Cancel



AUTSSAR

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.1.1 Fee

[ECUC_Fee_00154] Definition of EcucModuleDef Fee |

Module Name Fee

Description Configuration of the Fee (Flash EEPROM Emulation) module.
Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

FeeBlockConfiguration 1.* Configuration of block specific parameters for the Flash
EEPROM Emulation module.

FeeGeneral 1 Container for general parameters. These parameters are not

specific to a block.

FeePublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.

Note that these parameters do not have any configuration class
setting, since they are published information.




AUTSSAR

Fee: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

+container

EcucP %rf\eral: inerDef +p t FeeMainFunctionPeriod:
cucParamConfContainerDe P EcucFloatParamDef
min =0
max = INF
+parameter . FeeBDe\IlErro';Detecg .
P cucBooleanParamDe
defaultValue = false
FeeVirtualPageSize:
+parameter EcucintegerParamDef
max = 65535
min=E +parameter FeeVersionInfoApi:
P P EcucBooleanParamDef
defaultValue = false
FeeMinimumReadPageSize:
+parameter| " EcycintegerParamDef
max = 65535
min =0
FeeNvmJobEndNotification:
+parameter EcucFunctionNameDef
et lowerMultiplicity = 0
FeeNvmJobErrorNotification: upperMultiplicity = 1
+parameter EcucFunctionNameDef
lowerMultiplicity = 0
upperMultiplicity = 1
+parameter FeePollingMode:
e EcucBooleanParamDef
+reference FeeBufferAlignmentValue:
EcucReferenceDef
requiresSymbolicNameValue = true
+destination
MemAccAddressAreaConfiguration:
EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = 65535
FeePublishedInformation: FeeBlockOverhead:
EcucParamConfContainerDef EcucintegerParamDef
+parameter =euentegeraramoet
min =0
max = 65535 FeePageOverhead:
EcucIntegerParamDef
+parameter
= min =0
max = 65535

+container

FeeBlockConfiguration:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

Figure 10.1: Overview of configuration parameters of Fee

10.1.2 FeeGeneral

[ECUC_Fee_00039] Definition of EcucParamConfContainerDef FeeGeneral |

Container Name

FeeGeneral

Parent Container

Fee

Description

Container for general parameters. These parameters are not specific to a block.

V




AUTSSAR

A
Multiplicity 1
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
FeeDevErrorDetect 1 [ECUC_Fee_00111]
FeeMainFunctionPeriod 1 [ECUC_Fee_00153]
FeeMinimumReadPageSize 1 [ECUC_Fee_00156]
FeeNvmJobEndNotification 0..1 [ECUC_Fee_00112]
FeeNvmdJobErrorNotification 0..1 [ECUC_Fee_00113]
FeePollingMode 1 [ECUC_Fee_00114]
FeeVersionlnfoApi 1 [ECUC_Fee_00115]
FeeVirtualPageSize 1 [ECUC_Fee_00116]
FeeBufferAlignmentValue 1 [ECUC_Fee_00157]

No Included Containers

]

[ECUC_Fee_00111] Definition of EcucBooleanParamDef FeeDevErrorDetect |

Parameter Name

FeeDevErrorDetect

Parent Container

FeeGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
- false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Fee_00153] Definition of EcucFloatParamDef FeeMainFunctionPeriod |

Parameter Name

FeeMainFunctionPeriod

Parent Container

FeeGeneral

Description The period between successive calls to the main function in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[ |

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time | X | All Variants

Y%




AUTSSAR

Link time

Post-build time

Dependency

]

[ECUC_Fee_00156] Definition of EcucintegerParamDef FeeMinimumReadPage

Size
Status: DRAFT

Parameter Name

FeeMinimumReadPageSize

Parent Container

FeeGeneral

Description Minimum Page size will be a multiple of the minimum page size. Fee shall align read
requests to this size.
Tags: atp.Status=draft

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Fee 00112] Definition of EcucFunctionNameDef FeeNvmJobEndNotifi-

cation [

Parameter Name

FeeNvmJobEndNotification

Parent Container

FeeGeneral

Description Mapped to the job end notification routine provided by the upper layer module (NvM_
JobEndNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency




AUTSSAR

[ECUC_Fee_00113] Definition of EcucFunctionNameDef FeeNvmJobErrorNotifi-

cation |

Parameter Name

FeeNvmdJobErrorNotification

Parent Container

FeeGeneral

Description Mapped to the job error notification routine provided by the upper layer module (NvM_
JobErrorNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Fee_00114] Definition of EcucBooleanParamDef FeePollingMode |

Parameter Name

FeePollingMode

Parent Container

FeeGeneral

Description Pre-processor switch to enable and disable the polling mode for this module.
true: Polling mode enabled, callback functions (provided to MemAcc module) disabled.
false: Polling mode disabled, callback functions (provided to MemAcc module) enabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Fee_00115] Definition of EcucBooleanParamDef FeeVersionIinfoApi |

Parameter Name

FeeVersionInfoApi

Parent Container

FeeGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

false

V




AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Fee_00116] Definition of EcucintegerParamDef FeeVirtualPageSize |

Parameter Name

FeeVirtualPageSize

Parent Container

FeeGeneral

Description The size in bytes to which logical blocks shall be aligned.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Fee_00157] Definition of EcucReferenceDef FeeBufferAlignmentValue

Status: DRAFT

Parameter Name

FeeBufferAlignmentValue

Parent Container

FeeGeneral

Description Parameter determines the alignment of the start address that Fee buffers need to have.
Value shall be inherited from MemAccBufferAlignmentValue.
Tags: atp.Status=draft

Multiplicity 1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

10.1.3 FeeBlockConfiguration

[ECUC_Fee_00040] Definition of EcucParamConfContainerDef FeeBlockConfig-

uration [




AUTSSAR

Container Name

FeeBlockConfiguration

Parent Container

Fee

Description

Configuration of block specific parameters for the Flash EEPROM Emulation module.

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

FeeBlockNumber 1 [ECUC_Fee_00150]
FeeBlockSize 1 [ECUC_Fee_00148]
FeelmmediateData 1 [ECUC_Fee_00151]
FeeNumberOfWriteCycles 1 [ECUC_Fee_00110]
FeeMemAccAddressArea 0..1 [ECUC_Fee_00155]

No Included Containers

]

[ECUC_Fee_00150] Definition of EcucintegerParamDef FeeBlockNumber |

Parameter Name

FeeBlockNumber

Parent Container

FeeBlockConfiguration

Description Block identifier (handle).
0x0000 and 0xFFFF shall not be used for block numbers (see FEEQ06).
Range: min = 2"NVM_DATASET_SELECTION_BITS max = OxFFFF -2"NVM_
DATASET_SELECTION_BITS
Note: Depending on the number of bits set aside for dataset selection several other
block numbers shall also be left out to ease implementation.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 1..65534

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Fee_00148] Definition of EcuclntegerParamDef FeeBlockSize |

Parameter Name

FeeBlockSize

Parent Container

FeeBlockConfiguration

Description Size of a logical block in bytes.
Multiplicity 1

Type EcuclntegerParamDef

Range 1..65535 |

Default value




AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]
[ECUC_Fee_00151] Definition of EcucBooleanParamDef FeelmmediateData |

Parameter Name FeelmmediateData
Parent Container FeeBlockConfiguration
Description Marker for high priority data.

true: Block contains immediate data. false: Block does not contain immediate data.
Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Fee_00110] Definition of EcucintegerParamDef FeeNumberOfWriteCy-
cles |

Parameter Name FeeNumberOfWriteCycles

Parent Container FeeBlockConfiguration

Description Number of write cycles required for this block.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency




AUTSSAR

[ECUC_Fee_00155] Definition of EcucReferenceDef FeeMemAccAddressArea

Status: DRAFT

Parameter Name

FeeMemAccAddressArea

Parent Container

FeeBlockConfiguration

Description Reference to the MemAccAddressAreaConfiguration.
Tags: atp.Status=draft
Multiplicity 0..1
Type Symbolic name reference to MemAccAddressAreaConfiguration
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.2: Overview of configuration parameters of FeeBlockConfiguration

requiresSymbolicNameValue = true

" — FeeBlockSize:
FeeBlockConfiguration: +parameter EcudintegerParamDef
EcucParamConfContainerDef =cucintegerrarambel
upperMultiplicity = * max = Gt FeeBlockNumber:
lowerMultiplicity = 1 et EcucIntegerParamDef
+parameter
L max = 65534
min =1
symbolicNameValue = true
FeeNumberOfWriteCycles:
parameter EcuclntegerParamDef
min =0
max = 4294967295
FeelmmediateData:
+parameter EcucBooleanParamDef
>
MemAccAddressAreald:
EcuclintegerParamDef
min =0
max = 65535
defaultValue = 0
lowerMultiplicity = 1
upperMultiplicity = 1
symbolicNameValue = true
+parameter$
+reference FeeMemAccAddressArea: +destination| MemAccAddressAreaConfiguration:
EcucReferenceDef

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 65535




AUTSSAR

10.2 Published Information

10.2.1 FeePublishedInformation

[ECUC_Fee 00043] Definition of EcucParamConfContainerDef FeePublishedIn-

formation [

Container Name

FeePublishedInformation

Parent Container

Fee

Description Additional published parameters not covered by CommonPublishedInformation
container.
Note that these parameters do not have any configuration class setting, since they are
published information.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
FeeBlockOverhead 1 [ECUC_Fee_00117]
FeePageOverhead 1 [ECUC_Fee_00118]

No Included Containers

]

[ECUC_Fee_00117] Definition of EcuclntegerParamDef FeeBlockOverhead |

Parameter Name

FeeBlockOverhead

Parent Container

FeePublishedInformation

Description Management overhead per logical block in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..65535 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants

Dependency

]

[ECUC_Fee_00118] Definition of EcucintegerParamDef FeePageOverhead |

Parameter Name

FeePageOverhead

Parent Container

FeePublishedInformation

Description

Management overhead per page in bytes.

Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

V




AUTSSAR

A
Multiplicity 1
Type EcuclntegerParamDef
Range 0..65535 |
Default value -
Post-Build Variant Value false
Value Configuration Class Published Information ‘ X ‘ All Variants

Dependency




AUTSSAR

A Not applicable requirements

[SWS_Fee NA 00999]

Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00171, SRS_BSW _
00336, SRS_BSW_00339, SRS _BSW_00344, SRS _BSW_00369,
SRS_BSW_00375, SRS_BSW_00380, SRS_BSW_00383, SRS_BSW_
00388, SRS_BSW_00389, SRS _BSW_00390, SRS_BSW_00393,
SRS_BSW_00395, SRS _BSW_00398, SRS_BSW_00399, SRS_BSW_
00400, SRS BSW_00403, SRS BSW_00404, SRS _BSW_00405,
SRS _BSW_00416, SRS_BSW_00417, SRS_BSW_00419, SRS_BSW _
00422, SRS BSW 00423, SRS BSW 00424, SRS BSW 00425,
SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_
00429, SRS_BSW_00432, SRS _BSW_00433, SRS_BSW_00461,
SRS BSW_00469, SRS BSW 00471, SRS BSW 00472, SRS BSW _
00478, SRS_BSW_00490, SRS_BSW_00491, SRS_MemHwAb_14017

[ These requirements are not applicable to this specification. |



AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

Number Heading
[SWS_Fee_00120] Fee init module status change
[SWS_Fee 00197] Main function module status change

Table B.1: Added Specification Iltems in R25-11

B.1.2 Changed Specification Items in R25-11

Number Heading
[SWS_Fee_00056] Fee job error notification
[SWS_Fee_00085] Definition of API function Fee_Init

Table B.2: Changed Specification Items in R25-11

B.1.3 Deleted Specification Iltems in R25-11

Number Heading

[SWS_Fee 00168]

[SWS_Fee_00169]

Table B.3: Deleted Specification Items in R25-11

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11

none



AUTSSAR

B.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_Fee_00105] Definition of mandatory interfaces required by module Fee

Table B.4: Changed Specification Items in R24-11

B.2.3 Deleted Specification ltems in R24-11

none



	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase cycles
	7.1.4 Handling of "immediate" data
	7.1.5 Managing block correctness information
	7.1.6 Buffer Alignment

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors


	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Fee_Init
	8.3.2 Fee_Read
	8.3.3 Fee_Write
	8.3.4 Fee_Cancel
	8.3.5 Fee_GetStatus
	8.3.6 Fee_GetJobResult
	8.3.7 Fee_InvalidateBlock
	8.3.8 Fee_GetVersionInfo
	8.3.9 Fee_EraseImmediateBlock

	8.4 Callback notifications
	8.4.1 Fee_JobEndNotification

	8.5 Scheduled functions
	8.5.1 Fee_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces


	9 Sequence diagrams
	9.1 Fee_Init
	9.2 Fee_Write
	9.3 Fee_Cancel

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 Fee
	10.1.2 FeeGeneral
	10.1.3 FeeBlockConfiguration

	10.2 Published Information
	10.2.1 FeePublishedInformation


	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11



