AUTSSAR

D t Titl Specification of Extended Fixed
Pl s Point Library

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 400

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR . ,
* Corrected description of arcsin and
2025-11-27 | R25-11 Release exponential function.
Management
» Changed Service ID of specific APIs to
prevent conflict
0024-11-07 R24-11 gg; Ca)iAR . fCorrected typos in specific math
ormulas
Management
» Removed unreachable branch in psuedo
code of Efx LpFilterFac1
AUTOSAR _
2023-11-23 | R23-11 | Release "3 statement has been added to define
Management '
* Functions added: SWS_Efx_91002,
SWS_Efx_00435, SWS_Efx 00412,
SWS_Efx_10001, SWS_Efx_10002,
SWS_Efx_10003, SWS_Efx_10004,
SWS_Efx_10005, SWS_Efx_00423,
SWS_Efx_10006, SWS_Efx_10007,
SWS_Efx_10008, SWS_Efx_10009,
AUTOSAR SWS_Efx_10010, SWS_Efx_00426,
2022-11-24 | R22-11 | Release SWS_Efx_00434, SWS_Efx_10015,
Management SWS_Efx_10011, SWS_Efx_10012,

SWS_Efx_10013 and SWS_Efx_10014.

* Functions updated: SWS_Efx_00005,
SWS Efx 00178, SWS_ Efx 00181,
SWS_Efx_00175, SWS_Efx_ 00178,
SWS Efx 00181, SWS_Efx_ 00210,
SWS_Efx_00213 and SWS_Efx_00216.

AUTSSAR

Service ID field for specific API functions
changed

AUTOSAR
2021-11-25 R21-11 Release * Artifact inclusion based on
Management ArtifactAnalysis corrected
« Editorial change (converted to LaTex)
* New function added Efx_Pt1Typ1Calc
with the requirements SWS_Efx_00531,
SWS_Efx_00532, SWS_Efx_
00533,SWS_Efx_00534, SWS_Efx_
00535
AUTOSAR - SWS_Efx_00843, SWS_Efx_00844,
2020-11-30 | R20-11 Release SWS_Efx_00845 - Requirements related
Management to saturation has been added for the
functions Efx_Add, Efx_Mul, Efx_Div.
» Chapter 7.1 Error sections updated
« Removal of Efx_Cast and Efx_Gt
functions
AUTOSAR * No content changes
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management published
» Updated the range and resolution of
requirements SWS_EFX_00220,SWS
EFX_00223,SWS_EFX_00226,SWS_
5018-10-31 4.4.0 gglz gsseAR EFX_00229,SWS_EFX_00232,SWS_
e o Management EFX_00235,SWS_EFX_00240,SWS_
g EFX_00243,SWS_EFX_00246,SWS_
EFX_00250,SWS_EFX_00253,SWS_
EFX_00256
* A note has been added in Section 8.1 of
EFX specification to provide clarity in
usage of mnemonic for Boolean data
types.
 The data type for Boolean has been
AUTOSAR .
5017-12-08 431 Release updated in the UML of SWS_Efx_00355
Management * Inclusion of Pointer to Constant

(P2CONST) for SWS_Efx_00355,
SWS_Efx_00309, SWS_Efx_00307 &
SWS_Efx_00193 and proper
categorization of Parameters as InOut
for SWS_Efx_00376

AUTSSAR

2016-11-30

4.3.0

AUTOSAR
Release
Management

» Updated the correct reference to SRS _

BSW_General (SRS_BSW_00437) &
(SRS_BSW_00448) for SWS_Efx_
00810 & SWS_Efx_00822 requirements

» Updated EFX document to support

MISRA 2012 standard. (Removed
redundant statements in SWS_Efx_
00809 which already exist in SWS_BSW
document and SWS_SRS document)

» Updated SWS_Efx_00275 & SWS_Efx_

00276 to provide more clarity on
resolution of parameters

» Updated SWS_Efx_00278 & SWS_Efx_

00279 to provide more clarity on
rounding and minimum value of Param__
cpcst->SlopeXXX_u32 * dT_s32.
Provided the correct IT number

» Updated the section 8.5.3.1 for Structure

definitions for controller routines

» Updated SWS_Efx_00240, SWS_Efx_

00243, SWS_Efx_00246, SWS_Efx_
00250, SWS_Efx_00253 & SWS_Efx_
00256 to correct the case sensitivity for
the function name

* Section 2 has been revisited to update

Default Error Tracer instead of
Development Error tracer

* Removal of Efx_ISetParam from BSW

uml model which is obsolete

* Removed the duplicated trace

environments for SWS_Efx_00520 &
SWS_Efx_00525

* Removed the requirements that are

marked as Deprecated. (8.5.1.2 Second
computation, SWS_Efx_00009 - SWS_
Efx_00011, SWS_Efx_00041 - SWS_

Efx_00043, SWS_Efx_00295 - SWS_
v

AUTSSAR

A
Efx_00302, SWS_Efx_00347 - SWS_
Efx_00354, SWS_Efx_00345, SWS_
Efx_00460, SWS_Efx_00461 & 8.5.14
Efx_DeadTime)

2015-07-31

422

AUTOSAR
Release
Management

Updated the requirement ID for SWS_
Efx_00033 as per the convention

Updated requirement ID SWS_Efx_
00436 (UML) for OutTypeMn as per the
standard convention

Updated SWS_Efx_00001 for naming
convention under Section 5.1, File
Structure

Updated SWS_Efx_00365 to correct the
data type of input parameters

2014-10-31

4.2.1

AUTOSAR
Release
Management

New Variants for SWS_Efx_00412 (OxE2
- OxE9)

Note has been added for SWS_Efx_
00053, SWS_Efx 00072 & Section
8.5.3.1

A statement has been added to clarify
the formula used for Hypotenuse
function just below the section 8.5.9

A statement has been added to provide
more clarity on the formula mentioned in
SWS_Efx_00451

Updated usage of const in a consistent
manner in EFX document. (SWS_Efx_
00050, SWS_Efx_00067, SWS_Efx_
00085, SWS_Efx_00519, SWS_Efx_
00107, SWS_Efx_00122, SWS_Efx_
00146, SWS_Efx_00172, SWS_Efx_
00205, SWS_Efx_00379 & SWS_Efx_
00404)

Formula for TeQ_<size> has been
corrected in section 8.5.3.1 and font has
been updated for SWS_Efx_00071

Condition check included for SWS_Efx_
00053, SWS_Efx_00072 & Section

8.5.3.1 and corrected for SWS_Efx_
\Y4

AUTSSAR

A
00054, SWS_Efx_00073 & SWS_Efx_
00504. Formula updated for SWS_Efx_
00073

» Updated rounding for SWS_Efx_00071,
SWS_Efx_00091, SWS_Efx_00502,
SWS_Efx_ 00151 & SWS_Efx_00156

» Service ID[hex] for SWS_Efx_00405,
SWS_Efx_00410 & SWS_Efx_00412

* Input & Output range has been modified
for SWS_Efx_ 00187

« Statement on rounding was updated for
SWS_Efx_00441

« Comment for structure element “n“ has
been updated for SWS_Efx_00204 &
SWS_Efx_ 00836

+ Data type of “n* has been modified for
SWS_Efx_00204

» Modified: Rounding mechanism was
updated for HpFilter, Average, Array_

AUTOSAR _ :
2014-03-31 413 Release Average & MovingAverage functions
Management - Added: A note below SWS_Efx_00307
for Efx_RampGetSwitchPos function
» Deprecated: Efx_DeadTime function
* Removed: Requirements for Efx_
SlewRate, Efx_RampCalc and Efx_
RampCalcJump functions
» Added: SWS_Efx 00837 for Efx_
RampCalc function
2013-10-31 410 ggl-ggf:ﬂ Modified: Descriptions of Efx_RampCalc
e S and Efx_RampSetParam
Management

» Modified: Requirements for Efx_
RampCalc and Efx_RampCalcJump
functions

» Modified: Syntax for variants of Efx_
SlewRate, Efx_Div and Efx_

MovingAverage functions
v

AUTSSAR

A
» Modified: Resolution of the in-parameter

for Efx_Arcsin and Efx_Arccos functions

* Name “underflow” to “negative overflow*
throughout the document

« Editorial changes

2013-03-15

411

AUTOSAR
Administration

» Added 8-bit and 16-bit variants for
Hysteresis functions

» Formulae modified for Hypotenuse
functions

» Second computation First-order
low-pass filter functions are deprecated

* Inequalities are corrected for Efx_
HystLeftRight, Efx_HystDeltaRight, Efx_
HystCenterHalfDelta functions

* Description and requirements are
modified for Efx_Div, Efx_Debounce,
Efx_HystLeftDelta, Efx_SortAscend,
Efx_SortDescend, Efx_EdgeBipol, Efx_
Hysteresis, Efx_MovingAverage
functions

* Description of the in-parameter
corrected for Efx_DebounceSetParam,
Efx_Debounce functions

* Physical range of 'fac’ parameter is
modified in LpFilter First computation

» Renamed RS_FlipFlop function for
removing the post-fixes

» Added SWS_Efx_00823 for Integral
promotion

» Modified syntax for Efx_Gt, Efx_
Debounce functions

* Corrected for 'DependencyOnArtifact’

AUTSSAR

« Initialization functionality introduced for
‘Counter Routines’

* Interface for Efx_CtrlSetLimit corrected

» Efx_MovingAverage routine interface
corrected

» Efx_RampCalcSwitch routine definition
and requirements updated for correct
behavior’

* Interface for Efx_Debounce_u8 u8
routine updated

» Updated parameter sequences for DT1
and PI controller routines.

» Name revised for Efx_PCalc routine

AUTOSAR
2011-12-22 | 4.0.3 Administration « Description correct for Efx_

DebounceParam_Type and Efx_
DebounceState_Type

* Interface table corrected for Efx_Div
routine

* Interface table corrected for Efx_
MedianSort routine

« Error classification support and definition
removed as DET call not supported by
library

* Configuration parameter description /
support removed for XXX_
GetVersionlInfo routine.

* XXX_GetVersionlnfo routine name
corrected

* Introduction of additional LIMITED
Functions for controllers

» Ramp functions optimised for effective
usage

2010-09-30 | 3.1.5 AUTOSAR

Administration

* Separation of DT1 Type 1 and Type 2
Controller functions

* Introduction of additional approximative
function for calculation of TeQ

AUTSSAR

2010-02-02

3.1.4

AUTOSAR
Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

Dependencies to other modules
51 Filestructure
Requirements Tracing

Functional specification

7.1 Error Classification
7.1.1 DevelopmentErrors
7.1.2 Runtime Errors e
7.1.3 Production Errors
7.1.4 Extended ProductionErrors

7.2 Initialization and shutdown

7.3 Using Library APl o

7.4 library implementation

API specification

8.1 Importedtypes e
8.2 Type definitions
8.3 Commentaboutrounding
8.4 Comment about routines optimized fortarget
8.5 Mathematical functions definitions
8.5.1 First-order low-passfilter,
8.5.1.1 Firstcomputation oL
8.5.1.2 Third computation.
8.5.2 First-order High-passfilter.
8.5.3 Controllerroutines
8.5.3.1 Structure definitions for controller routines
8.5.3.2 Proportional Controller
8.5.3.3 Proportional controller with first order time constant
8.5.3.4 Differential component with time delay : DT1
8.5.3.5 Proportional and Differential controller
8.5.3.6 Integralcomponent

AUTSSAR

8.5.3.7 Proportional and Integral controller 60
8.5.3.8 Proportional, Integral and Differential controller 66
8.5.4 Squareroot e 72
8.5.5 Exponential 75
8.5.6 Average e 75
8.5.7 Array Average e e e 76
8.5.8 Moving Average 77
8.5.9 Hypotenuse 79
8.5.10 Trigonometric functions 81
8.5.10.1 Sinefunction 81
8.5.10.2 Cosine function L 82
8.5.10.3 Inverse Sine function o oL 84
8.5.10.4 Inverse cosinefunction 85
8.5.11Ratelimiter 87
8.5.12Ramproutines 88
8.5.12.1 Ramproutine 90
8.5.12.2 Ramp Initialisation L. 91
8.5.123 Ramp SetSlope 92
8.5.124 Rampoutroutines 93
8.5.125 RampJumproutine 93
8.5.12.6 Ramp switchroutine 94
8.5.12.7 Get Ramp Switch position 95
8.5.12.8 Check Ramp Activity 96
8.5.183 Hysteresisroutines 97
8.5.13.1 Hysteresis 97
8.5.13.2 Hysteresis center halfdelta 98
8.5.13.3 Hysteresis leftright 99
8.5.13.4 Hysteresis deltaright 100
8.5.13.5 Hysteresis leftdelta 101
8.5.14 Debounceroutines 102
8.5.14.1 Efx Debounce 102
8.5.14.2 Efx Debouncelnit L 104
8.5.14.3 Efx_DebounceSetparam 105
8.5.15 Ascending Sort Routine, 105
8.5.16 Descending Sort Routine 106
8.5.17 Median sortroutine 107
8.5.18 Edge detectionroutines Lo L. 108
8.5.18.1 Edge bipol detection, 108
8.5.18.2 Edge falling detection. 109
8.5.18.3 Edgerisingdetectiono 110
8.5.19Intervalroutines 110
8.5.19.1 Interval Closed, 110

8.5.19.2 Interval Open 111

AUTSSAR

8.5.19.3 Interval LeftOpen 112
8.5.19.4 Interval RightOpen 113
8.5.20 Counterroutines L 113
8.5.21 Flip-Floproutine 115
8.5.22Limiterroutines L 116
8.5.2364 bitsfunctions L L 117
8.5.23.1 General requirements oL 117
8.5.23.2 Absolutevalue L 118
8.5.28.3 Additions e 119
8.5.23.4 Subtractions 120
8.5.23.5 Multiplications L 121
8.5.23.6 Division 122
85.23.7Modulo 123
8.5.23.8 Signum Function oo 124
8.6 Callback notifications 124
8.7 Scheduled functions 124
8.8 Expectedinterfaces 125
8.8.1 Mandatory Interfaces L. 125
8.8.2 Optional Interfaces 125
8.8.3 Configurable interfaces 125
8.9 Version APl 125
8.9.1 Efx GetVersioninfo 125
9 Sequence diagrams 127
10 Configuration specification 128
10.1How toread thischapter 128
10.2Containers and configuration parameters 128
10.3Published Information., 128
A Not applicable requirements 129
B Change history of AUTOSAR traceable items 130
B.1 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e 130
B.1.1 Added Specification Itemsin R23-11 130
B.1.2 Changed Specification ltems in R23-11 130
B.1.3 Deleted Specification ltemsinR23-11 130
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 130
B.2.1 Added Specification ltemsin R24-11 130
B.2.2 Changed Specification Itemsin R24-11 130
B.2.3 Deleted Specification ltemsin R24-11 130

B.3 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 131

AUTSSAR

B.3.1 Added Specification Items in R25-11

B.3.2 Changed Specification ltemsin R25-11

B.3.3 Deleted Specification Items in R25-11

AUTSSAR

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
and below figure shows position of AUTOSAR library in layered architecture.

ArnOo4CP

W —-r

Figure 1.1

This specification specifies the functionality, APl and the configuration of the AUTOSAR
library dedicated to extended mathematical functions for fixed-point values.

This extended mathematical library (Efx) contains the following routines:
* Moving average
« First order high pass filter
+ First order low-pass filter
« Controller routines
» Square root
» Exponential
» Average
* Array Average
* Moving Average
* Hypotenuse
« Trigonometric functions
+ Rate limiter functions

« Ramp routines

AUTSSAR

* Hysteresis function

» Dead Time

* Debounce

» Ascending Sort Routine
 Descending Sort Routine
* Median Sort

» Edge detection routines
* Interval routines

» Counter routines

* Flip-Flop routine

* Limiter routines

* 64 bit functions

All routines are re-entrant and can be used by multiple runnables at the same time.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the EFX Library
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Arcsin Inverse Sine

Arccos Inverse Cosine

BSW Basic Software

Cos Cosine

DET Default Error Tracer

EFX Extended Mathematical library - Fixed point

Hypot Hypotenuse

HpFilter High pass filter

LpFilterFac1 Low pass filter with a factor of 1 (included in [0, 1])

LpFilter Low pass filter

Mn Mnemonic

Lib Library

Sart Square root

Sin Sine

SWS Software Specification

SRS Software Requirement Specification

u8 Mnemonic for the uint8, specified in AUTOSAR_SWS_
PlatformTypes

ul6 Mnemonic for the uint16, specified in AUTOSAR_SWS_
PlatformTypes

u32 Mnemonic for the uint32, specified in AUTOSAR_SWS_
PlatformTypes

s8 Mnemonic for the sint8, specified in AUTOSAR_SWS_
PlatformTypes

s16 Mnemonic for the sint16, specified in AUTOSAR_SWS_
PlatformTypes

s32 Mnemonic for the sint32, specified in AUTOSAR_SWS_
PlatformTypes

s64 Mnemonic for the sint64, specified in AUTOSAR_SWS_
PlatformTypes

ue4 Mnemonic for the uint64, specified in AUTOSAR_SWS_
PlatformTypes

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] ISO/IEC 9899:1990 Programming Language - C
https://www.iso.org

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] Requirements on Libraries
AUTOSAR_CP_RS_Libraries

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for EFX Library.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for EFX Library.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

5.1 File structure

Implementation & grouping of routines with respect to C files is recommended as per
below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,
eg.: Efx_Pt1_s32.c etc.
Option 2 : <Name> can have common name of group of functions:
» 2.1 Group by object family:
eg.:Efx_Pti1.c, Efx_Dt1.c, Efx_Pid.c
2.2 Group by routine family:
eg.: Efx_Filter.c, Efx_Controller.c, Efx_Average.c etc.
+ 2.3 Group by method family:
eg.: Efx_Sin.c, Efx_Exp.c, Efx_Arcsin.c, etc.
» 2.4 Group by architecture:
eg.: Efx_Slewrate16.c, Efx_Slewrate32.c
» 2.5 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Efx functions,
eg.: Efx.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Linking only on-demand is also possible in case of some
options.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_Efx_00815]

[SRS_BSW_00007]

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_Efx_00809]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data

types

[SWS_Efx_00812]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Efx_00813]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Efx_00815]

[SRS_BSW_00321]

The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_Efx_00815]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_Efx_00814]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean
type

[SWS_Efx_00812]

[SRS_BSW_00379]

All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_Efx_00814]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Efx_00814]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Efx_00815] [SWS_Efx_00816]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Efx_00816]

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_Efx_00810]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other modules

[SWS_Efx_00822]

[SRS_LIBS_00001]

The functional behavior of each
library functions shall not be
configurable

[SWS_Efx_00818]

[SRS_LIBS_00002]

A library shall be operational before
all BSW modules and application

[SWS_Efx_00800]

SW-Cs
Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_LIBS_00003]

A library shall be operational until the
shutdown

[SWS_Efx_00801]

[SRS_LIBS_00005]

Each library shall provide one header
file with its public interface

[SWS_Efx_00412] [SWS_Efx_00425]
[SWS_Efx_00428] [SWS_Efx_00434]
[SWS_Efx_10001] [SWS_Efx_10005]
[SWS_Efx_10006] [SWS_Efx_10010]
[SWS_Efx_10014] [SWS_Efx_10015]
[SWS_Efx_91002]

[SRS_LIBS_00009]

All library functions shall be re-entrant

[SWS_Efx_00412] [SWS_Efx_00425]
[SWS_Efx_00428] [SWS_Efx_00434]
[SWS_Efx_10001] [SWS_Efx_10005]
[SWS_Efx_10006] [SWS_Efx_10010]
[SWS_Efx_10014] [SWS_Efx_10015]
[SWS_Efx_91002]

[SRS_LIBS_00011]

All function names and type names
shall start with "Library short name_"

[SWS_Efx_00412] [SWS_Efx_00425]
[SWS_Efx_00428] [SWS_Efx_00434]
[SWS_Efx_10001] [SWS_Efx_10005]
[SWS_Efx_10006] [SWS_Efx_10010]
[SWS_Efx_10014] [SWS_Efx_10015]
[SWS_Efx_91002]

[SRS_LIBS_00015]

It shall be possible to configure the
microcontroller so that the library
code is shared between all callers

[SWS_Efx_00806]

[SRS_LIBS_00017]

Usage of macros should be avoided

[SWS_Efx_00807]

[SRS_LIBS_00018]

A library function may only call library
functions

[SWS_Efx_00808]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Error Classification

[SWS_Efx_00821] [Chapter [3, General Specification of Basic Software Modules] 7.2
“Error Handling” describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules. |

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

There are no extended production errors.

7.2 Initialization and shutdown

[SWS_Efx_00800]
Upstream requirements: SRS_LIBS_ 00002

[Efx library shall not require initialization phase. A Library function may be called at
the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library
shall be ready. |

[SWS_Efx_00801]
Upstream requirements: SRS_LIBS_00003

[Efx library shall not require a shutdown operation phase. |

AUTSSAR

7.3 Using Library API

Efx API can be directly called from BSW modules or SWC. No port definition is re-
quired. It is a pure function call.

The statement 'Efx.h’ shall be placed by the developer or an application code generator
but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library,
the developer should add an Implementation-DependencyOnAtrtifact in the BSW/SWC
template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on a library behaviour, not on a supplier implementation. However,
the SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated.

7.4 library implementation

[SWS_Efx_00806]

Upstream requirements: SRS_LIBS_00015
[The Efx library shall be implemented in a way that the code can be shared among
callers in different memory partitions. |

[SWS_Efx_00807]

Upstream requirements: SRS_LIBS_00017
[Usage of macros should be avoided. The function should be declared as function or
inline function. Macro #define should not be used. |

[SWS_Efx_00808]
Upstream requirements: SRS_LIBS 00018

[A library function shall not call any BSW modules functions, e.g. the DET. A library
function can call other library functions. Because a library function shall be re-entrant.
But other BSW modules functions may not be re-entrant. |

[SWS_Efx_00809]
Upstream requirements: SRS_BSW_00007

[The library, written in C programming language, should conform to the MISRA C
Standard.

Please refer to SWS_BSW_00115 for more details. |

AUTSSAR

[SWS_Efx_00810]
Upstream requirements: SRS_BSW_00437

[Each AUTOSAR library Module implementation <library>*.c and

<library>*.h shall map their code to memory sections using the AUTOSAR memory
mapping mechanism. |

[SWS_Efx_00812]
Upstream requirements: SRS_BSW_00304, SRS_BSW_00378
[All AUTOSAR library Modules should use the AUTOSAR data types (integers,

boolean) instead of native C data types, unless this library is clearly identified to be
compliant only with a platform. |

[SWS_Efx_00813]
Upstream requirements: SRS_BSW_00306
[All AUTOSAR library Modules should avoid direct use of compiler and platform spe-

cific keyword, unless this library is clearly identified to be compliant only with a platform.
eg. #pragma, typeof etc. |

[SWS_Efx_00823] [Integral promotion has to be adhered to when implementing Efx
services. Thus, to obtain maximal precision, intermediate results shall not be limited. |

AUTSSAR

8 API specification

8.1 Imported types
In this chapter, all types included from the following modules are listed:

[SWS_Efx_91001] Definition of imported datatypes of module Efx |

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType

]

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

The following mnemonic are used in the library routine names.

Size Platform Type Mnemonic Range

unsigned 8-Bit boolean u8 [TRUE, FALSE]

signed 8-Bit sint8 s8 [-128,127]

signed 16-Bit sint16 s16 [-32768, 32767]

signed 32-Bit sint32 s32 % -2147483648, 2147483647

signed 64-Bit sint64 s64 [-9223372036854775808,
9223372036854775807]

unsigned 8-Bit uint8 u8 [0,255]

unsigned 16-Bit uint16 ulé [0,65535]

unsigned 32-Bit uint32 u32 [0, 4294967295]

unsigned 64-Bit uint64 u64 [0,
18446744073709551615]

Table 8.1: Base Types

As a convention in the rest of the document:

« mnemonics will be used in the name of the routines (using <InTypeMn1> that
means Type Mnemonic for Input 1)

+ the real type will be used in the description of the prototypes of the routines (using
<InTypeMn1> or <OutType>).

Note:

The naming convention for the api’s with boolean return type/parameter type is given
as _u8 which shall be interpreted as _b. (Boolean)

If there is no boolean data type present in the return type/parameter type then _u8
shall be interpreted as _u8 only.

AUTSSAR

8.2 Type definitions

None

8.3 Comment about rounding

Two types of rounding can be applied:
Results are 'rounded off’, it means:

* 0<=X<0.5roundedto 0

* 0.5 <= X< 1 rounded to 1

* -0.5<X<=0roundedto 0

* -1 < X <=-0.5 rounded to -1
Results are rounded towards zero.

* 0<=X<1roundedto 0

* -1 <X <=0roundedto 0

8.4 Comment about routines optimized for target

The routines described in this library may be realized as regular routines or inline func-
tions. For ROM optimization purposes, it is recommended that the c routines be real-
ized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:
» Some routines can be replaced by another routine using integer promotion

« Some routines can be replaced by the combination of a limiting routine and a
routine with a different signature.

AUTSSAR

8.5 Mathematical functions definitions

This table describes the meaning of used symbols in below sections.

Symbols Description

Yn Actual output to calculate

Yn-1 Output value, one time step before
Xn Actual input, given from the input
Xn-1 Input, one time step before

a, b0, b1 Filter dependent constants

8.5.1 First-order low-pass filter

We consider a recursive first-order low-pass filter with a transfer function :

b
Hiz) =1
() 1+a*z7
Figure 8.1

The new return value (Yn) at any point of time can be calculated given the previous
value (Yn-1), the current value (Xn) and a known constant (K). The formula to calculate
the same is as follows:

Yn=Yn-1+ (Xn-Yn-1) *K
Where b1=Kanda=K- 1

The filter is a convergent low-pass filter only if the average value K is included in [0,1]

8.5.1.1 First computation

[SWS_Efx_00005] Definition of API function Efx_LpFilterFac1_<InTypeMn><In
TypeMn><InTypeMn>_<OutTypeMn> |

Service Name Efx_LpFilterFac1_<InTypeMn><InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_LpFilterFacl_<InTypeMn><InTypeMn><InTypeMn>_ <OutTypeMn>
(

<InType> ¥Yn-1,

<InType> Xn,

<InType> fac
)

Service ID [hex] 0x01 to 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Yn-1 ‘ Old output value

V

AUTSSAR

A
Xn Current measured value
fac Factor value that represents the physical range: sint16: [-1,

0.999969482421875] uint8: [0, 0.9960937500000] uint16: [0,
0.9999847412109] uin32: [0, 0.9999999997671] Only physical
value [0, 1] shall be used if the filter shall converge.

Parameters (inout) None

Parameters (out) None

Return value <OutType> Result (Yn) of the calculation
Description This service computes the output of a first order low-pass filter
Available via Efx.h

]
[SWS_Efx_00006] [Yn = Yn-1 + (((Xn - Yn-1) * fac) >> n)

Where 'n’ is a shift that depends on the types used by the functions for the factor |

[SWS_Efx_00007] [In order to converge all the time, the result is corrected for value
saturation using the following logic:

If (Yn==Yn-1)

If (Xn-Yn-1) * fac) > 0)
Yn ++

End If

Endif |

[SWS_Efx_00008] [Here is the list of implemented functions. |

Service ID[hex] Syntax Associated shift

0x01 sint16 Efx_LpFilterFac1_s16s16s16_ 15
s16 (sint16, sint16, sint16)

0x02 sint16 Efx_LpFilterFac1_s16s16u16_ 16
s16 (sint16, sint16, uint16)

0x03 sint32 Efx_LpFilterFac1_s32s32u16_ 16
s32 (sint32, sint32, uint16)

0x04 uint16 Efx_LpFilterFac1_u16u16s16_ 15
u16 (uint16, uint16, sint16)

0x05 uint16 Efx_LpFilterFac1_u16u16ul16_ 16
u16 (uint16, uint16, uint16)

0x06 uint8 Efx_LpFilterFac1_u8u8u8_u8 (8
uint8, uint8, uint8)

0x07 uint32 Efx_LpFilterFac1_u32u32u32_ 32
u32 (uint32, uint32, uint32)

0x08 uint32 Efx_LpFilterFac1_u32u32u16_ 16
u32 (uint32, uint32, uint16)

AUTSSAR

8.5.1.2 Third computation

[SWS_Efx_00012] Definition of API function Efx_LpFilter_<InTypeMn>_<OutType

Mn> |

Service Name

Efx_LpFilter_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_LpFilter_ <InTypeMn>_<OutTypeMn> (
<InType> input,
<InType> old_output,
uint32 tau_const,
uintl6 recurrence,
uint8 reset,
<InType> init_val,
uint8+ started
)
Service ID [hex] 0x0D and 0xOE
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) input Input signal
old_output Previous value of the output value (filtered signal)
tau_const Parameter Tau of the filter : the time constant (second)
recurrence Delta time between two executions of the function
reset Flag to reset the filtered signal
init_val Initial value of the filter
Parameters (inout) started Pointer to the flag to detect the first call of the function
Parameters (out) None
Return value <OutType> Return value of the filter

Description

This service computes the first one order discrete filter

Available via

Efx.h

]

[SWS_Efx_00013] [If (tau_const==0), then output = input |

[SWS_Efx_00014] [If (*started==0), then output = init_val

This flag is used to indicate the filter state. *Started = 0, indicates that current function

call is the first call of the function to trigger initialisation. |

AUTSSAR
[SWS_Efx_00015] [This service computes the first one order discrete filter: |

output = old _output + (input — old _output)* [1 - EXP[M]]

fau _const

—recurrence | — recurrence
output =old _output * exp| ———— |+ input *| 1 —exp| —
fau _const tau _const

Figure 8.2
Remark : the exponential functions can be computed with interpolations
[SWS_Efx_00016] [if ((reset == 1) or (*started == 0)), then output = init_val |

[SWS_Efx_00017] [if (*started == 0), then *started=1 |

[SWS_Efx_00018] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0x0D uint32 Efx_LpFilter_u32_u32 (uint32, uint32, uint32, uint16,
uint8, uint32, uint8™)

0x0E sint32 Efx_LpFilter_s32_s32 (sint32, sint32, uint32, uint16,
uint8, sint32, uint8 *)

[SWS_Efx_00020] [input, old_output, and init_val must have the same resolution and
the same physical unit. |

[SWS_Efx_00021] [tau_const and recurrence must have the same resolution and the
same physical unit]

It is not recommended to call Efx_LpFilter_<InTypeMn>_<OutTypeMn> under any con-
dition. It must be called at each recurrence, even if it is not used, If the conditions are
not fulfilled then output shall be frozen to the previous value all the time.

The parameter started has to be declared as private variable by the caller and shall
be initialized to 0 (default init), because the function uses the previous values of this
output (so the stack mustn’t be used).

8.5.2 First-order High-pass filter
We consider a recursive first-order high-pass filter with a transfer function :

_by*z+b,
z +a

H(z)

Figure 8.3

AUTSSAR

The new return value (Yn) at any point of time can be calculated given the previous
value (Yn-1), the current input (Xn), the previous input (Xn-1) and a known constant
(K). The formula to calculate the same is as follows:

Yn=Yn-1-K*Yn-1+(Xn - Xn-1)
Where b0 =1, b1 =-1 and a=K -1

The filter is a convergent high-pass filter only if the factor value m is included in [0,1]

[SWS_Efx_00022] Definition of API function Efx_HpFilter_u8_s16 |

Service Name Efx_HpFilter_u8_s16
Syntax sintl6 Efx_HpFilter_u8_sl6 (
sintl6 Yn-1,
uint8 Xn,
uint8 Xn-1,
uintl6 K
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Yn-1 Previous sint16 output Physical range: [-256 , 255.9921875]
Resolution: 1/27
Xn Present uint8 input Physical range: [0,255] Resolution: 1
Xn-1 Previous uint8 input Physical range: [0,255] Resolution: 1
K Constant uint16 multiplying factor Physical range: [0,0.99998]
Resolution: 1/216
Parameters (inout) None
Parameters (out) None
Return value sint16 Yn : Result of the calculation
Physical range: [-256 , 255.9921875]
Resolution: 1/2°7
Description This service computes the output of a first order high-Pass filter
Available via Efx.h

[SWS_Efx_00023] [:
Yn =Yn-1-(K*Yn-1/216) + (Xn - Xn-1)*2"7

The result is rounded towards zero. |

[SWS_Efx_00024] [Return value shall be saturated to boundary values in the event of
negative or positive overflow. |

[SWS_Efx_00025] [A saturation correction for converging output to zero is applied to
the result :

If ((Yn equals Yn-1) and (Yn-1 > 0))
decrement Yn by one
If ((Yn equals Yn-1) and (Yn-1 < 0))

AUTSSAR

increment Yn by one |

[SWS_Efx_00026] Definition of API function Efx_HpFilter_s8 s16 |

Service Name Efx_HpFilter_s8_s16
Syntax sintl16 Efx_HpFilter_s8_sl16 (
sintl6 Yn-1,
sint8 Xn,
sint8 Xn-1,
uintlé K
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Yn-1 Previous sint16 output Physical range: [-256 , 255.9921875]
Resolution: 1/27
Xn Present sint8 input Physical range: [-128 , 127] Resolution: 1
Xn-1 Previous sint8 input Physical range: [-128 , 127] Resolution: 1
K Constant uint16 multiplying factor Physical range: [0,0.99998]
Resolution: 1/216
Parameters (inout) None
Parameters (out) None
Return value sint16 Yn : Result of the calculation
Physical range: [-256 , 255.9921875]
Resolution: 1/2°7
Description This service computes the output of a first order high-Pass filter
Available via Efx.h

]
[SWS_Efx_00027] [Yn = Yn-1 - (K* Yn-1/2716) + (Xn - Xn-1)*2"7
The result is rounded towards zero. |

[SWS_Efx_00028] [Return value shall be saturated to boundary values in the event of
negative or positive overflow. |

[SWS_Efx_00029] [A saturation correction for converging output to zero is applied to
the result :

If ((Yn equals Yn-1) and (Yn-1 > 0))
decrement Yn by one
If ((Yn equals Yn-1) and (Yn-1 < 0))

increment Yn by one|

AUTSSAR

[SWS_Efx_00030] Definition of API function Efx_HpFilter_u16_s32 |

Service Name Efx_HpFilter_u16_s32
Syntax sint32 Efx_HpFilter_ul6_s32 (
sint32 Yn-1,
uintl6 Xn,
uintlé Xn-1,
uintlé K
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Yn-1 Previous sint32 output Physical range: [-65536 , 65535.99996]
Resolution: 1/21%
Xn Present uint16 input Physical range: [0,65535] Resolution: 1
Xn-1 Previous uint16 input Physical range: [0,65535] Resolution: 1
K Constant uint16 multiplying factor Physical range: [0,0.99998]
Resolution: 1/216
Parameters (inout) None
Parameters (out) None
Return value sint32 Yn : Result of the calculation
Physical range: [-65536 , 65535.99996]
Resolution: 1/2°15
Description This service computes the output of a first order high-Pass filter
Available via Efx.h

]
[SWS_Efx_00031] [Yn = Yn-1 - (K* Yn-1/2716) + (Xn - Xn-1)*2"15
The result is rounded towards zero. |

[SWS_Efx_00032] [Return value shall be saturated to boundary values in the event of
negative or positive overflow. |

[SWS_Efx_00033] [A saturation correction for converging output to zero is applied to
the result :

If ((Yn equals Yn-1) and (Yn-1 > 0))
decrement Yn by one
If ((Yn equals Yn-1) and (Yn-1 < 0))

increment Yn by one|

AUTSSAR

[SWS_Efx_00035] Definition of API function Efx_HpFilter_s16_s32 |

Service Name Efx_HpFilter_s16_s32
Syntax sint32 Efx_HpFilter_sl16_s32 (
sint32 Yn-1,
sintl6 Xn,
sintl6 Xn-1,
uintlé K
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Yn-1 Previous sint32 output Physical range: [-65536 , 65535.99996]
Resolution: 1/21%
Xn Present sint16 input Physical range: [-32768,32767] Resolution:
1
Xn-1 Previous sint16 input Physical range: [-32768,32767] Resolution:
1
K Constant uint16 multiplying factor Physical range: [0,0.99998]
Resolution: 1/216
Parameters (inout) None
Parameters (out) None
Return value sint32 Yn : Result of the calculation
Physical range: [-65536 , 65535.99996]
Resolution: 1/2"°31
Description This service computes the output of a first order high-Pass filter
Available via Efx.h

]
[SWS_Efx_00036] [Yn = Yn-1- (K* Yn-1/2"16) + (Xn- Xn-1)*2"15
The result is rounded towards zero. |

[SWS_Efx_00037] [Return value shall be saturated to boundary values in the event of
negative or positive overflow. |

[SWS_Efx_00038] [A saturation correction for converging output to zero is applied to
the result :

If ((Yn equals Yn-1) and (Yn-1> 0))
decrement Ynby one
If ((Yn equals Yn-1) and (Yn-1< 0))

increment Yn by one |

AUTSSAR

8.5.3 Controller routines

Controller routines includes P, PT1, DT1, PD, I, PI, PID governors used in control sys-
tem applications. For these controllers, the required parameters are derived using
Laplace-Z transformation. The following parameters are required to calculate the new
controller output yn and can be represented in the following equation.

Yn=al*¥Yn-1+b0*Xn+bl1*Xn-1+b2*Xn-2+..... +bn-1*X1 +bn*X0

In the equation, the following symbols are used

Symbols Description

Yn Actual output to calculate

Yn-1 Output value, one time step before

Xn Actual input, given from the input

Xn-1 Input, one time step before

Xn-2 Input, two time steps before

X1 Input, n-1 time steps before

X0 Input, n time steps before

at, b0, b1, b2, bn-1, bn Controller dependent proportional parameters are used to
describe the weight of the states.

8.5.3.1 Structure definitions for controller routines

System parameters are separated from time or time equivalent parameters.
The system parameters are grouped in controller dependent structures Efx_
Param<controller>_Type, whereas the time (equivalent) parameters are assigned di-
rectly. Systems states are grouped in a structure Efx_State<controller>_Type except
the actual input value Xn which is assigned directly.

The System parameters, used in the equations are given by:

K : Amplification factor, The amplification factor K shall have a resolution of 1/2°16.
T1 : Decay time constant.

T1rec is scaled by the factor 2°32.

T1rec is given by the equation: 2°32/ (10°6 * T1)

Tv : Lead time. Physical unit [sec] describes the Lead time.

Tv is expressed in us (micro seconds) and shall have a resolution of 1/(2°8 * 1076)
Tv range =[0.003906 us, 8388607 us] dT, with respect to [Tv_min, Tv_max]

Tn : Follow-up time. Physical unit [sec] describes the Follow-up time.

Tn is expressed in us and have a resolution of 1/1076.

Tn is given by a reciprocal value (Tnrec) to avoid a division in the implementation.

AUTSSAR

Tnrec is scaled by the factor 2°32.
Tnrec is given by the equation: 2°32/ (10°6 * Tn).

The time and time equivalent parameters in the equation / implementation are given
by:

dT : Time step = sampling interval. dT is expressed in us (micro seconds) and shall
have a resolution of 1/10°6.

Analogous to the abbreviations above, the following abbreviations are used in the im-
plementation:

K_<size>, K_C : Amplification factor

T1rec_<size> : Reciprocal delay time constant = 1/ T1.

The result shall be Rounded towards Zero.

Tv _<size>, Tv_C : Lead time

Tnrec _<size>, Tnrec_C : Reciprocal follow-up time = 1/ Tn.
The result shall be Rounded towards Zero.

dT_<size> : Time step = sampling interval [10°(-6) seconds per increment of 1 data
representation unit]

TeQ_<size> : Time equivalent, TeQ = exp (- dT/ T1).

Herein "<size>" denotes the size of the variable, e.g _s32 stand for a sint32 bit variable.
Note:

1. Tv & Tn cannot be negative

2. Dt should always be greater than zero.

Following C-structures are specially defined for the controller routines.

[SWS_Efx_00040] Definition of datatype Efx_StatePT1_Type [

Name Efx_StatePT1_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for PT1 controller routine
Available via Efx.h

AUTSSAR

[SWS_Efx_00824] Definition of datatype Efx_StateDT1Typ1_Type [

Name Efx_StateDT1Typ1_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
X2
Type sint32
Comment Input value, two time steps before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for DT1-Type1 controller routine
Available via Efx.h

]
[SWS_Efx_00825] Definition of datatype Efx_StateDT1Typ2_Type |

Name Efx_StateDT1Typ2_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for DT1-Type2 controller routine
Available via Efx.h

]
[SWS_Efx_00826] Definition of datatype Efx_StatePD_Type |

Name Efx_StatePD_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for PD controller routine
Available via Efx.h

AUTSSAR

[SWS_Efx_00827] Definition of datatype Efx_ParamPD_Type |

Name Efx_ParamPD_Type
Kind Structure
Elements K_C
Type sint32
Comment Amplification factor
Tv_C
Type sint32
Comment Lead time
Description System and Time equivalent parameter Structure for PD controller routine

Available via

Efx.h

]

[SWS_Efx_00828] Definition of datatype Efx_Statel_Type |

Name Efx_Statel_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for | controller routine

Available via

Efx.h

]

[SWS_Efx_00829] Definition of datatype Efx_StatePl_Type |

Name Efx_StatePI_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for Pl additive (Type? and Type 2) controller routine

Available via

Efx.h

AUTSSAR

[SWS_Efx_00830] Definition of datatype Efx_ParamPI_Type [

Name Efx_ParamPI_Type
Kind Structure
Elements KC
Type sint32
Comment Amplification factor
Tnrec_C
Type sint32
Comment Reciprocal follow up time (1/Tn)
Description System and Time equivalent parameter Structure for Pl additive (Type1 and Type 2) controller
routine
Available via Efx.h

]

[SWS_Efx_00831] Definition of datatype Efx_StatePID_Type |

Name Efx_StatePID_Type
Kind Structure
Elements X1
Type sint32
Comment Input value, one time step before
X2
Type sint32
Comment Input value, two time step before
Y1
Type sint32
Comment Output value, one time step before
Description System State Structure for PID additive (Type1 and Type 2) controller routine

Available via

Efx.h

]

[SWS_Efx_00832] Definition of datatype Efx_ParamPID_Type |

routine

Name Efx_ParamPID_Type
Kind Structure
Elements K_C
Type sint32
Comment Amplification factor
Tv_C
Type sint32
Comment Lead time
Tnrec_C
Type sint32
Comment Reciprocal follow up time (1/Tn)
Description System and Time equivalent parameter Structure for PID additive (Type? and Type 2) controller

\Y

AUTSSAR

| Available via Efx.h

]
[SWS_Efx_00833] Definition of datatype Efx_Limits_Type |

Name Efx_Limits_Type
Kind Structure
Elements Min_C
Type sint32
Comment Minimum limit value
Max_C
Type sint32
Comment Maximum limit value
Description Controller limit value structure
Available via Efx.h

8.5.3.2 Proportional Controller

Proportional component calculates Y(x) = Kp * X.

1. 'P’ Controller

[SWS_Efx_00525] Definition of API function Efx_PCalc |

Service Name Efx_PCalc

Syntax void Efx_PCalc (
sint32 X_s32,
sint32+ P_ps32,
sint32 K_s32

)

Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 input value
K_s32 Amplification factor (Quantized with 1/2'® per increment of 1 data
representation unit)
Parameters (inout) P_ps32 Pointer to the calculated state
Parameters (out) None
Return value None
Description This routine computes differential equation

Differential equation: Y = K* X

Available via Efx.h

]

[SWS_Efx_00526] [Calculated value *P_ps32 = (K_s32 * X_s32) >> 16|

AUTSSAR

[SWS_Efx_00527] [Amplification factor is quantized with 1/2°16 per increment of 1
data representation unit |

1. Set 'P’ State

This routine can be realised using inline function.

[SWS_Efx_00044] Definition of API function Efx_PSetState |

Service Name Efx_PSetState
Syntax void Efx_PSetState (

sint32+ P_s32,

sintl6 Y_sl6

)
Service ID [hex] 0x21
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Y_s16 Input value
Parameters (inout) P_s32 Pointer to the calculated state
Parameters (out) None
Return value void No return value
Description The routine sets the internal state variables of a P element.
Available via Efx.h
|

[SWS_Efx_00045] [Output value *P_s32 =Y_s16 << 16|
[SWS_Efx_00046] [The internal state of the P element is stored as (Y_s16 << 16) |

1. Get P’ output

This routine can be realised using inline function.

AUTSSAR

[SWS_Efx_00047] Definition of API function Efx_POut_<OutTypeMn> |

Service Name Efx_POut_<OutTypeMn>
Syntax <OutType> Efx_POut_<OutTypeMn> (
const sint32x P_ps32

)
Service ID [hex] 0x22 to 0x23
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) P_ps32 | Pointer to the calculated state
Parameters (inout) None
Parameters (out) None
Return value <OutType> | Return 'P’ controller output value
Description This routine returns 'P’ controllers output value.
Available via Efx.h

J
[SWS_Efx_00048] [Output value = *P_ps32 >> 16|

[SWS_Efx_00049] [Return value shall be saturated to boundary values of the return
data type in case of negative or positive overflow. |

[SWS_Efx_00050] [Here is the list of implemented functions. |

Service ID[hex] Syntax
0x22 sint16 Efx_POut_s16(const sint32 *)
0x23 sint8 Efx_POut_s8(const sint32 *)

8.5.3.3 Proportional controller with first order time constant

This routine calculates proportional element with first order time constant

1. 'PT1’ Controller

[SWS_Efx_00051] Definition of API function Efx_PT1Calc |

Service Name Efx_PT1Calc

Syntax void Efx_PT1Calc (
sint32 X_s32,
Efx_StatePTl_Typex State_cpst,
sint32 K_s32,
sint32 TeQ_s32

)

Service ID [hex] 0x2A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) X_s32 ‘ Input value for the PT1 element

V

AUTSSAR

JAN
K_s32 Amplification factor
TeQ_s32 Time equivalent
Parameters (inout) State_cpst Pointer to PT1 state structure
Parameters (out) None
Return value void | No return value
Description This routine computes PT1 controller output value using below difference equation Yn = exp(-d
T/T1) * Yn-1+ K(1 - exp(-dT/T1)) * Xn-1
Available via Efx.h
J

[SWS_Efx_00052] [This equation derives implementation :
Output_value = (TeQ_s32 * State_cpst->Y1) + K _s32 * (1 - TeQ_s32) * State_cpst->X1
where TeQ_s32 = exp (-dT/T1)]

[SWS_Efx_00053] [Efx_CalcTeQ_s32 shall be used for calculation of time equivalent
parameter TeQ_s32 only if T1 > 0.]

Note: If T1 = 0, a PT1 controller behaves like a P controller. In this case, usage of Efx_
CalcTeq_s32 should be avoided and Teq value should be passed as 0.

[SWS_Efx_00054] [If (Teq = 0) then PT1 controller follows Input value,
State_cpst->Y1 = k_s32 * State_cpst->X1 |

[SWS_Efx_00055] [calculated Output_value and current input value shall be stored to
State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value

State_cpst->X1 = X_s32]

1. 'PT1’ Controller - Type1

[SWS_Efx_00531] Definition of API function Efx_PT1Typ1Calc |

Efx_PT1Typ1Calc

Syntax void Efx_PT1TyplCalc (
sint32 X_s32,
Efx_StatePTl_Typex State_cpst,
sint32 K_s32,
sint32 TeQ_s32

)

Service Name

Service ID [hex] 0x38

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) X_s32 Input value for the PT1 element
K_s32 Amplification factor

\Y%

AUTSSAR

A
TeQ_s32 Time equivalent
Parameters (inout) State_cpst Pointer to PT1 state structure
Parameters (out) None
Return value None
Description This routine computes PT1 controller output value using below difference equation Yn = exp(-d
T/T1) * Yn-1+ K(1 - exp(-dT/T1)) * Xn
Available via Efx.h

]

[SWS_Efx_00532] [This equation derives implementation :
Output_value = (TeQ_s32 * State_cpst->Y1) + K_s32 * (1 - TeQ_s32) * State_cpst->X1
where TeQ_s32 = exp (-dT/T1)]

[SWS_Efx_00533] [Efx_CalcTeQ_s32 shall be used for calculation of time equivalent
parameter TeQ_s32 only if T1 > 0.]

Note: If T1 =0, a PT1 controller behaves like a P controller. In this case, usage of Efx_
CalcTeq_s32 should be avoided and Teq value should be passed as 0.

[SWS_Efx_00534] [If (Teq = 0) then PT1 controller follows Input value,
State_cpst->Y1 = k_s32 * State_cpst->X1 |

[SWS_Efx_00535] [calculated Output_value and current input value shall be stored to
State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value
State_cpst->X1 = X_s32]
1. 'PT1’ Set State Value

This routine can be realised using inline function.

AUTSSAR

[SWS_Efx_00056] Definition of API function Efx_PT1SetState |

Service Name

Efx_PT1SetState

Syntax void Efx_PTlSetState (
Efx_StatePTl_Typex State_cpst,
sint32 X1_s32,
sintl6 Y1_sl6
)
Service ID [hex] 0x2B
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X1_s32 Initial value for input state
Y1_s16 Initial value for output state
Parameters (inout) None
Parameters (out) State_cpst Pointer to PT1 state structure
Return value void No return value

Description

The routine initialises internal

state variables of a PT1 element.

Available via

Efx.h

]

[SWS_Efx_00057] [Initialisation of output state variable Y1.
State_cpst->Y1 =Y1_s16 << 16|

[SWS_Efx_00058] [The internal state of the PT1 element is stored as (Y1_s16 <<
16) |

[SWS_Efx_00059] [Initialisation of input state variable X1.
State_cpst->X1 = X1_s32]

1. Calculate time equivalent Value

This routine can be realised using inline function.

[SWS_Efx_00060] Definition of API function Efx_CalcTeQ_s32 |

Service Name

Efx_CalcTeQ_s32

Syntax sint32 Efx_CalcTeQ_s32 (
sint32 Tlrec_s32,
sint32 dT_s32
)
Service ID [hex] 0x2C
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) T1rec_s32 Reciprocal delay time
dT_s32 Sample Time [10-8seconds per increment of 1 data
representation unit]
Parameters (inout) None
Parameters (out) None
Return value sint32 | Time Equivalent TeQ

Y%

AUTSSAR

A

Description This routine calculates time equivalent factor

Available via Efx.h

]
[SWS_Efx_00061] [TeQ = exp(-T1rec_s32 * dT_s32) |

[SWS_Efx_00062] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data

representation unit |

1. Calculate an approximate time equivalent Value

This routine calculates approximate time equivalent and can be realised using inline

function.

[SWS_Efx_00450] Definition of API function Efx_CalcTeQApp_s32 |

Service Name

Efx_CalcTeQApp_s32

Syntax sint32 Efx_CalcTeQApp_s32 (
sint32 Tlrec_s32,
sint32 dT_s32
)
Service ID [hex] 0x29
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) T1rec_s32 Reciprocal delay time
dT_s32 Sample Time [108seconds per increment of 1 data
representation unit]
Parameters (inout) None
Parameters (out) None
Return value sint32 Time Equivalent TeQ (Approximate)

Description

This routine calculates time equivalent factor

Available via

Efx.h

]

[SWS_Efx_00451] [TeQApp =1 - (T1rec_s32 * dT_s32)

TeQApp is factorised by 2°16

This approximation is valid only when the product of the physical values of T1rec_s32

and dt_s32 is less than 1. i.e, (T1rec_s32 * dT_s32) < 1]

[SWS_Efx_00452] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data

representation unit |

1. Get ’PT1’ output

This routine can be realised using inline function.

AUTSSAR

[SWS_Efx_00063] Definition of API function Efx_PT10ut_<OutTypeMn> |

Service Name

Efx_PT10ut_<OutTypeMn>

Syntax <OutType> Efx_PT1Out_<OutTypeMn> (
const Efx_StatePTl_Typex State_cpst

)
Service ID [hex] 0x2D to 0x2E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) State_cpst | Pointer to constant state structure
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ Return 'PT1’ controller output value

Description

This routine returns 'PT1’ controllers output value.

Available via

Efx.h

]

[SWS_Efx_00064] [Output value = State_cpst->Y1_s32 >> 16|

[SWS_Efx_00065] [Output value shall be normalized by 16 bit right shift of internal
state variable. |

[SWS_Efx_00066] [Return value shall be limited by boundary values of the return data

type. |

[SWS_Efx_00067] [Here is the list of implemented functions. |

Service ID[hex]

Syntax

0x2D

sint16 Efx_PT10ut_s16(const Efx_StatePT1_Type *)

0x2E

sint8 Efx_PT10ut_s8(const Efx_StatePT1_Type *)

8.5.3.4 Differential component with time delay : DT1

This routine calculates differential element with first order time constant.

Routine Efx_CalcTeQ_s32, given in [SWS_Efx_00060], shall be used for Efx_DT1_

s32 function to calculate the time equivalent TeQ.

1. ’DT1’ Controller - Type1

AUTSSAR

[SWS_Efx_00070] Definition of API function Efx_DT1Typ1Calc |

Service Name Efx_DT1Typ1Calc
Syntax void Efx_DT1TyplCalc (
sint32 X_s32,
Efx_StateDT1Typl_Typex State_cpst,
sint32 K_s32,
sint32 TeQ_s32,
sint32 dT_s32
)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the DT1 controller
K_s32 Amplification factor
TeQ_s32 Time equivalent
dT_s32 Sample Time [10®seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to state structure
Parameters (out) None
Return value void | No return value
Description This routine computes DT1 controller output value using differential equation, Yn= exp(-dT/T1)
Yn-1+ K (1- exp(-dT/T1)) * ((Xn-1 - Xn-2) / dT)
Available via Efx.h

[SWS_Efx_00071] [This equation derives implementation :

Output_value = (TeQ * State_cpst->Y1) + K _s32 * (1 - TeQ) * ((State_cpst->X1 - State
cpst->X2) / dT)

where TeQ = exp(-dT/T1)

The result shall be Rounded towards Zero. |

[SWS_Efx_00072] [Efx_CalcTeQ_s32 shall be used for calculation of time equivalent
parameter TeQ_s32 only if T1 > 0. |

Note: If T1 =0, a DT1 controller behaves like a D controller. In this case, usage of Efx_
CalcTeq_s32 should be avoided and Teq value should be passed as 0.

[SWS_Efx_00073] [If (Teq = 0), then DT1 controller follows Input value,
Output_value = k_s32 * (State_cpst->X1 - State_cpst->X2) / dT. |
[SWS_Efx_00074] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00075] [Old input value State->cpst->X1 shall be stored to State_cpst-
>X2.

State_cpst->X2 = State_cpst->X1

AUTSSAR

Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00076] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data

representation unit |

1. 'DT1’ Controller - Type2

[SWS_Efx_00501] Definition of API function Efx_DT1Typ2Calc |

Service Name

Efx_DT1Typ2Calc

Syntax void Efx_DT1Typ2Calc (
sint32 X_s32,
Efx_StateDT1Typ2_Typex State_cpst,
sint32 K_s32,
sint32 TeQ_s32,
sint32 dT_s32
)
Service ID [hex] 0x2F
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the DT1 controller
K_s32 Amplification factor
TeQ_s32 Time equivalent
dT_s32 Sample Time [10-8seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to state structure
Parameters (out) None
Return value void | No return value

Description

This routine computes DT1 controller output value using differential equation, Yn= exp(-dT/T1)
Yn-1+ K (1- exp(-dT/T1)) * ((Xn - Xn-1) / dT)

Available via

Efx.h

]

[SWS_Efx_00502] [This equation derives implementation :
Output_value = (TeQ * State_cpst->Y1) + K_s32 * (1 - TeQ) * ((X_s32 - State_cpst->X1)

/ dT)

where TeQ = exp(-dT/T1)

The result shall be Rounded towards Zero. |

[SWS_Efx_00503] [Efx_CalcTeQ_s32 shall be used for calculation of time equivalent
parameter TeQ_s32. |

[SWS_Efx_00504] [If (Teq = 0), then DT1 controller follows Input value,
Output_value = k_s32 * (X_s32 - State_cpst->X1) / dT |

[SWS_Efx_00505] [Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value |

AUTSSAR

[SWS_Efx_00506] [Current input value X_s32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_s32]

[SWS_Efx_00507] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data

representation unit |

1. Set’DT1’ State Value - Type1

This routine can be realised using inline function.

[SWS_Efx_00077] Definition of API function Efx_DT1Typ1SetState |

Service Name

Efx_DT1Typ1SetState

Syntax void Efx_DT1TyplSetState (
Efx_StateDT1Typl_Typex State_cpst,
sint32 X1_s32,
sint32 X2_s32,
sintl6 Y1_sl6
)
Service ID [hex] 0x31
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X1_s32 Initial value for the input state X1
X2 s32 Initial value for the input state X2
Y1_s16 Initial value for the output state
Parameters (inout) None
Parameters (out) State_cpst Pointer to internal state structure
Return value void No return value

Description

The routine initialises internal state variables of a DT1 element.

Available via

Efx.h

]

[SWS_Efx_00078] [Initialisation of output state variable Y1.
State_cpst->Y1 =Y1_s16 << 16|

[SWS_Efx_00079] [The internal state of the DT1 element is stored as (Y1_s16 <<

16) |

[SWS_Efx_00080] [Initialisation of input state variables X1 and X2.

State cpst->X1 = X1_s32
State_cpst->X2 = X2_s32|

1. Set’DT1’ State Value - Type2

This routine can be realised using inline function.

AUTSSAR

[SWS_Efx_00510] Definition of API function Efx_DT1Typ2SetState |

Service Name Efx_DT1Typ2SetState
Syntax void Efx_DT1Typ2SetState (
Efx_StateDT1Typ2_Typex State_cpst,
sint32 X1_s32,
sintl6 Y1_sl6
)
Service ID [hex] 0x32
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X1_s32 Initial value for the input state
Y1_s16 Initial value for the output state
Parameters (inout) None
Parameters (out) State_cpst Pointer to internal state structure
Return value void No return value
Description The routine initialises internal state variables of a DT1 element.
Available via Efx.h

]

[SWS_Efx_00511] [Initialisation of output state variable Y1.
State_cpst->Y1 =Y1_s16 << 16|

[SWS_Efx_00512] [The internal state of the DT1 element is stored as (Y1_s16 <<
16) |

[SWS_Efx_00513] [Initialisation of input state variable X1.
State_cpst->X1 = X1_s32]
1. Get’DT1’ output - Type1

This routine can be realised using inline function.

[SWS_Efx_00081] Definition of API function Efx_DT1Typ10ut_<OutTypeMn> |

Service Name Efx_DT1Typ10ut_<OutTypeMn>
Syntax <OutType> Efx_DT1TyplOut_<OutTypeMn> (
const Efx_StateDT1Typl_Typex State_cpst

)

Service ID [hex] 0x33 to 0x34

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst | Pointer to state structure

Parameters (inout) None

Parameters (out) None

Return value <OutType> ‘ Return ’DT1’ controller output value

Description This routine returns 'DT1’ controller’s output value.

Available via Efx.h

AUTSSAR

[SWS_Efx_00082] [Output value = State_cpst->Y1 >> 16|

[SWS_Efx_00083] [Output value shall be normalized by 16 bit right shift of internal
state variable. |

[SWS_Efx_00084] [Return value shall be limited by boundary values of the return data
type. |

[SWS_Efx_00085] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0x33 sint16 Efx_DT1Typ10ut_s16(const Efx_StateDT1Typ1_Type
")

0x34 sint8 Efx_DT1Typ10ut_s8(const Efx_StateDT1Typ1_Type *)

1. Get’'DT1’ output - Type2

This routine can be realised using inline function.

[SWS_Efx_00515] Definition of API function Efx_DT1Typ20ut_<OutTypeMn> |

Service Name Efx_DT1Typ20ut_<OutTypeMn>
Syntax <OutType> Efx_DT1Typ20ut_<OutTypeMn> (
const Efx_StateDT1Typ2_Typex State_cpst
)
Service ID [hex] 0x35 to 0x36
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) State_cpst ‘ Pointer to state structure
Parameters (inout) None
Parameters (out) None
Return value <OutType> | Return 'DT1’ controller output value
Description This routine returns 'DT1’ controller’s output value.
Available via Efx.h
|

[SWS_Efx_00516] [Output value = State_cpst->Y1 >> 16|

[SWS_Efx_00517] [Output value shall be normalized by 16 bit right shift of internal
state variable. |

[SWS_Efx_00518] [Return value shall be limited by boundary values of the return data
type. |

[SWS_Efx_00519] [Here is the list of implemented functions. |

AUTSSAR

Service ID[hex]

Syntax

0x35

sint16 Efx_DT1Typ20ut_s16(const Efx_StateDT1Typ2_Type
")

0x36

sint8 Efx_DT1Typ20ut_s8(const Efx_StateDT1Typ2_Type *)

8.5.3.5 Proportional and Differential controller

This routine is a combination of proportional and differential controller.

1. PD Controller

[SWS_Efx_00090] Definition of API function Efx_PDCalc |

Service Name Efx_PDCalc
Syntax void Efx_PDCalc
sint32 X_s32,
Efx_StatePD_Type* State_cpst,
const Efx_ParamPD_Typex Param_cpst,
sint32 dT_s32
)
Service ID [hex] 0x3A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the PD controller
Param_cpst Pointer to parameter structure
dT_s32 Sample Time [10®seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to internal state structure
Parameters (out) None
Return value void No return value
Description This routine computes proportional plus derivative controller output value using differential
equation: Yn= K(1+Tv/dT) * Xn - K(Tv/dT) * Xn-1
Available via Efx.h

]

[SWS_Efx_00091] [This equation derives implementation :

Output_value = (Param_cpst->K_C * (1+ Param_cpst->Tv_C/dT_s32) * X _s32) -
(Param_cpst->K_C * (Param_cpst->Tv_C/dT_s32) * State_cpst->X1)

The result shall be Rounded towards Zero. |

AUTSSAR

[SWS_Efx_00092] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00093] [Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00094] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit|

1. PD Set State Value

This routine can be realised using inline function.

[SWS_Efx_00095] Definition of API function Efx_PDSetState |

Service Name Efx_PDSetState
Syntax void Efx_PDSetState (
Efx_StatePD_Typex State_cpst,
sint32 X1_s32,
sintl6 Y1_sl6
)
Service ID [hex] 0x3B
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X1_s32 Initial value for input state
Y1_s16 Initial value for output state
Parameters (inout) None
Parameters (out) State_cpst Pointer to internal state structure
Return value void No return value
Description The routine initialises internal state variables of a PD element.
Available via Efx.h

[SWS_Efx_00096] [Initialisation of output state variable Y1.
State_cpst->Y1 = Y1_s16 << 16]

[SWS_Efx_00097] [The internal state of the PD element is stored as (Y1_s16 << 16) |

[SWS_Efx_00098] |[Initialisation of input state variable X1.
State_cpst->X1 = X1_s32]

1. Set 'PD’ Parameters

This routine can be realised using inline function.

AUTSSAR

[SWS_Efx_00100] Definition of API function Efx_PDSetParam |

Service Name

Efx_PDSetParam

Syntax void Efx_PDSetParam (
Efx_ParamPD_Typex Param_cpst,
sint32 K_s32,
sint32 Tv_s32

)

Service ID [hex] 0x3C

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) K_s32 Amplification factor

Tv_s32 Lead time

Parameters (inout) None

Parameters (out) Param_cpst Pointer to internal parameter structure

Return value void No return value

Description

The routine sets the parameter structure of a PD element.

Available via

Efx.h

]

[SWS_Efx_00101] [Initialisation of amplification factor.
Param_cpst->K_C = K_s32|
[SWS_Efx_00102] [Initialisation of lead time state variable
Param_cpst->Tv_C = Tv_s32]

1. Get ’PD’ output

This routine can be realised using inline function.

[SWS_Efx_00103] Definition of API function Efx_PDOut_<OutTypeMn> |

Service Name

Efx_PDOut_<OutTypeMn>

Syntax <OutType> Efx_PDOut_<OutTypeMn> (
const Efx_StatePD_Typex State_cpcst
)
Service ID [hex] 0x3D to 0x3E
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

State_cpcst | Pointer to constant state structure

Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ Return ’PD’ controller output value

Description

This routine returns 'PD’ controllers output value.

Available via

Efx.h

]

[SWS_Efx_00104] [Output value = State_cpst->Y1 >> 16|

AUTSSAR

[SWS_Efx_00105] [Output value shall be normalized by 16 bit right shift of internal
state variable. |

[SWS_Efx_00106] [Return value shall be limited by boundary values of the return data
type. |

[SWS_Efx_00107] [Here is the list of implemented functions. |

Service ID[hex] Syntax
0x3D sint16 Efx_PDOut_s16(const Efx_StatePD_Type *)
0x3E sint8 Efx_PDOut_s8(const Efx_StatePD_Type *)

8.5.3.6 Integral component

This routine calculates Integration element .

1. ’I’ Controller

[SWS_Efx_00110] Definition of API function Efx_ICalc [

Service Name Efx_ICalc
Syntax void Efx_ICalc (
sint32 X_s32,
Efx_StateI_Typex State_cpst,
sint32 K_s32,
sint32 dT_s32
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the °I’ controller
K_s32 Amplification factor
dT_s32 Sample Time [106seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to state variable.
Parameters (out) None
Return value void No return value
Description This routine computes 'I’ controller output value using differential equation, Yn = Yn-1 + K*dT *
Xn-1
Available via Efx.h

[SWS_Efx_00111] [This equation derives implementation :
Output_value = State_cpst->Y1 + K_s32 * dT_s32 * State_cpst->X1 |

[SWS_Efx_00112] [Calculated Output_value and current input value shall be stored
to State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value

AUTSSAR

State_cpst->X1 = X_s32]

[SWS_Efx_00113] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit|

1. ’I Controller with limitation

[SWS_Efx_00455] Definition of API function Efx_ILimCalc |

Service Name Efx_ILimCalc
Syntax void Efx_ILimCalc (
sint32 X_s32,
Efx_StatelI_Typex State_cpst,
sint32 K_s32,
const Efx_Limits_Typex Limit_cpst,
sint32 dT_s32
)
Service ID [hex] 0x3F
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the °I’ controller
K_s32 Amplification factor
Limit_cpst Pointer to limit structure
dT_s32 Sample Time [10-8seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to state variable
Parameters (out) None
Return value void No return value
Description This routine computes DT1 controller output value using differential equation, Yn=Yn-1 + K*d
T* Xn-1
Available via Efx.h

[SWS_Efx_00456] [This equation derives implementation :
Output_value = State_cpst->Y1 + K_s32 * dT_s32 * State_cpst->X1 |

[SWS_Efx_00457] [Limit output value with minimum and maximum controller limits.
If (Output value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C |

[SWS_Efx_00458] [Calculated Output_value and current input value shall be stored
to State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value
State_cpst->X1 = X_s32]

AUTSSAR

[SWS_Efx_00459] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit|

1. Set limits for controllers

[SWS_Efx_00523] Definition of API function Efx_CtriSetLimits |

Service Name

Efx_CtrISetLimits

Syntax void Efx_CtrlSetLimits (
Efx_Limits_Typex Limit_cpst,
sint32 Min_s32,
sint32 Max_s32

)

Service ID [hex] 0x97

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Min_s32 Minimum limit

Max_s32 Maximum limit

Parameters (inout) Limit_cpst Pointer to limit structure

Parameters (out) None

Return value None

Description Update limit structure

Available via Efx.h

]

[SWS_Efx_00524] [Update limit structure

Limit_cpst->Min_C =
Limit_cpst->Max_C =

Min_s32
Max_s32|

1. Set I’ State Value

This routine can be realised using inline function.

[SWS_Efx_00114] Definition of API function Efx_ISetState |

Service Name

Efx_|SetState

Syntax void Efx_ISetState (
Efx_StateI_Typex State_cpst,
sint32 X1_s32,
sintl6 Y1_sl6
)
Service ID [hex] 0x41
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X1_s32 Initial value for input state
Y1_s16 Initial value for output state
Parameters (inout) None
Parameters (out) State_cpst Pointer to internal state structure
Return value void No return value

\Y

AUTSSAR

A

The routine initialises internal state variables of an | element.
Efx.h

Description

Available via

]

[SWS_Efx_00115] [Initialisation of output state variable Y1.
State_cpst->Y1 =Y1_s16 << 16|

[SWS_Efx_00116] [The internal state of the DT1 element is stored as (Y1_s16 <<
16)]

[SWS_Efx_00117] [Initialisation of input state variable X1.
State_cpst->X1 = X1_s32]
1. Get I’ output

This routine can be realised using inline function.

[SWS_Efx_00118] Definition of API function Efx_IOut_<OutTypeMn> |

Service Name

Efx_IOut_<OutTypeMn>

Syntax <OutType> Efx_IOut_<OutTypeMn> (
const Efx_StatelI_Typex State_cpst

)
Service ID [hex] 0x43 to 0x44
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) State_cpst | Pointer to constant state structure
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ Return I’ controller output value

Description

This routine returns ’I' controller’s output value.

Available via

Efx.h

]

[SWS_Efx_00119] [Output value = State_cpst->Y1 >> 16|

[SWS_Efx_00120] [Output value shall be normalized by 16 bit right shift of internal
state variable. |

[SWS_Efx_00121] [Return value shall be limited by boundary values of the return data
type. |

[SWS_Efx_00122] [Here is the list of implemented functions. |

Service ID[hex]
0x43
0x44

Syntax
sint16 Efx_IOut_s16(const Efx_Statel_Type*)
sint8 Efx_IOut_s8(const Efx_Statel_Type *)

AUTSSAR

8.5.3.7 Proportional and Integral controller

This routine is a combination of proportional and integral controller. Routine Efx_GCitrl
SetLimits shall be used to set limits for this controller in case of limited functionality.

1. ’PI’ Controller - Type1 (Implicit type)

[SWS_Efx_00125] Definition of API function Efx_PITyp1Calc |

Service Name Efx_PITyp1Calc
Syntax void Efx_PITyplCalc (
sint32 X_s32,
Efx_StatePI_Typex State_cpst,
const Efx_ParamPI_Typex Param_cpst,
sint32 dT_s32
)
Service ID [hex] 0x45
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PI’ controller
Param_cpst Pointer to parameter structure
dT_s32 Sample Time [106seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure.
Parameters (out) None
Return value void No return value
Description This routine computes Proportional plus integral controller (implicit type) output value using
differential equation: Yn=Yn-1+ K* Xn - K* (1 - dT/Tn) * Xn-1
Available via Efx.h

[SWS_Efx_00126] [This equation derives implementation :

Output_value = State_cpst->Y1 + (Param_cpst->K_C * X_s32) - (Param_cpst->K_C *
(1 - Param_cpst->Tnrec_C * dT_s32) * State_cpst->X1) |

[SWS_Efx_00127] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00128] [Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00129] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit|

1. ’PI’ Controller - Type1 with limitation (Implicit type)

AUTSSAR

[SWS_Efx_00465] Definition of API function Efx_PITypiLimCalc |

Service Name Efx_PITyp1LimCalc
Syntax void Efx_PITyplLimCalc (
sint32 X_s32,
Efx_StatePI_Typex State_cpst,
const Efx_ParamPI_Typex Param_cpst,
const Efx_Limits_Typex Limit_cpst,
sint32 dT_s32
)
Service ID [hex] 0x42
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PI’ controller
Param_cpst Pointer to parameter structure
Limit_cpst Pointer to limit structure
dT_s32 Sample Time [10-%seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure
Parameters (out) None
Return value void No return value
Description This routine computes Proportional plus integral controller (implicit type) output value using
differential equation: Yn = Yn-1+ K* Xn - K* (1 - dT/Tn) * Xn-1
Available via Efx.h

[SWS_Efx_00466] | This equation derives implementation :

Output_value = State_cpst->Y1 + (Param_cpst->K_C * X s32) - (Param_cpst->K_C *
(1 - Param_cpst->Tnrec_C * dT_s32) * State_cpst->X1) |

[SWS_Efx_00467] [Limit output value with minimum and maximum controller limits.
If (Output value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C |

[SWS_Efx_00468] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00469] [Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00470] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit |

1. ’PI’ Controller - Type2 (Explicit type)

AUTSSAR

[SWS_Efx_00130] Definition of API function Efx_PITyp2Calc |

Service Name Efx_PITyp2Calc
Syntax void Efx_PITyp2Calc (
sint32 X_s32,
Efx_StatePI_Typex State_cpst,
const Efx_ParamPI_Typex Param_cpst,
sint32 dT_s32
)
Service ID [hex] 0x46
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PI’ controller
Param_cpst Pointer to parameter structure
dT_s32 Sample Time [10-8seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure.
Parameters (out) None
Return value void | No return value
Description This routine computes Proportional plus integral controller (explicit type) output value using
differential equation: Yn=Yn-1 + K* (1 + dT/Tn) * Xn - K* Xn-1
Available via Efx.h

]
[SWS_Efx_00131] [This equation derives implementation :

Output_value = State_cpst->Y1 + (Param_cpst->K_C * (1 + Param_cpst->Tnrec_C * d
T_s32) * X_s32) - (Param_cpst->K_C * State_cpst->X1) |

[SWS_Efx_00132] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00133] [Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00134] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit |

1. 'PI’ Controller - Type2 with limitation (Explicit type)

AUTSSAR

[SWS_Efx_00475] Definition of API function Efx_PITyp2LimCalc |

Service Name Efx_PITyp2LimCalc
Syntax void Efx_PITyp2LimCalc (
sint32 X_s32,
Efx_StatePI_Typex State_cpst,
const Efx_ParamPI_Typex Param_cpst,
const Efx_Limits_Typex Limit_cpst,
sint32 dT_s32
)
Service ID [hex] 0x39
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PI’ controller
Param_cpst Pointer to parameter structure
Limit_cpst Pointer to limit structure
dT_s32 Sample Time [10-%seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure
Parameters (out) None
Return value void | No return value
Description This routine computes Proportional plus integral controller (explicit type) output value using
differential equation: Yn = Yn-1 + K* (1 + dT/Tn) * Xn - K* Xn-1
Available via Efx.h

[SWS_Efx_00476] [This equation derives implementation :

Output_value = State_cpst->Y1 + (Param_cpst->K_C * (1 + Param_cpst->Tnrec_C * d
T_s32) * X_s32) - (Param_cpst->K_C * State_cpst->X1) |

[SWS_Efx_00477] [Limit output value with minimum and maximum controller limits.
If (Output value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C |

[SWS_Efx_00478] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00479] [Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00480] [Resolution of dT_s32 is 107(-6) seconds per increment of 1 data
representation unit |

1. Set 'PI’ State Value

This routine can be realised using inline function.

AUTSSAR

[SWS_Efx_00135] Definition of API function Efx_PISetState |

Service Name Efx_PlSetState
Syntax void Efx_PISetState (
Efx_StatePI_Typex State_cpst,
sint32 X1_s32,
sintl6 Y1_sl6
)
Service ID [hex] 0x47
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X1_s32 Initial value for input state
Y1_s16 Initial value for output state
Parameters (inout) None
Parameters (out) State_cpst Pointer to internal state structure
Return value void No return value
Description The routine initialises internal state variables of a Pl element.
Available via Efx.h

]

[SWS_Efx_00136] [Initialisation of output state variable Y1.
State_cpst->Y1 =Y1_s16 << 16|

[SWS_Efx_00137] [The internal state of the PD element is stored as (Y1_s16 << 16) |

[SWS_Efx_00138] [Initialisation of input state variable X1.
State_cpst->X1 = X1_s32]
1. Set 'PI’ Parameters

This routine can be realised using inline function.

[SWS_Efx_00139] Definition of API function Efx_PlISetParam [

Service Name Efx_PISetParam
Syntax void Efx_PISetParam (
Efx_ParamPI_Typex Param_cpst,
sint32 K_s32,
sint32 Tnrec
)
Service ID [hex] 0x48
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) K_s32 Ampilification factor
Tnrec Reciprocal follow-up time
Parameters (inout) None
Parameters (out) Param_cpst Pointer to internal parameter structure
Return value void No return value
Description The routine sets the parameter structure of a Pl element.

Y

AUTSSAR

| Available via Efx.h

J
[SWS_Efx_00140] [Initialisation of amplification factor.
Param_cpst->K_C = K_s32]

[SWS_Efx_00141] [Initialisation of reciprocal follow up time state variable

Param_cpst->Tnrec_C = Tnrec_s32]|

1. Get 'PI' output

This routine can be realised using inline function.

[SWS_Efx_00142] Definition of API function Efx_PlOut_<OutTypeMn> |

Efx_PIOut_<OutTypeMn>

Syntax <OutType> Efx_PIOut_<OutTypeMn> (
const Efx_StatePI_Typex State_cpst
)

Service Name

Service ID [hex] 0x49 to 0x4A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst ‘ Pointer to constant state structure
Parameters (inout) None

Parameters (out) None

Return value <OutType> | Return 'PI’ controller output value

Description

This routine returns 'PI’ controllers output value.

Available via

Efx.h

]

[SWS_Efx_00143] [Output value = State_cpst->Y1 >> 16|

[SWS_Efx_00144] [Output value shall be normalized by 16 bit right shift of internal
state variable. |

[SWS_Efx_00145] [Return value shall be limited by boundary values of the return data
type. |

[SWS_Efx_00146] [Here is the list of implemented functions. |

Service ID[hex] Syntax
0x49 sint16 Efx_PIlOut_s16(const Efx_StatePI_Type *)
0x4A sint8 Efx_PIlOut_s8(const Efx_StatePI_Type *)

AUTSSAR

8.5.3.8 Proportional, Integral and Differential controller

This routine is a combination of Proportional, integral and differential controller. Rou-
tine Efx_CtrISetLimits shall be used to set limits for this controller in case of limited

functionality.

1. 'PID’ Controller - Type1 (Implicit type)

[SWS_Efx_00150] Definition of API function Efx_PIDTyp1Calc |

Service Name Efx_PIDTyp1Calc
Syntax void Efx_PIDTyplCalc (
sint32 X_s32,
Efx_StatePID_Typex State_cpst,
const Efx_ParamPID_Typex* Param_cpst,
sint32 dT_s32
)
Service ID [hex] 0x4B
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PID’ controller
Param_cpst Parameter structure
dT_s32 Sample Time [10-8seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure.
Parameters (out) None
Return value void No return value
Description This routine computes Proportional plus integral plus derivative controller (implicit type) output
value using differential equation: Yn=Yn-1+ K* (1 + Tv/dT) * Xn- K *(1 - dT/Tn + 2Tv/dT) * Xn-1
+ K* (Tv/dT) * Xn-2
Available via Efx.h

[SWS_Efx_00151] [This equation derives implementation :
calc1 = Param_cpst->K_C * (1 +t_val) * X_s32

calc2 = Param_cpst->K_C * (1 - dT_s32 * Param_cpst->Tnrec_C + 2 * t_val) * State
cpst->X1

calc3 = Param_cpst->K_C *t_val * State_cpst->X2
Output_value = State_cpst->Y1 + calc1 - calc2 + calc3
Where t_val = Param_cpst->Tv_C /dT_s32

The result shall be Rounded towards Zero. |
[SWS_Efx_00152] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00153] [Old input value State_cpst->X1 shall be stored to State_cpst->X2
State_cpst->X2 = State_cpst->X1

AUTSSAR

Current input value X_s32 shall be stored to State_cpst->X1.
State_cpst->X1 = X_s32]

[SWS_Efx_00154] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit |

1. ’PID’ Controller - Type1 with limitation (Implicit type)

[SWS_Efx_00485] Definition of API function Efx_PIDTyp1iLimCalc |
Service Name Efx_PIDTyp1LimCalc

Syntax void Efx_PIDTyplLimCalc (
sint32 X_s32,
Efx_StatePID_Typex State_cpst,
const Efx_ParamPID_Typex* Param_cpst,
const Efx_Limits_Typex Limit_cpst,
sint32 dT_s32

)

Service ID [hex] 0x37
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PID’ controller
Param_cpst Pointer to parameter structure
Limit_cpst Pointer to limit structure
dT_s32 Sample Time [10-8seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure.
Parameters (out) None
Return value void No return value
Description This routine computes Proportional plus integral plus derivative controller (implicit type) output

value using differential equation: Yn=Yn-1+ K* (1 + Tv/dT) * Xn- K *(1 - dT/Tn + 2Tv/dT) * Xn-1
+ K™ (Tv/dT) * Xn-2

Available via Efx.h

]

[SWS_Efx_00486] [This equation derives implementation :
calc1 = Param_cpst->K_C * (1 +t_val) * X _s32

calc2 = Param_cpst->K_C * (1 - dT_s32 * Param_cpst->Tnrec_C + 2 * t_val) * State_
cpst->X1

calc3 = Param_cpst->K_C *t_val * State_cpst->X2
Output_value = State_cpst->Y1 + calc1 - calc2 + calc3
Where t_val = Param_cpst->Tv_C / dT_s32]

[SWS_Efx_00487] [Limit output value with minimum and maximum controller limits.
If (Output value < Limit_cpst->Min_C) Then,
Output_value = Limit_cpst->Min_C

AUTSSAR

If (Output value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C |

[SWS_Efx_00488] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00489] [Old input value State_cpst->X1 shall be stored to State_cpst->X2
State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State cpst->X1.

State_cpst->X1 = X_s32]

[SWS_Efx_00490] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit|

1. 'PID’ Controller - Type2

[SWS_Efx_00155] Definition of API function Efx_PIDTyp2Calc |

Service Name

Efx_PIDTyp2Calc

Syntax void Efx_PIDTyp2Calc (
sint32 X_s32,
Efx_StatePID_Typex State_cpst,
const Efx_ParamPID_Typex* Param_cpst,
sint32 dT_s32
)
Service ID [hex] 0x4C
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PID’ controller
Param_cpst Parameter structure
dT_s32 Sample Time [10-%seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure.
Parameters (out) None
Return value void No return value

Description

This routine computes Proportional plus integral plus derivative controller (explicit type) output
value using differential equation: Yn = Yn-1 + K* (1 + dT/Tn+ Tv/dT) * Xn- K*(1 + 2Tv/dT) *
Xn-1+ K * (Tv/dT) * Xn-2

Available via

Efx.h

]

[SWS_Efx_00156] [This equation derives implementation :

calc1 = Param_cpst->K_C * (1 + dT_s32 * Param_cpst->Tnrec_C +t_val) * X s32

calc2 = Param_cpst->K_C * (1 + 2 *t_val) * State_cpst->X1

calc3 = Param_cpst->K_C *t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3

AUTSSAR

Where t_val = Param_cpst->Tv_C /dT_s32

The result shall be Rounded towards Zero. |

[SWS_Efx_00157] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00158] [Old input value State_cpst->X1 shall be stored to State_cpst->X2
State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State cpst->X1.

State_cpst->X1 = X_s32]

[SWS_Efx_00159] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit|

1. 'PID’ Controller - Type2 with limitation

[SWS_Efx_00495] Definition of API function Efx_PIDTyp2LimCalc |

Service Name Efx_PIDTyp2LimCalc

Syntax void Efx_PIDTyp2LimCalc (
sint32 X_s32,
Efx_StatePID_Typex State_cpst,
const Efx_ParamPID_Typex* Param_cpst,
const Efx_Limits_Typex Limit_cpst,
sint32 dT_s32

)

Service ID [hex] 0x4F
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Input value for the 'PID’ controller
Param_cpst Pointer to parameter structure
Limit_cpst Pointer to limit structure
dT_s32 Sample Time [108seconds per increment of 1 data
representation unit]
Parameters (inout) State_cpst Pointer to the internal state structure
Parameters (out) None
Return value void No return value
Description This routine computes Proportional plus integral plus derivative controller (explicit type) output

value using differential equation: Yn = Yn-1 + K* (1 + dT/Tn+ Tv/dT) * Xn- K*(1 + 2Tv/dT) *
Xn-1+ K* (Tv/dT) * Xn-2

Available via Efx.h

]

[SWS_Efx_00496] [This equation derives implementation :
calc1 = Param_cpst->K_C * (1 + dT_s32 * Param_cpst->Tnrec_C +t_val) * X _s32
calc2 = Param_cpst->K_C * (1 + 2 *t_val) * State_cpst->X1

calc3 = Param_cpst->K_C *t_val * State_cpst->X2

AUTSSAR

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3
Where t_val = Param_cpst->Tv_C / dT_s32]

[SWS_Efx_00497] [Limit output value with minimum and maximum controller limits.
If (Output value < Limit_cpst->Min_C) Then,

Output_value = Limit_cpst->Min_C

If (Output value > Limit_cpst->Max_C) Then,

Output_value = Limit_cpst->Max_C |

[SWS_Efx_00498] [Calculated Output_value shall be stored to State_cpst->Y1.
State_cpst->Y1 = Output_value |

[SWS_Efx_00499] [Old input value State_cpst->X1 shall be stored to State_cpst->X2
State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State_cpst->X1.

State_cpst->X1 = X_s32]

[SWS_Efx_00500] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit |

1. Set 'PID’ State Value

This routine can be realised using inline function.

[SWS_Efx_00160] Definition of API function Efx_PIDSetState |

Efx_PIDSetState

SynMX void Efx_PIDSetState (
Efx_StatePID_Typex* State_cpst,
sint32 X1_s32,
sint32 X2_s32,
sintl6 Y1_slo

)

Service Name

Service ID [hex] 0x4D

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) X1_s32 Initial value for input state
X2_s32 Initial value for input state
Y1_s16 Initial value for output state

Parameters (inout) None

Parameters (out) State_cpst Pointer to internal state structure

Return value void No return value

Description

The routine initialises internal state variables of a PID element.

\Y

AUTSSAR

| Available via Efx.h

]
[SWS_Efx_00161] [Initialisation of output state variable Y1.
State_cpst->Y1 =Y1_s16 << 16|
[SWS_Efx_00162] [The internal state of the PD element is stored as (Y1_s16 << 16)|
[SWS_Efx_00163] [Initialisation of input state variable X1.
State_cpst->X1 = X1_s32
Initialisation of input state variable X2.
State_cpst->X2 = X2_s32|
1. Set’'PID’ Parameters

This routine can be realised using inline function.

[SWS_Efx_00164] Definition of API function Efx_PIDSetParam |

Service Name Efx_PIDSetParam
Syntax void Efx_PIDSetParam (
Efx_ParamPID_Typex Param_cpst,
sint32 K_s32,
sint32 Tv_s32,
sint32 Tnrec_s32
)
Service ID [hex] 0x4E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) K_s32 Amplification factor
Tv_s32 Lead Time
Tnrec_s32 Reciprocal follow-up timer
Parameters (inout) None
Parameters (out) Param_cpst Pointer to internal parameter structure
Return value void No return value
Description The routine sets the parameter structure of a PID element.
Available via Efx.h

[SWS_Efx_00165] [Initialisation of amplification factor.
Param_cpst->K_C = K_s32|

[SWS_Efx_00166] [Initialisation of lead time state variable
Param_cpst->Tv_C = Tv_s32]

[SWS_Efx_00167] [Initialisation of reciprocal follow up time state variable

AUTSSAR

Param_cpst->Tnrec_C = Tnrec_s32]|

1. Get 'PID’ output

This routine can be realised using inline function.

[SWS_Efx_00168] Definition of API function Efx_PIDOut_<OutTypeMn> |

Service Name

Efx_PIDOut_<OutTypeMn>

Syntax <OutType> Efx_PIDOut_<OutTypeMn> (
const Efx_StatePID_Type* State_cpst

)
Service ID [hex] 0x50 to 0x51
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) State_cpst | Pointer to constant state structure
Parameters (inout) None
Parameters (out) None
Return value <OutType> | Return 'PID’ controller output value

Description

This routine returns 'PID’ controllers output value.

Available via

Efx.h

]

[SWS_Efx_00169] [Output value = State_cpst->Y1 >> 16|

[SWS_Efx_00170] [Output value shall be normalized by 16 bit right shift of internal

state variable. |

[SWS_Efx_00171] [Return value shall be limited by boundary values of the return data

type. |

[SWS_Efx_00172] [Here is the list of implemented functions. |

Service ID[hex]

Syntax

0x50

sint16 Efx_PIDOut_s16(const Efx_StatePID_Type *)

0x51

sint8 Efx_PIDOut_s8(const Efx_StatePID_Type *)

8.5.4 Square root

[SWS_Efx_00175] Definition of API function Efx_Sqrt_u32_u32 |

Service Name Efx_Sqgrt_u32_u32
Syntax uint32 Efx_Sqrt_u32_u32 (
uint32 x_value
)
Service ID [hex] 0x52

AUTSSAR

A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) x_value Argsuzment Physical range: [0, 0.999999999767169] Resolution:
1/2

Parameters (inout) None

Parameters (out) None

Return value uint32 Return value of the function Physical range: [0,
0.999999999767169] Resolution: 1/232

Description

This service computes the square root of a value

Available via

Efx.h

]

[SWS_Efx_00176] [Result = square_root (x_value) |

[SWS_Efx_00177] [The result is rounded off. |

[SWS_Efx_00178] Definition of API function Efx_Sqrt_u16_u16 |

Service Name

Efx_Sqrt_u16_u16

Syntax uintl6 Efx_Sqrt_ul6_ulé6 (
uintl6 x_value

)
Service ID [hex] 0x53
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [0, 0.9999847] Resolution: 1/21®
Parameters (inout) None
Parameters (out) None
Return value uint16 Return value of the function Physical range: [0, 0.9999847]

Resolution: 1/216

Description

This service computes the square root of a value

Available via

Efx.h

]

[SWS_Efx_00179] [Result = square_root (x_value) |

[SWS_Efx_00180] [The result is rounded off. |

[SWS_Efx_00181] Definition of API function Efx_Sqrt_u8_u8 |

Service Name

Efx_Sqrt_u8_u8

Syntax uint8 Efx_Sqrt_u8_u8 (
uint8 x_value
)
Service ID [hex] 0x54
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value ‘ Argument Physical range: [0, 0.996] Resolution: 1/28

\Y

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value uint8 Return value of the function Physical range: [0, 0.996]

Resolution: 1/28

Description

This service computes the square root of a value

Available via

Efx.h

]

[SWS_Efx_00182] [Result = square_root (x_value)|

[SWS_Efx_00183] [The result is rounded off. |

AUTSSAR

8.5.5 Exponential

[SWS_Efx_00185] Definition of API function Efx_Exp_s32_s32 |

Service Name

Efx_Exp_s32_s32

Syntax sint32 Efx_Exp_s32_s532 (
sint32 Valuel

)
Service ID [hex] 0x55
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Valuet | Input value
Parameters (inout) None
Parameters (out) None
Return value sint32 | Return value of the function

Description

The routine returns the exponential value of the negated input value.

Available via

Efx.h

]

[SWS_Efx_00186] [Output = e”(-x)

where x = Valuet |

[SWS_Efx_00187] [Output is quantized by 2716

Output Range = ([0.00004539....22026.4657948] * 2°16) = [2....1443526462]
Input Range = ([-10..

8.5.6 Average

[SWS_Efx_00190] Definition of API function Efx_Average_s32_s32 |

..10] * 2"16) = [0xFFF60000....0x000A0000] |

Service Name

Efx_Average_s32_s32

Syntax sint32 Efx_Average_s32_s32 (
sint32 wvaluel,
sint32 wvalue2
)
Service ID [hex] 0x5A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) valuet Input value1
value2 Input value2
Parameters (inout) None
Parameters (out) None
Return value sint32 Return value of the function
Description The routine returns average value.
Available via Efx.h

AUTSSAR

[SWS_Efx_00191] [Output = (Valuel + Value2) /2]
[SWS_Efx_00192] [The result is rounded towards zero. |

8.5.7 Array Average

[SWS_Efx_00193] Definition of API function Efx_Array Average_ <InType
Mn>_<OutTypeMn> |

Service Name Efx_Array_Average_<InTypeMn>_<OutTypeMn>
Syntax <OutType> Efx_Array_Average_<InTypeMn>_<OutTypeMn> (
const <InType>x Array,
uintl6 Count
)
Service ID [hex] 0x60 and 0x61
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Array Pointer to an array
Count Number of array elements
Parameters (inout) None
Parameters (out) None
Return value <OutType> Return value of the function
Description The routine returns average value of an array.
Available via Efx.h

]
[SWS_Efx_00194] [Output = (Array[0] + Array[1] + ... + Array[N-1]) / Count

[SWS_Efx_00195] [The result is rounded towards zero. |

[SWS_Efx_00196] [Here is the list of implemented functions. |

Service ID[hex] Syntax
0x60 sint32 Efx_Array_Average_s32_s32(sint32*, uint16)
0x61 sint16 Efx_Array_Average_s16_s16(sint16*, uint16)

AUTSSAR

8.5.8 Moving Average

[SWS_Efx_00197] Definition of API function Efx_MovingAverage_ <InType
Mn>_<OutTypeMn> |

Service Name Efx_MovingAverage_<InTypeMn>_<OutTypeMn>
Syntax <OutType> Efx_MovingAverage_<InTypeMn>_<OutTypeMn> (
Efx_MovingAvrg<InTypeMn>_Typex* state,
<InType> value
)
Service ID [hex] 0x6A to 0x6B
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) value Input value
Parameters (inout) state Pointer to sliding average structure
Parameters (out) None
Return value <OutType> Return value of the function
Description The routine returns sliding average value of n - 1 last subsequent values of an array plus one
new value.
Available via Efx.h
]

[SWS_Efx_00198] [state ->p_beg pointer holds start address of an array
state ->p_end pointer holds end address of an array

state ->p_act pointer holds address of an oldest entry of an array |

[SWS_Efx_00199] [state ->sum shall store total sum including 'value’ & excluding
oldest entry

state ->sum = state ->sum - *(state ->p_act) + value|

[SWS_Efx_00200] [In every routine call state ->p_act shall be incremented with wrap
around.

This increment ensures that oldest entry gets replaced with new entry. |
[SWS_Efx_00201] [Output_value = state->sum / state->n |
[SWS_Efx_00202] [If state ->n = 0 the result shall be zero by definition. |
[SWS_Efx_00203] [The result is rounded towards zero. |

Structure definition for function argument

AUTSSAR

[SWS_Efx_00204] Definition of datatype Efx_MovingAvrgS16_Type |

Name Efx_MovingAvrgS16_Type
Kind Structure
Elements Sl

Type sint32

Comment Sum of array elements

n

Type sint16

Comment Size of an array (only positive values)

*p_beg

Type sint16

Comment Pointer to the first array element

*p_end

Type sint16

Comment Pointer to the last array element

*p_act

Type sint16

Comment Pointer to the oldest entry array element
Description Structure definition for sliding average routine for sint16 input value
Available via Efx.h

]
[SWS_Efx_00836] Definition of datatype Efx_MovingAvrgS32_Type |

Name Efx_MovingAvrgS32_Type
Kind Structure
Elements Sl

Type sint64

Comment Sum of array elements

n

Type sint32

Comment Size of an array (only positive values)

*p_beg

Type sint32

Comment Pointer to the first array element

*p_end

Type sint32

Comment Pointer to the last array element

*p_act

Type sint32

Comment Pointer to the oldest entry array element
Description Structure definition for sliding average routine for sint32 input value
Available via Efx.h

J
[SWS_Efx_00205] [Here is the list of implemented functions. |

AUTSSAR

Service ID[hex]

Syntax

0x6A sint16 Efx_MovingAverage_s16_s16(Efx_MovingAvrgS16_
Type*, sint16)
0x6B sint32 Efx_MovingAverage_s32_s32(Efx_MovingAvrgS32_

Type*, sint32)

8.5.9 Hypotenuse

The formula used for calculation in the below hypotenuse requirements is,

sgrt(x_value * x_value/2 + y_value * y_value/2).

This is to achieve the specified resolution in the result.

Warning: Hypotenuse functions shall not be used directly for distance computation
because the result has not the same resolution than the inputs.

[SWS_Efx_00210] Definition of API function Efx_Hypot u32u32_u32 |

Service Name

Efx_Hypot_u32u32_u32

Syntax uint32 Efx_Hypot_u32u32_u32 (
uint32 x_value,
uint32 y_value
)
Service ID [hex] 0x70
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument Physical range: [0, 0.999999999767169]
Resolution: 1/232
y_value Second argument Physical range: [0, 0.999999999767169]
Resolution: 1/232
Parameters (inout) None
Parameters (out) None
Return value uint32 Return value of the function Physical range: [0, sqrt(2)]

Resolution: sqrt(2)/232

Description

This service computes the length of a vector

Available via

Efx.h

]

[SWS_Efx_00211] [Result = sqrt(x_value * x_value/2 + y_value * y_value/2) |

[SWS_Efx_00212] [The result is rounded off. |

AUTSSAR

[SWS_Efx_00213] Definition of API function Efx_Hypot_u16u16_u16 |

Service Name Efx_Hypot_u16u16_u16
Syntax uintlé Efx_Hypot_uléulé6_ulé6 (
uintl6 x_value,
uintlé y_value
)
Service ID [hex] 0x71
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument Physical range: [0, 0.9999847] Resolution: 1/216
y_value S1e6cond argument Physical range: [0, 0.9999847] Resolution: 1/
2
Parameters (inout) None
Parameters (out) None
Return value uint16 Return value of the function Physical range: [0, sqrt(2)]
Resolution: sqrt(2)/216
Description This service computes the length of a vector
Available via Efx.h

]

[SWS_Efx_00214] [Result = sqrt(x_value * x_value/2 + y_value * y_value/2) |

[SWS_Efx_00215] [The result is rounded off. |

[SWS_Efx_00216] Definition of API function Efx_Hypot_u8u8 u8 |

Service Name Efx_Hypot_u8u8_u8
Syntax uint8 Efx_Hypot_u8u8_u8 (
uint8 x_value,
uint8 y_value
)
Service ID [hex] 0x72
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument Physical range: [0, 0.996] Resolution: 1/28
y_value Second argument Physical range: [0, 0.996] Resolution: 1/28
Parameters (inout) None
Parameters (out) None
Return value uint8 Return value of the function Physical range: [0, sqrt(2)]
Resolution: sqrt(2)/28
Description This service computes the length of a vector
Available via Efx.h

]

[SWS_Efx_00217] [Result = sqrt(x_value * x_value/2 + y_value *y_value/2) |

[SWS_Efx_00218] [The result is rounded off. |

AUTSSAR

8.5.10 Trigonometric functions

8.5.10.1 Sine function

[SWS_Efx_00220] Definition of API function Efx_Sin_s32_s32 |

Service Name Efx_Sin_s32_s32
Syntax sint32 Efx_Sin_s32_s32 (
sint32 x_value
)
Service ID [hex] 0x75
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-PI, PI[Resolution: 2*P1/(2°32)
Parameters (inout) None
Parameters (out) None
Return value sint32 Return value of the function
Physical range: [-1, 1]
Resolution: 1/(2°31)
Description This service computes the sine of an angle.
Available via Efx.h

]

[SWS_Efx_00222] [The result is rounded off. |

[SWS_Efx_00223] Definition of API function Efx_Sin_s16_s16 |

Service Name Efx_Sin_s16_s16
Syntax sintl6 Efx_Sin_s16_s16 (
sintl6 x_value
)
Service ID [hex] 0x76
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-PI, PI[Resolution: 2*PI/(2°16)
Parameters (inout) None
Parameters (out) None
Return value sint16 Return value of the function
Physical range: [-1, 1]
Resolution: 1/(2715)
Description This service computes the sine of an angle.
Available via Efx.h

J
[SWS_Efx_00225] [The result is rounde

d off.|

AUTSSAR

[SWS_Efx_00226] Definition of API function Efx_Sin_s8_s8 |

Service Name

Efx_Sin_s8 s8

Syntax sint8 Efx_Sin_s8_s8 (
sint8 x_value

)
Service ID [hex] 0x77
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-Pl, PI[Resolution: 2*PI/(2"8)
Parameters (inout) None
Parameters (out) None
Return value sint8 Return value of the function

Physical range: [-1, 1]
Resolution: 1/(2°7)

Description

This service computes the sine of an angle.

Available via

Efx.h

]

[SWS_Efx_00228] [The result is rounded off. |

8.5.10.2 Cosine function

[SWS_Efx_00229] Definition of API function Efx_Cos_s32_s32 |

Service Name

Efx_Cos_s32 s32

Syntax sint32 Efx_Cos_s32_s32 (
sint32 x_value

)
Service ID [hex] 0x7A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-Pl, PI[Resolution: 2*P1/(2°32)
Parameters (inout) None
Parameters (out) None
Return value sint32 Return value of the function

Physical range: [-1, 1]
Resolution: 1/(2°31)

Description

This service computes the cosine of an angle.

Available via

Efx.h

]

[SWS_Efx_00231] [The result is rounded off. |

AUTSSAR

[SWS_Efx_00232] Definition of API function Efx_Cos_s16_s16 |

Service Name

Efx_Cos_s16_s16

Syntax sintl6 Efx_Cos_sl16_s16 (
sintl6 x_value

)
Service ID [hex] 0x7B
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-Pl, PI[Resolution: 2*PI1/(2°16)
Parameters (inout) None
Parameters (out) None
Return value sint16 Return value of the function

Physical range: [-1, 1]
Resolution: 1/(2715)

Description

This service computes the cosine of an angle.

Available via

Efx.h

]

[SWS_Efx_00234] [The result is rounded off. |

[SWS_Efx_00235] Definition of API function Efx_Cos_s8 s8 |

Service Name

Efx_Cos_s8 s8

Syntax sint8 Efx_Cos_s8_s8 (
sint8 x_value

)
Service ID [hex] 0x7C
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-PI, PI[Resolution: 2*P1/(2°8
Parameters (inout) None
Parameters (out) None
Return value sint8 Return value of the function

Physical range: [-1, 1]
Resolution: 1/(2°7)

Description

This service computes the cosine of an angle.

Available via

Efx.h

]

[SWS_Efx_00237] [The result is rounded off. |

AUTSSAR

8.5.10.3

Inverse Sine function

[SWS_Efx_00240] Definition of API function Efx_ArcSin_s32_s32 |

Service Name

Efx_ArcSin_s32_s32

Syntax sint32 Efx_ArcSin_s32_s32 (
sint32 x_value

)
Service ID [hex] 0x80
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-1, 1] Resolution: 1/(2731)
Parameters (inout) None
Parameters (out) None
Return value sint32 Return value of the function

Physical range: [-Pl/2 , PI/2[
Resolution: PI1/(2°32)

Description

This service computes the inverse sine of a value.

Available via

Efx.h

]

[SWS_Efx_00242] [The result is rounded off. |

[SWS_Efx_00243] Definition of API function Efx_ArsSin_s16_s16 |

Service Name

Efx_ArsSin_s16_s16

Syntax sintl16 Efx_ArsSin_sl6_s16 (
sintl6 x_value

)
Service ID [hex] 0x81
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-1, 1] Resolution: 1/(2715)
Parameters (inout) None
Parameters (out) None
Return value sint16 Return value of the function

Physical range: [-Pl/2, P1/2]
Resolution: PI/(2716)

Description

This service computes the inverse sine of a value.

Available via

Efx.h

]

[SWS_Efx_00245] [The result is rounded off. |

AUTSSAR

[SWS_Efx_00246] Definition of API function Efx_ArcSin_s8_s8 |

Service Name

Efx_ArcSin_s8 s8

Syntax sint8 Efx_ArcSin_s8_s8 (
sint8 x_value

)
Service ID [hex] 0x82
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-1, 1[Resolution: 1/(2°7)
Parameters (inout) None
Parameters (out) None
Return value sint8 Return value of the function

Physical range: [-PI/2, P1/2]
Resolution: PI1/(2°8)

Description

This service computes the inverse sine of a value.

Available via

Efx.h

]

[SWS_Efx_00248] [The result is rounded off. |

8.5.10.4 Inverse cosine function

[SWS_Efx_00250] Definition of APl function Efx_ArcCos_s32_u32 |

Service Name

Efx_ArcCos_s32_u32

Syntax uint32 Efx_ArcCos_s32_u32 (
sint32 x_value

)
Service ID [hex] 0x85
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-1, 1[Resolution: 1/(2°31)
Parameters (inout) None
Parameters (out) None
Return value uint32 Return value of the function

Physical range: [0, PI[
Resolution: P1/(2°32)

Description

This service computes the inverse cosine of a value.

Available via

Efx.h

]

[SWS_Efx_00252] [The result is rounded off. |

AUTSSAR

[SWS_Efx_00253] Definition of API function Efx_ArcCos_s16_u16 |

Service Name

Efx_ArcCos_s16_u16

Syntax uintl6 Efx_ArcCos_sl16_ul6 (
sintl6 x_value

)
Service ID [hex] 0x86
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-1, 1[Resolution: 1/(2°15)
Parameters (inout) None
Parameters (out) None
Return value uint16 Return value of the function

Physical range: [0, PI[
Resolution: PI/(2°16)

Description

This service computes the inverse cosine of a value.

Available via

Efx.h

]

[SWS_Efx_00255] [The result is rounded off. |

[SWS_Efx_00256] Definition of API function Efx_ArcCos_s8_u8 |

Service Name

Efx_ArcCos_s8 u8

Syntax uint8 Efx_ArcCos_s8_u8 (
sint8 x_value

)
Service ID [hex] 0x87
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Argument Physical range: [-1, 1[Resolution: 1/(2°7)
Parameters (inout) None
Parameters (out) None
Return value uint8 Return value of the function

Physical range: [0, PI[
Resolution: PI1/(2°8)

Description

This service computes the inverse cosine of a value.

Available via

Efx.h

]

[SWS_Efx_00258] [The result is rounded off. |

AUTSSAR

8.5.11 Rate limiter

[SWS_Efx_00261] Definition of API function Efx_SlewRate_<InTypeMn> |

Service Name Efx_SlewRate_<InTypeMn>
Syntax void Efx_SlewRate_<InTypeMn> (
<InType> limit_pos,
<InType> input,
<InType> limit_neg,
<InType>x output,
uint8x init
)
Service ID [hex] 0x8B to Ox8E
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) limit_pos positive slope
input Input signal
limit_neg negative slope
Parameters (inout) output Output signal
init Pointer on a flag used to detect the first call of the API
Parameters (out) None
Return value void No return value
Description The routine limits the increase and the decrease of the Input entry by using tunable slopes.
Available via Efx.h

[SWS_Efx_00262] [If *init==0, *output=input |

[SWS_Efx_00264] [Input, limit_pos, limit_neg and output must have the same resolu-
tion and the same physical unit. |

[SWS_Efx_00265] [If the result of the Efx_SlewRate is only computed when some
conditions are fulfilled, do not call the slew rate under the condition, but systematically!
The slew rate must be called at each recurrence, even if it is not used, because oth-
erwise, the output will be frozen to the previous value all the time, if conditions are not
fulfilled. |

[SWS_Efx_00266] [The parameters given for output and init, for which we receive the
addresses, must be declared by the caller as private variables and will be initialized at
0, because the function uses the previous values of these outputs (so the stack must
not be used). |

[SWS_Efx_00267] [Physical values of limit_pos and limit_neg are positive. Internally
limit_pos is added to output value and limit_neg is substracted from output value to get
upper and lower limit band within which output value is limited. |

[SWS_Efx_00268] [At first step, when *init==0, output takes the value of input and
*init will be put at 1.

[SWS_Efx_00269] [limit_pos is added to the output and it becomes the maximum
value of the new output

AUTSSAR

limit_neg is deducted from the output and it becomes the minimum value of the new
output.

If input is outside this range, output is limited to these values, in the other case, output
takes the value of input|

[SWS_Efx_00270] [Values of limit_pos and limit_neg shall be adapted to the fre-
quency of the call of the service. |

[SWS_Efx_00271] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0x8B void Efx_SlewRate_u16 (uint16, uint16, uint16, uint16 *,
uint8 *)

0x8C void Efx_SlewRate_s16 (uint16, sint16, uint16, sint16 *,
uint8 *)

0x8D void Efx_SlewRate_u32 (uint32, uint32, uint32, uint32 *,
uint8 *)

0x8E void Efx_SlewRate_s32 (uint32, sint32, uint32, sint32 *,
uint8 *)

8.5.12 Ramp routines

In case of a change of the input value, the ramp output value follows the input value
with a specified limited slope.

Efx_ParamRamp_Type and Efx_StateRamp_Type are the data types for storing ramp
parameters. Usage of Switch-Routine and Jump-Routine is optional based on the func-
tionality requirement. Usage of Switch-Routine, Jump-Routine, Calc-Routine and Out-
Method have the following precondition concerning the sequence of the calls.

» Efx_RampCalcSwitch
» Efx_RampCalcJump
« Efx_RampCalc

« Efx_RampOut_s32

Structure definition for function argument

AUTSSAR

[SWS_Efx_00275] Definition of datatype Efx_ParamRamp_Type |

Name Efx_ParamRamp_Type
Kind Structure
Elements SlopePos_u32
Type uint32
Comment Positive slope for ramp in absolute value. The resolution of SlopePos_

u32 shall be 1/2°16.

SlopeNeg_u32

Type uint32
Comment Negative slope for ramp in absolute value. The resolution of Slope
Neg_u32 shall be 1/2"16.
Description Structure definition for Ramp routine
Available via Efx.h

J
[SWS_Efx_00834] Definition of datatype Efx_StateRamp_Type |

Name Efx_StateRamp_Type
Kind Structure
Elements State_s32
Type sint32
Comment State of the ramp
Dir_s8
Type sint8
Comment Ramp direction
Switch_s8
Type sint8
Comment Position of switch
Description Structure definition for Ramp routine
Available via Efx.h

AUTSSAR

8.5.12.1 Ramp routine

[SWS_Efx_00276] Definition of API function Efx_RampCalc |

Service Name Efx_RampCalc
Syntax void Efx_RampCalc (
sint32 X_s32,
Efx_StateRamp_Typex State_cpst,
const Efx_ParamRamp_Type* Param_cpcst,
sint32 dT_s32
)
Service ID [hex] 0x90
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Target value for the ramp to reach
Param_cpcst Pointer to parameter structure
dT_s32 Sample Time [10® seconds per increment of 1 data
representation unit]. dT_s32 shall be > 0.
Parameters (inout) State_cpst Pointer to state structure
Parameters (out) None
Return value None
Description The ramp output value increases or decreases a value with slope * dT_s32 depending if (State_
cpst->State_s32 < X_s32) or (State_cpst->State_s32 > X_s32).
Available via Efx.h

[SWS_Efx_00837] [If the ramp state State_cpst->State_s32 has reached or crossed
the target value X_s32 while the direction of the ramp had been RISING/FALLING,
then set State_cpst->State_s32 = X_s32|

[SWS_Efx_00278] [If ramp direction is rising then ramp increases a value with slope
*dT _s32

if (State_cpst->Dir_s8 == RISING)

State_cpst->State s32 = State cpst->State_s32 + (Param_cpcst->SlopePos_u32 * d
T_s32)

The minimum value of Param_cpcst->SlopePos_u32 * dT_s32 shall be 1, when Param-
>SlopePos > 0.

The intermediate results shall be rounded off.

Ex: minimum increment of Param_cpcst->SlopePos_u32 * dT_s32 = 1/(2°16*1076) |

[SWS_Efx_00279] [If ramp direction is falling then ramp decreases a value with slope
*dT_s32

if (State_cpst->Dir_s8 == FALLING)

State_cpst->State_s32 = State_cpst->State_s32 - (Param_cpcst->SlopeNeg_u32 * d
T_s32)

AUTSSAR

The minimum value of Param_cpcst->SlopeNeg _u32 * dT_s32 shall be 1, when
Param->SlopeNeg > 0.

The intermediate results shall be rounded off.

Ex: minimum decrement of Param_cpcst->SlopeNeg_u32 * dT_s32 = 1/(2°16*1076) |

[SWS_Efx_00280] [Direction of the ramp is stored so that a change of the target can
be recognized and the output will follow immediately to the new target value.

State_cpst->Dir_s8 states are: RISING, FALLING, END. |

[SWS_Efx_00281] [Comparison of State and Target decides ramp direction
If(State_cpst->State_s32 > X_s32) then State_cpst->Dir_s8 = FALLING
If(State_cpst->State_s32 < X_s32) then State_cpst->Dir_s8 = RISING
If(State_cpst->State_s32 == X_s32) then State_cpst->Dir_s8 = END |

[SWS_Efx_00284] [Resolution of dT_s32 is 10"(-6) seconds per increment of 1 data
representation unit |

8.5.12.2 Ramp Initialisation

[SWS_Efx_00285] Definition of API function Efx_RamplnitState |

Service Name Efx_RamplnitState
Syntax void Efx_RampInitState (
Efx_StateRamp_Typex State_cpst,
sint32 Val_s32
)
Service ID [hex] 0x91
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Val_s32 Initial value for state variable
Parameters (inout) State_cpst Pointer to the state structure
Parameters (out) None
Return value None
Description Initializes the state, direction and switch parameters for the ramp.
Available via Efx.h

]

[SWS_Efx_00286] [Ramp direction is initialised with END value. User has no possi-
bility to change or modify ramp direction.

State_cpst->Dir_s8 = END
E.g. of ramp direction states: RISING = 1, FALLING = -1, END = 0|

AUTSSAR

[SWS_Efx_00442] [Initialisation of state variable
State_cpst->State_s32 = Val_s32|

[SWS_Efx_00443] [Initialisation of switch variable. User has no possibility to change
or modify switch initialization value.

State_cpst->Switch_s8 = OFF
E.g. of switch states: TARGET_A =1, TARGET_B =-1, OFF = 0|

8.5.12.3 Ramp Set Slope

[SWS_Efx_00287] Definition of API function Efx_RampSetParam |

Service Name

Efx_RampSetParam

Syntax void Efx_RampSetParam (
Efx_ParamRamp_Typex Param_cpst,
uint32 SlopePosVal_u32,
uint32 SlopeNegVal_u32

)

Service ID [hex] 0x92
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

SlopePosVal_u32

Positive slope value

SlopeNegVal_u32

Negative slope value

Parameters (inout) None
Parameters (out) Param_cpst Pointer to parameter structure
Return value None

Description

Sets the slope parameter for the ramp provided by the structure Efx_ParamRamp_Type.

Available via

Efx.h

]

[SWS_Efx_00288] [Sets positive and negative ramp slopes.
Param_cpst->SlopePos_u32 = SlopePosVal_u32
Param_cpst ->SlopeNeg_u32 = SlopeNegVal_u32|

AUTSSAR

8.5.12.4 Ramp out routines

[SWS_Efx_00289] Definition of API function Efx_RampOut_s32 |

Service Name

Efx_RampOut_s32

Syntax sint32 Efx_RampOut_s32 (
const Efx_StateRamp_Typex* State_cpcst
)
Service ID [hex] 0x93
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

State_cpcst ‘ Pointer to the state value

Parameters (inout) None
Parameters (out) None
Return value sint32 | Internal state of the ramp element

Description

Returns the internal state of the ramp element.

Available via

Efx.h

]

[SWS_Efx_00290] [Return Value = State_cpcst->State_s32|

8.5.12.5 Ramp Jump routine

[SWS_Efx_00291] Definition of API function Efx_RampCalcJump |

Service Name

Efx_RampCalcJump

Syntax void Efx_RampCalcJump (

sint32 X_s32,

Efx_StateRamp_Type* State_cpst

)

Service ID [hex] 0x94
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X_s32 Target value for ramp to jump
Parameters (inout) State_cpst Pointer to the state value
Parameters (out) None
Return value None

Description

This routine works in addition to main ramp function Efx_RampCalc to provide a faster adaption
to target value.

Available via

Efx.h

]

[SWS_Efx_00292] [If target value changes to a value contrary to current ramp direc-
tion and ramp has not reached its old target value then ramp state jumps to new target
value immediately.

State_cpst->State_s32 = X_s32
State_cpst->Dir_s8 = END |

AUTSSAR

[SWS_Efx_00293] [If target value is changed to new value and ramp has reached its
old target value then normal ramp behavior is maintained.

State_cpst->Dir_s8 = END |

[SWS_Efx_00303] [Direction of the ramp is stored so that a change of the target can
be recognized and the output will follow immediately to the new target value.

State_cpst->Dir_s8 states are: RISING, FALLING, END. |

[SWS_Efx_00304] [Comparison of State and Target decides ramp direction
If(State_cpst->State_s32 > X s32) then State_cpst->Dir_s8 = FALLING
If(State_cpst->State_s32 < X_s32) then State_cpst->Dir_s8 = RISING
If(State_cpst->State_s32 == X_s32) then State_cpst->Dir_s8 = END |

[SWS_Efx_00277] [This routine decided if jump has to be done or not in case of
change in target. Efx_RampCalc function shall be called after this function that a jump
or the standard ramp behaviour is executed. |

8.5.12.6 Ramp switch routine

[SWS_Efx_00520] Definition of API function Efx_RampCalcSwitch |

Service Name Efx_RampCalcSwitch
Syntax sint32 Efx_RampCalcSwitch (
sint32 Xa_s32,
sint32 Xb_s32,
boolean Switch,
Efx_StateRamp_Typex State_cpst
)
Service ID [hex] 0x96
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Xa_s32 Target value for the ramp to reach if switch is in position *A’
Xb_s32 Target value for the ramp to reach if switch is in position ‘B’
Switch Switch to decide target value
Parameters (inout) State_cpst Pointer to StateRamp structure
Parameters (out) None
Return value sint32 Returns the selected target value
Description This routine switches between two target values for a ramp service based on a Switch
parameter.
Available via Efx.h

[SWS_Efx_00521] [Parameter Switch decides which target value is selected.
If Switch = TRUE, then Xa_s32 is selected.
State cpst->Switch_s8 is set to TARGET_A

AUTSSAR

Return value = Xa_s32

If Switch = FALSE, then Xb_s32 is selected.
State_cpst->Switch_s8 is set to TARGET_B
Return value = Xb_s32]

[SWS_Efx_00522] [State_cpst->Dir_s8 hold direction information

State_cpst->Dir_s8 shall be set to END to reset direction information in case of target
switch. |

[SWS_Efx_00528] [Efx_RampCalcSwitch routine has to be called before Efx_Ramp
Calc|

8.5.12.7 Get Ramp Switch position

[SWS_Efx_00307] Definition of API function Efx_RampGetSwitchPos |

Efx_RampGetSwitchPos

Service Name

Syntax boolean Efx_RampGetSwitchPos (
const Efx_StateRamp_Typex State_cpst
)

Service ID [hex] 0x98

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) State_cpst | Pointer to the state structure
Parameters (inout) None

Parameters (out) None

Return value boolean | return value TRUE or FALSE

Description

Gets the current switch position of ramp switch function.

Available via

Efx.h

]

[SWS_Efx_00308] [Return value = TRUE if Switch position State_cpst->Switch_s8 =
TARGET_A

Return value = FALSE if Switch position State_cpst->Switch_s8 = TARGET_B|

Note: The function "Efx_RampGetSwitchPos" should be called only after calling the
function "Efx_RampCalcSwitch" or "Efx_RampCalc".

AUTSSAR

8.5.12.8 Check Ramp Activity

[SWS_Efx_00309] Definition of API function Efx_RampCheckActivity |

Service Name Efx_RampCheckActivity
Syntax boolean Efx_RampCheckActivity (
const Efx_StateRamp_Typex* State_cpst
)
Service ID [hex] 0x99
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) State_cpst ‘ Pointer to the state structure
Parameters (inout) None
Parameters (out) None
Return value boolean | return value TRUE or FALSE
Description This routine checks the status of the ramp and returns TRUE if the ramp is active, otherwise it
returns FALSE.
Available via Efx.h

]

[SWS_Efx_00310] [return value = TRUE, if Ramp is active (State_cpst->Dir_s8 !=
END)

return value = FALSE, if Ramp is inactive (State_cpst->Dir_s8 == END) |

AUTSSAR

8.5.13 Hysteresis routines

8.5.13.1 Hysteresis

[SWS_Efx_00311] Definition of API function Efx_Hysteresis_<InTypeMn>_<Out
TypeMn> |

Service Name Efx_Hysteresis_<InTypeMn>_<OutTypeMn>
Eﬂﬂﬂax <OutType> Efx_Hysteresis_<InTypeMn>_<OutTypeMn> (
<InType> input,
<InType> thresholdLow,
<InType> thresholdHigh,
<InType> Out_Val,
<InType> Out_LowThresholdval,
<InType> Out_HighThresholdval
)
Service ID [hex] 0x9A to Ox9F
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) input Input signal
thresholdLow First threshold used to compute the output
thresholdHigh Second threshold used to compute the output
Out_Val Output value between the threshold
Out_LowThresholdVal Output value for Low Threshold trigger
Out_HighThresholdVal Output value for High Threshold trigger
Parameters (inout) None
Parameters (out) None
Return value <OutType> Return value of the function
Description The routine estimates the output of the hysteresis.
Available via Efx.h

]

[SWS_Efx_00312] [If Input < thresholdLow, Then return_value = Out_LowThreshold
Val|

[SWS_Efx_00313] [If Input > thresholdHigh, Then return_value = Out_HighThreshold
Val|

[SWS_Efx_00314] [If thresholdLow < Input < thresholdHigh, then return_value =
Out_Val|

[SWS_Efx_00315] [Input, thresholdLow and thresholdHigh must have the same reso-
lution and the same physical unit. |

[SWS_Efx_00316] [Return_value , Out_Val, Out_LowThresholdVal and Out_High
ThresholdVal must have the same resolution and the same physical unit. |

[SWS_Efx_00317] [Here is the list of implemented functions. |

AUTSSAR

Service ID[hex] Syntax

0x9A uint8 Efx_Hysteresis_u8_u8 (uint8, uint8, uint8, uint8, uint8,
uint8)

0x9B uint16 Efx_Hysteresis_u16_u16(uint16, uint16, uint16,
uint16, uint16,uint16)

0x9C uint32 Efx_Hysteresis_u32_u32 (uint32,
uint32,uint32,uint32,uint32,uint32)

0x9D sint8 Efx_Hysteresis_s8_s8 (
sint8,sint8,sint8,sint8,sint8,sint8)

0x9E sint16 Efx_Hysteresis_s16_s16 (
sint16,sint16,sint16,sint16,sint16,sint16)

0x9F sint32 Efx_Hysteresis_s32_s32 (
sint32,sint32,sint32,sint32,sint32,sint32)

8.5.13.2 Hysteresis center half delta

[SWS_Efx_00320] Definition of API function Efx_HystCenterHalfDelta_<InType
Mn>_<OutTypeMn> |

Service Name Efx_HystCenterHalfDelta_<InTypeMn>_<OutTypeMn>
Syntax boolean Efx_HystCenterHalfDelta_<InTypeMn>_<OutTypeMn> (
<InType> X,
<InType> center,
<InType> halfDelta,
booleanx State
)
Service ID [hex] 0xAO0 to 0xA1, 0x0100 to 0x0103 (see SWS_Efx_00324)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Input value
center Center of hysteresis range
halfDelta Half width of hysteresis range
Parameters (inout) State Pointer to state value
Parameters (out) None
Return value boolean Returns TRUE or FALSE depending of input value and state value
Description Hysteresis with center and left and right side halfDelta switching point.
Available via Efx.h

]

[SWS_Efx_00321] [Return value = TRUE, if X > center + halfDelta
Return value = FALSE, if X < center - halfDelta

Return value is former state value if

(center - halfDelta) < X < (center + halfDelta) |

[SWS_Efx_00322] [Parameters X, center and halfDelta should have the same data
type. |

[SWS_Efx_00323] [State variable shall store the old boolean result. |

AUTSSAR

[SWS_Efx_00324] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xA0 boolean Efx_HystCenterHalfDelta_s32_u8(sint32, sint32,
sint32, boolean *)

0xA1 boolean Efx_HystCenterHalfDelta_u32_u8 (uint32, uint32,
uint32, boolean *)

0x100 boolean Efx_HystCenterHalfDelta_s8_u8 (sint8, sint8, sint8,
boolean *)

0x101 boolean Efx_HystCenterHalfDelta_u8_u8 (uint8, uint8, uint8,
boolean *)

0x102 boolean Efx_HystCenterHalfDelta_s16_u8(sint16, sint16,
sint16, boolean *)

0x103 boolean Efx_HystCenterHalfDelta_u16_u8(uint16, uint16,
uint16, boolean *)

8.5.13.3 Hysteresis left right

[SWS_Efx_00325]

Definition of APl function Efx_HystLeftRight <InType

Mn>_<OutTypeMn> |

Service Name

Efx_HystLeftRight_<InTypeMn>_<OutTypeMn>

Syntax boolean Efx_HystLeftRight_<InTypeMn>_<OutTypeMn> (
<InType> X,
<InType> Lsp,
<InType> Rsp,
booleanx State
)
Service ID [hex] 0xA3 to 0xA4, 0x0104 to 0x0107 (see SWS_Efx_00330)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Input value
Lsp Left switching point
Rsp Right switching point
Parameters (inout) State Pointer to state value
Parameters (out) None
Return value boolean Returns TRUE or FALSE depending of input value and state value

Description

Hysteresis with left and right switching point.

Available via

Efx.h

]

[SWS_Efx_00326] [Return value = TRUE, if X > Rsp (right switching point)

Return value = FALSE, if X < Lsp (left switching point)

Return value is former state value if Lsp < X < Rsp|

[SWS_Efx_00327] [Parameters X, Lsp and Rsp should have the same data type. |

[SWS_Efx_00328] [State variable shall store the old boolean result. |

AUTSSAR

[SWS_Efx_00329] [Rsp shall be always greater than Lsp|
[SWS_Efx_00330] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xA3 boolean Efx_HystLeftRight_s32_u8 (sint32, sint32, sint32,
boolean *)

0xA4 boolean Efx_HystLeftRight_u32_u8 (uint32, uint32, uint32,
boolean *)

0x104 boolean Efx_HystLeftRight_s8_ u8 (sint8, sint8, sint8,
boolean *)

0x105 boolean Efx_HystLeftRight_u8_u8 (uint8, uint8, uint8,
boolean *)

0x106 boolean Efx_HystLeftRight_s16_u8(sint16, sint16, sint16,
boolean *)

0x107 boolean Efx_HystLeftRight_u16_u8(uint16, uint16, uint16,
boolean *)

8.5.13.4 Hysteresis delta right

[SWS_Efx_00331] Definition of API function Efx_HystDeltaRight_<InType
Mn>_<OutTypeMn> |

Service Name Efx_HystDeltaRight_<InTypeMn>_<OutTypeMn>
Syntax boolean Efx_HystDeltaRight_<InTypeMn>_<OutTypeMn> (
<InType> X,
<InType> Delta,
<InType> Rsp,
booleanx State
)
Service ID [hex] 0xA5 to 0xAB, 0x0108 to 0x010B (see SWS_Efx_00335)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Input value
Delta Left switching point = rsp - delta
Rsp Right switching point
Parameters (inout) State Pointer to state value
Parameters (out) None
Return value boolean Returns TRUE or FALSE depending of input value and state value
Description Hysteresis with right switching point and delta to left switching point
Available via Efx.h

]
[SWS_Efx_00332] [Return value = TRUE if X > Rsp (right switching point)
Return value = FALSE if X < (Rsp - Delta)

Return value is former state value if (Rsp - Delta) < X < Rsp|

[SWS_Efx_00333] [Parameters X, Rsp and Delta should have the same data type. |

AUTSSAR

[SWS_Efx_00334] [State variable shall store the old boolean result. |

[SWS_Efx_00335] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xA5 boolean Efx_HystDeltaRight_s32_u8 (sint32, sint32, sint32,
boolean *)

0xA6 boolean Efx_HystDeltaRight_u32_u8 (uint32, uint32, uint32,
boolean *)

0x108 boolean Efx_HystDeltaRight_s8_u8 (sint8, sint8, sint8,
boolean *)

0x109 boolean Efx_HystDeltaRight_u8_u8 (uint8, uint8, uints,
boolean *)

0x10A boolean Efx_HystDeltaRight_s16_u8(sint16, sint16, sint16,
boolean *)

0x10B boolean Efx_HystDeltaRight_u16_u8(uint16, uint16, uint16,
boolean *)

8.5.13.5 Hysteresis left delta

[SWS_Efx_00336]

Definition of APl function Efx_HystLeftDelta_<InType

Mn>_<OutTypeMn> |

Service Name

Efx_HystLeftDelta_<InTypeMn>_<OutTypeMn>

Syntax boolean Efx_HystLeftDelta_ <InTypeMn>_<OutTypeMn> (
<InType> X,
<InType> Lsp,
<InType> Delta,
booleanx State
)
Service ID [hex] 0xA7 to 0xA8, 0x010C to 0x010E (see SWS_Efx_00340)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Input value
Lsp Left switching point
Delta Right switching point = Isp + delta
Parameters (inout) State Pointer to state value
Parameters (out) None
Return value boolean Returns TRUE or FALSE depending of input value and state value

Description

Hysteresis with left switching point and delta to right switching point.

Available via

Efx.h

]

[SWS_Efx_00337] [Return value is TRUE if X > (Lsp + Delta)
Return value is FALSE if X < Lsp

Return value is former state value if Lsp < X < (Lsp + Delta) |

[SWS_Efx_00338] [Parameters X, Lsp and Delta should have the same data type. |

AUTSSAR

[SWS_Efx_00339] [State variable shall store the old boolean result. |
[SWS_Efx_00340] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xA7 boolean Efx_HystLeftDelta_s32_u8 (sint32, sint32, sint32,
boolean *)

0xA8 boolean Efx_HystLeftDelta_u32_u8 (uint32, uint32, uint32,
boolean *)

0x10C boolean Efx_HystLeftDelta_s8_u8 (sint8, sint8, sint8,
boolean *)

0x10D boolean Efx_HystLeftDelta_u8_u8 (uint8, uint8, uint8,
boolean *)

0x10E boolean Efx_HystLeftDelta_s16_u8(sint16, sint16, sint16,
boolean *)

0x10F boolean Efx_HystLeftDelta_u16_u8(uint16, uint16, uint16,
boolean *)

8.5.14 Debounce routines

8.5.14.1 Efx_Debounce

[SWS_Efx_00355] Definition of API function Efx_Debounce_u8_u8 |

Service Name Efx_Debounce_u8 u8
Syntax boolean Efx_Debounce_u8_u8 (
boolean X,
Efx_DebounceState_Type x State,
const Efx_DebounceParam_Type x Param,
sint32 dT
)
Service ID [hex] 0xBO0
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Input value
Param Pointer to state structure of type Efx_DebounceParam_Type
daT Sample Time
Parameters (inout) State Pointer to state structure of type Efx_DebounceState_Type
Parameters (out) None
Return value boolean Returns the debounced input value
Description This routine debounces a digital input signal and returns the state of the signal as a boolean
value.
Available via Efx.h

J
[SWS_Efx_00356] [If(X != State->XOld) then check start debouncing. |

[SWS_Efx_00357] [If transition occurs from FALSE to TRUE (i.e State->XOIld = FALSE
and X = TRUE), then use Param->TimeLowHigh as debouncing time; otherwise use
Param->TimeHighLow. |

AUTSSAR

[SWS_Efx_00358] [State->Timer is incremented with sample time for debouncing in-
put signal.

Once reached to the set period, old state is updated with X.
State->Timer += dT,;

If (State->Timer > (TimePeriod * 10000))

State->XOlId = X, and stop the timer, State->Timer = 0

where TimePeriod = Param->TimeLowHigh or Param->TimeHighLow |

[SWS_Efx_00359] [Old value shall be returned as a output value. Current input is
stored to old state.

Return value = State->XOld
State->XOIld = X|

[SWS_Efx_00360] [Resolution of dT is 107(-6) seconds per increment of 1 data rep-
resentation unit |

Structure definition for function argument

[SWS_Efx_00361] Definition of datatype Efx_DebounceParam_Type |

Name Efx_DebounceParam_Type
Kind Structure
Elements TimeHighLow
Type sint16
Comment Time for a High to Low transition, given in 10ms steps
TimeLowHigh
Type sint16
Comment Time for a Low to High transition, given in 10ms steps
Description Structure definition for Debounce routine
Available via Efx.h
]
[SWS_Efx_00835] Definition of datatype Efx_DebounceState_Type |
Name Efx_DebounceState_Type
Kind Structure
Elements XOld
Type boolean
Comment Old input value from last call
Timer
Type sint32
Comment Timer for internal state
Description Structure definition for Debounce routine

\Y%

AUTSSAR

| Available via Efx.h

]

8.5.14.2 Efx_Debouncelnit

[SWS_Efx_00362] Definition of API function Efx_Debouncelnit |

Service Name Efx_Debouncelnit
Syntax void Efx_DebounceInit (
Efx_DebounceState_Typex State,
boolean X
)
Service ID [hex] 0xB1
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) X Initial value for the input state
Parameters (inout) None
Parameters (out) State Pointer to state structure of type Efx_DebounceState_Type
Return value void No return value
Description This routine call shall stop the debouncing timer.
Available via Efx.h

J
[SWS_Efx_00363] [State->Timer =0 |

[SWS_Efx_00364] [Sets the input state to the given init value.
State->XOld = X; |

AUTSSAR

8.5.14.3 Efx_DebounceSetparam

[SWS_Efx_00365] Definition of API function Efx_DebounceSetParam |

Service Name

Efx_DebounceSetParam

Syntax void Efx_DebounceSetParam (
Efx_DebounceParam_Type * Param,
sint1l6 THighLow,
sint16 TLowHigh
)
Service ID [hex] 0xB2
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) THighLow Value for TimeHighLow of Efx_DebounceParam_Type
TLowHigh Value for TimeLowHigh of Efx_DebounceParam_Type
Parameters (inout) None
Parameters (out) Param Pointer to state structure of type Efx_DebounceParam_Type
Return value void No return value

Description

This routine sets timing parameters, time for high to low transition and time for low to high for
debouncing.

Available via

Efx.h

]

[SWS_Efx_00366] [Param-> TimeHighLow = THighLow

Param-> TimeLowHigh = TLowHigh |

8.5.15 Ascending Sort Routine

[SWS_Efx_00370] Definition of API function Efx_SortAscend_<InTypeMn> |

Service Name

Efx_SortAscend_<InTypeMn>

Syntax void Efx_SortAscend_<InTypeMn> (
<OutType> x Array,
uintl6 Num
)
Service ID [hex] 0xB4 to 0xB9
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Num Size of an data array
Parameters (inout) Array Pointer to an data array
Parameters (out) None
Return value void No return value

Description

The sorting algorithm modifies the given input array and rearranges data in ascending order.

Available via

Efx.h

]

Example for unsigned array :
Input array : uint16 Array [5] = [42, 10, 88, 8, 15]

AUTSSAR

Result : Array will be sorted to [8, 10, 15, 42, 88]

Example for signed array :
Input array : sint16 Array [5] = [-42, -10, 88, 8, 15]
Result : Array will be sorted to [-42, -10, 8, 15, 88]

[SWS_Efx_00372] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xB4 void Efx_SortAscend_s8 (sint8*, uint16)
0xB5 void Efx_SortAscend_u8 (uint8*, uint16)
0xB6 void Efx_SortAscend_u16 (uint16*, uint16)
0xB7 void Efx_SortAscend_s16 (sint16*, uint16)
0xB8 void Efx_SortAscend_u32 (uint32*, uint16)
0xB9 void Efx_SortAscend_s32 (sint32*, uint16)

8.5.16 Descending Sort Routine

[SWS_Efx_00373] Definition of API function Efx_SortDescend_<InTypeMn> |

Service Name

Efx_SortDescend_<InTypeMn>

Syntax void Efx_SortDescend_<InTypeMn> (
<OutType> * Array,
uintl6 Num
)
Service ID [hex] 0xBA to 0xBF
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Num Size of an data array
Parameters (inout) Array Pointer to an data array
Parameters (out) None
Return value void No return value

Description

The sorting algorithm modifies the given input array and rearranges data in descending order.

Available via

Efx.h

]

Example for unsigned array :
Input array : uint16 Array [5] = [42, 10, 88, 8, 15]
Result : Array will be sorted to [88, 42, 15, 10, 8]

Example for signed array :
Input array : sint16 Array [5] = [-42, -10, 88, 8, 15]
Result : Array will be sorted to [88, 15, 8, -10, -42]

AUTSSAR

[SWS_Efx_00375] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xBF void Efx_SortDescend_s8 (sint8*, uint16)
0xBA void Efx_SortDescend_u8 (uint8*, uint16)
0xBB void Efx_SortDescend_u16 (uint16*, uint16)
0xBC void Efx_SortDescend_s16 (sint16*, uint16)
0xBD void Efx_SortDescend_u32 (uint32*, uint16)
0xBE void Efx_SortDescend_s32 (sint32*, uint16)

8.5.17 Median sort routine

[SWS_Efx_00376] Definition of API function Efx_MedianSort_<InTypeMn>_<Out

TypeMn> |

Service Name

Efx_MedianSort_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_MedianSort_<InTypeMn>_<OutTypeMn> (
<InType>* Array,
uint8 N
)
Service ID [hex] 0xCO0 to 0xC4, 0xC8
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) N Size of an array
Parameters (inout) Array Pointer to an array
Parameters (out) None
Return value <OutType> Return value of the function

Description

Sort an array and return its median value

Available via

Efx.h

]

[SWS_Efx_00377] [This routine sorts values of an array in ascending order.
array passed by the pointer shall have sorted values after this routine call. |

For example:

Input array [5] = [42, 10, 88, 8, 15]
Sorted array[5] = [8, 10, 15, 42, 88]

Input

[SWS_Efx_00378] [Returns the median value of sorted array in case of N is even.

Result = (Sorted_array[N/2] + Sorted_array[(N/2) - 1]) / 2]
For example:

Sorted_array[4] = [8, 10, 15, 42]

Result = (15+10)/2 =12

AUTSSAR

[SWS_Efx_00440] [Returns the median value of sorted array in case of N is odd.
Return_Value = Sorted_array [N/2] = 15]

For example:

Sorted_array[5] = [8, 10, 15, 42, 88]

Result = 15

[SWS_Efx_00441] [In above calculation, N/2 shall be rounded towards zero. |

[SWS_Efx_00379] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xCO uint8 Efx_MedianSort_u8_u8(uint8*, uint8)
0xC1 uint16 Efx_MedianSort_u16_u16(uint16*, uint8)
0xC2 sint16 Efx_MedianSort_s16_s16(sint16*, uint8)
0xC3 sint8 Efx_MedianSort_s8_ s8(sint8*, uint8)
0xC4 uint32 Efx_MedianSort_u32_u32(uint32*, uint8)
0xC8 sint32 Efx_MedianSort_s32_s32(sint32*, uint8)

8.5.18 Edge detection routines

8.5.18.1 Edge bipol detection

[SWS_Efx_00380] Definition of API function Efx_EdgeBipol_u8_u8 |

Service Name

Efx_EdgeBipol_u8_u8

Syntax boolean Efx_EdgeBipol_u8_u8 (

boolean Inp_vVval,

booleanx 0ld_Val

)

Service ID [hex] 0xC5
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Inp_Val Actual value of the signal
Parameters (inout) Old_Val Pointer to the value of the signal from the last call
Parameters (out) None
Return value boolean Returns TRUE when the signal has changed since the last call

Description

This routine detects whether a signal has changed since the last call and returns TRUE. If
signal has not changed then returns FALSE.

Available via

Efx.h

]

[SWS_Efx_00381] [if (Inp_Val != *Old_Val)

return value = TRUE

else

AUTSSAR

return value = FALSE. |

8.5.18.2 Edge falling detection

[SWS_Efx_00382] Definition of API function Efx_EdgeFalling_u8_u8 |

Service Name Efx_EdgeFalling_u8_u8
Syntax boolean Efx_EdgeFalling_u8_u8 (
boolean Inp_Val,
booleanx 0ld_Val
)
Service ID [hex] 0xC6
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Inp_Val Actual value of the signal
Parameters (inout) Old_Val Pointer to the value of the signal from the last call
Parameters (out) None
Return value boolean Returns TRUE when the signal has falling edge
Description Returns TRUE when the signal has a falling edge, i.e. the signal was TRUE at the last call and
FALSE at the actual call of this routine
Available via Efx.h

]

[SWS_Efx_00383] [Return value = TRUE, If (*Old_Val == TRUE && Inp_Val ==
FALSE)

Return value = FALSE, otherwise. |

AUTSSAR

8.5.18.3 Edge rising detection

[SWS_Efx_00384] Definition of API function Efx_EdgeRising_u8_u8 |

Service Name

Efx_EdgeRising_u8_u8

Syntax boolean Efx_EdgeRising_u8_u8 (

boolean Inp_Val,

boolean* 01ld_val

)

Service ID [hex] 0xC7
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Inp_Val Actual value of the signal
Parameters (inout) Old_Val Pointer to the value of the signal from the last call
Parameters (out) None
Return value boolean Returns TRUE when the signal has rising edge

Description

Returns TRUE when the signal has a rising edge, i.e. the signal was FALSE at the last call and
TRUE at the actual call of this routine

Available via

Efx.h

]

[SWS_Efx_00385] [Return value = TRUE, If (*Old_Val == FALSE && Inp_Val ==

TRUE)

Return value = FALSE, otherwise. |

8.5.19 Interval routines

8.5.19.1 Interval Closed

[SWS_Efx_00386]

Definition of API function Efx_IntervalClosed_<InType

Mn>_<OutTypeMn> |

Service Name

Efx_IntervalClosed_<InTypeMn>_<OutTypeMn>

Syntax boolean Efx_IntervalClosed_<InTypeMn>_<OutTypeMn> (
<InType> Minval,
<InType> InpVal,
<InType> MaxVal
)
Service ID [hex] 0xCA to 0xCB
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) MinVal Minimum limit value
InpVal Actual value of the signal
MaxVal Maximum limit value
Parameters (inout) None
Parameters (out) None
Return value boolean | Returns TRUE when MinVal <= InpVal <= MaxVal

V

AUTSSAR

A

Description

This routine compares a value ‘InpVal’ with lower and upper limit ‘MinVal’ and 'MaxVal’

respectively.

Available via

Efx.h

]

[SWS_Efx_00387] [Return value = TRUE, if (MinVal < InpVal < MaxVal)

Return value = FALSE, otherwise. |

[SWS_Efx_00388] [Here is the list of implemented functions. |

Service ID[hex] Syntax
0xCA boolean Efx_IntervalClosed_s32_u8(sint32, sint32, sint32)
0xCB boolean Efx_IntervalClosed_u32_u8(uint32, uint32, uint32)

8.5.19.2 Interval Open

[SWS_Efx_00390]

Definition of API

Mn>_<OutTypeMn> |

Service Name

Efx_IntervalOpen_<InTypeMn>_<OutTypeMn>

Syntax boolean Efx_IntervalOpen_<InTypeMn>_<OutTypeMn> (
sint32 MinVal,
sint32 Inpval,
sint32 MaxVal
)
Service ID [hex] 0xCC to 0xCD
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) MinVal Minimum limit value
InpVal Actual value of the signal
MaxVal Maximum limit value
Parameters (inout) None
Parameters (out) None
Return value boolean Returns TRUE when MinVal < InpVal < MaxVal

Description

This routine compares a value ’InpVal’ with lower and upper limit ‘MinVal’ and "MaxVal’

respectively.

Available via

Efx.h

]

[SWS_Efx_00391] [Return value = TRUE, if (MinVal < InpVal < MaxVal)

Return value = FALSE, otherwise. |

[SWS_Efx_00392] [Here is the list of implemented functions. |

function Efx_IntervalOpen_<InType

AUTSSAR

Service ID[hex]

Syntax

0xCC boolean Efx_IntervalOpen_s32_u8(sint32, sint32, sint32)
0xCD boolean Efx_IntervalOpen_u32_u8(uint32, uint32, uint32)
8.5.19.3 Interval Left Open

[SWS_Efx_00393]

Definition of API function Efx_IntervalLeftOpen_<InType

Mn>_<OutTypeMn> |

Service Name

Efx_IntervalLeftOpen_<InTypeMn>_<OutTypeMn>

Syntax boolean Efx_IntervallLeftOpen_<InTypeMn>_<OutTypeMn> (
sint32 MinVval,
sint32 Inpval,
sint32 MaxVal
)
Service ID [hex] 0xCE to OxCF
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) MinVal Minimum limit value
InpVal Actual value of the signal
MaxVal Maximum limit value
Parameters (inout) None
Parameters (out) None
Return value boolean Returns TRUE when MinVal < InpVal <= MaxVal

Description

This routine compares a value 'InpVal’ with lower and upper limit ‘MinVal’ and 'MaxVal’
respectively.

Available via

Efx.h

]

[SWS_Efx_00394] [Return value = TRUE, if (MinVal < InpVal < MaxVal)

Return value = FALSE, otherwise. |

[SWS_Efx_00395] [Here is the list of implemented functions. |

Service ID[hex] Syntax
0xCE boolean Efx_IntervalLeftOpen_s32_u8(sint32, sint32, sint32)
0xCF boolean Efx_IntervalLeftOpen_u32_u8(uint32, uint32,

uint32)

AUTSSAR

8.5.19.4 Interval Right Open

[SWS_Efx_00396] Definition of API function Efx_IntervalRightOpen_<InType

Mn>_<OutTypeMn> |

Service Name

Efx_IntervalRightOpen_<InTypeMn>_<OutTypeMn>

Synnzx boolean Efx_IntervalRightOpen_<InTypeMn>_<OutTypeMn> (
sint32 Minval,
sint32 Inpval,
sint32 MaxVal
)
Service ID [hex] 0xDO0 to 0xD1
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) MinVal Minimum limit value
InpVal Actual value of the signal
MaxVal Maximum limit value
Parameters (inout) None
Parameters (out) None
Return value boolean Returns TRUE when MinVal <= InpVal < MaxVal

Description

This routine compares a value ’'InpVal’ with lower and upper limit ‘MinVal’ and '"MaxVal’

respectively.

Available via

Efx.h

]

[SWS_Efx_00397] [Return value = TRUE, if (MinVal < InpVal < MaxVal)

Return value = FALSE, otherwise. |

[SWS_Efx_00398] [Here is the list of implemented functions. |

Service ID[hex] Syntax

0xDO boolean Efx_IntervalRightOpen_s32_u8(sint32, sint32,
sint32)

0xD1 boolean Efx_IntervalRightOpen_u32_u8(uint32, uint32,

uint32)

8.5.20 Counter routines

[SWS_Efx_00399] Definition of API function Efx_CounterSet_<InTypeMn> |

Service Name Efx_CounterSet_<InTypeMn>
Syntax void Efx_CounterSet_<InTypeMn> (
<InType>*x CounterVal,
<InType> Val
)
Service ID [hex] 0xD2 to 0xD4
Sync/Async Synchronous

AUTSSAR

JAN
Reentrancy Reentrant
Parameters (in) Val Initial value
Parameters (inout) CounterVal Pointer to input value
Parameters (out) None
Return value None
Description The CounterSet routines initialise counter value with initial value
» CounterVal = Val;
Available via Efx.h

]

[SWS_Efx_00404] [Here is the list of implemented functions. |

Service ID[hex]

Syntax

0xD2 void Efx_CounterSet_u16 (uint16*, uint16)
0xD3 void Efx_CounterSet_u32 (uint32*, uint32)
0xD4 void Efx_CounterSet_u8 (uint8*, uint8)

[SWS_Efx_00400]
TypeMn> |

Definition of API function Efx_Counter_<InTypeMn>_<Out

Service Name

Efx_Counter_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_Counter_<InTypeMn>_<OutTypeMn> (
<InType> x CounterVal

)
Service ID [hex] 0xD5 to 0xD7
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) CounterVal | Pointer to input value
Parameters (out) None
Return value <OutType> ‘ Returns value is the new value of the parameter CounterVal.

Description

The counter routines increments the value of the parameter CounterVal by 1.

Available via

Efx.h

]

[SWS_Efx_00401] [The return value is the new value of the parameter CounterVal.

* CounterVal ++;

Return value = *CounterVal; |

[SWS_Efx_00402] [In case of saturation, counter value shall not be reset to 0 and
shall not be incremented.

Return value = Saturated value of the counter data type |

[SWS_Efx_00403] [Here is the list of implemented functions. |

AUTSSAR

Service ID[hex] Syntax

0xD5 uint8 Efx_Counter_u8_u8 (uint8 *)
0xD6 uint16 Efx_Counter_u16_u16 (uint16 *)
0xD7 uint32 Efx_Counter_u32_u32 (uint32 *)

8.5.21 Flip-Flop routine

[SWS_Efx_00405] Definition of API function Efx_RSFlipFlop [

Service Name Efx_RSFlipFlop
Syntax boolean Efx_RSFlipFlop (
boolean R_Val,
boolean S_Val,
booleanx State_Val
)
Service ID [hex] OxEF
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) R_Val Reset switch - changes the flip flop state to FALSE
S_Val Set switch - changes the flip flop state to TRUE
Parameters (inout) State_Val Pointer to flip-flop state variable
Parameters (out) None
Return value boolean Returns the new state of the flip flop
Description RS flip flop can be set and reset via input switches R_Val and S_Val.
Available via Efx.h

]

[SWS_Efx_00406] [The reset switch is higher prior than the set switch,

e.g. R _Val = TRUE,
S_Val = TRUE
Then state and return value = FALSE |

[SWS_Efx_00407] [Reset condition :
R_Val = TRUE,

S_Val = FALSE

Then state and return value = FALSE |
[SWS_Efx_00408] [Set condition :
R_Val = FALSE,

S_Val = TRUE

Then state and return value = TRUE |

AUTSSAR

[SWS_Efx_00409] [Invalid condition :
R_Val = FALSE,
S Val = FALSE

Then state and return value are unchanged |

8.5.22 Limiter routines

[SWS_Efx_00410] Definition of API function Efx_TypeLimiter_<InTypeMn>_<Out
TypeMn> |

Service Name

Efx_TypeLimiter_<InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_Typelimiter_<InTypeMn>_<OutTypeMn> (
<InType> Input_Val
)
Service ID [hex] 0xD8 to 0xE9, 0x0125 to 0x0132
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Input_Val | Input value to be limited
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ Returns the limited value for input

Description

limiter routine

Available via

Efx.h

]

[SWS_Efx_00411] [Input value shall be saturated according to the data type of the

return parameter.

e.g. If return type is sint16 and input data range is uint32, then output value will be

limited to sint16 data range. |

[SWS_Efx_00412]

Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS 00009, SRS _LIBS 00011

[Here is the list of implemented functions. |

Service ID[hex] Syntax

0xD8 uint8 Efx_TypeLimiter_s32_u8 (sint32)
0xD9 uint16 Efx_TypelLimiter_s32_u16 (sint32)
0xDA uint32 Efx_TypelLimiter_s32_u32 (sint32)
0xDB sint8 Efx_TypeLimiter_s32_s8 (sint32)
0xDC sint16 Efx_TypeLimiter_s32_s16 (sint32)
0xDD uint8 Efx_TypeLimiter_u32_u8 (uint32)
0xDE uint16 Efx_TypeLimiter_u32_u16 (uint32)

AUTSSAR

A
Service ID[hex] Syntax
0xDF sint32 Efx_TypeLimiter_u32_s32 (uint32)
0xEO sint8 Efx_TypeLimiter_u32_s8 (uint32)
OxE1 sint16 Efx_TypeLimiter_u32_s16 (uint32)
OxE2 uint8 Efx_TypeLimiter_s16_u8 (sint16)
O0xE3 uint16 Efx_TypeLimiter_s16_u16 (sint16)
OxE4 sint8 Efx_TypeLimiter_s16_s8 (sint16)
OxE5 uint8 Efx_TypeLimiter_u16_u8 (uint16)
0xE6 sint8 Efx_TypeLimiter_u16_s8 (uint16)
OxE7 sint16 Efx_TypeLimiter_u16_s16 (uint16)
OxE8 uint8 Efx_TypeLimiter_s8_u8 (sint8)
0xE9 sint8 Efx_TypeLimiter_u8_s8 (uint8)
0x125 sint8 Efx_TypeLimiter_s64_s8(sint64)
0x126 uint8 Efx_TypeLimiter_s64_u8(sint64)
0x127 sint16 Efx_TypeLimiter_s64_s16(sint64)
0x128 uint16 Efx_TypeLimiter_s64_u16(sint64)
0x129 sint32 Efx_TypeLimiter_s64_s32(sint64)
0x12A uint32 Efx_TypeLimiter_s64_u32(sint64)
0x12B uint64 Efx_TypeLimiter_s64_u64(sint64)
0x12C sint8 Efx_TypeLimiter_u64_s8(uint64)
0x12D uint8 Efx_TypeLimiter_u64_u8(uint64)
0x12E sint16 Efx_TypeLimiter_u64_s16(uint64)
0x12F uint16 Efx_TypeLimiter_u64_u16(uint64)
0x130 sint32 Efx_TypeLimiter_u64_s32(uint64)
0x131 uint32 Efx_TypeLimiter_u64_u32(uint64)
0x132 sint64 Efx_TypeLimiter_u64_s64(uint64)

8.5.23 64 bits functions
8.5.23.1 General requirements

The usage of 64bits data must remain an exception in the code if the requirement
cannot be reached by another mean.

AUTSSAR

8.5.23.2 Absolute value

[SWS_Efx_10001] Definition of API function Efx_Abs_<InTypeMni>_<OutType

Mn>

Upstream requirements: SRS_LIBS 00005, SRS _LIBS 00009, SRS_LIBS_ 00011

[

Service Name

Efx_Abs_<InTypeMn1>_<OutTypeMn>

Syntax <OutType> Efx_Abs_<InTypeMnl>_<OutTypeMn> (
<InTypel> x_value
)
Service ID [hex] 0x0110 to 0x0111
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value | First argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> ‘ Result of the interpolation

Description

This routine computes the absolute value of a signed value

Available via

Efx.h

]

[SWS_Efx_10002] |
This routine computes the absolute value of a signed value: Return-value = |x_value| |

[SWS_Efx_10003] [

Return-value shall be saturated to boundary values in the event of negative or positive
overflow. |

[SWS_Efx_10004] [Here is the list of implemented functions. |

[SWS_Efx_10005]
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

[

Service ID[hex]

Service prototype
0x110 sint64 Efx_Abs_s64_s64(sint64)
0x111 uint64 Efx_Abs_s64_u64(sint64)

AUTSSAR

8.5.23.3 Additions

[SWS_Efx 00423]
Mn>_<OutTypeMn>

Definition of APl function Efx_Add_<InTypeMn><InType
[

Service Name

Efx_Add_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_Add_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> x_value,
<InType> y_value
)
Service ID [hex] 0xFO to 0xF2
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation

Description

This service makes an addition between the two arguments
The addition is protected against the overflow.

Available via

Efx.h

]

[SWS_Efx_00424] [Return value = x_value + y_value |

[SWS_Efx_00843] [

Return-value shall be saturated to boundary values in the event

of negative or positive overflow. |

[SWS_Efx_00425]

Upstream requirements: SRS_LIBS 00005, SRS _LIBS 00009, SRS_LIBS_00011

[Here is the list of im

plemented functions. |

Service ID[hex]

Syntax

0xFO sint64 Efx_Add_s64s32_s64(sint64, sint32)
OxF1 sint64 Efx_Add_s64u32_s64(sint64, uint32)
0xF2 sint64 Efx_Add_s64s64_s64(sint64, sint64)
0x112 uint64 Efx_Add_u64ub4_ub4(uint64, uint64)

AUTSSAR

8.5.23.4 Subtractions

[SWS_Efx_10006]

Definition of API function Efx_Sub_<InTypeMn1><InType

Mn2>_<OutTypeMn>
Upstream requirements: SRS_LIBS 00005, SRS _LIBS 00009, SRS_LIBS_ 00011

[
Service Name Efx_Sub_<InTypeMn1><InTypeMn2>_<OutTypeMn>
Syntax <OutType> Efx_Sub_<InTypeMnl><InTypeMn2>_<OutTypeMn> (
<InTypel> x_value,
<InType2> y_value
)
Service ID [hex] 0x0113 to 0x0116
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the interpolation
Description This routine makes a subtraction between the two arguments.
Available via Efx.h

]
[SWS_Efx_10007] [
This routine makes a subtraction between the two arguments:

Return-value = x_value - y_value. |

[SWS_Efx_10008] [

Return-value shall be saturated to boundary values in the event of negative or positive
overflow. |

[SWS_Efx_10009] [Here is the list of implemented functions. |

[SWS_Efx_10010]
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

Service ID[hex] Routine prototype

0x113 sint64 Efx_Sub_s64s32_s64(sint64, sint32)
0x114 sint64 Efx_Sub_s64u32_s64(sint64, uint32)
0x115 sint64 Efx_Sub_s64s64_s64(sint64, sint64)
0x116 uint64 Efx_Sub_u64u64_ub4(uint64, uint64)

AUTSSAR

8.5.23.5 Multiplications

[SWS_Efx_00426]

Definition of API function Efx_Mul_<InTypeMn><InType

Mn>_<OutTypeMn> |

Service Name

Efx_Mul_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_Mul_ <InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> x_value,
<InType> y_value
)
Service ID [hex] 0xF3 to 0xF5
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation

Description

This service makes a multiplication between the two arguments
The multiplication is protected against the overflow.

Available via

Efx.h

]

[SWS_Efx_00427] [Return value = x_value * y_value |

[SWS_Efx_00844] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Efx_00428] Here is the list of implemented functions.
Upstream requirements: SRS_LIBS 00005, SRS _LIBS 00009, SRS_LIBS_00011

Service ID[hex]

Syntax

0xF3

sint64 Efx_Mul_s64u32_s64(sint64, uint32)

(
0xF4 sint64 Efx_Mul_s64s32_s64(sint64, sint32)
0xF5 sint64 Efx_Mul_s64s64_s64(sint64, sint64)
0x117 uint64 Efx_Mul_u64u32_u64(uint64, uint32)
0x118 uint64 Efx_Mul_u64u64_u64(uint64, uint64)

AUTSSAR

8.5.23.6 Division

[SWS_Efx_00429]

Definition of API function Efx_Div_<InTypeMn><InType

Mn>_<OutTypeMn> |

Service Name

Efx_Div_<InTypeMn><InTypeMn>_<OutTypeMn>

Syntax <OutType> Efx_Div_<InTypeMn><InTypeMn>_<OutTypeMn> (
<InType> x_value,
<InType> y_value
)
Service ID [hex] 0xF6 to 0xFB
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value First argument
y_value Second argument
Parameters (inout) None
Parameters (out) None
Return value <OutType> Result of the calculation

Description

These services make a division between the two arguments

Available via

Efx.h

]

[SWS_Efx_00430] [Return value = x_value / y_value|

[SWS_Efx_00431] [The result after division by zero is defined by:

If x_value > 0 then the function returns the maximum value of the output type

If x_value < 0 then the function returns the minimum value of the output type |

[SWS_Efx_00433] [The result is rounded towards O. |

[SWS_Efx_00845] [Return-value shall be saturated to boundary values in the event
of negative or positive overflow. |

[SWS_Efx_00434]

Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

Service ID[hex] Syntax

OxF6 sint64 Efx_Div_s64u32_s64(sint64, uint32)
OxF7 sint64 Efx_Div_s64s32_s64(sint64, sint32)
0xF8 sint32 Efx_Div_s64s32_s32 (sint64, sint32)
0xF9 uint32 Efx_Div_s64s32_u32 (sint64, sint32)
OxFA sint32 Efx_Div_s64u32_s32 (sint64, uint32)
0xFB uint32 Efx_Div_s64u32_u32 (sint64, uint32)
0x119 uint32 Efx_Div_u64u32_u32 (uint64, uint32)
Ox11A sint32 Efx_Div_s64s32_s32(sint64, sint32)

AUTSSAR

A

Service ID[hex] Syntax

0x11B uint64 Efx_Div_u64u32_u64 (uint64, uint32)
0x11C sint64 Efx_Div_s64u32_s64(sint64, uint32)
0x11D sint64 Efx_Div_s64s32_s64(sint64, sint32)
Ox11E sint64 Efx_Div_s64u64_s64(sint64, uint64)
0x11F sint64 Efx_Div_u64s32_s64(uint64, sint32)
0x120 sint64 Efx_Div_s64s64_s64 (sint64, sint64)
0x121 uint64 Efx_Div_u64u64_u64 (uint64, uint64)
0x122 sint64 Efx_Div_u64s64_s64(uint64, sint64)

8.5.23.7 Modulo

[SWS_Efx_10015] Definition of API function Efx_Mod_<TypeMn>
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011

[

Service Name Efx_Mod_<TypeMn>
Syntax <Type> Efx_Mod_<TypeMn> (
<Type> x_value,
<Type> y_value
)
Service ID [hex] 0x0122 to 0x0123
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value Numerator
y_value Denominator
Parameters (inout) None
Parameters (out) None
Return value <Type> Result of the interpolation
Description This routine returns the remainder of the division x_value / y_value if y_value is not zero.
Available via Efx.h

]
[SWS_Efx_10011] [

IF y_value is zero, the result is zero. |

[SWS_Efx_10012] |

In other cases, Return-value = x_value mod y_value |

[SWS_Efx_10013] [The sign of the remainder is the same than the sign of x_value. |

AUTSSAR

[SWS_Efx_10014] Here is the list of implemented functions.
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

Service ID[hex] Routine prototype
0x122 uint64 Efx_Mod_u64u64_u64 (uint64, uint64)
0x123 sint64 Efx_Mod_s64s64_s64 (sint64, sint64)

8.5.23.8 Signum Function

[SWS_Efx_91002] Definition of API function Efx_Sgn_s64_s8
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

[
Service Name Efx_Sgn_s64_s8
Syntax sint8 Efx_Sgn_s64_s8 (
sint64 x_value
)
Service ID [hex] 0x0124
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) x_value | First argument
Parameters (inout) None
Parameters (out) None
Return value sint8 ‘ Sign of the first argument

Description

Signum function. Extract the sign of an integer value.

Available via

Efx.h

]

[SWS_Efx_00435] [

Extract the sign of an integer value. It is defined as follows:

Return-value = {-1, if x_value < 0; 0, if x_value == 0; 1, if x_value > 0} |

8.6 Callback notifications

None

8.7 Scheduled functions

The EfX library does not have scheduled functions.

AUTSSAR

8.8 Expected interfaces

None

8.8.1 Mandatory Interfaces

None

8.8.2 Optional Interfaces

None

8.8.3 Configurable interfaces

None

8.9 Version API
8.9.1 Efx_GetVersioninfo

[SWS_Efx_00815] Definition of API function Efx_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_

00321
[
Service Name Efx_GetVersioninfo
Syntax void Efx_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] Oxff
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]
Return value None
Description Returns the version information of this library.
Available via Efx.h

]

The version information of a BSW module generally contains:

Module Id

AUTSSAR

Vendor Id
Vendor specific version numbers (SRS_BSW_00407).
[SWS_Efx_00816]

Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[If source code for caller and callee of Efx_GetVersioninfo is available, the Efx library
should realize Efx_GetVersionInfo as a macro defined in the module’s header file. |

AUTSSAR

9 Sequence diagrams

Not applicable.

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
EFXLibrary.

Chapter 10.3 specifies published information of the module EFXLibrary.

10.1 How to read this chapter

For details refer to [3] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

[SWS_Efx_00818]

Upstream requirements: SRS_LIBS_00001
[The Efx library shall not have any configuration options that may affect the functional
behavior of the routines. l.e. for a given set of input parameters, the outputs shall

be always the same. For example, the returned value in case of error shall not be
configurable. |

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

10.3 Published Information
For details refer to [3] Chapter 10.3 “Published Information”.

[SWS_Efx_00814]
Upstream requirements: SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379

[The standardized common published parameters as required by SRS_BSW_00402 in
the General Requirements on Basic Software Modules [5] shall be published within the
header file of this module and need to be provided in the BSW Module Description. The
according module abbreviation can be found in the List of Basic Software Modules. |

AUTSSAR

A Not applicable requirements

[SWS_Efx_00822]
Upstream requirements: SRS_BSW_00448

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R23-11

B.1.1 Added Specification Iltems in R23-11

none

B.1.2 Changed Specification Items in R23-11

none

B.1.3 Deleted Specification Iltems in R23-11

none

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11

none

B.2.2 Changed Specification Items in R24-11

[SWS_Efx_00007] [SWS_Efx_00023] [SWS_Efx_00027] [SWS_Efx_00031] [SWS_-
Efx_00036] [SWS_Efx_00410] [SWS_Efx_91002]

B.2.3 Deleted Specification Items in R24-11

none

AUTSSAR

B.3 Traceable item history of this document according to
AUTOSAR Release R25-11

B.3.1 Added Specification Iltems in R25-11

none

B.3.2 Changed Specification Items in R25-11
[SWS_Efx_00185] [SWS_Efx_00240] [SWS_Efx_00243] [SWS_Efx_00246]

B.3.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	7.2 Initialization and shutdown
	7.3 Using Library API
	7.4 library implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about rounding
	8.4 Comment about routines optimized for target
	8.5 Mathematical functions definitions
	8.5.1 First-order low-pass filter
	8.5.1.1 First computation
	8.5.1.2 Third computation

	8.5.2 First-order High-pass filter
	8.5.3 Controller routines
	8.5.3.1 Structure definitions for controller routines
	8.5.3.2 Proportional Controller
	8.5.3.3 Proportional controller with first order time constant
	8.5.3.4 Differential component with time delay : DT1
	8.5.3.5 Proportional and Differential controller
	8.5.3.6 Integral component
	8.5.3.7 Proportional and Integral controller
	8.5.3.8 Proportional, Integral and Differential controller

	8.5.4 Square root
	8.5.5 Exponential
	8.5.6 Average
	8.5.7 Array Average
	8.5.8 Moving Average
	8.5.9 Hypotenuse
	8.5.10 Trigonometric functions
	8.5.10.1 Sine function
	8.5.10.2 Cosine function
	8.5.10.3 Inverse Sine function
	8.5.10.4 Inverse cosine function

	8.5.11 Rate limiter
	8.5.12 Ramp routines
	8.5.12.1 Ramp routine
	8.5.12.2 Ramp Initialisation
	8.5.12.3 Ramp Set Slope
	8.5.12.4 Ramp out routines
	8.5.12.5 Ramp Jump routine
	8.5.12.6 Ramp switch routine
	8.5.12.7 Get Ramp Switch position
	8.5.12.8 Check Ramp Activity

	8.5.13 Hysteresis routines
	8.5.13.1 Hysteresis
	8.5.13.2 Hysteresis center half delta
	8.5.13.3 Hysteresis left right
	8.5.13.4 Hysteresis delta right
	8.5.13.5 Hysteresis left delta

	8.5.14 Debounce routines
	8.5.14.1 Efx_Debounce
	8.5.14.2 Efx_DebounceInit
	8.5.14.3 Efx_DebounceSetparam

	8.5.15 Ascending Sort Routine
	8.5.16 Descending Sort Routine
	8.5.17 Median sort routine
	8.5.18 Edge detection routines
	8.5.18.1 Edge bipol detection
	8.5.18.2 Edge falling detection
	8.5.18.3 Edge rising detection

	8.5.19 Interval routines
	8.5.19.1 Interval Closed
	8.5.19.2 Interval Open
	8.5.19.3 Interval Left Open
	8.5.19.4 Interval Right Open

	8.5.20 Counter routines
	8.5.21 Flip-Flop routine
	8.5.22 Limiter routines
	8.5.23 64 bits functions
	8.5.23.1 General requirements
	8.5.23.2 Absolute value
	8.5.23.3 Additions
	8.5.23.4 Subtractions
	8.5.23.5 Multiplications
	8.5.23.6 Division
	8.5.23.7 Modulo
	8.5.23.8 Signum Function

	8.6 Callback notifications
	8.7 Scheduled functions
	8.8 Expected interfaces
	8.8.1 Mandatory Interfaces
	8.8.2 Optional Interfaces
	8.8.3 Configurable interfaces

	8.9 Version API
	8.9.1 Efx_GetVersionInfo

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R25-11
	B.3.1 Added Specification Items in R25-11
	B.3.2 Changed Specification Items in R25-11
	B.3.3 Deleted Specification Items in R25-11

