
Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Document Title Specification of Flash EEPROM
Emulation

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 286

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Updated init sequence: Fee_Init is
now synchronous, but explicitly exclude
internal management operations, in
scope of Fee_MainFunction

• Fixed typo in [SWS_Fee_00056]

• Removed redundant memory layout
table

2024-11-27 R24-11
AUTOSAR
Release
Management

• Removed draft status of
MemAcc_Compare in
[SWS_Fee_00105]

2023-11-23 R23-11
AUTOSAR
Release
Management

• Fixed incorrect description of return
value in Fee_InvalidateBlock and
Fee_EraseImmediateBlock

2022-11-24 R22-11
AUTOSAR
Release
Management

• Removed obsolete items

• Changed [SWS_Fee_00999] to
[SWS_Fee_NA_00999]

• Set items to valid:

– [SWS_Fee_00194]

– [SWS_Fee_00195]

– [SWS_Fee_00196]

2021-11-25 R21-11
AUTOSAR
Release
Management

• Updated for new memory stack

• Removed return codes for Det errors

• Removed definitions of NVM functions
▽

1 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△

2020-11-30 R20-11
AUTOSAR
Release
Management

• Fixed inconsistency in the example of
[SWS_Fee_00100]

• Removed FEE_E_INIT_FAILED

2019-11-28 R19-11
AUTOSAR
Release
Management

• Added diagrams in chapter 10

• Added limitation about parallel access to
Flash Driver

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Fixed typo in sequence diagram

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Introduction of runtime errors

• Adjusted references

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Updated tracing information

• Behaviour during MEMIF_BUSY_
INTERNAL reworked

• Range of main function adapted

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Behaviour during FEE_BUSY_INTERNAL
reworked

• Error classification reworked

• Debugging support marked as obsolete

• Job result clarified if requested block
can’t be found

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Requirement for blank checking added

• Requirements linked to features, general
and module specific requirements

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Editorial changes

▽

2 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Timing requirement removed from
module’s main function

• "const" qualifier added to prototype of
function Fee_Write

• New configuration parameter
FeeMainFunctionPeriod

• Editorial changes

• Removed chapter(s) on change
documentation

2013-03-15 4.1.1 AUTOSAR
Administration

• Reworked according to the new
SWS_BSWGeneral

• Scope attribute in tables in chapter 10
added

• Published parameter
FeeMaximumBlockingTime
deprecated

• Configuration parameter FeeIndex
deprecated

2011-12-22 4.0.3 AUTOSAR
Administration

• DET errors added / removed

• Handling of internal management
operations detailed

• Module short name changed

• Consistency checking reformulated

2010-09-30 3.1.5 AUTOSAR
Administration

• Inter-module checks clarified [SWS_
Fee_00013]

• Sequence diagram for Fee_Cancel
replaced for generated one

• Naming in [ECUC_Fee_00150]
corrected to
NVM_DATASET_SELECTION_BITS

• Sequence diagram for Fee_Init
extended

• Handling of internal management
operations refined ([SWS_Fee_00022],
[SWS_Fee_00025], [SWS_Fee_00173],
[SWS_Fee_00174], [SWS_Fee_00183])

▽
▽

3 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
△

• Inter module checks detailed ([SWS_
Fee_00013])

• NvM_Cbk.h added to file include
structure ([SWS_Fee_00002])

• Ranges for FeeBlockNumber
([ECUC_Fee_00150]) and
FeeBlockSize ([ECUC_Fee_00148])
adjusted

• Initialization might not be finished within
Fee_Init, state machine adapted
accordingly ([SWS_Fee_00120], [SWS_
Fee_00168], [SWS_Fee_00169])

• Handling of internal management
operations refined ([SWS_Fee_00170] ..
[SWS_Fee_00182] e.a.)

2010-02-02 3.1.4 AUTOSAR
Administration

• Configuration variants clarified

• Job result handling re-formulated

• Range of configuration parameters
restricted

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Small reformulations resulting from table
generation

• Tables in chapters 8 and 10 generated
from UML model

• Document meta information extended

• Small layout adaptations made
▽

4 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△

2007-01-24 2.1.15 AUTOSAR
Administration

• File include structure updated

• API of initialization function adapted

• Range of FEE block numbers adapted

• Various API descriptions enhanced

• Legal disclaimer revised

• Release Notes added

• "Advice for users" revised

• "Revision Information" added

2006-05-16 2.0 AUTOSAR
Administration

• Initial release

5 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

6 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 9

2 Acronyms and Abbreviations 11

3 Related documentation 12

3.1 Input documents & related standards and norms 12
3.2 Related specification . 12

4 Constraints and assumptions 13

4.1 Limitations . 13
4.2 Applicability to car domains . 13

5 Dependencies to other modules 14

6 Requirements Tracing 15

7 Functional specification 17

7.1 General behavior . 17
7.1.1 Addressing scheme and segmentation 17
7.1.2 Address calculation . 18
7.1.3 Limitation of erase cycles . 19
7.1.4 Handling of "immediate" data . 20
7.1.5 Managing block correctness information 21
7.1.6 Buffer Alignment . 21

7.2 Error Classification . 21
7.2.1 Development Errors . 22
7.2.2 Runtime Errors . 22
7.2.3 Production Errors . 22
7.2.4 Extended Production Errors . 22

8 API specification 23

8.1 Imported types . 23
8.2 Type definitions . 23
8.3 Function definitions . 24

8.3.1 Fee_Init . 24
8.3.2 Fee_Read . 25
8.3.3 Fee_Write . 27
8.3.4 Fee_Cancel . 29
8.3.5 Fee_GetStatus . 30
8.3.6 Fee_GetJobResult . 31
8.3.7 Fee_InvalidateBlock . 32
8.3.8 Fee_GetVersionInfo . 34
8.3.9 Fee_EraseImmediateBlock . 35

7 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.4 Callback notifications . 36
8.4.1 Fee_JobEndNotification . 37

8.5 Scheduled functions . 37
8.5.1 Fee_MainFunction . 38

8.6 Expected interfaces . 39
8.6.1 Mandatory Interfaces . 39
8.6.2 Optional Interfaces . 40
8.6.3 Configurable interfaces . 40

9 Sequence diagrams 42

9.1 Fee_Init . 42
9.2 Fee_Write . 42
9.3 Fee_Cancel . 43

10 Configuration specification 46

10.1Containers and configuration parameters 46
10.1.1 Fee . 46
10.1.2 FeeGeneral . 47
10.1.3 FeeBlockConfiguration . 51

10.2Published Information . 55
10.2.1 FeePublishedInformation . 55

A Not applicable requirements 57

B Change history of AUTOSAR traceable items 58

B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . 58

B.1.1 Added Specification Items in R25-11 58
B.1.2 Changed Specification Items in R25-11 58
B.1.3 Deleted Specification Items in R25-11 58

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . 58

B.2.1 Added Specification Items in R24-11 58
B.2.2 Changed Specification Items in R24-11 59
B.2.3 Deleted Specification Items in R24-11 59

8 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

1 Introduction and functional overview

This specification describes the functionality, API and configuration of the Flash EEP-
ROM Emulation Module.

Figure 1.1: Module overview of memory stack

9 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

The Flash EEPROM Emulation (FEE) shall abstract from the device specific address-
ing scheme and segmentation and provide the upper layers with a virtual addressing
scheme and segmentation as well as a "virtually" unlimited number of erase cycles.

10 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Fee module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

EA EEPROM Abstraction
Address Area Contiguous memory area in the logical address space typically multiple physical

memory sectors are combined to one logical address area.

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here, "bit" is meant.

Mem Memory Driver

MemAcc Memory Access

MemIf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here, "bit" is meant.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

NVRAM block Management unit as seen by the NVRAM Manager

(Logical) block Smallest writable / erasable unit as seen by the modules user. Consists of one or
more virtual pages.

Virtual page May consist of one or several physical pages to ease handling of logical blocks
and address calculation.

Internal residue Unused space at the end of the last virtual page if the configured block size isn’t
an integer multiple of the virtual page size (see Figure 7.1).

Virtual address Consisting of 16 bit block number and 16 bit offset inside the logical block.

Physical address Address information in device specific format (depending on the underlying
EEPROM driver and device) that is used to access a logical block.

Dataset Concept of the NVRAM manager: A user addressable array of blocks of the
same size.
E.g. could be used to provide different configuration settings for the CAN driver
(CAN IDs, filter settings, ...) to an ECU which has otherwise identical application
software (e.g. door module).

Redundant copy Concept of the NVRAM manager: Storing the same information twice to enhance
reliability of data storage.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

11 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[3] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[4] Specification of Memory Abstraction Interface
AUTOSAR_CP_SWS_MemoryAbstractionInterface

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for Flash EEPROM Emulation.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Flash EEPROM Emulation.

12 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

13 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

5 Dependencies to other modules

This module depends on the capabilities of the underlying flash driver as well as the
configuration of the NVRAM manager.

14 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

6 Requirements Tracing

Requirement Description Satisfied by

[SRS_BSW_00101] The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Fee_00085]

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Fee_00068] [SWS_Fee_00134]
[SWS_Fee_00135] [SWS_Fee_00136]
[SWS_Fee_00137] [SWS_Fee_00138]
[SWS_Fee_00139] [SWS_Fee_00140]
[SWS_Fee_00141] [SWS_Fee_00147]

[SRS_BSW_00327] Error values naming convention [SWS_Fee_00010]

[SRS_BSW_00331] All Basic Software Modules shall
strictly separate error and status
information

[SWS_Fee_00010]

[SRS_BSW_00337] Classification of development errors [SWS_Fee_00010]

[SRS_BSW_00359] Callback Function Return Types for
AUTOSAR BSW

[SWS_Fee_00095]

[SRS_BSW_00360] AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Fee_00095]

[SRS_BSW_00373] The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Fee_00097]

[SRS_BSW_00384] The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_Fee_00104] [SWS_Fee_00105]

[SRS_BSW_00386] The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Fee_00010]

[SRS_BSW_00392] Parameters shall have a type [SWS_Fee_00016] [SWS_Fee_00084]

[SRS_BSW_00406] API handling in uninitialized state [SWS_Fee_00010] [SWS_Fee_00034]
[SWS_Fee_00090] [SWS_Fee_00120]
[SWS_Fee_00122] [SWS_Fee_00123]
[SWS_Fee_00124] [SWS_Fee_00125]
[SWS_Fee_00126] [SWS_Fee_00127]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Fee_00093]

[SRS_BSW_00414] Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Fee_00188]

[SRS_MemHwAb_
14001]

The FEE and EA modules shall allow
the configuration of the alignment of
the start and end addresses of logical
blocks

[SWS_Fee_00005] [SWS_Fee_00071]
[SWS_Fee_00076]

[SRS_MemHwAb_
14002]

The FEE and EA modules shall allow
the configuration of a required
number of write cycles for each
logical block

[SWS_Fee_00102] [SWS_Fee_00103]

[SRS_MemHwAb_
14005]

The FEE and EA modules shall
provide upper layer modules with a
virtual 32bit address space

[SWS_Fee_00076]

▽

15 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_MemHwAb_
14006]

The start address for a block erase or
write operation shall always be
aligned to the virtual 64K boundary

[SWS_Fee_00024]

[SRS_MemHwAb_
14007]

The start address and length for
reading a block shall not be limited to
a certain alignment

[SWS_Fee_00021]

[SRS_MemHwAb_
14009]

The FEE and EA modules shall
provide a conversion between the
logical linear addresses and the
physical memory addresses

[SWS_Fee_00007] [SWS_Fee_00036]
[SWS_Fee_00066] [SWS_Fee_00100]

[SRS_MemHwAb_
14010]

The FEE and EA modules shall
provide a write service that operates
only on complete configured logical
blocks

[SWS_Fee_00025] [SWS_Fee_00026]
[SWS_Fee_00088]

[SRS_MemHwAb_
14012]

Spreading of write access [SWS_Fee_00102] [SWS_Fee_00103]

[SRS_MemHwAb_
14013]

Writing of immediate data shall not be
delayed by internal management
operations nor by erasing the
memory area to be written to

[SWS_Fee_00009] [SWS_Fee_00067]

[SRS_MemHwAb_
14014]

The FEE and EA modules shall
detect possible data inconsistencies
due to aborted / interrupted write
operations

[SWS_Fee_00023] [SWS_Fee_00049]
[SWS_Fee_00153] [SWS_Fee_00154]
[SWS_Fee_00159] [SWS_Fee_00197]

[SRS_MemHwAb_
14015]

The FEE and EA modules shall
report possible data inconsistencies

[SWS_Fee_00023]

[SRS_MemHwAb_
14016]

The FEE and EA modules shall not
return inconsistent data to the caller

[SWS_Fee_00023]

[SRS_MemHwAb_
14026]

The block numbers 0x0000 and 0x
FFFF shall not be used

[SWS_Fee_00006]

[SRS_MemHwAb_
14028]

The FEE and EA modules shall
provide a service to invalidate a
logical block

[SWS_Fee_00037] [SWS_Fee_00075]
[SWS_Fee_00092] [SWS_Fee_00160]
[SWS_Fee_00165] [SWS_Fee_00192]

[SRS_MemHwAb_
14029]

The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical block

[SWS_Fee_00022] [SWS_Fee_00087]

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_Fee_00080] [SWS_Fee_00081]
[SWS_Fee_00089] [SWS_Fee_00157]
[SWS_Fee_00184]

[SRS_MemHwAb_
14032]

The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

[SWS_Fee_00094] [SWS_Fee_00166]

[SRS_MemHwAb_
14040]

MemAcc module and Mem driver
shall provide a synchronous status
function

[SWS_Fee_00091]

[SRS_MemHwAb_
14041]

MemAcc module shall provide a job
notification mechanism for the upper
layer modules

[SWS_Fee_00055] [SWS_Fee_00056]

Table 6.1: Requirements Tracing

16 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

7 Functional specification

7.1 General behavior

7.1.1 Addressing scheme and segmentation

The Flash EEPROM Emulation (FEE) module provides upper layers with a 32bit virtual
linear address space and uniform segmentation scheme. This virtual 32bit addresses
shall consist of

• a 16bit block number - allowing a (theoretical) number of 65536 logical blocks

• a 16bit block offset - allowing a (theoretical) block size of 64KByte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The val-
ues for this address alignment can be derived from that of the underlying flash driver
and device. This virtual paging shall be configurable via the parameter FeeVirtual-
PageSize.

[SWS_Fee_00076]
Upstream requirements: SRS_MemHwAb_14001, SRS_MemHwAb_14005

⌈The configuration of the Fee module shall be such that the virtual page size (defined
in FeeVirtualPageSize) is an integer multiple of the physical page size, i.e. it is not
allowed to configure a smaller virtual page than the actual physical page size.⌋

Note: This specification requirement allows the physical start address of a logical block
to be calculated rather than making a lookup table necessary for the address mapping.

Example:

The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

[SWS_Fee_00005]
Upstream requirements: SRS_MemHwAb_14001

⌈Each configured logical block shall take up an integer multiple of the configured virtual
page size (see also Chapter configuration parameter FeeVirtualPageSize).⌋

[SWS_Fee_00071]
Upstream requirements: SRS_MemHwAb_14001

⌈Logical blocks must not overlap each other and must not be contained within one
another.⌋

17 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00006]
Upstream requirements: SRS_MemHwAb_14026

⌈The block numbers 0x0000 and 0xFFFF shall not be configurable for a logical block.⌋

7.1.2 Address calculation

[SWS_Fee_00007]
Upstream requirements: SRS_MemHwAb_14009

⌈Depending on the implementation of the FEE module and the exact address format
used, the functions of the FEE module shall combine the 16bit block number and 16bit
address offset to derive the physical flash address needed for the underlying flash
driver.⌋

Note: The exact address format needed by the underlying flash driver and therefore
the mechanism how to derive the physical flash address from the given 16bit block
number and 16bit address offset depends on the flash device and the implementation
of this module and shall therefore not be standardized.

[SWS_Fee_00100]
Upstream requirements: SRS_MemHwAb_14009

⌈Only those bits of the 16bit block number, that do not denote a specific dataset or
redundant copy shall be used for address calculation.⌋

Note: Since this information is needed by the NVRAM manager, the number of
bits to encode this can be configured for the NVRAM manager with the parameter
NVM_DATASET_SELECTION_BITS.

Example:

Dataset information is configured to be encoded in the four LSB’s of the 16bit block
number (allowing for a maximum of 16 datasets per NVRAM block and a total of 4094
NVRAM blocks). An implementer decides to store all datasets of a NVRAM block
directly adjacent and using the length of the block and a pointer to access each dataset.
To calculate the start address of the block (the address of the first dataset) she/he
uses only the 12 MSB’s, to access a specific dataset she/he adds the size of the block
multiplied by the dataset index (the four LSB’s) to this start address (Figure 7.1).

18 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Figure 7.1: Block number and dataset index

7.1.3 Limitation of erase cycles

[SWS_Fee_00102]
Upstream requirements: SRS_MemHwAb_14002, SRS_MemHwAb_14012

⌈The configuration of the FEE module shall define the expected number of erase/write
cycles for each logical block in the configuration parameter FeeNumberOfWriteCy-
cles.⌋

[SWS_Fee_00103]
Upstream requirements: SRS_MemHwAb_14002, SRS_MemHwAb_14012

⌈If the underlying flash device or device driver does not provide at least the config-
ured number of erase/write cycles per physical memory cell, the FEE module shall
provide mechanisms to spread the write access such that the physical device is not
overstressed. This shall also apply to all management data used internally by the FEE
module.⌋

19 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Example:

The logical block number 1 is configured for an expected 500.000 write cycles, the
underlying flash device and device driver are only specified for 100.000 erase cycles.
In this case, the FEE module has to provide (at least) five separate memory areas
and alternate the access between those areas internally so that each physical memory
location is only erased for a maximum of the specified 100.000 cycles.

7.1.4 Handling of "immediate" data

[SWS_Fee_00009]
Upstream requirements: SRS_MemHwAb_14013

⌈Blocks containing immediate data have to be written instantaneously, i.e. the FEE
module has to ensure that it can write such blocks without the need to erase the corre-
sponding memory area (e.g. by using pre-erased memory) and that the write request
is not delayed by currently running module internal management operations.⌋

Note: An ongoing lower priority read / erase / write or compare job shall be canceled
by the NVRAM manager before immediate data is written. The FEE module has only
to ensure that this write request can be performed immediately.

Note: A running operation on the hardware (e.g. writing one page or erasing one
sector) can usually not be aborted once it has been started. The maximum time of the
longest hardware operation thus has to be accepted as delay even for immediate data.

Example:

Three blocks with 10 bytes each have been configured for immediate data. The FEE
module / configuration tool reserves these 30 bytes (plus the implementation specific
overhead per block / page if needed) for use by this immediate data only. That is, this
memory area shall not be used for storage of other data blocks.

Now, the NVRAM manager has requested the FEE module to write a data block of 100
bytes. While this block is being written, a situation occurs that one (or several) of the
immediate data blocks need to be written. Therefore the NVRAM manager cancels the
ongoing write request and subsequently issues the write request for the (first) block
containing immediate data. The cancelation of the ongoing write request is performed
synchronously by the FEE module and the underlying flash driver (i.e. the write request
for the immediate data) can be started without any further delay. However, before the
first bytes of immediate data can be written, the FEE module or rather the underlying
flash driver have to wait for the end of an ongoing hardware access from the previous
write request (e.g. writing of a page, erasing of a sector, transfer via SPI, ...).

20 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

7.1.5 Managing block correctness information

[SWS_Fee_00049]
Upstream requirements: SRS_MemHwAb_14014

⌈The FEE module shall manage for each block the information, whether this block is
correct (i.e. "not corrupted") from the point of view of the FEE module or not. This infor-
mation shall only concern the internal handling of the block, not the block’s contents.⌋

[SWS_Fee_00153]
Upstream requirements: SRS_MemHwAb_14014

⌈When a block write operation is started, the FEE module shall mark the corresponding
block as "corrupted"1.⌋

[SWS_Fee_00154]
Upstream requirements: SRS_MemHwAb_14014

⌈Upon the successful end of the block write operation, the block shall be marked as
"not corrupted" (again).⌋

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Fee_InvalidateBlock
service, i.e. the FEE shall be able to distinguish between a corrupted block and a block
that has been deliberately invalidated by the upper layer.

7.1.6 Buffer Alignment

[SWS_Fee_00195] ⌈The Fee shall align internal buffers to the value of FeeBuffer-
AlignmentValue⌋

[SWS_Fee_00196] ⌈The Fee shall align read request to the value of FeeMinimum-
ReadPageSize⌋

7.2 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

1This does not necessarily mean a write operation on the physical device, if there are other means
to detect the consistency of a logical block.

21 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

7.2.1 Development Errors

[SWS_Fee_00010] Definition of development errors in module Fee
Upstream requirements: SRS_BSW_00406, SRS_BSW_00337, SRS_BSW_00386, SRS_BSW_

00327, SRS_BSW_00331

⌈
Type of error Related error code Error value

API service called when module was not initialized FEE_E_UNINIT 0x01

API service called with invalid block number FEE_E_INVALID_BLOCK_NO 0x02

API service called with invalid block offset FEE_E_INVALID_BLOCK_OFS 0x03

API service called with invalid data pointer FEE_E_PARAM_POINTER 0x04

API service called with invalid length information FEE_E_INVALID_BLOCK_LEN 0x05

⌋

7.2.2 Runtime Errors

[SWS_Fee_91002] Definition of runtime errors in module Fee ⌈
Type of error Related error code Error value

API service called while module is busy
processing a user request

FEE_E_BUSY 0x06

Fee_Cancel called while no job was pending. FEE_E_INVALID_CANCEL 0x08

⌋

7.2.3 Production Errors

There are no production errors.

7.2.4 Extended Production Errors

There are no extended production errors.

22 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8 API specification

8.1 Imported types

[SWS_Fee_00084] Definition of imported datatypes of module Fee
Upstream requirements: SRS_BSW_00392

⌈
Module Header File Imported Type

MemAcc_GeneralTypes.h MemAcc_AddressAreaIdType

MemAcc_GeneralTypes.h MemAcc_AddressType

MemAcc_GeneralTypes.h MemAcc_DataType

MemAcc_GeneralTypes.h MemAcc_JobResultType

MemAcc

MemAcc_GeneralTypes.h MemAcc_LengthType

MemIf.h MemIf_JobResultTypeMemIf

MemIf.h MemIf_StatusType

Std_Types.h Std_ReturnTypeStd

Std_Types.h Std_VersionInfoType

⌋

[SWS_Fee_00016]
Upstream requirements: SRS_BSW_00392

⌈The types mentioned in [SWS_Fee_00084] shall not be changed or extended for a
specific FEE module or hardware platform.⌋

8.2 Type definitions

[SWS_Fee_00188] Definition of datatype Fee_ConfigType
Upstream requirements: SRS_BSW_00414

⌈
Name Fee_ConfigType

Kind Structure

implementation specific

Type –

Elements

Comment –

Description Configuration data structure of the Fee module.

Available via Fee.h

⌋

23 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.3 Function definitions

8.3.1 Fee_Init

[SWS_Fee_00085] Definition of API function Fee_Init
Upstream requirements: SRS_BSW_00101

⌈
Service Name Fee_Init

Syntax void Fee_Init (
const Fee_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to the selected configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description Service to initialize the FEE module.

Available via Fee.h

⌋

[SWS_Fee_00120] Fee init module status change
Upstream requirements: SRS_BSW_00406

⌈The function Fee_Init shall set the module status from MEMIF_UNINIT to MEMIF_
BUSY_INTERNAL once it starts the module’s initialization.⌋

Note: The completion of Fee_Init does not imply that the Fee module can process
jobs immediately. There might be some pending internal management operations. This
will be determined and handled transparently by Fee_MainFunction.

Note: The FEE module’s environment shall not call the function Fee_Init during a
running operation of the FEE module.

24 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.3.2 Fee_Read

[SWS_Fee_00087] Definition of API function Fee_Read
Upstream requirements: SRS_MemHwAb_14029

⌈
Service Name Fee_Read

Syntax Std_ReturnType Fee_Read (
uint16 BlockNumber,
uint16 BlockOffset,
uint8* DataBufferPtr,
uint16 Length

)

Service ID [hex] 0x02

Sync/Async Asynchronous

Reentrancy Non Reentrant

BlockNumber Number of logical block, also denoting start address of that block
in flash memory.

BlockOffset Read address offset inside the block

Parameters (in)

Length Number of bytes to read

Parameters (inout) None

Parameters (out) DataBufferPtr Pointer to data buffer

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description Service to initiate a read job.

Available via Fee.h

⌋

[SWS_Fee_00021]
Upstream requirements: SRS_MemHwAb_14007

⌈The function Fee_Read shall take the block start address and offset and calculate the
corresponding memory read address.⌋

Note: The address offset and length parameter can take any value within the given
types range. This allows reading of an arbitrary number of bytes from an arbitrary start
address inside a logical block.

[SWS_Fee_00022]
Upstream requirements: SRS_MemHwAb_14029

⌈If the current module status is MEMIF_IDLE or if the current module status is
MEMIF_BUSY_INTERNAL, the function Fee_Read shall accept the read request, copy
the given / computed parameters to module internal variables, initiate a read job, set
the FEE module status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING
and return with E_OK.⌋

[SWS_Fee_00172] ⌈If the current module status is MEMIF_UNINIT or MEMIF_BUSY,
the function Fee_Read shall reject the job request and return with E_NOT_OK.⌋

25 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00073] ⌈The FEE module shall execute the read operation asynchronously
within the FEE module’s main function.⌋

[SWS_Fee_00122]
Upstream requirements: SRS_BSW_00406

⌈If development error detection is enabled for the module: the function Fee_Read shall
check if the module state is MEMIF_UNINIT. If this is the case, the function Fee_Read
shall raise the development error FEE_E_UNINIT.⌋

[SWS_Fee_00133] ⌈The function Fee_Read shall check if the module state is
MEMIF_BUSY. If this is the case, the function Fee_Read shall reject the read request,
raise the runtime error FEE_E_BUSY and return with E_NOT_OK.⌋

[SWS_Fee_00134]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Read shall
check that the given block number is valid (i.e. it has been configured). If this is not the
case, the function Fee_Read shall raise the development error FEE_E_INVALID_-
BLOCK_NO.⌋

[SWS_Fee_00135]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Read
shall check that the given block offset is valid (i.e. that it is less than the block length
configured for this block). If this is not the case, the function Fee_Read shall raise the
development error FEE_E_INVALID_BLOCK_OFS.⌋

[SWS_Fee_00136]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Read shall
check that the given data pointer is valid (i.e. that it is not NULL). If this is not the case,
the function Fee_Read shall raise the development error FEE_E_PARAM_POINTER.⌋

[SWS_Fee_00137]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Read shall
check that the given length information is valid, i.e. that the requested length informa-
tion plus the block offset do not exceed the block end address (block start address plus
configured block length). If this is not the case, the function Fee_Read shall raise the
development error FEE_E_INVALID_BLOCK_LEN.⌋

[SWS_Fee_00162] ⌈If a read request is rejected by the function Fee_Read,
i.e. requirements [SWS_Fee_00122], [SWS_Fee_00133], [SWS_Fee_00134],
[SWS_Fee_00135], [SWS_Fee_00136] or [SWS_Fee_00137] apply, the function
Fee_Read shall not change the current module status or job result.⌋

26 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00187] ⌈The function Fee_Read shall call the function MemAcc_-
BlankCheck to determine in advance whether a given memory area can be read
without encountering e.g. ECC errors due to trying to read erased but not programmed
flash cells.⌋

8.3.3 Fee_Write

[SWS_Fee_00088] Definition of API function Fee_Write
Upstream requirements: SRS_MemHwAb_14010

⌈
Service Name Fee_Write

Syntax Std_ReturnType Fee_Write (
uint16 BlockNumber,
const uint8* DataBufferPtr

)

Service ID [hex] 0x03

Sync/Async Asynchronous

Reentrancy Non Reentrant

BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

Parameters (in)

DataBufferPtr Pointer to data buffer

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description Service to initiate a write job.

Available via Fee.h

⌋

[SWS_Fee_00024]
Upstream requirements: SRS_MemHwAb_14006

⌈The function Fee_Write shall take the block start address and calculate the corre-
sponding memory write address. The block address offset shall be fixed to zero.⌋

[SWS_Fee_00025]
Upstream requirements: SRS_MemHwAb_14010

⌈If the current module status is MEMIF_IDLE or if the current module status is
MEMIF_BUSY_INTERNAL, the function Fee_Write shall accept the write request,
copy the given / computed parameters to module internal variables, initiate a write
job, set the FEE module status to MEMIF_BUSY, set the job result to MEMIF_JOB_
PENDING and return with E_OK.⌋

[SWS_Fee_00174] ⌈If the current module status is MEMIF_UNINIT or MEMIF_BUSY,
the function Fee_Write shall reject the job request and return with E_NOT_OK.⌋

27 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00026]
Upstream requirements: SRS_MemHwAb_14010,

⌈The FEE module shall execute the write operation asynchronously within the FEE
module’s main function.⌋

[SWS_Fee_00123]
Upstream requirements: SRS_BSW_00406

⌈If development error detection is enabled for the module: the function Fee_Write
shall check if the module state is MEMIF_UNINIT. If this is the case, the function Fee_
Write shall raise the development error FEE_E_UNINIT.⌋

[SWS_Fee_00144] ⌈The function Fee_Write shall check if the module state is
MEMIF_BUSY. If this is the case, the function Fee_Write shall reject the write request,
raise the runtime error FEE_E_BUSY and return with E_NOT_OK.⌋

[SWS_Fee_00138]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Write
shall check that the given block number is valid (i.e. it has been configured). If this
is not the case, the function Fee_Write shall raise the development error FEE_E_
INVALID_BLOCK_NO.⌋

[SWS_Fee_00139]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Write
shall check that the given data pointer is valid (i.e. that it is not NULL). If this is not
the case, the function Fee_Write shall raise the development error FEE_E_PARAM_
POINTER.⌋

[SWS_Fee_00163] ⌈If a write request is rejected by the function Fee_Write,
i.e. requirements [SWS_Fee_00123], [SWS_Fee_00144], [SWS_Fee_00138] or
[SWS_Fee_00139] apply, the function Fee_Write shall not change the current mod-
ule status or job result.⌋

28 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.3.4 Fee_Cancel

[SWS_Fee_00089] Definition of API function Fee_Cancel
Upstream requirements: SRS_MemHwAb_14031

⌈
Service Name Fee_Cancel

Syntax void Fee_Cancel (
void

)

Service ID [hex] 0x04

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Service to call the cancel function of the underlying flash driver.

Available via Fee.h

⌋

[SWS_Fee_00124]
Upstream requirements: SRS_BSW_00406

⌈If development error detection is enabled for the module: the function Fee_Cancel
shall check if the module state is MEMIF_UNINIT. If this is the case the function Fee_
Cancel shall raise the development error FEE_E_UNINIT.⌋

[SWS_Fee_00080]
Upstream requirements: SRS_MemHwAb_14031

⌈If the current module status is MEMIF_BUSY (i.e. the request to cancel a pending
job is accepted by the function Fee_Cancel), the function Fee_Cancel shall call the
cancel function of the underlying flash driver.⌋

[SWS_Fee_00081]
Upstream requirements: SRS_MemHwAb_14031

⌈If the current module status is MEMIF_BUSY (i.e. the request to cancel a pending job
is accepted by the function Fee_Cancel), the function Fee_Cancel shall reset the
FEE module’s internal variables to make the module ready for a new job request from
the upper layer, i.e. it shall set the module status to MEMIF_IDLE.⌋

[SWS_Fee_00164] ⌈If the current module status is not MEMIF_BUSY (i.e. the request
to cancel a pending job is rejected by the function Fee_Cancel), the function Fee_
Cancel shall not change the current module status or job result.⌋

29 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00184]
Upstream requirements: SRS_MemHwAb_14031

⌈If the current module status is not MEMIF_BUSY (i.e. there is no job to cancel and
therefore the request to cancel a pending job is rejected by the function Fee_Cancel),
the function Fee_Cancel shall raise the runtime error FEE_E_INVALID_CANCEL.⌋

8.3.5 Fee_GetStatus

[SWS_Fee_00090] Definition of API function Fee_GetStatus
Upstream requirements: SRS_BSW_00406

⌈
Service Name Fee_GetStatus

Syntax MemIf_StatusType Fee_GetStatus (
void

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_StatusType MEMIF_UNINIT: The FEE module has not been initialized.
MEMIF_IDLE: The FEE module is currently idle.
MEMIF_BUSY: The FEE module is currently busy.
MEMIF_BUSY_INTERNAL: The FEE module is busy with internal
management operations.

Description Service to return the status.

Available via Fee.h

⌋

[SWS_Fee_00034]
Upstream requirements: SRS_BSW_00406

⌈The function Fee_GetStatus shall return MEMIF_UNINIT if the module has not
(yet) been initialized.⌋

[SWS_Fee_00128] ⌈The function Fee_GetStatus shall return MEMIF_IDLE if the
module is neither processing a request from the upper layer nor is it doing an internal
management operation.⌋

[SWS_Fee_00129] ⌈The function Fee_GetStatus shall return MEMIF_BUSY if it is
currently processing a request from the upper layer.⌋

[SWS_Fee_00074] ⌈The function Fee_GetStatus shall return MEMIF_BUSY_IN-
TERNAL, if an internal management operation is currently ongoing.⌋

30 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Note: Internal management operation may e.g. be a re-organization of the used flash
memory (garbage collection). This may imply that the underlying device driver is - at
least temporarily - busy.

8.3.6 Fee_GetJobResult

[SWS_Fee_00091] Definition of API function Fee_GetJobResult
Upstream requirements: SRS_MemHwAb_14040

⌈
Service Name Fee_GetJobResult

Syntax MemIf_JobResultType Fee_GetJobResult (
void

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_JobResultType MEMIF_JOB_OK: The last job has been finished successfully.
MEMIF_JOB_PENDING: The last job is waiting for execution or
currently being executed.
MEMIF_JOB_CANCELED: The last job has been canceled (which
means it failed).
MEMIF_JOB_FAILED: The last job has not been finished
successfully (it failed).
MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested read operation can not be performed.

Description Service to query the result of the last accepted job issued by the upper layer software.

Available via Fee.h

⌋

[SWS_Fee_00035] ⌈The function Fee_GetJobResult shall return MEMIF_JOB_OK
if the last job has been finished successfully.⌋

[SWS_Fee_00156] ⌈The function Fee_GetJobResult shall return MEMIF_JOB_-
PENDING if the requested job is still waiting for execution or is currently being exe-
cuted.⌋

[SWS_Fee_00157]
Upstream requirements: SRS_MemHwAb_14031

⌈The function Fee_GetJobResult shall return MEMIF_JOB_CANCELED if the last job
has been canceled by the upper layer.⌋

[SWS_Fee_00158] ⌈The function Fee_GetJobResult shall return MEMIF_JOB_-
FAILED if the last job has failed.⌋

31 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00159]
Upstream requirements: SRS_MemHwAb_14014

⌈The function Fee_GetJobResult shall return MEMIF_BLOCK_INCONSISTENT if the
requested block is found to be inconsistent.⌋

The management of block inconsistency is specified in chapter 7.1.5.

[SWS_Fee_00160]
Upstream requirements: SRS_MemHwAb_14028

⌈The function Fee_GetJobResult shall return MEMIF_BLOCK_INVALID if the re-
quested block has been invalidated by the upper layer.⌋

[SWS_Fee_00155] ⌈Only those jobs which have been requested directly by the upper
layer shall have influence on the job result returned by the function Fee_GetJobRe-
sult. I.e. jobs which are issued by the FEE module itself in the course of internal
management operations shall not alter the job result.⌋

[SWS_Fee_00125]
Upstream requirements: SRS_BSW_00406

⌈If development error detection is enabled for the module: the function Fee_GetJo-
bResult shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Fee_GetJobResult shall raise the development error FEE_E_UNINIT.⌋

8.3.7 Fee_InvalidateBlock

[SWS_Fee_00092] Definition of API function Fee_InvalidateBlock
Upstream requirements: SRS_MemHwAb_14028

⌈
Service Name Fee_InvalidateBlock

Syntax Std_ReturnType Fee_InvalidateBlock (
uint16 BlockNumber

)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in flash memory.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description Service to invalidate a logical block.

▽

32 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Available via Fee.h

⌋

[SWS_Fee_00036]
Upstream requirements: SRS_MemHwAb_14009

⌈The function Fee_InvalidateBlock shall take the block number and calculate the
corresponding memory block address.⌋

[SWS_Fee_00037]
Upstream requirements: SRS_MemHwAb_14028

⌈The function Fee_InvalidateBlock shall invalidate the requested block Block-
Number by calling the erase function of the underlying device driver and / or by chang-
ing some module internal management information accordingly.⌋

Note: How exactly the requested block is invalidated depends on the module’s imple-
mentation and will not be further detailed in this specification. The internal manage-
ment information has to be stored in NV memory since it has to be resistant against
resets. What this information is and how it is stored will not be further detailed in this
specification.

[SWS_Fee_00126]
Upstream requirements: SRS_BSW_00406

⌈If development error detection is enabled for the module: the function Fee_Invali-
dateBlock shall check if the module status is MEMIF_UNINIT. If this is the case, the
function Fee_InvalidateBlock shall raise the development error FEE_E_UNINIT.⌋

[SWS_Fee_00145] ⌈The function Fee_InvalidateBlock shall check if the module
status is MEMIF_BUSY. If this is the case, the function Fee_InvalidateBlock shall
reject the request, raise the runtime error FEE_E_BUSY and return with E_NOT_OK.⌋

[SWS_Fee_00192]
Upstream requirements: SRS_MemHwAb_14028

⌈The function Fee_InvalidateBlock shall check if the module state is MEMIF_-
IDLE or MEMIF_BUSY_INTERNAL. If this is the case the module shall accept the in-
validation request and shall return E_OK to the caller. The block invalidation shall be
executed asynchronously in the module’s main function as soon as the module has
finished the internal management operation.⌋

[SWS_Fee_00193] ⌈The FEE module shall execute the block invalidation request
asynchronously within the FEE module’s main function.⌋

33 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[SWS_Fee_00140]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Inval-
idateBlock shall check that the given block number is valid (i.e. it has been con-
figured). If this is not the case, the function Fee_InvalidateBlock shall raise the
development error FEE_E_INVALID_BLOCK_NO.⌋

[SWS_Fee_00165]
Upstream requirements: SRS_MemHwAb_14028

⌈If an invalidation request is rejected by the function Fee_InvalidateBlock, i.e.
requirements [SWS_Fee_00126], [SWS_Fee_00140] or [SWS_Fee_00145] apply, the
function Fee_InvalidateBlock shall not change the current module status or job
result.⌋

8.3.8 Fee_GetVersionInfo

[SWS_Fee_00093] Definition of API function Fee_GetVersionInfo
Upstream requirements: SRS_BSW_00407

⌈
Service Name Fee_GetVersionInfo

Syntax void Fee_GetVersionInfo (
Std_VersionInfoType* VersionInfoPtr

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfoPtr Pointer to standard version information structure.

Return value None

Description Service to return the version information of the FEE module.

Available via Fee.h

⌋

[SWS_Fee_00147]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_GetVer-
sionInfo shall check that the given data pointer is valid (i.e. that it is not NULL). If
this is not the case, the function Fee_GetVersionInfo shall raise the development
error FEE_E_PARAM_POINTER.⌋

34 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.3.9 Fee_EraseImmediateBlock

[SWS_Fee_00094] Definition of API function Fee_EraseImmediateBlock
Upstream requirements: SRS_MemHwAb_14032

⌈
Service Name Fee_EraseImmediateBlock

Syntax Std_ReturnType Fee_EraseImmediateBlock (
uint16 BlockNumber

)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.

Description Service to erase a logical block.

Available via Fee.h

⌋

Note: The function Fee_EraseImmediateBlock shall only be called by e.g. diag-
nostic or similar system service to pre-erase the area for immediate data if necessary.

[SWS_Fee_00066]
Upstream requirements: SRS_MemHwAb_14009

⌈The function Fee_EraseImmediateBlock shall take the block number and calcu-
late the corresponding memory block address.⌋

[SWS_Fee_00067]
Upstream requirements: SRS_MemHwAb_14013

⌈The function Fee_EraseImmediateBlock shall ensure that the FEE module can
write immediate data. Whether this involves physically erasing a memory area and
therefore calling the erase function of the underlying driver depends on the implemen-
tation of the module.⌋

[SWS_Fee_00127]
Upstream requirements: SRS_BSW_00406

⌈If development error detection is enabled for the module: the function Fee_Era-
seImmediateBlock shall check if the module state is MEMIF_UNINIT. If this is the
case, the function Fee_EraseImmediateBlock shall raise the development error
FEE_E_UNINIT.⌋

[SWS_Fee_00146] ⌈The function Fee_EraseImmediateBlock shall check if the
module state is MEMIF_BUSY. If this is the case, the function Fee_EraseImmedi-

35 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

ateBlock shall reject the erase request, raise the runtime error FEE_E_BUSY and
return with E_NOT_OK.⌋

[SWS_Fee_00068]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Era-
seImmediateBlock shall check whether the addressed logical block is configured
as containing immediate data (FeeImmediateData == TRUE). If not, the function
Fee_EraseImmediateBlock shall raise the development error FEE_E_INVALID_
BLOCK_NO.⌋

[SWS_Fee_00141]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Fee_Era-
seImmediateBlock shall check that the given block number is valid (i.e. it has been
configured). If this is not the case, the function Fee_EraseImmediateBlock shall
raise the development error FEE_E_INVALID_BLOCK_NO.⌋

[SWS_Fee_00166]
Upstream requirements: SRS_MemHwAb_14032

⌈If a erase request is rejected by the function Fee_EraseImmediateBlock,
i.e. requirements [SWS_Fee_00068], [SWS_Fee_00127], [SWS_Fee_00141] or
[SWS_Fee_00146] apply, the function Fee_EraseImmediateBlock shall not change
the current module status or job result.⌋

8.4 Callback notifications

This chapter lists all functions provided by the Fee module to lower layer modules.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided by the FEE module may be called on interrupt level.
The implementation of the FEE module therefore has to make sure that the runtime
of those routines is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore, system design has to make sure that the
configuration of the involved modules meets those requirements.

36 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.4.1 Fee_JobEndNotification

[SWS_Fee_00095] Definition of callback function Fee_JobEndNotification
Upstream requirements: SRS_BSW_00359, SRS_BSW_00360

⌈
Service Name Fee_JobEndNotification

Syntax void Fee_JobEndNotification (
void

)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Service to report to this module the successful end of an asynchronous operation.

Available via Fee.h

⌋

The underlying flash driver shall call the function Fee_JobEndNotification to re-
port the successful end of an asynchronous operation.

[SWS_Fee_00052] ⌈The function Fee_JobEndNotification shall perform any
necessary block management operations and subsequently call the job end notification
routine of the upper layer module if configured.⌋

[SWS_Fee_00142] ⌈If the job result is currently MEMIF_JOB_PENDING, the function
Fee_JobEndNotification shall set the job result to MEMIF_JOB_OK, else it shall
leave the job result untouched.⌋

[SWS_Fee_00194] ⌈The function Fee_JobEndNotification shall perform any
necessary block management and error handling operations and subsequently call
the job error notification routine of the upper layer module if configured.⌋

Note: The function Fee_JobEndNotification shall be callable on interrupt level.

8.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non re-
entrant.

37 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.5.1 Fee_MainFunction

[SWS_Fee_00097] Definition of scheduled function Fee_MainFunction
Upstream requirements: SRS_BSW_00373

⌈
Service Name Fee_MainFunction

Syntax void Fee_MainFunction (
void

)

Service ID [hex] 0x12

Description Service to handle the requested read / write / erase jobs and the internal management
operations.

Available via SchM_Fee.h

⌋

[SWS_Fee_00197] Main function module status change
Upstream requirements: SRS_MemHwAb_14014

⌈In case there are no internal management operations needed or the internal man-
agement operations are done, the function Fee_MainFunction shall set the module
status from MEMIF_BUSY_INTERNAL to MEMIF_IDLE.⌋

Note: handling of internal management operations can take more than 1 call of the
Fee_MainFunction.

[SWS_Fee_00057] ⌈The function Fee_MainFunction shall asynchronously handle
the read / write / erase / invalidate jobs requested by the upper layer and internal
management operations.⌋

[SWS_Fee_00075]
Upstream requirements: SRS_MemHwAb_14028

⌈The function Fee_MainFunction shall check, whether the block requested for read-
ing has been invalidated by the upper layer module. If so, the function Fee_Main-
Function shall set the job result to MEMIF_BLOCK_INVALID and call the error notifi-
cation routine of the upper layer if configured.⌋

[SWS_Fee_00023]
Upstream requirements: SRS_MemHwAb_14014, SRS_MemHwAb_14015, SRS_MemHwAb_-

14016

⌈The function Fee_MainFunction shall check the consistency of the logical block
being read before notifying the caller. If an inconsistency of the read data is detected
or if the requested block can’t be found, the function Fee_MainFunction shall set
the job result to MEMIF_BLOCK_INCONSISTENT and call the error notification routine
of the upper layer if configured.⌋

Note: In this case, the upper layer must not use the contents of the data buffer.

38 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_Fee_00105] Definition of mandatory interfaces required by module Fee
Upstream requirements: SRS_BSW_00384

⌈
API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

MemAcc_Cancel MemAcc.h Triggers a cancel operation of the pending job for
the address area referenced by the addressAreaId.
Cancelling affects only jobs in pending state. For
any other states, the request will be ignored.

MemAcc_Compare MemAcc.h Triggers a job to compare the passed data to the
memory content of the provided address area. The
job terminates, if all bytes matched or a difference
was detected. The result of this service can be
retrieved using the MemAcc_GetJobResult() API. If
the compare operation determined a mismatch, the
result code is MEMACC_INCONSISTENT.

MemAcc_Erase MemAcc.h Triggers an erase job of the given area.
Triggers an erase job of the given area defined by
targetAddress and length. The result of this service
can be retrieved using the Mem_GetJobResult API.
If the erase operation was successful, the result of
the job is MEM_JOB_OK. If the erase operation
failed, e.g. due to a hardware issue, the result of the
job is MEM_JOB_FAILED.

MemAcc_GetJobResult MemAcc.h Returns the consolidated job result of the address
area referenced by addressAreaId.

MemAcc_Read MemAcc.h Triggers a read job to copy data from the source
address into the referenced destination data buffer.
The result of this service can be retrieved using the
MemAcc_GetJobResult API. If the read operation
was successful, the result of the job is MEMACC_
OK. If the read operation failed, the result of the job
is either MEMACC_FAILED in case of a general
error or MEMACC_ECC_CORRECTED/MEMACC_
ECC_UNCORRECTED in case of a correctable/
uncorrectable ECC error.

MemAcc_Write MemAcc.h Triggers a write job to store the passed data to the
provided address area with given address and
length. The result of this service can be retrieved
using the MemAcc_GetJobResult API. If the write
operation was successful, the job result is
MEMACC_OK. If there was an issue writing the
data, the result is MEMACC_FAILED.

⌋

39 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Fee_00104] Definition of optional interfaces requested by module Fee
Upstream requirements: SRS_BSW_00384

⌈
API Function Header File Description

Det_ReportError Det.h Service to report development errors.

MemAcc_BlankCheck MemAcc.h Checks if the passed address space is blank, i.e.
erased and writeable. The result of this service can
be retrieved using the MemAcc_GetJobResult API.
If the address area defined by targetAddress and
length is blank, the result is MEMACC_OK,
otherwise the result is MEMACC_INCONSISTENT.

⌋

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines invoked by the FEE module may be called on interrupt level.
The implementor of the module providing these routines therefore has to make sure
that their runtime is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore system design has to make sure that the
configuration of the involved modules meets those requirements.

[SWS_Fee_00055]
Upstream requirements: SRS_MemHwAb_14041

⌈The FEE module shall call the function defined in the configuration parameter FeeN-
vmJobEndNotification upon successful end of an asynchronous operation and
after performing all necessary internal management operations:

• Read job finished & OK

• Write job finished & OK & block marked as valid

• Erase job for immediate data finished & OK (see [SWS_Fee_00067])

• Invalidation of memory block finished & OK

⌋

40 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

The function defined in the configuration parameter FeeNvmJobEndNotification
shall be callable on interrupt level.

[SWS_Fee_00056] Fee job error notification
Upstream requirements: SRS_MemHwAb_14041

⌈The FEE module shall call the function defined in the configuration parameter FeeN-
vmJobErrorNotification upon failure of an asynchronous operation and after per-
forming all necessary internal management and error handling operations:

• Read job finished & failed (e.g. block invalid or inconsistent)

• Write job finished & failed & block marked as invalid

• Erase job for immediate data finished & failed (see [SWS_Fee_00067])

• Invalidation of memory block finished & failed

⌋

The function defined in the configuration parameter FeeNvmJobErrorNotifica-
tion shall be callable on interrupt level.

41 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

9 Sequence diagrams

Note: For a vendor specific library, the following sequence diagrams are valid only inso-
far as they show the relation to the calling modules (Ecu_StateManager[3] and memory
abstraction interface[4]). The calling relations from a memory abstraction module to an
underlying driver are not relevant / binding for a vendor specific library.

9.1 Fee_Init

The following figure shows the call sequence for the Fee_Init routine. It is different
from that of all other services of this module as it is not called by the NVRAM manager
and not called via the memory abstraction interface.

«module»

Fee

«module»

EcuM

«module»

SchM

����� ����	
���
����� ������ �� ��� ��

���	�������	�������� �� � !�
 � �!!�"����

	� �
���
��
�
�#�
�
� �"������
� ���

������
����� ������ ��
��
�

���	�������	�������

	
���
��
�
�#�
�
� �"������
� ��
��$�� ��

��
������
����� ������ ��� �� ���	��	%��

loop

Fee_MainFunction()

Fee_MainFunction()

Fee_MainFunction()

Fee_Init()

Fee_Init(const Fee_ConfigType*)

Fee_MainFunction()

Figure 9.1: Sequence diagram of Fee_Init

9.2 Fee_Write

The following figure shows exemplarily the call sequence for the Fee_Write service.
This sequence diagram also applies to the other asynchronous services of this module.

42 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

«module»

Fee

«module»

NvM

«module»

MemIf

BSW Task (OS task
or cyclic call)

«module»

MemAcc

«module»

Mem

loop MemAcc_MainFunction Mem_Write(Std_ReturnType,
Mem_InstanceIdType, Mem_AddressType,
const Mem_DataType*, Mem_LengthType)

Fee_Write()

MemAcc_Write(Std_ReturnType, MemAcc_AddressAreaIdType,
MemAcc_AddressType, const MemAcc_DataType*, MemAcc_LengthType)

Fee_Write(Std_ReturnType, uint16, const uint8*)

Fee_JobEndNotification()

MemIf_Write(Std_ReturnType, uint16, uint16, const uint8*)

Fee_JobEndNotification()

MemIf_Write()

MemAcc_MainFunction()

MemAcc_Write()

NvM_JobEndNotification()

MemAcc_MainFunction()

Mem_MainFunction()

Mem_GetJobResult(Mem_JobResultType,
Mem_InstanceIdType)

MemAcc_MainFunction()

NvM_JobEndNotification()

Mem_GetJobResult()

Mem_MainFunction()

MemAcc_MainFunction()

Mem_Write()

Figure 9.2: Sequence diagram of Fee_Write

9.3 Fee_Cancel

The following figure shows as an example the call sequence for a canceled Fee_-
Write service and a subsequent new Fee_Write request. This sequence diagram
shows that Fee_Cancel is asynchronous w.r.t. the underlying hardware while itself
being synchronous.

43 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

«module»

Fee

«module»

MemIf

BSW Task (OS task
or cyclic call)

«module»

NvM

«Peripheral»

Flash Memory

«module»

MemAcc

«module»

Mem

����� �� ��	
��	� �� �	��
�
����

�� ��� ����� ��	�� �	��� ������

loop MemAcc_MainFunction

����� �� �������

����� ��� �������

�� �� �� �������
 ��
 ��� �� ���

�������
 ����� ���� �	��� ������

��� ��		��� ���
���

�������� �	��� ���	�����

�� ����� ����� ��������

��� ��!�� ���� ���

	�"���� ��	���	 ��������

�	��� ���	������#

�� �� ��������
###

MemAcc_MainFunction()

Fee_Write()
MemAcc_Write()

MemAcc_Write(Std_ReturnType, MemAcc_AddressAreaIdType,
MemAcc_AddressType, const MemAcc_DataType*, MemAcc_LengthType)

Fee_JobEndNotification()
Fee_Cancel()

MemAcc_Cancel(MemAcc_AddressAreaIdType)

Mem_Write(Std_ReturnType,
Mem_InstanceIdType,
Mem_AddressType, const
Mem_DataType*,
Mem_LengthType)

MemAcc_MainFunction()

MemIf_Write()

Mem_GetJobResult(Mem_JobResultType,
Mem_InstanceIdType)

MemIf_Cancel(DeviceIndex)

MemIf_Write(uint8, uint16, uint8*)

Fee_Cancel(void)

Fee_Write(uint16, uint8*)

Mem_GetJobResult()

MemAcc_Cancel()

Mem_MainFunction()

MemIf_Cancel()

Mem_MainFunction()

MemAcc_MainFunction()

Mem_Write()

Fee_JobEndNotification()

MemAcc_MainFunction()

Figure 9.3: Part 1 of sequence diagram of Fee_Cancel

44 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

«module»

Fee

«module»

MemIf

BSW Task (OS task
or cyclic call)

«module»

NvM

«Peripheral»

Flash Memory

«module»

MemAcc

«module»

Mem

alt request pending

[no further request unti l next main function cycle]

[request issued before next main function cycle is due]

����� �� �	
	���

�����
�� �	
	���

�� �� �� ��������
��

�� �� ��	 �������� �����

���	 ���	� ����
��

����� �� �
���
�� �� ���� �������

�� ��� ����� ����	 ���	� ����
��

���	���
	��� ���� �������� �
��

Fee_Write()
MemAcc_Write()

Fee_Write(Std_ReturnType, uint16, const uint8*)

MemAcc_MainFunction()

MemIf_Write()

MemAcc_Write(Std_ReturnType, MemAcc_AddressAreaIdType,
MemAcc_AddressType, const MemAcc_DataType*, MemAcc_LengthType)

MemIf_Write(Std_ReturnType, uint16, uint16, const uint8*)

MemAcc_MainFunction()

Mem_GetJobResult()

Mem_MainFunction()

MemAcc_MainFunction()

Mem_GetJobResult(Mem_JobResultType, Mem_InstanceIdType)

Mem_Write()

Mem_MainFunction()

Mem_Write(Std_ReturnType, Mem_InstanceIdType,
Mem_AddressType, const Mem_DataType*, Mem_LengthType)

MemAcc_MainFunction()

Figure 9.4: Part 2 of sequence diagram of Fee_Cancel

45 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.1.1 Fee

[ECUC_Fee_00154] Definition of EcucModuleDef Fee ⌈

Module Name Fee

Description Configuration of the Fee (Flash EEPROM Emulation) module.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

FeeBlockConfiguration 1..* Configuration of block specific parameters for the Flash
EEPROM Emulation module.

FeeGeneral 1 Container for general parameters. These parameters are not
specific to a block.

FeePublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.
Note that these parameters do not have any configuration class
setting, since they are published information.

⌋

46 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Fee: EcucModuleDef

upperMultiplicity = 1

lowerMultipl icity = 0

FeeDevErrorDetect:

EcucBooleanParamDef

defaultValue = false

FeeVirtualPageSize:

EcucIntegerParamDef

max = 65535

min = 0
FeeVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

FeeNvmJobEndNotification:

EcucFunctionNameDef

lowerMultiplicity = 0

upperMultipl icity = 1FeeNvmJobErrorNotification:

EcucFunctionNameDef

lowerMultipl icity = 0

upperMultipl icity = 1

FeePoll ingMode:

EcucBooleanParamDef

FeeBlockConfiguration:

EcucParamConfContainerDef

upperMultipl icity = *

lowerMultiplicity = 1

FeeGeneral:

EcucParamConfContainerDef

FeePublishedInformation:

EcucParamConfContainerDef
FeeBlockOverhead:

EcucIntegerParamDef

min = 0

max = 65535
FeePageOverhead:

EcucIntegerParamDef

min = 0

max = 65535

FeeMainFunctionPeriod:

EcucFloatParamDef

min = 0

max = INF

FeeMinimumReadPageSize:

EcucIntegerParamDef

max = 65535

min = 0

FeeBufferAlignmentValue:

EcucReferenceDef

requiresSymbolicNameValue = true

MemAccAddressAreaConfiguration:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultipl icity = 65535

+reference

+destination

+parameter

+parameter

+parameter

+container

+container

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

Figure 10.1: Overview of configuration parameters of Fee

10.1.2 FeeGeneral

[ECUC_Fee_00039] Definition of EcucParamConfContainerDef FeeGeneral ⌈

Container Name FeeGeneral

Parent Container Fee

Description Container for general parameters. These parameters are not specific to a block.

▽

47 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FeeDevErrorDetect 1 [ECUC_Fee_00111]

FeeMainFunctionPeriod 1 [ECUC_Fee_00153]

FeeMinimumReadPageSize 1 [ECUC_Fee_00156]

FeeNvmJobEndNotification 0..1 [ECUC_Fee_00112]

FeeNvmJobErrorNotification 0..1 [ECUC_Fee_00113]

FeePollingMode 1 [ECUC_Fee_00114]

FeeVersionInfoApi 1 [ECUC_Fee_00115]

FeeVirtualPageSize 1 [ECUC_Fee_00116]

FeeBufferAlignmentValue 1 [ECUC_Fee_00157]

No Included Containers

⌋

[ECUC_Fee_00111] Definition of EcucBooleanParamDef FeeDevErrorDetect ⌈
Parameter Name FeeDevErrorDetect

Parent Container FeeGeneral

Description Switches the development error detection and notification on or off.
• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00153] Definition of EcucFloatParamDef FeeMainFunctionPeriod ⌈
Parameter Name FeeMainFunctionPeriod

Parent Container FeeGeneral

Description The period between successive calls to the main function in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value –

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

▽

48 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Link time –

Post-build time –

Dependency

⌋

[ECUC_Fee_00156] Definition of EcucIntegerParamDef FeeMinimumReadPage
Size

Status: DRAFT

⌈
Parameter Name FeeMinimumReadPageSize

Parent Container FeeGeneral

Description Minimum Page size will be a multiple of the minimum page size. Fee shall align read
requests to this size.
Tags: atp.Status=draft

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00112] Definition of EcucFunctionNameDef FeeNvmJobEndNotifi-
cation ⌈

Parameter Name FeeNvmJobEndNotification

Parent Container FeeGeneral

Description Mapped to the job end notification routine provided by the upper layer module (NvM_
JobEndNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

49 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[ECUC_Fee_00113] Definition of EcucFunctionNameDef FeeNvmJobErrorNotifi-
cation ⌈

Parameter Name FeeNvmJobErrorNotification

Parent Container FeeGeneral

Description Mapped to the job error notification routine provided by the upper layer module (NvM_
JobErrorNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00114] Definition of EcucBooleanParamDef FeePollingMode ⌈
Parameter Name FeePollingMode

Parent Container FeeGeneral

Description Pre-processor switch to enable and disable the polling mode for this module.
true: Polling mode enabled, callback functions (provided to MemAcc module) disabled.
false: Polling mode disabled, callback functions (provided to MemAcc module) enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00115] Definition of EcucBooleanParamDef FeeVersionInfoApi ⌈
Parameter Name FeeVersionInfoApi

Parent Container FeeGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false
▽

50 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00116] Definition of EcucIntegerParamDef FeeVirtualPageSize ⌈
Parameter Name FeeVirtualPageSize

Parent Container FeeGeneral

Description The size in bytes to which logical blocks shall be aligned.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00157] Definition of EcucReferenceDef FeeBufferAlignmentValue
Status: DRAFT

⌈
Parameter Name FeeBufferAlignmentValue

Parent Container FeeGeneral

Description Parameter determines the alignment of the start address that Fee buffers need to have.
Value shall be inherited from MemAccBufferAlignmentValue.
Tags: atp.Status=draft

Multiplicity 1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.1.3 FeeBlockConfiguration

[ECUC_Fee_00040] Definition of EcucParamConfContainerDef FeeBlockConfig-
uration ⌈

51 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

Container Name FeeBlockConfiguration

Parent Container Fee

Description Configuration of block specific parameters for the Flash EEPROM Emulation module.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FeeBlockNumber 1 [ECUC_Fee_00150]

FeeBlockSize 1 [ECUC_Fee_00148]

FeeImmediateData 1 [ECUC_Fee_00151]

FeeNumberOfWriteCycles 1 [ECUC_Fee_00110]

FeeMemAccAddressArea 0..1 [ECUC_Fee_00155]

No Included Containers

⌋

[ECUC_Fee_00150] Definition of EcucIntegerParamDef FeeBlockNumber ⌈
Parameter Name FeeBlockNumber

Parent Container FeeBlockConfiguration

Description Block identifier (handle).
0x0000 and 0xFFFF shall not be used for block numbers (see FEE006).
Range: min = 2ˆNVM_DATASET_SELECTION_BITS max = 0xFFFF -2ˆNVM_
DATASET_SELECTION_BITS
Note: Depending on the number of bits set aside for dataset selection several other
block numbers shall also be left out to ease implementation.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 1 .. 65534

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00148] Definition of EcucIntegerParamDef FeeBlockSize ⌈
Parameter Name FeeBlockSize

Parent Container FeeBlockConfiguration

Description Size of a logical block in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value –
▽

52 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00151] Definition of EcucBooleanParamDef FeeImmediateData ⌈
Parameter Name FeeImmediateData

Parent Container FeeBlockConfiguration

Description Marker for high priority data.
true: Block contains immediate data. false: Block does not contain immediate data.

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Fee_00110] Definition of EcucIntegerParamDef FeeNumberOfWriteCy-
cles ⌈

Parameter Name FeeNumberOfWriteCycles

Parent Container FeeBlockConfiguration

Description Number of write cycles required for this block.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

53 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

[ECUC_Fee_00155] Definition of EcucReferenceDef FeeMemAccAddressArea
Status: DRAFT

⌈
Parameter Name FeeMemAccAddressArea

Parent Container FeeBlockConfiguration

Description Reference to the MemAccAddressAreaConfiguration.
Tags: atp.Status=draft

Multiplicity 0..1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

FeeBlockConfiguration:

EcucParamConfContainerDef

upperMultipl icity = *

lowerMultipl icity = 1

FeeBlockSize:

EcucIntegerParamDef

max = 65535

min = 1
FeeBlockNumber:

EcucIntegerParamDef

max = 65534

min = 1

symbolicNameValue = true
FeeNumberOfWriteCycles:

EcucIntegerParamDef

min = 0

max = 4294967295
FeeImmediateData:

EcucBooleanParamDef

MemAccAddressAreaConfiguration:

EcucParamConfContainerDef

lowerMultipl icity = 1

upperMultipl icity = 65535

MemAccAddressAreaId:

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

lowerMultiplicity = 1

upperMultipl icity = 1

symbolicNameValue = true

FeeMemAccAddressArea:

EcucReferenceDef

lowerMultipl icity = 0

upperMultipl icity = 1

requiresSymbolicNameValue = true

+parameter

+parameter

+reference

+parameter

+destination

+parameter

+parameter

Figure 10.2: Overview of configuration parameters of FeeBlockConfiguration

54 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

10.2 Published Information

10.2.1 FeePublishedInformation

[ECUC_Fee_00043] Definition of EcucParamConfContainerDef FeePublishedIn-
formation ⌈

Container Name FeePublishedInformation

Parent Container Fee

Description Additional published parameters not covered by CommonPublishedInformation
container.
Note that these parameters do not have any configuration class setting, since they are
published information.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FeeBlockOverhead 1 [ECUC_Fee_00117]

FeePageOverhead 1 [ECUC_Fee_00118]

No Included Containers

⌋

[ECUC_Fee_00117] Definition of EcucIntegerParamDef FeeBlockOverhead ⌈
Parameter Name FeeBlockOverhead

Parent Container FeePublishedInformation

Description Management overhead per logical block in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Dependency

⌋

[ECUC_Fee_00118] Definition of EcucIntegerParamDef FeePageOverhead ⌈
Parameter Name FeePageOverhead

Parent Container FeePublishedInformation

Description Management overhead per page in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

▽

55 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

△
Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Dependency

⌋

56 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

A Not applicable requirements

[SWS_Fee_NA_00999]
Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00171, SRS_BSW_

00336, SRS_BSW_00339, SRS_BSW_00344, SRS_BSW_00369,
SRS_BSW_00375, SRS_BSW_00380, SRS_BSW_00383, SRS_BSW_
00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00393,
SRS_BSW_00395, SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_
00400, SRS_BSW_00403, SRS_BSW_00404, SRS_BSW_00405,
SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00419, SRS_BSW_
00422, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425,
SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_
00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00461,
SRS_BSW_00469, SRS_BSW_00471, SRS_BSW_00472, SRS_BSW_
00478, SRS_BSW_00490, SRS_BSW_00491, SRS_MemHwAb_14017

⌈These requirements are not applicable to this specification.⌋

57 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Items in R25-11

Number Heading

[SWS_Fee_00120] Fee init module status change

[SWS_Fee_00197] Main function module status change

Table B.1: Added Specification Items in R25-11

B.1.2 Changed Specification Items in R25-11

Number Heading

[SWS_Fee_00056] Fee job error notification

[SWS_Fee_00085] Definition of API function Fee_Init

Table B.2: Changed Specification Items in R25-11

B.1.3 Deleted Specification Items in R25-11

Number Heading

[SWS_Fee_00168]

[SWS_Fee_00169]

Table B.3: Deleted Specification Items in R25-11

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

58 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

Specification of Flash EEPROM Emulation
AUTOSAR CP R25-11

B.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_Fee_00105] Definition of mandatory interfaces required by module Fee

Table B.4: Changed Specification Items in R24-11

B.2.3 Deleted Specification Items in R24-11

none

59 of 59 Document ID 286: AUTOSAR_CP_SWS_FlashEEPROMEmulation

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase cycles
	7.1.4 Handling of "immediate" data
	7.1.5 Managing block correctness information
	7.1.6 Buffer Alignment

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Fee_Init
	8.3.2 Fee_Read
	8.3.3 Fee_Write
	8.3.4 Fee_Cancel
	8.3.5 Fee_GetStatus
	8.3.6 Fee_GetJobResult
	8.3.7 Fee_InvalidateBlock
	8.3.8 Fee_GetVersionInfo
	8.3.9 Fee_EraseImmediateBlock

	8.4 Callback notifications
	8.4.1 Fee_JobEndNotification

	8.5 Scheduled functions
	8.5.1 Fee_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Fee_Init
	9.2 Fee_Write
	9.3 Fee_Cancel

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 Fee
	10.1.2 FeeGeneral
	10.1.3 FeeBlockConfiguration

	10.2 Published Information
	10.2.1 FeePublishedInformation

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

