AUTSSAR

D ment Titl Specification of ECU State
el € Manager

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 78

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* update related documents
AUTOSAR * Correct uptraces to SRS document
2025-11-27 | R25-11 Release « Convert SequenceDiagram to
Management TraceableDiagrams
» Minor content changes, clarifications
* Correct broken references
AUTOSAR « update related documents
2024-11-27 | R24-11 Release
Management * Correct uptraces to SRS document
» Correct some document syntax issues
AUTOSAR « Correct broken references
2023-11-23 R23-11 Release
Management » Minor content changes, clarifications
AUTOSAR « Added uptraces to SRS document
2022-11-24 R22-11 Release
Management » Minor content changes, clarifications
» Updates on wakeup handling (ethernet
AUTOSAR wakeup)
2021-11-25 | R21-11 Release Updates on error handling
Management

» Minor content changes, clarifications

AUTSSAR

» Corrected broken chapter structure
AUTOSAR .
2020-11-30 | R20-11 Release EcuM_UserType handling improved
Management » Minor content changes, clarifications
(multi-core, configuration, values)
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR * Reworked BswM interface through
Management » Removed EcuM fixed version references
» Adapt APl Can_CheckWakeup
» Removed ConfigPtr parameter
AUTOSAR
2017-12-08 | 4.3.1 Release Removed Default error
Management « Removed unused DIO driver
» EcuM AUTOSAR service configure on
service partition only
* Partial Network Cluster Support
AUTOSAR « Initialization BSW scheduler slipt
2016-11-30 | 4.3.0 Release e
Management » Added a driver initialization list
» Removed EcuM_StateType
» Reworked slave core poll sequence
AUTOSAR » Reviewed multicore shutdown
2015-07-31 | 4.2.2 Release synchronization
Management - Reclassified error types
« Editorial changes
» Added switch configuration
* Defined initialization order for
InitListZero/InitListOne
AUTOSAR
2014-10-31 4.2.1 Release * Definition of the name pattern of
Management c-init-data struct corrected
* Type conflicts solved
« Editorial changes

AUTSSAR

AUTOSAR
Release
Management

2014-03-31 41.3

* EcuM errors reworked

* Inconsistencies between APIs and
Interfaces resolved

* Type conflicts solved

« Editorial changes

AUTOSAR
Release
Management

2013-10-31 41.2

» Added API table for service interfaces
* Fixed traceability topics

» General clean-up of requirements
(reviewed different interfaces,
operations, descriptions and figures).

« Editorial changes

AUTOSAR

2013-03-15 | 4.1.1 Administration

* Specified reset mode to use in case of
pending wakeup events during shutdown

» Added callout for Reset Loop Detection

» Extended specification of parameter
"time" of function "
EcuM_GetMostRecentShutdown"

* Improved configuration description

* Added new APIs to enable
asynchronous Trcv handling for CAN/FR
Wakeup

* Adaption of EcuM Flex to support BSW
modules distributed over multiple
partitions

» Reclassified which Production Errors are
Extended Production Errors

» Added possible error to operations of
Client/Server-Interfaces, where no errors
where defined

» Enhancement of configuration to
initialize BSW modules by the EcuM Flex

AUTSSAR

2011-12-22

4.0.3

AUTOSAR
Administration

* Fixed interoperability problems between
EcuM and BswM

» Terminology of ECU State Manager
Flexible more consistently described

» Modification of sleep sequences to
minimize misses of wakeup interrupts

2010-09-30

AUTOSAR
Administration

» Updated pseudo code for AUTOSAR
Services

» Update startup procedure for multi core
systems

2010-02-02

AUTOSAR
Administration

* Removed state machine to
accommodate mode-dependent
scheduling

* Added Multi-Core support
» Added Alarm Clock feature

* Revised disclaimer

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

* Fixed Wakeup mechanisms

* Included optional triggering of Watchdog
Manager during Startup, Shutdown, and
Sleep

» Extended startup sequence to have
more flexibility and to directly initialize all
other BSW modules

» Generated APIs from BSW UML model

» Generated configuration from Meta
Model

* Document meta information extended

« Small layout adaptations made

AUTSSAR

» Corrected startup flow and wakeup
concept.

+ Added specification for AUTOSAR ports.

* Modified configuration for compliance
with variant management.

2007-01-24 | 2445 [{0TOSAR L A dded new AP services,

* Legal disclaimer revised

* Release Notes added

+ " Advice for users" revised

+ " Revision Information" added
2006-05-16 | 2.0 AUTOSAR « Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and Functional Overview
1.1 Backwards Compatibility to Previous ECU Manager Module Versions . .

2 Definitions and Abbreviations

2.1 Definitions
2.2 Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification L

4 Constraints and Assumptions

4.1 Limitations e
4.2 Applicability to cardomains oL

5 Dependencies to other modules

51 SPALModules
51.1 MCUDriver e
5.1.2 Driver Dependencies and Initialization Order

5.2 Peripherals with Wakeup Capability

5.3 Operating System

5.4 BSW Scheduler

55 BSW Mode Manager

5.6 Software Components

5.7 File Structure
5.7.1 Codefilestructure
5.7.2 Headerfilestructure,

6 Requirements Tracing

7 Functional Specification
7.1 Phases of the ECU Manager Module
711 STARTUPPhase
712 UPPhase
7.1.3 SHUTDOWN Phase
714 SLEEPPhase
715 OFFPhase e
7.2 Structural Description of the ECU Manager
7.2.1 Standardized AUTOSAR Software Modules
7.2.2 Software Components
7.3 STARTUP Phase e
7.3.1 Activities before EcuM _Init o oL
7.3.2 Activities in StartPreOS Sequence oL
7.3.3 Activities in the StartPostOS Sequence

16

AUTSSAR

7.3.4 Checking Configuration Consistency 43
7.3.4.1 The Necessity for Checking Configuration Consistency in the
ECUManager 43
7.3.4.2 Example Hash Computation Algorithm 45
7.3.5 Driver Initialization 45
7.3.6 BSW Initialization 47
7.4 SHUTDOWN Phase it 47
7.4.1 Activities in the OffPreOS Sequence 48
7.4.2 Activities in the OffPostOS Sequence 50
75 SLEEPPhase 52
7.5.1 Activities in the GoSleep Sequence 54
7.5.2 Activities inthe Halt Sequence 55
7.5.3 Activitiesinthe Poll Sequence 56
7.5.4 LeavingHaltorPoll L 58
7.5.5 Activities in the WakeupRestart Sequence 58
76 UPPhase e 61
7.6.1 Alarm Clock Handling 61
7.6.2 Wakeup Source State Handling 61
7.6.3 Internal Representation of Wakeup States 63
7.6.4 Activities in the WakeupValidation Sequence 64
7.6.4.1 Wakeup of Communication Channels 67
7.6.4.2 Interaction of Wakeup Sources and the ECU Manager 67
7.6.4.3 Wakeup Validation Timeout 68
7.6.4.4 Requirements for Drivers with Wakeup Sources 68
7.6.5 Requirements for Wakeup Validation 69
7.6.6 Wakeup Sourcesand ResetReason 69
7.6.7 Wakeup Sources with Integrated Power Control 70
7.7 Shutdown Targets 71
771 Sleep . . o e 71
7.7.2 Reset e 72
7.8 Alarm Clock e 73
7.8.1 AlarmClocksandUsers 74
7.8.2 EcuMClock Time 75
7.8.2.1 EcuM Clock Timeinthe UP Phase 75
7.8.2.2 EcuM Clock Timeinthe SleepPhase 75
7.9 MultiCore. e 76
7.9.1 MasterCore e 77
7.9.2 SlaveCore 77
7.9.3 Master Core - Slave Core Signalling 77
79381 BSWlLevel. 78
7.9.3.2 Example for Shutdown Synchronization 78
794 UPPhase 80

7.95 STARTUPPhase 80

AUTSSAR

7.9.51 MasterCore STARTUP 81
7.9.5.2 Slave Core STARTUP 83
7.9.6 SHUTDOWNPhase 85
7.9.6.1 Master Core SHUTDOWN 85
7.9.6.2 Slave Core SHUTDOWN 87
79.7 SLEEPPhase 89
7.9.71 MasterCore SLEEP 89
7.9.7.2 Slave Core SLEEP 92
7.9.8 Runnablesand Entrypoints 96
7.9.8.1 Internalbehavior 96
710EcuM Mode Handling 98
7A1Advanced TopiCs o L e 100
7.11.1 Relationto Bootloader 100
7.11.2 Relation to Complex Drivers 101
7.11.3 Handling Errors during Startup and Shutdown 101
7142ErrorHook 102
713Error classification. 102
7.13.1 DevelopmentErrorso 103
713.2Runtime Errors 103
713.8TransientFaults 103
7.13.4 Production Errors 103
7.13.5 Extended Production Errorso oL 104

8 API specification 105
8.1 Imported Types 105
8.2 Typedefinitions 106
8.2.1 EcuM_ConfigType 106
8.2.2 EcuM_RunStatusType 107
8.2.3 EcuM_WakeupSourceType 108
8.2.4 EcuM_WakeupStatusType 109
8.2.5 EcuM_Resetlype 109
8.2.6 EcuM_StateType 110
8.3 Function Definitions 110
8.3.1 General 110
8.3.1.1 EcuM _GetVersioninfo 110
8.3.2 Initialization and Shutdown Sequences 111
8.3.2.1 EcuM_GoDownHaltPoll 111
8.3.22 EcuM Init 112
8.3.2.3 EcuM_StartupTwo 112
8.3.24 EcuM Shutdown 113
8.3.3 State Management. L. 114
8.3.3.1 EcuM SetState 114
8.3.3.2 EcuM_RequestRUN 114

8.3.3.3 EcuM ReleaseRUN 115

AUTSSAR

8.3.3.4 EcuM_RequestPOST_RUN 116
8.3.3.5 EcuM _ReleasePOST RUN 117
8.3.4 Shutdown Management 118
8.3.4.1 EcuM_SelectShutdownTarget 118
8.3.4.2 EcuM_GetShutdownTarget. 119
8.3.4.3 EcuM_GetLastShutdownTarget 120
8.3.4.4 EcuM_SelectShutdownCause 121
8.3.4.5 EcuM _GetShutdownCause 122
8.3.5 WakeupHandling 122
8.3.5.1 EcuM_CheckWakeup 122
8.3.5.2 EcuM_GetPendingWakeupEvents 123
8.3.5.3 EcuM_ClearWakeupEvent 124
8.3.5.4 EcuM_GetValidatedWakeupEvents 125
8.3.5.5 EcuM_GetExpiredWakeupEvents 126
8.3.6 AlarmClock e 127
8.3.6.1 EcuM_SetRelWakeupAlarm 127
8.3.6.2 EcuM_SetAbsWakeupAlarm 128
8.3.6.3 EcuM_AbortWakeupAlarm 129
8.3.6.4 EcuM GetCurrentTime 129
8.3.6.5 EcuM_GetWakeupTime 130
8.3.6.6 EcuM SetClock, 130
8.3.7 Miscellaneous 131
8.3.7.1 EcuM_SelectBootTarget 131
8.3.7.2 EcuM_GetBootTarget. 132
8.4 Callback Definitions 132
8.4.1 Callbacks from Wakeup Sources 132
8.4.1.1 EcuM_SetWakeupEvent 132
8.4.1.2 EcuM_ValidateWakeupEvent 134
8.5 Callout Definitions L 135
8.5.1 GenericCallouts 136
85.1.1 EcuM ErrorHook 136
8.5.2 Callouts from the STARTUP Phase 136
8.5.2.1 EcuM_AL_SetProgrammablelnterrupts 136
8.5.2.2 EcuM_AL DriverlnitZero 137
8.5.2.3 EcuM_DeterminePbConfiguration 138
8.5.24 EcuM_AL DriverlnitOne 138
8.5.2.5 EcuM_LoopDetection. L. 139
8.5.3 Callouts from the SHUTDOWN Phase 140
8.5.3.1 EcuM _OnGoOffOne 140
8.5.3.2 EcuM OnGoOffTwo 140
8.5.3.3 EcuM_AL SwitchOff 141
8534 EcuM AL Reset 142

8.5.4 Callouts from the SLEEP Phase 142

AUTSSAR

8.5.4.1 EcuM_EnableWakeupSources. 142
8.5.4.2 EcuM GenerateRamHash 143
8.5.4.3 EcuM_SleepActivityo 144
8.5.4.4 EcuM_StartCheckWakeup 144
8.5.4.5 EcuM_CheckWakeupHook 145
8.5.4.6 EcuM CheckRamHash. 146
8.5.4.7 EcuM _DisableWakeupSources 147
85.4.8 EcuM AL DriverRestart 148
8.5.5 Callouts fromthe UPPhase. 148
8.5.5.1 EcuM_StartWakeupSources 148
8.5.5.2 EcuM _CheckValidation 149
8.5.5.3 EcuM_StopWakeupSources 150
8.6 Scheduled Functions 150
8.6.1 EcuM MainFunction 150
8.7 ExpectedInterfaces 151
8.7.1 OptionalInterfaces 152
8.7.2 Configurable interfaces 153
8.7.2.1 Callbacks from the STARTUP phase 153
8.8 Specification of the Port Interfaces 154
8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface 154
8.8.1.1 General Approach 154
8.8.1.2 Servicelnterfaces. o Lo 154
8.8.2 Port Interface for EcuM_BootTarget Interface 156
8.8.2.1 General Approach 156
8.8.2.2 Servicelnterfaces. oL 157
8.8.3 Port Interface for EcuM_AlarmClock Interface 157
8.8.3.1 General Approach 157
8.8.3.2 Servicelnterfaces. 158
8.8.4 Port Interface for EcuM_Time Interface 159
8.8.4.1 General Approach 159
8.8.42 DataTypes e 159
8.8.4.3 Servicelnterfaces. o oL 159
8.8.5 Port Interface for EcuM_StateRequest Interface 160
8.8.5.1 General Approach 161
8.8.5.2 DataTypes 161
8.8.5.3 Servicelnterfaces. oL 161
8.8.6 Port Interface for EcuM_CurrentMode Interface 162
8.8.6.1 General Approach 162
8.8.6.2 DataTypes e 163
8.8.6.3 Servicelnterfaces. o oo L 163

8.8.7 Definition of the ECU Manager Service 164

AUTSSAR

9 Sequence Charts

9.1 State Sequences
9.2 Wakeup Sequences
9.2.1 GPT Wakeup Sequences
9.2.2 ICU Wakeup Sequences
9.2.3 CAN Wakeup Sequences
9.2.4 LIN Wakeup Sequences
9.2.5 FlexRay Wakeup Sequences
9.2.6 Ethernet Wakeup Sequence

10 Configuration specification

10.1Common Containers and configuration parameters

1011EcuM
10.1.2EcuMGeneral
10.1.83 EcuMConfiguration.
10.1.4 EcuMCommonConfiguration
10.1.5 EcuMDefaultShutdownTarget
10.1.6 EcuMDiriverlnitListOne
10.1.7 EcuMDiriverlnitListZero
10.1.8 EcuMDriverRestartList.
10.1.9 EcuMDiriverlnitltem
10.1.10 EcuMSleepMode
10.1.11 EcuMWakeupSource

10.2EcuM-Flex Containers and configuration parameters

10.2.1 EcuMFlexGeneral
10.2.2 EcuMFlexConfiguration
10.2.3 EcuMAlarmClock
10.2.4 EcuMDiriverlnitListBswM
10.2.5 EcuMGoDownAllowedUsers
10.2.6 EcuMResetMode
10.2.7 EcuMSetClockAllowedUsers
10.3Published Information.

A Not applicable requirements
B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release

R21-11 oo oo
B.1.1 Added Specification Items in R21-11 .
B.1.2 Changed Specification ltems in R21-11
B.1.3 Deleted Specification Items in R21-11

B.2 Traceable item history of this document according to AUTOSAR Release

R22-11 o
B.2.1 Added Specification ltems in R22-11 .
B.2.2 Changed Specification ltems in R22-11

170

170
170
170
173
175
182
185
188

193

193
193
194
196
197
200
202
203
203
204
207
210
214
215
218
220
222
225
225
226
228

229
230

AUTSSAR

B.2.3 Deleted Specification Itemsin R22-11 231
B.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e 231
B.3.1 Added Specification ltemsin R23-11 231
B.3.2 Changed Specification Itemsin R23-11 231
B.3.3 Deleted Specification temsin R23-11 231
B.4 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 231
B.4.1 Added Specification ltemsinR24-11 231
B.4.2 Changed Specification ItemsinR24-11 232
B.4.3 Deleted Specification ltemsin R24-11 233
B.5 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 233
B.5.1 Added Specification ltemsin R25-11 233

B.5.2 Changed Specification ltems in R25-11
B.5.3 Deleted Specification ltems in R25-11

AUTSSAR

Known Limitations

» The ECU Manager module interfaces must be specified as reentrant in the Multi-
Core context.

AUTSSAR

1 Introduction and Functional Overview

The ECU Manager module (as specified in this document) is a basic software module
(see [1]) that manages common aspects of ECU states. Specifically, the ECU Manager
module:

« Initializes and de-initializes the OS, the SchM and the BswM as well as some
basic software driver modules.

+ configures the ECU for SLEEP and SHUTDOWN when requested.
« manages all wakeup events on the ECU

The ECU Manager module provides the wakeup validation protocol to distinguish real’
wakeup events from ’erratic’ ones.

Furthermore:

» Partial or fast startup where he ECU starts up with limited capabilities and later,
as determined by the application, continues startup step by step.

* Interleaved startup where the ECU starts minimally and then starts the RTE to
execute functionality in SW-Cs as soon as possible. It then continues to start
further BSW and SW-Cs, thus interleaving BSW and application functionality..

» Multiple operational states where the ECU has more than one RUN state. This,
among other things, refines the notion of a spectrum of SLEEP states to RUN
states. There can now be a continuum of operational states spanning from the
classic RUN (fully operational) to the deepest SLEEP (processor halted).

e Multi-Core ECUs: STARTUP, SHUTDOWN, SLEEP and WAKEUP are coordi-
nated on all cores of the ECU.

Flexible ECU management employs the generic mode management facilities provided
by the following modules:

 RTE and BSW Scheduler module [2] are now amalgamated into one module:
This module supports freely configurable BSW and application modes and their
mode-switching facilities.

+ BSW Mode Manager module [3]: This module implements configurable rules and
action lists to evaluate the conditions for switching ECU modes and to implement
the necessary actions to do so.

Thus with Flexible ECU Management, most ECU states are no longer implemented
in the ECU Manager module itself. In general, the ECU Manager module takes over
control when the generic mode management facilities are unavailable in:

 Early STARTUP phases,
« Late SHUTDOWN phases,

« SLEEP phases where the facilities are locked out by the scheduler.

AUTSSAR

During the UP Phase of the ECU Manager module the BSW Mode Manager is re-
sponsible for further actions. Whereas, the ECU Manager module arbitrates RUN and
POST_RUN Requests from SW-Cs and notifies BswM about the status of the modes.

1.1 Backwards Compatibility to Previous ECU Manager Module
Versions

Flexible ECU management is backward compatible to previous ECU Manager versions
if it is configured accordingly.

For more information about a configuration in respect to compatibility see the "Guide
to Mode Management" [4].

AUTSSAR

2 Definitions and Abbreviations

This chapter defines terms that are of special significance to the ECU Manager and the
acronyms of related modules. Some acronyms are common to several specifications,
for their definition refer to the Glossary [5]

2.1 Definitions

Term Description
Callback Refer to the Glossary [5]
Callout "Callouts’ are function stubs that the system designer can replace with code,

usually at configuration time, to add functionality to the ECU Manager module.
Callouts are separated into two classes. One class provides mandatory ECU
Manager module functionality and serves as a hardware abstraction layer. The
other class provides optional functionality.

Integration Code

Refer to the Glossary [5]

Mode

A Mode is a certain set of states of the various state machines (not only of the
ECU Manager) that are running in the vehicle and are relevant to a particular
entity, an application or the whole vehicle

Passive Wakeup

A wakeup caused from an attached bus rather than an internal event like a timer
or sensor activity.

Phase

A logical or temporal assembly of ECU Manager’s actions and events, e.g.
STARTUP, UP, SHUTDOWN, SLEERP, ... Phases can consist of Sub-Phases
which are often called Sequences if they above all exist to group sequences of
executed actions into logical units. Phases in this context are not the phases of
the AUTOSAR Methodology.

Shutdown Target

The ECU must be shut down before it is put to sleep, before it is powered off or
before it is reset. SLEEP, OFF, and RESET are therefore valid shutdown targets.
By selecting a shutdown target, an application can communicate its wishes for
the ECU behavior after the next shutdown to the ECU Manager module.

State

States are internal to their respective BSW component and thus not visible to the
application. So they are only used by the BSW’s internal state machine. The
States inside the ECU Manager build the phases and therefore handle the
modes.

Wakeup Event

A physical event which causes a wakeup. A CAN message or a toggling IO line
can be wakeup events. Similarly, the internal SW representation, e.g. an
interrupt, may also be called a wakeup event.

Wakeup Reason

The wakeup reason is the wakeup event that is the actual cause of the last
wakeup.

Wakeup Source

The peripheral or ECU component which deals with wakeup events is called a
wakeup source.

Table 2.1: Terms definitions

AUTSSAR

2.2 Abbreviations

Abbreviations Description

BswM Refer to the Glossary [5]
Dem Refer to the Glossary [5]
Det Default Error Tracer
EcuM ECU Manager

Gpt Refer to the Glossary [5]
lcu Refer to the Glossary [5]
ISR Refer to the Glossary [5]
Mcu Refer to the Glossary [5]
NVRAM Refer to the Glossary [5]
Os Refer to the Glossary [5]
Rte Refer to the Glossary [5]
VFB Refer to the Glossary [5]

Table 2.2: Abbreviations

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[2] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[3] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS_BSWModeManager

[4] Guide to Mode Management
AUTOSAR_CP_EXP_ModeManagementGuide

[5] Glossary
AUTOSAR_FO_TR_Glossary

[6] Virtual Functional Bus
AUTOSAR_CP_TR_VFB

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on Mode Management
AUTOSAR_CP_RS_ModeManagement

[9] Specification of MCU Driver
AUTOSAR_CP_SWS_ MCUDriver

[10] Specification of CAN Transceiver Driver
AUTOSAR_CP_SWS_CANTransceiverDriver

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules (see [1]),
which is also valid for ECU State Manager. Thus, the specification [1] shall be con-
sidered as additional and required specification for ECU State Manager.

AUTSSAR

4 Constraints and Assumptions

4.1 Limitations

ECUs cannot always be switched off (i.e. zero power consumption).

Rationale: The shutdown target OFF can only be reached using ECU special hardware
(e.g. a power hold circuit). If this hardware is not available, this specification proposes
to issue a reset instead. Other default behaviors are permissible, however.

4.2 Applicability to car domains

The ECU Manager module is applicable to all car domains.

AUTSSAR

5 Dependencies to other modules

The following sections outline the important relationships to other modules. They also
contain some requirements that these modules must fulfill to collaborate correctly with
the ECU Manager module.

If data pointers are passed to a BSW module, the address needs to point to a location
in the shared part of the memory space.

5.1 SPAL Modules

5.1.1 MCU Driver

The MCU Diriver is the first basic software module initialized by the ECU Manager
module. When MCU_lInit returns (see [SWS_EcuM_02858]), the MCU module and
the MCU Driver module are not necessarily fully initialized, however. Additional MCU
module specific steps may be needed to complete the initialization. The ECU Manager
module provides two callout where this additional code can be placed. Refer to section
7.3.2 Activities in StartPreOS Sequence for details.

5.1.2 Driver Dependencies and Initialization Order

BSW drivers may depend on each other. A typical example is the watchdog driver,
which needs the SPI driver to access an external watchdog. This means on the one
hand, that drivers may be stacked (not relevant to the ECU Manager module) and on
the other hand that the called module must be initialized before the calling module is
initialized.

The system designer is responsible for defining the initialization order at configuration
time in EcuMDriverInitListZero, EcuMDriverInitListOne, EcuMDriver-—
RestartList and in EcuMDriverInitListBswM.

5.2 Peripherals with Wakeup Capability

Wakeup sources must be handled and encapsulated by drivers.

These drivers must follow the protocols and requirements presented in this document
to ensure a seamless integration into the AUTOSAR BSW. Basically, the protocol is as
follows:

The driver must invoke EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) to notify
the ECU Manager module that a pending wakeup event has been detected. The driver
must not only invoke EcuM_SetWakeupEvent while the ECU is waiting for a wakeup

AUTSSAR

event during a sleep phase but also during the driver initialization phase and during
normal operation when EcuM_MainFunction is running.

The driver must provide an explicit function to put the wakeup source to sleep. This
function shall put the wakeup source into an energy saving and inert operation mode
and rearm the wakeup notification mechanism.

If the wakeup source is capable of generating spurious events' then either
* the driver or
« the software stack consuming the driver or
« another appropriate BSW module

must either provide a validation callout for the wakeup event or call the ECU Manager
module’s validation function. If validation is not necessary, then this requirement is not
applicable for the corresponding wakeup source.

5.3 Operating System

The ECU Manager module starts the AUTOSAR OS and also shuts it down. The ECU
Manager module defines the protocol how control is handled before the OS is started
and how control is handled after the OS has been shut down.

5.4 BSW Scheduler

The ECU Manager module initializes the BSW Scheduler and the ECU Manager mod-
ule also contains EcuM_MainFunction (see [SWS_EcuM_02837]) which is scheduled
to periodically evaluate wakeup requests and update the Alarm Clock.

5.5 BSW Mode Manager

ECU states are generally implemented as AUTOSAR modes and the BSW Mode Man-
ager is responsible for monitoring changes in the ECU and affecting the corresponding
changes to the ECU state machine as appropriate. Refer to the Specification of the
Virtual Function Bus [6] for a discussion of AUTOSAR mode management and to the
Guide to Mode Management [4] for ECU state machine implementation details and
for guidelines about how to configure the BSW Mode Manager to implement the ECU
state machine

The BSW Mode Manager can only manage the ECU state machine after mode man-
agement is operational - that is, after the SchM has been initialized and until the SchM

1Spurious wakeup events may result from EMV spikes, bouncing effects on wakeup lines etc.

AUTSSAR

is de-initialised or halted. The ECU Manager module takes control of the ECU when
the BSW Mode manager is not operational.

The ECU Manager module therefore takes control immediately after the ECU has
booted and relegates control to the BSW Mode Manager after initializing the SchM
and the BswM.

The BswM passes control of the ECU back to the ECU Manager module to lock the
operating system and handle wakeup events.

The BswM also passes control back to the ECU Manager immediately before the OS
is stopped on shutdown.

When wakeup sources are being validated, the ECU Manager module indicates
wakeup source state changes to the BswM through mode switch requests.

5.6 Software Components

The ECU Manager module handles the following ECU-wide properties:
« Shutdown targets.

This specification assumes that SW-Cs set these properties (through AUTOSAR ports),
typically by some ECU specific part of the SW-C. The ECU Manager does not prevent
a SW-C from overrighting settings made by SW-Cs. The policy must be defined at a
higher level.

The following measures might help to resolve this issue.

» The SW-C Template may contain a field to indicate whether the SW-C sets the
shutdown target.

» The generation tool may only allow configurations that have one SW-C accessing
the shutdown target.

5.7 File Structure

5.7.1 Code file structure
This specification does not define the code file structure completely.

[SWS_EcuM_02990]

Upstream requirements: SRS_BSW_00346
[The ECU Manager module implementation shall provide a single EcuM_Callout_
Stubs. c file which contains the stubs of the callouts realized in this implementation. |

See also section 8.5 Callout Definitions for a list of the callouts that could possibly be
implemented.

AUTSSAR

Whether EcuM_Callout_Stubs.c can be edited manually or is composed only of
other generated files depends on the implementation.

5.7.2 Header file structure

Also refer to chapter 8.7 Expected Interfaces for dependencies to other modules.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [7] and [8] and links to the
fulfillment of these. Please note that if column "Satisfied by" is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_EcuM_02811] [SWS_EcuM_02907]
[SWS_EcuM_02923]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_EcuM_02810] [SWS_EcuM_02858]

[SRS_BSW_00307]

Global variables naming convention

[SWS_EcuM_04045] [SWS_EcuM_04101]
[SWS_EcuM_04102] [SWS_EcuM_04107]
[SWS_EcuM_04136] [SWS_EcuM_91004]
[SWS_EcuM_91008]

[SRS_BSW_00327]

Error values naming convention

[SWS_EcuM_04032] [SWS_EcuM_91003]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_EcuM_02664] [SWS_EcuM_91005]

[SRS_BSW_00333]

For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_EcuM_02171] [SWS_EcuM _02172]
[SWS_EcuM_02345] [SWS_EcuM_02532]
[SWS_EcuM_02589] [SWS_EcuM_02807]

[SRS_BSW_00337]

Classification of development errors

[SWS_EcuM_04032]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

[SWS_EcuM_04089]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a basic
set of module files

[SWS_EcuM_02990]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_EcuM _02337] [SWS_EcuM_02788]
[SWS_EcuM_02867] [SWS_EcuM_02868]
[SWS_EcuM_03023] [SWS_EcuM_03024]
[SWS_EcuM_03025] [SWS_EcuM_03026]
[SWS_EcuM_04123]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_EcuM_02811]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_EcuM_02829] [SWS_EcuM_02838]
[SWS_EcuM_02905] [SWS_EcuM_02906]
[SWS_EcuM_04137] [SWS_EcuM_91002]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_EcuM_01117] [SWS_EcuM_02826]
[SWS_EcuM_02829]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_EcuM_02837]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_EcuM_04040]

[SRS_BSW_00385]

List possible error notifications

[SWS_EcuM_04032] [SWS_EcuM_91003]

Y%

AUTSSAR

Requirement

Description

Satisfied by

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_EcuM_04139]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_EcuM_02980]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_EcuM _02813]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_EcuM_02794] [SWS_EcuM_02795]
[SWS_EcuM_02801] [SWS_EcuM_02811]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_EcuM_04038]
[SWS_EcuM_02859]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_EcuM_04137]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_EcuM_03018]

[SRS_BSW_00439]

Enable BSW modules to handle
interrupts

[SWS_EcuM_04085]

[SRS_BSW_00452]

Classification of runtime errors

SWS_EcuM_91003

[SRS_BSW_00458]

Classification of production errors

]
]

[SRS_BSW_00459]

It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[
[SWS_EcuM_02987
[

SWS_EcuM_04011] [SWS_EcuM_04012]
[SWS_EcuM_04094] [SWS_EcuM_04095]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_EcuM_04033] [SWS_EcuM_04037]

[SRS_BSW_00471]

Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_EcuM _02987]

[SRS_BSW_00477]

The functional interfaces of
AUTOSAR BSW modules shall be
specified in C99

[SWS_EcuM_02859]

[SRS_ModeMgm_
00001]

Initialization of Basic Software
Modules

[SWS_EcuM 02411] [SWS_EcuM_02559]
[SWS_EcuM_02561] [SWS_EcuM_02562]
[SWS_EcuM_02603] [SWS_EcuM_02684]
[SWS_EcuM_02730] [SWS_EcuM_02796]
[SWS_EcuM_02798] [SWS_EcuM_02799]
[SWS_EcuM_02806] [SWS_EcuM_02838]
[SWS_EcuM_02905] [SWS_EcuM_02906]
[SWS_EcuM_02907] [SWS_EcuM_02921]
[SWS_EcuM_02923] [SWS_EcuM_02932]
[SWS_EcuM_02934] [SWS_EcuM_02947]
[SWS_EcuM_04001] [SWS_EcuM_04014]
[SWS_EcuM_04015] [SWS_EcuM_04016]
[SWS_EcuM_04017] [SWS_EcuM_04018]
[SWS_EcuM_04085] [SWS_EcuM_04093]
[SWS_EcuM_04114] [SWS_EcuM_04137]
[SWS_EcuM_04142] [SWS_EcuM_04145]
[SWS_EcuM_04146] [SWS_EcuM_91001]

AUTSSAR

Requirement

Description

Satisfied by

[SRS_ModeMgm_
00002]

Switch to ECU Sleep Mode

[SWS_EcuM_02188] [SWS_EcuM_02389]
[SWS_EcuM_02863] [SWS_EcuM_02928]
[SWS_EcuM_02951] [SWS_EcuM_02957]
[SWS_EcuM_02958] [SWS_EcuM_02960]
[SWS_EcuM_02961] [SWS_EcuM_03010]
[SWS_EcuM_03020] [SWS_EcuM_04023]
[SWS_EcuM_04024] [SWS_EcuM_04027]
[SWS_EcuM_04028] [SWS_EcuM_04092]
[SWS_EcuM_04149] [SWS_EcuM_91002]

[SRS_ModeMgm_
00003]

Validation of Wake-ups

[SWS_EcuM 01117] [SWS_EcuM _02165]
[SWS_EcuM_02171] [SWS_EcuM_02345]
[SWS_EcuM_02389] [SWS_EcuM_02479]
[SWS_EcuM_02496] [SWS_EcuM_02539]
[SWS_EcuM_02546] [SWS_EcuM_02565]
[SWS_EcuM_02566] [SWS_EcuM_02572]
[SWS_EcuM_02601] [SWS_EcuM_02623]
[SWS_EcuM_02625] [SWS_EcuM_02645]
[SWS_EcuM_02683] [SWS_EcuM_02707]
[SWS_EcuM_02709] [SWS_EcuM_02710]
[SWS_EcuM_02712] [SWS_EcuM_02790]
[SWS_EcuM_02791] [SWS_EcuM_02807]
[SWS_EcuM_02826] [SWS_EcuM_02829]
[SWS_EcuM_02867] [SWS_EcuM_02868]
[SWS_EcuM_02918] [SWS_EcuM_02922]
[SWS_EcuM_02924] [SWS_EcuM_02925]
[SWS_EcuM_02926] [SWS_EcuM_02963]
[SWS_EcuM_02975] [SWS_EcuM_02976]
[SWS_EcuM_04004] [SWS_EcuM_04025]
[SWS_EcuM_04026] [SWS_EcuM_04029]
[SWS_EcuM_04030] [SWS_EcuM_04041]
[SWS_EcuM_04066] [SWS_EcuM_04078]
[SWS_EcuM_04079] [SWS_EcuM_04081]
[SWS_EcuM_04082] [SWS_EcuM_04084]
[SWS_EcuM_04091] [SWS_EcuM_04096]
[SWS_EcuM_04138] [SWS_EcuM_04140]
[SWS_EcuM_04147] [SWS_EcuM_04148]
[SWS_EcuM_04149] [SWS_EcuM_04150]
[SWS_EcuM_04151] [SWS_EcuM_04152]
[SWS_EcuM_91006] [SWS_EcuM_91007]

[SRS_ModeMgm_
00004]

Handling of Valid Wake-ups

[SWS_EcuM _02165] [SWS_EcuM_02188]
[SWS_EcuM_02562] [SWS_EcuM_02683]
[SWS_EcuM_02756] [SWS_EcuM_02807]
[SWS_EcuM_02828] [SWS_EcuM_04003]
[SWS_EcuM_04025] [SWS_EcuM_04026]
[SWS_EcuM_04029] [SWS_EcuM_04030]
[SWS_EcuM_04041] [SWS_EcuM_04084]
[SWS_EcuM 04151] [SWS_EcuM_04152]

[SRS_ModeMgm_
00005]

Reason for Last Wake-up

[SWS_EcuM_01156] [SWS_EcuM_02166]
[SWS_EcuM_02172] [SWS_EcuM_02181]
[SWS_EcuM_02496] [SWS_EcuM_02532]
[SWS_EcuM_02533] [SWS_EcuM_02589]
[SWS_EcuM_02827] [SWS_EcuM_02830]
[SWS_EcuM_02831] [SWS_EcuM_03003]
[SWS_EcuM_04076]

AUTSSAR

Requirement

Description

Satisfied by

[SRS_ModeMgm_
00006]

Shutdown ECU

[SWS_EcuM_02756] [SWS_EcuM_02812]
[SWS_EcuM_02920] [SWS_EcuM_02952]
[SWS_EcuM_02953] [SWS_EcuM_03021]
[SWS_EcuM_03022] [SWS_EcuM_04020]
[SWS_EcuM_04022] [SWS_EcuM_04065]
[SWS_EcuM_04074] [SWS_EcuM_04075]
[SWS_EcuM_91002] [SWS_EcuM_91011]
[SWS_EcuM_91012]

[SRS_ModeMgm_
00007]

Synchronous Shutdown across Cores

[SWS_EcuM_04020] [SWS_EcuM_04022]
[SWS_EcuM 91010]

[SRS_ModeMgm_
00008]

Enter RUN State after Start-up

[SWS_EcuM_04107] [SWS_EcuM_04108]
[SWS_EcuM_04132] [SWS_EcuM_91005]

[SRS_ModeMgm_
00009]

Switch to POST_RUN state

[SWS_EcuM_03025] [SWS_EcuM_03026]
[SWS_EcuM_04107] [SWS_EcuM_04108]
[SWS_EcuM_04112] [SWS_EcuM_04117]
[SWS_EcuM_04118] [SWS_EcuM_04119]
[SWS_EcuM_04120] [SWS_EcuM_04121]
[SWS_EcuM_04122] [SWS_EcuM_04123]
[SWS_EcuM_04127] [SWS_EcuM_04128]
[SWS_EcuM_04129] [SWS_EcuM_04130]
[SWS_EcuM_04131] [SWS_EcuM_04132]
[SWS_EcuM_04135] [SWS_EcuM_04144]
[SWS_EcuM_91004] [SWS_EcuM_91005]

[SRS_ModeMgm_
00010]

Switch to RUN State

[SWS_EcuM_03023] [SWS_EcuM_03024]
[SWS_EcuM_04107] [SWS_EcuM_04108]
[SWS_EcuM_04112] [SWS_EcuM_04117]
[SWS_EcuM_04118] [SWS_EcuM_04120]
[SWS_EcuM_04121] [SWS_EcuM_04122]
[SWS_EcuM_04123] [SWS_EcuM_04124]
[SWS_EcuM_04126] [SWS_EcuM_04127]
[SWS_EcuM_04130] [SWS_EcuM_04131]
[SWS_EcuM_04132] [SWS_EcuM_04135]
[SWS_EcuM_04144] [SWS_EcuM_91004]
[SWS_EcuM_91005]

[SRS_ModeMgm_
00011]

Enter SHUTDOWN or SLEEP

[SWS_EcuM_02916] [SWS_EcuM_02917]
[SWS_EcuM_02919] [SWS_EcuM_04107]
[SWS_EcuM_04108] [SWS_EcuM_04112]
[SWS_EcuM_04119] [SWS_EcuM_04120]
[SWS_EcuM_04121] [SWS_EcuM_04122]
[SWS_EcuM_04129] [SWS_EcuM_04131]
[SWS_EcuM_04132] [SWS_EcuM_04135]
[SWS_EcuM_91004] [SWS_EcuM_91005]

[SRS_ModeMgm_
00012]

Select Target Shutdown State

[SWS_EcuM_00624] [SWS_EcuM_02185]
[SWS_EcuM_02585] [SWS_EcuM_02822]
[SWS_EcuM_02824] [SWS_EcuM_02825]
[SWS_EcuM_02979] [SWS_EcuM_03011]
[SWS_EcuM_04005] [SWS_EcuM_04006]
[SWS_EcuM_04007] [SWS_EcuM_04101]
[SWS_EcuM_04111] [SWS_EcuM_04136]

[SRS_ModeMgm_
00013]

Increment ECU Clock

[SWS_EcuM_04069] [SWS_EcuM_04086]
[SWS_EcuM_04087] [SWS_EcuM_04089]

[SRS_ModeMgm_
00014]

Set ECU Clock

[SWS_EcuM_04064] [SWS_EcuM_04073]
[SWS_EcuM_04105]

[SRS_ModeMgm_
00015]

Provide Time Since Power-up

[SWS_EcuM_04062] [SWS_EcuM_04102]
[SWS_EcuM_04109] [SWS_EcuM_04113]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_
00016]

Start and Cancel Wake-up Alarm

[SWS_EcuM_03017] [SWS_EcuM_03019]
[SWS_EcuM_04054] [SWS_EcuM_04055]
[SWS_EcuM_04056] [SWS_EcuM_04057]
[SWS_EcuM_04058] [SWS_EcuM_04059]
[SWS_EcuM_04060] [SWS_EcuM_04061]
[SWS_EcuM_04070] [SWS_EcuM_04071]
[SWS_EcuM_04102] [SWS_EcuM_04105]

[SRS_ModeMgm_
00017]

ECU Wake-up by Alarm

[SWS_EcuM_04063] [SWS_EcuM_04072]
[SWS_EcuM_04088] [SWS_EcuM_04109]

[SRS_ModeMgm_
00018]

Cancel all Wake-Up Alarms

[SWS_EcuM_04009] [SWS_EcuM_04010]
[SWS_EcuM_04098]

[SRS_ModeMgm_
00019]

Increment Alarm Clock

[SWS_EcuM_04002]

[SRS_ModeMgm_
00020]

Execute External Code on State

Transitions

[SWS_EcuM_02904] [SWS_EcuM_02905]
[SWS_EcuM_02907] [SWS_EcuM_02916]
[SWS_EcuM_02917] [SWS_EcuM_02923]
[SWS_EcuM_02928] [SWS_EcuM_04114]
[SWS_EcuM_91001]

[SRS_ModeMgm_
00021]

State Changes are Global

[SWS_EcuM_04116] [SWS_EcuM_04133]
[SWS_EcuM_04143]

[SRS_ModeMgm_
00022]

Activate Bootloader

[SWS_EcuM_02247] [SWS_EcuM_02835]
[SWS_EcuM_02836] [SWS_EcuM_03000]
[SWS_EcuM_03012] [SWS_EcuM_04110]
[SWS_EcuM_91008]

[SRS_ModeMgm_
00023]

Reason for Last Shutdown

[SWS_EcuM_02156] [SWS_EcuM_02157]
[SWS_EcuM_02336] [SWS_EcuM_02337]
[SWS_EcuM_02788] [SWS_EcuM_02979]
[SWS_EcuM_03011] [SWS_EcuM_04005]
[SWS_EcuM_04006] [SWS_EcuM_04007]
[SWS_EcuM_04008] [SWS_EcuM_04044]
[SWS_EcuM_04045] [SWS_EcuM_04050]
[SWS_EcuM_04051] [SWS_EcuM_04101]
[SWS_EcuM 04111] [SWS_EcuM_04136]

[SRS_ModeMgm_
00024]

Configure States RUN and POST_

RUN

[SWS_EcuM_04115]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional Specification

Chapter 1 introduced the new, more flexible approach to ECU state management.

However, this flexibility comes at the price of responsibility. There are no standard ECU
modes, or states. The integrator of an ECU must decide which states are needed and
also configure them.

When ECU Mode Handling is used, the standard states RUN and POST_RUN are
arbitrated by the RUN Request Protocol and propagated to the BswM. The system
designer has to make sure that pre-conditions of respective states are met when setting
an EcuM Mode by BswM actions.

Note that neither the BSW nor SW-Cs will be able to rely on certain ECU modes or
states, although previous versions of the BSW have largely not relied on them..

This document only specifies the functionality that remains in the ECU Manager mod-
ule. For a complete picture of ECU State Management, refer to the specifications of
the other relevant modules, i.e., RTE and BSW Scheduler module [2] and BSW Mode
Manager module [3].

Refer to the Guide to Mode Management [4] for some example use cases for ECU
states and the interaction between the involved BSW modules.

The ECU Manager module manages the state of wakeup sources in the same way as
it has in the past. The APIs to set/clear/validate wakeup events remain the same - with
the notable difference that these APIs are Callbacks.

It was always intended that wakeup source handling take place not only during wakeup
but continuously, in parallel to all other EcuM activities. This functionality is now fully
decoupled from the rest of ECU management via mode requests.

7.1 Phases of the ECU Manager Module

Previous versions of the ECU Manager Module specification have differentiated be-
tween ECU states and ECU modes.

ECU modes were longer-lasting periods of operational ECU activities that were visible
to applications and provided orientation to them, i.e. starting up, shutting down, going
to sleep and waking up.

The ECU Manager states were generally continuous sequences of ECU Manager Mod-
ule operations terminated by waiting until external conditions were fulfilled. Startup1,
for example, contained all BSW initialization before the OS was started and terminated
when the OS returned control to the ECU Manager module.

For the current Flexible ECU Manager there exist States, Modes and Phases which
are defined in Definitions and Acronyms.

AUTSSAR

Here the ECU state machine is implemented as general modes under the control of
the BSW Mode Manager module. This creates a terminology problem as the old ECU
States now become Modes that are visible through the RTE_Mode port interface and
the old ECU Modes become Phases.

Because Modes as defined by the VFB and used in the RTE are only available in the
UP phase (where the ECU Manager is passive) the change of terminology from Modes
to Phases got necessary.

Figure 7.1 shows an overview over the phases of the Flexible ECU Manager module.

The STARTUP phase lasts until the mode management facilities are running. Basically
the STARTUP phase consists of the minimal activities needed to start mode manage-
ment: initializing low-level drivers, starting the OS and initializing the BSW Scheduler
and the BSW Mode Manager modules. Similarly the SHUTDOWN phase is the reverse
of the STARTUP phase is where mode management is de-initialized.

The UP phase consists of all states that are not highlighted. During that phase, the
ECU goes from State to State and from Mode to Mode, as dictated by the Integrator-
defined state machine.

The UP phase contains default Modes in case ECU Mode Handling is used. The tran-
sition between these Modes is done by cooperation between the ECU State Manager
module and the BSW Mode Manager module.

Note that the UP phase contains some former sleep states. The mode management
facilities do not operate from the point where the OS Scheduler has been locked to pre-
vent other tasks from running in sleep to the point where the MCU mode that puts the
ECU to sleep has been exited. The ECU Manager module provides wakeup handling
support at this time.

AUTSSAR

e STARTUP ™\

StartPreOs

OS started

StartPostOs

After Sleep the
Wakeu pValidation is
,| started if needed

e SLEEP N\

_ oo

BswM, Os and SchM initialized ‘

WakeUpSources will
be enabled

e uP N

WakeUpRestart

) WakeUpSources will
be disabled

e SHUTDOWN N\

OffPreOs

SchM and BswM de-
initialized; OS will be
shutdown

/ OffPostOs

Reset if Shutdown

Target isRESET

Figure 7.1: Phases of the ECU Manager

AUTSSAR

7.1.1 STARTUP Phase

The purpose of the STARTUP phase is to initialize the basic software modules to the
point where Generic Mode Management facilities are operational. For more details
about the initialization see chapter 7.3.

7.1.2 UP Phase

Essentially, the UP phase starts when the BSW Scheduler has started and BswM_ -
Init has been called. At that point, memory management is not initialized, there are
no communication stacks, no SW-C support (RTE) and the SW-Cs have not started.
Processing starts in a certain mode (the next one configured after Startup) with cor-
responding runnables, i.e. the BSW MainFunctions, and continues as an arbitrary
combination of mode changes which cause the BswM to execute actions as well as
triggering and disabling corresponding runnables.

From the ECU Manager Module perspective, the ECU is "up", however. The BSW
Mode Manager Module then starts mode arbitration and all further BSW initialization,
starting the RTE and (implicitly) starting SW-Cs becomes code executed in the BswM’s
action lists or driven by mode-dependent scheduling, effectively under the control of
the integrator.

Initializing the NvM and calling NvM_Readall therefore also becomes integration code.
This means that the integrator is responsible for triggering the initialization of Com,
DEM and FIM at the end of NvM_ReadAll. The NvM will notify the BswM when NvM_
ReadAll has finished.

Note that the RTE can be started after NvM and COM have been initialized. Note also
that the communication stack need not be fully initialized before COM can be initialized.

These changes initialize BSW modules as well as starting SW-Cs in arbitrary order
until the ECU reaches full capacity and the changes continue to determine the ECU
capabilities thereafter as well.

Ultimately mode switches stop SW-Cs and de-initialize the BSW so that the Up phase
ends when the ECU reaches a state where it can be powered off.

So, as far as the ECU Manager module is concerned, the BSW and SW-Cs run until
they are ready for the ECU to be shut down or put to sleep.

Refer to the Guide to Mode Management [4] for guidance on how to design mode-
driven ECU management and for configuring the BSW Mode Manager accordingly.

AUTSSAR

7.1.3 SHUTDOWN Phase

[SWS_EcuM_03022]
Upstream requirements: SRS_ModeMgm_00006

[The SHUTDOWN phase handles the controlled shutdown of basic software modules
and finally results in the selected shutdown target OFF or RESET. |

7.1.4 SLEEP Phase

The ECU saves energy in the SLEEP phase. Typically, no code is executed but power
is still supplied, and if configured accordingly, the ECU is wakeable in this state’. The
ECU Manager module provides a configurable set of (hardware) sleep modes which
typically are a trade off between power consumption and time to restart the ECU.

The ECU Manager module wakes the ECU up in response to intended or unintended
wakeup events. Since unintended wakeup events should be ignored, the ECU Man-
ager module provides a protocol to validate wakeup events. The protocol specifies
a cooperative process between the driver which handles the wakeup source and the
ECU Manager (see section 7.6.4).

7.1.5 OFF Phase

The ECU enters the OFF state when it is powered down. The ECU may be wakeable
in this state but only for wakeup sources with integrated power control. In any case the
ECU must be startable (e.g. by reset events).

'Some ECU designs actually do require code execution to implement a SLEEP state (and the wakeup
capability). For these ECUs, the clock speed is typically dramatically reduced. These could be imple-
mented with a small loop inside the SLEEP state.

AUTSSAR

7.2 Structural Description of the ECU Manager

«realize»

EcuM_GoDownHaltPoll
«realize»
EcuM_AL_DriverlnitBswM_<x>

(> «realize»

EcuM_Types both

@,

«realize»
EcuM_GetShutdownTarget

«realize»
EcuM_SetState

O

«realize»
EcuM_SelectShutdownTarget

«configurable»
EcuM_StartCheckWakeup

Q

«realize»
EcuM_GetLastShutdownTarget
«mandatory»
BswM_Deinit
= mandatory»
SchM_lnit
«mandatory»
SchM_Deinit
= mandatory»
Dem_Init
=TT T T T mandatoys
Dem_Prelnit
«mandatory»
Dem_Shutdown
«mandatory»
Mcu_GetResetReason
S 7 mandatorys
Mcu_SetMode
«mandatory»
Mcu_PerformReset
«mandatory»

CanSM_EcuMWakeUpValidation

«mandatory»
Mou_nit i
«mandatory»
ComM_EcuM_WakeUpIndication
«mandatory»
BswM_EcuM_CurrentWakeup
«mandatory»
StartOS
«mandatory»
ShutdownOS
«mandatory»
GetResource
«mandatory»
ReleaseResource
«mandatory»

ComM_EcuM_PNCWakeUpIndication

«module»
EcuM

g]

«realize» : :

_____ EcuM_Types
«optional»
Adc_lInit
«optional»
Can_Init
«optional»
CanTrev_Init
«optional»
Det_Init
«optional»
___________ Det_ReportError
«optional»
EthTrev_Init
«optional»
Eth_lInit
«optional»
Fr_Init
" eoptional» |~
GetCorelD
«optional»
FrTrev_Init
«optional» leu_Init
«optional»
Gpt_Init
«optional»
LinTrev_Init
«optional»
loHWADb_Init<Init_Id>
«optional»
Port_lInit
«optional»
Lin_Init
«optional»
Wdg_Init
«optional»
Pwm_Init
«optional»
Ocu_Init
«optional»
___________ Spi_Init
«optional»
StartCore
«mandatory»
BswM_Init
«optional»
ShutdownAllCores
«optional»
WdgM_PerformReset
«optional»

EthSwt_Init

Figure 7.2: ECU Manager Module Relationships

Figure 7.2 illustrates the ECU Manager module’s relationship to the interfaces of other
BSW modules. In most cases, the ECU Manager module is simply responsible for

AUTSSAR

initialization?. There are however some modules that have a functional relationship
with the ECU Manager module, which is explained in the following paragraphs.

7.2.1 Standardized AUTOSAR Software Modules

Some Basic Software driver modules are initialized, shut down and re-initialized upon
wakeup by the ECU Manager module.

The OS is initialized and shut down by the ECU Manager.

After the OS initialization, additional initialization steps are undertaken by the ECU
Manager module before passing control to the BswM. The BswM hands execution
control back to the ECU Manager module immediately before OS shutdown. Details
are provided in the chapters 7.3 STARTUP and 7.4 SHUTDOWN .

7.2.2 Software Components

SW-Components contain the AUTOSAR ECU’s application code.
A SW-C interacts with the ECU Manager module using AUTOSAR ports.

7.3 STARTUP Phase

See Chapter 7.1.1 for an overview description of the STARTUP phase.

2To be precise, "initialization" could also mean de-initialization.

AUTSSAR

Boot Menu C Init Code «module» «module»
Os EcuM
SO

BSW Task (OS task

I T T
| | . I
Reset Vector() | | | or cycl;c call) !
| | | I
| | | I
| | | I
| | |
Set up stack() | | |
| | |
14—_| | | |
| | |
! EcuM_lInit) ! — [
| X ref
: : —/ StartPreOS Sequence
StartOS
< 0 ; I
StartupHook() | I
| |
| |
Activate T ask() I :
|
|

EcuM_StartupTwo()

ref
_/StartPostOS Sequence

ST 1

Figure 7.3: STARTUP Phase

Figure 7.3 shows the startup behavior of the ECU. When invoked through EcuM_1Init,
the ECU Manager module takes control of the ECU startup procedure. With the call to
StartOS, the ECU Manager module temporarily relinquishes control. To regain control,
the Integrator has to implement an OS task that is automatically started and calls
EcuM_StartupTwo as its first action.

7.3.1 Activities before EcuM_Init

The ECU Manager module assumes that before EcuM_Init (see
[SWS_EcuM_02811]) is called a minimal initialization of the MCU has taken
place, so that a stack is set up and code can be executed, also that C initialization of
variables has been performed.

7.3.2 Activities in StartPreOS Sequence

[SWS_EcuM_02411]
Upstream requirements: SRS_ModeMgm_00001

[Table StartPreOS Sequence shows the activities in StartPreOS Sequence and the
order in which they shall be executed in EcuM_Init (see [SWS_EcuM_02811]).]

AUTSSAR

StartPreOS Sequence

Initialization Activity

Callout EcuM_AL_SetProgrammableIn-
terrupts

Comment

On ECUs with programmable interrupt prior-
ities, these priorities must be set before the
OS is started.

Opt.

yes

Callout EcuM_AL_ DriverInitZero

Init block 0

This callout may only initialize BSW modules
that do not use post-build configuration pa-
rameters. The callout may not only contain
driver initialization but also any kind of pre-
OS, low level initialization code. See 7.3.5
Driver Initialization

yes

Callout
tion

EcuM_DeterminePbConfigura-

This callout is expected to return a pointer to a
fully initialized EcuM_ConfigType structure
containing the post-build configuration data
for the ECU Manager module and all other
BSW modules.

no

Check consistency of configuration data

If check fails the EcuM_ErrorHook is called.
See 7.3.4 Checking Configuration Consis-
tency for details on the consistency check.

no

Callout EcuM_AIL_DriverInitOne

Init block |

The callout may not only contain driver initial-
ization but any kind of pre-OS, low level ini-
tialization code. See 7.3.5 Driver Initialization

yes

Get reset reason

The reset reason is derived from a call
to Mcu_GetResetReason and the map-
ping defined via the EcuMWakeupSource
configuration containers. See 8.4.1.1
EcuM_SetWakeupEvent and 8.3.5.4
EcuM_GetValidatedWakeupEvents (see
[SWS_EcuM_02830])

no

Select default shutdown target

See [SWS_EcuM_02181]

no

Callout EcuM_LoopDetection

If Loop Detection is enabled, this callout is
called on every startup.

yes

Start OS

Start the AUTOSAR
[SWS_EcuM 02603]

OS, see

no

Table 7.1: StartPreOS Sequence

Note to column Opt. : Optional activities can be switched on or off by configuration.

See section 10.1 Common Containers and configuration parameters for details.

[SWS_EcuM_02623]

Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall remember the wakeup source resulting from the
reset reason translation (see table StartPreOS Sequence). |

Rationale for [SWS_EcuM_02623]: The wakeup sources must be validated by the
EcuM_MainFunction (see section 7.6.4 Activities in the WakeupValidation Se-

quence).

AUTSSAR

[SWS_EcuM_02684]
Upstream requirements: SRS_ModeMgm_00001
[When activated through the EcuM_1Init (see [SWS_EcuM_02811]) function, the

ECU Manager module shall perform the actions in the StartPreOS Sequence (see
table StartPreOS Sequence). |

AUTSSAR

«module» Integration Code

EcuM
O

«module»
Mcu

«module»
Os

I EcuM_AL_DriverlnitZero()

< ______________

EcuM_DeterminePbConfiguration(const
EcuM_ConfigType*)

< ______________

|

|

I
-

F -1

data()

Init Block 0

Check consistency of configuration

opt Configuration data inconsistent/

1
EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT)

This call never retums! lﬁ

EcuM_AL_DriverlnitOne()
|

]

EcuM_LoopDetection()

< _____________

EcuM_SeIectShutdownTa:\rget(Std_ReturnType,
[; EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

StartOS(EC:UM_DE FAULT_APP_MODE

e - — — - ————— Init Block |
|
Mcu_GetResetReason(Mcu_ResetType)
I
|
Mcu_GetResetReason()
< ______________ - - --—--—-=-=
I
I
Map reset reason to wakeup
source() |
C |

~

Figure 7.4: StartPreOS Sequence

AUTSSAR

The StartPreOS Sequence is intended to prepare the ECU to initialize the OS and
should be kept as short as possible. Drivers should be initialised in the UP phase
when possible and the callouts should also be kept short. Interrupts should not be
used during this sequence. If interrupts have to be used, only category | interrupts are
allowed in the StartPreOS Sequence 13 .

Initialization of drivers and hardware abstraction modules is not strictly defined by the
ECU Manager. Two callouts EcuM_AI_DriverInitZero (see [SWS_EcuM_02905]
) and EcuM_AL_DriverInitOne (see [SWS_EcuM_02907]) are provided to define
the init blocks 0 and I. These blocks contain the initialization activities associated with
the StartPreOS sequence.

MCU_Init does not provide complete MCU initialization. Additionally, hardware depen-
dent steps have to be executed and must be defined at system design time. These
steps are supposed to be taken within the EcuM_AL_DriverInitZero (see EcuM_
AL_DriverInitZero, [SWS_EcuM_02905]) or EcuM_AIL_DriverInitOne call-
outs (see EcuM_AL_DriverInitOne, [SWS_EcuM_02907]). Details can be found
in the Specification of MCU Driver [9].

[SWS_EcuM_02181]
Upstream requirements: SRS_ModeMgm_00005
[The ECU Manager module shall call EcuM_GetVvalidatedWakeupEvents with the
configured default shutdown target (EcuMbefaultShutdownTarget).|
See section 7.7 Shutdown Targets.
[SWS_EcuM_02603]
Upstream requirements: SRS_ModeMgm_00001

[The StartPreOS Sequence shall initialize all basic software modules that are needed
to start the OS. |

7.3.3 Activities in the StartPostOS Sequence

[SWS_EcuM_02934]
Upstream requirements: SRS_ModeMgm_00001

[
StartPostOS Sequence
Initialization Activity Comment Opt.
Start BSW Scheduler no
Init BSW Mode Manager no
\Y%

3Category |l interrupts require a running OS while category | interrupts do not. AUTOSAR OS re-
quires each interrupt vector to be exclusively put into one category.

AUTSSAR

A
Init BSW Scheduler Initialize the semaphores for critical sections used by BSW mod- | no
ules
Start Scheduler Timing Start periodical events for BSW/SWCs no

]

Note to column Opt. : Optional activities can be switched on or off by configuration.
See section 10.1 Common Containers and configuration parameters for details.

[SWS_EcuM_02932]
Upstream requirements: SRS_ModeMgm_00001
[When activated through the EcuM_StartupTwo (see [SWS_EcuM_02838]) function,

the ECU Manager module shall perform the actions in StartPostOS Sequence (see
table in [SWS_EcuM_02934)). |

«module» «module» «module»
EcuM SchM BswM

SchM_Start():
Std_ReturnType

1
BswM_Init(const BswM_ConfigType *)

|
|

€ m m—————— -
|

|

SchM_Init(const SchM_ConfigType*)

< _____________

SchM_StartTiming(const SchM_ConfigType*)

Figure 7.5: StartPostOS Sequence

AUTSSAR

7.3.4 Checking Configuration Consistency

7.3.4.1 The Necessity for Checking Configuration Consistency in the ECU Man-
ager

In an AUTOSAR ECU several configuration parameters are set and put into the ECU
at different times. Pre-compile parameters are set, inserted into the generated source
code and compiled into object code. When the source code has been compiled, link-
time parameters are set, compiled, and linked with the previously configured object
code into an image that is put into the ECU. Finally, post-build parameters are set,
compiled, linked, and put into the ECU at a different time. All these parameters must
match to obtain a stable ECU.
.objT .objj

Compiled Compiled
RTE Code SWG Code

Compile BSW Code

The configuration tool can check the consistency of configuration time parameters it-
self. The compiler may detect parameter errors at compilation time and the linker may
find additional errors at link time. Unfortunately, finding configuration errors in post-
build parameters is very difficult. This can only be achieved by checking that

+ the pre-compile and link-time parameter settings used when compiling the code
are exactly the same as

* the pre-compile and link-time parameter settings used when configuring and com-
piling the post-build parameters.

This can only be done at run-time.

Explanation for [SWS_EcuM_02796]: The ECU Manager module checks the consis-
tency once before initializing the first BSW module to avoid multiple checks scattered
over the different BSW modules.

AUTSSAR

This also implies that:

[SWS_EcuM_02796]
Upstream requirements: SRS_ModeMgm_00001

[The ECU Manager module shall not only check the consistency of its own param-
eters but of all post-build configurable BSW modules before initializing the first BSW
module. |

The ECU Manager Configuration Tool must compute a hash value over all pre-compile
and link-time configuration parameters of all BSW modules and store the value in the
link-time ECUM_CONFIGCONSISTENCY_ HASH (See EcuMConfigConsistencyHash)
configuration parameter. The hash value is necessary for two reasons. First, the pre-
compile and link-time parameters are not accessible at run-time. Second, the check
must be very efficient at run-time. Comparing hundreds of parameters would cause an
unacceptable delay in the ECU startup process.

The ECU Manager module Configuration Tool must in turn put the computed ECUM
CONFIGCONSISTENCY._HASH value into the field in the EcuM_ConfigType structure
which contains the root of all post-build configuration parameters.

[SWS_EcuM_02798]
Upstream requirements: SRS_ModeMgm_00001

[The ECU Manager module shall check in EcuM_Init (see [SWS_EcuM_02811])
that the field in the structure is equal to the value of ECUM_CONFIGCONSISTENCY
HASH .|

By computing hash values at configuration time and comparing them at run-time the
EcuM code can be very efficient and is furthermore independent of a particular hash
computation algorithm. This allows the use of complex hash computation algorithms,
e.g. cryptographically strong hash functions.

Note that the same hash algorithm can be used to produce the value for the post-build
configuration identifier in the EcuM_ConfigType structure. Then the hash algorithm
is applied to the post-build parameters instead of the pre-compile and link-time param-
eters.

[SWS_EcuM_02799]
Upstream requirements: SRS_ModeMgm_00001

[The hash computation algorithm used to compute a hash value over all pre-compile
and link-time configuration parameters of all BSW modules shall always produce the
same hash value for the same set of configuration data regardless of the order of
configuration parameters in the XML files. |

AUTSSAR

7.3.4.2 Example Hash Computation Algorithm

Note: This chapter is not normative. It describes one possible way to compute hash
values.

A simple CRC over the values of configuration parameters will not serve as a good
hash algorithm. It only detects global changes, e.g. one parameter has changed from
1 to 2. But if another parameter changed from 2 to 1, the CRC might stay the same.

Additionally, not only the values of the configuration parameters but also their names
must be taken into account in the hash algorithm. One possibility is to build a text
file that contains the names of the configuration parameters and containers, separate
them from the values using a delimiter, e.g. a colon, and putting each parameter as a
line into a text file.

If there are multiple containers of the same type, each container name can be ap-
pended with a number, e.g. " 0", " 1" and so on.

To make the hash value independent of the order in which the parameters are written
into the text file, the lines in the file must now be sorted lexicographically.

Finally, a cryptographically strong hash function, e.g. MD5, can be run on the text file
to produce the hash value. These hash functions produce completely different hash
values for slightly changed input files.

7.3.5 Driver Initialization

A driver’s location in the initialization process depends strongly on its implementation
and the target hardware design.

Drivers can be initialized by the ECU Manager module in Init Block 0 or Init Block 1 of
the STARTUP phase or re-initialized in the EcuM_AI_DriverRestart callout of the
WakeupRestart Sequence. Drivers can also be initialized or re-initialized by the BswM
during the UP phase.

This chapter applies to those AUTOSAR Basic Software drivers, other than SchM and
BswM, whose initialization and re-initialization is handled by the ECU Manager module
and not the BswM.

[SWS_EcuM_02559]
Upstream requirements: SRS_ModeMgm_00001
[The configuration of the ECU Manager module shall specify the order of initializa-

tion calls inside init block 0 and init block 1. (see EcuMDriverInitListZero and
EcuMDriverInitListOne).]

AUTSSAR

[SWS_EcuM_02730]
Upstream requirements: SRS_ModeMgm_00001

[The ECU Manager module shall call each driver’s init function with the parameters
derived from the driver's EcuMModuleService configuration container. |

[SWS_EcuM_02947]
Upstream requirements: SRS_ModeMgm_00001

[For re-initialization during WakeupRestart, the integrator shall integrate a restart block
into the integration code for EcuM_AI_DriverRestart (see [SWS_EcuM_02923])
using the EcuMDriverRestartList. |

[SWS_EcuM_02562]
Upstream requirements: SRS_ModeMgm_00001, SRS_ModeMgm_00004

[EcuMDriverRestartList may contain drivers that serve as wakeup sources.
EcuM_AIL_DriverRestart shall re-arm the trigger mechanism of these drivers’
'wakeup detected’ callback. |

See Section 7.5.5 Activities in the WakeupRestart Sequence.

[SWS_EcuM_02561]
Upstream requirements: SRS_ModeMgm_00001

[The ECU Manager module shall initialize the drivers in EcuMDriverRestartList in the
same order as in the combined list of init block 0 and init block 1.]

Hint for [SWS_EcuM_02561]: EcuMDriverRestartList will typically only contain a
subset of the combined list of init block 0 and init block 1 drivers.

Table 7.2 shows one possible (and recommended) sequence of activities for the Init
Blocks 0 and I. Depending on hardware and software configuration, BSW modules
may be added or left out and other sequences may also be possible.

Recommended Init Block

| Initialization Activity | Comment \
Init Block 0%
This should always be the first module to be initial-
Default Error Tracer ized, so that other modules can report development
errors.
Diagnostic Event Manager Pre-Initialization
Any drivers needed to access | These drivers shall not depend on the post-build
post-build configuration data configuration or on OS features.
Init Block I°
MCU Driver
Port Driver
General Purpose Timer

“4Drivers in Init Block 0 are listed in the EcuMDriverlnitListZero configuration container.
5Drivers in Init Block | are listed in the EcuMDriverInitListOne configuration container.

AUTSSAR

Recommended Init Block
Initialization Activity Comment
Internal watchdogs only, external ones may need
SPI

Watchdog Driver

Watchdog Manager
ADC Driver

ICU Driver

PWM Driver

OCU Diriver

Table 7.2: Driver Initialization Details, Sample Configuration

7.3.6 BSW Initialization

The remaining BSW modules are initialized by the BSW Mode Manager, using a config-
ured function of the ECU Manager (EcuMDriverInitCalloutName ECUC_EcuM_00227)
created from the configured list of init functions (EcuMDriverInitListBswM).

[SWS_EcuM_04142]
Upstream requirements: SRS_ModeMgm_00001

[The configuration of the ECU Manager module shall specify the order of initialization
calls inside the BSW initialization (see EcuMDriverInitListBswM).|

7.4 SHUTDOWN Phase

Refer to Section 7.1.3 SHUTDOWN Phase for an overview of the SHUTDOWN phase.
EcuM_GoDownHaltPoll with shutdown target RESET or OFF initiates the SHUT-
DOWN Phase.

[SWS_EcuM_02756]
Upstream requirements: SRS_ModeMgm_00006, SRS_ModeMgm_00004

[When a wakeup event occurs during the shutdown phase, the ECU Manager module
shall complete the shutdown and restart immediately thereafter. |

AUTSSAR

«module»

BswM EcuM

«module»

«module»
Os

Integration Code

T I
EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

7.4.1

< _____________
EcuM_GoDownHaltPoll -
(Std_ReturnType, EcuM_UserType)

ref
OffPreOS Sequence

ShutdownOS()

IJ_'<

ShutdownHook()

[}
EcuM_Shutdown()

ref
OffPostOS Sequence

Figure 7.7: SHUTDOWN Phase

Activities in the OffPreOS Sequence

[SWS _EcuM 03021]

]

Upstream requirements: SRS_ModeMgm_00006

OffPreOS Sequence
Shutdown Activity Comment Opt.
De-init BSW Mode Manager no
De-init BSW Scheduler no
Check for wakeup events. All pending wakeup | Purpose is to detect wakeup events that oc- | no
events or only wakeup events validated during | curred during shutdown
shutdown are considered depending on the con-
figuration of EcuMIgnoreWakeupEvValOff-
PreOS.
Set RESET as shutdown target, if wakeup events | This action shall only be carried out when pend- | no
are pending (default reset mode of EcuMbe- | ing wakeup events were detected to allow an im-
faultResetModeRef will be used) mediate startup
ShutdownOS Last operation in this OS task no

Note to column Opt. : Optional activities can be switched on or off by configuration. It
shall be the system designers choice if a module is compiled in or not for an ECU de-
sign. See chapter 10.1 Common Containers and configuration parameters for details.

AUTSSAR

[SWS_EcuM_04151]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

[In OffPreOS and configuration parameter EcuMIgnoreWakeupEvValOffPreOs is
set to true, only wakeup events which do not need validation shall be considered, all
other wakeup events shall be ignored. |

[SWS_EcuM_04152]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

[In OffPreOS and configuration parameter EcuMIgnoreWakeupEvValOffPreOs is
set to false, wakeup events which do not need validation and pending wakeup events
that need validation shall be considered. |

Note: As the SchM is already de-initalized during the OffPreOS sequence, scheduled
functions are not executed therefore validation of wakeups is no longer possible. The
wakeup events that will be considered in the OffPreOS depend on the configuration of
EcuMIgnoreWakeupEvValOffPreOS

[SWS_EcuM_02952]
Upstream requirements: SRS_ModeMgm_00006

[As its last activity, the ECU Manager module shall call the ShutdownOS function. |
The OS calls the shutdown hook at the end of its shutdown.

[SWS_EcuM_02953]
Upstream requirements: SRS_ModeMgm_00006
[The shutdown hook shall call EcuM_shutdown (see [SWS_EcuM_02812]) to ter-

minate the shutdown process. EcuM_Shutdown(see [SWS_EcuM_02812]) shall not
return but switch off the ECU or issue a reset. |

AUTSSAR

«module» Integration Code «module» «module» «module»

EcuM BswM SchM Os
OO

[
|
: EcuM_OnGoOffOne()

I
|
|
|
|
|
< — — —— —— |
|
|
BswM_Deinit() :
I
| |
| |
< - —-—-- T-——————- |
| |
: SchM_Deinit() : I
| |
| |
<~ — - —————— b b

|
| |
alt I I
| | |
[EcuMIgnoeWakeupEvValOffPreO$ is TRUE] I I
| | |
| | |
EcuM_GetValidatedWakeupEvents(EcuM_WakeupSourceType)

[EcuMIgnoreWakeupEvVal OffPreO%; is FALSE]
I

| |

| |

| |

| | |
; EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

| |

|

|

|

|

|

|

|

opt Pending wakeup events?/

EcuM_SelectShutdownTarget(Std_ReturnType, !
; EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

| 1

I I

| |

| [

I ShutdownOS()
| |

| |

| |

| |

|

|
Figure 7.8: OffPreOS Sequence

7.4.2 Activities in the OffPostOS Sequence

The OffPostOS sequence implements the final steps to reach the shutdown target after
the OS has been shut down. EcuM_Shutdown (see [SWS_EcuM_02812]) initiates the
sequence.

AUTSSAR

The shutdown target can be either ECUM_SHUTDOWN_TARGET_RESET or ECUM_
SHUTDOWN_TARGET_OFF, whereby the specific reset modality is determined by the

reset mode. See section 7.7 Shutdown Targets for details.

OffPostOS Sequence

Shutdown Activity
Callout EcuM_0nGo

Comment
OffTwo

Opt.

Callout EcuM_AL_Reset or Callout
EcuM_AL_SwitchOff

Depends on the selected shutdown tar-
get (RESET or OFF)

no

Note to column Opt.

Table 7.3: OffPostOs Sequence

«module»
EcuM

OO

Integration Code

! EcuM_OnGoOffTwo()

<E£__

: Optional activities can be switched on or off by configuration. It
shall be the system designers choice if a module is compiled in or not for an ECU de-
sign. See chapter 10.1 Common Containers and configuration parameters for details.

alt Shutdown Target/

[Reset]

EcuM_AL_SwitchOff()

EcuM_AL_Reset(Ecu M_Res'etType)

Figure 7.9: OffPostOS Sequence

AUTSSAR

[SWS_EcuM_04074]
Upstream requirements: SRS_ModeMgm_00006

[When the shutdown target is RESET, the ECU Manager module shall call the EcuM_
AL_Reset callout.
See section 8.5.3.4 EcuM_AI_Reset ([SWS_EcuM_04065]) for details.

[SWS_EcuM_04075]

Upstream requirements: SRS_ModeMgm_00006
[When the shutdown target is OFF, the ECU Manager module shall call the EcuM_
AL_SwitchOff callout.|

See section 8.5.3.3 EcuM_AI_SwitchOff ([SWS_EcuM_02920]) for details.

7.5 SLEEP Phase

Refer to Section 7.1.4 SLEEP Phase for an overview of the SLEEP phase. EcuM_
GoDownHaltPoll with shutdown target SLEEP initiate the SLEEP phase.

EcuM_GoDownHaltPoll with shutdown target SLEEP initiate two control streams,
depending on the sleep mode selected (EcuMSleepModeSuspend parameter), that
differ structurally in the mechanisms used to realize sleep. They share the sequences
for preparing for and recovering from sleep, however.

AUTSSAR

«module» «module»

BswM EcuM
OO

1 1
EcuM_SelectShutdownTarget(Std_ReturnType, |
EcuM_ShutldownTargetType, EcuM_Shutdown MJc:deType)

L

< — — — — — — - — — — — — —

EcuM_GoDownHaltPoll

|
(Std_RetunType, EcuM_UserType),
’_l—

o m

ref
GoSleep Sequence

alt

[EcuM_GoDownHaltPoll called]

ref
Halt Sequence

[EcuM_GoDownHaltPoll called]

ref
Polling Sequence

ref
WakeupRestart Sequence

Figure 7.10: SLEEP Phase

Another module, presumably the BswM, although it could be an SW-C as well, must
ensure that an appropriate ECUM_STATE_SLEEP shutdown target has been selected
before calling EcuM_GoDownHaltPoll.

AUTSSAR

7.5.1 Activities in the GoSleep Sequence

In the GoSleep sequence the ECU Manager module configures hardware for the up-
coming sleep phase and sets the ECU up for the next wakeup event.

[SWS_EcuM_02389]
Upstream requirements: SRS_ModeMgm_00002, SRS_ModeMgm_00003

[To set the wakeup sources up for the next sleep mode, the ECU Manager module
shall execute the EcuM_EnableWakeupSources callout (see [SWS_EcuM_02546])
for each wakeup source that is configured in EcuMWakeupSourceMask for the target
sleep mode. |

[SWS_EcuM_02951]
Upstream requirements: SRS_ModeMgm_00002
[In contrast to the SHUTDOWN phase, the ECU Manager module shall not shut down

the OS when entering the SLEEP phase. The sleep mode, i.e. combination of the Ecu
M SLEEP phase and the Mcu Mode, shall be transparent to the OS. |

«module» Integration Code «module» «module»
EcuM :BswM Os

[[[
| | |
BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE)
1

I
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

[

|

|

|

|

|

|

| |
|

|

|

|

|

< - - - -——-—-—-—- |
|

|

GetResoui’ce(RES_AUTOSAR_ECUM_<pore#>)

Figure 7.11: GoSleep Sequence

[SWS_EcuM 03010]
Upstream requirements: SRS_ModeMgm_00002

[When operating on a multicore ECU ECUM shall reserve a dedicated resource (RES_
AUTOSAR_ECUM) for each core, which is allocated during GoSleep. |

AUTSSAR

7.5.2 Activities in the Halt Sequence

[SWS_EcuM_02960]
Upstream requirements: SRS_ModeMgm_00002

[The ECU Manager module shall execute the Halt Sequence in sleep modes that halt
the microcontroller. In these sleep modes the ECU Manager module does not execute
any code. |

[SWS_EcuM_02863]
Upstream requirements: SRS_ModeMgm_00002

[The ECU Manager module shall invoke the EcuM_GenerateRamHash (see
[SWS_EcuM_02919]) callout before halting the microcontroller the EcuM_Check-
RamHash (see [SWS_EcuM_02921]) callout after the processor returns from halt.

In case of applied multi core and existence of "slave" EcuM(s) this check should be
executed on the "master" EcuM only. The "master" EcuM generates the hash out of all
data that lie within its reach. Private data of "slave" EcuMs are out of scope. |

Rationale for [SWS_EcuM_02863] : Ram memory may become corrupted when an
ECU is held in sleep mode for a long time. The RAM memory’s integrity should there-
fore be checked to prevent unforeseen behavior. The system designer may choose an
adequate checksum algorithm to perform the check.

AUTSSAR

«module» Integration Code «module» «module» «module» «Peripheral» «module»
EcuM Os Mcu Wakeup Source Wakeup Source :BswM

DisablelnterruptSource:(StatusType, ISRTyp'e)

Mcu_SetMode(Mcu_ModeType)

t t
L I I

| | | HALT

I I I

I I I

| | |

| | |

I I I

I I

|

I I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
e L

| Interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)
| | |
EcuM_CheckWakeupHook(EcuM_WakeupSourceType) |
- | |
| |
Activate PILL() :
EcuM_StartCheckWakeup() : :
| |
______ > | |
<Module>_CheckWakeup()
T T »"
opt Wakeup handling i i
[Wakeup detected] : :
| |
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
I I
| |
——————— 4-—-—-—-—-"""|}+---—"-"—-"-"—-"———|-"—-"—-———— 7>
1 1
| |
| |
S oo e -
<—- - | |
. | |
———————— Sty ettt M t®
| |
| | Return from
: : interrupt()”
| |
| |

This diagram will be continued on the next page Iﬁ

Figure 7.12: Halt Sequence

[SWS_EcuM_02961]
Upstream requirements: SRS_ModeMgm_00002

[The ECU Manager module shall invoke the EcuM_GenerateRamHash (see
[SWS_EcuM_02919]) where the system designer can place a RAM integrity check. |

7.5.3 Activities in the Poll Sequence

The Poll Sequence in sleep modes can be used to check the wakeup sources.

AUTSSAR

[SWS_EcuM_03020]
Upstream requirements: SRS_ModeMgm_00002

[In the Poll sequence the EcuM shall call the callouts EcuM_SleepActivity and

EcuM_CheckWakeupHook() in a blocking loop (if EcuMWakeupSourcePolling is
set to true) until a pending/validated wakeup event is reported. |

«module» Integration Code «module» «module» «module» «module»

EcuM Os Mcu Wakeup Source :BswM
O

T T T

| | |

| DisableAllInterrupts() |
T

/':\
5%

— R— |

loop WHILE no pending/validated wakeup events/

|
EcuM_SleepActivity() . |

—

L
loop FOR all wakeup sources that need polling /
T

Additional Confidition to Loop: While (AlarmClockService Present AND
EcuM_AlarmClock only pending event AND Alarm not expired)
T T

|
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)

opt Wakeup handling/

[WakeL|p detected] EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

[I R

|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
T
|
|
E
t
|

|
|
|
|
L
|
|
|
|
|
<Module>_CheckWakeup()
|
L
|
|
I
T
|

< ___________

I
|
1
EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

alt Validation Needed /

|
[Yes] 1 1
BswM_EcuM_CurrentWakeup(sources. ECUM_WKSTATUS_PENDING)
| |
e R e T Lo RS EEE RS
- S Y T
| | | |
(No] | BswM_EcuM_CurrentWakeup(sources. ECUM_WKSTATUS_VALIDATED) | |
T T T T
| | | |
————-—-—-—-—-—--- Im—————————— F——————————= === to—m ===
|
1
|
1

Figure 7.13: Poll Sequence

AUTSSAR

7.5.4 Leaving Halt or Poll

[SWS_EcuM_02963]
Upstream requirements: SRS_ModeMgm_00003

[If a wakeup event (e.g. toggling a wakeup line, communication on a CAN bus etc.)
occurs while the ECU is in Halt or Poll, then the ECU Manager module shall regain
control and exit the SLEEP phase by executing the WakeupRestart sequence.

An ISR may be invoked to handle the wakeup event, but this depends on the hardware
and the driver implementation. |

See section 7.5.5 Activities in the WakeupRestart Sequence.

[SWS_EcuM_04001]
Upstream requirements: SRS_ModeMgm_00001

[If irregular events (a hardware reset or a power cycle) occur while the ECU is in Halt
or Poll, the ECU Manager module shall restart the ECU in the STARTUP phase. |

7.5.5 Activities in the WakeupRestart Sequence

WakeupRestart®
Wakeup Activity Comment Opt.
Selected MCU mode is configured in
Restore MCU normal mode the configuration parameter EcuMNor-
malMcuModeRef
Get the pending wakeup sources
Callout EcuM_DisableWakeup— Disable currently pending wakeup

source but leave the others armed so

Sources .
that later wakeups are possible.
Callout EcuM_AL_DriverRestart Initialize drivers that need restarting
Unlock Scheduler From th_|s point on, all other tasks may
run again.

Table 7.4: Wakeup Restart activities

The ECU Manager module invokes the EcuM_AL_DriverRestart (see
[SWS_EcuM_02923]) callout which is intended for re-initializing drivers. Among
others, drivers with wakeup sources typically require re-initialization. For more details
on driver initialization refer to section 7.3.5 Driver Initialization.

During re-initialization, a driver must check if one of its assigned wakeup sources was
the reason for the previous wakeup. If this test is true, the driver must invoke its 'wakeup
detected’ callback (see the Specification of CAN Transceiver Driver [10] for example),
which in turn must call the EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) func-
tion.

AUTSSAR

The driver implementation should only invoke the wakeup callback once. Thereafter it
should not invoke the wakeup callback again until it has been re-armed by an explicit
function call. The driver must thus be re-armed to fire the callback again.

[SWS_EcuM_02539]
Upstream requirements: SRS_ModeMgm_00003

[If the ECU Manager module has a list of wakeup source candidates when the Wakeup
Restart Sequence has finished, the ECU Manager module shall validate these wakeup
source candidates in EcuM_MainFunction. |

See section 7.6.4 Activities in the WakeupValidation Sequence.

[SWS_EcuM_04066]
Upstream requirements: SRS_ModeMgm_00003

[]

AUTSSAR

«module» Integration Code «module» «module»
EcuM Os Mcu
@ ®)
[[[[
I I I I
| DisableAllInterrupts() | |
* t |
I I
I I
< - - - o !
I I
| I I
Mcu_SetMode(Mcu_ModeType) I
I I
I I
S — e
I I
EnableAllinterrupts() I
|
I
< mmmm e
I
EcuM_GetPendi ngWakeupElvents(EcuM_WakeupSOUrceType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

< __________

Ecu M_AL_Drivc;erRestart()

< __________

ReleaseResource(RES_AUT(;DSAR_ECUM_<core#>)

[SWS_EcuM_04148]

Upstream requirements: SRS_ModeMgm_00003

Figure 7.14: WakeupRestart Sequence

[If WakeupEvent was reported EcuM shall exit sleep mode. |

AUTSSAR

[SWS_EcuM_04149]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00002

[If all CheckWakeupTimers for all WakeupSources have been expired, EcuM shall
transit to GoSleep state and begin sending EcuM to sleep (halt or polling) again. |

Note: When EcuM was resumed by an asynchronous WakeupSource the EcuM has
to execute WakeRestart sequence to re-start the mainfunctions to establish asyn-
chronous communication towards the used hardware (e.g. SPI).

[SWS_EcuM _04150]
Upstream requirements: SRS_ModeMgm_00003

[EcuM shall report the run-time error ECUM_E_WAKEUP_TIMEOUT if no wake up
event was set after a signaled wake up and the corresponding CheckWakeupTimer
expires. |

7.6 UP Phase

In the UP Phase, the EcuM_MainFunction is executed regularly and it has three
major functions:

» To check if wakeup sources have woken up and to initiate wakeup validation, if
necessary (see 7.6.4 Activities in the WakeupValidation Sequence)

* To update the Alarm Clock timer
* Arbitrate RUN and POST_RUN requests and releases.

7.6.1 Alarm Clock Handling

See section 7.8.2 EcuM Clock Time in the UP Phase for implementation details.
[SWS_EcuM_04002]
Upstream requirements: SRS_ModeMgm_00019

[When the Alarm Clock service is present (see EcuMAlarmClockPresent) the
EcuM_MainFunction shall update the Alarm Clock Timer |

7.6.2 Wakeup Source State Handling

Wakeup source are not only handled during wakeup but continuously, in parallel to
all other EcuM activities. This functionality runs in the EcuM_MainFunction fully
decoupled from the rest of ECU management via mode requests.

The wakeup sources can be in the following states:

AUTSSAR

[SWS_EcuM_04091]
Upstream requirements: SRS_ModeMgm_00003

State Description

NONE No wakeup event was detected or has
been cleared.

PENDING A wakeup event was detected but not yet
validated.

VALIDATED A wakeup event was detected and suc-
cesfully validated.

EXPIRED A wakeup event was detected but valida-
tion failed.

]

Figure 7.15 illustrates the relationship between the wakeup source states and the con-
ditions functions that evoke state changes. The two super-states Disabled and Valida-
tion are only shown here for clarification and better understandability.

/ ECUM_WKSTATUS_NONE \

entry / BswM_EcuM_CurrentWakeup(sources, NONE)

Power On /

Initial K

EcuM_SetWakeupEvent(sources) EcuM_SetWakeupEvent(sources)
[No Validation] [With Validation]

EcuM_ClearWakeupEvent(sources)

/ ECUM_WKSTATUS_PENDING \

entry / BswM_EcuM_CurrentWakeup(sources, PENDING)
entry / EcuM_StartWakeupSources()
do / exec. wakeup validation seq.

EcuM_ValidateWakeupEvent() Timer Expired

ECUM_WKSTATUS_VALIDATED ECUM_WKSTATUS_EXPIRED

entry / BswM_EcuM_CurrentWakeup(sources, VALIDATED entry/Bsva EcuM_CurrentWakeup(sources, EXPIRED)
entry / ComM_EcuM_Wake UpIndication() entry / EcuM_StopWakeupSources()

- /

Figure 7.15: Wakeup Source States

AUTSSAR

[SWS_EcuM_04003]
Upstream requirements: SRS_ModeMgm_00004

[When an ECU Manager action causes the state of a wakeup source to change, the
ECU Manager module shall issue a mode request to the BswM to change the wakeup
source’s mode to the new the wakeup source state. |

For the communication of these wakeup source states the type EcuM_WakeupSta-
tusType (see SWS_ECUM_04041) is used.

When the ECU Manager module is in the UP phase, wakeup events do not usually
trigger state changes. They trigger the end of the Halt and Poll Sub-Phases, however.
The ECU Manager module then executes the WakeupRestart Sequence automatically
and returns thereafter to the UP phase.

It is up to the integrator to configure rules in the BswM so that the ECU reacts correctly
to the wakeup events, as the reaction depends fully on the current ECU (not ECU
Management) state.

If the wakeup source is valid, the BswM returns the ECU to its RUN state. If all wakeup
events have gone back to NONE or EXPIRED, the BswM prepares the BSW for SLEEP
or OFF again and invokes EcuM_GoDownHaltPoll.

Summarizing: every pending event is validated independently (if configured) and the
EcuM publishes the result as a mode request to the BswM, which in turn can trigger
state changes in the EcuM.

7.6.3 Internal Representation of Wakeup States

The EcuM manager module offers the following interfaces to ascertain the state of
those wakeup sources:

* EcuM_GetPendingWakeupEvents
* EcuM_GetValidatedWakeupEvents
* EcuM_GetExpiredWakeupEvents
and manipulates the state of the wakeup sources through the following interfaces
* EcuM_ClearWakeupEvent
* EcuM_SetWakeupEvent
* EcuM_ValidateWakeupEvent
* EcuM_CheckWakeup
* EicuM_DisableWakeupSources
* EcuM_EnableWakeupSources

* EcuM_StartWakeupSources

AUTSSAR

* EcuM_StopWakeupSources

The ECU Manager module can manage up to 32 wakeup sources. The state of
the wakeup sources is typically represented at the EcuM interfaces named above
by means of an EcuM_WakeupSourceType bitmask where the individual wakeup
sources correspond to a fixed bit position. There are 5 predefined bit positions and
the rest can be assigned by configuration. See section 8.2.3 EcuM_WakeupSource-
Type for details.

On the one hand, the ECU Manager module manages the modes of each wakeup
source. On the other hand, the ECU Manager module presupposes that there are "in-
ternal variables" (i.e. EcuM_WakeupSourceType instances) that track which wakeup
sources are in a particular state (especially NONE (i.e. cleared), PENDING, VALI-
DATED and EXPIRED). The ECU Manager module uses these "internal variables" in
the respective interface definitions to define the semantics of the interface.

Whether these "internal variables" are indeed implemented is therefore of secondary
importance. They are simply used to explain the semantics of the interfaces.

7.6.4 Activities in the WakeupValidation Sequence

Since wakeup events can be generated unintentionally (e.g. EVM spike on CAN line),
it is necessary to validate wakeups before the ECU resumes full operation.

The validation mechanism is the same for all wakeup sources. When a wakeup event
occurs, the ECU is woken up from its SLEEP state and execution resumes within the
MCU_SetMode service of the MCU driver 7 . When the WakeupRestart Sequence has
finished, the ECU Manager module will have a list of pending wakeup events to be
validated (see [SWS_EcuM_02539]). The ECU Manager module then releases the
BSW Scheduler and all BSW MainFunctions; most notably in this case, the EcuM Main
Function can resume processing.

Implementation hint: Since SchM will be running at the end of the StartPostOS and
WakeupRestart sequences, there is the possibility that the EcuM_MainFunction will
initiate validation for a source whose stack has not yet been initialized. The integrator
should configure appropriate modes which indicate that the stack is not available and
disable the EcuM_MainFunction accordingly (see [2]).

Actually, the first code to be executed may be an ISR, e.g. a wakeup ISR. However, this is specific
to hardware and/or driver implementation.

AUTSSAR

NetworkHandleType)

«module» Integration Code «module» «module» «module» «module»
EcuM Wakeup Source ComM BswM CanSM
SO
T T T T T T
| | | | | |
| | | | | |
1 1
EcuMiGetPendianakeupEvents(EcuMfWakeupS(l)urceType) : : :
| | | | |
! | | | |
EcuM_StartWakeupSources(EcuM_WakeupSourceType) | | | |
P I I I I
| | | |
CanSMfStgrtWakeupSource(Stdeeturn‘ll'ype, ! g !
NetworkHanldIeType) | | =]
| | |
< ————— - T == — == o=
| | |
___________ | | | |
< | | | |
| | | |
Start validation : : : : :
timeout() | | | | |
| | | | |
loop WHILE no wakeup event has been validated AND timeout not expired / i i i
TT T | | | |
EcuM_CheckValidation(EcuM_WakeupSourceType) | | | |
| | | |
| | | |
<Module>_Checkvalidation() ! : : :
| | |
opt Wakeup validated / i i i
EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)		
ComM_EcuM_WakeUplIndication(NetworkHandleType) ! : :		
————————— FF——————————— FE———m = I I		
L		
ComM_EcuM_PNCWakeUplIndication(PNCHandleType)		
___________ I) A E		
=		
T		
BswM_EcuM_CurrentWakeup(Source, ECUM_WKSTATUS_VALIDATED)	-	
[S—————=——-- rr———~""~"~""~"~""7™"7™"77 T T T T T T T T r-———="""7"7" 1		
- 4--—-—-—-—-——-—-—-== >		
<-———- - o I I I		
= ——— L I I I		
	I I I I	
]		
opt No wakeup event was validated/ : : : : :		
BswM_EcuM_CurrentWakeup(Source,		o !
ECUM_WKSTATUS_EXPIRED) ; ; > :		
T		
< = 4 ——— = b —— = F————		
EcuM_StopWakeupSources(EcuM_WakeupISourceType) : : : :
> I I I I
CanSM_StopWakeupSource(Std_ReturnType, ! o !
|
|

Figure 7.16: The WakeupValidation Sequence

AUTSSAR

[SWS_EcuM_02566]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall only invoke wakeup validation on those wakeup
sources where it is required by configuration. If the validation protocol is not config-
ured (see EcuMvalidationTimeout), then a call to EcuM_SetWakeupEvent shall
also imply a call to EcuM_validateWakeupEvent .|

[SWS_EcuM _02565]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall start a validation timeout for each pending wakeup
event that should be validated. The timeout shall be event-specific (see EcuMvali-
dationTimeout).]

Implementation hint for [SWS_EcuM_02565]: It is sufficient for an implementation to
provide only one timer, which is prolonged to the largest timeout when new wakeup
events are reported.

[SWS_EcuM_04081]
Upstream requirements: SRS_ModeMgm_00003

[When the validation timeout expires for a pending wakeup event, the EcuM_Main-
Function sets (OR-operation) set the bit in the internal expired wakeup events vari-
able. |

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_04082]
Upstream requirements: SRS_ModeMgm_00003

[When the validation timeout expires for a pending wakeup event, the EcuM_-
MainFunction shall invoke BswM_EcuM_CurrentWakeup with an EcuM_Wakeup-
SourceType bitmask parameter with the bit corresponding to the wakeup event set
and state value parameter set to ECUM_WKSTATUS_EXPIRED. |

The BswM will be configured to monitor the wakeup validation through mode switch
requests coming from the EcuM as the wakeup sources are validated or the timers ex-
pire. If the last validation timeout (see [SWS_EcuM_02565]) expires without validation
then the BswM shall consider wakeup validation to have failed. If at least one of the
pending events is validated then the entire validation shall have passed.

Pending events are validated with a call of EcuM_ValidateWakeupEvent (see
[SWS_EcuM_02829]). This call must be placed in the driver or the consuming stack
on top of the driver (e.g. the handler). The best place to put this depends on hardware
and software design. See also section 7.6.4.4 Requirements for Drivers with Wakeup
Sources .

AUTSSAR

7.6.4.1 Wakeup of Communication Channels

If a wakeup occurs on a communication channel, the corresponding bus transceiver
driver must notify the ECU Manager module by invoking EcuM_SetWakeupEvent (see
[SWS_EcuM_02826]) function. Requirements for this notification are described in
section 5.2 Peripherals with Wakeup Capability.

[SWS_EcuM_02479]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall execute the Wakeup Validation Protocol upon the
EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) function call according to Inter-
action of Wakeup Sources and the ECU Manager later in this chapter. |

See also 7.6.4.2 Interaction of Wakeup Sources and the ECU Manager.

7.6.4.2 Interaction of Wakeup Sources and the ECU Manager

The ECU Manager module shall treat all wakeup sources in the same way. The proce-
dure shall be as follows:

When a wakeup event occurs, the corresponding driver shall notify the ECU Manager
module of the wakeup. The most likely modalities for this notification are:

+ After exiting the Halt or Poll sequences. In this scenario, the ECU Manager
module invokes EcuM_AI_DriverRestart (see [SWS_EcuM 02923]) to re-
initialize of the relevant drivers, which in turn get a chance to scan their hardware
e.g. for pending wakeup interrupts.

 If the wakeup source is actually in sleep mode, the driver must scan au-
tonomously for wakeup events; either by polling or by waiting for an interrupt.

[SWS_EcuM_02975]

Upstream requirements: SRS_ModeMgm_00003
[If a wakeup event requires validation then the ECU Manager module shall invoke the
validation protocol |

[SWS_EcuM_02976]

Upstream requirements: SRS_ModeMgm_00003
[If a wakeup event does not require validation, the ECU Manager module shall issue a
mode switch request to set the event’s mode to ECUM_WKSTATUS_VALIDATED. |

[SWS_EcuM_02496]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00005

[If the wakeup event is validated (either immediately or by the wakeup validation
protocol), the ECU Manager module shall make the information that it is a source

AUTSSAR

of the current ECU wakeup through the EcuM_GetVvalidatedWakeupEvents (see
[SWS_EcuM_02830]) function. |

7.6.4.3 Wakeup Validation Timeout

[SWS_EcuM_04004]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager Module shall either provide a single wakeup validation timeout
timer or one timer per wakeup source. |

The following requirements apply:

[SWS_EcuM_02709]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall start the wakeup validation timeout timer when
EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) is called. |

[SWS_EcuM_02710]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_ValidateWakeupEvent shall stop the wakeup validation timeout timer (see
[SWS_EcuM_02829]). |

[SWS_EcuM_02712]
Upstream requirements: SRS_ModeMgm_00003

[lf EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) is called subsequently for the
same wakeup source, the ECU Manager module shall not restart the wakeup validation
timeout. |

If only one timer is used, the following approach is proposed:

If EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) is called for a wakeup source
that did not yet fire during the same wakeup cycle then the ECU Manager module
should prolong the validation timeout of that wakeup source.

Wakeup timeouts are defined by configuration (see EcuMvalidationTimeout).

7.6.4.4 Requirements for Drivers with Wakeup Sources

The driver must invoke EcuM_SetWakeupEvent (see [SWS_EcuM_02826])
once when the wakeup event is detected and supply a EcuM_WakeupSource-
Type parameter identifying the source of the wakeup (see [SWS_EcuM_02165],
[SWS_EcuM_02166]) as specified in the configuration (see EcuMWakeupSourcelId

)-

AUTSSAR

[SWS_EcuM_02572]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall detect wakeups that occurr prior to driver initializa-
tion, both from Halt/Poll or from OFF. |

The driver must provide an API to configure the wakeup source for the SLEEP state, to
enable or disable the wakeup source, and to put the related peripherals to sleep. This
requirement only applies if hardware provides these capabilities.

The driver should enable the callback invocation in its initialization function.

[SWS_EcuM_04147]
Upstream requirements: SRS_ModeMgm_00003

[EcuMWakeupSource partition assignment shall be identified from module configura-
tion, which refers it. |

Note: Wakeup validation call and wakeup callouts (start/enable/disable) of a wakeup
source should be executed on that core, which wakeup source is assigned to. (Or in
other way around, in execution context of a certain core only those wakeup sources
shall be handled, which assigned to partition of that core)

7.6.5 Requirements for Wakeup Validation

If the wakeup source requires validation, this may be done by any but only by one
appropriate module of the basic software. This may be a driver, an interface, a handler,
or a manager.

Validation is done by «caling the EcuM _VvalidateWakeupEvent (see
[SWS_EcuM_02829]) function.

[SWS_EcuM_02601]
Upstream requirements: SRS_ModeMgm_00003

[If the EcuM cannot determine the reset reason returned by the Mcu driver, then the
EcuM set a wakeup event for default wakeup source ECUM_WKSOURCE_RESET
instead. |

7.6.6 Wakeup Sources and Reset Reason

The ECU Manager module API only provides one type (EcuM_WakeupSourceType ,
see 8.2.3 EcuM_WakeupSourceType), Wwhich can describe all reasons why the ECU
starts or wakes up.

AUTSSAR

[SWS_EcuM_02625]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall never invoke validation for the following wakeup
sources:

+ ECUM_WKSOURCE_POWER
ECUM_WKSOURCE_RESET
ECUM_WKSOURCE_INTERNAL_RESET
ECUM_WKSOURCE_INTERNAL_WDG
ECUM_WKSOURCE_EXTERNAL_WDG.

7.6.7 Wakeup Sources with Integrated Power Control

SLEEP can be realized by a system chip which controls the MCU’s power supply.
Typical examples are CAN transceivers with integrated power supplies which switch
power off at application request and switch power on upon CAN activity.

The consequence is that SLEEP looks like OFF to the ECU Manager module on this
type of hardware. This distinction is rather philosophical and not of practical impor-
tance.

The practical impact is that a passive wakeup on CAN looks like a power on reset to the
ECU. Hence, the ECU will continue with the STARTUP sequence after a wakeup event.
Wakeup validation is required nonetheless and the system designer must consider the
following topics:

« The CAN transceiver is initialized during one of the driver initialization blocks
(under BswM control by default). This is configured or generated code, i.e. code
which is under control of the system designer.

« The CAN transceiver driver API provides functions to find out if it was the CAN
transceiver which started the ECU due to a passive wakeup. It is the system
designer’s responsibility to prevent a shutdown of the ECU before the potential
wake-up sources has been checked ed by calling EcuM_StartCheckWakeup
(see [SWS_EcuM_04096]) and to check the CAN transceiver for wakeup reasons
and pass this information on to the ECU Manager module by using the EcuM_
SetWakeupEvent (see [SWS_EcuM_02826]) and EcuM_ClearWakeupEvent
(see [SWS_EcuM_02828]) functions.

These principles can be applied to all wakeup sources with integrated power control.
The CAN transceiver only serves as an example.

AUTSSAR

7.7 Shutdown Targets

"Shutdown Targets" is a descriptive term for all states ECU where no code is executed.
They are called shutdown targets because they are the destination states where the
state machine will drive to when the UP phase is left. The following states are shutdown
targets:

« Off®
» Sleep
* Reset

Note that the time at which a shutdown target is or can be determined is not neces-
sarily the start of the shutdown. Since the BswM now controls most ECU resources,
it will determine the time at which the shutdown target should be set and will set it,
either directly or indirectly. The BswM must therefore ensure that, for example, the
shutdown target must be changed from its default to ECUM_STATE_SLEEP before
calling EcuM_GoDownHaltPoll.

In previous versions of the ECU Manager module, sleep targets were treated specially,
as the sleep modes realized in the ECU depended on the capabilities of the ECU.
These sleep modes depend on hardware and differ typically in clock settings or other
low power features provided by the hardware. These different features are accessible
through the MCU driver as so-called MCU modes (see [9]). There are also various
modalities for performing a reset which are controlled, or triggered, by different mod-
ules:

* Mcu_PerformReset
+ WdgM_PerformReset
» Toggle I/O Pin via DIO / SPI

The ECU Manager module offers a facility to manage these reset modalities by to
tracking the time and cause of previous resets. The various reset modalities will be
treated as reset modes, using the same mode facitlities as sleep.

Refer to section 8.3.4 Shutdown Management for the shutdown management facility’s
interface definitions.

7.7.1 Sleep

[SWS_EcuM_02188]
Upstream requirements: SRS _ModeMgm_00002, SRS _ModeMgm_00004

[No wakeup event shall be missed in the SLEEP phase. The Halt or Poll Sequences
shall not be entered if a wakeup event has occurred in the GoSleep sequence. |

8The OFF state requires the capability of the ECU to switch off itself. This is not granted for all
hardware designs.

AUTSSAR

[SWS_EcuM_02957]
Upstream requirements: SRS_ModeMgm_00002

[The ECU Manager module may define a configurable set of sleep modes (see EcuM-
SleepMode) where each mode itself is a shutdown target. |
[SWS_EcuM_02958]
Upstream requirements: SRS_ModeMgm_00002
[The ECU Manager module shall allow mapping the MCU sleep modes to ECU sleep
modes and hence allow them to be addressed as shutdown targets. |
[SWS _EcuM 04092]
Upstream requirements: SRS_ModeMgm_00002
[The ShutdownTarget Sleep shall put the all cores into sleep. |

7.7.2 Reset

[SWS_EcuM_04005]
Upstream requirements: SRS_ModeMgm_00023, SRS_ModeMgm_00012

[The ECU Manager module shall define a configurable set of reset modes (see EcuM-
ResetMode and EcuM_ResetType), Where each mode itself is a shutdown target.
The set will minimally contain targets for

* Mcu_PerformReset
+ WdgM_PerformReset
+ Toggle I/O Pin via DIO / SPI

]

[SWS_EcuM_04006]
Upstream requirements: SRS_ModeMgm_00023, SRS_ModeMgm_00012

[The ECU Manager module shall allow defining aliases for reset targets (See Ecu
M180_Conf). |
[SWS_EcuM_04007]

Upstream requirements: SRS_ModeMgm_00023, SRS_ModeMgm_00012

[The ECU Manager module shall define a configurable set of reset causes (see
EcuMShutdownCause and EcuM_ShutdownCauseType). The set shall minimally
contain targets for

« ECU state machine entered a shutdown state

* WdgM detected a failure

AUTSSAR

+ DCM requests shutdownl

and the time of the reset. |

[SWS_EcuM_04008]
Upstream requirements: SRS_ModeMgm_00023

[The ECU Manager Module shall offer facilities to BSW modules and SW-Cs to
* Record a shutdown cause

+ Get a set of recent shutdown causes
]

See also section 8.3.4 Shutdown Management.

7.8 Alarm Clock

The ECU Manager module provides an optional persistent clock service which remains
"active" even during sleep. It thus guarantees that an ECU will be woken up at a
certain time in the future (assuming that the hardware does not fail) and provides clock
services for long-term activities (i.e. measured in hours to days, even years).

Generally, this service will be realized with timers in the ECU that can induce wakeups.
In some cases, external devices can also use a regular interrupt line to periodically
wake the ECU up, however. Whatever the mechanism used, the service uses one
wakeup source privately.

The ECU Manager module maintains a master alarm clock whose value determines
the time at which the ECU will be woken up. Moreover the ECU manager manages an
internal clock, the EcuM clock, which is used to compare with the master alarm.

Note that the alarm wakeup mechanisms are only relevant to the SLEEP phase. SW-
Cs and BSW modules can set and retrieve alarm values during the UP phase (and only
during the UP phase), which will be respected during the SLEEP phase, however.

Compared to other timing/wakeup mechanisms that could be implemented using gen-
eral ECU Manager module facilities, the Alarm Clock service will not initiate the
WakeupRestart Sequence until the timer expires. When the ECU Module detects that
its timer has caused a wakeup event, it increments its timer and returns immediately to
sleep unless the clock time has exceeded the alarm time.

[SWS_EcuM_04069]
Upstream requirements: SRS_ModeMgm_00013

[When the Alarm Clock service is present (see EcuMAlarmClockPresent) the Ecu

M Manager module shall maintain an EcuM clock whose time shall be the time in
seconds since battery connect. |

AUTSSAR

[SWS_EcuM_04086]
Upstream requirements: SRS_ModeMgm_00013

[The EcuM clock shall track time in the UP and SLEEP phases. |

[SWS_EcuM_04087]
Upstream requirements: SRS_ModeMgm_00013

[Hardware permitting, the EcuM clock time shall not be reset by an ECU reset. |

[SWS_EcuM _04088]
Upstream requirements: SRS_ModeMgm_00017

[There shall be one and only one wakeup source assigned to the EcuM Clock (see
EcuMAlarmWakeupSource).]

7.8.1 Alarm Clocks and Users

SW-Cs and BSW modules can each maintain an alarm clock (user alarm clock).
Each user alarm clock (see EcuMAlarmClock) is associated with an EcuMAlarm-
ClockUser which identifies the respective SW-C or BSW module.

[SWS_EcuM_04070]
Upstream requirements: SRS_ModeMgm_00016

[Each EcuM User shall have at most one user alarm clock. |

[SWS_EcuM_04071]
Upstream requirements: SRS_ModeMgm_00016

[An EcuM User shall not be able to set the value of another user’s alarm clock. |

[SWS_EcuM_04072]
Upstream requirements: SRS_ModeMgm_00017

[The ECU Manager module shall set always the master alarm clock value to the value
of the earliest user alarm clock value. |

This means as well that when an EcuM User issues an abort on its alarm clock and that
user alarm clock determines the current master alarm clock value, the ECU Manager
module shall set the master alarm clock value to the next earliest user alarm clock
value.

[SWS_EcuM_04073]
Upstream requirements: SRS_ModeMgm_00014

[Only authorized EcuM Users can set the EcuM clock time (see EcuMSetClockAl-
lowedUsers).]

AUTSSAR

Rationale for [SWS_EcuM_04073]: Generally EcuM Users shall not be able to set the
EcuM clock time. The EcuM clock time can be set to an arbitrary time to allow testing
alarms that take days to expire.

7.8.2 EcuM Clock Time

[SWS_EcuM_04089]
Upstream requirements: SRS_ModeMgm_00013, SRS_BSW_00343

[If the underlying hardware mechanism is tick based, the ECUM shall "correct" the
time accordingly |

7.8.2.1 EcuM Clock Time in the UP Phase

The EcuM_MainFunction increments the EcuM clock during the UP Phase. It uses
standard OS mechanisms (alarms / counters) to derive its time. Note the difference
in granularity between the counters and EcuM time, which is measured in seconds
([SWS_EcuM_04069]).

7.8.2.2 EcuM Clock Time in the Sleep Phase

There are two alternatives to increment the EcuM clock during sleep depending on
which sleep mode was selected (EcuMSleepModeSuspend parameter)

Within the Halt Sequence (see 7.5.2 Activities in the Halt Sequence) the GPT Driver
must be put in to a GPT_MODE_SLEEP to only configure those timer channels re-
quired for the time base. It also requires the GPT to enable the timer based wakeup
channel using the Gpt_EnableWakeup API. Preferably the Gpt_StartTimer API will be
set to 1 sec but if this value is not reachable the EcuM will need to be woken up more
often to accumulate several timer wakeups until 1 sec has been accumulated to incre-
ment the clock value.

Within the Poll Sequence (see 7.5.3 Activities in the Poll Sequence) the EcuM clock can
be periodically updated during the EcuM_SleepActivity function using the EcuM_
SetClock function, assuming a notion of time is still available. The clock must only be
incremented when 1 sec of time has been accumulated.

In both situations after the clock has been incremented during Sleep the ECU Manager
module must evaluate if the master alarm has expired. If so the BswM will initiate a full
startup or set the ECU in Sleep again.

AUTSSAR

[SWS_EcuM_04009]
Upstream requirements: SRS_ModeMgm_00018

[When leaving the Sleep state the ECU Manager Module will abort any active user
alarm clock and the master alarm clock. This means that both clock induced and
wakeups due to other events will result in clearing all alarms. |

[SWS_EcuM_04010]
Upstream requirements: SRS_ModeMgm_00018

[User alarms and the master alarm shall be cancelled during the StartPreOS Se-
quence, in the WakeupRestart Sequence and the OffPreOS Sequence. |

7.9 MultiCore

The distribution of BSW modules onto different partitions was introduced.

A partition can be seen as an independent section that is mapped on one core. So
every core (both in single and in multi core architectures) contains at least one but also
can contain arbitrary numbers of partitions. But no partition can span over more than
one core.

The BSW modules can be distributed over different partitions and therefore over differ-
ent cores. Some BSW modules as the BswM have to be included into every partition.
Other modules like the OS or the EcuM have be included into one partition per core.

An example is shown in Figure 7.17.

ECU
Core 0 Core 1
Partition O Partition 1 Partition 2 || Partition 3 || Partition 4

Application Layer

| BswM | ||[BswM | ||| BswM
| EouM_ | | EcuM |

Microcontroller (uC)

Figure 7.17: Partitions inside an ECU

AUTSSAR

In a multi core architecture the EcuM has to be distributed in a way, that one instance
per core exists.

There is one designated master core in which the boot loader starts the master Ecu
M via EcuM_Init. The master EcuM starts some drivers, determines the Post Build
configuration and starts all remaining cores with all their satellite EcuMs.

Each EcuM now starts the core local OS and all core local BswMs (in every partition
resides exactly one BswM).

If the same image of EcuM is executed on every core of the ECU, the ECU Manager’s
behavior has to differ on the different cores. This can be accomplished by the ECU
Manager by testing first whether it is on a master or a slave core and act appropriately.

The ECU Manager module supports the same phases on a MultiCore ECU as are
available on conventional ECUs (i.e. STARTUP, UP, SHUTDOWN and SLEEP).

If safety mechanisms are used, The ECU State Manager has to run with full trust level.

This section uses previous ECU Manager terms for various ECU states, notably Run/
PostRun. With flexible ECU management, the system integrator determines the ECU’s
states’ names and semantics. Methods to ensure a de-initialization phase must be
upheld, however. The names used here are therefore not normative.

7.9.1 Master Core

There is one explicit master core. Which core the master core is, is determined by
the boot loader. The EcuM of the master core gets started as first BSW module and
performs initialization actions.

Then is starts all other cores with all other EcuMs.

When these are started, it initializes together with each satellite EcuM the core local
OS and BswM.

7.9.2 Slave Core

On every slave core, one satellite EcuM has to run. If a core contains more than one
partition, only on EcuM per core has to exist.

7.9.3 Master Core - Slave Core Signalling

This section discusses the general mechanisms with which BSW can communicate
over cores. It presupposed general knowledge of the SchM, which is described and
specified in the RTE.

AUTSSAR

7.9.3.1 BSW Level

The Operating System provides a basic mechanism for synchronizing the starts of the
operating systems on the master and slave cores. The Scheduler Manager provides
basic mechanisms for communication of BSW modules across partition boundaries.
One BSW Mode Manager per core is responsible for starting and stopping the RTE.

Refer to the Guide to Mode Management [23] for a more complete description of the
solution approaches and for a discussion of the considerations in choosing between
them.

7.9.3.2 Example for Shutdown Synchronization

Before calling shutdownAllCores, the "master” ECU Manager Module must start
the shutdown of all "slave" ECU Manager Modules and has to wait until all modules
have de-initialized the BSW modules for which they are responsible and successfully
shutdown.

Therefore the master ECU Manager Module sets a shutdown flag which can be read by
all slave modules. The EcuM activates afterwards tasks for every configured slave core.
The slave modules read the flag inside the main routine and shutdown if requested.
The task name is "EcuM_SlaveCore<X> Task", where X is a number. The task need
to be configured by the integrator. The number of tasks which need to be activated can
be calculated by counting the instances of EcuMPartitionRef minus one, because one
EcuMFlexPartionRef is used for the master.

Example: Three instances of EcuMPartitionRef are configured. Then during call of
EcuM_GoDownHaltPoll() "EcuM_SlaveCore1_Task" and "EcuM_SlaveCore2 Task"
would be started. The slave modules read the flag inside the main routine and shut-
down if requested.

The Operating System extends the OSEK SetEvent function across cores. A task on
one core can wait for an event set on another core. Figure 18 illustrates how this ap-
plies to the problem of synchronizing the cores before calling shutdownAllCores
(whereby the de-initialization details have been omitted). The Set/WaitEvent functions
accept a bitmask which can be used to indicate shutdown-readiness on the individ-
ual slave cores. Each SetEvent call from a "slave" ECU Manager module will stop
the "master" ECU Manager module’s wait. The "master" ECU Manager module must
therefore track the state of the individual slave cores and set the wait until all cores
have registered their readiness.

The WaitEvent() function can be replaced by a GetEvent() loop if the caller already has
taken a resource or spinlock.

AUTSSAR

[SWS_EcuM_91010] Master / Slave Core Shutdown Synchronization (this is an
example)

Upstream requirements: SRS_ModeMgm_00007

Master Core Slave Core n

BswM Master: EcuM Master: Os Slave n: EcuM Slave n: SchM Os

T T
' '
Ecu M_Go[lJown HaltPoll (Std_Retu[nType, EcuM_UserType)

1

Seta shutdown flag
which can be read by
all EcuMs of all slave

cores

T
|
I
I
|
|
|
I
I
|
|
EcquMainFunctionQ

T

|

I

I

|

|

|

I

I

|

|

|

I

|

|

|

I

I —I_[
BSW De-Initialization ! BSW De-Inftialization on
on Master Core | Slave Core!

I I

| t

|

|

I

I

|

|

|

I

I

|

|

I

I

1

|

|

I

|

Shutdown flag is read
by the slave core

T

— i

1 SetEvent(Taskid, Mask)

alt loop until all coresdone/
T

: WaitEvent(Mask) >

[resourcq Qr spinlock already taken]

Unset the shutdown flag Iﬁ

ShutdownAllCores(StatusT ype)
>

]

Note: Figure 7.9.3.2 is an example of the logical control flow on the master core.
The APl EcuM_GoDownHaltPoll needs to be offered on every core managed by
the EcuM. The behavior of this function on slave cores is implementation specific.

Integration note: If synchronization between master and slave cores is achieved by
means SetEvent/WaitEvent, then EcuM_GoDownHaltPol1l will be called by the BswM

AUTSSAR

in the context of its main function task (deferred processing of mode arbitration). This
additionally requires that the main function task is an extended task.

7.9.4 UP Phase

From the hardware perspective, it is possible that wakeup interrupts could occur on all
cores. Then the whole ECU gets woken up and the EcuM running on that processes
the wakeup event.

[SWS_EcuM_04011]
Upstream requirements: SRS_BSW_00459

[The EcuM_MainFunction shall run in all EcuM instances. |

[SWS_EcuM _04012]
Upstream requirements: SRS_BSW_00459

[Each instance of the ECU Manager module shall process the wakeup events of its
core. |

As in the single-core case, the BswM (as configured by the integrator) has the respon-
sibility for controlling ECU resources, establishing that the local core can be powered
down or halted as well as de-initializing the appropriate applications and BSW before
handing control over to the EcuM of its core.

7.9.5 STARTUP Phase

The ECU Manager module functions nearly identically on all cores. That is, as for the
single-core case, the ECU Manager module performs the steps specified for Startup;
most importantly starting the OS, initializing the SchM and starting the core local
BswMs.

The master EcuM activates all slave cores after calling InitBlock 1 and doing the reset
/ wakeup housekeeping. After being activated, the slave cores execute their startup
routines, which call EcuM_Init on their core.

[SWS_EcuM_04146]
Upstream requirements: SRS_ModeMgm_00001

[If EcuMEcucCoreDefinitionRef is missing then the initialization call shall only be
performed on the master core. |

Note: If you need to initialize a module on multiple cores you have to add the module
for each core to the specific initialization list. Please be aware that in such cases the
init() function might be called in parallel from different cores and init() functions are
normally defined to be non-reentrant.

AUTSSAR

After each EcuM has called StartOs on its core, the OS synchronizes the cores before
executing the core-individual startup hooks and synchronizes the cores again before
executing the first tasks on each core.

StartPostOS is executed on each core and the SchM is initialized on each core. All
core local BswMs are initialized by each EcuM.

One BswM on every partition has to start the RTE for that core.
[SWS_EcuM_04093]

Upstream requirements: SRS_ModeMgm_00001
[The ECU Manager module shall start the SchM and the OS on every core. |
[SWS_EcuM_04014]

Upstream requirements: SRS_ModeMgm_00001

[The ECU Manager module shall call BswM_Init for all core local BswMs on the
master and all slave cores. |

7.9.5.1 Master Core STARTUP

[SWS_EcuM_04015] Master Core StartPreOS Sequence
Upstream requirements: SRS_ModeMgm_00001

[

AUTSSAR

EcuM Integration Code Mcu Os
T T T T
! GetCorelD(CoreldType) ! o !

L
i t
| |
| |
| |
I I
I I
| |
| |
I I
I I
| |
Check consistency of conlfiguration data() : :
I I I
I I |
opt Configuration datainconsislem/ | | |
T | | |
EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT) 1
»l I |
g N ! |
: This call never returns! : :
I I |
I I	
I I	
Mcu_GetResetReason(Mcu_ResetType) o | |
T Ll I
Mcu_GetResetReason() I
PR TET— | .
'
Map reset reason to wakeup source() | :
I I I
EcuM_SelectShutdownTarget(Std_ReturnType, ! :
EcuM_ShutdownTargeﬂl'ype, EcuM_ShutdownModeType) \
I I I
EcuM_LoopDetection() I I I
> 1 !
K — - I I
| |
I I I
loop FOR all configured cores/ : : :
StartCore(CoreldType, StatusType**) | o !
t t L
I I I'|'|
| | |
| | |
| | |
StarOS(ECUM_DEFAULT_APP_MODE) | |
T T >
| | I
I I I

[SWS_EcuM_04016] Master Core StartPostOS Sequence
Upstream requirements: SRS_ModeMgm_00001

AUTSSAR

EcuM SchM BswM Os

|
| GetCorelD(CoreldType)
t

loop over every BswM running in this core /

SchM_Init(const SchM_ConfigType*)
1

< ________________

o
SchM_StartTiming(const Sch MfConIfigType*)

- ————— ——————— — —

7.9.5.2 Slave Core STARTUP

[SWS _EcuM 04145]

Upstream requirements: SRS_ModeMgm_00001
[The ECUM EcuM_AL_DriverInitZero and EcuM_AL_DriverInitOne functions
shall be called by the EcuM_1Init function on each core. The implementation of these

callout functions shall ensure that only those MCAL modules are initialized that run on
the currently active core. |

[SWS_EcuM_04017] Slave Core StartPreOS Sequence
Upstream requirements: SRS_ModeMgm_00001

AUTSSAR

EcuM Integration Code Os

GetCorelD(CoreldType)

EcuM_AL_DriverlnitZero()

L
Init Block 0
<_ ____________________________ H

EcuM_DeterminePbConfiguration(EcuM_ConfigType*) |
I

I
I
|
g |
|
T

opt Configuration data inconsistent/ :
EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTIENT) .
» This call never returns.
g
I
1 }
| |
EcuM_AL_DriverlnitOne(const EcuM_ConfigType*) - : :
L
<--———————— - - === Init Block 1

StartOS(ECUM_DEFAULT_APP_MODE)

: I
L] | g
! ! !
]
[SWS_EcuM_04018] Slave Core StartPostOS Sequence
Upstream requirements: SRS_ModeMgm_00001
[
EcuM SchM BswM Os
i GetCoreI!D(CoreldType) > i

|
I
!
BswM_Init(const BswM_ConfigType *)

loop over every BswM running in thiscore/

SchM_Init(const SchM_ConfigType*)

<_ ________________

SchM_StartTiming()

ke —

AUTSSAR

7.9.6 SHUTDOWN Phase

Individual core shutdown (i.e. while the rest of the ECU continues to run) is currently
not supported. All cores are shut down simultaneously.

When the ECU shall be shut down, the master ECU Manager module calls shutdow-
nAllCores rather than somehow calling ShutdownOS on the individual cores. The
ShutdownAllCores stops the OS on all cores and stops all cores as well.

Since the master core could issue the shutdownAllCores before all slave cores are
finished processing, the cores must be synchronized before entering SHUTDOWN.

The BswM (which is distributed over all partitions) ascertains that the ECU should
be shut down and synchronizes with each BwsM in the ECU. All BswMs induce de-
initialization of all the partition’s BSWs, SWCs and CDDs and send appropriate signals
to the other BswMs to indicate their readiness to shut down.

For a shutdown of the ECU, the BswM (which lies in the same partition of the master
EcuM) ultimately calls GoOff on the master core which distributes that request to all
slave cores. The "master" EcuM de-initializes the BswM, and the SchM. The EcuMs on
the slave cores de-initialize their SchM and BswM, check if no wakeup events occurred
during shutdown (see [SWS_EcuM_04151] and [SWS_EcuM_04152]) and then send
a signal to indicate that the core is ready for ShutdownQOS (again, see section section
7.9.3 Master Core - Slave Core Signalling for details).

The master EcuM waits for the signal from each slave core EcuM and then initiates
shutdown as usual on the master core (the master EcuM calls shutdownAllCores,
and the ECU is put to bed with the global shutdown hook)

7.9.6.1 Master Core SHUTDOWN

[SWS_EcuM_91011] Master Core OffPreOS Sequence
Upstream requirements: SRS_ModeMgm_00006

[

AUTSSAR

EcuM Integration Code BswM SchM Os

T T
| |
| | GetCorelD(CoreldType) | |
T T
| |

Ecu M_OnGoOffOne():

loop over every BswM running in tbis core /

BswM_Deinit()

I]

alt

[EcuMIg WakeupEvValOffPredS is TRUE]
|

; Ecu MfGetVa:I idatedWakeupEvents(EfquWakeupSou rceT:ype)

[EcuMIg WakeupEvValOffPre@S is FALSE] 1
I

EcquGetPerdingWakeupEvents(EcquWakeupSourceTy e)

opt Pending wakeup events? / I
| |

EcuMiseIez::tShutdownTarget(StdiF:{emrnType, '
EcquShutgownTargetType, EcuM ShuldownModeTypel)

I
!
P
I
1
|
I
|

loop FOR all configured cores/ :

WaitEvent(Mask)

; P
1

<-—-—-——-—--- B R == Fe——————- *H
1
|
1
1

Unset the shutdown flag |l|

y

-—-O----—A

I
ShutdownAllCores(StatusType)
T

]

[SWS_EcuM_04020] Master Core OffPostOS Sequence
Upstream requirements: SRS_ModeMgm_00006, SRS_ModeMgm_00007

AUTSSAR

EcuM Integration Code Os
T T T
| | |
| GetCorelD(CoreldType) o !

I iH

alt Shutdown Target/

[Reset]

g

EcuM_AL_SwitchOff()

.
\

7.9.6.2 Slave Core SHUTDOWN

[SWS_EcuM_91012] Slave Core OffPreOS Sequence
Upstream requirements: SRS_ModeMgm_00006

AUTSSAR

alt

e

[EcuMIgrjofeWakeupEvValOffPreOS is:TRUE]

|
EcuM_GetValidatedWakeupEvents(EcuM_Wal

[EcuMIgr|oteWakeupEvValOffPreOS isIFALSE]
|

F————t—=

upSourceType)

e —— =

EcquGetPendin;gWakeupEvents(EcuMfWakeupSourceType)

EcuM Integration Code BswM SchM Os
T T T
| | |

I I
GetCorelD(CoreldType) I o |
T T Ll
| |
___________ e ——————
I I
I I I
| | |
| | |
I I I
I I I
loop over every BswM running in thisc+re / : : :		
BswM_Deinit() ! : :		
I I I		
ke —————————— ————_——		
L]		
T T T T		
I I I I		
I . I I I		
SchM_Deinit()	-	
	o	
<-————————= - ————————	———————— 1	
I		
I		
I		
I		

v
|
|
I
I
SetEvent(Taskid, Mask)
T
|
I

[SWS_EcuM_04022] Slave Core OffPostOS Sequence
Upstream requirements: SRS_ModeMgm_00006, SRS_ModeMgm_00007

EcuM

Integration Code

GetCorelD(CoreldType)

A
I
I
I
I
I
I
I
I
I
I
I
L

——d40 -

EcuM_OnGoOffTwo()

 J

A |

-g----------

AUTSSAR

7.9.7 SLEEP Phase

When the shutdown target Sleep is requested, all cores are put to sleep simultaneously.
The MCU must issue a halt for each core. As task timing and priority are local to a
core in the OS, neither the scheduler nor the RTE must be synchronized after a halt.
Because the master core could issue the MCU halt before all slave cores are finished
processing, the cores must be synchronized before entering GoHalt.

The BswMs ascertain that sleep should be initiated and distribute an appropriate ECU
mode to each core. The BSWs, SWCs and CDDs on the slave cores must be informed
by their partition local BswM, de-initialize appropriately and send appropriate mode
requests to the BswM to indicate their readiness.

If the ECU is put to sleep, the "halt"s must be synchronized so that all slave cores are
halted before the master core computes the checksum. The ECU Manager module on
the master core uses the same "signal" mechanism as for synchronizing cores on Go
Off.

Similarly, the ECU Manager module on the master core must validate the checksum
before releasing the slave cores from the "halt" state

7.9.7.1 Master Core SLEEP

[SWS_EcuM_04023] Master Core GoSleep Sequence
Upstream requirements: SRS_ModeMgm_00002

[

EcuM Integration Code BswM Os

GetCorelD(CoreldType)

A

:

|

]

I

I

I

]

|

I

B IR R
]

I

I

I

]

]

]

I

|

]

I

I

I

]

]

]

|

]

——— -

|

]

]

I

:

. |

——

BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE)

- —————

___+___
:
I
]
]
]
I
|
]
I
I
I
]
]
I
:
.
—

EcuM_Enab\eWakeupSourcels(EcuM_WakeupSourceType)
»

A—

|

|

|

|

|

|

|

|

|

|

|

1 |
GetResource(RES_AUTOSAR_ECUM_<core#>) I
]

|

|

T

|

|

|

|
O R
|
|
I

AUTSSAR

[SWS_EcuM_04024] Master Core Halt Sequence
Upstream requirements: SRS_ModeMgm_00002

EcuM Integration Code Os Mcu Wakeup Source peripheral: BswM
Wakeup Source
T T T T T T T
Wait forlall SlaveCores to beI ready to seep() : : : :
| I I I I I
DisableAllInterrupts() o | 1 1 1 1
L I bl | | | |
——————— 4= 1 1 1 1
EcuM_GenérateRamHash() T : : : :
o I I I I I
| | | | |
! | | | |
Mcu_SetMode(Mcu_ModeType) - | | | |
[[N | 1 1 1
T | | | | |
| | | (L | | |
I I I I I I
I I I I I I
				Interrupt()	
! EcuM_CheckWakup(EcuM_WakeupSourceType) :					
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)					
L					
! I I					
Activate PLL()					
[j <Module>_CheckWakeup() !					
[T T]					
a EcuM_SetWakeupEvent(EcuM_WakeupSourceType) I					
T T					
———————— Bl Lt					
I					
Return from 1					
interrupt()					
[L L B ol I					
T ! Mcu_SetMode() ! T T !					
J_< _______	_ Mo PEEY 1 ___ _ﬁ I I I				
I I I I					
EnableAllInterrupts() o					
T kel					
_______ A I					
< I ﬂ I I I I					
alt AlarmClock Service Prespnt/ I I I I I					
I I I I					
[EcuM	_AlarmClock only pei\ding event AND Algrm not expired]				
DisableAllInterrupts() o !	L				
t Lt					
ke ————— N	ECU Retums to Halt (Execution				
EcuM_GenerateRamHash() I : continues with the interrupt above) :					
	T 1				
< ----- I I I I I					
I I I I I					
Mcu_SetMode(Mcu_ModeType) - ! : : :					
1 1 VL!-I 1 1 1					
I I I I I I					
EcuM_CheckRamHash(uint8) 1 1 1 1 1					
< ----- I I I I I					
	I I I				
X T T T I I I					
opt RAM checkfauled/ \	\ \ \ \				
T 1					
EcuM_ErrorHook(uint16)) : : : :					
This call never retums!					
		I I I			
T T T					
alt Validation Needed /					i
Yes) ! BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_PENDING ! !					
[Yes] I p 1 » L					
L					
et Bl He i I Y U					
. Lol	Jo . Lo . -				
N					
[No]	\				

_[,].—_I

| 1
Signal all SlaveCoresto continue()

AUTSSAR

[SWS_EcuM_04025] Master Core Poll Sequence
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

EcuM Integration Code Os Mcu Wakeup Source BswM
T T T T T T
| | | | | |
| DisableAllInterrupts() o ! | | |

T Lag I I I

| | | |

S—————===== e 4J I I I

| | | |

Mcu_SetMode(Mcu_ModeType) | | | |

t t L I I

| | | |

<----—-—----- t-————————— == F-—————- 1 1

| | | |

EnableAllInterrupts() ! ! ! !

L | ! !

| | | |

<___________I __________ H | | |

I I I I

| L L L

loop WHILE i li

oop 7O PerelMgREICEEE evenl:s/ Additional Confidition to Loop: While (AlarmClockService Present AND

|
EcuM_SleepActivity(|
L g

ke ———————— —
|

EcuM_AlarmClock only pending event AND Alarm not expired)

loop FOR all wakeup sources that ne('fd polling/
I

EcuMfCheckWakeupHook(ElcuM7WaleupSDUrceType)

b

|
|
|
I
I
T
|
|
I
I
| |
<Module>_CheckWakeup() :
I I I
' ' L
opt Wakeup detected / | | |
Y | |
< EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | |
I I I
| | |
| | |
__________ el il
1 1 1
| | |
| | |
| I |
K—————————- T T I
I I a I
< -————————— 1 1 | |
- | | | |
I I I I I
| | | | |
| | | | |
EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType) I I I
C : 1 1 1 1 1
| | | | |
]]]]]
| | | | |
alt 1 1 1 1 1
I I I I I
[Yes] BswM_EcuM_CurrentWakeup(sources, ! ! !
ECUIM7WKSTATU87PENDINGI) | |
I I I I
<--—-—-—-—-—---- tm———— - F-——————- Fo-—m————- t———————
| | | | L
| | | | |
..... B N N I DI AU SO
1 h
[No] BswMEcuM_CurrentWakeup(sources, : : :
ECUM_WKSTATUS_VALIDATED) \ \
| | | |
| | | |
Ity Bt [T B
| | | | T
T T T T T
| | | | |
I I I I I
Signal SIaveCorels to continue() : : : :
| | | |
| | | |

AUTSSAR

[SWS_EcuM_04026] Master Core WakeupRestart Sequence
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

EcuM Integration Code Os Mcu

A

I

|

]

I

I

I

]

I

|

]
_—
I

I

|

]

I

|

A ;
——

1 1
; EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)
I I

I I
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)
1 |

e ——— — — —

EcuM_AL_DriverRestart

|

I

|

|

|

I
ke —— — I

|
T |
ReleaseResource(RES_AUITOSAR_ECUM_<core#>)

»

7.9.7.2 Slave Core SLEEP

[SWS_EcuM_04027] Slave Core GoSleep Sequence
Upstream requirements: SRS_ModeMgm_00002

AUTSSAR

EcuM Integration Code BswM Os
T T T T
1 1 1 1
| | GetCorelD(CoreldType) | o !

t t >
| |
1 1
I ———_——_ ———— e A ——————
I
BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE) I I
1 >l |
1 1
1 1
S |
< | |
1 1
EcuM_EnableWakeupSources(EcuM_WakeupSourceType) | |
> L | |
I I
| |
___________ 1 1
< 1 1
I I
| | |
GetResource(RES_AUTOSAR_ECUM_<core#t>) ! !
I I g
I I
e L N
1 1
T 1 1
1 1

]

[SWS_EcuM_04028] Slave Core Halt Sequence
Upstream requirements: SRS_ModeMgm_00002

AUTSSAR

EcuM Integration Code Os Mcu Wakeup Source peripheral: BswM
Wakeup Source
T T T T T T T
| | | | | | |
| | | | | |
| '
Signal MasterCore that Slave isready to sleep() : : : :
" ! | | | |
DisableAllInterrupts() o | | | | |
I bl I I I I
I I I I I
| | | | |
<-—----- it I I I I
| | | | |
Mcu_SetMode(Mcu_ModeType) o ! | | |
t t L | | |
| | I'|'| | | |
1 1 1 HALT 1 1 1
I I I I I I
I I I I I I
| | | | | |
| | | | | | |
: : : : ! Interrupt() ! :
| EcuM_CheckWakup(EcuM_WakeupSourceType) |
T T T |
' '
EcuM_CheckWakeupHook(EcuM_WakeupSourceType) : :
1 1
<Module>_CheckWakeup() :
1 1 L] |
T Ecu 7SelWakeupEvenll(EcuMfWakeupSouIrceType) :
I | I
"""" B e e |
________ U |
< | | |
< - 1 1 1
LJ \ 1 Return from |
________ I________I________I_______> interrupt() |
T 1 1 [N i > 1
<	Mcu_SetMode()	L L		
	0			
EnableAllInterrupts()				
T				
e —————— [———				
— T T T T T T				
alt Validation Needed /	X X X X i			
1 1 1 1 1 1				
[Yeq] \ BswM_EcuM_CurrentState(ECUM_WKSTATUS_PENDING) \ \				
	I			
<-—-—-—----	I		B	
I	I		o	
"""" 5 e e e e e				
[No]	1 I 1 1			
BswM_EcuM_CurrentWakeup(Sources, ECUM_WKSTATUS_VALIDATED) 1				
I I I I I				
I I I I I				
<-——-—-—-- (e T r--Tm oo T T				
I I I I I L				
I I I I I I				
F Wait for N'IasterCore to continu'e() : : : :
I I I I I I

]

[SWS_EcuM_04029] Slave Core Poll Sequence

Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

AUTSSAR

EcuM Integration Code Os Mcu Wakeup Source BswM
T T T T T T
| | | | | |
| DisableAllInterrupts() o ! | | |

T L I I I
| | | |
<< -——-———-—-—-- e e | ! !
| | | |
: \ I I I
Mcu_SetMode(Mcu_ModeType) > | |
| | | |
| | | |
Attty et R 1 1
I I I
EnableAllInterrupts() o | | | |
T kel | | |
| | | |
e — e ——— 1 1 1
| L L L
| |
| | Additional Conditions to Loop:
loop WHILE no pending/validated events / | While (AlarmClockService Present
L | AND EcuM_AlarmClock only pending event
! ! AND Alarm not expired)
EcuM_SleepActivity() : : T T T
I I I I
I I I I
| | | |
| | | |
loop FOR all wakeup sources that neq'd polling/ : : : i
T I I I I
| | | | |
EcuM_CheckWakeupHook(EcuM_WakeupSourceType) | | |
L I I I I
I I I I
1 | | |
<Module>_CheckWakeup()| | 1
I I |
I I I
I I I
opt Wakeup detected / : : :
. EcuM_SetWakeupEvent(EcuM_WakeupSourceType) |
i T T !
| | |
| | |
————————— T SS 1
I I I
| | I
I I |
| | |
| | |
< - T-—mmTT T-mm T I
&= ————— =] | | o |
L | | | |
| | | | |
I I I I I
I I I I I
| | | | |
' '
EcquGetPenldingWakeupEvents(EcuMJ{VakeupSourceType) : : :
[; ' I I I | |
| | | | |
T T T T T
| | | | |
alt I I I I I
1 1 1
[Yes) BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_PENDING) : :
| | | |
| | | I
T Ty T T TS T oo T TTToTTopTTTToooo [
| | | | an
......... o [A (R
I | | |
[No] BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_VALIDATED I
I I I
| | |
- —————== T-———————-—- | e i

|
T
|
|
'
e

Wait for signal from MasterCore to continue()
I I
I I

[SWS_EcuM_04030] Slave Core WakeupRestart Sequence
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

—— =

AUTSSAR

EcuM Integration Code Os Mcu

I |
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

|
|

|

|

|

|

|

|

>l | |
| |

| |

(<-—————-=--- | |
| |

| |

| |

) |

|

|

|

|

|

|
1
ReleaseResource(RES_AUTOSAR_ECUM_<co rnﬁ>

T »
I

<_ __________ TTTTTTT U
1
T |

7.9.8 Runnables and Entry points

7.9.8.1 Internal behavior

[SWS_EcuM _03018]
Upstream requirements: SRS_BSW_00425

[The definition of the internal behavior of the the ECU Manager module shall be as
follows. This detailed description is only needed for the configuration of the local RTE.

InternalBehavior EcuStateManager

// Runnable entities of the EcuStateManager
RunnableEntity SelectShutdownTarget
symbol "EcuM_SelectShutdownTarget"
canbelInvokedConcurrently = TRUE
RunnableEntity GetShutdownTarget
symbol "EcuM_GetShutdownTarget"
canbeInvokedConcurrently = TRUE
RunnableEntity GetLastShutdownTarget
symbol "EcuM_GetLastShutdownTarget"
canbeInvokedConcurrently = TRUE
RunnableEntity SelectShutdownCause
symbol "EcuM_SelectShutdownCause"
canbeInvokedConcurrently = TRUE
RunnableEntity GetShutdownCause
symbol "EcuM_GetShutdownCause"

AUTSSAR

canbelInvokedConcurrently = TRUE
RunnableEntity SelectBootTarget
symbol "EcuM_SelectBootTarget"
canbeInvokedConcurrently = TRUE
RunnableEntity GetBootTarget
symbol "EcuM_GetBootTarget"
canbelInvokedConcurrently = TRUE
RunnableEntity SetRelWakeupAlarm
symbol "EcuM_SetRelWakeupAlarm"
canbeInvokedConcurrently = TRUE
RunnableEntity SetAbsWakeupAlarm
symbol "EcuM_SetAbsWakeupAlarm"
canbelInvokedConcurrently = TRUE
RunnableEntity AbortWakeupAlarm
symbol "EcuM_AbortWakeupAlarm"
canbeInvokedConcurrently = TRUE
RunnableEntity GetCurrentTime
symbol "EcuM_GetCurrentTime"
canbelInvokedConcurrently = TRUE
RunnableEntity GetWakeupTime
symbol "EcuM_GetWakeupTime"
canbelInvokedConcurrently = TRUE
RunnableEntity SetClock
symbol "EcuM_SetClock"
canbeInvokedConcurrently = TRUE
RunnableEntity RequestRUN
symbol "EcuM_ReguestRUN"
canbelInvokedConcurrently
RunnableEntity ReleaseRUN
symbol "EcuM_ReleaseRUN"
canbeInvokedConcurrently = TRUE
RunnableEntity RequestPOSTRUN
symbol "EcuM_RequestPOST_RUN"
canbelInvokedConcurrently = TRUE
RunnableEntity ReleasePOSTRUN
symbol "EcuM_ReleasePOST_RUN"
canbeInvokedConcurrently = TRUE

TRUE

// Port present for each user. There are NU users
SRO00.RequestRUN -> RequestRUN

SRO00.ReleaseRUN —-> ReleaseRUN
SR000.RequestPOSTRUN —-> RequestPOSTRUN
SR000.ReleasePOSTRUN —> RequestPOSTRUN
PortArgument {port=SR000, value.type=EcuM UserType,

value.value=EcuMUser[0] .User }

(...)

SRnnn.RequestRUN -> RequestRUN

SRnnn.ReleaseRUN —-> ReleaseRUN

SRnnn.RequestPOSTRUN —-> RequestPOSTRUN

SRnnn.ReleasePOSTRUN -> RequestPOSTRUN

PortArgument {port=SRnnn, value.type=EcuM_UserType,
value.value=EcuMUser [nnn] .User }

shutDownTarget.SelectShutdownTarget -> SelectShutdownTarget
shutDownTarget .GetShutdownTarget —-> GetShutdownTarget

AUTSSAR Specification of ECU State Manager

AUTOSAR CP R25-11

shutDownTarget.GetLastShutdownTarget —> GetLastShutdownTarget
shutDownTarget.SelectShutdownCause —-> SelectShutdownCause
shutDownTarget.GetShutdownCause —-> GetShutdownCause
bootTarget.SelectBootTarget —-> SelectBootTarget
bootTarget.GetBootTarget —-> GetBootTarget
alarmClock.SetRelWakeupAlarm—> SetRelWakeupAlarm
alarmClock.SetAbsWakeupAlarm —-> SetAbsWakeupAlarm
alarmClock.AbortWakeupAlarm —-> AbortWakeupAlarm
alarmClock.GetCurrentTime -> GetCurrentTime
alarmClock.GetWakeupTime -> GetWakeupTime
alarmClock.SetClock —> SetClock

}i

7.10 EcuM Mode Handling

The ECU State Manager provides interfaces for SW-Cs to request and release the
modes RUN and POST_RUN optionally.

EcuMFlex arbitrates the requests and releases made by SW-Cs and propagates the
result to BswM. The cooperation between EcuM and BswM is necessary as only the
BswM can decide when a transition to a different mode can be made. Due to the
fact that the EcuM does not have an own state machine, the EcuM relies on the state
transitions made by BswM. Therefore the EcuM does not request a state. Furthermore
it notifies the BswM about the current arbitration of all requests. And the BswM is
notified when the RTE has executed all Runnables belonging to a certain mode.

ArchitecturalComponentsofECUModeHandling

SWC1
EcuM User

EcuM Mode

CurrentState(STATE)

RUN RequestedState(STATE, STATUS)
Request
Protocol

< EcuM SetState(STATE)

Figure 7.18: Architectural Components of ECU Mode Handling

98 of 233 Document ID 78: AUTOSAR_CP_SWS ECUStateManager

AUTSSAR

Figure 7.18 illustrates the architectural components of ECU Mode Handling.

[SWS_EcuM_04115]
Upstream requirements: SRS_ModeMgm_00024

[ECU Mode Handling shall be applied when EcuMModeHandling is configured to
true. |

[SWS_EcuM_04116]
Upstream requirements: SRS_ModeMgm_00021

[When the BswM sets a state of the EcuM by EcuM_Setstate, the EcuM shall indi-
cate the corresponding mode to the RTE. |

[SWS_EcuM_04117]
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009
[When the last RUN request has been released, ECU State Manager module shall indi-

cate this to BswM using the APl BswM_EcuM_RequestedState(ECUM_STATE_RUN,
ECUM_RUNSTATUS_RELEASED). |

If a SW-C needs post run activity during POST_RUN (e.g. shutdown preparation),
then it must request POST_RUN before releasing the RUN request. Otherwise it is not
guaranteed that this SW-C will get a chance to run its POST_RUN code.

[SWS_EcuM_04118]
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009

[When the ECU State Manager is not in the state which is requested by a SWC, it shall
inform BswM about requested states using the BswM_EcuM_RequestedState API.|

POST_RUN state provides a post run phase for SW-C’s and allows them to save im-
portant data or switch off peripherals.

[SWS_EcuM_04144]
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009
[When the first RUN or POST_RUN request has been received, ECU State Man-

ager module shall indicate this to BswM using BswM_EcuM_RequestedState(ECUM_
STATE_RUN, ECUM_RUNSTATUS_REQUESTED). |

[SWS_EcuM_04119]
Upstream requirements: SRS_ModeMgm_00009, SRS_ModeMgm_00011
[When the last POST_RUN request has been released, ECU State Manager mod-

ule shall indicate this to BswM using the API BswM_EcuM_RequestedState(ECUM _
STATE_POST_RUN, ECUM_RUNSTATUS_RELEASED). |

AUTSSAR

Hint: To prevent, that the mode machine instance of ECU Mode lags behind and the
states EcuM and the RTE get out of phase, the EcuM can use acknowledgement feed-
back for the mode switch notification.

Note that EcuM only requests Modes from and to RUN and POST_RUN, the SLEEP
Mode has to be set by BswM, as the EcuM has no information about when this Mode
can be entered.

State Description

Initial value. Set by Rte when
STARTUP Rte_Start() has been called.
As soon as all necesseray BSW
RUN modules are inistialized, BswM
switches to this Mode.
EcuM requests POST_RUN,
POST_RUN when no RUN requests are
available.
EcuM requests SLEEP Mode
when no RUN and POST_RUN
requests are available and Shut-
down Target is set to SLEEP.
EcuM requests SHUTDOWN
Mode when no RUN and POST_
SHUTDOWN RUN requests are available and
Shutdown Target is set to SHUT-
DOWN.

SLEEP

Table 7.5: EcuM Modes

[SWS _EcuM 04143]
Upstream requirements: SRS_ModeMgm_00021

[EcuM shall notify BswM about the current State by calling the interface BswM_EcuM_
CurrentState(EcuM_StateType State). A new state shall be set by EcuM when RTE has
given its feedback via the acknowledgement port. |

7.11 Advanced Topics

7.11.1 Relation to Bootloader

The Bootloader is not part of AUTOSAR. Still, the application needs an interface to
activate the bootloader. For this purpose, two functions are provided: EcuM_Select-
BootTarget and EcuM_GetBootTarget .

AUTSSAR

Application

/i Bootloader

SS
Bootloader

Boot Target

. Boot Menu
Reset L\) \/

Figure 7.19: Selection of Boot Targets

Bootloader, system supplier bootloader and application are separate program images,
which in many cases even can be flashed separately. The only way to get from one
image to another is through reset. The boot menu will branch into the one or other
image depending on the selected boot target.

7.11.2 Relation to Complex Drivers

If a complex driver handles a wakeup source, it must follow the protocol for handling
wakeup events specified in this document.

7.11.3 Handling Errors during Startup and Shutdown

[SWS_EcuM_02980]
Upstream requirements: SRS_BSW_00406

[The ECU Manager module shall ignore all types of errors that occur during initializa-
tion, e.g. values returned by init functions |

Initialization is a configuration issue (see EcuMDriverInitListZero , EcuM-
DriverInitListOne and EcuMDriverRestartList) and therefore cannot be
standardized.

BSW modules are responsible themselves for reporting errors occurring during their ini-
tialization directly to the DEM module or the DET module, as specified in their SWSs.
The ECU Manager module does not report the errors. The BSW module is also re-
sponsible for taking any special measures to react to errors occurring during their ini-
tialization.

AUTSSAR

7.12 ErrorHook

[SWS_EcuM_04033]
Upstream requirements: SRS_BSW_00469

[In the unrecoverable error situations defined in the first column in
[SWS_EcuM_04037], the ECU Manager module shall call the EcuM_ErrorHook
callout with the parameter value set to the corresponding related error code. |

[SWS_EcuM_04037]
Upstream requirements: SRS_BSW_00469

Error Hook Errors
Type of Error Related Error Code Error Value
The RAM check during wakeup | ECUM_E_RAM_CHECK_FAILED Assigned by Im-
failed plementation
Postbuild configuration data is | ECUM_E_CONFIGURATION_DATA_INCONSISTENT Assigned by Im-
inconsistent plementation
Error code which is used to re- | ECUM_E_OS_CALL_FAILED Assigned by Im-
port issues from Os calls plementation

Clarification to [SWS_EcuM_04033]: EcuM shall assume that the EcuM_ErrorHook
will not return (integrator’s code).

Clarification to [SWS_EcuM_04033]: In case a Dem error is needed, it is integrator’s
responsibility to define a strategy to handle it (e.g.: As EcuM does not directly call Dem,
set the Dem error after a reset recovery).

[SWS _EcuM 04139]
Upstream requirements: SRS_BSW_00386

[If an OS function call returns an error code (other than E_OK), the EcuM shall call
EcuM_ErrorHook with error code ECUM_E_OS_CALL_FAILED. |

7.13 Error classification

Chapter [1, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

The EcuM has an additional handling of errors (see chapter 7.12 ErrorHook).

AUTSSAR

7.13.1 Development Errors

[SWS_EcuM_04032] Definition of development errors in module EcuM

Upstream requirements: SRS_BSW_00327, SRS_BSW_00337, SRS_BSW 00385

Type of error

Related error code

Error value

Multiple requests by the same user were detected

ECUM_E_MULTIPLE_RUN_REQUESTS

Assigned by
Implementation

A function was called which was disabled by
configuration

ECUM_E_SERVICE_DISABLED

Assigned by
Implementation

A service was called prior to initialization

ECUM_E_UNINIT

Assigned by
Implementation

An unknown wakeup source was passed as a
parameter to an API

ECUM_E_UNKNOWN_WAKEUP_SOURCE

Assigned by
Implementation

The initialization failed

ECUM_E_INIT_FAILED

Assigned by
Implementation

A state, passed as an argument to a service, was
out of range (specific parameter test)

ECUM_E_STATE_PAR OUT OF RANGE

Assigned by
Implementation

A parameter was invalid (unspecific)

ECUM_E_INVALID_PAR

Assigned by
Implementation

A invalid pointer was passed as an argument

ECUM_E_PARAM_POINTER

Assigned by
Implementation

A previous matching request for the provided user
was not found

ECUM_E_MISMATCHED_RUN_RELEASE

Assinged by
Implementation

7.13.2 Runtime Errors

[SWS_EcuM_91003] Definition of runtime errors in module EcuM
Upstream requirements: SRS_BSW_00452, SRS_BSW_00385, SRS_BSW_00327

[

Type of error

Related error code

Error value

After a wake up, no wake up event was set in the
given time (see EcuMCheckWakeupTimeout)

ECUM_E_WAKEUP_TIMEOUT

Assigned by
Implementation

7.13.3 Transient Faulis

There are no transient faults.

7.13.4 Production Errors

There are no production errors.

AUTSSAR

7.13.5 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported Types

This section lists all types imported by the ECU Manager module from the correspond-
ing AUTOSAR modules.

[SWS_EcuM_02810] Definition of imported datatypes of module EcuM
Upstream requirements: SRS_BSW_00301

Module Header File Imported Type
Adc Adc.h Adc_ConfigType
BswM BswM.h BswM_ConfigType
Can Can.h Can_ConfigType
CanTrcv CanTrcv.h CanTrcv_ConfigType
Comtype ComStack_Types.h NetworkHandleType
ComStack_Types.h PNCHandleType
Dem Dem.h Dem_ConfigType
Det Det.h Det_ConfigType
Eth Eth.h Eth_ConfigType
EthSwt EthSwt.h EthSwt_ConfigType
EthTrev EthTrev.h EthTrcv_ConfigType
Fr Fr.h Fr_ConfigType
FrTrcv FrTrev.h FrTrcv_ConfigType
Gpt Gpt.h Gpt_ConfigType
lcu Icu.h Icu_ConfigType
loHwWAb loHwADb.h loHwADb{Init_Id}_ConfigType
Lin Lin.h Lin_ConfigType
LinTrcv LinTrcv.h LinTrcv_ConfigType
Mcu Mcu.h Mcu_ConfigType
Mcu.h Mcu_ModeType
Mcu.h Mcu_ResetType
Ocu Ocu.h Ocu_ConfigType
Os Os.h AppModeType
Os.h CoreldType
Os.h StatusType
Port Port.h Port_ConfigType
Pwm Pwm.h Pwm_ConfigType
SchM Rte_PBcfg.h SchM_ConfigType
Spi Spi.h Spi_ConfigType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
Wdg Wdg.h Wdg_ConfigType

AUTSSAR

[SWS_EcuM_03019]
Upstream requirements: SRS_ModeMgm_00016

[ECUM_E_EARLIER_ACTIVE and ECUM_E_PAST shall be of type Std_ReturnType
and represent the following values

« ECUM_E_EARLIER_ACTIVE =3
« ECUM_E_PAST =4

8.2 Type definitions

8.2.1 EcuM_ConfigType

[SWS_EcuM_04038] Definition of datatype EcuM_ConfigType
Upstream requirements: SRS_BSW_00414

[
Name EcuM_ConfigType
Kind Structure
Elements -
Type -
Comment The content of this structure depends on the post-build configuration of
EcuM.
Description A pointer to such a structure shall be provided to the ECU State Manager initialization routine for
configuration.
Available via EcuM.h
J

[SWS_EcuM_02801]
Upstream requirements: SRS_BSW_00414

[The structure defined by type EcuM_ConfigType shall hold the post-build configura-
tion parameters for the ECU Manager module as well as pointers to all ConfigType
structures of modules that are initialized by the ECU Manager module. |

The ECU Manager module Configuration Tool must generate the structure defined by
the EcuM_ConfigType type specifically for a given set of basic software modules that
comprise the ECU configuration. The set of basic software modules is derived from
the corresponding EcuM parameters

[SWS_EcuM_02794]
Upstream requirements: SRS_BSW_00414
[The structure defined in the EcuM_ConfigType type shall contain an additional post-

build configuration variant identifier (uint8/uint16/uint32 depending on algorithm to
compute the identifier). |

AUTSSAR

See also Chapter 7.3.4 Checking Configuration Consistency.

[SWS_EcuM _02795]
Upstream requirements: SRS_BSW_00414

[The structure defined by the EcuM_ConfigType type shall contain an additional hash
code that is tested against the configuration parameter EcuMConfigConsistency—
Hash for checking consistency of the configuration data. |

See also section 7.3.4 Checking Configuration Consistency.

For each given ECU configuration, the ECU Manager module Configuration Tool must
generate an instance of this structure that is filled with the post-build configuration pa-
rameters of the ECU Manager module as well as pointers to instances of configuration
structures for the modules mentioned above. The pointers are derived from the corre-

sponding EcuM parameters.

8.2.2 EcuM_RunStatusType

[SWS_EcuM_04120] Definition of datatype EcuM_RunStatusType

Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009,

00011

Name

EcuM_RunStatusType

Kind

Type

Derived from

uint8

Range

ECUM_RUNSTATUS_ 0
UNKNOWN

Unknown status. Init Value.

ECUM_RUNSTATUS_ 1
REQUESTED

Status requested from EcuM

ECUM_RUNSTATUS _ 2
RELEASED

Status released from EcuM.

Description

Result of the Run Request Protocol sent to BswM

Available via

EcuM.h

]

[SWS_EcuM_04121]

Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009,

[The ECU Manager module shall inform BswM about the state of the Run Request

00011

Protocol as listed in the EcuM_RunStatusType. |

SRS_ModeMgm_-

SRS_ModeMgm_-

AUTSSAR

8.2.3 EcuM_WakeupSourceType

[SWS_EcuM_04040] Definition of datatype EcuM_WakeupSourceType
Upstream requirements: SRS_BSW_00375

Name EcuM_WakeupSourceType

Kind Type

Derived from uint32

Range ECUM_WKSOURCE_ 0x01 Power cycle (bit 0)

POWER

ECUM_WKSOURCE_ 0x02 Hardware reset (bit 1).

RESET (default) If the Mcu driver cannot
distinguish between a power cycle
and a reset reason, then this shall
be the default wakeup source.

ECUM_WKSOURCE_ 0x04 Internal reset of uC (bit 2)

INTERNAL_RESET The internal reset typically only
resets the puC core but not
peripherals or memory controllers.
The exact behavior is hardware
specific. This source may also
indicate an unhandled exception.

ECUM_WKSOURCE_ 0x08 Reset by internal watchdog (bit 3)

INTERNAL_WDG

ECUM_WKSOURCE_ 0x10 Reset by external watchdog (bit

EXTERNAL_WDG 4), if detection supported by
hardware

Description EcuM_WakeupSourceType defines a bitfield with 5 pre-defined positions (see Range). The bitfield
provides one bit for each wakeup source.

In WAKEUP, all bits cleared indicates that no wakeup source is known.

In STARTUP, all bits cleared indicates that no reason for restart or reset is known. In this case,

ECUM_WKSOURCE_RESET shall be assumed.

Available via EcuM.h

]

[SWS_EcuM_02165]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004
[Additional wakeup sources (to the pre-defined sources) shall be assigned individually

to bitfield positions 5 to 31 by configuration. The bit assignment shall be done by the
configuration tool. |

[SWS_EcuM_02166]
Upstream requirements: SRS_ModeMgm_00005
[The EcuMWakeupSourceld (see ECUC_EcuM_00151) field in the EcuMWakeup

Source container shall define the position corresponding to that wakeup source in all
instances the EcuM_WakeupSourceType bitfield. |

AUTSSAR

8.2.4 EcuM_WakeupStatusType

[SWS_EcuM_04041] Definition of datatype EcuM_WakeupStatusType
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

Name EcuM_WakeupStatusType
Kind Type
Derived from uint8
Range ECUM_WKSTATUS_NONE 0 No pending wakeup event was
detected
ECUM_WKSTATUS 1 The wakeup event was detected
PENDING but not yet validated
ECUM_WKSTATUS 2 The wakeup event is valid
VALIDATED
ECUM_WKSTATUS 3 The wakeup event has not been
EXPIRED validated and has expired
therefore
Description The type describes the possible states of a wakeup source.
Available via EcuM.h

]

NOTE: This declaration has to be changed to a mode. The name has to be changed.

8.2.5 EcuM_ResetType

[SWS_EcuM_04044] Definition of datatype EcuM_ResetType
Upstream requirements: SRS_ModeMgm_00023

Name EcuM_ResetType
Kind Type
Derived from uint8
Range ECUM_RESET_MCU 0 Microcontroller reset via Mcu_
PerformReset
ECUM_RESET_WDG 1 Watchdog reset via WdgM_
PerformReset
ECUM_RESET_IO 2 Reset by toggeling an I/O line.
Description This type describes the reset mechanisms supported by the ECU State Manager. It can be
extended by configuration.
Available via EcuM.h

AUTSSAR

8.2.6 EcuM_StateType

[SWS_EcuM_91005] Definition of datatype EcuM_StateType

Upstream requirements: SRS_BSW_00331, SRS_ModeMgm_00010, SRS_ModeMgm_00009,
SRS_ModeMgm_00008, SRS_ModeMgm_00011

[
Name EcuM_StateType
Kind Type
Derived from uint8
Range ECUM_SUBSTATE_MASK 0xof -
ECUM_STATE_STARTUP 0x10 -
ECUM_STATE_RUN 0x32 -
ECUM_STATE_POST_RUN | 0x33 -
ECUM_STATE_ 0x40 -
SHUTDOWN
ECUM_STATE_SLEEP 0x50 -
Description ECU State Manager states.
Available via EcuM.h
]

[SWS _EcuM 02664]
Upstream requirements: SRS_BSW_00331

[The ECU Manager module shall define all states as listed in the EcuM_StateType. |

8.3 Function Definitions

This is a list of functions provided for upper layer modules.

8.3.1 General
8.3.1.1 EcuM_GetVersioninfo

[SWS_EcuM_02813] Definition of API function EcuM_GetVersioninfo
Upstream requirements: SRS_BSW_00407

[
Service Name EcuM_GetVersionInfo
Syntax void EcuM_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x00
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None
Description Returns the version information of this module.
Available via EcuM.h

8.3.2
8.3.2.1

Initialization and Shutdown Sequences

EcuM_GoDownHalitPoll

[SWS_EcuM_91002] Definition of API function EcuM_GoDownHaltPoll
Upstream requirements: SRS_ModeMgm_00002, SRS_ModeMgm_00006, SRS_BSW_00359

Service Name EcuM_GoDownHaltPoll
Syntax Std_ReturnType EcuM_GoDownHaltPoll (
EcuM_UserType UserID
)
Service ID [hex] 0x2c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) UserlD Id of the user calling this API. Only configured users are allowed
to call this function.
Parameters (inout) None
Parameters (out) None

Return value

E_NOT_OK: The request was not accepted.

E_OK: If the ShutdownTargetType is SLEEP the call successfully
returns, the ECU has left the sleep again.

If the ShutdownTargetType is RESET or OFF this call will not
return.

Std_ReturnType

Description

Instructs the ECU State Manager module to go into a sleep mode, Reset or OFF depending on
the previously selected shutdown target.

Available via

EcuM.h

AUTSSAR

8.3.2.2 EcuM _Init

[SWS_EcuM_02811] Definition of API function EcuM _Init
Upstream requirements: SRS_BSW_00358, SRS BSW 00414, SRS BSW 00101

[

Service Name EcuM_Init
Syntax void EcuM_Init (
void

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Initializes the ECU state manager and carries out the startup procedure. The function will never
return (it calls StartOS)

Available via EcuM.h

8.3.2.3 EcuM_StartupTwo

[SWS_EcuM_02838] Definition of API function EcuM_StartupTwo
Upstream requirements: SRS_ModeMgm_00001, SRS_BSW_ 00359

[

Service Name EcuM_StartupTwo
Syntax void EcuM_StartupTwo (
void
)
Service ID [hex] Ox1a
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This function implements the STARTUP |l state.
Available via EcuM.h

]

[SWS_EcuM_02806]
Upstream requirements: SRS_ModeMgm_00001

[Caveats of EcuM_StartupTwo: This function must be called from a task, which is
started directly as a consequence of StartOS. |.e. either the EcuM_StartupTwo function

AUTSSAR

must be called from an autostart task or the EcuM_StartupTwo function must be called
from a task, which is explicitly started. |

Clarification to [SWS_EcuM_02806] : The OS offers different mechanisms to activate
a task on startup. Normally EcuM_StartupTwo would be configured as an autostart
task in the default application mode.

The integrator can configure the OS to activate the EcuM_StartupTwo task by any
mechanism, as long as it is started immediately after StartOS is called. The task can
also be activated from within another task and this other task could be an autostart
task.

Starting EcuM_StartupTwo as an autostart task is an implicit activation. The other
mechanisms would be an explicit activation.

8.3.2.4 EcuM_Shutdown

[SWS_EcuM_02812] Definition of API function EcuM_Shutdown
Upstream requirements: SRS_ModeMgm_00006

[
Service Name EcuM_Shutdown
Syntax void EcuM_Shutdown (
void

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Typically called from the shutdown hook, this function takes over execution control and will carry
out GO OFF Il activities.

Available via EcuM.h

AUTSSAR

8.3.3 State Management
8.3.3.1 EcuM_SetState

[SWS_EcuM_04122] Definition of API function EcuM_SetState
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009, SRS_ModeMgm_-

[

00011

Service Name

EcuM_SetState

Syntax void EcuM_SetState (
EcuM_StateType state

)
Service ID [hex] 0x2b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) state State indicated by BswM.
Parameters (inout) None
Parameters (out) None
Return value None
Description Function called by BswM to notify about State Switch.
Available via EcuM.h

]

[SWS_EcuM_04123]
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009, SRS_BSW_00350

[The EcuM_SetState function shall set the EcuM State to the value of the State pa-

rameter.

If the State parameter is not a valid value, the EcuM_SetState function shall not change
the State and if EcuMDevErrorDetect is enabled, the EcuM_SetState function shall
additionally report an ECUM_E_STATE_PAR_OUT_OF_RANGE to Det. |

8.3.3.2 EcuM_RequestRUN

[SWS_EcuM_04124] Definition of API function EcuM_RequestRUN
Upstream requirements: SRS_ModeMgm_00010

[

Service Name

EcuM_RequestRUN

Syntax Std_ReturnType EcuM_RequestRUN (
EcuM_UserType user
)
Service ID [hex] 0x03
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant for different users
Parameters (in) user ‘ ID of the entity requesting the RUN state.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The request was accepted by EcuM.

E_NOT_OK: The request was not accepted by EcuM

Description Places a request for the RUN state. Requests can be placed by every user made known to the
state manager at configuration time.

Available via EcuM.h

]

Requests of EcuM_RequestRUN cannot be nested, i.e. one user can only place one
request but not more.

[SWS_EcuM_04126]
Upstream requirements: SRS_ModeMgm_00010

[An implementation must track requests for each user known on the ECU. Run re-
quests are specific to the user. |

[SWS_EcuM_03024]
Upstream requirements: SRS_ModeMgm_00010, , SRS_BSW_00350

[If EcuMDevErrorDetect is enabled and there are multiple requests by
the same user detected by EcuM_RequestRUN the function shall report
ECUM_E_MULTIPLE_RUN_REQUESTS to Det. |

8.3.3.3 EcuM_ReleaseRUN

[SWS_EcuM_04127] Definition of API function EcuM_ReleaseRUN
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009

[

Service Name EcuM_ReleaseRUN

Syntax Std_ReturnType EcuM_ReleaseRUN (
EcuM_UserType user

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) user ID of the entity releasing the RUN state.
Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The release request was accepted by EcuM

E_NOT_OK: The release request was not accepted by EcuM

V

AUTSSAR

A

Description Releases a RUN request previously done with a call to EcuM_RequestRUN. The service is
intended for implementing AUTOSAR ports.

Available via EcuM.h

]

[SWS_EcuM_03023]
Upstream requirements: SRS_ModeMgm_00010, , SRS_BSW_00350

[If EcuMDevErrorDetect is enabled and EcuM_ReleaseRUN did not find a
previous matching request for the provided user, the function shall report
ECUM_E_MISMATCHED_RUN_RELEASE to Det. |

Configuration of EcuM_ReleaseRUN: Refer to EcuM_UserType for more information
about user IDs and their generation.
8.3.3.4 EcuM_RequestPOST_RUN

[SWS_EcuM_04128] Definition of API function EcuM_RequestPOST_RUN
Upstream requirements: SRS_ModeMgm_00009

Service Name EcuM_RequestPOST_RUN
Syntax Std_ReturnType EcuM_RequestPOST_RUN (
EcuM_UserType user
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user ID of the entity requesting the POST RUN state.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The request was accepted by EcuM
E_NOT_OK: The request was not accepted by EcuM
Description Places a request for the POST RUN state. Requests can be placed by every user made known
to the state manager at configuration time. Requests for RUN and POST RUN must be tracked
independently (in other words: two independent variables). The service is intended for
implementing AUTOSAR ports.
Available via EcuM.h

]

[SWS_EcuM_03025]
Upstream requirements: SRS_ModeMgm_00009, , SRS_BSW_00350
[If EcuMDevErrorDetect is enabled and there are multiple requests by the

same user detected by EcuM _RequestPOST_RUN the function shall report
ECUM_E_MULTIPLE_RUN_REQUESTS to Det.]

AUTSSAR

All requirements of 8.3.3.2 EcuM_RequestRUN apply accordingly to the function Ecu
M_RequestPOST_RUN.

Configuration of EcuM_RequestPOST_RUN: Refer to EcuM_UserType for more infor-
mation about user IDs and their generation.
8.3.3.5 EcuM_ReleasePOST_RUN

[SWS_EcuM_04129] Definition of API function EcuM_ReleasePOST_RUN
Upstream requirements: SRS_ModeMgm_00011, SRS_ModeMgm_00009

[
Service Name EcuM_ReleasePOST_RUN
Syntax Std_ReturnType EcuM_ReleasePOST_RUN (
EcuM_UserType user
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user ID of the entity releasing the POST RUN state.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The release request was accepted by EcuM
E_NOT_OK: The release request was not accepted by EcuM
Description Releases a POST RUN request previously done with a call to EcuM_RequestPOST_RUN. The
service is intended for implementing AUTOSAR ports.
Available via EcuM.h
J

[SWS_EcuM_03026]
Upstream requirements: SRS_ModeMgm_00009, , SRS_BSW_00350
[If EcuMbDevErrorDetect is enabled, and EcuM_ReleasePOST_RUN did not

find a previous matching request for the provided user, the function shall report
ECUM_E_MISMATCHED_RUN_RELEASE to Det. |

Configuration of EcuM_ReleasePOST_RUN: Refer to EcuM_UserType for more infor-
mation about user IDs and their generation.

AUTSSAR

8.3.4 Shutdown Management
8.3.4.1 EcuM_SelectShutdownTarget

[SWS_EcuM_02822] Definition of API function EcuM_SelectShutdownTarget
Upstream requirements: SRS_ModeMgm_00012

Service Name EcuM_SelectShutdownTarget
Syntax Std_ReturnType EcuM_SelectShutdownTarget (
EcuM_ShutdownTargetType shutdownTarget,
EcuM_ShutdownModeType shutdownMode
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) shutdownTarget The selected shutdown target.
shutdownMode The identfier of a sleep mode (if target is ECUM_SHUTDOWN_
TARGET_SLEEP) or a reset mechanism (if target is ECUM_
SHUTDOWN_TARGET_RESET) as defined by configuration.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The new shutdown target was set
E_NOT_OK: The new shutdown target was not set
Description EcuM_SelectShutdownTarget selects the shutdown target. EcuM_SelectShutdownTarget is
part of the ECU Manager Module port interface.
Available via EcuM.h

[SWS_EcuM_00624]
Upstream requirements: SRS_ModeMgm_00012

[The EcuM_SelectShutdownTarget function shall set the shutdown target to the value
of the shutdownTarget parameter. |

[SWS_EcuM_02185]
Upstream requirements: SRS_ModeMgm_00012

[The parameter mode of the function EcuM_SelectShutdownTarget shall be the iden-
tifier of a sleep or reset mode. The mode parameter shall only be used if the target pa-
rameter equals ECUM_SHUTDOWN_TARGET_SLEEP or ECUM_SHUTDOWN_TAR-
GET_RESET. In all other cases, it shall be ignored. Only sleep or reset modes that are
defined at configuration time and are stored in the EcuMCommonConfiguration con-
tainer (see ECUC_EcuM_00181) are allowed as parameters. |

[SWS_EcuM_02585]
Upstream requirements: SRS_ModeMgm_00012

[EcuM_SelectShutdownTarget shall not initiate any setup activities but only store the
value for later use in the SHUTDOWN or SLEEP phase. |

AUTSSAR

Implementation hint: The ECU Manager module does not define any mechanism to
resolve conflicts arising from requests from different sources. The shutdown target is
always the last value set.

8.3.4.2 EcuM_GetShutdownTarget

[SWS_EcuM_02824] Definition of API function EcuM_GetShutdownTarget
Upstream requirements: SRS_ModeMgm_00012

[

Service Name

EcuM_GetShutdownTarget

Syntax Std_ReturnType EcuM_GetShutdownTarget (
EcuM_ShutdownTargetType* shutdownTarget,
EcuM_ShutdownModeType* shutdownMode
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) shutdownTarget One of these values is returned: ECUM_SHUTDOWN_TARGET _
SLEEP ECUM_SHUTDOWN_TARGET_RESET ECUM_
SHUTDOWN_TARGET_OFF
shutdownMode If the out parameter "shutdownTarget" is ECUM_SHUTDOWN_

TARGET_SLEEP, sleepMode tells which of the configured sleep
modes was actually chosen. If "shutdownTarget" is ECUM_
SHUTDOWN_TARGET_RESET, sleepMode tells which of the
configured reset modes was actually chosen.

Return value

E_OK: The service has succeeded
E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Std_ReturnType

Description

EcuM_GetShutdownTarget returns the currently selected shutdown target as set by EcuM_
SelectShutdownTarget. EcuM_GetShutdownTarget is part of the ECU Manager Module port
interface.

Available via

EcuM.h

]

[SWS_EcuM_02788]
Upstream requirements: SRS_ModeMgm_00023, SRS_BSW_00350

[If the pointer to the shutdownMode parameter is NULL, EcuM_GetShutdownTarget
shall simply ignore the shutdownMode parameter. If EcuMDevErrorDetect is en-
abled, EcuM_GetShutdownTarget shall report the ECUM_E_PARAM_POINTER to
Det. |

AUTSSAR

8.3.4.3 EcuM_GetLastShutdownTarget

[SWS_EcuM_02825] Definition of API function EcuM_GetLastShutdownTarget
Upstream requirements: SRS_ModeMgm_00012

[

Service Name

EcuM_GetlLastShutdownTarget

Syntax Std_ReturnType EcuM_GetLastShutdownTarget (

EcuM_ShutdownTargetType* shutdownTarget,

EcuM_ShutdownModeType* shutdownMode

)

Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) shutdownTarget One of these values is returned: ECUM_SHUTDOWN_TARGET _

SLEEP ECUM_SHUTDOWN_TARGET_RESET ECUM_
SHUTDOWN_TARGET_OFF

shutdownMode If the out parameter "shutdownTarget" is ECUM_SHUTDOWN _
TARGET_SLEEP, sleepMode tells which of the configured sleep
modes was actually chosen. If "shutdownTarget" is ECUM_
SHUTDOWN_TARGET_RESET, sleepMode tells which of the
configured reset modes was actually chosen.

Return value

Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description

EcuM_GetLastShutdownTarget returns the shutdown target of the previous shutdown process.
EcuM_GetLastShutdownTarget is part of the ECU Manager Module port interface.

Available via

EcuM.h

]

[SWS_EcuM_02156]
Upstream requirements: SRS_ModeMgm_00023

[EcuM_GetLastShutdownTarget shall return the ECU state from which the last wakeup
or power up occurred in the shutdownTarget parameter. EcuM_GetLastShutdownTar-
get shall always return the same value until the next shutdown. |

[SWS_EcuM_02336]
Upstream requirements: SRS_ModeMgm_00023
[If the call of GetLastShutdownTarget() passes ECU_STATE_SLEEP in the parameter

shutdownTarget, in the parameter shutdownMode it returns which of the configured
sleep modes was actually chosen.

If the call of GetLastShutdownTarget() passes ECU_STATE_RESET in the parameter
shutdownTarget, in the parameter sleepMode it returns which of the configured reset
modes was actually chosen. |

AUTSSAR

[SWS_EcuM_02337]
Upstream requirements: SRS_ModeMgm_00023, SRS_BSW_00350

[If the pointer to the shutdownMode parameter is NULL, EcuM_GetLastShutdownTar-
get shall simply ignore the shutdownMode parameter and return the last shutdown tar-
get regardless of whether it was SLEEP or not. If EcuMbevErrorDetect is enabled,
EcuM_GetLastShutdownTarget shall report the ECUM_E_PARAM_POINTER to Det. |

[SWS_EcuM 02157]
Upstream requirements: SRS_ModeMgm_00023

[EcuM_GetLastShutdownTarget may return a shutdown target in a STARTUP phase
that set late in a previous SHUTDOWN phase. If so, implementation specific limitations
shall be clearly documented. |

Rationale for [SWS_EcuM_02157]

The EcuM_GetLastShutdownTarget function is intended primarily for use in the
ECU STARTUP or RUN states. To simplify implementation, it is acceptable if the value
is set in late shutdown phase for use during the next startup.

8.3.4.4 EcuM_SelectShutdownCause

[SWS_EcuM_04050] Definition of API function EcuM_SelectShutdownCause
Upstream requirements: SRS_ModeMgm_00023

[
Service Name EcuM_SelectShutdownCause
Syntax Std_ReturnType EcuM_SelectShutdownCause (
EcuM_ShutdownCauseType target

)

Service ID [hex] 0x1b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) target The selected shutdown cause.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The new shutdown cause was set

E_NOT_OK: The new shutdown cause was not set

Description EcuM_SelectShutdownCause elects the cause for a shutdown. EcuM_SelectShutdownCause
is part of the ECU Manager Module port interface.

Available via EcuM.h

AUTSSAR

8.3.4.5 EcuM_GetShutdownCause

[SWS_EcuM_04051] Definition of API function EcuM_GetShutdownCause
Upstream requirements: SRS_ModeMgm_00023

[

Service Name

EcuM_GetShutdownCause

Syntax Std_ReturnType EcuM_GetShutdownCause (
EcuM_ShutdownCauseTypex shutdownCause
)
Service ID [hex] Ox1c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) shutdownCause The selected cause of the next shutdown.

Return value

E_OK: The service has succeeded
E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Std_ReturnType

Description

EcuM_GetShutdownCause returns the selected shutdown cause as set by EcuM_Select
ShutdownCause. EcuM_GetShutdownCause is part of the ECU Manager Module port
interface.

Available via

EcuM.h

8.3.5 Wakeup Handling

8.3.5.1 EcuM_CheckWakeup

[SWS_EcuM_91007] Definition of API function EcuM_CheckWakeup
Upstream requirements: SRS_ModeMgm_00003

[

Service Name

EcuM_CheckWakeup

Syntax void EcuM_CheckWakeup (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x49

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

AUTSSAR

A

Description This function can be called to check the given wakeup sources. It will pass the argument to the
integrator function EcuM_CheckWakeupHook. It can also be called by the ISR of a wakeup
source to set up the PLL and check other wakeup sources that may be connected to the same
interrupt.

Available via EcuM.h

8.3.5.2 EcuM_GetPendingWakeupEvents

[SWS_EcuM_02827] Definition of API function EcuM_GetPendingWakeupEvents
Upstream requirements: SRS_ModeMgm_00005

[

Service Name EcuM_GetPendingWakeupEvents
Syntax EcuM_WakeupSourceType EcuM_GetPendingWakeupEvents (
void

)

Service ID [hex] 0x0d

Sync/Async Synchronous

Reentrancy Non-Reentrant, Non-Interruptible

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value EcuM_WakeupSource All wakeup events
Type

Description Gets pending wakeup events.

Available via EcuM.h

]

[SWS_EcuM_01156]
Upstream requirements: SRS_ModeMgm_00005

[EcuM_GetPendingWakeupEvents shall return wakeup events which have been set
to pending but not yet validated as bits set in @ EcuM_WakeupSourceType bitmask. |

[SWS_EcuM_02172]

Upstream requirements: SRS_ModeMgm_00005, SRS_BSW_00333
[EcuM_GetPendingWakeupEvents shall be callable from interrupt context, from OS
context and an OS-free context. |

[SWS_EcuM_03003]
Upstream requirements: SRS_ModeMgm_00005

[Caveat of EcuM_GetPendingWakeupEvents: This function only returns the wakeup
events with status ECUM_WKSTATUS_PENDING. |

AUTSSAR

8.3.5.3 EcuM_ClearWakeupEvent

[SWS_EcuM_02828] Definition of API function EcuM_ClearWakeupEvent
Upstream requirements: SRS_ModeMgm_00004

[
Service Name EcuM_ClearWakeupEvent
Syntax void EcuM_ClearWakeupEvent (
EcuM_WakeupSourceType sources
)
Service ID [hex] 0x16
Sync/Async Synchronous
Reentrancy Non-Reentrant, Non-Interruptible
Parameters (in) sources Events to be cleared
Parameters (inout) None
Parameters (out) None
Return value None
Description Clears wakeup events.
Available via EcuM.h
]

[SWS_EcuM_02683]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004

[EcuM_ClearWakeupEvent clears all pending events passed as a bit set in the sources
in parameter (EcuM_WakeupSourceType bitmask) from the internal pending wakeup
events variable, the internal validated events variable and the internal expired events
variable. |

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02807]
Upstream requirements: SRS_ModeMgm_00003, SRS_ModeMgm_00004, SRS_BSW_00333

[EcuM_ClearWakeupEvent shall be callable from interrupt context, from OS context
and an OS-free context. |

Integration note: The clearing of wakeup sources shall take place during ECU shut-
down prior to the call of Dem_Shutdown() and NvM_WriteAll(). This can be achieved
by configuring BswMRules in the BswM module containing BswMActions of type
BswMUserCallout with their BswMUserCalloutFunction parameter set to "EcuM_Clear
WakeupEvents(<sources>)". Hereby <sources> needs to be derived from the Ecu
MWakeupSourcelds in the EcuM configuration. These BswMRules must then be con-
figured in a way that they get triggered during ECU shutdown prior to the call of Dem_
Shutdown() and NvM_WriteAll().

AUTSSAR

8.3.5.4 EcuM_GetValidatedWakeupEvents

[SWS_EcuM_02830]

Events

Upstream requirements: SRS_ModeMgm_00005

[

Definition of API function EcuM_GetValidatedWakeup

Service Name

EcuM_GetValidatedWakeupEvents

Syntax EcuM_WakeupSourceType EcuM_GetValidatedWakeupEvents (
void

)

Service ID [hex] 0x15

Sync/Async Synchronous

Reentrancy Non-Reentrant, Non-Interruptible

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value EcuM_WakeupSource All wakeup events
Type

Description

Gets validated wakeup events.

Available via

EcuM.h

]

[SWS_EcuM_02533]
Upstream requirements: SRS_ModeMgm_00005

[EcuM_GetValidatedWakeupEvents shall return wakeup events which have been
set to validated in the internal validated events variable as bits set in a EcuM_Wake-
upSourceType bitmask. |

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02532]
Upstream requirements: SRS_ModeMgm_00005, SRS_BSW_00333

[EcuM_GetValidatedWakeupEvents shall be callable from interrupt context, from
OS context and an OS-free context. |

AUTSSAR

8.3.5.5 EcuM_GetExpiredWakeupEvents

[SWS_EcuM_02831] Definition of API function EcuM_GetExpiredWakeupEvents
Upstream requirements: SRS_ModeMgm_00005

[

Service Name EcuM_GetExpiredWakeupEvents
Syntax EcuM_WakeupSourceType EcuM_GetExpiredWakeupEvents (
void
)
Service ID [hex] 0x19
Sync/Async Synchronous
Reentrancy Non-Reentrant, Non-Interruptible
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value EcuM_WakeupSource All wakeup events: Returns all events that have been set and for
Type which validation has failed. Events which do not need validation
must never be reported by this function.
Description Gets expired wakeup events.
Available via EcuM.h

]

[SWS_EcuM_04076]
Upstream requirements: SRS_ModeMgm_00005

[EcuM_GetExpirediakeupEvents shall return wakeup events which have been set
to validated in the internal expired events variable as bits set in a EcuM_Wakeup-
SourceType bitmask. |

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02589]
Upstream requirements: SRS_ModeMgm_00005, SRS_BSW_00333

[EcuM_GetExpiredWakeupEvents shall be callable from interrupt context, from OS
context and an OS-free context. |

AUTSSAR

8.3.6 Alarm Clock

8.3.6.1 EcuM_SetRelWakeupAlarm

[SWS_EcuM_04054] Definition of API function EcuM_SetRelWakeupAlarm
Upstream requirements: SRS_ModeMgm_00016

[

Service Name

EcuM_SetRelWakeupAlarm

Syntax Std_ReturnType EcuM_SetRelWakeupAlarm (
EcuM_UserType user,
EcuM_TimeType time
)
Service ID [hex] 0x22
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user The user that wants to set the wakeup alarm.
time Relative time from now in seconds.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service failed

ECUM_E_EARLIER_ACTIVE: An earlier alarm is already set

Description

EcuM_SetRelWakeupAlarm sets a user’s wakeup alarm relative to the current point in time.
EcuM_SetRelWakeupAlarm is part of the ECU Manager Module port interface.

Available via

EcuM.h

]

[SWS_EcuM_04055]
Upstream requirements: SRS_ModeMgm_00016

[If the relative time from now is earlier than the current wakeup time, EcuM_SetRel-
WakeupAlarm shall update the wakeup time. |

[SWS_EcuM_04056]
Upstream requirements: SRS_ModeMgm_00016

[If the relative time from now is later than the current wakeup time, EcuM_SetRel-
WakeupAlarm shall not update the wakeup time and shall return ECUM_E_EARLIER _

ACTIVE. |

AUTSSAR

8.3.6.2 EcuM_SetAbsWakeupAlarm

[SWS_EcuM_04057] Definition of API function EcuM_SetAbsWakeupAlarm
Upstream requirements: SRS_ModeMgm_00016

[

Service Name EcuM_SetAbsWakeupAlarm
Syntax Std_ReturnType EcuM_SetAbsWakeupAlarm (
EcuM_UserType user,
EcuM_TimeType time
)
Service ID [hex] 0x23
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user The user that wants to set the wakeup alarm.
time Absolute time in seconds. Note that, absolute alarms use
knowledge of the current time.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service failed
ECUM_E_EARLIER_ACTIVE: An earlier alarm is already set
ECUM_E_PAST: The given point in time has already passed
Description EcuM_SetAbsWakeupAlarm sets the user’s wakeup alarm to an absolute point in time. EcuM_
SetAbsWakeupAlarm is part of the ECU Manager Module port interface.
Available via EcuM.h

]

[SWS_EcuM_04058]

Upstream requirements: SRS_ModeMgm_00016
[If the time parameter is earlier than the current wakeup time, EcuM_SetAbsWakeu-
pAlarm shall update the wakeup time. |

[SWS _EcuM 04059]
Upstream requirements: SRS_ModeMgm_00016

[If the time parameter is later than the current wakeup time, EcuM_SetAbsWakeu-
pAlarm shall not update the wakeup time and shall return ECUM_E_EARLIER_AC-
TIVE.]

[SWS_EcuM_04060]
Upstream requirements: SRS_ModeMgm_00016

[If the time parameter is earlier than now, EcuM_SetAbsWakeupAlarm shall not up-
date the wakeup time and shall return ECUM_E_PAST. |

AUTSSAR

8.3.6.3 EcuM_AbortWakeupAlarm

[SWS_EcuM_04061] Definition of API function EcuM_AbortWakeupAlarm
Upstream requirements: SRS_ModeMgm_00016

Service Name

EcuM_AbortWakeupAlarm

Syntax Std_ReturnType EcuM_AbortWakeupAlarm (
EcuM_UserType user

)
Service ID [hex] 0x24
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user The user that wants to cancel the wakeup alarm.
Parameters (inout) None
Parameters (out) None

Return value

E_OK: The service has succeeded
E_NOT_OK: The service failed
ECUM_E_NOT_ACTIVE: No owned alarm found

Std_ReturnType

Description

Ecum_AbortWakeupAlarm aborts the wakeup alarm previously set by this user. EcuM_Abort
WakeupAlarm is part of the ECU Manager Module port interface.

Available via

EcuM.h

8.3.6.4 EcuM_GetCurrentTime

[SWS_EcuM_04062] Definition of API function EcuM_GetCurrentTime
Upstream requirements: SRS_ModeMgm_00015

Service Name

EcuM_GetCurrentTime

Syntax Std_ReturnType EcuM_GetCurrentTime (
EcuM_TimeTypex time

)
Service ID [hex] 0x25
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) time Absolute time in seconds since battery connect.

Return value

E_OK: The service has succeeded
E_NOT_OK: time points to NULL or the module is not initialized

Std_ReturnType

Description

EcuM_GetCurrentTime returns the current value of the EcuM clock (i.e. the time since battery
connect). EcuM_GetCurrentTime is part of the ECU Manager Module port interface.

Available via

EcuM.h

AUTSSAR

8.3.6.5 EcuM_GetWakeupTime

[SWS_EcuM_04063] Definition of API function EcuM_GetWakeupTime
Upstream requirements: SRS_ModeMgm_00017

Service Name EcuM_GetWakeupTime

Syntax Std_ReturnType EcuM_GetWakeupTime (
EcuM_TimeType* time

)

Service ID [hex] 0x26

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) time Absolute time in seconds for next wakeup. OXFFFFFFFF means
no active alarm.

Return value Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: time points to NULL or the module is not initialized

Description EcuM_GetWakeupTime returns the current value of the master alarm clock (the minimum

absolute time of all user alarm clocks). EcuM_GetWakeupTime is part of the ECU Manager
Module port interface.

Available via EcuM.h

8.3.6.6 EcuM_SetClock

[SWS_EcuM_04064] Definition of API function EcuM_SetClock
Upstream requirements: SRS_ModeMgm_00014

Service Name EcuM_SetClock

Syntax Std_ReturnType EcuM_SetClock (
EcuM_UserType user,
EcuM_TimeType time

)

Service ID [hex] 0x27
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user User that wants to set the clock

time Absolute time in seconds since battery connect.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service failed

Y%

AUTSSAR

A

Description

EcuM_SetClock sets the EcuM clock time to the provided value. This APl is useful for testing
the alarm services; Alarms that take days to expire can be tested. EcuM_SetClock is part of the
ECU Manager Module port interface.

Available via

EcuM.h

8.3.7 Miscellaneous

8.3.7.1 EcuM_SelectBootTarget

[SWS_EcuM_02835] Definition of API function EcuM_SelectBootTarget
Upstream requirements: SRS_ModeMgm_00022

[

Service Name

EcuM_SelectBootTarget

Syntax Std_ReturnType EcuM_SelectBootTarget (
EcuM_BootTargetType target

)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) target The selected boot target.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The new boot target was accepted by EcuM

E_NOT_OK: The new boot target was not accepted by EcuM

Description

EcuM_SelectBootTarget selects a boot target. EcuM_SelectBootTarget is part of the ECU
Manager Module port interface.

Available via

EcuM.h

]

[SWS_EcuM_02247]
Upstream requirements: SRS_ModeMgm_00022

[The service EcuM_SelectBootTarget shall store the selected target in a way that
is compatible with the boot loader. |

Explanation for [SWS_EcuM_02247]: This may mean format AND location. The imple-
menter must ensure that the boot target information is placed at a safe location which
then can be evaluated by the boot manager after a reset.

[SWS_EcuM_03000]
Upstream requirements: SRS_ModeMgm_00022

[Caveat for the function EcuM_SelectBootTarget: This service may depend on the
boot loader used. This service is only intended for use by SW-C’s related to diagnostics
(boot management). |

AUTSSAR

8.3.7.2 EcuM_GetBootTarget

[SWS_EcuM_02836] Definition of API function EcuM_GetBootTarget
Upstream requirements: SRS_ModeMgm_00022

Service Name

EcuM_GetBootTarget

Syntax Std_ReturnType EcuM_GetBootTarget (
EcuM_BootTargetType * target
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) target The currently selected boot target.

Return value

Std_ReturnType E_OK: The service always succeeds.

Description

EcuM_GetBootTarget returns the current boot target - see EcuM_SelectBootTarget. EcuM_Get
BootTarget is part of the ECU Manager Module port interface.

Available via

EcuM.h

8.4 Callback Definitions

8.4.1 Callbacks from Wakeup Sources

8.4.1.1 EcuM_SetWakeupEvent

[SWS_EcuM_02826] Definition of callback function EcuM_SetWakeupEvent
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00360

Service Name

EcuM_SetWakeupEvent

Syntax void EcuM_SetWakeupEvent (
EcuM_WakeupSourceType sources

)

Service ID [hex] 0x0c

Sync/Async Synchronous

Reentrancy Non-Reentrant, Non-Interruptible

Parameters (in) sources Value to be set

Parameters (inout) None

Parameters (out) None

Return value None

Description Sets the wakeup event.

Available via EcuM.h

AUTSSAR

[SWS_EcuM_01117]
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00360

[EcuM_SetWakeupEvent sets (OR-operation) all events passed as a bit set in the
sources in parameter (EcuM_WakeupSourceType bitmask) in the internal pending
wakeup events variable. |

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02707]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_SetWakeupEvent shall start the wakeup validation timeout timer according to
Wakeup Validation Timeout. |

See section 7.6.4.3 Wakeup Validation Timeout.

[SWS_EcuM_02867]
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00350

[If EcuMDevErrorDetect is enabled, and parameter "sources" contains an unknown
(unconfigured) wakeup source, EcuM_SetWakeupEvent shall not update its internal
variable and shall report the ECUM_E_UNKNOWN_WAKEUP_SOURCE to the Det
instead. |

[SWS_EcuM_02171]
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00333

[EcuM_SetWakeupEvent must be callable from interrupt context, from OS context
and an OS-free context. |

[SWS_EcuM_04138]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_SetWakeupEvent shallignore all events passed in the sources parameter that
are not associated to the selected sleep mode. |

AUTSSAR

8.4.1.2 EcuM_ValidateWakeupEvent

[SWS_EcuM_02829] Definition of callback function EcuM_ValidateWakeupEvent
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00359, SRS_BSW_00360

Service Name EcuM_ValidateWakeupEvent
Syntax void EcuM_ValidateWakeupEvent (
EcuM_WakeupSourceType sources

)

Service ID [hex] 0x14

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) sources Events that have been validated

Parameters (inout) None

Parameters (out) None

Return value None

Description After wakeup, the ECU State Manager will stop the process during the WAKEUP VALIDATION
state/sequence to wait for validation of the wakeup event.This API service is used to indicate to
the ECU Manager module that the wakeup events indicated in the sources parameter have
been validated.

Available via EcuM.h

[SWS_EcuM_04078]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_ValidateWakeupEvent sets (OR-operation) all events passed as a bit set in
the sources in parameter (EcuM_WakeupSourceType bitmask) in the internal validated
wakeup events variable. |

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_04079]
Upstream requirements: SRS_ModeMgm_00003

[EcuMValidateWakeupEvent shall invoke BswM_EcuM_CurrentWakeup with its
sources parameter and state value ECUM_WKSTATUS_VALIDATED. |

[SWS_EcuM_02645]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_ValidateWakeupEvent shall invoke ComM_EcuM_WakeUplIndication for
each wakeup event if the EcuMComMChannelRef parameter (see ECUC_Ecu
M_00101) in the EcuMWakeupSource configuration container for the corresponding
wakeup source is configured. |

AUTSSAR

[SWS_EcuM_02868]
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00350
[If EcuMDevErrorDetect is enabled and the sources parameter contains an un-

known (unconfigured) wakeup source, EcuM_ValidateWakeupEvent shall ignore
the call and report the ECUM_E_UNKNOWN_WAKEUP_SOURCE to Det. |

[SWS_EcuM_02345]
Upstream requirements: SRS_ModeMgm_00003, SRS_BSW_00333

[EcuM_ValidateWakeupEvent shall be callable from interrupt context and task con-
text. |

[SWS_EcuM_02790]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_ValidateWakeupEvent shall return without effect for all sources except com-
munication channels when called while the ECU Manager module is in the RUN state. |

[SWS_EcuM_02791]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_ValidateWakeupEvent shall have full effect in any ECU Phase for those
sources that correspond to a communication channel (see [SWS_EcuM_02645]). |

[SWS_EcuM _04140]
Upstream requirements: SRS_ModeMgm_00003

[EcuM_ValidateWakeupEvent shall invoke ComM_EcuM_PNCWakeUplIndication
for each wakeup event and for every referenced PNC if at least one EcuMComMPN-
CRef parameter (see ECUC_EcuM_00228) in the EcuMWakeupSource configuration
container for the corresponding wakeup source is configured. |

8.5 Callout Definitions

Callouts are code fragments that must be added to the ECU Manager module during
ECU integration. The content of most callouts is hand-written code. The ECU Manager
module configuration tool generates a default implementation for some callouts which
is edited manually by the integrator. Conceptually, these callouts belong to the ECU
integration code.

AUTSSAR

8.5.1 Generic Callouts

8.5.1.1 EcuM_ErrorHook

[SWS_EcuM_02904] Definition of configurable interface EcuM_ErrorHook
Upstream requirements: SRS_ModeMgm_00020

[
Service Name EcuM_ErrorHook
Syntax void EcuM_ErrorHook (
uintl6 reason
)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) reason Reason for calling the error hook
Parameters (inout) None
Parameters (out) None
Return value None
Description The ECU State Manager will call the error hook if fatal errors occur. In this situation it is not
possible to continue processing and the ECU must be stopped. The integrator may choose the
modality how the ECU is stopped, i.e. reset, halt, restart, safe state etc.
Available via EcuM_Externals.h
]

The ECU Manager module can invoke EcuM_ErrorHook: in all phases
Class of EcuM_ErrorHook: Mandatory

EcuM_ErrorHook is integration code and the vendor is free to define additional in-
dividual error codes to be passed as the reason parameter. These codes shall not
conflict with the development and production error codes as defined in the table in
[SWS_EcuM_04037].

8.5.2 Callouts from the STARTUP Phase

8.5.2.1 EcuM_AL_SetProgrammablelnterrupts

[SWS_EcuM_04085] Definition of configurable interface EcuM_AL_SetPro-
grammableinterrupts
Upstream requirements: SRS_BSW_00439, SRS_ModeMgm_00001

[

Service Name EcuM_AL_SetProgrammablelnterrupts

SyHHM' void EcuM_AL_SetProgrammableInterrupts (
void

)

V

AUTSSAR

A

Service ID [hex] 0x4A

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description If the configuration parameter EcuMSetProgrammablelnterrupts is set to true, this callout Ecu
M_AL_SetProgrammablelnterrupts is executed and shall set the interrupts on ECUs with
programmable interrupts.

Available via EcuM_Externals.h

8.5.2.2 EcuM_AL_DriverinitZero

[SWS_EcuM_02905] Definition of configurable interface EcuM_AL_DriverlnitZero
Upstream requirements: SRS_BSW_00359, SRS_ModeMgm_00001, SRS_ModeMgm_00020

[

Service Name EcuM_AL_DriverlnitZero
Syntax void EcuM_AL_DriverInitZero (
void

)

Service ID [hex] 0x31

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callout shall provide driver initialization and other hardware-related startup activities for
loading the post-build configuration data. Beware: Here only pre-compile and link-time
configurable modules may be used.

Available via EcuM_Externals.h

]

The ECU Manager module invokes EcuM_AL_DriverInitZero early in the PreOS
Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

The ECU Manager module configuration tool must generate a default implementation
of the EcuM_AI_DriverInitZero callout ((SWS_EcuM_02905]) from the sequence
of modules defined in the EcuMDriverlnitListZero configuration container (see ECUC_
EcuM_00114). See also [SWS_EcuM_02559] and [SWS_EcuM_02730].

AUTSSAR

8.5.2.3 EcuM_DeterminePbConfiguration

[SWS_EcuM_02906] Definition of configurable interface EcuM_DeterminePbCon-
figuration
Upstream requirements: SRS_BSW_00359, SRS_ModeMgm_00001

[

Service Name EcuM_DeterminePbConfiguration
Syntax const EcuM_ConfigTypex EcuM_DeterminePbConfiguration (
void

)

Service ID [hex] 0x32

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value const EcuM_ConfigType* Pointer to the EcuM post-build configuration which contains

pointers to all other BSW module post-build configurations.

Description This callout should evaluate some condition, like port pin or NVRAM value, to determine which
post-build configuration shall be used in the remainder of the startup process. It shall load this
configuration data into a piece of memory that is accessible by all BSW modules and shall
return a pointer to the EcuM post-build configuration as a base for all BSW module post-build
configrations.

Available via EcuM_Externals.h

]

The ECU Manager module invokes EcuM_DeterminePbConfiguration earlyinthe
PreOS Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

8.5.2.4 EcuM_AL_DriverlnitOne

[SWS_EcuM_02907] Definition of configurable interface EcuM_AL_DriverlnitOne
Upstream requirements: SRS_BSW_00101, SRS_ModeMgm_00001, SRS _ModeMgm_00020

[

Service Name EcuM_AL_DriverlnitOne
Syntax void EcuM_AL_DriverInitOne (
void

)
Service ID [hex] 0x33
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

AUTSSAR

A
Description This callout shall provide driver initialization and other hardware-related startup activities in
case of a power on reset.
Available via EcuM_Externals.h

The ECU Manager module invokes EcuM_AL_DriverlnitOne in the PreOS Sequence

(see section 7.3.2 Activities in StartPreOS Sequence)

The ECU Manager module configuration tool must generate a default implementation
of the EcuM_AL_DriverInitOne callout from the sequence of modules defined in the
EcuMDriverlnitListOne configuration container (see ECUC_EcuM _00111). See also

[SWS_EcuM_02559] and [SWS_EcuM_02730].

Besides driver initialization, the following initialization sequences should be considered
as described here: [9] Chapter 9.1 “Example Sequence for Mcu initialization services”.

8.5.2.5 EcuM_LoopDetection

[SWS_EcuM_04137] Definition of configurable interface EcuM_LoopDetection
Upstream requirements: SRS_ModeMgm_00001, SRS_BSW_00359, SRS_BSW_00416

[

Service Name

EcuM_LoopDetection

Syntax void EcuM_LoopDetection (
void
)
Service ID [hex] 0x4B
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

If the configuration parameter EcuMResetLoopDetection is set to true, this callout EcuM_Loop
Detection is called on every startup.

Available via

EcuM_Externals.h

AUTSSAR

8.5.3 Callouts from the SHUTDOWN Phase
8.5.3.1 EcuM_OnGoOffOne

[SWS_EcuM_02916] Definition of configurable interface EcuM_OnGoOffOne
Upstream requirements: SRS_ModeMgm_00011, SRS_ModeMgm_00020

[

Service Name

EcuM_OnGoOffOne

Syntax void EcuM_OnGoOffOne (
void
)
Service ID [hex] 0x3C
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This call allows the system designer to notify that the GO OFF | state is about to be entered.

Available via

EcuM_Externals.h

]

The ECU Manager module invokes EcuM_OnGoOffOne on entry to the OffPreOS Se-
quence (see section 7.4.1 Activities in the OffPreOS Sequence).
8.5.3.2 EcuM_OnGoOffTwo

[SWS_EcuM_02917] Definition of configurable interface EcuM_OnGoOffTwo
Upstream requirements: SRS_ModeMgm_00011, SRS_ModeMgm_00020

[

Service Name

EcuM_OnGoOffTwo

Syntax void EcuM_OnGoOffTwo (
void
)
Service ID [hex] 0x3D
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This call allows the system designer to notify that the GO OFF Il state is about to be entered.

Available via

EcuM_Externals.h

AUTSSAR

The ECU Manager module invokes EcuM_OnGoOffTwo on entry to the OffPostOS
Sequence (see section 7.4.2 Activities in the OffPostOS Sequence).
8.5.3.3 EcuM_AL_SwitchOff

[SWS_EcuM_02920] Definition of configurable interface EcuM_AL_SwitchOff
Upstream requirements: SRS_ModeMgm_00006

[
Service Name EcuM_AL_SwitchOff
Syntax void EcuM_AL_SwitchOff (
void
)
Service ID [hex] 0x3E
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout shall take the code for shutting off the power supply of the ECU. If the ECU cannot
unpower itself, a reset may be an adequate reaction.

Available via

EcuM_Externals.h

]

The ECU Manager module invokes EcuM_AL_SwitchOff as the last activity in the Off
PostOS Sequence (see section 7.4.2 Activities in the OffPostOS Sequence).

Note: In some cases of HW/SW concurrency, it may happen that during the power
down in EcuM_AL_SwitchOff (endless loop) some hardware (e.g. a CAN transceiver)
switches on the ECU again. In this case the ECU may be in a deadlock until the
hardware watchdog resets the ECU. To reduce the time until the hardware watchdog
fixes this deadlock, the integrator code in EcuM_AL_SwitchOff as last action can limit
the endless loop and after a sufficient long time reset the ECU using Mcu_Perform
Reset().

AUTSSAR

8.5.3.4 EcuM_AL_Reset

[SWS_EcuM_04065] Definition of configurable interface EcuM_AL_Reset
Upstream requirements: SRS_ModeMgm_00006

Service Name EcuM_AL_Reset

Syntax void EcuM_AL_Reset (
EcuM_ResetType reset
)

Service ID [hex] 0x4C

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) reset Type of reset to be performed.

Parameters (inout) None

Parameters (out) None

Return value None

Description This callout shall take the code for resetting the ECU. If the reset mode (the higher byte) is

extracted from a data of type EcuM_ShutdownModeType (uint16), it is needed to right shift it of
1 byte before it can be feed into the function EcuM_AL_Reset which expects a variable of type
EcuM_ResetType (uint8).

Available via EcuM_Externals.h

8.5.4 Callouts from the SLEEP Phase
8.5.4.1 EcuM_EnableWakeupSources

[SWS_EcuM_02918] Definition of configurable interface EcuM_EnableWakeup
Sources

Upstream requirements: SRS_ModeMgm_00003

Service Name EcuM_EnableWakeupSources
Syntax void EcuM_EnableWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x3F

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

AUTSSAR

A

Description

The ECU Manager Module calls EcuM_EnableWakeupSource to allow the system designer to
notify wakeup sources defined in the wakeupSource bitfield that SLEEP will be entered and to
adjust their source accordingly.

Available via

EcuM_Externals.h

]

The ECU Manager module invokes EcuM_EnableWakeupSources in the GoSleep Se-
guence (see section 7.5.1 Activities in the GoSleep Sequence)

[SWS_EcuM_02546]
Upstream requirements: SRS_ModeMgm_00003

[The ECU Manager module shall derive the wakeup sources to be enabled (and
used as the wakeupSource parameter) from the EcuMWakeupSource (see ECUC_
EcuM_00152) bitfield configured for the current sleep mode. |

8.5.4.2 EcuM_GenerateRamHash

[SWS_EcuM_02919] Definition of configurable interface EcuM_GenerateRam

Hash

Upstream requirements: SRS_ModeMgm_00011

[

Service Name

EcuM_GenerateRamHash

Syntax void EcuM_GenerateRamHash (
void
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

see EcuM_CheckRamHash

Available via

EcuM_Externals.h

]

The ECU Manager module invokes EcuM_GenerateRamHash: in the Halt Sequence
just before putting the ECU physically to sleep (see section 7.5.2 Activities in the Halt

Sequence).

AUTSSAR

8.5.4.3 EcuM_SleepActivity

[SWS_EcuM_02928] Definition of configurable interface EcuM_SleepActivity
Upstream requirements: SRS_ModeMgm_00002, SRS_ModeMgm_00020

[

Service Name

EcuM_SleepActivity

Syntax void EcuM_SleepActivity (
void
)
Service ID [hex] 0x41
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout is invoked periodically in all reduced clock sleep modes. It is explicitely allowed to
poll wakeup sources from this callout and to call wakeup notification functions to indicate the
end of the sleep state to the ECU State Manager.

Available via

EcuM_Externals.h

]

The ECU Manager module invokes EcuM_SleepActivity periodically during the Poll
Sequence (see section 7.5.3 Activities in the Poll Sequence) if the MCU is not halted

(i.e. clock is reduced).

Note: If called from the Poll sequence the EcuMcalls this callout functions in a blocking
loop at maximum frequency. The callout implementation must ensure by other means
if callout code shall be executed with a lower period. The integrator may choose any

method to control this, e.g. with the help of OS counters, OS alarms, or Gpt timers.

8.5.4.4 EcuM_StartCheckWakeup

[SWS_EcuM_04096]

Wakeup

Upstream requirements: SRS_ModeMgm_00003

[

Service Name

EcuM_StartCheckWakeup

Syntax void EcuM_StartCheckWakeup (
EcuM_WakeupSourceType WakeupSource
)
Service ID [hex] 0x4F
Sync/Async Synchronous
Reentrancy Non Reentrant

Definition of configurable interface EcuM_StartCheck

AUTSSAR

A
Parameters (in) WakeupSource For this wakeup source the corresponding CheckWakeupTimer
shall be started.
Parameters (inout) None
Parameters (out) None
Return value None
Description This APl is called by the ECU Firmware to start the CheckWakeupTimer for the corresponding

WakeupSource. If EcuMCheckWakeupTimeout > 0 the CheckWakeupTimer for the Wakeup
Source is started. If EcuMCheckWakeupTimeout <= 0 the API call is ignored by the EcuM.

Available via EcuM_Externals.h

8.5.4.5 EcuM_CheckWakeupHook

[SWS_EcuM_91006] Definition of configurable interface EcuM_CheckWakeup
Hook

Upstream requirements: SRS_ModeMgm_00003

[

Service Name EcuM_CheckWakeupHook
Syntax void EcuM_CheckWakeupHook (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x42

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description This callout is called by the EcuM to poll a wakeup source.

Available via EcuM_Externals.h

]

Note: The callout function EcuM_CheckWakeupHook was named
EcuM_CheckWakeup in former specifications of the EcuM (was SWS_EcuM_02929).
For R21-11 the previous callout EcuM_CheckWakeup was changed to a real
function of the EcuM (with the same name), which now calls the -callout
EcuM_CheckWakeupHook.

Note: The EcuM_CheckWakeupHook function is implemented by the integrator code
to call the corresponding <driver module >_CheckWakeup of the given wakeup source.
Within the callout EcuM_CheckWakeupHook the following functions may be called in
the given order:

* Call EcuM_startCheckWakeup with the given wakeup source to start the
CheckWakeupTimer. A running CheckWakeupTimer shall prevent a shutdown

AUTSSAR

of the ECU before the wakeup sources has been checked by the corresponding
driver module (e.g. CanTrcv) for a pending wakeup.

» Call <driver module>_CheckWakeup of the driver module (e.g. CanTrcv) which is
assigned to the given wakeup source

[SWS_EcuM_04098]
Upstream requirements: SRS_ModeMgm_00018

[If EcuM_SetWakeupEvent is called by the driver module for the corresponding
wakeup source, then the CheckWakeupTimer shall be cancelled. |

8.5.4.6 EcuM_CheckRamHash

[SWS_EcuM_02921] Definition of configurable interface EcuM_CheckRamHash
Upstream requirements: SRS_ModeMgm_00001

[

Service Name EcuM_CheckRamHash
Syntax uint8 EcuM_CheckRamHash (
void
)
Service ID [hex] 0x43
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value uint8 0: RAM integrity test failed
else: RAM integrity test passed
Description This callout is intended to provide a RAM integrity test. The goal of this test is to ensure that

after a long SLEEP duration, RAM contents is still consistent. The check does not need to be
exhaustive since this would consume quite some processing time during wakeups. A well
designed check will execute quickly and detect RAM integrity defects with a sufficient
probability. This specification does not make any assumption about the algorithm chosen for a
particular ECU. The areas of RAM which will be checked have to be chosen carefully. It
depends on the check algorithm itself and the task structure. Stack contents of the task
executing the RAM check e.g. very likely cannot be checked. It is good practice to have the
hash generation and checking in the same task and that this task is not preemptible and that
there is only little activity between hash generation and hash check. The RAM check itself is
provided by the system designer. In case of applied multi core and existence of Satellite-Ecu
M(s): this APl will be called by the Master-EcuM only.

Available via EcuM_Externals.h

]

The ECU Manager module invokes EcuM_CheckRamHash early in the WakeupRestart
Sequence (see section 7.5.5 Activities in the WakeupRestart Sequence)

AUTSSAR

[SWS_EcuM_02987]
Upstream requirements: SRS_BSW_00471, SRS_BSW_00458

[When the RAM check fails on wakeup the ECU Manager module shall invoke EcuM_
ErrorHook with the parameter ECUM_E_RAM_CHECK_FAILED .|

See also section 7.5.2 Activities in the Halt Sequence.

8.5.4.7 EcuM_DisableWakeupSources

[SWS_EcuM_02922] Definition of configurable interface EcuM_DisableWakeup
Sources
Upstream requirements: SRS_ModeMgm_00003

[
Service Name EcuM_DisableWakeupSources
Syntax void EcuM_DisableWakeupSources (
EcuM_WakeupSourceType wakeupSource
)
Service ID [hex] 0x44
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) wakeupSource -
Parameters (inout) None
Parameters (out) None
Return value None
Description The ECU Manager Module calls EcuM_DisableWakeupSources to set the wakeup source(s)
defined in the wakeupSource bitfield so that they are not able to wake the ECU up.
Available via EcuM_Externals.h
J

The ECU Manager module invokes EcuM_DisableWakeupSources in the Wakeup
Restart Sequence (see section 7.5.5 Activities in the WakeupRestart Sequence)

[SWS_EcuM_04084]
Upstream requirements: SRS _ModeMgm_00003, SRS _ModeMgm_00004

[The ECU Manager module shall derive the wakeup sources to be disabled (and used
as the wakeupSource parameter) from the internal pending events variable (NOT oper-
ation). The integration code used for this callout must determine which wakeup sources
must be disabled. |

AUTSSAR

8.5.4.8 EcuM_AL_DriverRestart

[SWS_EcuM_02923] Definition of configurable interface EcuM_AL_DriverRestart

Upstream requirements: SRS_BSW_00101, SRS_ModeMgm_00001, SRS_ModeMgm_00020

[

Service Name

EcuM_AL_DriverRestart

Syntax void EcuM_AL_DriverRestart (
void
)
Service ID [hex] 0x45
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout shall provide driver initialization and other hardware-related startup activities in the
wakeup case.

Available via

EcuM_Externals.h

]

The ECU Manager module invokes EcuM_EcuM_AL_DriverRestart in the Wakeup
Restart Sequence (see section 7.5.5 Activities in the WakeupRestart Sequence)

The ECU Manager module Configuration Tool shall generate a default implementation
of the EcuM_AL_DriverRestart callout from the sequence of modules defined in the
EcuMDriverRestartList configuration container (see ECUC_EcuM_00115). See also
[SWS_EcuM_02561], [SWS_EcuM_02559] and [SWS_EcuM_02730].

8.5.5 Callouts from the UP Phase

8.5.5.1 EcuM_StartWakeupSources

[SWS_EcuM_02924]
Sources
Upstream requirements: SRS_ModeMgm_00003

[

Service Name

Definition of configurable interface EcuM_StartWakeup

EcuM_StartWakeupSources

Syntax void EcuM_StartWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x46
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTSSAR

A
Parameters (in) wakeupSource | -
Parameters (inout) None
Parameters (out) None
Return value None
Description The callout shall start the given wakeup source(s) so that they are ready to perform wakeup
validation.
Available via EcuM_Externals.h

]

The EcuM Manager module invokes EcuM_StartWakeupSources in the WakeupVali-
dation Sequence (see section 7.6.4 Activities in the WakeupValidation Sequence).

8.5.5.2 EcuM_CheckValidation

[SWS_EcuM_02925] Definition of configurable interface EcuM_CheckValidation
Upstream requirements: SRS_ModeMgm_00003

[

Service Name EcuM_CheckValidation

Syntax void EcuM_CheckvValidation (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x47

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description This callout is called by the EcuM to validate a wakeup source. If a valid wakeup has been

detected, it shall be reported to EcuM via EcuM_ValidateWakeupEvent().

Available via EcuM_Externals.h

]

The EcuM Manager module invokes EcuM_CheckValidation in the WakeupValidation
Sequence (see section 7.6.4 Activities in the WakeupValidation Sequence).

AUTSSAR

8.5.5.3 EcuM_StopWakeupSources

[SWS_EcuM_02926]

Definition of configurable interface EcuM_StopWakeup

Sources

Upstream requirements: SRS_ModeMgm_00003

[

Service Name

EcuM_StopWakeupSources

Syntax void EcuM_StopWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x48

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description

The callout shall stop the given wakeup source(s) after unsuccessful wakeup validation.

Available via

EcuM_Externals.h

]

The EcuM Manager module invokes EcuM_StopWakeupSources in the WakeupVali-
dation Sequence (see section 7.6.4 Activities in the WakeupValidation Sequence).

8.6 Scheduled Functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

8.6.1 EcuM_MainFunction

[SWS_EcuM_02837] Definition of scheduled function EcuM_MainFunction
Upstream requirements: SRS_BSW_00373

Service Name EcuM_MainFunction
Syntax void EcuM_MainFunction (
void
)
Service ID [hex] 0x18
Description The purpose of this service is to implement all activities of the ECU State Manager while the
OS is up and running.
Available via SchM_EcuM.h

AUTSSAR

To determine the period, the system designer should consider:

» The function will perform wakeup validation (see 7.8 Wakeup Validation Protocol).
The shortest validation timeout typically should limit the period.

* As a rule of thumb, the period of this function should be approximately half as
long as the shortest validation timeout.

EcuM_MainFunction should not be called from tasks that may invoke runnable entities.

8.7 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_EcuM_02858] Definition of mandatory interfaces required by module Ecu
M

Upstream requirements: SRS_BSW_00301

API Function Header File Description

BswM_Deinit BswM.h Deinitializes the BSW Mode Manager.

BswM_EcuM_CurrentWakeup BswM_EcuM.h Function called by EcuM to indicate the current state
of a wakeup source.

BswM_Init BswM.h Initializes the BSW Mode Manager.

CanSM_StartWakeupSource CanSM.h This function shall be called by EcuM when a
wakeup source shall be started.

CanSM_StopWakeupSource CanSM.h This function shall be called by EcuM when a
wakeup source shall be stopped.

ComM_EcuM_PNCWakeUplndication ComM_EcuM.h Notification of a wake up on the corresponding
partial network cluster.

ComM_EcuM_WakeUplndication ComM_EcuM.h Notification of a wake up on the corresponding
channel.

Dem_Init Dem.h Initializes or reinitializes this module.

Dem_Prelnit Dem.h Initializes the internal states necessary to process
events reported by BSW-modules.

Dem_Shutdown Dem.h Shuts down this module.

GetResource Os.h -

Mcu_GetResetReason Mcu.h The service reads the reset type from the hardware,
if supported.

Mcu_Init Mcu.h This service initializes the MCU driver.

Mcu_PerformReset Mcu.h The service performs a microcontroller reset.

Mcu_SetMode Mcu.h This service activates the MCU power modes.

ReleaseResource Os.h -

AUTSSAR

API Function Header File Description

SchM_Deinit Rte_Main.h SchM_Deinit is used to finalize Basic Software
Scheduler part of the RTE of the core on which it is
called. This service releases all system resources
allocated by the Basic Software Scheduler part on
that core.

SchM_Init Rte_Main.h SchM_Init is intended to allocate and initialize
system resources used by the Basic Software
Scheduler part of the RTE for the core on which it is
called.

ShutdownOS Os.h -

StartOS Os.h -

8.7.1 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_EcuM_02859] Definition of optional interfaces requested by module EcuM
Upstream requirements: SRS_BSW_00415, SRS_BSW_00477

API Function Header File Description

Adc_Init Adc.h Initializes the ADC hardware units and driver.

Can_Init Can.h This function initializes the module.

CanTrev_Init CanTrev.h Initializes the CanTrcv module.

Det_Init Det.h Service to initialize the Default Error Tracer.

Det_ReportError Det.h Service to report development errors.

Eth_Init Eth.h Initializes the Ethernet Driver

EthSwt_Init EthSwt.h Initializes the Ethernet Switch Driver

EthTrcv_Init EthTrcv.h Initializes the Ethernet Transceiver Driver

Fr_Init Fr.h Initializes the Fr.

FrTrcv_Init FrTrcv.h This service initializes the FrTrcv.

GetCorelD Os.h The function returns a unique core identifier.

Gpt_Init Gpt.h Initializes the GPT driver.

lcu_Init Icu.h This function initializes the driver.

loHwWAb_ Init<Init_ld> loHwWADb.h Initializes either all the IO Hardware Abstraction
software or is a part of the |0 Hardware Abstraction.

Lin_Init Lin.h Initializes the LIN module.

LinTrev_Init LinTrev.h Initializes the Lin Transceiver Driver module.

Ocu_Init Ocu.h Service for OCU initialization.

Port_Init Port.h Initializes the Port Driver module.

Pwm_Init Pwm.h Service for PWM initialization.

AUTSSAR

API Function Header File
ShutdownAllCores Os.h

Description

After this service the OS on all AUTOSAR cores is
shut down. Allowed at TASK level and ISR level and
also internally by the OS. The function will never
return. The function will force other cores into a
shutdown.

Service for SPI initialization.

Spi_Init Spi.h
StartCore Os.h

It is not supported to call this function after Start
OS(). The function starts the core specified by the
parameter CorelD. The OUT parameter allows the
caller to check whether the operation was
successful or not. If a core is started by means of
this function StartOS shall be called on the core.

Initializes the module.

Wdg_ Init Wdg.h
WdgM_PerformReset WdgM.h

Instructs the Watchdog Manager to cause a
watchdog reset.

8.7.2 Configurable interfaces

8.7.2.1 Callbacks from the STARTUP phase

[SWS_EcuM_91001]
M <x>
Upstream requirements: SRS_ModeMgm_00001, SRS_ModeMgm_00020

Definition of callback function EcuM_AL_DriverlnitBsw

[

Service Name

EcuM_AL_DriverInitBswM_<x>

Syntax void EcuM_AL_DriverInitBswM_<x> (
void
)
Service ID [hex] 0x28
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callback shall provide BSW module initializations to be called by the BSW Mode Manager.

Available via

EcuM.h

]

The EcuM_AL_DriverlnitBswM_<x> callbacks are called by the BSW Mode Manager
during initialization. The ECU Manager module configuration tool must generate a
default implementation of the EcuM_AL_DriverInitBswM_<x> callbacks from the se-
quence of modules defined in the EcuMDriverlnitListBswM configuration container (see
ECUC_EcuM _00226). See also [SWS_EcuM _04142].

AUTSSAR

[SWS_EcuM_04114]
Upstream requirements: SRS_ModeMgm_00001, SRS_ModeMgm_00020

[EcuM_AL_DriverInitBswM_<x> is generated for every configured EcuMDriverInitList
BswM. The name of the generated functions shall be EcuM_AL_DriverInitBswM_<x>,
where <x> represents the short name of the EcuMDriverlnitListBswM container. |

8.8 Specification of the Port Interfaces

This chapter specifies the port interfaces and ports needed to access the ECU Man-
ager module over the VFB.

8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface
8.8.1.1 General Approach

The EcuM_ShutdownTarget client-server interface allows an SW-C to select a shut-
down target which will be respected during the next shutdown phase. Note that the
ECU Manager module does not offer a port interface to allow a SW-C to initiate shut-
down, however.

8.8.1.2 Service Interfaces

[SWS_EcuM_03011] Definition of ClientServerinterface EcuM_ShutdownTarget
Upstream requirements: SRS_ModeMgm_00012, SRS_ModeMgm_00023

[
Name EcuM_ShutdownTarget
Comment A SW-C can select a shutdown target using this interface
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetlLastShutdownTarget
Comment Returns the shutdown target of the previous shutdown
Relates to EcuM_GetlLastShutdownTarget
Variation -
Parameters shutdownTarget
Type EcuM_ShutdownTargetType
Direction ouT
Comment The shutdown target of the previous shutdown

\Y%

AUTSSAR

JAN
Variation —
shutdownMode
Type EcuM_ShutdownModeType
Direction ouT
Comment The sleep mode (if target is ECUM_SHUTDOWN_TARGET_SLEEP) or the
reset mechanism (if target is ECUM_SHUTDOWN_TARGET_RESET) of the
shutdown
Variation —
Possible Errors E_OK
E_NOT_OK
Operation GetShutdownCause
Comment Returns the selected shutdown cause as set by the operation SelectShutdownCause.
Relates to EcuM_GetShutdownCause
Variation -
Parameters shutdownCause
Type EcuM_ShutdownCauseType
Direction ouT
Comment The selected cause of the next shutdown
Variation -
Possible Errors E_OK
E_NOT_OK
Operation GetShutdownTarget
Comment Returns the currently selected shutdown target for the next shutdown as set by the operation
SelectShutdownTarget.
Relates to EcuM_GetShutdownTarget
Variation -
Paramelers shutdownTarget
Type EcuM_ShutdownTargetType
Direction ouT
Comment The shutdown target of the next shutdown
Variation -
shutdownMode
Type EcuM_ShutdownModeType
Direction ouT
Comment The sleep mode (if target is ECUM_SHUTDOWN_TARGET_SLEEP) or the
reset mechanism (if target is ECUM_SHUTDOWN_TARGET_RESET) of the
shutdown
Variation -
Possible Errors E OK
E_NOT_OK
Operation SelectShutdownCause
Comment -
Relates to EcuM_SelectShutdownCause
Variation -
Parameters shutdownCause
Type EcuM_ShutdownCauseType

Direction

IN

Y%

AUTSSAR

A
Comment The selected shutdown cause
Variation -
Possible Errors E OK
E_NOT_OK
Operation SelectShutdownTarget
Comment The SW-C selects the cause corresponding to the next shutdown target
Relates to EcuM_SelectShutdownTarget
Variation -
Parameters shutdownTarget
Type EcuM_ShutdownTargetType
Direction IN
Comment The selected shutdown cause
Variation —
shutdownMode
Type EcuM_ShutdownModeType
Direction IN
Comment The identfier of a sleep mode (if shutdownTarget is ECUM_SHUTDOWN_
TARGET_SLEEP) or a reset mechanism (if shutdownTarget is ECUM_
SHUTDOWN_TARGET_RESET) as defined by configuration.
Variation —
Possible Errors E_OK
E_NOT_OK

]

[SWS_EcuM_02979]
Upstream requirements: SRS_ModeMgm_00012, SRS_ModeMgm_00023

[The shutdownMode parameter shall determine the specific sleep or reset mode
(see ECUC_EcuM_00132) relevant to SelectShutdownTarget, GetShutdownTarget and

GetLastShutdownTarget. The

nored. |

ECU Manager module shall only use the shutdown
Mode parameter is if the shutdownTarget parameter is equal to ECUM_SHUTDOWN _
TARGET_SLEEP or ECUM_SHUTDOWN_TARGET_RESET, otherwise it shall be ig-

8.8.2 Port Interface for EcuM_BootTarget Interface

8.8.2.1

A SW-C that wants to select a boot target must require the client-server interface Ecu
M_BootTarget.

General Approach

AUTSSAR

8.8.2.2 Service Interfaces

[SWS_EcuM_03012] Definition of ClientServerinterface EcuM_BootTarget
Upstream requirements: SRS_ModeMgm_00022

Name EcuM_BootTarget
Comment A SW-C that wants to select a boot target must use the client-server interface EcuM_Boot
Target.
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetBootTarget
Comment Returns the current boot target
Relates to EcuM_GetBootTarget
Variation -
Parameters target
Type EcuM_BootTargetType
Direction ouT
Comment The currently selected boot target
Variation -
Possible Errors E_OK
Operation SelectBootTarget
Comment Selects a boot target
Relates to EcuM_SelectBootTarget
Variation -
Parameters target
Type EcuM_BootTargetType
Direction IN
Comment The selected boot target
Variation -
Possible Errors E _OK
E_NOT_OK

8.8.3 Port Interface for EcuM_AlarmClock Interface

8.8.3.1 General Approach

A SW-C that wants to use an alarm clock must require the client-server interface Ecu
M_AlarmClock. The EcuM_AlarmClock interface uses port-defined argument values
to identify the user that manages its alarm clock. See [SWS_Rte_1350] in the Specifi-

cation of RTE [2] for a description of port-defined argument values.

AUTSSAR

8.8.3.2 Service Interfaces

[SWS_EcuM_04105] Definition of ClientServerinterface EcuM_AlarmClock
Upstream requirements: SRS_ModeMgm_00016, SRS_ModeMgm_00014

Name EcuM_AlarmClock

Comment A SW-C that wants to use an alarm clock must use the client-server interface EcuM_Alarm
Clock.

IsService true

Variation {ecuc(EcuM/EcuMFlexGeneral/EcuMAlarmClockPresent)} == True

Possible Errors

0 E_OK Operation successful

1 E_NOT_OK Operation failed

3 ECUM_E_EARLIER_ An earlier alarm is already set
ACTIVE

4 ECUM_E_PAST The desired point in time has already passed
ECUM_E_NOT_ACTIVE No active alarm found

Operation AbortWakeupAlarm

Comment Aborts the wakeup alarm previously set by this user
Relates to EcuM_AbortWakeupAlarm

Variation

Possible Errors

E_OK
E_NOT_OK

ECUM_E_NOT_ACTIVE

Operation SetAbsWakeupAlarm
Comment Sets the user’s wakeup alarm to an absolute point in time
Relates to EcuM_SetAbsWakeupAlarm
Variation -
Parameters time
Type EcuM_TimeType
Direction IN
Comment Absolute time in seconds. Note that, absolute alarms use knowledge of the
current time
Variation -
Possible Errors E _OK
E_NOT_OK
ECUM_E_EARLIER_ACTIVE
ECUM_E_PAST
Operation SetClock
Comment Sets the EcuM clock time to the provided value
Relates to EcuM_SetClock
Variation -
Parameters time
Type EcuM_TimeType
Direction IN
Comment Absolute time in seconds since battery connect
Variation -

\Y

AUTSSAR

A
Possible Errors E_OK
E_NOT_OK
Operation SetRelWakeupAlarm
Comment Sets a user’s wakeup alarm relative to the current point in time
Relates to EcuM_SetRelWakeupAlarm
Variation -
Parameters time
Type EcuM_TimeType
Direction IN
Comment Relative time from now in seconds
Variation -
Possible Errors E_OK
E_NOT_OK
ECUM_E_EARLIER_ACTIVE

8.8.4 Port Interface for EcuM_Time Interface
8.8.4.1 General Approach

A SW-C that wants to use the time functionality of the EucM must require the client-
server interface EcuM_Time.

8.8.4.2 Data Types

The EcuM_Time service does not have any specific data types.

8.8.4.3 Service Interfaces

[SWS_EcuM_04109] Definition of ClientServerinterface EcuM_Time
Upstream requirements: SRS_ModeMgm_00015, SRS_ModeMgm_00017

[
Name EcuM_Time
Comment -
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed

AUTSSAR

Operation GetCurrentTime
Comment Returns the current value of the EcuM clock (i.e. the time in seconds since battery connect)
Relates to EcuM_GetCurrentTime
Variation -
Parameters time
Type EcuM_TimeType
Direction ouT
Comment Absolute time in seconds since battery connect
Variation -
Possible Errors E_OK
E_NOT_OK
Operation GetWakeupTime
Comment Returns the current value of the master alarm clock (the minimum absolute time of all user
alarm clocks)
Relates to EcuM_GetWakeupTime
Variation -
Parameters time
Type EcuM_TimeType
Direction ouT
Comment Absolute time in seconds for next wakeup. OxFFFFFFFF means no active
alarm.
Variation -
Possible Errors E_OK
E_NOT_OK

8.8.5 Port Interface for EcuM_StateRequest Interface

[SWS_EcuM_04130]
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009

[The ECU State Manager module shall provide System Services for the following func-
tionalities when the container EcuMModeHandling (see 10.2.1) is available:

* requesting RUN

releasing RUN
requesting POST_RUN
releasing POST_RUN

AUTSSAR

8.8.5.1 General Approach

A SW-C which needs to keep the ECU alive or needs to execute any operations before
the ECU is shut down shall require the client-server interface EcuM_StateRequest.
This interface uses port-defined argument values to identify the user that requests
modes. See [SWS_Rte 1350] for a description of port-defined argument values.

8.8.5.2 Data Types

No data types are needed for this interface.

8.8.5.3 Service Interfaces

[SWS_EcuM_04131] Definition of ClientServerinterface EcuM_StateRequest
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009, SRS_ModeMgm_-

00011
[
Name EcuM_StateRequest
Comment Interface to request a specific ECU state
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation ReleasePOSTRUN
Comment -
Relates to EcuM_ReleasePOST_RUN
Variation -
Possible Errors E_OK
E_NOT_OK
Operation ReleaseRUN
Comment -
Relates to EcuM_ReleaseRUN
Variation -
Possible Errors E_OK
E_NOT_OK
Operation RequestPOSTRUN
Comment -
Relates to EcuM_RequestPOST_RUN
Variation -
Possible Errors E_OK
E_NOT_OK

AUTSSAR

Operation RequestRUN
Comment -
Relates to EcuM_RequestRUN
Variation -
Possible Errors E OK

E_NOT_OK

8.8.6 Port Interface for EcuM_CurrentMode Interface

8.8.6.1 General Approach

[SWS_EcuM_04132]

Upstream requirements: SRS_ModeMgm_00008, SRS_ModeMgm_00010, SRS_ModeMgm_-
00009, SRS _ModeMgm_00011

[The mode port of the ECU State Manager module shall declare the following modes:
« STARTUP
* RUN

POST_RUN

SLEEP

SHUTDOWN

]

This definition is a simplified view of ECU Modes that applications do need to know. It
does not restrict or limit in any way how application modes could be defined. Applica-
tions modes are completely handled by the application itself.

[SWS_EcuM_04133]
Upstream requirements: SRS_ModeMgm_00021

[Mode changes shall be notified to SW-Cs through the RTE mode ports when the
mode change occurs.

This specification assumes that the port name is currentMode and that the direct API
of RTE will be used. Under these conditions mode changes signaled by invoking

Rte_StatusType Rte_Switch_currentMode_currentMode(
Rte_ModeType EcuM_Mode mode)

where mode is the new mode to be notified. The value range is specified by the previ-
ous requirement. The return value shall be ignored.

AUTSSAR

A SW-C which wants to be notified of mode changes should require the mode switch
interface EcuM_CurrentMode. |

8.8.6.2 Data Types

The mode declaration group EcuM_Mode represents the modes of the ECU State
Manager module that will be notified to the SW-Cs.

ModeDeclarationGroup EcuM_Mode {

{ STARTUP, RUN, POST_RUN, SLEEP, SHUTDOWN }
initialMode = STARTUP

b

[SWS_EcuM_04107] Definition of ModeDeclarationGroup EcuM_Mode

Upstream requirements: SRS_ModeMgm_00008, SRS_ModeMgm_00010, SRS_ModeMgm_-
00009, SRS_ModeMgm_00011, SRS_BSW_00307

[
Name EcuM_Mode
Kind ModeDeclarationGroup
Category ALPHABETIC_ORDER
Initial mode STARTUP
On transition value -
Modes POST_RUN -
RUN —
SHUTDOWN -
SLEEP —
STARTUP -
Description -
]

8.8.6.3 Service Interfaces

[SWS_EcuM_04108] Definition of ModeSwitchinterface EcuM_CurrentMode

Upstream requirements: SRS_ModeMgm_00008, SRS_ModeMgm_00010, SRS_ModeMgm_-
00009, SRS_ModeMgm_00011

[
Name EcuM_CurrentMode
Comment Interface to read the current ECU mode
IsService true
Variation -

Y%

AUTSSAR

‘ ModeGroup currentMode EcuM_Mode

]

8.8.7 Definition of the ECU Manager Service

This section provides guidance on the definition of the ECU Manager module Service.
Note that these definitions can only be completed during ECU configuration (since
certain ECU Manager module configuration parameters determine the number of ports
provided by the ECU Manager module service). Also note a SW-C’s implementation
does not depend on these definitions.

In an AUTOSAR system, there are ports both above and below the RTE. The ECU
Manager module service description defines ports provided to the RTE and the de-
scriptions of every SW-C that uses this service must contain "service ports" which
required these ECU Manager module ports from the RTE.

The EcuM provides the following ports:

[SWS_EcuM_04111] Definition of Port ShutdownTarget_{UserName} provided by
module EcuM

Upstream requirements: SRS_ModeMgm_00012, SRS_ModeMgm_00023

Name ShutdownTarget_{UserName}

Kind ProvidedPort ‘ Interface ‘ EcuM_ShutdownTarget

Description Provides an interface to SW-Cs to select a new shutdown target and query the current shutdown
target.

Variation UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUserConfig/Ecu
MFlexUser.SHORT-NAME)}

[SWS_EcuM_04110] Definition of Port BootTarget_{UserName} provided by mod-
ule EcuM

Upstream requirements: SRS_ModeMgm_00022

[
Name BootTarget_{UserName}
Kind ProvidedPort | Interface EcuM_BootTarget
Description Provides an interface to SW-Cs to select a new boot target and query the current boot target.
Variation UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUserConfig/Ecu
MFlexUser.SHORT-NAME)}

AUTSSAR

[SWS_EcuM_03017] Definition of Port AlarmClock_{UserName} provided by
module EcuM

Upstream requirements: SRS_ModeMgm_00016

Name AlarmClock_{UserName}

Kind ProvidedPort | Interface EcuM_AlarmClock

Description Provides to SW-Cs an alarm clock. The EcuM_AlarmClock port uses port-defined argument values
to identify the user that manages its alarm clock.

Port Defined Type EcuM_UserType

Argument Value(s) Value {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUser

Config/EcuMFlexUser.value)}

Variation {ecuc(EcuM/EcuMFlexGeneral/EcuMAlarmClockPresent)} == true
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMAlarm
Clock.SHORT-NAME)}

]

[SWS_EcuM_04113] Definition of Port time provided by module EcuM
Upstream requirements: SRS_ModeMgm_00015

Name time

Kind ProvidedPort Interface EcuM_Time
Description Provides the EcuM’s time service to SWCs

Variation -

]

[SWS_EcuM_04135] Definition of Port StateRequest_{UserName} provided by
module EcuM
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009, SRS_ModeMgm_-

00011

Name StateRequest_{UserName}

Kind ProvidedPort | Interface EcuM_StateRequest

Description Provides an interface to SW-Cs to request state changes of the ECU state. The port uses
port-defined argument values to identify the user.

Port Defined Type EcuM_UserType

AT V) Value {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUser

Config/EcuMFlexUser.value)}

Variation UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUserConfig/Ecu

MFlexUser.SHORT-NAME)}

AUTSSAR

[SWS_EcuM_04112] Definition of Port currentMode provided by module EcuM
Upstream requirements: SRS_ModeMgm_00010, SRS_ModeMgm_00009, SRS_ModeMgm_-

00011
Name currentMode
Kind ProvidedPort Interface EcuM_CurrentMode
Description -
Variation -

The EcuM provides the following types:

[SWS_EcuM_91004] Definition of ImplementationDataType EcuM_UserType

Upstream requirements: SRS_BSW_00307, SRS ModeMgm_00010, SRS ModeMgm_00009,
SRS_ModeMgm_00011

[
Name EcuM_UserType
Kind Type
Derived from uint8
Description Unique value for each user.
Variation -
Available via Rte_EcuM_Type.h
]

[SWS_EcuM_04102] Definition of ImplementationDataType EcuM_TimeType
Upstream requirements: SRS_BSW_00307, SRS_ModeMgm_00015, SRS_ModeMgm_00016

[
Name EcuM_TimeType
Kind Type
Derived from uint32
Description This data type represents the time of the ECU Manager module.
Variation -
Available via Rte_EcuM_Type.h

AUTSSAR

[SWS_EcuM_91008] Definition of ImplementationDataType EcuM_BootTarget

Type

Upstream requirements: SRS_BSW_00307, SRS_ModeMgm_00022

Name EcuM_BootTargetType

Kind Type

Derived from uint8

Range ECUM_BOOT_TARGET_ The ECU will boot into the
APP application
ECUM_BOOT_TARGET_ The ECU will boot into the OEM
OEM_BOOTLOADER bootloader
ECUM_BOOT_TARGET _ The ECU will boot into the system
SYS_BOOTLOADER supplier bootloader

Description This type represents the boot targets the ECU Manager module can be configured with. The
default boot target is ECUM_BOOT_TARGET_OEM_BOOTLOADER.

Variation -

Available via Rte_EcuM_Type.h

]

[SWS_EcuM_04045]

CauseType

Upstream requirements: SRS_BSW_00307, SRS_ModeMgm_00023

Definition of ImplementationDataType EcuM_Shutdown

Name EcuM_ShutdownCauseType
Kind Type
Derived from uint8
Range ECUM_CAUSE_ No cause was set.
UNKNOWN
ECUM_CAUSE_ECU_ ECU state machine entered a
STATE state for shutdown
ECUM_CAUSE_WDGM Watchdog Manager detected a
failure
ECUM_CAUSE_DCM Diagnostic Communication
Manager requests a shutdown
due to a service request
Description This type describes the cause for a shutdown by the ECU State Manager. It can be extended by
configuration.
Variation -
Available via Rte_EcuM_Type.h

AUTSSAR

[SWS_EcuM_04101] Definition of ImplementationDataType EcuM_Shutdown
ModeType

Upstream requirements: SRS_BSW_00307, SRS_ModeMgm_00012, SRS_ModeMgm_00023

Name EcuM_ShutdownModeType
Kind Type
Derived from uint16
Range {ecuc(EcuM/Ecu {256 + ecuc(EcuM/Ecu Configured Reset Modes
MConfiguration/EcuMFlex MConfiguration/EcuMFlex
Configuration/EcuMReset Configuration/EcuMReset
Mode.SHORT-NAME)} Mode.EcuMResetModeld)}
{ecuc(EcuM/Ecu {ecuc(EcuM/ Ecu Configured Sleep Modes
MConfiguration/Ecu MConfiguration/Ecu
MCommonConfiguration/ MCommonConfiguration/
EcuMSleep EcuMSleepMode.Ecu
Mode.SHORT-NAME)} MSleepModeld)}
Description This data type represents the modes of the ECU Manager module.
Variation -
Available via Rte_EcuM_Type.h

[SWS_EcuM_04136] Definition of ImplementationDataType EcuM_ShutdownTar-
getType
Upstream requirements: SRS_BSW_00307, SRS_ModeMgm_00012, SRS_ModeMgm_00023

Name EcuM_ShutdownTargetType

Kind Type

Derived from uint8

Range ECUM_SHUTDOWN_ 0x0 -
TARGET_SLEEP
ECUM_SHUTDOWN _ 0x1 -
TARGET_RESET
ECUM_SHUTDOWN _ 0x2 -
TARGET_OFF

Description -

Variation -

Available via Rte_EcuM_Type.h

]

[SWS_EcuM_04094]
Upstream requirements: SRS_BSW_00459

[In the case of a MultiCore ECU, the EcuM AUTOSAR service (Standardized
AUTOSAR Interfaces) may be offered on one or more cores. |

Although the EcuM service interfaces are available on every core (see section 7.9 Multi
Core for details), the EcuC allows the provided ports to be bound to the interface on
a particular partition, and therefore to a particular core (see the Specification of ECU
Configuration [5]) and only that port will be visible to the VFB. In the case of Multi-Core,

AUTSSAR

this should be bound to the master core. SW-Cs and CDDs on the ECU that need to
access EcuM Services can access the master core via the 10C as generated by the
RTE.

[SWS_EcuM_04095]
Upstream requirements: SRS_BSW_00459

[In the case of a MultiCore ECU, the EcuM C-API Interfaces (Standardized Interfaces)
which are used by other BSW modules shall be offered in every partition a EcuM runs

in. |

The C-API interfaces which are used by other BSW module to communicate with the
EcuM are offered by every EcuM instance because every EcuM instance can do some
independent actions. If BSW modules want to use the EcuM but are inside partitions
that contain no own EcuM instance. These modules can use the SchM functions to
cross partition boundaries.

AUTSSAR

9 Sequence Charts

9.1 State Sequences

Sequence charts showing the behavior of the ECU Manager module in various states
are contained in the flow of the specification text. The following list shows all sequence
charts presented in this specification.

 Figure 7.3 - STARTUP Phase

» Figure 7.4 - StartPreOS Sequence

* Figure 7.5 - StartPostOS Sequence

* Figure 7.7 - SHUTDOWN Phase

* Figure 7.8 - OffPreOS Sequence

* Figure 7.9 - OffPostOS Sequence

» Figure 7.10 - SLEEP Phase

» Figure 7.11 - GoSleep Sequence

» Figure 7.12 - Halt Sequence

* Figure 7.13 - Poll Sequence

» Figure 7.14 - WakeupRestart Sequence
» Figure 7.16 - The WakeupValidation Sequence

9.2 Wakeup Sequences

The Wake-up Sequences show how a number of modules cooperate to put the ECU
into a sleep state to be able to wake up and startup the ECU when a wake up event
has occurred.

9.2.1 GPT Wakeup Sequences

The General Purpose Timer (GPT) is one of the possible wake up sources. Usually
the GPT is started before the ECU is put to sleep and the hardware timer causes an
interrupt when it expires. The interrupt wakes the microcontroller, and executes the
interrupt handler in the GPT module. It informs the ECU State Manager module that a
GPT wake up has occurred. In order to distinguish different GPT channels that caused
the wake up, the integrator can assign a different wake up source identifier to each
GPT channel. Figure 9.1 shows the corresponding sequence of calls.

AUTSSAR

«module» Integration Code «module» «module» «module» «Peripheral»
EcuM Os Mcu Gpt GPT Hardware
T T T T T
I I		
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)		
1 1		
Gpt_EnableWakeup(Gpt_ChannelType) - :		

Gpt_StartTimer(Gpt_ChannelType, GpLVaiueType)

N
|
]
]
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
]
:
]
1
Y
=

- ————

EcuM_CheckWakup(EcuM_WakeupSourceType)

Ecu MfcheckWakeupHook(ECl;J M_WakeupSourceType) |

Gpt_CheckWakeup(EcuM_WakeupSourc

I
|
|
|
I
€

Type)

T
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Wakeup

I
< -—-—-———-——-—-—--- [
I I
ity 1 1 1
GelResource(RES?AUTOSAR?ECUM7<core#>) : : :
I
- — — — e _____ If the Scheduler will not be acquired as resource it is not assured that the program flow continues
: after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.
SLEEP | |
I I I I I
I I I I I
I I I I I
DisableAllInterrupts() o ! | | |
T bl I I I
S———————————- (it | | l
:Mcu_SetMode(Mcu_ModeType) g : : :
g} l l
I I
I I
I I
I I
L

interrupt()

Retumn from
“interrupt()” T T T T T >

]-————

S S il
G g

EcuM_DisableWakeupSources(Ecu MfWak:eu pSourceType)
> Gpt_|

. —
8
=2
[}
=
1)
3
c
h=3
[0
=
)
o
5
®
5
El
2
=
<
O -
o

EcuM_DisableWakeupSources()
< 1

ReleaseResource(F{ES_AIUTOSAR_ECUM_<co re#>)

»
L

ReleaseResource () Release Scheduler resource to allow other tasks to run.

K ——————— — = — = I—————————————

If the GPT hardware is capable of latching timer overruns, it is also possible to poll the

Figure 9.1: GPT wake up by interrupt

GPT for wake ups as shown in Figure 9.2 .

g

AUTSSAR

«module» Integration Code «module» «module» «module»
EcuM Os Mcu Gpt
T T T T
GOSLEEP | | | I
| | | |
| | | |
T '
Ecul:/LEnabIeWakeupSources(EcuMﬁWakeupSourceType) : : :
Gpt_EnableWakeup(Gpt_ChannelType) - |
t t L
_____________ N
- . . 1]
Gpt_StartTimer(Gpt_ChannelType, Gpt_ValueType) g
| |
< _____________ | i
Gpt_SetMode(Gpt_ModeType) : - |
Lg
|
P— —— — 1
——————————— I I
L | |
GetResource(RES_AUTOSAR_ECUM_<core#>) - : :
| g Acquire the Scheduler to prevent other tasks
< ———mmm—— L from running.

! -
t L
I | Mcu_SetMode() puts the microcontroller in
_______________________________ mEeTr ey

mode. In this mode
software execution continues, but with
reduced clock speed.

loop WHILE no pending/validated events/

EcuM_SleepActivity() :

< ________
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)

GptﬁChec'kWakeup(EcquWakeupSource'I"ype)

I
opt Wakeup detecled/ ; ;
T o EcuM_SetWakeupEvent(EcuM_WakeupSourceType) I
[I I
D — 1 E— —
| |
T T
I I
I I
<---—-——-——-—-—-—-—-- F————————— === ===
I I L]
iy [[[
nn I I I
1 1 1 1
I I I I
I I I I
WAKEUP | | | | |
I I I I
| I I I
DisableAllInterupts() - ! | |
T hal I I
< — —— A I I
I I I
IMcu_SetMode(Mcu_ModeType) | o ! |
T T Lt I
< T 1] |
EnableAllinterrupts() o ! |
T Lt I I
| I I
oo B e I I
| | |
EcuM_DisableWakeupSources(EcuM_WakeupSourceType) 1 1 1
L Gpt_DisableWakeup(Gpt_ChannelType) - !
T T L
_____________ N
< h 1
Gpt_SetMode(Gpt_ModeType) | -
I I b
< -——-——-—-—-—————--- Fem—————————— B ~|_|
(S-————==—==—== I I
| | |
ReleaseResource(RES_AUTOSAR_ECUM_<core#>) | | :
t >
| |
<---—-——-——-—-—--- i ettt Release Scheduler resource to allow other 1
- tasks to run. |
|
|

Figure 9.2: GPT wake up by polling

AUTSSAR

9.2.2 ICU Wakeup Sequences

The Input Capture Unit (ICU) is another wake up source. In contrast to GPT, the ICU
driver is not itself the wake up source. It is just the module that processes the wake up
interrupt. Therefore, only the driver of the wake up source can tell if it was responsible
for that wake up. This makes it necessary for EcuM_CheckWakeupHook to ask the
module that is the actual wake up source. In order to know which module to ask, the
ICU has to pass the identifier of the wake up source t0 EcuM_CheckWakeup. For
shared interrupts the integration code may have to check multiple wake up sources
within EcuM_CheckWakeupHook. To this end, the ICU has to pass the identifiers of
all wake up sources that may have caused this interrupt to EcuM_CheckWakeup. Note
that, EcuM_WakeupSourceType (see 8.2.3 EcuM_WakeupSourceType) contains one
bit for each wake up source, so that multiple wake up sources can be passed in one call.
Figure 9.3 shows the resulting sequence of calls. Since the ICU is only responsible for
processing the wake up interrupt, polling the ICU is not sensible. For polling the wake
up sources have to be checked directly as shown in Figure 38.

AUTSSAR

«module» Integration Code «module» «module» «module» «module» «Peripheral»
EcuM Os Mcu Wakeup Source lcu ICU Hardware
(o o)
T T T T
| | |
GOSLEEP | | |
| | |
| | |
EcquEnablPiWakeupSources(EcquWzI\keupSourceType) : :
> |)
T L
|

|
e :
|
|

GetResource(RES_AUTOSAR_ECUM_<core#>)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

5
g
m
>
1=
=2
z
O
__a;_______
c
b=3
53
2
Q
3
o
b=}
E}
o
S
<
el
o

HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after

EcuM_CheckWakup(EcuM_WakeupSourceType)

"

T
|
I
|
|
|
|
|
|
I
|
|
|
|
|
I |
I I
| |
u

Wakeup
interrupt()

t t
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)

activate PLL()

<Module>_CheckWakeup(EcuM_WakeupSource Type)

1 1
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

o

Return from

______ :___________>
<--——-—-——--- T———————--- I B
< ----———— | I
. I I I
___________ :___________:'_________':____________:___________> interrupt()
| | | |
I I I
| | |
1 1 | | Execution continues after HALT instruction. Iﬁ
| Mcu_SetMode ! !
o 1 _ Mou_setMode(_ _

EnableAllinterrupts()

CWAKE

-

DisableAllInterrupts()

EcuM_Disable’

ReleaseResource(RE SiAlIJTOSAFLECUM7<core#>)

NN

I
|
|
I
I
|
|
I
|
- |
T Lt I
| I
<——m—-—— - (i I
! |
Mcu_SetMode(Mcu_ModeType) > |
| | |
<---—-——-—--- - A== ~|_| 1
I I I
1 I I I
EnableAlllnterrupts() > | |
I | |
<o (i ‘LJ I I
keupSources(EcuM_WakeupSourceType) | |
ol I I I

= | Icu_DisableWakeup(lcu_ChannelType) | -

]]]]

ke — e R A e e

I
(<-———————- I
|
|
1

s

Release Scheduler resource to allow other tasks to run.

Figure 9.3: ICU wake up by interrupt

Y N R N N)

AUTSSAR

9.2.3 CAN Wakeup Sequences

On CAN a wake up can be detected by the transceiver or the communication con-
troller using either an interrupt or polling. Wake up source identifiers should be shared
between transceiver and controller as the ECU State Manager module only needs to
know the network that has woken up and passes that on to the Communication Man-
ager module.

In interrupt case or in shared interrupt case it is not clear which specific wake up
source (CAN controller, CAN transceiver, LIN controller etc.) detected the wake
up. Therefore the integrator has to assign the derived wakeupSource of EcuM_
CheckWakeup(wakeupSource), which could stand for a shared interrupt or just for
an interrupt channel, to specific wake up sources which are passed to Canlf_Check
Wakeup(WakeupSource). So here the parameters wakeupSource from EcuM_Check
Wakeup() could be different to WakeupSource of Canlf_CheckWakeup or they could
equal. It depends on the hardware topology and the implementation in the integrator
code of EcuM_CheckWakeupHook.

During Canlf_CheckWakeup(WakeupSource) the CAN Interface module (Canlf) will
check if any device (CAN communication controller or transceiver) is configured with
the value of "WakeupSource". If this is the case, the device is checked for wake up via
the corresponding device driver module. If the device detected a wake up, the device
driver informs EcuM via EcuM_SetWakeupEvent(sources). The parameter "sources"
is set to the configured value at the device. Thus it is set to the value Canlf_Check
Wakeup() was called with.

Multiple devices might be configured with the same wake up source value. But if de-
vices are connected to different bus medium and they are wake-able, it makes sense
to configure them with different wake up sources.

The following CAN Wake-up Sequences are partly optional, because there is no spec-
ification for the "Integration Code". Thus it is implementation specific if e.g. during Ecu
M_CheckWakeup() the Canlf is called to check the wake up source.

AUTSSAR

«module» Integration «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Code Os Mcu lcu Canlf Can CanTrev CanController || ETH Hardware
O SO SO (PHY)

T
|
|
|
I |

EcquEnIabIeWakeupSSJrlces(EcuMfWakeulpSOUrceType) : CanSM will have called Canlf_SetControlleriMode and Canlf_SetTransceiverMode when going to sleep.

L Canlf_SetTrcvWakeupMode(uint8, | pL CanTrov_SetWakeupMode(uints,| | |
CanTrov_TrcviWakeupModeType) szTrcviTrcvW'akJeupModeType)1
| ~ | el

|
|
|
|
| |
Icu_EnableWakeup(lcu_Channel Type) | | | |
t t Lag | | | |
______ S (S | | | |
e < 1 1 1 1 1 1
| | | | | |
| | | | | | |
GetResource (uint8) | L L L L L L
< ——— If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
HALT instruction because re-scheduling takes place after occurmrence of an ISR Cat 2.

& |

|
DisableAllinterrupts()

<—————- TR V-I J

Mcu_SetMode(Mcu_ModeType)

SE B4

T T T
| | |
I I I
| | |
I I I
I I I
I I I
| | |
- I I I
T T L | I I I
. | | | | |
| | | HALT | | |
| | | | IWakeup interrupt() |
| | | T T T T
I I I I I I I I
: EcuMTCheckWakup(EculMfWakeupSourcleType) : : : :
EcuM_CheckWakeupHook(EcuM_WakeupSource Type) | | 1 1
I | I I I I
| | | | | |
L I I I I I
activate \ \ \ \ \
PLLO1 | | | 1 1
| | | | | |
CanILCheckIWakeup(EcquV\IIaleupSourceType : StdeetumTy;IJe : : :
: : CanTrev_CheckWakeup(uint8): Std_ReturnType :
. EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | |
d t t t I
I_J_ _____ I e e L I A | e I
| N N N (N 5= P P |
e - ———— e] I < I I
______ | | | |
< | | T | | |
——————— ikttt Rl [Retum from interrupt() 1
L I I [N e === e t————== >
| | | | | |
| |Mcu_SetMode() | |
IR T = fon conti insvuct
Execution continues after HALT instruction.
EnableAllInterrupts() |
T

|
CWAKEUP |) :
1
1

DisableAllInterrupts()
T

< ———— ————— '—Ll
I

Mcu_SetMode |
™M cufl\ﬂodeType)

e ————— e it

EnableAllInterrupts()
t

> 1
<—-———- |==—==== -|_| |
I I

| | |
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)
LB Icu_DisableWakeup(lcu_ChannelType)
t t

»

Canlf_SetTrevWakeupMode (uints,
I CanTrcv_TrcvWakeupModeType)

I
i
i i I i >
I I I <----- T ‘LI
R <

ReleaseResource(uint8)

< ______

WAKEUP
VALIDATION

CanTrcv_SetWakeupMode(uint8, CanTrev_TrcvWakeupModeType)
|

.__i

|

| |

| |
t Lag | |
: —————— ‘| Release Scheduler resource to allow other tasks to run. : :
I I |
I I I

Figure 9.4: CAN transceiver wake up by interrupt

AUTSSAR

Figure 9.4 shows the CAN transceiver wakeup via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2.

A CAN controller wakeup by interrupt works similar to the GPT wakeup. Here the
interrupt handler and the CheckWakeup functionality are both encapsulated in the CAN
Driver module, as shown in Figure 9.5 .

«module» Integration «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Code Os Mcu lcu Canlf Can CanTrev CanController ETH Hardware
(PHY)

| |
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)
»
I

I
: CanSM will have called Canlf_SetControllerMode and Canlf SetTransceiverMode when going to sleep.
|

]

- ——————{

P
& ————
GetResource(uint8)
T P
< _____ 1T “
|
SLEEP | T
I I
| |
| |
DisableAlllnterrupts) |
X L
<-—————-—----
Mcu_SetMode

EcuM_CheckWakup(Ecu

™M qu\fI odeType) | []
| |
I
I
|
|
1

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after

HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

1
M_WakeupSourceType)

<
&
Cl

M

I
Activate PLL() |
|

E uMfCheckWa;keupHook(EcuMf\;NakeupSourceTy;?e)

I I I
Canlf_CheckWakeup(Std_ReturnType, EcuM_WakeupSourceType)
I I I

| I
(EcuM_WakeupSourceType)

Can_CheckWake!

|
EcuM_SetWakeupEvent
I

-
|
k= ————— 4
< ———— !
|
. T ———— 4 ————
L | |
I | |
| | |
| | |
| | Mcu_SetMode()!
S P Selocel
EnableAllinterrupts) !
: »
<—-—-—-—- q-—-——--
|
| |
WAKEUP | 1 1
| |
| |
DisableAlilnterrupts) |
>

<_____

ReleaseResource(uint8)

WAKEUP
VALIDATION

Figure 9.5: CAN controller wake up by interrupt

| I
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Wakeup |

interrupt()
|

up(Std_ReturnT yFe, uint8)

I

I

|

e R F-———— Fr——— =3 I

I N I

S [G —— < !

| | |

| | T |

______________________ '
:_ _: :_ > Retum frorﬂ

| —interrupt() |

| |

1 Execution continues after HALT instruction. 1

I I

- -[‘IJ | | | |

| | | |

I I I I I

I I I I I

| | | | |

| | | | |

I I I I I

I I I I I

| | | | |

| | | | |

I I I I I

I I I I I

| | | | |

| | | | |

I I I I I

I I I I I

L | | | |

| | | |

I I I I

I I I I

| | | |

| | | | |

I I I I

I I I I

|

Release Scheduler resource to allow other tasks to run. Ij :

I

|

|

I

I

|

|
|
v

e e — 1

PP %

AUTSSAR

Wake up by polling is possible both for CAN transceiver and controller. The ECU State
Manager module will regularly check the CAN Interface module, which in turn asks
either the CAN Driver module or the CAN Transceiver Driver module depending on the
wake up source parameter passed to the CAN Interface module, as shown in Figure
9.6.

AUTSSAR

«module» Integration Cod¢ «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Os Mcu lcu Canlf Can CanTrev CanController || ETH Hardware
oSO SO SO (PHY)

bl 1
< _____ -IJ
CanSM will have called Canlf_SetControllerMode and Canlf_SetTransceiverMode when going to sleep.
GetResource(uint8) -
t L | | | |
< 1T -I_I
Acquire the Scheduler to prevent other tasks from running.

< I >
[I LJ

1
Mcu_SetMode

. | Mcu_SetMode() puts the microcontroller in
ez (Mcu_ModeType) [some power saving mode. In this mode
N r software execution continues, but with
EnableAllinterrupts() !

reduced clock speed.

loop WHILE no pending/validated events/
EcuM_SleepActivity() :
I

|
T '
EcuMfCheckWalfeupHook(EcquVYakeupSourceType

Canlf_CheckWakeup(EcuM_WakeupSourceType):
Stdeeilu mType : :]
|
I
|
|

I
| .
| |
I I
I I
I I
! I
) |

alt WakeupSource parameter of CanlfﬁCheckWakeup()/ |
T I
| |
| |
opt Wakeup Detected / | | |
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
t t t

I_F —————— - d—————— H—————— e ———— e

|
Can_CheckWakeup(Std_ReturnType, uint8)

[C rf Controller]

I I I
| | |
1 1 1 L |
B B -1 L [R b Tommmmm s d--mmm -
[CAN Transceiver] |
I

o

pt Wakeup Detected '
/ EcuM_SetWakeupEvent(EcuM_WakeupSourceType

-
T
|
I

CWAKEUPD

|
DisableAllInterrupts()
I

McufS:elMode
(Mcuj\lllodeType)

| |
e ———— — [e —gdpibp Y
|

1
EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

————— e e

ReleaseResource(uint8)

|
WAKEUP | |
VALIDATION : :

Release Scheduler resource to allow other tasks to run.

L
T
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 9.6: CAN controller or transceiver wake up by polling

After the detection of a wake up event from the CAN transceiver or controller by either
interrupt or polling, the wake up event can be validated (see [SWS_EcuM_02566]).

AUTSSAR

This is done by switching on the corresponding CAN transceiver and controller in
EcuM_StartWakeupSources (see [SWS_EcuM_02924]). It depends on the used
CAN transceivers and controllers, which function calls in Integrator Code EcuM_ Start
WakeupSource are necessary. In Figure 9.7 e.g. the needed function calls to start and
stop the wake up sources from CAN state manager module are mentioned.

Note that, although controller and transceiver are switched on, no CAN message will
be forwarded by the CAN interface module (Canlf) to any upper layer module.

Only when the corresponding PDU channel modes of the Canlf are set to "Online", it
will forward CAN messages.

The Canlf recognizes the successful reception of at least one message and
records it as a successful validation. During validation the ECU State Manager
module regularly checks the Canlf in Integrator Code EcuM_CheckValidation (see
[SWS_EcuM_02925]).

The ECU State Manager module will, after successful validation, continue the normal
startup of the CAN network via the Communication Manager module.

Otherwise, it will shutdown the CAN controller and transceiver in EcuM_StopWakeup
Sources (see [SWS_EcuM_02926]) and go back to sleep.

The resulting sequence is shown in Figure 9.7 .

AUTSSAR

alt Check Validation Resu

n/

«module» Integration Code «module» «module» «module» «module»
EcuM CanSM Mcu lcu Canlf
O
| I I I I I
WAKEUP | | | | |
VALIDATION | | | | |
| | | | | |
EcuM_StartWakeupSources(EcuM_WakeupSourceType) | | |
| | | |
| | | |
CanSM_StartWakeupSource (Std_ReturnType, | | |
NetworkHandleType) : : :
- ———— I I I
| | |
<----- I I I I
| | | |
| | | | |
Start validation | | | |
F timeout() | | | |
L | | | | |
| | | | |
[[[[[
loop Validate Wakeup Event/ : : : :
TT 1 | | | |
EcuM_Checkvalidation(EcuM_WakeupSourceType) | | | |
F——P A
Canlf CheckVaIldatlon(EcuM WakeupSourceType) »_:_
| |
| |
! !
| |
| |
| |

[SUCC

EcuM_

FSFUL VALIDAT]

ol
EcuM_ValidateWakeupEvent(EcuM_ Wakeu pSourceType)

timeout()

Stop validation

Detect validation
timeoutl()

GOSLEEP

b—————— +
[|
i |
| |
| |
| |
____________ [o--e-
| |
F—————— +

StopWakeupSources(EcuM_WakeupSourceType)
|

CanSM_StopWakeupSource (Std_ReturnType,
Netwo rkHandIeType)

On CAN successful validation is indicated by
a correctly received message.

Figure 9.7: CAN wake up validation

AUTSSAR

9.2.4 LIN Wakeup Sequences

Figure 9.8 shows the LIN transceiver wakeup via interrupt. The interrupt is usually

handled by the ICU Driver as described in Chapter 9.2.2 .

«module» Integration «module» «module» «module» «module» «module» «module» «Peripher...
EcuM Code Os Mcu lcu Linlf Lin LinTrev Lin Transceiver
Hardware
T T T T T T T T T
I I I I I I I I
I I I I I I I I
| | I 1 1 1 | |
| | |
EcuM_EnableWakeupSources(EcuM_WakeupSourceType) | LinSM will already have called Linlf GotoSleep when changing to NO_COM state.
L ! : : In Sleep state the LIN Controller is wakeable or not by configuration.

lcu_EnableWakeup(lcu_ChannelType) T
t t P

< _____

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

1
Mcu_SetMode(Mcu_ModeType)
I I

: : HALT
| |
|

|
EcuM_CheckWakup(EcuM_WakeupSourceType)
EcuMfCheckWa:keupHook(EcuMf\:NakeupSourceTyé)e)
I I

|
Wakeup interrupt()

-

| |
Activate PLL() |

LinIfﬁCh:eckWaleup(Ecu M;Wakeup50urce II'y{ae)

i i >

LinTrev_CheckWakeup (uint8)
| | T
| EcuM_SetWakeupEvent(EcuM_WakeupSourceType) |

[m— I I O —

R :
D 1 1 1
_______ el 1l ___ |
I I I I
T | | | -+
| | | | | LJ
| | | | | | | | |
I I I I I I
| I Mcu_SetMode() | | . § . . ! !
rE—————— === —EI:I Execution continues after HALT instruction.]]
| | | |
EnableAllinterrupts() ! ! ! ! ! ! !
+ P | | I I I I
| I I I I I I
<----- T | | | | | |
| | | | | | |
| | | | | | | |
WAKEUP | I I I I I I I I
I I I I I I I I
| | | | | | | |
DisableAlllnterrupts) ! ! ! ! ! ! !
> | I I I I I
I I I I I I I
< ——-—-—-- t-————= | | | | | |
| | | | | | |
- y | | | | | |
Mcu_SetMode(Mcu_ModeType) > | | | | |
I | I I I I I
<------ [l il I I I I I
| | | | | | |
EnableAllInterrupts() | | | | | | |
T Lt I I I I I I
______ A I I I I I I
< | | | | | | |
| | | | | | |
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)l | | | | |
! 1 1
o Icu_DisableWakeup(lcu_ChannelType) : : : : :
L
| | | | | |
&< ——— == F————— d—————— | | | |
| | | | | |
<---- | | [| | | |
I I I I I I I
y f | | | | | | |
ReleaseResource(uint8) > | | | | | |
| | |
<----- T === Release Scheduler resource to allow other tasks to run. | |
! I I I
| |

Figure 9.8: LIN transceiver wake up by interrupt

AUTSSAR

As shown in Figure 9.9 , the LIN controller wake up by interrupt works similar to the
CAN controller wake up by interrupt. In both cases the Driver module encapsulates the
interrupt handler.

«module» Integration Cod¢ «module» «module» «module» «module» «module» «module» «Peripheral»
EcuM Os Mcu lcu Linlf Lin LinTrcv LinController/UART]
O SO

EcquEr}abIeWakeupSourcses(EcquWakeupS'ourceType)
»

)

GetResource(RESfAUTIC)SAHfECUM7<coIre#>)
»
>

= |

1
DisableAllInterrupts()

LinSM will already have called Linlf_GotoSleep when changing to NO_COM state.
In Sleep state the LIN Controller is wakeable or not by configuration.

Nothing to be done in this callout.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

/:\
—

Mcu_SetMode(Mcu_ModeType)

T L

|
| HALT
|
|
1

1
EcuM_CheckWakup(EcuM_WakeupSourceType)

1 1
EcuMfCheckWak;eupHook(EcquWellkeupSourceType)' !

d |

I I I

Activate PLL() | |

| | I
Linlf_CheckWakeup(EcuM_WakeupSourceType)

' ' '
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Wakeup'interrupt()

<
¢

Lin_CheckWakeup(uint8)

< T Tt T T T T T T TT T T T T T
<————— I I I .s
- | | | |
——————— e et ik sk it
L | | | | |
I I I I | |
| | | |
Mcu_SetMode()
<------ === - ‘[:] Execution continues after HALT instruction.
EnableAllInterrupts() !
t
I
<—————— F-—————-

|

|

|

| = |
WAKEUP | | | |
| | |
| | |
| |

|

|

|

|

|

| T
Mcu_SetMode(Mcu_ModeType)
T

EcuM_Di

sableWakeupSources(EcuM_WakeupSourceType)
I

I
I |

y

ReleaseResource(RES_AUTOSAR_ECL&/I_<core#>)

Release Scheduler resource to allow other tasks to run. Il|

EcuM will later inform ComM about the wakeup which in tum will inform
LinSM, which will then call LinIf Wakeup.

N N N N N N

Figure 9.9: LIN controller wake up by interrupt

AUTSSAR

Wake up by polling is possible for LIN transceiver and controller. The ECU State Man-
ager module will regularly check the LIN Interface module, which in turn asks either the
LIN Driver module or the LIN Transceiver Driver module, as shown in Figure 9.10 .

«module» «module» Integration Code| «module» «module» «module» «module» «module» «Peripheral»
Os EcuM Mcu lcu Linlf Lin LinTrev Lin Transceiver
oo oo Hardware

GOSLEEP

T T
|
|
I
I
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

y

T T
| |
| |
I I
| I
: o { LinSM will already have called Linlf GotoSleep when changing to NO_COM state.
| e ————— ﬂ | In Sleep state the LIN Controller is wakeable or not by configuration.
| |
I
|
|
|
|
|
I
|
|

| Nothing to be done in this callout
(GetResource (uint8) 9 Y

|
E———— !
: Acquire the Scheduler to prevent other tasks from running.
| SLEEP |
I I I I
| | | |
| Mcu_SetMode(Mcu_ModeType). ™
: T Mcu_SetMode() puts the microcontroller in
< --—--- b - ing mode. In this mod
| h some power saving mode. In this mode
|

1 software execution continues, but with
reduced clock speed.

loop WHILE no pending/validated events/

| |

| | | |
EcuM_CheckWakeupHook(EcuM_ WakeupSourceType) |
|

|

Linlf CheckWakeup(EcuM WakeupSourceType)

i S

|
|
|
|
|
|
|
: alt WakeupSource parameter of LinILCheckWakeup()/f Lin ChecKWakeup(umtB)
I
|
|
|
|
|
|

|
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
T T

A
|
|
|
|
|
|

!
!
|
| 1" T B LI
|

SourceType)

Ecu MfSetWakeupEyent(EcuM7Wakeu

+o

T
v

T
I
(WAKEUP |> I
I
I

|
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)
|

<_ _____

ReleaseResource(uint8 L

- Release Scheduler resource to allow other tasks to run. Ij

L T T T
| I | |

e T e k|
.__________________________l

Figure 9.10: LIN controller or transceiver wake up by polling

Note that LIN does not require wakeup validation.

AUTSSAR

9.2.5 FlexRay Wakeup Sequences

For FlexRay a wake up is only possible via the FlexRay transceivers. There are two
transceivers for the two different channels in a FlexRay cluster. They are treated as
belonging to one network and thus, there should be only one wake up source identifier
configured for both channels. Figure 9.11 shows the FlexRay transceiver wakeup via
interrupt. The interrupt is usually handled by the ICU Driver as described in Chapter
9.2.2.

AUTSSAR

«module» Integration «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Code Os Mcu lcu Frif Fr FrTrcev FlexRay FlexRay Transceiver
OO Controller Hardware
T T T T T T T T T T
| | | | | | | | |
GOSLEEP | | | | | | | | |
I I I I I I I I I
| | | | | | | | |
EcuM_EnableWakeupSources(EcuM_WakeupSourceType) | | | | | | |
1 » L ' '
hagl Icu_EnableWakeup(lcu_ChannelType) : : : : : :
]] o I I I I I
<————- +t—-———=——- l———=== | | | | |
_____ 1 1 1 1 1 1 1
< I I I I I I I I
| | | | | | | |
GetResource(RES_AUTOSAR_ECUM_<core#>) | | | | | | |
T hal I I
<m————- l————— ‘I_I | If the Scheduler will not be acquired as resource it is not assured that the program flow continues |
: T : after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2. :
SLEEP | | | |
I I I I I I I I I
| | | | | | | | |
DisableAllInterrupts() 1 1 1 1 1 1 1 1
T Ll I I I I I I I
< — — — — = | e —— I I I I I I I
| | | | | | | |
Mcu_SetMode(Mcu_ModeType) o | | | | | |
t t L I I I I I I
- I I ITl I I I I I I
| | | | | | | | |
: : : ! ! | Wakeup interrupt() ! !
I I I I I I I I
| EcuM_CheckWakup(EcuM_WakeupSourceType) | | | |
T T T | | | |
[EcuM_CheckWakeupHook(EcuM_WakeupSourceType) |
* : : This call has to be repeated for both FlexRay channels on :
activate PLL() \ the same network (i.e. FlexRay cluster)! 1
| I T T T I
Frlf_CheckWakeupByTransceiver(uint8, Fr_ChannelType) | | | |
I I | | |
: : FrTrcfoheckWEakeupByTranscei\:/er(uintS) :
| | T |
opt Wakeup detected / : : : :
[o |EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | |
-] T T]]
_____ e oo __ _FeuM.SetWakeupBvent) Il __ ____,_____3] |
| | | |
T T T T
I I I I
| | < — — — — - [— |
______ R A S ! !
______ < 1 1 1 T I
I I T I I I
______ L ___ I ! o |
I I [N S I_______ Retumfrominterupt) __ _ __1_______ >
I I I I I I
I I I I T I I
| | | |
| | | |
| | Mcu_SetMode ()l | Execution continues after HALT instruction. Iﬁ
- T i =
|

\

EnableAllInterrupts()
T

------ T

|
Mcu_SetMode(Mcu_ModeType)
T

Ecu MfDisabIe\{VakeupSou rces(EFquWaKeupSo u;rceType)
>

<< —
1
ReleaseResource(RES_AUTOSAR_ECUM_<core#>
»

L

lcu_DisableWakeup(lcu_ChannelType)
T T

DR i ------ 'ﬂ

Release Scheduler resource to allow other tasks to run.

Figure 9.11: FlexRay transceiver wake up by interrupt

et |

AUTSSAR

Note that in EcuM_CheckWakeupHook there need to be two separate calls to Frif_
WakeupByTransceiver, one for each FlexRay channel.

«module» Integration «module» «module» «module» «module» «module» «module» «Periphe... «Peripheral»
EcuM Code Os Mcu lcu Frif Fr FrTrev FlexRay FlexRay Transceiver
(Sest oo Controller Hardware

I
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)
>
|

=

GetResource(RES_AUTOSAR_ECUM_<core#>)
L
< ——————————= ‘L| Acquire the Scheduler to prevent other tasks from running. Iﬁ

G

|
I
|
|
I
|
|
I
' T
Mcu_SetMode(Mcu_ModeType) - : Mcu_SetMode() puts the microcontroller in
L

»
L
|
- - —— - I——————
|
| | some power saving mode. In this mode
e - ———— I e software execution continues, but with
1 1 reduced clock speed.
| |
EnableAllInterrupts() |
]
- —— - e it
|

.
loop WHILE no pending/validated evems/
T

[|
EcuM_SleepActivity()

<_ _____

EcquCheckV-V;zkeupHook(Ecu M_WakeupSourceType)

This call has to be repeated for both FlexRay channels on the
| | same network (ie. FlexRay cluster)!

Frif_CheckWakeupByTransceiver(uint8, Fr_ChannelType) T T T
T T

1 1
| FrTrcv_CheckWakeupByTransceiver(uint8)
|
1

opt Wakeup detected

cuMisetWakeuplEvent(EcuM7WakleupSourceType)

JR Ny, PR

A
|
|
|
|
|
]
I
|
|
|
|
|
|
I
|
|
|
|
|
|
-
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|

Vi

I
(WAKEUP D |
I
I
|

DisableAllInterrupts()

I

I

|

I

I I

EcuM_Di wble\lNakeupSources(lﬁcquWakeupSot{rceType)
|

e ———— I
I

|
|
I
Release Resourlce(REszUT (§AIR7ECUM7<core#I>)
L
I
|
|
I
|
|
'

Release Scheduler resource to allow other tasks to run.

PEE— I H

Figure 9.12: FlexRay transceiver wake up by polling

AUTSSAR

9.2.6 Ethernet Wakeup Sequence

On a Ethernet switched network with OA TC10 compliant Ethernet hardware a wake
up can be detected by the used Ethernet hardware (PHY). For Ethernet ECUs which
maintain a Ethernet Switch (host ECU), it is recommended to use polling on demand
to check a wake-up notified by the Ethernet hardware. Because checking all affected
EthSwtPort could be time comsuming and not acceptable for a check within the inter-
rupt. Thus, an interrupt signals that at least one of the Ethernet switch ports detect an
wake-up. In the context of the interrupt the affected EthTrcv are signaled to be checked
asynchronously in the EthTrcv_MainFunction.

Each EthTrcv should have its own wakeup source to distinguish on which EthSwtPort
the wakeup arrived. Wakeup sources could be shared if the EthSwtPort are e.g. as-
signed to the same PNCs

The following Ethernet Wake-up Sequences are partly optional, because there is no
specification for the "Integration Code". Thus it is implementation specific if e.g. during
EcuM_CheckWakeupHook the Ethlf is called to check the wake up source.

AUTSSAR

«module» Integration «module» «module» «module» «module» «module» «module» EthTrcv «Periph...
EcuM Code Os Mcu lcu Ethlf Eth EthSwt ETH Hardware]
(PHY)

GOSLEEP

| |
|[EcuM_EnableWakeupSources(EcuM_WakeupSourceType)
1 -l |

\

Itis recommended to set EthTrevWakeUpSupport to ETHTRCV_WAKEUP_BY_POLLING_ON_DEMAND, since a host Ecu has to deal
with all affected EthSwtPorts. Therefore interrupt of the Ethemet hardware is used and on demand also the polling of the wakeup

Mcu_SetMode(Mcu_ModeType)

akeup interrupt

)

sources
p——
]]]]]]]
! . | | | | | | |
GetResource(uint8) | | | | | |
] o]
: If the Scheduler will not be acquired as resource it is not assured ﬂ{at the program flow continues after
| HALT instruction because re-scheduling takes place after occurrenge of an ISR Cat 2.
<-—--- r——---
| |
SLEEP | | |
DisableAllInterrupts()	
1 L	

|
|
|
|
|
|
|
E.
T

-----——-—-—-—-—---——-—-——-—-— - ——— -

L
|
|
|
|
|
|
|

Figure 9.13: Passive wakeup of a host ecu (ECU that maintain a Ethernet switch) (part 1)

Execution continues after HALT instructiorl\ﬁ

L EcuM_CheckWakeup(EcuM_WakeupSourceType)
[! ! :
EcuMfChecKWalkeupHook(EcuMTWakeupStJurce'll'ype)
| |
1 |
activate PLL() |
| |
EcuM_StartCheckWakeup() | |
< | |
[| |
_____ > | | loop over all affected Ethemet switches/
EthlIf_CheckWakeup(EcuM_WakeupSourceType):
Std_ReturnType ! ! ! |
: : 1 : | loop over all affected EthSwitchPons/
1 I 1
: : EthSM_SwitchCheckWakeup(ujntS): :
| | Std_ReturnType | |
| | | EthTrcy_CheckWakeup(uintg):
| | | Std_ReturnType
| | |
| | |
I I I IN
| | | Store to check the Ethernet
| | | hardware in the context of
: : : the EthTrcv main function
| | | N () =,
| | | = ﬂ
I I <----- === F
| | | - |
| | |]]
| | | | |
| | | | |
<----- r——-—--- === inkuinls bnle I I I
| | L | | |
| | I I I I
<--——--- 1 1 | | 1 1
- | | | | | |
______ J______J______J_____> | | | |
1 1 I Return from interrupt() [
| [() e e e B e 4-—-——- =
| | -
| |

AUTSSAR

loop over the Ethernet hardware which is signaled to be checked/

-

[Wakz?up detected]

«module» Integration «module» «module» «module» «module» «module» «module» EthTrev «Periph...
EcuM Code Os Mcu lcu Ethlf Eth EthSwt ETH Hardware
(PHY)
T T T T T T T T T T
	Execution continues after HALT instruction.				
	Il‘				
	T T T				
______ (Mou_SetMode() _ _ _ _ _ —Ij					
EnableAllinterrupts)					
I =					
______ m-—----					
:	: : : : : MainFunction()				
]]]]					
1 1					

alt

[wakd up detected]
DisableAllInterrupts()
+ L g

WAKEUP | \

<___

ReleaseResource(uint8)

EcuM_Disable\;NakeupSources(ElcuM_Wakeude rceType)

u
I
|
|
|
|
|
|
|
1

Release Scheduler resource to allow other tasks to run.

|
Mcu_SetMode(Mcu_ModeType)

________________________________.|_|‘7

|
!
g
|
|
|
|

Figure 9.14: Passive wakeup of a host ecu (ECU that maintain a Ethernet switch) (part 2)

A single Ethernet ECU (ECU which do NOT maintain a Ethernet switch) could choose
how to detect a wakeup either by interrupt or by polling. The difference to a host ECU
is, that not the high amount of Ethernet switch ports has to be checked.

AUTSSAR

«module» Integration «module» «module» «module» «module» «module» «module» EthTrev «Periphe...
EcuM Code Os Mcu Icu Ethif Eth EthSwt ETH Hardware
O (PHY)

GOSLEEP
1

1
EcuMfEnabIeWakap_Sources(EcuMf\/_/akeupSourceTy;_Je)

| |
Icu_EnableWakeup(lcu_ChannelType)
T T

I
e — - — — - I

I

I

<--- I
I

I

GetResource(uint8)

If the Scheduler will not be acquired as resourcq it is not assured t}wt the program ftow
continues after HALT instruction because re-scheduling takes place after occurrence of
<-—-—-—-—~———- an ISR Cat 2. |

DisableAllInterrupts()

1
1

1

1

1

} 1
1 1

s ————= F-———- [
1 1

1

McufSe.tMode(McufMoéeType)

I I
: : HALT

I I

I I

I I

I I

|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! Wakeup interrupt()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
€

| |
EcuM_CheckWakeup(EcuM_WakeupSource Type) : :
t t t
1 | | |
EcuM_CheckWakeupHook | | | |
(EcuM_WakeupSourceType) | | | |
* | | | |
| | | |
activatle PLL() : : :
EcuM_StartCheckWakeup() : : : :
L J< | | | |
| | | |
N I I I I
1 1 | |
Ethlf_CheckWakeup(EcuM_WakeupSourceType): Std_ReturnTyp | |
t t | |
| | I I
| | EthTrcv_CheckWakeup(uint8): Std_RetumType
| | |
L | EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | |
LJ‘]]]]
| | | |
—————— rr——————fr—-——————ft-—————~—~||-—" -~~~ — — — >
| | | |
I I < ——— — - —————— [E——
| | | |
<----- 4——=————- |——— === T————— 1 1 1
| | - | | |
<-——-- I I I I I I
L | | | | | |
_______ e I th f int IIO I
etum from interrup
! Y | S — |______Rewmfominempt) ____1_____ >
| | T
| |
L L

Execution continues after HALT instruction. Iﬁ

L
|
|
|
|
|
|
|
|

Figure 9.15: Passive wakeup of a single ECU (ECU which do not maintain a Ethernet
switch) (part 1)

AUTSSAR

«module» Integration «module» «module» «module» «module»
EcuM Code Os Mcu Icu EthIf

@ @)
I I I I I
I I I I I
| |]]]
I I
: : Execution continues after HALT instruction.
| | T T
' I'Mcu_SetMode()! '
A<—————- - 4 —-————- —[:]

EnableAllinterrupts() I
I
< - ———- d-————

|
DisableAllInterrupts()

|
|

|

| |

| | |

<WAKEUP D : : :
| | |

| | |

| |

| |

|

|

|

|

|

|
ReleaseResource(uint8)
|
ke — — — — — N

Release Scheduler resource to allow other tasks to run.

WAKEUP
VALIDATION
I

Figure 9.16: Passive wakeup of a single ECU (ECU which do not maintain a Ethernet
switch) (part 2)

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers.

Chapters 10.1 and 10.2 specify the structure (containers) and the parameters of the
module ECU Manager.

Chapter 10.3 specifies published information of the module ECU State Manager.

10.1 Common Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapters 7 and Chapter 8.

The following containers contain various references to initialization structures of BSW
modules. NULL shall be a valid reference meaning 'no configuration data available’ but
only if the implementation of the initialized BSW module supports this.

10.1.1 EcuM

EcuM: EcucModuleDef +container EcuMGeneral:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMCommonConfiguration:
EcucParamConfContainerDef

EcuMConfiguration:

EcucParamConfContainerDef +subContainer

lowerMultiplicity = 1
lowerMultiplicity = 1 upperMultiplicity = 1
upperMultiplicity = 1

+container

EcuMFlexConfiguration:

+subContainer| g oparamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subComaineI

EcuMFlexEcucPartitionRef: EcuMFlexUserConfig:
EcucReferenceDef +reference EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = 256

Figure 10.1: EcuM configuration overview

AUTSSAR

[ECUC_EcuM_00225] Definition of EcucModuleDef EcuM |

Module Name EcuM

Description Configuration of the EcuM (ECU State Manager) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

EcuMConfiguration 1 This container contains the configuration (parameters) of the
ECU State Manager.

EcuMFlexGeneral 0..1 This container holds the general, pre-compile configuration

parameters for the EcuMFlex.
Only applicable if EcuMFlex is implemented.

EcuMGeneral 1 This container holds the general, pre-compile configuration
parameters.

10.1.2 EcuMGeneral

EcuMGeneral: EcuMMainFunctionPeriod:
EcucParamConfContainerDef +parameter EcucFloatParamDef
min =0
max = INF
EcuMDevErrorDetect:
+parameter| g, cBooleanParamDef

defaultValue = false

+parameter EcuMVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

Figure 10.2: EcuMGeneral configuration overview

[ECUC_EcuM_00116] Definition of EcucParamConfContainerDef EcuMGeneral |

Container Name EcuMGeneral

Parent Container EcuM

Description This container holds the general, pre-compile configuration parameters.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

EcuMDevErrorDetect 1 [ECUC_EcuM_00108]
EcuMMainFunctionPeriod 1 [ECUC_EcuM_00121]
EcuMVersionInfoApi 1 [ECUC_EcuM_00149]

No Included Containers

AUTSSAR

]
[ECUC_EcuM_00108] Definition of EcucBooleanParamDef EcuMDevErrorDetect

[

Parameter Name

EcuMDevErrorDetect

Parent Container

EcuMGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
- false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00121] Definition of EcucFloatParamDef EcuMMainFunctionPe-

riod |

Parameter Name

EcuMMainFunctionPeriod

Parent Container

EcuMGeneral

Description This parameter defines the schedule period of EcuM_MainFunction.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_EcuM_00149] Definition of EcucBooleanParamDef EcuMVersioninfoApi

[

Parameter Name

EcuMVersionInfoApi

Parent Container

EcuMGeneral

Description Switches the version info API on or off

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time | X | All Variants

\Y%

AUTSSAR

Dependency

Link time

Post-build time

10.1.3 EcuMConfiguration

EcucParamConfContainerDef

EcuMConfiguration:

lowerMultiplicity = 1
upperMultiplicity = 1

+subComaine?

+p.
EcuMCommonConfiguration:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+reference

>

EcuMConfigConsistencyHash:

EcucIntegerParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMDefaultAppMode:
EcucReferenceDef

+destination

OsAppMode:

>

+subContainer

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

+subContainer

EcucParamConfContainerDef

EcuMWakeupSource:

lowerMultiplicity = 1
upperMultiplicity = 32

EcuMDefaultShutdownTarget:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

+subContainer
>
EcuMOSResource:
+reference EcucReferenceDef +destination
lowerMultiplicity = 1

EcuMSleepMode:
EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 256

upperMultiplicity =

+subContainer

OsResource:
EcucParamConfContainerDef

EcuMDriverRestartList:
EcucParamConfContainerDef

upperMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer|

+subContainer

lowerMultiplicity = 0

EcuMDriverlnitListOne:

+subContainer

EcucParamConfContainerDef

EcucParamConfCon

EcuMDriverlnitlt

erDef

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 0

EcuMDriverlnitListZero:
EcucParamConfContainerDef

+parameter

upperMultiplicity = 1
lowerMultiplicity = 0

EcuMIgnoreWakeupEvValOffPreOS:

EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1

upperMultiplicity = 1

+subContainer|

upperMultiplicity = *
lowerMultiplicity = 1
requiresindex = true

Figure 10.3: EcuMConfiguration configuration overview

AUTSSAR

[ECUC_EcuM_00103] Definition of EcucParamConfContainerDef EcuMConfigu-
ration |

Container Name EcuMConfiguration

Parent Container EcuM

Description This container contains the configuration (parameters) of the ECU State Manager.
Multiplicity 1

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

EcuMCommonConfiguration 1 This container contains the common configuration (parameters)
of the ECU State Manager.

EcuMFlexConfiguration 0..1 This container contains the configuration (parameters) of the Ecu
’\OAEII)?);ppIicable if EcuMFlex is implemented.

10.1.4 EcuMCommonConfiguration

[ECUC_EcuM 00181] Definition of EcucParamConfContainerDef EcuMCommon
Configuration |

Container Name EcuMCommonConfiguration

Parent Container EcuMConfiguration

Description This container contains the common configuration (parameters) of the ECU State
Manager.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

EcuMConfigConsistencyHash 0..1 [ECUC_EcuM_00102]
EcuMIgnoreWakeupEvValOffPreOS 1 [ECUC_EcuM_00230]
EcuMDefaultAppMode 1 [ECUC_EcuM_00104]
EcuMOSResource 1.* [ECUC_EcuM_00183]

Included Containers
Container Name Multiplicity Dependency

EcuMDefaultShutdownTarget 1 This container describes the default shutdown target to be
selected by EcuM. The actual shutdown target may be
overridden by the EcuM_SelectShutdownTarget service.

\Y

AUTSSAR

A
Included Containers
Container Name Multiplicity Dependency
EcuMDriverlnitListOne 0..1 Container for Init Block I.

This container holds a list of modules to be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized before the OS is started and
so these modules require no OS support.

EcuMDiriverlnitListZero 0..1 Container for Init Block 0.

This container holds a list of modules to be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized before the post-build
configuration has been loaded and the OS is initialized.
Therefore, these modules may not use post-build configuration.

EcuMDriverRestartList 0..1 List of modules to be initialized.

EcuMSleepMode 1..256 These containers describe the configured sleep modes.
The names of these containers specify the symbolic names of
the different sleep modes.

EcuMWakeupSource 1..32 These containers describe the configured wakeup sources.

]

[ECUC_EcuM_00102] Definition of EcucintegerParamDef EcuMConfigConsis-
tencyHash |

Parameter Name EcuMConfigConsistencyHash
Parent Container EcuMCommonConfiguration
Description In the pre-compile and link-time configuration phase a hash value is generated across

all pre-compile and link-time parameters of all BSW modules.

In the post-build phase a hash value is generated across all pre-compile and link-time
parameters, except for parameters located in EcucParamConfContainerDef instances
or subContainers which have been introduced at post-build configuration time.

This hash value is compared against each other and allows checking the consistency
of the entire configuration.

Note: In systems which do not make use of post-build configurations this parameter
can be omitted.

Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

AUTSSAR

[ECUC_EcuM_00230] Definition of EcucBooleanParamDef EcuMIignoreWakeup
EvValOffPreOS |

Parameter Name EcuMIgnoreWakeupEvValOffPreOS
Parent Container EcuMCommonConfiguration
Description Defines the wakeup events that must be considered in OffPreOS

true: only wakeup events which do not need validation shall be considered
false: wakeup events which do not need validation and pending wakeup events that
need validation.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Dependency

]
[ECUC_EcuM_00104] Definition of EcucReferenceDef EcuMDefaultAppMode |

Parameter Name EcuMDefaultAppMode
Parent Container EcuMCommonConfiguration
Description The default application mode loaded when the ECU comes out of reset.
Multiplicity 1
Type Reference to OsAppMode
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_EcuM_00183] Definition of EcucReferenceDef EcuMOSResource |

Parameter Name EcuMOSResource

Parent Container EcuMCommonConfiguration

Description This parameter is a reference to a OS resource which is used to bring the ECU into
sleep mode.
In case of multi core each core shall have an own OsResource.

Multiplicity 1.7

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time | -

Dependency

10.1.5 EcuMDefaultShutdownTarget

EcuMDefaultShutdownT arget:

EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

+parameter

+reference

+reference

EcuMDefaultShutdownTarget:

EcucEnumerationParamDef

EcuMDefaultSleepModeRef:
EcucReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1

requiresSymbolicNameValue = true

EcuMShutdownTargetSleep:
EcucEnumerationLiteral Def

+literal

+literal EcuMShutdownT argetOff:
EcucEnumerationLiteral Def
+literal

EcuMShutdownTargetReset:
EcucEnumerationLiteralDef

EcuMSleepMode:

+destination| g\, cparamConfContainerDef

EcuMDefaultResetModeRef:
EcucReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1

requiresSymbolicNameValue = true

lowerMultiplicity = 1
upperMultiplicity = 256

EcuMResetMode:

+destination| EcucparamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 256

Figure 10.4: EcuMDefaultShutdownTarget configuration overview

[ECUC_EcuM _00105] Definition of EcucParamConfContainerDef EcuMDefault

ShutdownTarget |

Container Name

EcuMDefaultShutdownTarget

Parent Container

EcuMCommonConfiguration

Description This container describes the default shutdown target to be selected by EcuM. The
actual shutdown target may be overridden by the EcuM_SelectShutdownTarget service.
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

EcuMDefaultShutdownTarget 1 [ECUC_EcuM_00107]
EcuMDefaultResetModeRef 1 [ECUC_EcuM_00205]
EcuMDefaultSleepModeRef 1 [ECUC_EcuM_00106]

No Included Containers

AUTSSAR

[ECUC_EcuM_00107] Definition of EcucEnumerationParamDef EcuMDefault
ShutdownTarget |

Parameter Name EcuMDefaultShutdownTarget
Parent Container EcuMDefaultShutdownTarget
Description This parameter describes the state part of the default shutdown target selected when

the ECU comes out of reset. If EcuMShutdownTargetSleep is selected, the parameter
EcuMDefaultSleepModeRef selects the specific sleep mode.

Multiplicity 1
Type EcucEnumerationParamDef
Range EcuMShutdownTargetOff Corresponds to ECUM_SHUTDOWN_TARGET_
OFF in EcuM_ShutdownTargetType.
EcuMShutdownTargetReset Corresponds to ECUM_SHUTDOWN_TARGET _

RESET in EcuM_ShutdownTargetType. This
literal is only be applicable for EcuMFlex.

EcuMShutdownTargetSleep Corresponds to ECUM_SHUTDOWN_TARGET_
SLEEP in EcuM_ShutdownTargetType.

Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_EcuM_00205] Definition of EcucReferenceDef EcuMDefaultResetMode

Ref |
Parameter Name EcuMDefaultResetModeRef
Parent Container EcuMDefaultShutdownTarget
Description If EcuMDefaultShutdownTarget is EcuMShutdownTargetReset, this parameter selects
the default reset mode. Otherwise this parameter may be ignored.
Multiplicity 1
Type Symbolic name reference to EcuMResetMode

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

AUTSSAR

[ECUC_EcuM_00106] Definition of EcucReferenceDef EcuMDefaultSleepMode
Ref |

Parameter Name EcuMDefaultSleepModeRef

Parent Container EcuMDefaultShutdownTarget

Description If EcuMDefaultShutdownTarget is EcuMShutdownTargetSleep, this parameter selects
the default sleep mode. Otherwise this parameter may be ignored.

Multiplicity 1

Type Symbolic name reference to EcuMSleepMode

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.1.6 EcuMDriverlnitListOne

) i EcuMDriverlnitListZero: +subContainer EcuMDriverlnitltem:
EcuMCommonConfiguration: +subContainer| EcucParamConfContainerDef EcucParamConfContainerDef
EcucParamConfContainerDef @

— upperMultiplicity = 1 upperMultiplicity = *
lowerMultiplicity = 1 lowerMultiplicity = 0 lowerMultiplicity = 1

upperMultiplicity = 1 requiresindex = true

+subContainer EcuMDriverlnitListOne:

EcucParamConfContainerDef

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 0

Figure 10.5: EcuMInitLists configuration overview

[ECUC_EcuM_00111] Definition of EcucParamConfContainerDef EcuMDriverlnit
ListOne |

Container Name EcuMDiriverlnitListOne
Parent Container EcuMCommonConfiguration
Description Container for Init Block I.

This container holds a list of modules to be initialized. Each module in the list will be
called for initialization in the list order.

All modules in this list are initialized before the OS is started and so these modules
require no OS support.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

No Included Parameters

AUTSSAR

Included Containers
Container Name Multiplicity Dependency

EcuMDriverlnititem 1.7 These containers describe the entries in a driver init list.

10.1.7 EcuMDriverlnitListZero

[ECUC_EcuM_00114] Definition of EcucParamConfContainerDef EcuMDriverlnit
ListZero [

Container Name EcuMDiriverlnitListZero
Parent Container EcuMCommonConfiguration
Description Container for Init Block 0.

This container holds a list of modules to be initialized. Each module in the list will be
called for initialization in the list order.

All modules in this list are initialized before the post-build configuration has been
loaded and the OS is initialized. Therefore, these modules may not use post-build
configuration.

Multiplicity 0..1
Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -
Post-build time -

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

EcuMDriverlnitlitem 1.* These containers describe the entries in a driver init list.

10.1.8 EcuMDriverRestartList

[ECUC_EcuM _00115] Definition of EcucParamConfContainerDef EcuMDriver
RestartList |

Container Name EcuMDriverRestartList

Parent Container EcuMCommonConfiguration
Description List of modules to be initialized.
Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time | X | All Variants

\Y

AUTSSAR

Link time -
Post-build time -

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

EcuMDriverlnititem 1.7 These containers describe the entries in a driver init list.

10.1.9 EcuMDriverlnitltem

EcuMDriverlnititem: EcuMModuleService:
EcucParamConfContainerDef +parameter| EcucStringParamDef
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 1 upperMultiplicity = 1

requiresindex = true

EcuMModuleRef: EcucForeignReferenceDef

reference

o lowerMultiplicity = 1

upperMultiplicity = 1
destinationType = ECUC-MODULE-CONFIGURATION-VALUES

v

EcucModuleConfigurationValues

ARElement

+ ecucDefEdition: RevisionLabelString [0..1]
implementationConfigVariant: EcucConfigurationVariantEnum [0..1]
+ postBuildVariantUsed: Boolean [0..1]

+

EcuMModuleParameter: +literal POSTBUILD_PTR:
EcucEnumerationParamDef [€@»—— EcucEnumerationLiteralDef

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter +literal NULL_PTR:
‘— EcucEnumerationLiteral Def

+literal VOID:
EcucEnumerationLiteralDef

EcuMEcucCoreDefinitionRef: EcucCoreDefinition:
+reference EcucReferenceDef +destination | EcucParamConfContainerDef

IowerMuIti_pIilci}y =0 lowerMultiplicity = 1

upperMultiplicity = 1 upperMultiplicity = *

Figure 10.6: EcuMDriverlnitltem configuration overview

[ECUC_EcuM_00110] Definition of EcucParamConfContainerDef EcuMDriverlnit
Iltem |

AUTSSAR

Container Name EcuMDriverlnitltem

Parent Container EcuMDriverInitListBswM, EcuMDriverInitListOne, EcuMDriverlnitListZero, EcuMDriver
RestartList

Description These containers describe the entries in a driver init list.
Attributes: requiresindex=true

Multiplicity 1.*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

EcuMModuleParameter 1 [ECUC_EcuM_00224]
EcuMModuleService 0..1 [ECUC_EcuM_00124]
EcuMEcucCoreDefinitionRef 0..1 [ECUC_EcuM_00229]
EcuMModuleRef 1 [ECUC_EcuM_00223]

No Included Containers

]

[ECUC_EcuM_00224] Definition of EcucEnumerationParamDef EcuMModulePa-
rameter |

Parameter Name EcuMModuleParameter

Parent Container EcuMDriverlnitltem

Description Definition of the function prototype and the parameter passed to the function.
Multiplicity 1

Type EcucEnumerationParamDef

Range NULL_PTR If NULL_PTR is configured EcuM expects as

prototype: void <Mip>_<EcuMModule
Service>(const <Mip>_ConfigType* <Mip>_
Config). EcuM shall call this function with NULL
Pointer: <Mip>_<EcuMModuleService>(NULL).

POSTBUILD_PTR If POSTBUILD_PTR is configured EcuM expects
as prototype: void <Mip>_<EcuMModule
Service>(const <Mip>_ConfigType* <Mip>_
Config). EcuM shall call this function with a valid
pointer, see TPS_ECUC_08011 for details.

VOID If VOID is configured EcuM expects as prototype:
void <Mip>_<EcuMModuleService>(void). EcuM
will call <Mip>_<EcuMModuleService>().

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_EcuM_00124] Definition of EcucStringParamDef EcuMModuleService |

Parameter Name

EcuMModuleService

Parent Container

EcuMDriverInitltem

Description The service to be called to initialize that module, e.g. Init, Prelnit, Start etc. If nothing is
defined "Init" is taken by default.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00229] Definition of EcucReferenceDef EcuMEcucCoreDefinition

Ref [

Parameter Name

EcuMEcucCoreDefinitionRef

Parent Container

EcuMDriverInitltem

Description Reference denotes the core the EcuM AUTOSAR services shall be offered on.

Multiplicity 0..1

Type Reference to EcucCoreDefinition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00223] Definition of EcucForeignReferenceDef EcuMModuleRef |

Parameter Name

EcuMModuleRef

Parent Container

EcuMDriverInitltem

Description Foreign reference to the configuration of a module instance which shall be initialized by
EcuM

Multiplicity 1

Type Foreign reference to ECUC-MODULE-CONFIGURATION-VALUES

Post-Build Variant Value

false

Y%

AUTSSAR

EcucBooleanParamDef

EcuMWakeupSourceMask

+reference EcucReferenceDef

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
EcuMSleepMode: EcuMSleepModeld:
EcucParamConfContainerDef +parameter EcuclntegerParamDef
lowerMultiplicity = 1 max = 255
upperMultiplicity = 256 min =0
symbolicNameValue = true
+reference EcuMSleepModeMcuModeRef: +destination McuModeSettingConf:
EcucReferenceDef EcucParamConfContainerDef
requiresSymbolicNameValue = true lowerMultiplicity = 1
upperMultiplicity = *
+parameter EcuMSleepModeSuspend:

EcuMWakeupSource:

+destinalion| - eo;cparamConfContaineref

lowerMultiplicity = 1
upperMultiplicity = *
requiresSymbolicNameValue = true

lowerMultiplicity = 1
upperMultiplicity = 32

Figure 10.7: EcuMSleepMode configuration overview

[ECUC_EcuM_00131]
Mode |

Definition of EcucParamConfContainerDef EcuMSleep

Container Name

EcuMSleepMode

Parent Container

EcuMCommonConfiguration

Description These containers describe the configured sleep modes.
The names of these containers specify the symbolic names of the different sleep
modes.
Multiplicity 1..256
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
EcuMSleepModeld 1 [ECUC_EcuM_00132]
EcuMSleepModeSuspend 1 [ECUC_EcuM_00136]
EcuMSleepModeMcuModeRef 1 [ECUC_EcuM_00133]
EcuMWakeupSourceMask 1.* [ECUC_EcuM_00152]

No Included Containers

AUTSSAR

]

[ECUC_EcuM_00132] Definition of EcuclntegerParamDef EcuMSleepModeld |

Parameter Name

EcuMSleepModeld

Parent Container

EcuMSleepMode

Description This ID identifies this sleep mode in services like EcuM_SelectShutdownTarget.
Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_EcuM_00136] Definition of EcucBooleanParamDef EcuMSleepModeSus-

pend |
Parameter Name EcuMSleepModeSuspend
Parent Container EcuMSleepMode

Description Flag, which is set true, if the CPU is suspended, halted, or powered off in the sleep
mode. If the CPU keeps running in this sleep mode, then this flag must be set to false.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_EcuM_00133] Definition of EcucReferenceDef EcuMSleepModeMcuMode

Ref |

Parameter Name

EcuMSleepModeMcuModeRef

Parent Container

EcuMSleepMode

Description This parameter is a reference to the corresponding MCU mode for this sleep mode.
Multiplicity 1
Type Symbolic name reference to McuModeSettingConf

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

AUTSSAR

| Dependency

]

[ECUC_EcuM_00152] Definition of EcucReferenceDef EcuMWakeupSourceMask
[

Parameter Name EcuMWakeupSourceMask

Parent Container EcuMSleepMode

Description These parameters are references to the wakeup sources that shall be enabled for this
sleep mode.

Multiplicity 1.*

Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

10.1.11 EcuMWakeupSource

EcuMWakeupSourceld:
EcucintegerParamDef

EcuMWakeupSource: +parameter :
EcucParamConfContainerDef P min =5
— max = 31
lowerMultiplicity = 1 symbolicNameValue = true
upperMultiplicity = 32
EcuMValidationTimeout:
EcucFloatParamDef
+parameter ——
min =0
max = INF
lowerMultiplicity = 0
upperMultiplicity = 1
EcuMResetReasonRef: McuResetReasonConf:
+reference EcucReferenceDef +destination | EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = *
requiresSymbolicNameValue = true
EcuMComMChannelRef: o ComMChannel:
+reference EcucReferenceDef +destination | EcucParam ConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = 256
requiresSymbolicNameValue = true
EcuMComMPNCRef: LomMPnc:
+reference EcucReferenceDef +destination | EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = 504
requiresSymbolicNameValue = true

+parameter EcuMWakeupSourcePolling:

EcucBooleanParamDef

EcuMCheckWakeupTimeout:
EcucFloatParamDef

+parameter

min = 0.0

max = 10.0
lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = 0.0

Figure 10.8: EcuMWakeupSource configuration overview

[ECUC_EcuM_00150] Definition of EcucParamConfContainerDef EcuMWakeup
Source |

Container Name EcuMWakeupSource

Parent Container EcuMCommonConfiguration

Description These containers describe the configured wakeup sources.

Multiplicity 1..32

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
EcuMCheckWakeupTimeout 0..1 [ECUC_EcuM_00208]
EcuMValidationTimeout 0..1 [ECUC_EcuM_00148]
EcuMWakeupSourceld 1 [ECUC_EcuM_00151]
EcuMWakeupSourcePolling 1 [ECUC_EcuM_00153]
EcuMComMChannelRef 0..* [ECUC_EcuM_00101]
EcuMComMPNCRef 0..* [ECUC_EcuM_00228]
EcuMResetReasonRef 0..* [ECUC_EcuM_00128]

No Included Containers

]

[ECUC_EcuM_00208] Definition of EcucFloatParamDef EcuMCheckWakeupTime-
out |

Parameter Name EcuMCheckWakeupTimeout
Parent Container EcuMWakeupSource
Description This Parameter is the initial Value for the Time of the EcuM to delay shut down of the

ECU if the check of the Wakeup Source is done asynchronously (CheckWakeupTimer).
The unit is in seconds.

Multiplicity 0..1

Type EcucFloatParamDef
Range [0..10]

Default value 0

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_EcuM_00148] Definition of EcucFloatParamDef EcuMValidationTimeout
[

Parameter Name EcuMValidationTimeout
Parent Container EcuMWakeupSource
Description The validation timeout (period for which the ECU State Manager will wait for the

validation of a wakeup event) can be defined for each wakeup source independently.
The timeout is specified in seconds.

When the timeout is not instantiated, there is no validation routine and the ECU
Manager shall not validate the wakeup source.

Multiplicity 0..1

Type EcucFloatParamDef

V

AUTSSAR

A
Range [0 .. INF] |
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_EcuM_00151] Definition of EcucintegerParambDef EcuMWakeupSourceld
[

Parameter Name EcuMWakeupSourceld

Parent Container EcuMWakeupSource

Description This parameter defines the identifier of this wakeup source. The first five bits are
reserved values from the EcuM_WakeupSourceType.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 5..31

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

]

[ECUC_EcuM_00153] Definition of EcucBooleanParamDef EcuMWakeupSource
Polling |

Parameter Name EcuMWakeupSourcePolling

Parent Container EcuMWakeupSource

Description This parameter describes if the wakeup source needs polling.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_EcuM_00101] Definition of EcucReferenceDef EcuMComMChannelRef |

Parameter Name EcuMComMChannelRef

Parent Container EcuMWakeupSource

Description This parameter could reference multiple Networks (channels) defined in the
Communication Manager. No reference indicates that the wakeup source is not a
communication channel.

Multiplicity 0..*

Type Symbolic name reference to ComMChannel

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

J
[ECUC_EcuM_00228] Definition of EcucReferenceDef EcuMComMPNCRef |

Parameter Name EcuMComMPNCRef

Parent Container EcuMWakeupSource

Description This is a reference to a one or more PNC’s defined in the Communication Manager.
No reference indicates that the wakeup source is not assigned to a partial network.
Multiplicity 0..*
Type Symbolic name reference to ComMPnc
Post-Build Variant Multiplicity true
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_EcuM_00128] Definition of EcucReferenceDef EcuMResetReasonRef |

Parameter Name EcuMResetReasonRef

Parent Container EcuMWakeupSource

Description This parameter describes the mapping of reset reasons detected by the MCU driver
into wakeup sources.

Multiplicity 0..*

Type Symbolic name reference to McuResetReasonConf

Post-Build Variant Multiplicity false

Post-Build Variant Value false

V

AUTSSAR

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

10.2 EcuM-Flex Containers and configuration parameters

EcuM: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

+container

EcuMGeneral:
EcucParamConfContainerDef

EcuMFlexGeneral:
EcucParamConfContainerDef

+container

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMConfiguration:

EcucParamConfContainerDef

+subContainer

EcuMCommonConfiguration:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+subContainer

lowerMultiplicity = 1
upperMultiplicity = 1

EcuMFlexConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.9: EcuMFlex configuration overview

AUTSSAR

10.2.1 EcuMFlexGeneral

EcuMResetLoopDetection:
EcuMFlexGeneral: EcucBooleanParamDef

= +parameter
EcucParamConfContainerDef

lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = 1
upperMultiplicity = 1

+parameter EcuMAlarmClockPresent:
EcucBooleanParamDef

EcuMAlarmWakeupSource: | EcuMWakeupSource:
+reference EcucReferenceDef rdestination EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = 32
requiresSymbolicNameValue = true

EcuMSetProgrammablelnterrupts:
+parameter EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMModeHandling:

+parameter EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.10: EcuMFlexGeneral configuration overview

[ECUC_EcuM _00168] Definition of EcucParamConfContainerDef EcuMFlexGen-
eral |

Container Name EcuMFlexGeneral

Parent Container EcuM

Description This container holds the general, pre-compile configuration parameters for the Ecu
'(\)/Irfllf);pplicable if EcuMFlex is implemented.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

EcuMAlarmClockPresent 1 [ECUC_EcuM_00199]
EcuMModeHandling 0..1 [ECUC_EcuM_00221]
EcuMResetLoopDetection 0..1 [ECUC_EcuM_00171]
EcuMSetProgrammablelnterrupts 0..1 [ECUC_EcuM_00210]
EcuMAlarmWakeupSource 0..1 [ECUC_EcuM_00200]

| No Included Containers

AUTSSAR

[ECUC_EcuM_00199]
Present |

Definition of EcucBooleanParamDef EcuMAlarmClock

Parameter Name

EcuMAlarmClockPresent

Parent Container

EcuMFlexGeneral

Description This flag indicates whether the optional AlarmClock feature is present.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00221] Definition of EcucBooleanParamDef EcuMModeHandling [

Parameter Name

EcuMModeHandling

Parent Container

EcuMFlexGeneral

Description If false, Run Request Protocol is not performed.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00171] Definition of EcucBooleanParamDef EcuMResetLoopDe-

tection |

Parameter Name

EcuMResetLoopDetection

Parent Container

EcuMFlexGeneral

Description If false, no reset loop detection is performed. If this configuration parameter exists and
is set to true, the callout "EcuM_LoopDetection" is called during startup of EcuM
(during StartPreQOS).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

AUTSSAR

A
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

|
[ECUC_EcuM_00210]

grammablelnterrupts [

Definition of EcucBooleanParamDef EcuMSetPro-

Parameter Name

EcuMSetProgrammablelnterrupts

Parent Container

EcuMFlexGeneral

Description If this configuration parameter exists and is to true, the callout "EcuM_AL_Set
Programmablelnterrupts” is called during startup of EcuM (during StartPreQOS).
Multiplicity 0..1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00200] Definition of EcucReferenceDef EcuMAlarmWakeupSource

[

Parameter Name

EcuMAlarmWakeupSource

Parent Container

EcuMFlexGeneral

Description This parameter describes the reference to the EcuMWakeupSource being used for the
EcuM AlarmClock.

Multiplicity 0..1

Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

10.2.2 EcuMFlexConfiguration

. Ec;MFIe)éCo?(f:lgutra.non[:) ' EcuMResetMode: EcuMResetModeld:
cucParamConfContainerDe +subContainer| EcucParamConfContainerDef +parameter EcucIntegerParamDef
T > = -
'°Wee'r';\"ﬂ”'|‘['.p‘|'.i',tty ’_01 lowerMultiplicity = 1 mh=
EREEIUDHCIVAS upperMultiplicity = 256 [EE S _255
symbolicNameValue = true
bC X E —E;uMShCuld?gnCagse:D . EcuMShutdownCauseld:
P +subContainer cucParamConfContainerDe +parameter —Ecuclnte; erParamDef
IowerMu\ti.pIici.ly =1 min =0
upperMultiplicity = 256 max = 255
symbolicNameValue = true
McuModeSettingConf:
+reference EcuMNormalMcuModeRef: +destination| EcucParamConfContainerDef
EcucReferenceDef
—— lowerMultiplicity = 1
requiresSymbolicNameValue = true upperMultiplicity = *
EcuMPartitionRef: EcucPartition:
- +reference EcucReferenceDef +destination| EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
EcuMAlarmClock: i
EcucParamConfContainerDef [EcUME larn Glockic
I ———— EcuclntegerParamDef
— +parameter
lowerMultiplicity = 0 N 0
upperMultiplicity = * min =
R . max = 255
+subContainer symbolicNameValue = true
+parameter EcuMAlarmClockTimeOut:
EcucFloatParam Def
min =0
max = INF
+reference?
EcuMFlexUserConfig:
EcuMAlarmClockUser: +destination | EcucParamConfContainerDef
EcucReferenceDef —
lowerMultiplicity = 1
requiresSymbolicNameValue = true upperMultiplicity = 256
+subContainer
>
EcuMSetClockAllowedUsers:
+subContainer| EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = 1
+reference.
EcuMSetClockAllowedUserRef:
EcucReferenceDef +destination
lowerMultiplicity = 1
upperMultiplicity = *
requiresSymbolicNameValue = true
+des!inaﬂon/|\
EcuMGoDownAllowedUserRef:
EcuMGoDownAllowedUsers: EcucReferenceDef
+subContainer| EcucParamConfContainerDef +reference ———
g : lowerMultiplicity = 1
\owerMuIt\vpll.cwvty =0 upperMultiplicity = *
upperMultiplicity = 1 requiresSymbolicNameValue = true

Figure 10.11: EcuMFlexConfiguration configuration overview

AUTSSAR

[ECUC_EcuM_00167] Definition of EcucParamConfContainerDef EcuMFlexCon-
figuration |

Container Name EcuMFlexConfiguration

Parent Container EcuMConfiguration

Description This container contains the configuration (parameters) of the EcuMFlex.
Only applicable if EcuMFlex is implemented.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
EcuMNormalMcuModeRef 1 [ECUC_EcuM_00204]
EcuMPartitionRef 0.* [ECUC_EcuM_00217]

Included Containers
Container Name Multiplicity Dependency

EcuMAlarmClock 0..” These containers describe the configured alarm clocks.
The name of these conatiners allows giving a symbolic name to
one alarm clock.

EcuMDriverlnitListBswM 0..” This container holds a list of modules to be initialized by the Bsw
M.
EcuMFlexUserConfig 1..256 These containers describe the identifiers that are needed to refer

to a software component or another appropriate entity in the
system which uses the EcuMFlex Interfaces.

EcuMGoDownAllowedUsers 0..1 This container describes the collection of allowed users which
are allowed to call the EcuM_GoDownHaltPoll API (only applies
in the case that the previously set shutdown target is TARGET_
RESET or TARGET_OFF).

EcuMResetMode 1..256 These containers describe the configured reset modes. The
name of these containers allows one of the following symbolic
names to be given to the different reset modes:

+ ECUM_RESET_MCU

- ECUM_RESET_WDG
« ECUM_RESET_IO.

EcuMSetClockAllowedUsers 0..1 This container describes the collection of allowed users which
are allowed to call the EcuM_SetClock API.
EcuMShutdownCause 1..256 These containers describe the configured shut down or reset
causes. The name of these containers allows to give one of the
following symbolic names to the different shut down causes:
« ECUM_CAUSE_ECU_STATE - ECU state machine entered a
state for shutdown,

+ ECUM_CAUSE_WDGM - WdgM detected failure,

+ ECUM_CAUSE_DCM - Dcm requests shutdown (split into
UDS services?),

« and values from configuration.

AUTSSAR

[ECUC_EcuM_00204] Definition of EcucReferenceDef EcuMNormalMcuModeRef

[

Parameter Name

EcuMNormalMcuModeRef

Parent Container

EcuMFlexConfiguration

Description This parameter is a reference to the normal MCU mode to be restored after a sleep.
Multiplicity 1
Type Symbolic name reference to McuModeSettingConf
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00217] Definition of EcucReferenceDef EcuMPartitionRef |

Parameter Name

EcuMPartitionRef

Parent Container

EcuMFlexConfiguration

Description Reference denotes the partition a EcuM shall run inside. Please note that in case of a
multicore ECU this reference is mandatory.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.3 EcuMAlarmClock

[ECUC_EcuM_00184]
Clock [

Definition of EcucParamConfContainerDef EcuMAlarm

Container Name

EcuMAlarmClock

Parent Container

EcuMFlexConfiguration

Description These containers describe the configured alarm clocks.
The name of these conatiners allows giving a symbolic name to one alarm clock.
Multiplicity 0..”

Post-Build Variant Multiplicity

false

Multiplicity Configuration Class

Pre-compile time | X | All Variants

Y%

AUTSSAR

A

Link time —

Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
EcuMAlarmClockld 1 [ECUC_EcuM_00186]
EcuMAlarmClockTimeOut 1 [ECUC_EcuM_00188]
EcuMAlarmClockUser 1 [ECUC_EcuM_00195]

| No Included Containers

]

[ECUC_EcuM_00186] Definition of EcucintegerParamDef EcuMAlarmClockid |

Parameter Name

EcuMAlarmClockld

Parent Container

EcuMAlarmClock

Description This ID identifies this alarmclock.

Multiplicity 1

Type EcucintegerParamDef (Symbolic Name generated for this parameter)
Range 0..255

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_EcuM_00188]
Out |

Definition of EcucFloatParamDef EcuMAlarmClockTime

Parameter Name

EcuMAlarmClockTimeOut

Parent Container

EcuMAlarmClock

Description This parameter allows to define a timeout for this alarm clock.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_EcuM_00195] Definition of EcucReferenceDef EcuMAlarmClockUser |

Parameter Name EcuMAlarmClockUser
Parent Container EcuMAlarmClock
Description This parameter allows an alarm to be assigned to a user.
Multiplicity 1
Type Symbolic name reference to EcuMFlexUserConfig
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

10.2.4 EcuMDriverlnitListBswM

EcuMFlexUserConfig: EcuMFlexUser:
EcucParamConfContainerDef +parameter EcucintegerParamDef
lowerMultiplicity = 1 @—— min-0
upperMultiplicity = 256 max = 255
symbolicNameValue = true

+reference | EcuMFlexEcucPartitionRef: +destination EcucPartition:
EcucReferenceDef EcucParamConfContainerDef

lowerMultiplicity = 0 lowerMultiplicity = 0

upperMultiplicity = 1 upperMultiplicity = *

Figure 10.12: EcuMFlexUserConfig configuration overview

[ECUC_EcuM_00201] Definition of EcucParamConfContainerDef EcuMFlexUser
Config |

Container Name EcuMFlexUserConfig

Parent Container EcuMFlexConfiguration

Description These containers describe the identifiers that are needed to refer to a software
component or another appropriate entity in the system which uses the EcuMFlex
Interfaces.

Multiplicity 1..256

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
EcuMFlexUser 1 [ECUC_EcuM_00146]
EcuMFlexEcucPartitionRef 0..1 [ECUC_EcuM_00203]

No Included Containers

AUTSSAR

]

[ECUC_EcuM_00146] Definition of EcucintegerParamDef EcuMFlexUser |

Parameter Name

EcuMFlexUser

Parent Container

EcuMFlexUserConfig

Description Parameter used to identify one user.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_EcuM _00203] Definition of EcucReferenceDef EcuMFlexEcucPartitionRef

[

Parameter Name

EcuMFlexEcucPartitionRef

Value Configuration Class

Parent Container EcuMFlexUserConfig
Description Denotes in which "EcucPartition" the user of the EcuM is executed.
Multiplicity 0..1
Type Reference to EcucPartition
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Pre-compile time All Variants

Link time

Post-build time

Dependency

AUTSSAR

EcuMFlexConfiguration: EcuMDriverlnitltem: EcuMModuleService:
EcucParamConfContainerDef EcucParamConfContainerDef +parameter| EcucStringParamDef
lowerMultiplicity = 0 upperMultiplicity = * lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 1 upperMultiplicity = 1
requiresindex = true
+subContaine$ EcuMModuleRef: EcucForeignReferenceDef
reference
EcuMDriverinitListBswM: @—— lowerMultiplicity =1
EcucParam ConfContainerDef upperMultiplicity = 1
destinationType = ECUC-MODULE-CONFIGURATION-VALUES
lowerMultiplicity = 0

upperMultiplicity = * \y

ARElement
EcucModuleConfigurationValues

+ ecucDefEdition: RevisionLabelString [0..1]
+ implementationConfigVariant: EcucConfigurationVariantEnum [0..1]
+ postBuildvariantUsed: Boolean [0..1]

+subContainer

EcuMModuleParameter: +literal POSTBUILD_PTR:

EcucEnumerationParamDef ‘— EcucEnumerationLiteralDef
lowerMultiplicity = 1
upperMultiplicity = 1

+parameter
P +literal NULL PTR:
EcucEnumerationLiteralDef
+literal VOID:
EcucEnumerationLiteralDef
+reference$
EcuMEcucCoreDefinitionRef: +destination EcucCoreDefinition:
EcucReferenceDef EcucParamConfContainerDef

lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = *

Figure 10.13: EcuMFlexDriverlnitListBswM configuration overview

[ECUC_EcuM_00226] Definition of EcucParamConfContainerDef EcuMDriverlnit
ListBswM |

Container Name EcuMDriverlnitListBswM
Parent Container EcuMFlexConfiguration
Description This container holds a list of modules to be initialized by the BswM.
Multiplicity 0..”
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

EcuMDriverlnititem 1.7 These containers describe the entries in a driver init list.

AUTSSAR

10.2.5 EcuMGoDownAllowedUsers

[ECUC_EcuM_00206] Definition of EcucParamConfContainerDef EcuMGoDown

AllowedUsers |

Container Name

EcuMGoDownAllowedUsers

Parent Container

EcuMFlexConfiguration

Description This container describes the collection of allowed users which are allowed to call the
EcuM_GoDownHaltPoll API (only applies in the case that the previously set shutdown
target is TARGET_RESET or TARGET_OFF).

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

EcuMGoDownAllowedUserRef

1.*

[ECUC_EcuM_00207]

No Included Containers

]

[ECUC_EcuM_00207]
UserRef |

Definition of EcucReferenceDef EcuMGoDownAllowed

Parameter Name

EcuMGoDownAllowedUserRef

Parent Container

EcuMGoDownAllowedUsers

Description This references an allowed user.

Multiplicity 1.*

Type Symbolic name reference to EcuMFlexUserConfig
Post-Build Variant Multiplicity false

Post-Build Variant Value false

Value Configuration Class

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Pre-compile time All Variants

Link time

Post-build time

Dependency

10.2.6 EcuMResetMode

[ECUC_EcuM _00172]
Mode |

Definition of EcucParamConfContainerDef EculMReset

AUTSSAR

Container Name

EcuMResetMode

Parent Container

EcuMFlexConfiguration

Description These containers describe the configured reset modes. The name of these containers
allows one of the following symbolic names to be given to the different reset modes:
« ECUM_RESET_MCU
+ ECUM_RESET_WDG
« ECUM_RESET_IO.
Multiplicity 1..256
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
EcuMResetModeld 1 [ECUC_EcuM_00173]

No Included Containers

]

[ECUC_EcuM_00173] Definition of EcucintegerParamDef EcuMResetModeld |

Parameter Name

EcuMResetModeld

Parent Container

EcuMResetMode

Description This ID identifies this reset mode in services like EcuM_SelectShutdownTarget.
Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.7 EcuMSetClockAllowedUsers

[ECUC_EcuM_00175] Definition of EcucParamConfContainerDef EcuMShutdown

Cause |

AUTSSAR

Container Name EcuMShutdownCause
Parent Container EcuMFlexConfiguration
Description These containers describe the configured shut down or reset causes. The name of

these containers allows to give one of the following symbolic names to the different
shut down causes:
* ECUM_CAUSE_ECU_STATE - ECU state machine entered a state for shutdown,

« ECUM_CAUSE_WDGM - WdgM detected failure,
« ECUM_CAUSE_DCM - Dcm requests shutdown (split into UDS services?),

« and values from configuration.

Multiplicity 1..256
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

EcuMShutdownCauseld 1 [ECUC_EcuM_00176]

No Included Containers

]
[ECUC_EcuM_00176] Definition of EcucintegerParambDef EcuMShutdownCause

Id [

Parameter Name EcuMShutdownCauseld

Parent Container EcuMShutdownCause

Description This ID identifies this shut down cause.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_EcuM_00197] Definition of EcucParamConfContainerDef EcuMSetClock
AllowedUsers |

AUTSSAR

Container Name EcuMSetClockAllowedUsers

Parent Container EcuMFlexConfiguration

Description This container describes the collection of allowed users which are allowed to call the
EcuM_SetClock API.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

EcuMSetClockAllowedUserRef 1.* [ECUC_EcuM_00198]

No Included Containers

]

[ECUC_EcuM_00198] Definition of EcucReferenceDef EcuMSetClockAllowed
UserRef |

Parameter Name EcuMSetClockAllowedUserRef

Parent Container EcuMSetClockAllowedUsers

Description These parameters describe the references to the users which are allowed to call the
EcuM_SetClock API.

Multiplicity 1.*

Type Symbolic name reference to EcuMFlexUserConfig

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

10.3 Published Information

Currently there exists no published information except the ones specified in SWS BSW
General.

AUTSSAR

A Not applicable requirements

[SWS_EcuM_NA_00000]

Upstream requirements: SRS_BSW_00383, SRS_BSW_00384, SRS_BSW_00388, SRS_BSW _
00389, SRS BSW 00390, SRS BSW 00392, SRS BSW 00393,
SRS _BSW 00395, SRS BSW 00403, SRS BSW 00369, SRS BSW
00417, SRS BSW 00419, SRS BSW 00422, SRS BSW 00432,
SRS BSW 00461, SRS BSW 00472, SRS BSW 00478, SRS BSW _
00490, SRS _BSW 00491, SRS BSW 00170, SRS _BSW_00168,
SRS_ModeMgm_00049, SRS_ModeMgm_09028, SRS_ModeMgm_
09071, SRS_ModeMgm_09078, SRS_ModeMgm_09080, SRS._-
ModeMgm_09081, SRS_ModeMgm_09083, SRS_ModeMgm_09084,
SRS_ModeMgm_09085, SRS_ModeMgm_09087, SRS_ModeMgm_
09089, SRS_ModeMgm_09090, SRS_ModeMgm_09106, SRS -
ModeMgm_09107, SRS_ModeMgm_09109, SRS_ModeMgm_09110,
SRS_ModeMgm_09112, SRS_ModeMgm_09125, SRS_ModeMgm_
09132, SRS_ModeMgm_09133, SRS_ModeMgm_09141, SRS_-
ModeMgm_09143, SRS_ModeMgm_09149, SRS_ModeMgm_09155,
SRS_ModeMgm_09156, SRS_ModeMgm_09157, SRS_ModeMgm_
09158, SRS_ModeMgm_09159, SRS _ModeMgm_09160, SRS -
ModeMgm_09161, SRS_ModeMgm_09162, SRS_ModeMgm_09163,
SRS_ModeMgm_09168, SRS_ModeMgm_09169, SRS_ModeMgm_
09172, SRS_ModeMgm_09207, SRS_ModeMgm_09220, SRS -
ModeMgm_09221, SRS_ModeMgm_09222, SRS_ModeMgm_09223,
SRS_ModeMgm_09225, SRS_ModeMgm_09226, SRS_ModeMgm_
09231, SRS _ModeMgm_09232, SRS_ModeMgm_09233, SRS -
ModeMgm_09243, SRS_ModeMgm_09245, SRS_ModeMgm_09246,
SRS_ModeMgm_09247, SRS_ModeMgm_09248, SRS_ModeMgm_
09249, SRS_ModeMgm_09250, SRS_ModeMgm_09251, SRS -
ModeMgm_09256, SRS_ModeMgm_09257, SRS_ModeMgm_09258,
SRS_ModeMgm_09259, SRS _ModeMgm_09260, SRS_ModeMgm_
09261, SRS_ModeMgm_09262, SRS_ModeMgm_09263, SRS -
ModeMgm_09265, SRS_ModeMgm_09266, SRS_ModeMgm_09267,
SRS_ModeMgm_09268, SRS_ModeMgm_09269, SRS_ModeMgm_
09278, SRS_ModeMgm_09279

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to
AUTOSAR Release R21-11

B.1.1 Added Specification Iltems in R21-11

[SWS_EcuM_04148] [SWS_EcuM_04149] [SWS_EcuM_04150] [SWS_EcuM_04151]
[SWS_EcuM_04152] [SWS_EcuM_91006] [SWS_EcuM_91007]

B.1.2 Changed Specification Items in R21-11

[SWS_EcuM_02337] [SWS_EcuM_02788] [SWS_EcuM_02810] [SWS_EcuM_02858]
[SWS_EcuM_02867] [SWS_EcuM_02868] [SWS_EcuM_02904] [SWS_EcuM_02987]
[SWS_EcuM_03011] [SWS_EcuM_03012] [SWS_EcuM_03020] [SWS_EcuM_03023]
[SWS_EcuM_03024] [SWS_EcuM_03025] [SWS_EcuM_03026] [SWS_EcuM_04033]
[SWS_EcuM_04091] [SWS_EcuM_04098] [SWS_EcuM_04105] [SWS_EcuM_04109]
[SWS_EcuM_04117] [SWS_EcuM_04119] [SWS_EcuM_04123] [SWS_EcuM_04124]
[SWS_EcuM_04131] [SWS_EcuM_04139] [SWS_EcuM_04144] [SWS_EcuM_91003]

B.1.3 Deleted Specification ltems in R21-11

[SWS_EcuM_02927] [SWS_EcuM_02929] [SWS_EcuM_03009] [SWS_EcuM_04080]
[SWS_EcuM_04125]

B.2 Traceable item history of this document according to
AUTOSAR Release R22-11

B.2.1 Added Specification Items in R22-11

none

B.2.2 Changed Specification Items in R22-11

[SWS_EcuM_02810] [SWS_EcuM_02811] [SWS_EcuM_02812] [SWS_EcuM_02813]
[SWS_EcuM_02822] [SWS_EcuM_02824] [SWS_EcuM_02825] [SWS_EcuM_02826]
[SWS_EcuM_02827] [SWS_EcuM_02828] [SWS_EcuM_02829] [SWS_EcuM_02830]
[SWS_EcuM_02831] [SWS_EcuM_02835] [SWS_EcuM_02836] [SWS_EcuM_02837]
[SWS_EcuM_02838] [SWS_EcuM_02858] [SWS_EcuM_02859] [SWS_EcuM_02904]
[SWS_EcuM_02905] [SWS_EcuM_02906] [SWS_EcuM_02907] [SWS_EcuM_02916]
[SWS_EcuM_02917] [SWS_EcuM_02918] [SWS_EcuM_02919] [SWS_EcuM_02920]

AUTSSAR

[SWS_EcuM_02921] [SWS_EcuM_02922] [SWS_EcuM_02923] [SWS_EcuM_02924]
[SWS_EcuM_02925] [SWS_EcuM_02926] [SWS_EcuM_02928] [SWS_EcuM_03011]
[SWS_EcuM_03012] [SWS_EcuM_03017] [SWS_EcuM_04032] [SWS_EcuM_04038]
[SWS_EcuM_04040] [SWS_EcuM_04041] [SWS_EcuM_04044] [SWS_EcuM_04045]
[SWS_EcuM_04050] [SWS_EcuM_04051] [SWS_EcuM_04054] [SWS_EcuM_04057]
[SWS_EcuM_04061] [SWS_EcuM_04062] [SWS_EcuM_04063] [SWS_EcuM_04064]
[SWS_EcuM_04065] [SWS_EcuM_04085] [SWS_EcuM_04091] [SWS_EcuM_04096]
[SWS_EcuM_04101] [SWS_EcuM_04102] [SWS_EcuM_04105] [SWS_EcuM_04107]
[SWS_EcuM_04108] [SWS_EcuM_04109] [SWS_EcuM_04110] [SWS_EcuM_04111]
[SWS_EcuM_04112] [SWS_EcuM_04113] [SWS_EcuM_04120] [SWS_EcuM_04122]
[SWS_EcuM_04124] [SWS_EcuM_04127] [SWS_EcuM_04128] [SWS_EcuM_04129]
[SWS_EcuM_04131] [SWS_EcuM_04135] [SWS_EcuM_04136] [SWS_EcuM_04137]
[SWS_EcuM_91001] [SWS_EcuM_91002] [SWS_EcuM_91003] [SWS_EcuM_91004]
[SWS_EcuM_91005] [SWS_EcuM_91006] [SWS_EcuM_91007] [SWS_EcuM_91008]
[SWS_EcuM_NA_00000]

B.2.3 Deleted Specification Iltems in R22-11

none

B.3 Traceable item history of this document according to
AUTOSAR Release R23-11

B.3.1 Added Specification Items in R23-11
[SWS_EcuM_02934] [SWS_EcuM_04037]

B.3.2 Changed Specification Items in R23-11
[SWS_EcuM_02932] [SWS_EcuM_03021] [SWS_EcuM_04033]

B.3.3 Deleted Specification Iltems in R23-11

none

B.4 Traceable item history of this document according to
AUTOSAR Release R24-11

B.4.1 Added Specification Iltems in R24-11

none

AUTSSAR

B.4.2 Changed Specification Items in R24-11

[ECUC_EcuM_00105] [ECUC_EcuM 00106] [ECUC_EcuM_00205] [SWS_EcuM_
00624] [SWS_EcuM_01117] [SWS_EcuM_01156] [SWS_EcuM_02156] [SWS_
EcuM_02157] [SWS_EcuM 02165] [SWS_EcuM_02166] [SWS_EcuM_02171]
[SWS_EcuM_02172] [SWS_EcuM_02181] [SWS_EcuM_02185] [SWS_EcuM_02188]
[SWS_EcuM_02247] [SWS_EcuM_02336] [SWS_EcuM_02337] [SWS_EcuM_02345]
[SWS_EcuM_02389] [SWS_EcuM_02411] [SWS_EcuM_02479] [SWS_EcuM_02496]
[SWS_EcuM_02532] [SWS_EcuM_02533] [SWS_EcuM_02539] [SWS_EcuM_02546]
[SWS_EcuM_02559] [SWS_EcuM_02561] [SWS_EcuM_02562] [SWS_EcuM_02565]
[SWS_EcuM_02566] [SWS_EcuM_02572] [SWS_EcuM_02585] [SWS_EcuM_02589]
[SWS_EcuM_02601] [SWS_EcuM_02603] [SWS_EcuM_02623] [SWS_EcuM_02625]
[SWS_EcuM_02645] [SWS_EcuM_02683] [SWS_EcuM_02684] [SWS_EcuM_02707]
[SWS_EcuM_02709] [SWS_EcuM_02710] [SWS_EcuM_02712] [SWS_EcuM_02730]
[SWS_EcuM_02756] [SWS_EcuM_02788] [SWS_EcuM_02790] [SWS_EcuM_02791]
[SWS_EcuM_02794] [SWS_EcuM_02795] [SWS_EcuM_02796] [SWS_EcuM_02798]
[SWS_EcuM_02799] [SWS_EcuM_02801] [SWS_EcuM_02806] [SWS_EcuM_02807]
[SWS_EcuM_02810] [SWS_EcuM_02812] [SWS_EcuM_02813] [SWS_EcuM_02822]
[SWS_EcuM_02824] [SWS_EcuM_02825] [SWS_EcuM_02826] [SWS_EcuM_02827]
[SWS_EcuM_02828] [SWS_EcuM_02829] [SWS_EcuM_02830] [SWS_EcuM_02831]
[SWS_EcuM_02835] [SWS_EcuM_02836] [SWS_EcuM_02837] [SWS_EcuM_02838]
[SWS_EcuM_02858] [SWS_EcuM_02863] [SWS_EcuM_02867] [SWS_EcuM_02868]
[SWS_EcuM_02904] [SWS_EcuM_02905] [SWS_EcuM_02906] [SWS_EcuM_02907]
[SWS_EcuM_02916] [SWS_EcuM_02917] [SWS_EcuM_02918] [SWS_EcuM_02919]
[SWS_EcuM_02920] [SWS_EcuM_02921] [SWS_EcuM_02922] [SWS_EcuM_02923]
[SWS_EcuM_02924] [SWS_EcuM_02925] [SWS_EcuM_02926] [SWS_EcuM_02928]
[SWS_EcuM_02932] [SWS_EcuM_02934] [SWS_EcuM_02947] [SWS_EcuM_02951]
[SWS_EcuM_02952] [SWS_EcuM_02953] [SWS_EcuM_02957] [SWS_EcuM_02958]
[SWS_EcuM_02960] [SWS_EcuM_02961] [SWS_EcuM_02963] [SWS_EcuM_02975]
[SWS_EcuM_02976] [SWS_EcuM_02979] [SWS_EcuM_02990] [SWS_EcuM_03000]
[SWS_EcuM_03003] [SWS_EcuM_03010] [SWS_EcuM_03011] [SWS_EcuM_03012]
[SWS_EcuM_03017] [SWS_EcuM_03019] [SWS_EcuM_03020] [SWS_EcuM_03021]
[SWS_EcuM_03022] [SWS_EcuM_03023] [SWS_EcuM_03024] [SWS_EcuM_03025]
[SWS_EcuM_03026] [SWS_EcuM_04001] [SWS_EcuM_04002] [SWS_EcuM_04003]
[SWS_EcuM_04004] [SWS_EcuM_04005] [SWS_EcuM_04006] [SWS_EcuM_04007]
[SWS_EcuM_04008] [SWS_EcuM_04009] [SWS_EcuM_04010] [SWS_EcuM_04014]
[SWS_EcuM_04015] [SWS_EcuM_04016] [SWS_EcuM_04017] [SWS_EcuM_04018]
[SWS_EcuM_04020] [SWS_EcuM_04022] [SWS_EcuM_04023] [SWS_EcuM_04024]
[SWS_EcuM_04025] [SWS_EcuM_04026] [SWS_EcuM_04027] [SWS_EcuM_04028]
[SWS_EcuM_04029] [SWS_EcuM_04030] [SWS_EcuM_04032] [SWS_EcuM_04038]
[SWS_EcuM_04040] [SWS_EcuM_04041] [SWS_EcuM_04044] [SWS_EcuM_04045]
[SWS_EcuM_04050] [SWS_EcuM_04051] [SWS_EcuM_04054] [SWS_EcuM_04055]
[SWS_EcuM_04056] [SWS_EcuM_04057] [SWS_EcuM_04058] [SWS_EcuM_04059]
[SWS_EcuM_04060] [SWS_EcuM_04061] [SWS_EcuM_04062] [SWS_EcuM_04063]
[SWS_EcuM_04064] [SWS_EcuM_04065] [SWS_EcuM_04066] [SWS_EcuM_04069]
[SWS_EcuM_04070] [SWS_EcuM_04071] [SWS_EcuM_04072] [SWS_EcuM_04073]

AUTSSAR

[SWS_EcuM_04074] [SWS_EcuM_04075] [SWS_EcuM_04076] [SWS_EcuM_04078]
[SWS_EcuM_04079] [SWS_EcuM_04081] [SWS_EcuM_04082] [SWS_EcuM_04084]
[SWS_EcuM_04085] [SWS_EcuM_04086] [SWS_EcuM_04087] [SWS_EcuM_04088]
[SWS_EcuM_04089] [SWS_EcuM_04091] [SWS_EcuM_04092] [SWS_EcuM_04093]
[SWS_EcuM_04096] [SWS_EcuM_04098] [SWS_EcuM_04101] [SWS_EcuM_04102]
[SWS_EcuM_04105] [SWS_EcuM_04107] [SWS_EcuM_04108] [SWS_EcuM_04109]
[SWS_EcuM_04110] [SWS_EcuM_04111] [SWS_EcuM_04112] [SWS_EcuM_04113]
[SWS_EcuM_04114] [SWS_EcuM_04115] [SWS_EcuM_04116] [SWS_EcuM_04117]
[SWS_EcuM_04118] [SWS_EcuM_04119] [SWS_EcuM_04120] [SWS_EcuM_04121]
[SWS_EcuM_04122] [SWS_EcuM_04123] [SWS_EcuM_04124] [SWS_EcuM_04126]
[SWS_EcuM_04127] [SWS_EcuM_04128] [SWS_EcuM_04129] [SWS_EcuM_04130]
[SWS_EcuM_04131] [SWS_EcuM_04132] [SWS_EcuM_04133] [SWS_EcuM_04135]
[SWS_EcuM_04136] [SWS_EcuM_04137] [SWS_EcuM_04138] [SWS_EcuM_04139]
[SWS_EcuM_04140] [SWS_EcuM_04142] [SWS_EcuM_04143] [SWS_EcuM_04144]
[SWS_EcuM_04145] [SWS_EcuM_04146] [SWS_EcuM_04147] [SWS_EcuM_04148]
[SWS_EcuM_04149] [SWS_EcuM_04150] [SWS_EcuM_04151] [SWS_EcuM_04152]
[SWS_EcuM_91001] [SWS_EcuM_91002] [SWS_EcuM_91003] [SWS_EcuM_91004]
[SWS_EcuM_91005] [SWS_EcuM_91006] [SWS_EcuM_91007] [SWS_EcuM_91008]

B.4.3 Deleted Specification Items in R24-11

none

B.5 Traceable item history of this document according to
AUTOSAR Release R25-11

B.5.1 Added Specification Items in R25-11
[SWS_EcuM_91010] [SWS_EcuM_91011] [SWS_EcuM_91012]

B.5.2 Changed Specification ltems in R25-11

none

B.5.3 Deleted Specification Items in R25-11

none

	1 Introduction and Functional Overview
	1.1 Backwards Compatibility to Previous ECU Manager Module Versions

	2 Definitions and Abbreviations
	2.1 Definitions
	2.2 Abbreviations

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and Assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 SPAL Modules
	5.1.1 MCU Driver
	5.1.2 Driver Dependencies and Initialization Order

	5.2 Peripherals with Wakeup Capability
	5.3 Operating System
	5.4 BSW Scheduler
	5.5 BSW Mode Manager
	5.6 Software Components
	5.7 File Structure
	5.7.1 Code file structure
	5.7.2 Header file structure

	6 Requirements Tracing
	7 Functional Specification
	7.1 Phases of the ECU Manager Module
	7.1.1 STARTUP Phase
	7.1.2 UP Phase
	7.1.3 SHUTDOWN Phase
	7.1.4 SLEEP Phase
	7.1.5 OFF Phase

	7.2 Structural Description of the ECU Manager
	7.2.1 Standardized AUTOSAR Software Modules
	7.2.2 Software Components

	7.3 STARTUP Phase
	7.3.1 Activities before EcuM_Init
	7.3.2 Activities in StartPreOS Sequence
	7.3.3 Activities in the StartPostOS Sequence
	7.3.4 Checking Configuration Consistency
	7.3.4.1 The Necessity for Checking Configuration Consistency in the ECU Manager
	7.3.4.2 Example Hash Computation Algorithm

	7.3.5 Driver Initialization
	7.3.6 BSW Initialization

	7.4 SHUTDOWN Phase
	7.4.1 Activities in the OffPreOS Sequence
	7.4.2 Activities in the OffPostOS Sequence

	7.5 SLEEP Phase
	7.5.1 Activities in the GoSleep Sequence
	7.5.2 Activities in the Halt Sequence
	7.5.3 Activities in the Poll Sequence
	7.5.4 Leaving Halt or Poll
	7.5.5 Activities in the WakeupRestart Sequence

	7.6 UP Phase
	7.6.1 Alarm Clock Handling
	7.6.2 Wakeup Source State Handling
	7.6.3 Internal Representation of Wakeup States
	7.6.4 Activities in the WakeupValidation Sequence
	7.6.4.1 Wakeup of Communication Channels
	7.6.4.2 Interaction of Wakeup Sources and the ECU Manager
	7.6.4.3 Wakeup Validation Timeout
	7.6.4.4 Requirements for Drivers with Wakeup Sources

	7.6.5 Requirements for Wakeup Validation
	7.6.6 Wakeup Sources and Reset Reason
	7.6.7 Wakeup Sources with Integrated Power Control

	7.7 Shutdown Targets
	7.7.1 Sleep
	7.7.2 Reset

	7.8 Alarm Clock
	7.8.1 Alarm Clocks and Users
	7.8.2 EcuM Clock Time
	7.8.2.1 EcuM Clock Time in the UP Phase
	7.8.2.2 EcuM Clock Time in the Sleep Phase

	7.9 MultiCore
	7.9.1 Master Core
	7.9.2 Slave Core
	7.9.3 Master Core - Slave Core Signalling
	7.9.3.1 BSW Level
	7.9.3.2 Example for Shutdown Synchronization

	7.9.4 UP Phase
	7.9.5 STARTUP Phase
	7.9.5.1 Master Core STARTUP
	7.9.5.2 Slave Core STARTUP

	7.9.6 SHUTDOWN Phase
	7.9.6.1 Master Core SHUTDOWN
	7.9.6.2 Slave Core SHUTDOWN

	7.9.7 SLEEP Phase
	7.9.7.1 Master Core SLEEP
	7.9.7.2 Slave Core SLEEP

	7.9.8 Runnables and Entry points
	7.9.8.1 Internal behavior

	7.10 EcuM Mode Handling
	7.11 Advanced Topics
	7.11.1 Relation to Bootloader
	7.11.2 Relation to Complex Drivers
	7.11.3 Handling Errors during Startup and Shutdown

	7.12 ErrorHook
	7.13 Error classification
	7.13.1 Development Errors
	7.13.2 Runtime Errors
	7.13.3 Transient Faults
	7.13.4 Production Errors
	7.13.5 Extended Production Errors

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.2.1 EcuM_ConfigType
	8.2.2 EcuM_RunStatusType
	8.2.3 EcuM_WakeupSourceType
	8.2.4 EcuM_WakeupStatusType
	8.2.5 EcuM_ResetType
	8.2.6 EcuM_StateType

	8.3 Function Definitions
	8.3.1 General
	8.3.1.1 EcuM_GetVersionInfo

	8.3.2 Initialization and Shutdown Sequences
	8.3.2.1 EcuM_GoDownHaltPoll
	8.3.2.2 EcuM_Init
	8.3.2.3 EcuM_StartupTwo
	8.3.2.4 EcuM_Shutdown

	8.3.3 State Management
	8.3.3.1 EcuM_SetState
	8.3.3.2 EcuM_RequestRUN
	8.3.3.3 EcuM_ReleaseRUN
	8.3.3.4 EcuM_RequestPOST_RUN
	8.3.3.5 EcuM_ReleasePOST_RUN

	8.3.4 Shutdown Management
	8.3.4.1 EcuM_SelectShutdownTarget
	8.3.4.2 EcuM_GetShutdownTarget
	8.3.4.3 EcuM_GetLastShutdownTarget
	8.3.4.4 EcuM_SelectShutdownCause
	8.3.4.5 EcuM_GetShutdownCause

	8.3.5 Wakeup Handling
	8.3.5.1 EcuM_CheckWakeup
	8.3.5.2 EcuM_GetPendingWakeupEvents
	8.3.5.3 EcuM_ClearWakeupEvent
	8.3.5.4 EcuM_GetValidatedWakeupEvents
	8.3.5.5 EcuM_GetExpiredWakeupEvents

	8.3.6 Alarm Clock
	8.3.6.1 EcuM_SetRelWakeupAlarm
	8.3.6.2 EcuM_SetAbsWakeupAlarm
	8.3.6.3 EcuM_AbortWakeupAlarm
	8.3.6.4 EcuM_GetCurrentTime
	8.3.6.5 EcuM_GetWakeupTime
	8.3.6.6 EcuM_SetClock

	8.3.7 Miscellaneous
	8.3.7.1 EcuM_SelectBootTarget
	8.3.7.2 EcuM_GetBootTarget

	8.4 Callback Definitions
	8.4.1 Callbacks from Wakeup Sources
	8.4.1.1 EcuM_SetWakeupEvent
	8.4.1.2 EcuM_ValidateWakeupEvent

	8.5 Callout Definitions
	8.5.1 Generic Callouts
	8.5.1.1 EcuM_ErrorHook

	8.5.2 Callouts from the STARTUP Phase
	8.5.2.1 EcuM_AL_SetProgrammableInterrupts
	8.5.2.2 EcuM_AL_DriverInitZero
	8.5.2.3 EcuM_DeterminePbConfiguration
	8.5.2.4 EcuM_AL_DriverInitOne
	8.5.2.5 EcuM_LoopDetection

	8.5.3 Callouts from the SHUTDOWN Phase
	8.5.3.1 EcuM_OnGoOffOne
	8.5.3.2 EcuM_OnGoOffTwo
	8.5.3.3 EcuM_AL_SwitchOff
	8.5.3.4 EcuM_AL_Reset

	8.5.4 Callouts from the SLEEP Phase
	8.5.4.1 EcuM_EnableWakeupSources
	8.5.4.2 EcuM_GenerateRamHash
	8.5.4.3 EcuM_SleepActivity
	8.5.4.4 EcuM_StartCheckWakeup
	8.5.4.5 EcuM_CheckWakeupHook
	8.5.4.6 EcuM_CheckRamHash
	8.5.4.7 EcuM_DisableWakeupSources
	8.5.4.8 EcuM_AL_DriverRestart

	8.5.5 Callouts from the UP Phase
	8.5.5.1 EcuM_StartWakeupSources
	8.5.5.2 EcuM_CheckValidation
	8.5.5.3 EcuM_StopWakeupSources

	8.6 Scheduled Functions
	8.6.1 EcuM_MainFunction

	8.7 Expected Interfaces
	8.7.1 Optional Interfaces
	8.7.2 Configurable interfaces
	8.7.2.1 Callbacks from the STARTUP phase

	8.8 Specification of the Port Interfaces
	8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface
	8.8.1.1 General Approach
	8.8.1.2 Service Interfaces

	8.8.2 Port Interface for EcuM_BootTarget Interface
	8.8.2.1 General Approach
	8.8.2.2 Service Interfaces

	8.8.3 Port Interface for EcuM_AlarmClock Interface
	8.8.3.1 General Approach
	8.8.3.2 Service Interfaces

	8.8.4 Port Interface for EcuM_Time Interface
	8.8.4.1 General Approach
	8.8.4.2 Data Types
	8.8.4.3 Service Interfaces

	8.8.5 Port Interface for EcuM_StateRequest Interface
	8.8.5.1 General Approach
	8.8.5.2 Data Types
	8.8.5.3 Service Interfaces

	8.8.6 Port Interface for EcuM_CurrentMode Interface
	8.8.6.1 General Approach
	8.8.6.2 Data Types
	8.8.6.3 Service Interfaces

	8.8.7 Definition of the ECU Manager Service

	9 Sequence Charts
	9.1 State Sequences
	9.2 Wakeup Sequences
	9.2.1 GPT Wakeup Sequences
	9.2.2 ICU Wakeup Sequences
	9.2.3 CAN Wakeup Sequences
	9.2.4 LIN Wakeup Sequences
	9.2.5 FlexRay Wakeup Sequences
	9.2.6 Ethernet Wakeup Sequence

	10 Configuration specification
	10.1 Common Containers and configuration parameters
	10.1.1 EcuM
	10.1.2 EcuMGeneral
	10.1.3 EcuMConfiguration
	10.1.4 EcuMCommonConfiguration
	10.1.5 EcuMDefaultShutdownTarget
	10.1.6 EcuMDriverInitListOne
	10.1.7 EcuMDriverInitListZero
	10.1.8 EcuMDriverRestartList
	10.1.9 EcuMDriverInitItem
	10.1.10 EcuMSleepMode
	10.1.11 EcuMWakeupSource

	10.2 EcuM-Flex Containers and configuration parameters
	10.2.1 EcuMFlexGeneral
	10.2.2 EcuMFlexConfiguration
	10.2.3 EcuMAlarmClock
	10.2.4 EcuMDriverInitListBswM
	10.2.5 EcuMGoDownAllowedUsers
	10.2.6 EcuMResetMode
	10.2.7 EcuMSetClockAllowedUsers

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R21-11
	B.1.1 Added Specification Items in R21-11
	B.1.2 Changed Specification Items in R21-11
	B.1.3 Deleted Specification Items in R21-11

	B.2 Traceable item history of this document according to AUTOSAR Release R22-11
	B.2.1 Added Specification Items in R22-11
	B.2.2 Changed Specification Items in R22-11
	B.2.3 Deleted Specification Items in R22-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11

	B.4 Traceable item history of this document according to AUTOSAR Release R24-11
	B.4.1 Added Specification Items in R24-11
	B.4.2 Changed Specification Items in R24-11
	B.4.3 Deleted Specification Items in R24-11

	B.5 Traceable item history of this document according to AUTOSAR Release R25-11
	B.5.1 Added Specification Items in R25-11
	B.5.2 Changed Specification Items in R25-11
	B.5.3 Deleted Specification Items in R25-11

