
Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Document Title Specification of EEPROM
Abstraction

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 287

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Removed redundant memory layout
table

• Editorial changes

2024-11-27 R24-11
AUTOSAR
Release
Management

• Remove the up-trace to
SRS_BSW_00334 from
SWS_Ea_NA_00999.

2023-11-23 R23-11
AUTOSAR
Release
Management

• Editorial Changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• Removal of obsolete items from R21-11

• Editorial changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• Ea_SetMode() service is removed.

• Ea_Cancel() service is now
asynchronous.

• Added support for buffer alignment for
read and write operations.

• Replaced Eep by MemAcc module as
lower layer API interface to Ea.

2020-11-30 R20-11
AUTOSAR
Release
Management

• EA_E_INIT_FAILED is removed

2019-11-28 R19-11
AUTOSAR
Release
Management

• Configuration layouts added

• Changed Document Status from Final to
published

▽

1 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Introduction of runtime errors

• Set MEMIF_BUSY in Ea_InvalidateBlock
and in Ea_EraseImmediateBlock

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Rules for request acceptance/rejection
and related error reporting updated

• Updated tracing information

• Range / limits on main function changed

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Error classification reworked

• Debug support marked as obsolete

• Parameter ranges corrected

• Job result clarified if requested block
can’t be found

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Requirements linked to BSW features,
general and module specific
requirements

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Editorial changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Timing requirement removed from
module’s main function

• "const" qualifier Added to prototype of
function Ea_Write

• New configuration parameter
EaMainFunctionPeriod

• Fls_GetStatus returns MEMIF_UNINIT if
module is not initialized

• Editorial changes

• Removed chapter(s) on change
documentation

▽

2 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△

2013-03-15 4.1.1 AUTOSAR
Administration

• Reworked according to the new
SWS_BSWGeneral

• Scope attribute in tables in chapter 10
added

• Published parameter
EaMaximumBlockingTime deprecated

• Configuration parameter EaIndex
deprecated

2011-12-22 4.0.3 AUTOSAR
Administration

• Introduced parameter checks and
corresponding DET errors

• Handling of internal management
operations detailed

• Module short name changed

2010-09-30 3.1.5 AUTOSAR
Administration

• Check fpr NULL pointer added

• Inter module checks detailed

• Description of return values clarified

2010-02-02 3.1.4 AUTOSAR
Administration

• Configuration variants clarified

• Multiplicity of notification routines
corected

• Job result handling re-formulated

• File include structure changed

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• EA_MAXIMUM_BLOCKING_TIME as
published parameter

• Small reformulations resulting from table
generation

• Tables in chapters 8 and 10 generated
from UML model

• Document meta information extended

• Small layout adaptations made
▽

3 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△

2007-01-24 2.1.15 AUTOSAR
Administration

• File include structure updated

• API of initialization function adapted

• Range of EA block numbers adapted

• Legal disclaimer revised

• Release Notes added

• "Advice for users" revised

• "Revision Information" added

2006-05-16 2.0 AUTOSAR
Administration

• Initial release

4 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 8

2 Acronyms and Abbreviations 9

3 Related documentation 10
3.1 Input documents & related standards and norms 10
3.2 Related specification . 10

4 Constraints and assumptions 11
4.1 Limitations . 11
4.2 Applicability to car domains . 11

5 Dependencies to other modules 12

6 Requirements Tracing 13

7 Functional specification 15
7.1 General behavior . 15

7.1.1 Addressing scheme and segmentation 15
7.1.2 Address calculation . 16
7.1.3 Limitation of erase / write cycles . 17
7.1.4 Handling of "immediate" data . 18
7.1.5 Managing block consistency information 18
7.1.6 Buffer Alignment . 19

7.2 Error Classification . 19
7.2.1 Development Errors . 19
7.2.2 Runtime Errors . 19
7.2.3 Production Errors . 19
7.2.4 Extended Production Errors . 20

8 API specification 21
8.1 Imported types . 21
8.2 Type definitions . 21
8.3 Function definitions . 22

8.3.1 Ea_Init . 22
8.3.2 Ea_Read . 23
8.3.3 Ea_Write . 25
8.3.4 Ea_Cancel . 27
8.3.5 Ea_GetStatus . 28
8.3.6 Ea_GetJobResult . 29
8.3.7 Ea_InvalidateBlock . 31
8.3.8 Ea_GetVersionInfo . 32
8.3.9 Ea_EraseImmediateBlock . 33

8.4 Callback notifications . 35
8.4.1 Ea_JobEndNotification . 35

6 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

8.5 Scheduled functions . 36
8.5.1 Ea_MainFunction . 36

8.6 Expected interfaces . 37
8.6.1 Mandatory Interfaces . 37
8.6.2 Optional Interfaces . 38
8.6.3 Configurable interfaces . 38

9 Sequence diagrams 41
9.1 Ea_Init . 41
9.2 Ea_Write . 41
9.3 Ea_Cancel . 42

10 Configuration specification 45
10.1Containers and configuration parameters 45

10.1.1 Ea . 45
10.1.2 EaGeneral . 46
10.1.3 EaBlockConfiguration . 50

10.2Published Information . 54
10.2.1 EaPublishedInformation . 54

A Not applicable requirements 56

B Change history of AUTOSAR traceable items 57
B.1 Traceable item history of this document according to AUTOSAR Release

R25-11 . 57
B.1.1 Added Specification Items in R25-11 57
B.1.2 Changed Specification Items in R25-11 57
B.1.3 Deleted Specification Items in R25-11 57

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . 57

B.2.1 Added Specification Items in R24-11 57
B.2.2 Changed Specification Items in R24-11 57
B.2.3 Deleted Specification Items in R24-11 57

7 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

1 Introduction and functional overview

This specification describes the functionality, API and configuration of the EEPROM
Abstraction Layer (see Figure 1.1).

Figure 1.1: Module overview of memory hardware abstraction layer

The EEPROM Abstraction (EA) abstracts from the device specific addressing scheme
and segmentation and provides the upper layers with a virtual addressing scheme and
segmentation as well as a "virtually" unlimited number of erase cycles.

8 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

Acronyms and abbreviations which have a local scope and therefore are not contained
in the AUTOSAR glossary must appear in a local glossary.

Abbreviation /
Acronym:

Description:

Address Area Contiguous memory area in the logical address space
Typically multiple physical memory sectors are combined to one
logical address area.

EA EEPROM Abstraction

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here it’s bit.

Mem Memory Driver

MemAcc Memory Access

MemIf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here it’s bit.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

NVRAM block Management unit as seen by the NVRAM Manager

(Logical) block Smallest writable / erasable unit as seen by the modules user. Consists of one or more virtual
pages.

Virtual page May consist of one or several physical pages to ease handling of logical blocks and address
calculation.

Internal residue Unused space at the end of the last virtual page if the configured block size isn’t an integer
multiple of the virtual page size.

Virtual address Consisting of 16 bit block number and 16 bit offset inside the logical block.

Physical address Address information in device specific format (depending on the underlying EEPROM driver and
device) that is used to access a logical block.

Dataset Concept of the NVRAM manager: A user addressable array of blocks of the same size.
E.g. could be used to provide different configuration settings for the CAN driver (CAN IDs, filter
settings, ...) to an ECU which has otherwise identical application software (e.g. door module).

Redundant copy Concept of the NVRAM manager: Storing the same information twice to enhance reliability of
data storage.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

9 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[2] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_CP_RS_MemoryHWAbstractionLayer

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [1], which is
also valid for EEEPROM Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for EEEPROM Abstraction.

10 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

11 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

5 Dependencies to other modules

This module depends on the capabilities of the underlying EEPROM driver as well as
the configuration of the NVRAM manager.

12 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

6 Requirements Tracing

The following tables reference the requirements specified in [1] and [2], and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[SRS_BSW_00101] The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Ea_00017] [SWS_Ea_00084]

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Ea_00065] [SWS_Ea_00135]
[SWS_Ea_00147] [SWS_Ea_00148]
[SWS_Ea_00149] [SWS_Ea_00152]
[SWS_Ea_00158] [SWS_Ea_00159]
[SWS_Ea_00161] [SWS_Ea_00162]
[SWS_Ea_00164] [SWS_Ea_00167]
[SWS_Ea_00168] [SWS_Ea_00169]
[SWS_Ea_00170] [SWS_Ea_00172]
[SWS_Ea_00173] [SWS_Ea_00175]
[SWS_Ea_00176]

[SRS_BSW_00373] The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Ea_00096]

[SRS_BSW_00385] List possible error notifications [SWS_Ea_00099] [SWS_Ea_00100]

[SRS_BSW_00392] Parameters shall have a type [SWS_Ea_00083] [SWS_Ea_00117]

[SRS_BSW_00406] API handling in uninitialized state [SWS_Ea_00035] [SWS_Ea_00128]
[SWS_Ea_00130] [SWS_Ea_00131]
[SWS_Ea_00132] [SWS_Ea_00134]
[SWS_Ea_00136] [SWS_Ea_00171]
[SWS_Ea_00178]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Ea_00092]

[SRS_BSW_00414] Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Ea_00190] [SWS_Ea_00191]

[SRS_MemHwAb_
14001]

The FEE and EA modules shall allow
the configuration of the alignment of
the start and end addresses of logical
blocks

[SWS_Ea_00005] [SWS_Ea_00068]
[SWS_Ea_00075] [SWS_Ea_00137]

[SRS_MemHwAb_
14002]

The FEE and EA modules shall allow
the configuration of a required
number of write cycles for each
logical block

[SWS_Ea_00080]

[SRS_MemHwAb_
14005]

The FEE and EA modules shall
provide upper layer modules with a
virtual 32bit address space

[SWS_Ea_00066] [SWS_Ea_00075]

[SRS_MemHwAb_
14006]

The start address for a block erase or
write operation shall always be
aligned to the virtual 64K boundary

[SWS_Ea_00024]

[SRS_MemHwAb_
14007]

The start address and length for
reading a block shall not be limited to
a certain alignment

[SWS_Ea_00021]

▽

13 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_MemHwAb_
14009]

The FEE and EA modules shall
provide a conversion between the
logical linear addresses and the
physical memory addresses

[SWS_Ea_00007] [SWS_Ea_00021]
[SWS_Ea_00024] [SWS_Ea_00036]
[SWS_Ea_00063]

[SRS_MemHwAb_
14010]

The FEE and EA modules shall
provide a write service that operates
only on complete configured logical
blocks

[SWS_Ea_00087] [SWS_Ea_00151]
[SWS_Ea_00159] [SWS_Ea_00181]

[SRS_MemHwAb_
14012]

Spreading of write access [SWS_Ea_00079]

[SRS_MemHwAb_
14013]

Writing of immediate data shall not be
delayed by internal management
operations nor by erasing the
memory area to be written to

[SWS_Ea_00025]

[SRS_MemHwAb_
14014]

The FEE and EA modules shall
detect possible data inconsistencies
due to aborted / interrupted write
operations

[SWS_Ea_00046] [SWS_Ea_00047]
[SWS_Ea_00188] [SWS_Ea_00189]

[SRS_MemHwAb_
14015]

The FEE and EA modules shall
report possible data inconsistencies

[SWS_Ea_00104]

[SRS_MemHwAb_
14016]

The FEE and EA modules shall not
return inconsistent data to the caller

[SWS_Ea_00104]

[SRS_MemHwAb_
14026]

The block numbers 0x0000 and 0x
FFFF shall not be used

[SWS_Ea_00006]

[SRS_MemHwAb_
14028]

The FEE and EA modules shall
provide a service to invalidate a
logical block

[SWS_Ea_00037] [SWS_Ea_00074]
[SWS_Ea_00091] [SWS_Ea_00194]

[SRS_MemHwAb_
14029]

The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical block

[SWS_Ea_00022] [SWS_Ea_00086]
[SWS_Ea_00158] [SWS_Ea_00179]

[SRS_MemHwAb_
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_Ea_00077] [SWS_Ea_00078]
[SWS_Ea_00088] [SWS_Ea_00160]

[SRS_MemHwAb_
14032]

The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

[SWS_Ea_00063] [SWS_Ea_00064]
[SWS_Ea_00065] [SWS_Ea_00093]
[SWS_Ea_00104]

Table 6.1: Requirements Tracing

14 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

7 Functional specification

7.1 General behavior

[SWS_Ea_00137]
Upstream requirements: SRS_MemHwAb_14001

⌈The EEPROM Abstraction (EA) shall only accept one job at a time, i.e. the module
shall not provide a queue for pending jobs (that’s the job of the NVRAM Manager).⌋

Note: Since the NvM is the only caller for this module and in order to keep this module
reasonably small, the modules functions shall not check, whether the module is cur-
rently busy or not. It is the responsibility of the NvM to serialize the pending jobs and
only start a new job after the previous one has been finished or canceled.

7.1.1 Addressing scheme and segmentation

The EEPROM Abstraction (EA) provides upper layers with a 32bit virtual linear address
space and uniform segmentation scheme. This virtual 32bit addresses consists of

• a 16bit block number - allowing a (theoretical) number of 65536 logical blocks

• a 16bit block offset - allowing a (theoretical) block size of 64Kbyte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The
values for this address alignment can be derived from that of the underlying EEPROM
driver and device. This virtual paging is configurable via the parameter EA_VIRTUAL_
PAGE_SIZE.

[SWS_Ea_00075]
Upstream requirements: SRS_MemHwAb_14001, SRS_MemHwAb_14005

⌈The configuration of the Ea module shall be such that the virtual page size (defined
in EA_VIRTUAL_PAGE_SIZE) is an integer multiple of the physical page size, i.e. it is
not allowed to configure a smaller virtual page than the actual physical page size.⌋

Example:

The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

Note: This specification requirement allows the physical start address of a logical block
to be calculated rather than making a lookup table necessary for the address mapping.

15 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00005]
Upstream requirements: SRS_MemHwAb_14001

⌈Each configured logical block shall take up an integer multiple of the configured virtual
page size EaVirtualPageSize.⌋

Example: If the virtual page size is configured to be eight bytes, logical blocks can be
of size 8, 16, 24, 32, ... bytes but not e.g. 10, 20, 50, ... bytes.

[SWS_Ea_00068]
Upstream requirements: SRS_MemHwAb_14001

⌈Logical blocks must not overlap each other and must not be contained within one
another.⌋

[SWS_Ea_00006]
Upstream requirements: SRS_MemHwAb_14026

⌈The block numbers 0x0000 and 0xFFFF shall not be configurable for a logical block
EaBlockNumber.⌋

7.1.2 Address calculation

[SWS_Ea_00007]
Upstream requirements: SRS_MemHwAb_14009

⌈Depending on the implementation of the EA module and the exact address format
used, the functions of the EA module shall combine the 16bit block number and 16bit
block offset to derive the physical EEPROM address needed for the underlying EEP-
ROM driver.⌋

Note: The exact address format needed by the underlying EEPROM driver and there-
fore the mechanism how to derive the physical EEPROM address from the given 16bit
block number and 16bit block offset depends on the EEPROM device and the imple-
mentation of the EEPROM device driver and can therefore not be specified in this
document.

[SWS_Ea_00066]
Upstream requirements: SRS_MemHwAb_14005

⌈Only those bits of the 16bit block number, that do not denote a specific dataset or
redundant copy shall be used for address calculation.⌋

Note: Since this information is needed by the NVRAM manager, the number of bits
to encode this can be configured for the NVRAM manager with the parameter NVM_
DATASET_SELECTION_BITS.

16 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Example: Dataset information is configured to be encoded in the four LSB’s of the
16bit block number (allowing for a maximum of 16 datasets per NVRAM block and a
total of 4094 NVRAM blocks). An implementer decides to store all datasets of a logical
block directly adjacent and using the length of the block and a pointer to access each
dataset. To calculate the start address of the block (the address of the first dataset)
she/he uses only the 12 MSB’s, to access a specific dataset she/he adds the size of the
block multiplied by the dataset index (the four LSB’s) to this start address (Figure 7.1).

Figure 7.1: Block number and dataset index

7.1.3 Limitation of erase / write cycles

[SWS_Ea_00079]
Upstream requirements: SRS_MemHwAb_14012

⌈The configuration of the Ea module shall define the expected number of erase/write
cycles for each logical block in the configuration parameter EaNumberOfWriteCycles.⌋

[SWS_Ea_00080]
Upstream requirements: SRS_MemHwAb_14002

⌈If the underlying EEPROM device or device driver does not provide at least the con-
figured number of erase/write cycles per physical memory cell (given in the parame-
ter EepAllowedWriteCycles), the EA module shall provide mechanisms to spread the
erase/ write access such that the physical device is not overstressed. This shall also
apply to all management data used internally by the EA module.⌋

Example: The logical block number 1 is configured for an expected 500.000 write
cycles, the underlying EEPROM device and device driver are only specified for 100.000
erase cycles. In this case the EA module has to provide (at least) five separate memory
areas and alternate the access between those areas internally, so that each physical
memory location is only erased for a maximum of the specified 100.000 cycles.

17 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

7.1.4 Handling of "immediate" data

Blocks, containing immediate data, have to be written instantaneously, i.e. such blocks
shall be writable without the need, to first erase the corresponding memory area (e.g.
by using pre-erased memory). An ongoing lower priority read / erase / write or compare
job shall be canceled by the NVRAM manager before immediate data is written.

Note: A running operation on the hardware (e.g. writing one page or erasing one
sector) can usually not be aborted once it has been started. The maximum time of the
longest hardware operation thus has to be accepted as delay even for immediate data.

Example: Three blocks with 10 bytes each have been configured for immediate data.
The EA module / configuration tool reserves these 30 bytes (plus the implementation
specific overhead per block / page if needed) for use by this immediate data only. That
is this memory area shall not be used for storage of other data blocks.

Now, the NVRAM manager has requested the EA module to write a data block of 100
bytes. While this block is being written a situation occurs that one (or several) of the
immediate data blocks need to be written. Therefore the NVRAM manager cancels the
ongoing write request and subsequently issues the write request for the (first) block
containing immediate data. The cancelation of the ongoing write request is performed
synchronously by the EA module and the underlying EEPROM driver that is the write
request for the immediate data can be started without any further delay. However,
before the first bytes of immediate data can be written, the EA module respectively the
underlying EEPROM driver have to wait for the end of an ongoing hardware access
from the previous write request (e.g. writing of a page, erasing of a sector, transfer via
SPI, ...).

7.1.5 Managing block consistency information

[SWS_Ea_00046]
Upstream requirements: SRS_MemHwAb_14014

⌈The Ea module shall manage for each block the information, whether this block is
"correct" from the point of view of the EA module or not. This consistency information
shall only concern the internal handling of the block, not the block’s contents.⌋

[SWS_Ea_00047]
Upstream requirements: SRS_MemHwAb_14014

⌈When a block write operation is started the EA module shall mark the corresponding
block as inconsistent 1. Upon the successful end of the block write operation, the EA
module shall mark the block as consistent (again).⌋

1This does not necessarily mean a write operation on the physical device. If there are other means
to detect the consistency of a logical block, changing the management information stored with the block
shall be avoided.

18 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Ea_InvalidateBlock ser-
vice, i.e. the EA module shall be able to distinguish between an inconsistent block and
a block that has been deliberately invalidated by the upper layer.

7.1.6 Buffer Alignment

[SWS_Ea_00197] ⌈The Ea shall align internal buffers to the EaBufferAlignmentValue
Ref.⌋

[SWS_Ea_00198] ⌈The Ea shall align read request to the EaMinimumReadPageSize.⌋

7.2 Error Classification

7.2.1 Development Errors

[SWS_Ea_91001] Definition of development errors in module Ea ⌈
Type of error Related error code Error value

API service called while module is not (yet)
initialized

EA_E_UNINIT 0x01

API service called with invalid block number EA_E_INVALID_BLOCK_NO 0x02

API service called with invalid block offset EA_E_INVALID_BLOCK_OFS 0x03

API service called with invalid pointer argument EA_E_PARAM_POINTER 0x04

API service called with invalid block length
information

EA_E_INVALID_BLOCK_LEN 0x05

⌋

7.2.2 Runtime Errors

[SWS_Ea_91002] Definition of runtime errors in module Ea ⌈
Type of error Related error code Error value

API service called while module is busy EA_E_BUSY 0x06

Ea_Cancel called while no job was pending EA_E_INVALID_CANCEL 0x08

⌋

7.2.3 Production Errors

There are no production errors.

19 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

7.2.4 Extended Production Errors

There are no extended production errors.

20 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

8 API specification

8.1 Imported types

[SWS_Ea_00083] Definition of imported datatypes of module Ea
Upstream requirements: SRS_BSW_00392

⌈
Module Header File Imported Type

MemAcc_GeneralTypes.h MemAcc_AddressAreaIdType

MemAcc_GeneralTypes.h MemAcc_AddressType

MemAcc_GeneralTypes.h MemAcc_DataType

MemAcc_GeneralTypes.h MemAcc_JobResultType

MemAcc

MemAcc_GeneralTypes.h MemAcc_LengthType

MemIf.h MemIf_JobResultTypeMemIf

MemIf.h MemIf_StatusType

Std_Types.h Std_ReturnTypeStd

Std_Types.h Std_VersionInfoType

⌋

[SWS_Ea_00117]
Upstream requirements: SRS_BSW_00392

⌈The types mentioned in SWS_Ea_00083 shall not be changed or extended for a spe-
cific EA module or hardware platform.⌋

8.2 Type definitions

[SWS_Ea_00190] Definition of datatype Ea_ConfigType
Upstream requirements: SRS_BSW_00414

⌈
Name Ea_ConfigType

Kind Structure

implementation specific

Type –

Elements

Comment –

Description Configuration data structure of the Ea module.

Available via Ea.h

⌋

21 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

8.3 Function definitions

8.3.1 Ea_Init

[SWS_Ea_00084] Definition of API function Ea_Init
Upstream requirements: SRS_BSW_00101

⌈
Service Name Ea_Init

Syntax void Ea_Init (
const Ea_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to the selected configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description Initializes the EEPROM abstraction module.

Available via Ea.h

⌋

[SWS_Ea_00191]
Upstream requirements: SRS_BSW_00414

⌈The configuration pointer ConfigPtr shall always have a NULL_PTR value.⌋

Note: the Configuration pointer ConfigPtr is currently not used and shall therefore be
set NULL_PTR value.

[SWS_Ea_00017]
Upstream requirements: SRS_BSW_00101

⌈The function Ea_Init shall shall set the module state from MEMIF_UNINIT to MEMIF_
BUSY_INTERNAL once it starts the module’s initialization.⌋

[SWS_Ea_00128]
Upstream requirements: SRS_BSW_00406

⌈If initialization is finished within Ea_Init, the function Ea_Init shall set the module state
from MEMIF_BUSY_INTERNAL to MEMIF_IDLE once initialization has been success-
fully finished.⌋

Note: The Ea module’s environment shall not call the function Ea_Init during a running
operation of the EA module.

22 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

8.3.2 Ea_Read

[SWS_Ea_00086] Definition of API function Ea_Read
Upstream requirements: SRS_MemHwAb_14029

⌈
Service Name Ea_Read

Syntax Std_ReturnType Ea_Read (
uint16 BlockNumber,
uint16 BlockOffset,
uint8* DataBufferPtr,
uint16 Length

)

Service ID [hex] 0x02

Sync/Async Asynchronous

Reentrancy Non Reentrant

BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

BlockOffset Read address offset inside the block

Parameters (in)

Length Number of bytes to read

Parameters (inout) None

Parameters (out) DataBufferPtr Pointer to data buffer

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the EA
module.

Description Reads Length bytes of block Blocknumber at offset BlockOffset into the buffer DataBufferPtr.

Available via Ea.h

⌋

[SWS_Ea_00021]
Upstream requirements: SRS_MemHwAb_14007, SRS_MemHwAb_14009

⌈The function Ea_Read shall take the block number and offset and calculate the cor-
responding memory read address.⌋

Note: The address offset and length parameter can take any value within the given
types range, this allows reading of an arbitrary number of bytes from an arbitrary ad-
dress inside a logical block.

[SWS_Ea_00072] ⌈The EA module shall execute the read operation asynchronously
within the EA module’s main function.⌋

[SWS_Ea_00022]
Upstream requirements: SRS_MemHwAb_14029

⌈If the current module status is MEMIF_IDLE or if the current module status is MEMIF_
BUSY INTERNAL, the function Ea_Read shall accept the read request, copy the given /
computed parameters to module internal variables, initiate a read job, set the EA mod-
ule status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING and return
with E_OK.⌋

23 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00179]
Upstream requirements: SRS_MemHwAb_14029

⌈If the current module status is MEMIF_UNINIT or MEMIF_BUSY, the function Ea_
Read shall reject the job request and return with E_NOT_OK.⌋

[SWS_Ea_00130]
Upstream requirements: SRS_BSW_00406

⌈If development error detection for the module EA is enabled: the function Ea_Read
shall check if the module state is MEMIF_UNINIT. If this is the case, the function Ea_
Read shall reject the read request, raise the development error EA_E_UNINIT and
return with E_NOT_OK.⌋

[SWS_Ea_00167]
Upstream requirements: SRS_BSW_00323

⌈The function Ea_Read shall check if the module state is MEMIF_BUSY. If this is the
case, the function Ea_Read shall reject the read request, raise the runtime error EA_
E_BUSY and return with E_NOT_OK.⌋

[SWS_Ea_00147]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Ea_Read shall
check whether the given block number is valid (i.e. inside the configured range). If this
is not the case, the function Ea_Read shall reject the read request, raise the develop-
ment error EA_E_INVALID_BLOCK_NO and return E_NOT_OK.⌋

[SWS_Ea_00168]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Ea_Read shall
check that the given block offset is valid (i.e. that it is less than the block length config-
ured for this block). If this is not the case, the function Ea_Read shall reject the read
request, raise the development error EA_E_INVALID_BLOCK_OFS and return with E_
NOT_OK.⌋

[SWS_Ea_00169]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Ea_Read shall
check that the given length information is valid, i.e. that the requested length informa-
tion plus the block offset do not exceed the block end address (block start address plus
configured block length). If this is not the case, the function Ea_Read shall reject the
read request, raise the development error EA_E_INVALID_BLOCK_LEN and return
with E_NOT_OK.⌋

24 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00170]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Ea_Read shall
check that the given data pointer is valid (i.e. that it is not NULL). If this is not the case,
the function Ea_Read shall reject the read request, raise the development error EA_
E_PARAM_POINTER and return with E_NOT_OK.⌋

[SWS_Ea_00158]
Upstream requirements: SRS_MemHwAb_14029, SRS_BSW_00323

⌈If a read request is rejected by the function Ea_Read, i.e. requirements SWS_
Ea_00130, SWS_Ea_00147, SWS_Ea_00167, SWS_Ea_00168, SWS_Ea_00169,
SWS_Ea_00170 or SWS_Ea_00179 apply, the function Ea_Read shall not change
the current module status or job result.⌋

8.3.3 Ea_Write

[SWS_Ea_00087] Definition of API function Ea_Write
Upstream requirements: SRS_MemHwAb_14010

⌈
Service Name Ea_Write

Syntax Std_ReturnType Ea_Write (
uint16 BlockNumber,
const uint8* DataBufferPtr

)

Service ID [hex] 0x03

Sync/Async Asynchronous

Reentrancy Non Reentrant

BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

Parameters (in)

DataBufferPtr Pointer to data buffer

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the EA
module.

Description Writes the contents of the DataBufferPtr to the block BlockNumber.

Available via Ea.h

⌋

[SWS_Ea_00024]
Upstream requirements: SRS_MemHwAb_14006, SRS_MemHwAb_14009

⌈The function Ea_Write shall take the block number and calculate the corresponding
memory write address. The block offset shall be fixed to zero for this address calcula-
tion.⌋

25 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00151]
Upstream requirements: SRS_MemHwAb_14010

⌈The function Ea_Write shall set the length parameter for the write job to the length
configured for this logical block.⌋

[SWS_Ea_00025]
Upstream requirements: SRS_MemHwAb_14013

⌈If the current module status is MEMIF_IDLE or if the current module status is MEMIF_
BUSY INTERNAL, the function Ea_Write shall accept the write request, copy the given
/ computed parameters to module internal variables, initiate a write job, set the EA
module status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING and re-
turn with E_OK.⌋

[SWS_Ea_00181]
Upstream requirements: SRS_MemHwAb_14010

⌈If the current module status is MEMIF_UNINIT or MEMIF_BUSY, the function Ea_
Write shall reject the job request and return with E_NOT_OK.⌋

[SWS_Ea_00026] ⌈The EA module shall execute the write job of the function Ea_Write
asynchronously within the EA module’s main function.⌋

[SWS_Ea_00131]
Upstream requirements: SRS_BSW_00406

⌈If development error detection for the module EA is enabled: the function Ea_Write
shall check if the module state is MEMIF_UNINIT. If this is the case, the function Ea_
Write shall reject the write request, raise the development error EA_E_UNINIT and
return with E_NOT_OK.⌋

[SWS_Ea_00171]
Upstream requirements: SRS_BSW_00406

⌈The function Ea_Write shall check if the module state is MEMIF_BUSY. If this is the
case, the function Ea_Write shall reject the write request, raise the runtime error EA_
E_BUSY and return with E_NOT_OK.⌋

[SWS_Ea_00148]
Upstream requirements: SRS_BSW_00323

⌈If development error detection for the module EA is enabled: the function Ea_Write
shall check whether the given block number is valid (i.e. inside the configured range).
If this is not the case, the function Ea_Write shall reject the write request, raise the
development error EA_E_INVALID_BLOCK_NO and return with E_NOT_OK.⌋

26 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00172]
Upstream requirements: SRS_BSW_00323

⌈If development error detection is enabled for the module: the function Ea_Write shall
check that the given data pointer is valid (i.e. that it is not NULL). If this is not the case,
the function Ea_Write shall reject the write request, raise the development error EA_
E_PARAM_POINTER and return with E_NOT_OK.⌋

[SWS_Ea_00159]
Upstream requirements: SRS_MemHwAb_14010, SRS_BSW_00323

⌈If a write request is rejected by the function Ea_Write, i.e. requirements SWS_
Ea_00131, SWS_Ea_00171, SWS_Ea_00148, SWS_Ea_00172 or SWS_Ea_00181
apply, the function Ea_Write shall not change the current module status or job result.⌋

8.3.4 Ea_Cancel

[SWS_Ea_00088] Definition of API function Ea_Cancel
Upstream requirements: SRS_MemHwAb_14031

⌈
Service Name Ea_Cancel

Syntax void Ea_Cancel (
void

)

Service ID [hex] 0x04

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Cancels the ongoing asynchronous operation.

Available via Ea.h

⌋

[SWS_Ea_00132]
Upstream requirements: SRS_BSW_00406

⌈If development error detection for the module EA is enabled: the function Ea_Cancel
shall check if the module state is MEMIF_UNINIT. If this is the case, the function Ea_
Cancel shall raise the development error EA_E_UNINIT and return to the caller without
changing any internal variables.⌋

27 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00077]
Upstream requirements: SRS_MemHwAb_14031

⌈If the current module status is MEMIF_BUSY (i.e. the request to cancel a pending job
is accepted by the function Ea_Cancel), the function Ea_Cancel shall call the cancel
function of the underlying EEPROM driver.⌋

[SWS_Ea_00078]
Upstream requirements: SRS_MemHwAb_14031

⌈If the current module status is MEMIF_BUSY (i.e. the request to cancel a pending
job is accepted by the function Ea_Cancel), the function Ea_Cancel shall reset the
EA module’s internal variables to make the module ready for a new job request. I.e.
the function Ea_Cancel shall set the job result to MEMIF_JOB_CANCELED and the
module status to MEMIF_IDLE.⌋

[SWS_Ea_00160]
Upstream requirements: SRS_MemHwAb_14031

⌈If the current module status is not MEMIF_BUSY (i.e. the request to cancel a pending
job is rejected by the function Ea_Cancel), the function Ea_Cancel shall not change
the current module status or job result.⌋

[SWS_Ea_00173]
Upstream requirements: SRS_BSW_00323

⌈If the current module status is not MEMIF_BUSY (i.e. there is no job to cancel and
therefore the request to cancel a pending job is rejected by the function Ea_Cancel),
the function Ea_Cancel shall raise the runtime error EA_E_INVALID_CANCEL.⌋

8.3.5 Ea_GetStatus

[SWS_Ea_00089] Definition of API function Ea_GetStatus ⌈
Service Name Ea_GetStatus

Syntax MemIf_StatusType Ea_GetStatus (
void

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

▽

28 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Return value MemIf_StatusType MEMIF_UNINIT: The EA module has not been initialized (yet).

MEMIF_IDLE: The EA module is currently idle.
MEMIF_BUSY: The EA module is currently busy.
MEMIF_BUSY_INTERNAL: The EA module is currently busy with
internal management operations.

Description Service to return the Status.

Available via Ea.h

⌋

[SWS_Ea_00034] ⌈The function Ea_GetStatus shall return MEMIF_UNINIT if the mod-
ule has not (yet) been initialized.⌋

[SWS_Ea_00156] ⌈The function Ea_GetStatus shall return MEMIF_IDLE if the module
is neither processing a request from the upper layer nor is it doing an internal manage-
ment operation.⌋

[SWS_Ea_00157] ⌈The function Ea_GetStatus shall return MEMIF_BUSY if it is cur-
rently processing a request from the upper layer.⌋

[SWS_Ea_00073] ⌈The function Ea_GetStatus shall return MEMIF_BUSY_INTER-
NAL, if an internal management operation is currently ongoing.⌋

Note: Internal management operation may e.g. be a re-organization of the used EEP-
ROM memory (garbage collection). This may imply that the underlying device driver is
- at least temporarily - busy.

8.3.6 Ea_GetJobResult

[SWS_Ea_00090] Definition of API function Ea_GetJobResult ⌈
Service Name Ea_GetJobResult

Syntax MemIf_JobResultType Ea_GetJobResult (
void

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

▽

29 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Return value MemIf_JobResultType MEMIF_JOB_OK: The last job has been finished successfully.

MEMIF_JOB_PENDING: The last job is waiting for execution or
currently being executed.
MEMIF_JOB_CANCELED: The last job has been canceled (which
means it failed).
MEMIF_JOB_FAILED: The last job was not finished successfully
(it failed).
MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested operation can not be performed.

Description Service to return the JobResult.

Available via Ea.h

⌋

[SWS_Ea_00134]
Upstream requirements: SRS_BSW_00406

⌈If development error detection for the module EA is enabled: the function Ea_Get
JobResult shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Ea_GetJobResult shall raise the development error EA_E_UNINIT and return
with MEMIF_JOB_FAILED.⌋

[SWS_Ea_00035]
Upstream requirements: SRS_BSW_00406

⌈The function Ea_GetJobResult shall return the status of the last job requested by the
NVRAM manager.⌋

[SWS_Ea_00174] ⌈Only those jobs which have been requested directly by the upper
layer shall have influence on the job result returned by the function Ea_GetJobResult.
I.e. jobs which are issued by the EA module itself in the course of internal management
operations shall not alter the job result.⌋

Note: To facilitate this, the EA module may have to implement a second set of local
variables to store the data for internal jobs.

Note: Internal management operations (e.g. "garbage collection") will only be invoked
in the context of jobs requested from the NvM. Whether they have to be done before
or after the requested job is the decision of the modules implementor and shall not be
detailed in this specification.

30 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

8.3.7 Ea_InvalidateBlock

[SWS_Ea_00091] Definition of API function Ea_InvalidateBlock
Upstream requirements: SRS_MemHwAb_14028

⌈
Service Name Ea_InvalidateBlock

Syntax Std_ReturnType Ea_InvalidateBlock (
uint16 BlockNumber

)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK - only if DET is enabled: The requested job has not
been accepted by the EA module.

Description Invalidates the block BlockNumber.

Available via Ea.h

⌋

[SWS_Ea_00036]
Upstream requirements: SRS_MemHwAb_14009

⌈The function Ea_InvalidateBlock shall take the block number and calculate the corre-
sponding memory block address.⌋

[SWS_Ea_00037]
Upstream requirements: SRS_MemHwAb_14028

⌈Depending on implementation, the function Ea_InvalidateBlock shall invalidate the
block <BlockNumber> by either calling the erase function of the underlying device
driver or changing some module internal management information accordingly.⌋

Note: How exactly the requested block is invalidated depends on the module’s imple-
mentation and will not be further detailed in this specification. The internal manage-
ment information has to be stored in NV memory since it has to be resistant against
resets. What this information is and how it is stored is not further detailed by this
specification.

[SWS_Ea_00135]
Upstream requirements: SRS_BSW_00323

⌈If development error detection for the module Ea is enabled: the function Ea_Inval-
idateBlock shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Ea_InvalidateBlock shall reject the invalidation request, raise the development
error EA_E_UNINIT and return with E_NOT_OK.⌋

31 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00175]
Upstream requirements: SRS_BSW_00323

⌈The function Ea_InvalidateBlock shall check if the module state is MEMIF_BUSY. If
this is the case, the function Ea_InvalidateBlock shall reject the invalidation request,
raise the runtime error EA_E_BUSY and return with E_NOT_OK.⌋

[SWS_Ea_00194]
Upstream requirements: SRS_MemHwAb_14028

⌈The function Ea_InvalidateBlock shall check if the module state is MEMIF_IDLE or
MEMIF_BUSY_INTERNAL. If this is the case the module shall accept the invalidation
request, set the Ea module status to MEMIF_BUSY, set the job result to MEMIF_JOB_
PENDING and return E_OK to the caller.⌋

[SWS_Ea_00195] ⌈The Ea module shall execute the block invalidation request asyn-
chronously within the Ea module’s main function.⌋

[SWS_Ea_00149]
Upstream requirements: SRS_BSW_00323

⌈If development error detection for the module EA is enabled: the function Ea_In-
validateBlock shall check whether the given block number is valid (i.e. it has been
configured). If this is not the case, the function Ea_InvalidateBlock shall reject the re-
quest, raise the development error EA_E_INVALID_BLOCK_NO and return with E_
NOT_OK.⌋

[SWS_Ea_00161]
Upstream requirements: SRS_BSW_00323

⌈If an invalidation request is rejected by the function Ea_InvalidateBlock, i.e. require-
ments SWS_Ea_00135, SWS_Ea_00149 or SWS_Ea_00175 apply, the function Ea_
InvalidateBlock shall not change the current module status or job result.⌋

8.3.8 Ea_GetVersionInfo

[SWS_Ea_00092] Definition of API function Ea_GetVersionInfo
Upstream requirements: SRS_BSW_00407

⌈
Service Name Ea_GetVersionInfo

Syntax void Ea_GetVersionInfo (
Std_VersionInfoType* VersionInfoPtr

)

Service ID [hex] 0x08

Sync/Async Synchronous

▽

32 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfoPtr Pointer to standard version information structure.

Return value None

Description Service to get the version information of this module.

Available via Ea.h

⌋

[SWS_Ea_00164]
Upstream requirements: SRS_BSW_00323

⌈If development error detection for the module EA is enabled: the function EA_Get
VersionInfo shall check that the given data pointer is valid (i.e. that it is not NULL). If
this is not the case, the function Ea_GetVersionInfo shall raise the development error
EA_E_PARAM_POINTER.⌋

8.3.9 Ea_EraseImmediateBlock

[SWS_Ea_00093] Definition of API function Ea_EraseImmediateBlock
Upstream requirements: SRS_MemHwAb_14032

⌈
Service Name Ea_EraseImmediateBlock

Syntax Std_ReturnType Ea_EraseImmediateBlock (
uint16 BlockNumber

)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK - only if DET is enabled: The requested job has not
been accepted by the EA module.

Description Erases the block BlockNumber.

Available via Ea.h

⌋

Note: The function Ea_EraseImmediateBlock shall only be called by e.g. diagnostic or
similar system services to pre-erase the area for immediate data if necessary.

33 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00063]
Upstream requirements: SRS_MemHwAb_14009, SRS_MemHwAb_14032

⌈The function Ea_EraseImmediateBlock shall take the block number and calculate the
corresponding memory block address. The block offset shall be fixed to zero for this
address calculation.⌋

[SWS_Ea_00064]
Upstream requirements: SRS_MemHwAb_14032

⌈The function Ea_EraseImmediateBlock shall ensure that the EA module can write
immediate data. Whether this involves physically erasing a memory area and therefore
calling the erase function of the underlying driver depends on the implementation.⌋

[SWS_Ea_00136]
Upstream requirements: SRS_BSW_00406

⌈If development error detection for the module EA is enabled: the function Ea_Erase
ImmediateBlock shall check if the module state is MEMIF_UNINIT. If this is the case,
the function Ea_EraseImmediateBlock shall reject the erase request, raise the devel-
opment error EA_E_UNINIT and return with E_NOT_OK.⌋

[SWS_Ea_00176]
Upstream requirements: SRS_BSW_00323

⌈The function Ea_EraseImmediateBlock shall check if the module state is MEMIF_
BUSY. If this is the case, the function shall reject the erase request, raise the runtime
error EA_E_BUSY and return with E_NOT_OK.⌋

[SWS_Ea_00152]
Upstream requirements: SRS_BSW_00323

⌈If development error detection for the module EA is enabled: the function Ea_Erase
ImmediateBlock shall check whether the given block number is valid (i.e. it has been
configured). If this is not the case, the function Ea_EraseImmediateBlock shall re-
ject the erase request, raise the development error EA_E_INVALID_BLOCK_NO and
return with E_NOT_OK.⌋

[SWS_Ea_00065]
Upstream requirements: SRS_BSW_00323, SRS_MemHwAb_14032

⌈If development error detection for the EA module is enabled, the function Ea_Erase
ImmediateBlock shall check whether the addressed logical block is configured as con-
taining immediate data (configuration parameter EaImmediateData == TRUE). If not,
the function Ea_EraseImmediateBlock shall reject the erase request, raise the deleop-
ment error EA_E_INVALID_BLOCK_NO and return with E_NOT_OK.⌋

34 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00162]
Upstream requirements: SRS_BSW_00323

⌈If an erase request for an immediate block is rejected by the function Ea_EraseIm-
mediateBlock, i.e. requirements SWS_Ea_00136, SWS_Ea_00176, SWS_Ea_00152
or SWS_Ea_00065 apply, the function Ea_EraseImmediateBlock shall not change the
current module status or job result.⌋

8.4 Callback notifications

This chaper lists all functions provided by the Ea module to lower layer modules.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided by the EA module may be called on interrupt level.
The implementation of the EA module therefore has to make sure that the runtime of
those routines is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore system design has to make sure that the
configuration of the involved modules meets those requirements.

8.4.1 Ea_JobEndNotification

[SWS_Ea_00094] Definition of callback function Ea_JobEndNotification ⌈
Service Name Ea_JobEndNotification

Syntax void Ea_JobEndNotification (
void

)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Service to report to this module the successful end of an asynchronous operation.

Available via Ea.h

⌋

The underlying EEPROM driver shall call the function Ea_JobEndNotification to report
the successful end of an asynchronous operation.

[SWS_Ea_00153] ⌈If the job result is currently MEMIF_JOB_PENDING, the function
Ea_JobEndNotification shall set the job result to MEMIF_JOB_OK, else it shall leave
the job result untouched.⌋

35 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00051] ⌈The function Ea_JobEndNotification shall perform any necessary
block management operations and shall call the corresponding callback routine of the
upper layer module (Ea_NvMJobEndNotification).⌋

[SWS_Ea_00200] ⌈The function Ea_JobEndNotification shall perform any necessary
block management and error handling operations and shall call the corresponding call-
back routine of the upper layer module (Ea_NvMJobErrorNotification).⌋

Note: The function Ea_JobEndNotification shall be callable on interrupt level.

8.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non re-
entrant.

8.5.1 Ea_MainFunction

[SWS_Ea_00096] Definition of scheduled function Ea_MainFunction
Upstream requirements: SRS_BSW_00373

⌈
Service Name Ea_MainFunction

Syntax void Ea_MainFunction (
void

)

Service ID [hex] 0x12

Description Service to handle the requested jobs and the internal management operations.

Available via SchM_Ea.h

⌋

Note: The cycle time for the function Ea_MainFunction should be the same as that
configured for the underlying EEPROM driver.

[SWS_Ea_00178]
Upstream requirements: SRS_BSW_00406

⌈If the module initialization (started in the function Ea_Init) is completed in the mod-
ule’s main function, the function Ea_MainFunction shall set the module status from
MEMIF_BUSY_INTERNAL to MEMIF_IDLE once initialization of the module has been
successfully finished.⌋

[SWS_Ea_00056] ⌈The function Ea_MainFunction shall asynchronously handle the
read / write / erase / invalidate jobs requested by the upper layer and internal manage-
ment operations.⌋

36 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00074]
Upstream requirements: SRS_MemHwAb_14028

⌈The function Ea_MainFunction shall check, whether the block requested for reading
has been invalidated by the upper layer module. If so, the function Ea_MainFunction
shall set the job result to MEMIF_BLOCK_INVALID and call the job error notification
function if configured.⌋

[SWS_Ea_00104]
Upstream requirements: SRS_MemHwAb_14032, SRS_MemHwAb_14015, SRS_MemHwAb_-

14016

⌈The function Ea_MainFunction shall check the consistency of the logical block being
read before notifying the caller. If an inconsistency of the block is detected (see SWS_
Ea_00046 and SWS_Ea_00047) or if the requested block can’t be found, the function
Ea_MainFunction shall set the job result to MEMIF_BLOCK_INCONSISTENT and call
the error notification routine of the upper layer if configured.⌋

Note: In this case the upper layer shall not use the contents of the data buffer.

[SWS_Ea_00188]
Upstream requirements: SRS_MemHwAb_14014

⌈If an internal management operation has been suspended because of a job request
from the upper layer, the function Ea_MainFunction shall resume this internal manage-
ment operation once the job requested by the upper layer has been finished.⌋

[SWS_Ea_00189]
Upstream requirements: SRS_MemHwAb_14014

⌈If an internal management operation has been aborted because of a job request from
the upper layer, the function Ea_MainFunction shall restart this internal management
operation once the job requested by the upper layer has been finished.⌋

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

37 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[SWS_Ea_00097] Definition of mandatory interfaces required by module Ea ⌈
API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

MemAcc_Cancel MemAcc.h Triggers a cancel operation of the pending job for
the address area referenced by the addressAreaId.
Cancelling affects only jobs in pending state. For
any other states, the request will be ignored.

MemAcc_Erase MemAcc.h Triggers an erase job of the given area.
Triggers an erase job of the given area defined by
targetAddress and length. The result of this service
can be retrieved using the Mem_GetJobResult API.
If the erase operation was successful, the result of
the job is MEM_JOB_OK. If the erase operation
failed, e.g. due to a hardware issue, the result of the
job is MEM_JOB_FAILED.

MemAcc_GetJobResult MemAcc.h Returns the consolidated job result of the address
area referenced by addressAreaId.

MemAcc_Read MemAcc.h Triggers a read job to copy data from the source
address into the referenced destination data buffer.
The result of this service can be retrieved using the
MemAcc_GetJobResult API. If the read operation
was successful, the result of the job is MEMACC_
OK. If the read operation failed, the result of the job
is either MEMACC_FAILED in case of a general
error or MEMACC_ECC_CORRECTED/MEMACC_
ECC_UNCORRECTED in case of a correctable/
uncorrectable ECC error.

MemAcc_Write MemAcc.h Triggers a write job to store the passed data to the
provided address area with given address and
length. The result of this service can be retrieved
using the MemAcc_GetJobResult API. If the write
operation was successful, the job result is
MEMACC_OK. If there was an issue writing the
data, the result is MEMACC_FAILED.

⌋

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Ea_00098] Definition of optional interfaces requested by module Ea ⌈
API Function Header File Description

Det_ReportError Det.h Service to report development errors.

⌋

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

38 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines invoked by the EA module may be called on interrupt level.
The implementor of the module providing these routines therefore has to make sure
that their runtime is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore system design has to make sure that the
configuration of the involved modules meets those requirements.

[SWS_Ea_00099] Definition of configurable interface NvM_JobEndNotification
Upstream requirements: SRS_BSW_00385

⌈
Service Name NvM_JobEndNotification

Syntax void NvM_JobEndNotification (
void

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Function to be used by the underlying memory abstraction to signal end of job without error.

Available via NvM_MemIf.h

⌋

[SWS_Ea_00054] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobEndNotification upon successful end of an asynchronous read
operation after performing all necessary internal management operations. Successful
end of an asynchronous read operation implies the read job is finished and the result
is OK.⌋

[SWS_Ea_00141] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobEndNotification upon successful end of an asynchronous write
operation after performing all necessary internal management operations. Successful
end of an asynchronous write operation implies the write job is finished, the result is
OK and the block has been marked as valid.⌋

[SWS_Ea_00142] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobEndNotification upon successful end of an asynchronous erase
operation after performing all necessary internal management operations. Successful
end of an asynchronous erase operation implies the erase job for immediate data is
finished and the result is OK (see SWS_Ea_00064).⌋

[SWS_Ea_00143] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobEndNotification upon successful end of an asynchronous block
invalidation operation after performing all necessary internal management operations.

39 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Successful end of an asynchronous block invalidation operation implies the block inval-
idation job is finished and the result is OK (i.e. the block has been marked as invalid).⌋

[SWS_Ea_00100] Definition of configurable interface NvM_JobErrorNotification
Upstream requirements: SRS_BSW_00385

⌈
Service Name NvM_JobErrorNotification

Syntax void NvM_JobErrorNotification (
void

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Function to be used by the underlying memory abstraction to signal end of job with error.

Available via NvM_MemIf.h

⌋

[SWS_Ea_00055] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobErrorNotification upon failure of an asynchronous read operation
after performing all necessary internal management and error handling operations.
Failure of an asynchronous read operation implies the read job is finished and has
failed (i.e. block invalid or inconsistent).⌋

[SWS_Ea_00144] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobErrorNotification upon failure of an asynchronous write operation
after performing all necessary internal management and error handling operations.
Failure of an asynchronous write operation implies the write job is finished and has
failed and block has been marked as inconsistent.⌋

[SWS_Ea_00145] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobErrorNotification upon failure of an asynchronous erase opera-
tion after performing all necessary internal management and error handling operations.
Failure of an asynchronous erase operation implies the erase job for immediate data is
finished and has failed (see SWS_Ea_00064).⌋

[SWS_Ea_00146] ⌈The Ea module shall call the function defined in the configuration
parameter EaNvMJobErrorNotification upon failure of an asynchronous block invalida-
tion operation after performing all necessary internal management and error handling
operations. Failure of an asynchronous block invalidation operation implies the block
invalidation job is finished and has failed.⌋

40 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

9 Sequence diagrams

Note: For a vendor specific library the following sequence diagrams are valid only inso-
far as they show the relation to the calling modules (Ecu_StateManager resp. memory
abstraction interface). The calling relations from a memory abstraction module to an
underlying driver are not relevant / binding for a vendor specific library.

9.1 Ea_Init

The following figure shows the call sequence for the Ea_Init routine. It is different from
that of all other services of this module as it is not called by the NVRAM manager and
not called via the memory abstraction interface.

«module»

EcuM

«module»

Ea

Ea_Init(const Ea_ConfigType*)

Ea_Init()

Figure 9.1: Sequence diagram of "Ea_Init" service

9.2 Ea_Write

The following figure shows as an example the call sequence for the Ea_Write service.
This sequence diagram also applies to the other asynchronous services of this module.

41 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

«module»

NvM

«module»

MemIf

BSW Task (OS task
or cyclic call)

«module»

Ea

«module»

MemAcc

«module»

Mem

loop MemAcc_MainFunction

MemAcc_MainFunction()

MemAcc_MainFunction()

Mem_GetJobResult
(Mem_JobResultType,
Mem_InstanceIdType)

MemIf_Write()

Ea_JobEndNotification()

Mem_MainFunction()

MemAcc_MainFunction()

Ea_Write(Std_ReturnType,
uint16, const uint8*)

MemAcc_Write()

NvM_JobEndNotification()

MemIf_Write(Std_ReturnType, uint16,
uint16, const uint8*)

Mem_GetJobResult()

Ea_MainFunction()

Ea_Write()

MemAcc_MainFunction()

Ea_MainFunction()

Mem_Write()

NvM_JobEndNotification()

Mem_Write(Std_ReturnType,
Mem_InstanceIdType,
Mem_AddressType, const
Mem_DataType*,
Mem_LengthType)

Ea_JobEndNotification()

MemAcc_Write(Std_ReturnType,
MemAcc_AddressAreaIdType,
MemAcc_AddressType, const
MemAcc_DataType*,
MemAcc_LengthType)

Mem_MainFunction()

Figure 9.2: Sequence diagram of "Ea_Write" service

9.3 Ea_Cancel

The following figure shows as an example the call sequence for a canceled Ea_Write
service. This sequence diagram shows that Ea_Cancel is asynchronous w.r.t. the
underlying hardware while itself being synchronous.

42 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

«module»

NvM

«module»

MemIf

BSW Task (OS task
or cyclic call)

«module»

Ea

«module»

MemAcc

«module»

Mem

«Peripheral»

EEPROM

loop MemAcc_MainFunction

����� �� 	
�
�	

����� ��� 	
�
�	

�� �� �	 ����	��� ���

��� �	 ��
 ����	���

�		�� ���
 ���
�

�������

����� �� �������� �	

���� ������� �� 	�
 �		��

���	
 ���
� ��������

��� ������
 ������

��!	���� ���
� �����
���

�	 	
��� ���� ������
��

��
 "��#�� ���� ��

��$��	
 ���
��� ��!	����

���
� �����
���	�

%��
�� &&'()"

�������� �	 ���������

�� ��$��	
�� ���
�

�����
����

���
����� �� ���
 �� � ���

MemAcc_MainFunction()

MemAcc_Cancel()

MemAcc_Write(Std_ReturnType,
MemAcc_AddressAreaIdType,
MemAcc_AddressType, const
MemAcc_DataType*,
MemAcc_LengthType)

Ea_Cancel()

Ea_Write(Std_ReturnType,
uint16, const uint8*)

MemAcc_MainFunction()

MemAcc_MainFunction()

Mem_MainFunction()

MemAcc_MainFunction()

Ea_JobEndNotification()

MemAcc_Write()

MemAcc_Cancel
(MemAcc_AddressAreaIdType)

MemIf_Write()

Mem_GetJobResult()

MemIf_Write(Std_ReturnType,
uint16, uint16, const uint8*)

Mem_GetJobResult
(Mem_JobResultType,
Mem_InstanceIdType)

Ea_Write()

MemIf_Cancel(DeviceIndex)

Mem_MainFunction()

Ea_Cancel()

Mem_Write()

Mem_Write(Std_ReturnType,
Mem_InstanceIdType,
Mem_AddressType, const
Mem_DataType*,
Mem_LengthType)

MemIf_Cancel()

Ea_MainFunction()

Ea_JobEndNotification()

Ea_MainFunction()

Figure 9.3: Sequence diagram of "Ea_Cancel" service (Part 1)

43 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

«module»

NvM

«module»

MemIf

BSW Task (OS task
or cyclic call)

«module»

Ea

«module»

MemAcc

«module»

Mem

«Peripheral»

EEPROM

alt request pending

[no further request unti l next main function cycle]

[request issued before next main function cycle is due]

����� �� �	
��	
� �

�
�� ������� ��
�� �

��

��

� �
��� ����	���

����� ��
�	��
�

����� ���
�	��
� ��

�� �
 ����
��� 	��

��� �
 ��� ����
����

�

�� ���� �
���

����	���

��� �������	���� �
�� �
�����
 �	 �

Ea_MainFunction()

MemAcc_Write
(Std_ReturnType,
MemAcc_AddressAreaIdType,
MemAcc_AddressType, const
MemAcc_DataType*,
MemAcc_LengthType)

Ea_Write()

MemAcc_MainFunction()

MemAcc_MainFunction()

MemIf_Write(Std_ReturnType, uint16,
uint16, const uint8*)

MemIf_Write()

Mem_GetJobResult()

Ea_Write(Std_ReturnType,
uint16, const uint8*)

Mem_GetJobResult
(Mem_JobResultType,
Mem_InstanceIdType)

MemAcc_MainFunction()

Mem_MainFunction()

MemAcc_Write()

Ea_MainFunction()

Mem_MainFunction()

Mem_Write(Std_ReturnType,
Mem_InstanceIdType,
Mem_AddressType, const
Mem_DataType*,
Mem_LengthType)

MemAcc_MainFunction()

MemAcc_Write()

Figure 9.4: Sequence diagram of "Ea_Cancel" service (Part 2)

44 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters.

10.1.1 Ea

[ECUC_Ea_00133] Definition of EcucModuleDef Ea ⌈

Module Name Ea

Description Configuration of the Ea (EEPROM Abstraction) module. The module shall
abstract from the device specific addressing scheme and segmentation and
provide the upper layers with a virtual addressing scheme and segmentation as
well as a ’virtually’ unlimited number of erase cycles.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

EaBlockConfiguration 1..* Configuration of block specific parameters for the EEPROM
abstraction module.

EaGeneral 1 General configuration of the EEPROM abstraction module. This
container lists block independent configuration parameters.

EaPublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.
Note that these parameters do not have any configuration class
setting, since they are published information.

⌋

45 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Ea: EcucModuleDef

upperMultiplicity = 1
lowerMultipl icity = 0

EaBlockConfiguration:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

EaGeneral:
EcucParamConfContainerDef

EaDevErrorDetect:
EcucBooleanParamDef

defaultValue = false
EaVirtualPageSize:

EcucIntegerParamDef

max = 65535
min = 0

EaVersionInfoApi:
EcucBooleanParamDef

defaultValue = falseEaNvmJobEndNotification:
EcucFunctionNameDef

lowerMultiplicity = 0
upperMultipl icity = 1 EaNvmJobErrorNotification:

EcucFunctionNameDef

lowerMultipl icity = 0
upperMultipl icity = 1

EaPollingMode:
EcucBooleanParamDef

EaPublishedInformation:
EcucParamConfContainerDef

EaBlockOverhead:
EcucIntegerParamDef

min = 0
max = 65535 EaPageOverhead:

EcucIntegerParamDef

min = 0
max = 65535

EaMainFunctionPeriod:
EcucFloatParamDef

min = 0
max = INF

EaMinimumReadPageSize:
EcucIntegerParamDef

max = 65535
min = 0

EaBufferAlignmentValue:
EcucReferenceDef

requiresSymbolicNameValue = true

MemAccAddressAreaConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = 65535

+parameter

+parameter

+container

+destination

+parameter

+parameter

+reference

+container

+parameter

+container

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10.1: Ea Configuration Layout

10.1.2 EaGeneral

[ECUC_Ea_00039] Definition of EcucParamConfContainerDef EaGeneral ⌈

Container Name EaGeneral

Parent Container Ea

Description General configuration of the EEPROM abstraction module. This container lists block
independent configuration parameters.

Multiplicity 1

Configuration Parameters

46 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Included Parameters
Parameter Name Multiplicity ECUC ID

EaDevErrorDetect 1 [ECUC_Ea_00120]

EaMainFunctionPeriod 1 [ECUC_Ea_00132]

EaMinimumReadPageSize 1 [ECUC_Ea_00135]

EaNvmJobEndNotification 0..1 [ECUC_Ea_00121]

EaNvmJobErrorNotification 0..1 [ECUC_Ea_00122]

EaPollingMode 1 [ECUC_Ea_00123]

EaVersionInfoApi 1 [ECUC_Ea_00124]

EaVirtualPageSize 1 [ECUC_Ea_00125]

EaBufferAlignmentValue 1 [ECUC_Ea_00136]

No Included Containers

⌋

[ECUC_Ea_00120] Definition of EcucBooleanParamDef EaDevErrorDetect ⌈
Parameter Name EaDevErrorDetect

Parent Container EaGeneral

Description Switches the development error detection and notification on or off.
• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00132] Definition of EcucFloatParamDef EaMainFunctionPeriod ⌈
Parameter Name EaMainFunctionPeriod

Parent Container EaGeneral

Description The period between successive calls to the main function in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

47 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[ECUC_Ea_00135] Definition of EcucIntegerParamDef EaMinimumReadPageSize
Status: DRAFT

⌈
Parameter Name EaMinimumReadPageSize

Parent Container EaGeneral

Description Minimum Page size will be a multiple of the minimum page size. Ea shall align read
requests to this size.
Tags: atp.Status=draft

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00121] Definition of EcucFunctionNameDef EaNvmJobEndNotifica-
tion ⌈

Parameter Name EaNvmJobEndNotification

Parent Container EaGeneral

Description Mapped to the job end notification routine provided by the upper layer module (NvM_
JobEndNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

48 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[ECUC_Ea_00122] Definition of EcucFunctionNameDef EaNvmJobErrorNotifica-
tion ⌈

Parameter Name EaNvmJobErrorNotification

Parent Container EaGeneral

Description Mapped to the job error notification routine provided by the upper layer module (NvM_
JobErrorNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00123] Definition of EcucBooleanParamDef EaPollingMode ⌈
Parameter Name EaPollingMode

Parent Container EaGeneral

Description Pre-processor switch to enable and disable the polling mode for this module.
true: Polling mode enabled, callback functions (provided to EEP module) disabled.
false: Polling mode disabled, callback functions (provided to EEP module) enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00124] Definition of EcucBooleanParamDef EaVersionInfoApi ⌈
Parameter Name EaVersionInfoApi

Parent Container EaGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false
▽

49 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00125] Definition of EcucIntegerParamDef EaVirtualPageSize ⌈
Parameter Name EaVirtualPageSize

Parent Container EaGeneral

Description The size in bytes to which logical blocks shall be aligned.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00136] Definition of EcucReferenceDef EaBufferAlignmentValue
Status: DRAFT

⌈
Parameter Name EaBufferAlignmentValue

Parent Container EaGeneral

Description Parameter determines the alignment of the start address that Ea buffers need to have.
Value shall be inherited from MemAccBufferAlignmentValue.
Tags: atp.Status=draft

Multiplicity 1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.1.3 EaBlockConfiguration

[ECUC_Ea_00040] Definition of EcucParamConfContainerDef EaBlockConfigu-
ration ⌈

50 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

Container Name EaBlockConfiguration

Parent Container Ea

Description Configuration of block specific parameters for the EEPROM abstraction module.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

EaBlockNumber 1 [ECUC_Ea_00130]

EaBlockSize 1 [ECUC_Ea_00128]

EaImmediateData 1 [ECUC_Ea_00131]

EaNumberOfWriteCycles 1 [ECUC_Ea_00119]

EaMemAccAddressArea 0..1 [ECUC_Ea_00134]

No Included Containers

⌋

[ECUC_Ea_00130] Definition of EcucIntegerParamDef EaBlockNumber ⌈
Parameter Name EaBlockNumber

Parent Container EaBlockConfiguration

Description Block identifier (handle).
0x0000 and 0xFFFF shall not be used for block numbers (see SWS_Ea_00006).
Range: min = 2ˆNVM_DATASET_SELECTION_BITS max = 0xFFFF -2ˆNVM_
DATASET_SELECTION_BITS
Note: Depending on the number of bits set aside for dataset selection several other
block numbers shall also be left out to ease implementation.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 1 .. 65534

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00128] Definition of EcucIntegerParamDef EaBlockSize ⌈
Parameter Name EaBlockSize

Parent Container EaBlockConfiguration

Description Size of a logical block in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value –
▽

51 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00131] Definition of EcucBooleanParamDef EaImmediateData ⌈
Parameter Name EaImmediateData

Parent Container EaBlockConfiguration

Description Marker for high priority data.
true: Block contains immediate data. false: Block does not contain immediate data.

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Ea_00119] Definition of EcucIntegerParamDef EaNumberOfWriteCycles
⌈

Parameter Name EaNumberOfWriteCycles

Parent Container EaBlockConfiguration

Description Number of write cycles required for this block.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

52 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

[ECUC_Ea_00134] Definition of EcucReferenceDef EaMemAccAddressArea
Status: DRAFT

⌈
Parameter Name EaMemAccAddressArea

Parent Container EaBlockConfiguration

Description Reference to the MemAccAddressAreaConfiguration.
This reference is mutually exclusive to EaDeviceIndex.
Tags: atp.Status=draft

Multiplicity 0..1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency This reference is mutually exclusive to EaDeviceIndex.

⌋

EaBlockConfiguration:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultipl icity = 1

EaBlockSize:

EcucIntegerParamDef

max = 65535

min = 1 EaBlockNumber: EcucIntegerParamDef

max = 65534

min = 1

symbolicNameValue = true
EaNumberOfWriteCycles:

EcucIntegerParamDef

min = 0

max = 4294967295 EaImmediateData:

EcucBooleanParamDef

MemAccAddressAreaConfiguration:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultipl icity = 65535

MemAccAddressAreaId:

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

lowerMultiplicity = 1

upperMultipl icity = 1

symbolicNameValue = true

EaMemAccAddressArea:

EcucReferenceDef

lowerMultipl icity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

+destination

+parameter

+reference

+parameter

+parameter

+parameter

+parameter

Figure 10.2: Ea Block Configuration Layout

53 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

10.2 Published Information

10.2.1 EaPublishedInformation

[ECUC_Ea_00043] Definition of EcucParamConfContainerDef EaPublishedInfor-
mation ⌈

Container Name EaPublishedInformation

Parent Container Ea

Description Additional published parameters not covered by CommonPublishedInformation
container.
Note that these parameters do not have any configuration class setting, since they are
published information.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

EaBlockOverhead 1 [ECUC_Ea_00126]

EaPageOverhead 1 [ECUC_Ea_00127]

No Included Containers

⌋

[ECUC_Ea_00126] Definition of EcucIntegerParamDef EaBlockOverhead ⌈
Parameter Name EaBlockOverhead

Parent Container EaPublishedInformation

Description Management overhead per logical block in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Dependency

⌋

[ECUC_Ea_00127] Definition of EcucIntegerParamDef EaPageOverhead ⌈
Parameter Name EaPageOverhead

Parent Container EaPublishedInformation

Description Management overhead per page in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

▽

54 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

△
Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Dependency

⌋

55 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

A Not applicable requirements

[SWS_Ea_NA_00999]
Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00336, SRS_BSW_

00339, SRS_BSW_00369, SRS_BSW_00375, SRS_BSW_00383,
SRS_BSW_00384, SRS_BSW_00386, SRS_BSW_00388, SRS_BSW_
00389, SRS_BSW_00390, SRS_BSW_00393, SRS_BSW_00395,
SRS_BSW_00403, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_
00419, SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00424,
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_
00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433,
SRS_BSW_00461, SRS_BSW_00469, SRS_BSW_00471, SRS_BSW_
00472, SRS_BSW_00478, SRS_BSW_00490, SRS_BSW_00491,
SRS_MemHwAb_14018

⌈These requirements are not applicable to this specification.⌋

56 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

Specification of EEPROM Abstraction
AUTOSAR CP R25-11

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Items in R25-11

none

B.1.2 Changed Specification Items in R25-11

[SWS_Ea_00097]

B.1.3 Deleted Specification Items in R25-11

[ECUC_Ea_00129]

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

B.2.2 Changed Specification Items in R24-11

[ECUC_Ea_00129]

B.2.3 Deleted Specification Items in R24-11

none

57 of 57 Document ID 287: AUTOSAR_CP_SWS_EEPROMAbstraction

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase / write cycles
	7.1.4 Handling of "immediate" data
	7.1.5 Managing block consistency information
	7.1.6 Buffer Alignment

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Ea_Init
	8.3.2 Ea_Read
	8.3.3 Ea_Write
	8.3.4 Ea_Cancel
	8.3.5 Ea_GetStatus
	8.3.6 Ea_GetJobResult
	8.3.7 Ea_InvalidateBlock
	8.3.8 Ea_GetVersionInfo
	8.3.9 Ea_EraseImmediateBlock

	8.4 Callback notifications
	8.4.1 Ea_JobEndNotification

	8.5 Scheduled functions
	8.5.1 Ea_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Ea_Init
	9.2 Ea_Write
	9.3 Ea_Cancel

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 Ea
	10.1.2 EaGeneral
	10.1.3 EaBlockConfiguration

	10.2 Published Information
	10.2.1 EaPublishedInformation

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

