AUTSSAR

Document Title Specification of Module E2E
Transformer

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 650

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR * Order of figures reworked
2025-11-27 R25-11 Release
Management » End-To-End For Methods reworked
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
» Rework flowcharts, sequence charts and
AUTOSAR explaining text
2023-11-23 | R23-11 Release
Management * Description of E2E state machine results
updated
* Remove duplicated requirement
SWS_E2EXf 00195
» Correction of transformer call in
SWS_E2EXf 00203,
SWS_E2EXf 00196
* Use consistent function names (e.g.
AUTOSAR E2EXf_handling_PXXm_server,
2022-11-24 | R22-11 Release E2EXf_handling_PXXm_client)
Management
» Counter handling for client/server
communication (methods) updated
* Correction of transformer status
forwarding
» Correction of MaxDatalLength and Offset
in profile PO7m

AUTSSAR

» Added Concept 700 text and figures

AUTOSAR (E2E for fields)
2021-11-25 | R21-11 Release
Management » Added Description of Profile 8m and
44m (E2E for methods)
» Added Description of Profile 4m and 7m
AUTOSAR (E2E for methods)
2020-11-30 | R20-11 Release , .
Management Updated added drawings of functions
» Updated API Specification
* Incorporated usage of E2E_PxxForward
methods to replicate detected
E2E-Errors on outgoing messages
AUTOSAR * Added Client-Server Communication
2019-11-28 | R19-11 | Release support
Management « Updated Tracing from SRS_E2E to RS_
E2E
» Changed Document Status from Final to
published
* Fix routine prototypes to correctly list
optional parameters.
» Correction applicable configuration
parameter for data length for profiles 2
2018-10-31 4.4.0 Release
Management « Corrected reentrancy of E2EXf
interfaces.
« Clarification of behavior and return value
for
DISABLE-END-TO-END-CHECK:TRUE.
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
AUTOSAR - Added support for Profiles P7, P11, P22
2016-11-30 | 4.3.0 Release
Management * Various minor improvements
AUTOSAR
2015-07-31 | 4.2.2 Release « Various minor fixes

Management

AUTSSAR

2014-10-31

4.2.1

AUTOSAR
Release
Management

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 8
Acronyms and Abbreviations 9
Related documentation 10
3.1 Input documents & related standardsandnorms 10
3.2 Related specification 10
Constraints and assumptions 11
4.1 Limitations 11
4.2 Applicability to cardomains L. 11
Dependencies to other modules 12
5.1 Supported configurationvariants 12
Requirements Tracing 13
Functional specification 15
7.1 Supported RTE functions 17
7.2 Naming for functions and data to be protected by E2E 17
7.3 Configuration L 17
7.3.1 Precedence of configuration attributes 17
7.3.2 Disable E2Echeck 18
7.3.3 Configurationvariants 18
7.4 Generated structuretypes 19
7.4.1 Overall configuration and state of E2E transformer 19
7.4.2 Configuration and state of each E2E-protecteddata 20
7.5 Staticinitialization 20
7.5.1 Static initialization of config L0, 20
7.5.2 Static Initializationofstate.o 0L, 24
7.6 Runtime initialization by E2EXf_Init() function 24
7.6.1 Runtime selection of configuration (post-build variantonly) 24
7.6.2 Runtime initializationof State 24
7.7 Normaloperation 25
7.7.1 In-place processing and out-of-place processing 26
7.7.2 Transformer pairing and dataexchange 26
7.7.3 Transformer and E2E protection 27
7.7.3.1 E2EXf <transformerld>overview 28
7.7.3.2 E2EXf_ input_checks, 28
7.7.3.3 E2EXf handling_ PO1_PO2 31
7.7.3.4 E2EXf Handling bufferand header 32
7.7.3.5 E2EXf_handling_specific_protection 34

7.7.3.6 E2EXf_store request counter. 39

AUTSSAR

8

7.7.3.7 E2EXf Data Transformation
7.7.3.8 E2EXf_MapCodeToStatus
7.7.4 Transformerand E2Echeck
7.7.41 E2EXf Inv_<transformerld>overview
7.7.42 E2EXf Inv_input. checks.
7.7.4.3 E2EXf_Inv_handling_P01_P02
7.7.4.4 E2EXf Inv_handling_main_check

7.7.4.5 E2EXf_Inv_handling _P01_P02_forceConstantMaxDeltaCounter
7.7.4.6 E2EXf Inv_handle Statemachine
7.7.5 De-Initialization
7.8 Errorclassification.
7.8.1 DevelopmentErrors
7.8.2 Runtime Errors e
7.8.3 ProductionErrors
7.8.4 Extended ProductionErrors

API specification

8.1 Importedtypes
8.2 Typedefinitions
8.2.1 E2EXf ConfigType
8.3 Function definitions L
8.3.1 E2EXf <«transformerld>
8.3.2 E2EXf Inv_<transformerld>.
8.3.3 E2EXf Init
8.3.4 E2EXf Delnit e
8.3.5 E2EXf GetVersionInfo
8.4 Callback notifications
8.5 Scheduled functions
8.6 Expectedinterfaces
8.6.1 Mandatory Interfaces L.
8.6.2 OptionalInterfaces
8.6.3 Configurable interfaces

Sequence diagrams

9.1 E2E for Sender/Receiver
9.1.1 Send E2E protectedsignals
9.1.2 Receive E2E protected signals (Activationmode)
9.1.3 Receive E2E protected signals (Polingmode)

9.2 E2EforEvents
9.2.1 Sendan E2E ProtectedEvent,
9.2.2 Receive an E2E Protected Event(Activation Mode)
9.2.3 Receive an E2E Protected Event(PollingMode)

9.3 EZ2E for Method Call/Method Response
9.3.1 Call an E2E Protected Method

AUTSSAR

9.3.2 Receive and respond to an E2E Protected Method Call
9.3.3 Receive a E2E Protected Response to a Method Call
9.4 E2E in Signal to Service Translation

10 Configuration specification

A
B

Not applicable requirements

Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e

B.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e
B.2.1 Added Specification ltemsin R23-11
B.2.2 Changed Specification ltemsin R23-11
B.2.3 Deleted Specification Itemsin R23-11
B.3 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
B.3.1 Added Specification ltemsinR24-11
B.3.2 Changed Specification ItemsinR24-11
B.3.3 Deleted Specification ltemsinR24-11
B.4 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
B.4.1 Added Specification ltemsin R25-11
B.4.2 Changed Specification ltemsin R25-11
B.4.3 Deleted Specification Itemsin R25-11

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module E2E transformer.

The E2E transformer encapsulates the complexity of configuring and handling of the
E2E protection and it offers a standard transformer interface. Thanks to this the caller
of an E2E transformer does not need to know E2E internals.

E2E transformer belongs to the class "Safety", according to [1, SRS Transformer Gen-
eral] and is based on the specification in the [2, ASWS Transformer General].

The E2E transformer ensures a correct communication of I-signals through QM com-
munication stack. The communication stack is considered as "black channel" commu-
nication. If receiving SW-C does not evaluate the return codes of the E2E transformer,
then the SW-C might use corrupted data.

The E2E transformer instantiates E2E configuration and E2E state data structures,
based on its configuration. The E2E transformer is responsible for the invocation of the
E2E Library based on the configuration of a specific data element (l-signal).

There is no data splitting/merging, i.e. one I-signal is NOT made of several data el-
ements and one data element is not made of several I-signals. On the sender side,
one data element maps exactly one-to-one to an I-signal. On the receiver side, one-or-
more data elements represent the entire received I-signal. There is a fan-out I-signal
to one-or-more data elements on receiver side.

The following scenarios are supported:
1. On sender side, one data element is serialized to
(a) one I-signal and protected with one E2E-protection

(b) one or more I-signals placed in one |-PDU, where each I-signal has a dif-
ferent E2E protection. Some I-signals may have no E2E protection at all.

2. On receiver side, one I-signal checked
(a) Once: resulting with one data element (i.e. no fan-out)

(b) Several times: with the same settings, but by independent functions (e.g.
by ASIL-independent receiver SW-Cs),

(c) Several times: with partially different settings (e.g. same DatalD, but differ-
ent counter tolerances), by different functions, resulting with separate data
elements each having possibly different E2E-check result,

(d) Several times: with and without E2E-check enabled (e.g. if one receiver is
safety-related, and another one is QM and it does not need the results of
E2E check).

The E2E transformer is invoked by a SW-C via the RTE API (read, write, send, receive).

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the [3, AUTOSAR glossary].

Abbreviation / Acronym: Description:

I-Signal An item to be serialized to an array of bytes to be E2E protected. For E2E
protection I-Signals must be assigned to an I-Signal group.

I-Signal group A set of I-Signals to be E2E protected. E2E protection is defined on the level of
I-Signal groups.

Data element Data exchanged between sender and receiver. The E2E transformer maps data
elements 1-to-1 to I-signals or I-signal groups.

Variant Transformer variant defined by a configuration of TransformationTechnology and
EndToEndTransformationDescription. E2E transformers based on the same
variant use the same E2E profile (see constr_03313 in [4]).

TransformationTechnology TransformationTechnology is a specific class defined in [4]. This class holds
general config parameters of a transformer (not only for E2E transformers).

EndToEndTransformation-Description Specific class defined that contains about 30 parameters for E2E configuration
(see [4]). It is referenced by the TransformationTechnology.

Inverse transformer A transformer on receiver side, which reverses transformation steps applied on
sender side

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Requirements on Transformer
AUTOSAR_CP_RS_Transformer

[2] General Specification of Transformers
AUTOSAR_CP_ASWS TransformerGeneral

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] System Template
AUTOSAR_CP_TPS_SystemTemplate

[5] E2E Protocol Specification
AUTOSAR_FO PRS_ E2EProtocol

[6] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_CP_SWS_EZ2ELibrary

[7] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[8] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[9] SOME/IP Protocol Specification
AUTOSAR_FO_PRS_ SOMEIPProtocol

[10] Specification of RTE Software
AUTOSAR_CP_SWS RTE

3.2 Related specification

AUTOSAR provides a General Specification on Transformers [2, ASWS Transformer
General], which is also valid for E2E Transformer.

Thus, the specification [2, ASWS Transformer General] shall be considered as addi-
tional and required specification for E2E Transformer.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

General limitations regarding E2E protection and the detectable failure modes are de-
scribed in [5, PRS E2EProtocol].

Further, the following limitations are known:

1. Error reporting to DEM not yet specified.

4.2 Applicability to car domains

The E2E Transformer is applicable for safety-related communication.

AUTSSAR

5 Dependencies to other modules

The E2E Transformer depends on [6, SWS E2ELibrary]. The E2E Library provides
data types and stateless functions. E2E Transformer executes the E2E Library routines
passing the configuration and state as function parameters.

5.1 Supported configuration variants

There are currently no explicit Pre-compile time configuration settings apart from the
settings specified in [7, SWS BSW General] and [2, ASWS TransformerGeneral].

AUTSSAR

6 Requirements Tracing

Requirement

Description

Satisfied by

[RS_E2E_08528]

E2E protocol shall provide different
E2E profiles

[SWS_E2EXf_00047]

[RS_E2E_08538]

An E2E Transformer shall be
provided

[SWS_E2EXf_00009] [SWS_E2EXf 00011]
[SWS_E2EXf_00018] [SWS_E2EX{_00020]
[SWS_E2EXf_00021] [SWS_E2EXf 00023]
[SWS_E2EXf 00024] [SWS_E2EXf 00025]
[SWS_E2EXf_00027] [SWS_E2EXf_00028]
[SWS_E2EXf_00029] [SWS_E2EXf 00030]
[SWS_E2EXf_00032] [SWS_E2EXf 00034]
[SWS_E2EXf_00035] [SWS_E2EXf 00036]
[SWS_E2EXf_00037] [SWS_E2EX{_00047]
[SWS_E2EXf_00048] [SWS_E2EXf 00087]
[SWS_E2EXf_00088] [SWS_E2EX{ 00089]
[SWS_E2EXf_00090] [SWS_E2EXf_00096]
[SWS_E2EXf_00102] [SWS_E2EXf 00103]
[SWS_E2EXf_00104] [SWS_E2EX{_00105]
[SWS_E2EXf_00106] [SWS_E2EXf 00107]
[SWS_E2EXf_00108] [SWS_E2EXf_00109]
[SWS_E2EXf_00111] [SWS_E2EXf 00112]
[SWS_E2EXf_00113] [SWS_E2EX{ 00114]
[SWS_E2EXf_00115] [SWS_E2EX{ 00116]
[SWS_E2EXf 00118] [SWS_E2EXf 00119]
[SWS_E2EXf_00122] [SWS_E2EXf_00123]
[SWS_E2EXf 00124] [SWS_E2EXf 00125]
[SWS_E2EXf_00126] [SWS_E2EX{_00130]
[SWS_E2EXf_00132] [SWS_E2EXf 00133]
[SWS_E2EXf_00134] [SWS_E2EX{ 00137]
[SWS_E2EXf_00138] [SWS_E2EXf 00139]
[SWS_E2EXf_00140] [SWS_E2EX{ 00141]
[SWS_E2EXf_00142] [SWS_E2EXf_00144]
[SWS_E2EXf 00145] [SWS_E2EXf 00146]
[SWS_E2EXf_00148] [SWS_E2EXf 00149]
[SWS_E2EXf_00150] [SWS_E2EXf 00151]
[SWS_E2EXf_00152] [SWS_E2EXf 00153]
[SWS_E2EXf_00154] [SWS_E2EXf 00155]
[SWS_E2EXf_00158] [SWS_E2EX{ 00159
[SWS_E2EXf_00161] [SWS_E2EXf 00162]
[SWS_E2EXf 00164] [SWS_E2EXf 00165]
[SWS_E2EXf_00166] [SWS_E2EXf 00167]
[SWS_E2EXf 00168] [SWS_E2EXf 00169]
[SWS_E2EXf_00170] [SWS_E2EXf 00171]
[SWS_E2EXf_00175] [SWS_E2EXf 00180]
[SWS_E2EXf_00181] [SWS_E2EX{ 00182]
[SWS_E2EXf_00183] [SWS_E2EX{ 00184]
[SWS_E2EXf 00185] [SWS_E2EXf 00186]
[SWS_E2EXf_00187] [SWS_E2EXf_00188]
[SWS_E2EXf 00190] [SWS_E2EXf 00191]
[SWS_E2EXf_00192] [SWS_E2EXf_00193]
[SWS_E2EXf_00194] [SWS_E2EXf 00196]
[SWS_E2EXf_00197] [SWS_E2EX{_00198]
[SWS_E2EXf_00199] [SWS_E2EXf_00200]
[SWS_E2EXf_00201] [SWS_E2EX{_00202]
[SWS_E2EXf_00203] [SWS_E2EX{_00208]
[SWS_E2EXf _00210] [SWS_E2EXf 00211]
[SWS_E2EXf_00212] [SWS_E2EXf 00213]
[SWS_E2EXf_00214] [SWS_E2EXf 00215]
[SWS_E2EXf_00216] [SWS_E2EXf 00217]
[SWS_E2EXf_00218] [SWS_E2EX{ 91000]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_E2EXf 00156]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

E2E transformer is responsible for protecting safety-related data elements. On the
data providing side E2E transformer E2E-protects the data. On the reception side E2E
transformer E2E-checks the data, providing the result of the E2E-checks through RTE
to SW-C. E2E transformer on the receipient side is called inverse E2E transformer.
E2E transformer is invoked by RTE.

All algorithms are provided by [6, SWS E2ELibrary] (protect, check, forward, state
machine). E2E transformer invokes E2E Library functions and provides configuration
and state to be used.

It is transparent to the communicating SW-Cs whether the data on the bus is E2E
protected or not, regardless of whether a receiving SW-C reads the transformer return
codes or not.

Each I-signal group to be E2E-protected or E2E-tested requires at least one E2E trans-
former or inverse E2E transformer function.

E2E transformer is generated to a high extent, where both configuration data struc-
tures and functions are generated. The configuration input can be found in [4, Sys-
tem Template] and [8, Software Component Template]. No specific ECU config-
uration is required for the E2E transformer, since its entire configuration is based
on the E2ETransformationDescription, the E2ETransformationISignalProps and the
E2ETransformationComSpecProps. Thus the generic ECU configuration of the [2,
ASWS Transformer General] is sufficient.

[SWS_E2EXf 00161]
Upstream requirements: RS_E2E_08538

[The E2E transformer defined in this document shall be used as a transformer if
1. the attribute protocol of the TransformationTechnology is set to E2E
2. and the attribute version of the TransformationTechnology is set to 1.0.0

3. and the attribute transformerClass of the TransformationTechnology is set to
safety

]

E2E transformer supports the following types of communication:
» Signal based communication
 Service oriented communication with events (Publisher/Subscriber)
+ Service oriented communication with methods (client/server architecture)

Additionally a translation between signal based and service oriented communication is
supported:

AUTSSAR

« Signal to service translation

Note: EZ2E fields are handled in the same way as events in the case of notifiers or
methods in the case of get/set requests.

For signal based communication the sender/receiver principle is used to transmit E2E
protected data. At the reception side E2E checks are applied on the received message.

For service oriented communication with events the E2E protection is adopted to a
publisher/subscriber pattern. The E2E checks applied in general are the same as for
signal based communication.

For service oriented communication with methods the E2E protection is adopted to a
client/server pattern. For

1. a request (whether a response is expected or not), the E2E checks applied in
general are the same as for signal based communication.

2. the transmission of a response to the request, an additional communication step
is to be considered. Based on the check result of the request either a normal
response or an error response is replied as E2E protected data.

3. a response (whether it is a normal response or an error response), the E2E
checks applied in general are the same as for signal based communication. Ad-
ditionally, a deadline monitoring could be added on the level of the receiving ap-
plication.

Signal to service translation implies a change of the communication type within the
network. While the provided data are signal based messages, the recipients expect
service-oriented messages or vice versa. With signal to service translation a mapping
between the two different communication types as well as a mapping of the E2E status
is provided. For details on signal to service translation see Chapter 9.4.

The E2E handling is generally the same for the different types of communication but
it differs in detail. These differences are shown in the flowcharts in Chapter 7.7. The
following colours are used to highlight specifics for types of communication.

Legend

All types
Sender/Receiver
Publisher/Subscriber
C/S: Server

C/S: Client

Signal to Service

Figure 7.1: Legend to colour scheme

AUTSSAR

7.1 Supported RTE functions

Currently, the following inter-ECU communication functions are supported:
1. Rte_Write/Rte_Read
2. Rte_IWrite/Rte_IRead
3. Rte_Send/Rte_Receive
4. Rte_ Call/Rte_Result

7.2 Naming for functions and data to be protected by E2E

E2E transformer functions and structures get the suffix <transformerlds>.

The pattern <transformerld> is defined in [SWS_Xfrm_00062] of [2, ASWS Trans-
former] and defines an unique ID for each transformer function.

This name pattern is also used in the names of the E2E transformer’s C-APIls and
therefore used in the BswModuleEntrys which represent the C-APls.

7.3 Configuration

A transformer configuration contains settings of all parameters used by E2E trans-
former functions e.g. profile names, tolerance values for E2E checks or datalD mode.
For details see [4, System Template].

The following parts form three stages of transformer configuration:
+ EndToEndTransformationDescription

defines the E2E configuration profiles, valid for several I1Signals (see [TPS_-
SYST 02275] in [4, System Template])

* EndToEndTransformationlSignalProps

defines the configuration options valid for a specific referenced ISignal (see
[TPS_SYST 02275]in [4, System Template])

* EndToEndTransformationComSpecProps

defines the override configuration options valid for the port to which the Receiver
ComSpec belongs (see [TPS_SYST _02275] in [4, System Template]).

7.3.1 Precedence of configuration attributes

It is possible that there are several software components receiving independently data
elements that are created (deserialized) from the same I-PDU. If some software com-

AUTSSAR

ponents have adjusted/special configuration values, related to the tolerances of the
E2E state machine, e.g. bigger tolerances, attributes of EndToEndTransformation-
ComSpecProps are used.

[SWS_E2EXf_00134]
Upstream requirements: RS_E2E_08538

[The configuration options in EndToEndTransformationComSpecProps shall have
precedence over the options in EndToEndTransformationDescription and EndToEnd
TransformationlISignalProps. |

That means:

Configuration options in EndToEndTransformationComSpecProps override the config-
uration options in EndToEndTransformationDescription and EndToEndTransformation
ISignalProps. However the attributes of EndToEndTransformationDescription do not
cover all attributes of EndToEndTransformationComSpecProps and vice versa.

7.3.2 Disable E2E check

If a software component do not need to evaluate the E2E protection, e.g. for QM
software components, then the E2E check can be disabled via EndToEndTransfor-
mationComSpecProps.disableEndToEndCheck.

[SWS_E2EXf_00154]
Upstream requirements: RS_E2E_08538

[If configuration option EndToEndTransformationComSpecProps.disableEndToEnd
Check is set for a given <transformerld>, then E2E transformer shall skip the invo-
cation of the E2E Library - it shall only perform buffer processing (e.g. copying from
inputBuffer to buffer). Return value shall be E_OK. |

7.3.3 Configuration variants

To support multiple post-build-selectable variants, each configuration has a variant
identifier.

[SWS_E2EXf 00090]
Upstream requirements: RS_E2E_08538

[In case of post-build-selectable configuration, the variants shall be named according
to the configuration attribute PredefinedVariant.shortName. This means:

<v> = PredefinedVariant.shortName. |

AUTSSAR

[SWS_E2EXf_00089]
Upstream requirements: RS_E2E_08538

[In case of link-time configuration, there is just one variant, this means:

<v>= emtpy (NULL string). |

Note that all variants that are based on the same TransformationTechnology use the
same E2E profile (e.g. P04).

This also means that all transformers with the same <transformerld> use the same
E2E profile.

All variants have the same E2E-protected data elements.

The functions and state-structures are independent on variants <v> - they depend only
on the specific instance of the E2E transformer and therefore on the<transformerld>,
whereas config-structures depends on instance (<transformerld>) and configuration
variant(<v>).

7.4 Generated structure types

Based on the E2E transformer configuration (described in [4, System Template], [8,
Software Component Template] and the generated ECU configuration (described in [2,
General Specification of Transformers]), the corresponding C structures are generated
as described below.

7.4.1 Overall configuration and state of E2E transformer

[SWS_E2EXf _00011]
Upstream requirements: RS_E2E_08538

[The E2E transformer shall generate the following data structure, to store the configu-
ration of E2E transformer module:

E2EXf_ConfigStruct_<v>(of type E2EXf_ConfigType) |

[SWS_E2EXf_00125]
Upstream requirements: RS_E2E_08538

[The E2E transformer shall derive the required number of independent state data
resources of types E2E_PXXProtectStateType, E2E_PXXCheckStateType, and E2E
SMCheckStateType to perform E2E Protection within the E2E transformer module from
the number of E2E-protected data uniquely identified with <transformerld>, protected
by profile PXX. |

AUTSSAR

7.4.2 Configuration and state of each E2E-protected data
[SWS_E2EXf 00126]

Upstream requirements: RS_E2E_08538

[The E2E transformer shall derive the required number of independent statically ini-
tialized configuration objects of types E2E_PXXConfigType, E2E_SMConfigType and
(if required) additional information (e.g. the Source ID on client side for profiles P0O4m,
P0O7m, P0O8m, P44m) to perform E2E Protection within the E2E transformer, from:

1. the number of E2E-protected data uniquely identified with <transformerld>, pro-
tected by profile PXX, and

2. the number of configuration variants (post-build selectable only).

7.5 Static initialization

7.5.1 Static initialization of config

Configuration is statically initialized based on the following metamodel classes:
1. EndToEndTransformationDescription: definition of E2E variants

2. EndToEndTransformationISignalProps: definition of a specific protection for a
given ISignal (e.g. length, DatalD)

3. EndToEndTransformationComSpecProps: override of some settings defining the
check tolerances, with respect to E2E variants.

[SWS_E2EXf 00048]
Upstream requirements: RS_E2E_08538

[The generated configuration object of type E2E_P01ConfigType shall be initialized
according to the following:

 DatalD = EndToEndTransformationlSignalProps.datalD

DataLength = EndToEndTransformationISignalProps.dataLength

CounterOffset = EndToEndTransformationDescription.counterOffset

CRCOffset = EndToEndTransformationDescription.crcOffset
DatalDNibbleOffset = EndToEndTransformationDescription.dataldNibbleOffset
DatalDMode shall be set to

— E2E_PO0O1_DATAID_BOTH if EndToEndTransformationDescription.datalD-
Mode == all16Bit

AUTSSAR

— E2E_PO1_DATAID_ALT if EndToEndTransformationDescription.datalD-
Mode == alternating8Bit

— E2E_PO1_DATAID LOW if EndToEndTransformationDescription.data
IDMode == lower8Bit

— E2E_PO1_DATAID_NIBBLE if EndToEndTransformationDescription.datalD-
Mode == nibble

* MaxDeltaCounterlnit = EndToEndTransformationComSpecProps.maxDelta
Counter-1 or EndToEndTransformationDescription.maxDeltaCounter-1

» MaxNoNewOrRepeatedData = EndToEndTransformationComSpecProps.maxNo
NewOrRepeatedData or EndToEndTransformationDescription.maxNoNewOrRe-
peatedData

» SyncCounterlnit = EndToEndTransformationComSpecProps.syncCounterlnit or
EndToEndTransformationDescription.syncCounterlnit.

]

[SWS_E2EXf 00118]
Upstream requirements: RS_E2E_08538

[The generated configuration object of type E2E_P02ConfigType shall be initialized
according to the following:

» DatalDList= EndToEndTransformationlSignalProps.datalD (array)

DataLength = EndToEndTransformationlSignalProps.dataLength
» Offset = EndToEndTransformationDescription.offset

» MaxDeltaCounterlnit = EndToEndTransformationComSpecProps.maxDelta
Counter-1 or EndToEndTransformationDescription.maxDeltaCounter-1

+ MaxNoNewOrRepeatedData = EndToEndTransformationComSpecProps.maxNo
NewOrRepeatedData or EndToEndTransformationDescription.maxNoNewOrRe-
peatedData

» SyncCounterlnit = EndToEndTransformationComSpecProps.syncCounterlnit or
EndToEndTransformationDescription. syncCounterlnit.

]

[SWS_E2EXf 00087]
Upstream requirements: RS_E2E_08538

[The generated configuration object of type E2E_P04ConfigType, E2E_P06Config
Type, EZ2E_P07ConfigType, E2E_PO08ConfigType, E2E_P44ConfigType, E2E_
P04mConfigType, E2E_P07mConfigType, E2E_P08mConfigType, E2E_P44mConfig
Type shall be initialized according to the following (one-to-one mapping):

» DatalD = EndToEndTransformationlSignalProps.datalD

AUTSSAR

» MinDataLength = EndToEndTransformationlSignalProps.minDatalength

MaxDatalength = EndToEndTransformationlSignalProps.maxDatalLength

Offset = EndToEndTransformationDescription.offset

MaxDeltaCounter = EndToEndTransformationComSpecProps.maxDeltaCounter
or EndToEndTransformationDescription.maxDeltaCounter

]

[SWS_E2EXf _00119]
Upstream requirements: RS_E2E_08538

[The generated configuration object of type E2E_P05ConfigType shall be initialized
according to the following (one-to-one mapping):

 DatalD = EndToEndTransformationlSignalProps.datalD
» DatalLength = EndToEndTransformationISignalProps.dataLength
+ Offset = EndToEndTransformationDescription.offset

» MaxDeltaCounter = EndToEndTransformationComSpecProps.maxDeltaCounter
or EndToEndTransformationDescription.maxDeltaCounter

]

[SWS_E2EXf 00162]
Upstream requirements: RS_E2E_08538

[The generated configuration object of type E2E_P11ConfigType shall be initialized
according to the following (one-to-one mapping):

 DatalD = EndToEndTransformationlSignalProps.datalD

» DatalLength = EndToEndTransformationISignalProps.dataLength

» CounterOffset = EndToEndTransformationDescription.counterOffset

» CRCOffset = EndToEndTransformationDescription.crcOffset

» DatalDNibbleOffset = EndToEndTransformationDescription.dataldNibbleOffset
+ DatalDMode shall be set to

— E2E_P11_DATAID_BOTH if EndToEndTransformationDescription.datalD-
Mode == all16Bit

— E2E_P11_DATAID_NIBBLE if EndToEndTransformationDescription.datalD-
Mode == nibble

» MaxDeltaCounter = EndToEndTransformationComSpecProps.maxDeltaCounter
or EndToEndTransformationDescription.maxDeltaCounter

AUTSSAR

[SWS_E2EXf _00164]
Upstream requirements: RS_E2E_08538

[The generated configuration object of type E2E_P22ConfigType shall be initialized
according to the following:

» DatalDList = EndToEndTransformationlSignalProps.datalD (array)
 Datalength = EndToEndTransformationISignalProps.dataLength
» Offset = EndToEndTransformationDescription.offset

» MaxDeltaCounter = EndToEndTransformationComSpecProps.maxDeltaCounter
or EndToEndTransformationDescription.maxDeltaCounter

]

[SWS_E2EXf 00088]
Upstream requirements: RS_E2E_08538

[The generated config structure of type E2E_SMConfigType,shall be initialized accord-
ing to the following (one-to-one mapping):

» WindowSizeValid = EndToEndTransformationComSpecProps.windowSizeValid
or EndToEndTransformationDescription.windowSizeValid

* WindowSizelnit = EndToEndTransformationComSpecProps.windowSizelnit or
EndToEndTransformationDescription.windowSizelnit

» WindowSizelnvalid = EndToEndTransformationComSpecProps.windowSizeln-
valid or EndToEndTransformationDescription.windowSizelnvalid

* ClearTolnvalid = EndToEndTransformationComSpecProps.clearFromValidToln-
valid or EndToEndTransformationDescription.clearFromValidTolnvalid

« transitTolnvalidExtended = EndToEndTransformationComSpecProps.E2EPro-
fileCompatibilityProps.transitTolnvalidExtended or EndToEndTransformationDe-
scription.E2EProfileCompatibilityProps.transitTolnvalidExtended

* MinOkStatelnit = EndToEndTransformationComSpecProps.minOkStatelnit or
EndToEndTransformationDescription.minOkStatelnit

» MaxErrorStatelnit = EndToEndTransformationComSpecProps.maxErrorStatelnit
or EndToEndTransformationDescription.maxErrorStatelnit

* MinOkStateValid = EndToEndTransformationComSpecProps.minOkStateValid or
EndToEndTransformationDescription.minOkStateValid

» MaxErrorStateValid = EndToEndTransformationComSpecProps.maxErrorState
Valid or EndToEndTransformationDescription.maxErrorStateValid

* MinOkStatelnvalid = EndToEndTransformationComSpecProps.minOkStateln-
valid or EndToEndTransformationDescription.minOkStatelnvalid

AUTSSAR

» MaxErrorStatelnvalid = EndToEndTransformationComSpecProps.maxErrorState
Invalid or EndToEndTransformationDescription.maxErrorStatelnvalid

]

For priority of values see Chapter 7.3.1 "Precedence of configuration attributes".

[SWS_E2EXf _00096]
Upstream requirements: RS_E2E_08538

[The configuration object E2EXf_ConfigStruct_<v> (see SWS_E2EXf _00011) shall be
initialized to contain or to reference the config structures that were instantiated in above
requirements of this section. |

7.5.2 Static Initialization of state
Contrary to config structures, state structures do not depend on variants (<v>).

[SWS_E2EXf_00023]
Upstream requirements: RS_E2E_08538

[In all E2E transformer variants, the generated state objects may be left uninitialized
(i.e. without providing explicit initialization values). |

7.6 Runtime initialization by E2EXf_Init() function

7.6.1 Runtime selection of configuration (post-build variant only)

[SWS_E2EXf_00024]
Upstream requirements: RS_E2E_08538

[In post-build-selectable variant, E2EXf_Init() shall check that Config pointer (re-
ceived as function parameter) points to one of the configuration variants E2EXf_Config
Struct_<vs>.If this is the case, then E2EX{_Init() shall select the passed configuration
variant, and it shall set the module initialization state to TRUE according to SWS_
E2EXf_00130. |

7.6.2 Runtime initialization of State

[SWS_E2EXf 00021]
Upstream requirements: RS_E2E_08538

[The E2EXf_Init() function shall initialize the following external state data resources
managed by E2E transformer (see SWS_E2EXf 00125) as follows:

AUTSSAR

« Initialization of state data resources of type E2E_PXXProtectStateType by calling
corresponding E2E_PXXProtectlnit() methods,

« Initialization of state data resources of type E2E_PXXCheckStateType by calling
corresponding E2E_PXXChecklInit() methods,

« Initialization of state data resources of type E2E_SMCheckStateType by calling
corresponding E2E_SMCheckInit() methods.

]

[SWS_E2EXf_00158]

Upstream requirements: RS_E2E_08538
[The E2EXS_Init() function shall initialize the internal state data resources of E2E func-
tions forward, protect check and state machine of E2E transformer. |

[SWS_E2EXf _00159]

Upstream requirements: RS_E2E_08538
[In case of post-build configuration, E2EX{_Init() function shall initialize the E2E trans-
former for a driving cycle. |

[SWS_E2EXf_00130]
Upstream requirements: RS_E2E_08538

[The E2E transformer shall maintain a boolean information (Initialization state) that is
only set to TRUE, if the module has been successfully initialized via a call to E2EXf_
Init(). Otherwise, it is set to FALSE. |

[SWS_E2EXf_00132]
Upstream requirements: RS_E2E_08538

[In case of deinitialization (invocation of E2EXf_Delnit()), the module initialization state
shall be set to FALSE. |

7.7 Normal operation

[SWS_E2EXf_00133]
Upstream requirements: RS_E2E_08538
[If the E2E transformer has not been correctly initialized (which means that E2EXf_

Init() was not successfully called before), then all generated E2E transformer APls
shall return E_SAFETY_HARD_RUNTIMEERROR . |

AUTSSAR

7.7.1 In-place processing and out-of-place processing

E2E transformer functions work using in-place processing or out-of-place processing.
This is configured by binary setting BufferProperties.inPlace.

In-place processing means that one buffer is used by a transformer both as input
and as output. In-place processing has a performance advantage (less copying, less
buffers).

Out-of-place processing means that separate buffer, one input buffer and a separate
output buffer, are used.

7.7.2 Transformer pairing and data exchange

A transformer is called by Rte and return results and data are returned to Rte. Following
the definition in [1] transformers should not communicate with others than the Rte.

On the communication path 2 different transformers of the same kind are used a pri-
mary transformer on the protecting side and a secondary or inverse transformer on the
checking side. In case of E2E is used in client/server communication to protect meth-
ods some data have to be exchanged between this pair of E2E transformers (i.e., be-
tween the primary transformer (E2EXf_<transformerld>()) and the corresponding sec-
ondary (inverse) transformer (E2EXf_Inv_<transformerld>()). While exchanging data
via the Rte would be possible, doing so would introduce additional complexity (which
is a drawback w.r.t. safety argumentation) and expose information to the Rte which
actually is local and private to the E2EXf implementation (which is a drawback w.r.t.
information hiding). Thus, this required exchange of information will be handled locally
within the E2EXf implementation. The prerequiste for this is a safe implementation for
this kind of data exchange e.g. by using specific memory for the to be shared variables
which is accessable by both of the two E2E transformers of a transformer pair.

In E2E for methods at the server side for the receiving part the secondary or inverse
transformer E2EXf_Inv_<transformerld>() checks the received request message, ex-
tracts relevant data from the received message, and stores this data into variables
to be shared. For the sending part the primary transformer E2EXf_<transformerld>()
reads these variables and uses it for the E2E protection of the corresponding response
message.

At the client side for the sending part the primary transformer E2EXf_<transformerld>()
protecting the request message stores relevant data into variables to be shared. For
the recieving part the secondary or inverse transformer E2EXf_Inv_<transformerld>()
reads these variables and uses it for the E2E check of the corresponding response
message.

Such a set of variables to be shared need to exist once per each pair of E2E trans-
formers, one to write and one to read a specific variable.

AUTSSAR

7.7.3 Transformer and E2E protection

E2E transformer invokes E2E Library protect() function via API
E2EXf_<transformerld>(protect-function). This way configuration data and data
to be E2E protected are provided to E2E Library functions.

Depending on the type of communication, the flow of E2EXf <transformerld>() varies.

A general overview of this function is provided in 7.3. Details on specific parts are
provided in 7.7.3.2 to 7.7.3.7. Communication type specific parts are coloured as de-
scribed in Figure 7.1.

[SWS_E2EXf 00020]
Upstream requirements: RS_E2E_08538

[The function E2EXf_<transformerld> shall be generated for each sent E2E-protected
data element and each protected C/S operation (<transformerld>). |

The following figure provides an activity diagram of the functionality provided by the
API function E2EXf_<transformerld>.

Details on

« E2EXf_input_checks
E2EXf _handling_P01_P02
E2EXf_handling_buffer_and_header

E2EXf_handling_specific_protection
E2EXf_handling_PXXm_server

E2EXf_set_response_counter
E2EXf _handling_PXXm_client

E2EXf_store_request_counter

E2EXf _data_transformation

are provided in the following subchapters.

AUTSSAR

7.7.3.1 E2EXf_ <transformerld> overview

E2EXf_<transformerld> ([extractProtocolHeaderFields], buffer, bufferLength,

[inputBuffer], inputBufferLength, [ForwardStatus])

WriteVariable
ret =
E_SAFETY_HARD_RUNTIMEERROR

< checksOk =E2EXf_input_checks)

Legend
D All types
D Sender/Receiver
|:| Publisher/Subscriber

I:l C/S: Server
I:l C/S: Client

I:, Signal to Service

checksOk == TRUE [FALSE]

[TRUE]

WriteVariable
*bufferLength = inputBufferLength
+ BufferProperties.headerLength/8u

E2EXf_handling_P01_P02 >
[SWS_E2EXf 00111]

(E2EXf handling buffer and header according to)

upperHeaderBitsToShift and headerLength

\l/ RRE [SWS_E2EXf_ 00108],

[SWS_E2EXf_00109],
prot_ret = [SWS_E2EXf 00115]
E2EXf_handling_specific_protection

prot_ret == E2E_E_OK

[FALSE]

[TRUE]

WriteVariable
ret = E_OK

........ [SWS_E2EXf_00018]

©

return ret

Figure 7.2: E2EXf_<transformerld> function overview

7.7.3.2 E2EXf_input_checks

E2EXf_input_checks performs some checks on input variables (e.g. buffer sizes, point-
ers) and returns the result as shown in the following figure.

AUTSSAR

Legend

I:I All types

I:l Sender/Receiver
I:l Publisher/Subscriber

I:l C/s: Server
I:I C/s: Client

I:l Signal to Service
InPlace == TRUE

[FALSE]
buffer == NULL. buffer I= NULL && inputBufferLen . . .
EndTo(EndTransformat)irIJlnIE)escri tion.u erHeazerBitsToS (nputByffer == NULL) || (inputBuffer = NULL && inputBufferLength <
P -upp EndToENJTransformationDescription.upperHeaderBitsT oShift/8u)

[TRUE]

L -- [TRUE]
.7 [SWS_E2EXf_00106] 1.
[SWS_E2EXf 00102] 1. [FALSE]
[SWS_E2EXf 00106] 2. |l| bufferLength == NULL
[TRUE]
[FALSE]
[FALSE]
[SWS_E2EXf 00106] 3. |l|
bufferLength == NULL
A buffer ==
NULL
[FALSE] [FALSE]
[SWS_E2EXf 00102] 2.
ok = E2EXf_input
[TRUE] _checks_PXXm [TRUE]
ok==
TRUE [FALSE]
[TRUE]
return FALSE return TRUE return FALSE

Figure 7.3: E2EXf_input_checks

[SWS_E2EXf 00102]
Upstream requirements: RS_E2E_08538

[In-place E2EXf_<transformerld> shall perform the following two precondition checks,
without continuing further processing:

1. (buffer == NULL)

(buffer = NULL && inputBufferLength < EndToEndTransformationDescrip-
tion.upperHeaderBitsToShift/8u)

2. bufferLength == NULL.

If any of above conditions is TRUE, then the function shall return E_SAFETY_HARD_
RUNTIMEERROR. |

AUTSSAR

[SWS_E2EXf 00106]
Upstream requirements: RS_E2E_08538

[Out-of-place E2EXf_<transformerld> shall perform the following three precondition
checks, without continuing further processing:

1. (inputBuffer == NULL)

(inputBuffer = NULL && inputBufferLength < EndToEndTransformationDescrip-
tion.upperHeaderBitsToShift/8u)

2. bufferLength == NULL
3. buffer == NULL

If any of above conditions is TRUE, then the function shall return E_SAFETY_HARD_
RUNTIMEERROR. |

7.7.3.2.1 E2EXf_input_checks_PXXm

For method specific E2E profiles additional checks as shown in the following figure are
to be applied.

Legend
|:| All types
D Sender/Receiver
D Publisher/Subscriber

D C/S: Server
D C/S: Client
|:| Signal to Service Profile == PXXm
[TRUE] [FALSE]
extractPrtocolHeaderFields
—I[TRUE] —= NULL
[FALSE]
® ©®
retum return
[FALSE] [TRUE]

Figure 7.4: E2EXf_input_checks_PXXm

Note that the function E2EXf_<transformerld> can be realized by a plain function or a
macro (implementation-specific). The functions E2EXf_<transformerld> may call some
internal common functions.

AUTSSAR

[SWS_E2EXf 00180]
Upstream requirements: RS_E2E_08538
[For profiles P04m, PO7m, PO8m and P44m both the in-place and the out-of-place

E2EXf_<transformerld> shall perform the following additional precondition checks,
without continuing further processing:

1. extractProtocolHeaderFields == NULL

If any of above conditions is TRUE, then the function shall return E_SAFETY_HARD _
RUNTIMEERROR. |

7.7.3.3 E2EXf_handling_P01_P02

E2E transformer implements a specific handling of legacy profiles PO1 and P02, as
Library functions of these profiles were developed before the transformer approach
was introduced into AUTOSAR and therefore provide different APls. The handling of
P01 and P02 is shown in the following figure.

Legend
D All types
D Sender/Receiver [SWS_E2EXF 00139]
[] pubtisnerisubscriber : l
[] crs: server Profile == P01 ||
D C/S: Client Profiel == P02

D Signal to Service
[TRUE]

[FALSE]
*bufferLength !=
config->Datalength/8 [FALSE]

[THUE]

return
E_SAFETY_HARD_RUNTIMEERROR continue transformation

Figure 7.5: E2EXf_handling_P01_P02

[SWS_E2EXf_00139]
Upstream requirements: RS_E2E_08538

[For PXX = 01 or 02, the function E2EXf_<transformerld>() shall perform a check of
the *bufferLength (after the computation of *bufferLength):

If (*bufferLength != config->DatalLength/8), then the function shall return E_SAFETY_
HARD_RUNTIMEERROR, i.e. without calling an E2E Library function. |

[SWS_E2EXf_00155]
Status: DRAFT
Upstream requirements: RS_E2E_08538

[f ((PXX = 01 &&datalDMode != nibble) || (PXX == 02) || (PXX = 11 &&datalDMode
I= nibble) || (PXX == 22)) && BufferProperties.headerLength == 16 [bits]), the func-

AUTSSAR Specification of Module E2E Transformer

AUTOSAR CP R25-11

tion E2EXf_<transformerld>() shall, before calling E2E_PXXProtect() or E2E_PXXFor-
ward(), set OxF in buffer at the bit offset (EndToEndTransformationDescription.crcOff-
set+12 for profiles P01 and P11 and EndToEndTransformationDescription.offset+12 for
profiles P02 and P22). |

7.7.3.4 E2EXf Handling buffer and header

E2E transformer can be configured for the usage of in-place or out-of-place buffer.
Both kinds of buffer handling and their implication for header handling are described in
the following.

[SWS_E2EXf _00108]
Upstream requirements: RS_E2E_ 08538

[If (EndToEndTransformationDescription.upperHeaderBitsToShift > 0), in-place
E2EXf_<transformerld> shall copy the amount upper HeaderBitsToShiftbits, in param-
eter buffer, with starting offset of BufferProperties.headerLength, in direction left by
"distance" of BufferProperties.headerLength. |

Previous transformer’s output:

Header Payload

AN J
Y
inputBufferLength

E2E-Transformer gets a pointer to a buffer with <BufferProperties.headerLength> leading bits:

<BufferProp)Frties.headerLength> bits
14 \

: unused Header Payload
e e e e e e e

<EndToEndTransformationDescription.upperHeaderBitsToShift> bits

E2E-Transformer copies header to front [SWS_E2EXf_00108]:

AN J

Y
BufferLength = inputBufferLength + <BufferProperties.headerLength>/8 [SWS_E2EXf_00111]

Header E2E Header Payload

Figure 7.6: Buffer Handling of E2E_Transformer_<transformeriD>

32 of 95 Document ID 650: AUTOSAR_CP_SWS_E2ETransformer

AUTSSAR Specification of Module E2E Transformer

AUTOSAR CP R25-11

Figure 7.6 illustrates the buffer handling done by API function E2EXf_<transformer
ld>for In-Place.

[SWS_E2EXf_00109]
Upstream requirements: RS_E2E_08538

[If (EndToEndTransformationDescription.upperHeaderBitsToShift > 0), out-of-place
E2EXf_<transformerld> shall copy the first upper HeaderBitsToShiftbits from input
Buffer to buffer, and then copy the remaining part of inputBuffer (i.e. starting with
offset upperHeaderBitsToShift) to parameter buffer starting with the destination offset
of (upperHeaderBitsToShift+ BufferProperties.headerLength). |

[SWS_E2EXf 00115]
Upstream requirements: RS_E2E_08538
[If (EndToEndTransformationDescription.upperHeaderBitsToShift == 0), out-of-place

E2EXf_<transformerld> shall copy inputBuffer to buffer starting with the destination
offset of BufferProperties.headerLength. |

Previous transformer’s output:

Header Payload

AN J
Y
inputBufferLength

E2E-Transformer gets a pointer to an empty buffer of size <BufferProperties.headerLength>/8 +
inputBufferLength bytes:

E2E-Transformer copies header to front, payload to back [SWS_E2EXf_00109] :

<EndToEndTransformationDescription.upperHeaderBitsToShift> bits

———

<BufferProt‘grties.headerLength> bits
¢ J

Y
BufferLength = inputBufferLength + <BufferProperties.headerLength>/8 [SWS_E2EXf_00111]

Header E2E Header Payload

Figure 7.7: Header Shift Out of Place

Figure 7.7 illustrates the buffer handling done by API function E2EXf_<transformer
ld>for Out-of-place.

33 0f 95 Document ID 650: AUTOSAR_CP_SWS E2ETransformer

AUTSSAR

[SWS_E2EXf 00111]
Upstream requirements: RS_E2E_08538

[E2EXf_<transformerld> shall set *bufferLength = inputBufferLength + BufferProper-
ties.headerLength/8. |

7.7.3.5 E2EXf_handling_specific_protection

The specific protection describes different activities depending on different communi-
cation types (see introduction of Chapter 7).

For client/server communication a number of extras need to be considered. In order
to perform the E2E check on the response message, the inverse E2E transformer
(E2EXT_Inv_<transformerld>()) needs the value of E2E counter and E2E sourcelD
provided in the request message e2e header. Therefore, the primary E2E trans-
former (E2EXf_<transformerld>()), which protects the request message, stores this
E2E counter and the E2E sourcelD in a safe way at a memory location which can be
read by the inverse E2E inverse transformer.

AUTSSAR

Legend
D All types
I:l Sender/Receiver
|:| Publisher/Subscriber

I:l C/S: Server
|:| C/S: Client

I:l Signal to Service

Portinterface == SenderReceiverinterface

[TRUE] [FALSE]
DataTransformationStatusForwarding ==
transformerStatusForwarding PortPrototype == PPortPrototype
[TRUE] [FALSE]
[TRUE] [FALSE]
prot_ret = rot_ret =
E2EXf_handling_PXXm_server E2EXf_handling_PXXm_client
prot_ret == E2E_E_OK

[FALSE]
[TRUE] [FALSE]

[TRUE]

FIell Elt= prot_ret = [E2EXf_set_response_counler) [prot_ret = E2E_PXXProtect() (::) J
E2E_PXXForward() (::) E2E_PXXProtect() (::)

\])

AN [prot_ret = E2E_PXXProtect() (::) j [EZEXLstorefrequechoumerj
[SWS_E2EXf 00168] *

\

‘ : ‘

[SWS_E2EXf_00107]

return prot_ret

Figure 7.8: E2EXf_handling_specific_protection

7.7.3.5.1 E2EXf_handling_PXXm_server

E2E transformer implements a specific handling of method profiles PXXm, as Library
functions require additional parameters and therefore provide different APIs. The pro-
tection of PXXm profiles on server side is shown in the following figure.

AUTSSAR

Legend

D All types

D Sender/Receiver
I:I Publisher/Subscriber

I:l C/S: Server
[TRUE]

I:l C/S: Client
ok = extractProtocolHeaderFields
(buffer/inputBuffer,
bufferLength/inputBufferLength,

I:l Signal to Service
&messageType, &messageResult)

SWS_E2EXF 00185
SWS_E2EXF 00186

[TRUE]
SWS_E2EXf 00187 \l/
WriteVariable
_______ responseSourcelD =
S PR DD N shCopiedE2ESourcelD

® .
return retun
E2E_E_NOT_OK E2E_E_OK

Figure 7.9: E2EXf_handling_PXXm_server

Profile == PXXm [FALSE]

ok=E_OK

[SWS_E2EXf 00185]
Upstream requirements: RS_E2E_08538

[For profiles P0O4m, PO7m, PO8m and P44m the in-place E2EXf_<transformerld> on
the server-side shall call the extractProtocolHeaderFields() function passing the buffer,
the bufferLength, the address of local messageType variable, and the address of a
local messageResult variable as parameters. |

[SWS_E2EXf_00186]

Upstream requirements: RS_E2E_08538
[For profiles PO4m, PO7m, PO8m and P44m the out-of-place E2EXf_<transformerld>
on the server-side shall call the extractProtocolHeaderFields() function passing the

inputBuffer, the inputBufferLength, the address of local messageType variable, and the
address of a local messageResult variable as parameters. |

[SWS_E2EXf_00187]
Upstream requirements: RS_E2E_08538

[If extractProtocolHeaderFields() returns something different from E_OK,
E2EXf_<transformerld> shall return E_SAFETY_HARD_RUNTIMEERROR. |

[SWS_E2EXf 00188]
Upstream requirements: RS_E2E_08538
[For profiles P04m, PO7m, PO8m and P44m both the in-place and the out-of-place

E2EXf_<transformerld> on the server-side shall set a local variable responseSource
ID to the restored value of shCopiedE2ESourcelD. |

AUTSSAR

7.7.3.5.2 E2EXf_set_response_counter

The message counter of a response message shall be the same as the counter of
the corresponding request message. Therefore, the stored receivedRequestCounter
is used as an input to the protect function. The response counter (state->Counter)
is set profile dependend as shown in the following figure. In case of profile 02 or 22
the receivedRequestCounter needs to be decremented since protect() and forward()
functions of these profiles increment the counter prior to adding it to the message.

Legend

|:| All types

D Sender/Receiver
|:| Publisher/Subscriber

D C/S: Server
D C/S: Client

D Signal to Service Profile == 02 ||

Profile == 22
[TRUE]
AN
[SWS_E2EXF_00166]
[WriteVariable } | 1sws E2ext oot6s] [Writevan'able]

state->Counter = state->Counter =
shCopiedRequestE2ECounter - 1 shCopiedRequestE2ECounter

Figure 7.10: E2EXf_set_response_counter

[SWS_E2EXf 00165]
Upstream requirements: RS_E2E_08538

[If E2E-Transformer is used for a response in a Client-Server Communica-
tion and Profile is P02 or P22 the variable state->Counter shall be set to
shCopiedRequestE2ECounter - 1.]

Note: Using receivedRequestCounter-1 for Profiles P02 and P22 is motivated by the
fact that the Protect() and Forward() functions of this profile increment the counter prior
to adding it to the message/including it in the CRC calculation.

[SWS_E2EXf _00166]
Upstream requirements: RS_E2E_08538
[If E2E-Transformer is used in a Client-Server Communication and Profile is P01,

P04, P0O4m, P05, P06, P07, PO7m, P08, PO8m, P11, P44 or P44m the variable state-
>Counter shall be set to shCopiedRequestE2ECounter. |

AUTSSAR

7.7.3.5.3 E2EXf_handling_PXXm_client

E2E transformer implements a specific handling of method profiles PXXm, as library
functions require additional parameters and therefore provide different APls. The pro-
tection of PXXm profiles on client side is shown in the following figure.

Legend
D All types
D Sender/Receiver Profile == PXXm [FALSE]
[] Publisnerisubscriber
D C/S: Server [TRUE]
D C/S: Client
D Signal to Service
ok = extractProtocolHeaderFields (buffer/inputBuffer,
bufferLength/inputBufferLength, &messageType, &messageResult)(::)
SWS_E2EXf 00181
SWS_E2EXf 00182 {FALSE——— ok=E_OK
[TRUE]
SWS_E2EXf 00183
WriteVariable
_.] sourcelD = config->sourcelD
Sws_E2Ext 0014 | |
C-S &

return
E2E_E_OK

Figure 7.11: E2EXf_handling_PXXm_client

return E2E_E_NOT_OK

[SWS E2EXf 00181]
Upstream requirements: RS_E2E_08538

[For profiles P0O4m, PO7m, PO8m and P44m the in-place E2EXf_<transformerld> on
the client-side shall call the extractProtocolHeaderFields() function passing the buffer,
the bufferLength, the address of local messageType variable, and the address of a
local messageResult variable as parameters. |

[SWS_E2EXf 00182]

Upstream requirements: RS_E2E_08538
[For profiles PO4m, PO7m, PO8m and P44m the out-of-place E2EXf_<transformerld>
on the client-side shall call the extractProtocolHeaderFields() function passing the input

Buffer, the inputBufferLength, the address of a local variable named messageType, and
the address of a local variable named messageResult as parameters. |

[SWS_E2EXf 00183]
Upstream requirements: RS_E2E_08538

[If extractProtocolHeaderFields() returns something different from E_OK,
E2EXf_<transformerld> shall return E_SAFETY_HARD_RUNTIMEERROR. |

AUTSSAR

[SWS_E2EXf 00184]
Upstream requirements: RS_E2E_08538
[For profiles P04m, PO7m, PO8m and P44m both the in-place and the out-of-place

E2EXf <transformerld> on the client-side shall set a local variable sourcelD to the
sourcelD stored in the configuration (see [SWS_E2EXf_00126]). |

7.7.3.6 E2EXf_store_request_counter

The message counter of a response message shall be the same as the counter of the
corresponding request message. Therefore, the requestCounter is stored and used as
an input to the check function. The response counter(state-Counter) is stored profile
depended as shown in the following figure.

The check function needs to access the E2E counter value of the request in order
to compare it to the E2E counter value of the response from the server. If the E2E
counters do not match an error occurred at the server.

The requestE2E-counter is stored profile depended as shown in the following figure.

Profile == 2 ||
Profile == 22 AN
[SWS_E2EXF 00171] Legend

[TRUE] [FALSE]
. I:l All types
. I:l Sender/Receiver
WriteVariable I:I Publisher/Subscriber
AN shExpectedResponseE2ECounter I:, C/S: Server
[SWS_E2EXf_00170] = state -> Counter - 1 I:, C/S: Client
I:, Signal to Service

WriteVariable
shExpectedResponseE2E Counter
= state -> Counter

.

Figure 7.12: E2EXf_store_request_counter

[SWS_E2EXf_00170]
Upstream requirements: RS_E2E_08538

[If E2EXf_<transformerld> is used in a Client-Server Communication on the client-
side and Profile is P02 or P22, state->Counter shall be stored to shExpectedRespon-
seE2ECounter to be accessed by E2EXf Inv_<transformerld> for checking the re-
sponse. |

AUTSSAR

[SWS_E2EXf 00171]
Upstream requirements: RS_E2E_08538

[If E2EXf_<transformerld> is used in a Client-Server Communication on the client-side
and Profile is P01, P04, P05, P06, P07, P08, P11, P44, PO4m, PO7m, PO8m, P44m
state->Counter -1 shall be stored to shExpectedResponseE2ECounter to be accessed
by the E2EXf_Inv_<transformerld> for checking the response. |

7.7.3.7 E2EXf Data Transformation

E2E transformer implements a specific handling for signal to service translation or vise
versa. The forwarding() function replaces the protect() function to forward the result of
an E2E check() in a new E2E protected message.

[SWS_E2EXf 00107]
Status: DRAFT
Upstream requirements: RS_E2E_08538

[If DataTransformationStatusForwarding is set to noTransformerStatusForwarding
and PXX is P01 ,P02 ,P04 ,PO5 ,P06 ,PO7 ,PO8 ,P11 ,P22 or P44, the func-
tion E2EXf _<transformerld>() shall invoke E2E_PXXProtect(), passing to that func-
tion the appropriate Config and State structures (see [SWS_E2EXf 00125] and
[SWS_E2EXf 00126]) that are associated with <transformerld>, as well as buffer
and bufferLength (only for P04, P05, P06, P07, P08 ,P11 ,P22 and P44) that
were updated in above requirements [SWS_E2EXf 00108], [SWS_E2EXf_00109],
[SWS_E2EXf 00115], [SWS_E2EXf 00111].]

[SWS_E2EXf 00190]
Upstream requirements: RS_E2E_08538

[If DataTransformationStatusForwarding is set to noTransformerStatusForwarding and
PXX =P04m, PO7m, PO8m or P44m the function E2EXf <transformerld>() shall invoke
E2E_PXXProtect(), passing to that function:

* the appropriate Config structure (see [SWS_E2EXf 00125]),

« the appropriate State structure (see [SWS_E2EXf 00126]),

« the local variables sourcelD, messageType, and messageResult

* buffer + EndToEndTransformationDescription.upperHeaderBitsToShift

« bufferLength - EndToEndTransformationDescription.upperHeaderBitsToShift

Hereby buffer and bufferLength were updated according to the above re-
quirements [SWS_E2EXf 00108], [SWS_E2EXf 00109], [SWS_E2EXf 00115],
[SWS_E2EXf_00111].]

AUTSSAR

Note: Modifying the start and the length of the buffer here causes the upper header
(e.g., the header added by the SOME/IP transformer) to be omitted from E2E_PXXPro-
tect().

[SWS_E2EXf_00168]
Status: DRAFT
Upstream requirements: RS_E2E_08538

[If DataTransformationStatusForwarding is set to transformerStatusForwarding and
PXX is P01, P02, P04, P05, P06, P07, P08, P11, P22 or P44 the function
E2EXf <transformerld>() shall invoke E2E_PXXForward(), passing to that func-
tion the appropriate Config and State structures (see [SWS_E2EXf 00125] and
[SWS_E2EXf 00126]) that are associated with <transformerld>, as well as buffer
and bufferLength (only for P04, P05, P06, P07, P08, P11, P22 and P44) that
were updated in above requirements [SWS_E2EXf 00108], [SWS_E2EXf_00109],
[SWS_E2EXf 00115], [SWS_E2EXf 00111].

In addition, the E2E status shall be passed on to the E2E_PXXForward() func-
tion based on the parameter forwardedCode provided by the RTE. This param-
eter is associated with the optional IN parameter forwardedCode from Rte_Write
(SWS_Rte _01071), Rte_Send (SWS_Rte_01072), Rte_IWrite (SWS_Rte_03744) and
Rte IWriteRef (SWS_Rte_05509). The forwardedCode must be mapped to the match-
ing E2E status (see [SWS_E2EXf 00208]).

]

The parameter DataTransformationStatusForwarding is set as defined in the Software
Component Template [11].

[SWS_E2EXf_00191]
Upstream requirements: RS_E2E_08538

[If DataTransformationStatusForwarding is set to transformerStatusForwarding and
PXX = P04m, PO7m, PO8m or P44m: The function E2EXf <transformerld>() shall
invoke E2E_PXXForward(), passing to that function:

« the appropriate Config structure (see [SWS_E2EXf 00125]),
* the appropriate State structure (see [SWS_E2EXf 00126]),
« the local variables sourcelD, messageType, and messageResult

* buffer + EndToEndTransformationDescription.upperHeaderBitsToShift

bufferLength - EndToEndTransformationDescription.upperHeaderBitsToShift

Hereby buffer and bufferLength were updated according to the above re-
quirements [SWS_E2EXf 00108], [SWS_E2EXf 00109], [SWS_E2EXf 00115],
[SWS_E2EXf 00111].]

AUTSSAR

Note: Modifying the start and the length of the buffer here causes the upper header
(e.g., the header added by the SOME/IP transformer) to be omitted from E2E_PXXFor-
ward().

[SWS_E2EXf_00018]
Status: DRAFT
Upstream requirements: RS_E2E_08538

[In case E2E_PXXProtect() or E2E_PXXForward() returns E2E_E_OK, then
E2EXf <transformerld> shall return E_OK, otherwise E2EXf <transformerld> shall re-
turn E_SAFETY_HARD_RUNTIMEERROR. |

7.7.3.8 E2EXf_MapCodeToStatus

The function E2EXf_MapCodeToStatus() maps the forwardedCode of type
Std_TransformerForwardCode from Rte Write ([SWS_Rte 01071], Rte_Send
([SWS_Rte_01072]), Rte_IWrite ((SWS_Rte_03744]) and Rte_IWriteRef ((SWS_Rte_
05509]) to a generic check status of type E2E_PCheckStatusType, which can be used
by E2E_PXXForward() function.

[SWS_E2EXf 00208]
Upstream requirements: RS_E2E_08538

[
forwardedCode CheckStatus
STD_E_FORWARDEDCODE_OK E2E_P_OK
STD_E_FORWARDEDCODE_STATUS_REP E2E_P_REPEATED
STD_E_FORWARDEDCODE_STATUS_SEQ E2E_P_WRONGSEQUENCE
STD_E_FORWARDEDCODE_STATUS_ERR E2E_P_ERROR
Check Status Mapping of forwardedCode
J

7.7.4 Transformer and E2E check

E2E transformer invokes E2E Library check() function via API
E2EXf_<transformerld>(check-function). This way configuration data and data to
be E2E protected are provided to E2E Library function’s. Depending on the type
of communication present, the flow of E2EXf <transformerld>() varies. A general
overview of this function is provided in 7.7.4.1. Details on specific parts are provided
in 7.7.4.2 to 7.7.4.6 Communication type specifc parts are coloured as described in
Figure 7.1.

AUTSSAR

7.7.4.1 E2EXf Inv_<transformerld> overview
[SWS_E2EXf 00025]

Upstream requirements: RS_E2E_08538

[The function E2EXf_Inv_<transformerld> shall be generated for each received E2E-
protected data element and each protected C/S operation (<transformerld>). |

The following figure provides an activity diagram of the functionality provided by the
API function E2EXf_Inv_<transformerld>.

Details on
« E2EXf_Inv_input_checks
E2EXf _Inv_handling P01_P02

E2EXf_Inv_handling_main_check

E2EXf_Inv_handling_P01_P02_forceConstantMaxDeltaCounter
E2EXf Inv_handle Statemachine

are provided in the following subchapters.

AUTSSAR

WriteVariable

ret = E2EXf_Inv_<transformerld> ([extractProtocolHeaderFields],
E_SAFETY_HARD_RUNTIMEERROR buffer, bufferLength, [inputBuffer], inputBufferLength)

checksOk == TRUE

checksOk = . !
E2EXf_Inv_input_checks [FALSE]
[TRUE] Legend
disableEndToEndCheck == TRUE
[TRUE] S [] A types
.-l D Sender/Receiver
[FALSE] -
[] pubtisnerisubscriber
E2EXf_Inv_handling_P01_P02 D C/S: Server

|:| /S: Glient

WriteVariable D Signal to Service

ret=E_OK
(checkret = E2EXf7Inv7handIingfmainfcheck())

checkret == E2E_E_OK

[TRUE] [FALSE]
GzEXfﬁlnvfhandlinng017P02JorceConstamMaxDeIlaCoumeD
[SWS_E2EXf 00027] (ret = E2EXf_Inv_handle_Statemachine >

- WriteVariable

. ret =

N if disableEndToEndStatemachine == TRUEX E SAFETY HARD RUNTIMEERROR
AN \l/ [FALSE] [TRUE]
ret = E2E_SMCheck (SMCheckConfig, WiiteVariable

SMCheckState, checkStatus)
()

%

(Copy buffer / Header according to upperHeaderBitsToShift and headerLength >

ret = 0x60 | (checkStatus & 0x0F)

[SWS_E2EXf 00116] *bufferLength = inputBufferLength - BufferProperties.headerLength/8u

[SWS_E2EXF 00114] i

[SWS_E2EXf_00112], [\l/

[SWS_E2EXF 00113]. WriteVariable]

Portinterface == ClientServerinterface &&
PortPrototype == PPortPrototype && ret =
E_SAFETY_*_ERR

[SWS_E2EXf_00167]

[TRUE] B

WriteVariabl
[FALSE] riteVariable

ret = E_E2E_HARD_SAFETY_ERR
|
return ret

Figure 7.13: E2EXf_Inv_<transformerld> function overview

Depending on the configuration of the E2EXf regarding buffer operations (in-place and
out-of-place), a valid pointer to the output buffer with length parameter too small, may

AUTSSAR

result in a soft or hard error, depending on E2EXf configuration and actual given length.
In this case the following values shall be returned:

Condition

Return Value

Description

Valid pointer to the output buffer, but
the length of the buffer is too small to
perform the buffer operations.

E_SAFETY_HARD_RUNTIMEERROR

cannot perform header copy operation,
leaving buffer with invalid data
according to configuration. Hard
runtime error must be returned.

E2E profiles 1 or 2: Valid pointer to the
output buffer and sufficient length for
buffer operation, but the size of the
buffer doesn’t match the configured

E_SAFETY_HARD_RUNTIMEERROR

E2E profile 1 and 2 are not performing
data length checks on their own, and
are expected to be used with ComXf
with fixed length messages (so this

data length. scenario is not expected to happen

during normal operation).

All E2E profiles except 1 or 2: Valid
pointer to the output buffer and
sufficient size for buffer operation, but
the length is smaller then E2E profile
configuration.

E_SAFETY_VALID_ERR,
E_SAFETY_NODATA ERR,
E_SAFETY_INIT_ERR,

E_SAFETY_INVALID_ERR

Depending on the internal state of the
E2E state machine, one of the checks
returns an E2E-error.

Table 7.1: Return values of input checks

Note that the function E2EXf_Inv_<transformerld> may be realized by a plain function,
an inline function or a macro (implementation-specific).

[SWS_E2EXf 00112]
Upstream requirements: RS_E2E_08538

[If (buffer = NULL &&EndToEndTransformationDescription.upperHeaderBitsToShift>
0), in-place E2EXf_Inv_<transformerld> shall copy the first upper HeaderBitsToShift-
bits, in parameter buffer, in direction right by "distance" of BufferProperties.header
Length. |

[SWS_E2EXf 00113]
Upstream requirements: RS_E2E_08538

[If (inputBuffer |= NULL &&EndToEndTransformationDescription.upperHeaderBitsTo
Shift> 0), out-of-place E2EXf_Inv_<transformerld> shall copy the first upper Header
BitsToShiftbits from inputBuffer to buffer, and then copy the remaining part of input
Buffer skipping E2E header (i.e. starting with offset upperHeaderBitsToShift+Buffer
Properties.headerLength) to parameter buffer starting with the destination offset of (up-
perHeaderBitsToShift). |

[SWS_E2EXf 00116]
Upstream requirements: RS_E2E_08538
[If (inputBuffer |= NULL &&EndToEndTransformationDescription.upperHeaderBitsTo

Shift == 0), out-of-place E2EXf_Inv_<transformerld> shall copy inputBuffer starting
with the offset of BufferProperties.headerLength, to buffer. |

AUTSSAR

[SWS_E2EXf 00114]
Upstream requirements: RS_E2E_08538

[If inputBufferLength == 0, then E2EXf_Inv_<transformerld> shall set *bufferLength =
0, otherwise it shall set *bufferLength = inputBufferLength - BufferProperties.header
Length/8. |

The case where inputBufferLength is > 0 but shorter than header is covered by [SWS_
E2EXf _00105].

[SWS_E2EXf 00167]
Upstream requirements: RS_E2E_08538

[In case of Client/Server-Communication on the server side, if the return value
ret equals to E_SAFETY_*_ERR, the value shall be overwritten to E_E2E_HARD_
SAFETY_ERR .|

The handling of E_SAFETY_*_ERR errors as hard errors creates a TransformerHard
ErrorEvent. The intended use of this event is to inform the called SWC, that there
was a failed Server-Client Call and possible some Error Handling has to be done. An
error response can be created by adding a autonomous error reaction to this Trans-
formerHardErrorEvent. The error response is then created by the RTE and the con-
figured transformer chain without invoking the server application. The return value of
the transformer is then used as error code of the response. The client can determine if
a E2E error occurred at the transmission of the request, by checking the return value.
The chosen return value E_E2E_HARD_SAFETY_ERR aligns with the SOME/IP error
code for a general E2E error, for more information see [9, SOME/IP Protocol Specifi-
cation].

7.7.4.2 E2EXf Inv_input_checks

The following figure provides an activity diagram of the functionality provided function
E2EXf_Inv_input_checks for both inplace and out-of-place variant.

AUTSSAR

Legend
All types
I:l VP InPlace ==
I:l Sender/Receiver TRUE

|:| Publisher/Subscriber

|:| C/S: Server

|:| C/S: Client [TRUE] [FALSE]
I:l Signal to Service

(buffer == NULL && inputBufferLength = 0) || (buffer I= NULL && (inputBuffer == NULL && inputBufferLength I= 0) || (inputBuffer |
inputBufferLength < BufferProperties.headerLength/8u + = NULL && inputBufferLength <
EndToEndTransformationDescription.upperHeaderBitsT oShift/8u) BufferProperties.headerLength/8u +

EndToEndTransformationDescription.upperHeaderBitsT oShift/8u)

[TRUE}— [TRUE]
AN AN
[SWS_E2EXf 00105] 1. [SWS_E2EXF 00103] 1.

[FALSE] [FALSE]
bufferLength == bufferLength ==
NULLITRUE] _ ~NULL [TRUE]
AN ’ RRRINE
[SWS_E2EXf_00105] 2. [FALSE] [FALSE] i AN
[SWS_E2EXf 00103] 2.
buffer ==
NULL

[FALSE] — [TRUE]

[SWS_E2EXf 00103] 3.

ok = E2EXf_Inv
_input_checks _PXXm

[FALSE]

[TRUE]
retrun return return
FALSE TRUE FALSE

Figure 7.14: E2EXf_Inv_input_checks

[SWS_E2EXf _00105]
Upstream requirements: RS_E2E_08538

[In-place E2EXf _Inv_<transformerld> shall perform the following two precondition
checks, without continuing further processing:

1. (buffer == NULL && inputBufferLength != 0)

(buffer 1= NULL && inputBufferLength < BufferProperties.headerLength/8u + End
ToEndTransformationDescription.upperHeaderBits ToShift/8u)

2. bufferLength == NULL.

If any of above conditions is TRUE, then the function shall return E_SAFETY_HARD _
RUNTIMEERROR. |

AUTSSAR

[SWS_E2EXf 00141]
Upstream requirements: RS_E2E_08538

[For PXX = 01 or 02 (i.e. for profiles 1 and 2), the in-place function E2EXf_
Inv_<transformerld> shall

1. If(buffer == NULL and inputBufferLength == 0), then

« variable NewDataAvailable of state object of type E2E_PXXCheckStateType
(see [SWS_E2EXf 00125]) associated with <transformerld> shall be set to
FALSE.

2. Else if (inputBufferLength == config->Datalength/8), then

+ variable NewDataAvailable of state object of type E2E_PXXCheckState Type
(see [SWS_E2EXf 00125]) associated with <transformerld> shall be set to
TRUE.

3. Else return E_SAFETY_HARD_RUNTIMEERROR.

]

[SWS_E2EXf 00103]
Upstream requirements: RS_E2E_08538

[Out-of-place E2EXf_Inv_<transformerld> shall perform the following three precondi-
tion checks, without continuing further processing:

1. (inputBuffer == NULL && inputBufferLength != 0)

(inputBuffer = NULL && inputBufferLength < BufferProperties.headerLength/8u
+ EndToEndTransformationDescription.upperHeaderBitsToShift/8u)

2. If (bufferLength == NULL)
3. If (buffer == NULL).

If any of above conditions is TRUE, then the function shall return E_SAFETY_HARD_
RUNTIMEERROR. |

[SWS_E2EXf 00140]
Upstream requirements: RS_E2E_08538

[For PXX = 01 or 02 (i.e. for profile 1 and 2), the out-of-place function E2EXf _
Inv_<transformerld> shall

1. if(inputBuffer == NULL and inputBufferLength == 0), then

+ variable NewDataAvailable of state object of type E2E_PXXCheckStateType
(see [SWS_E2EXf 00125]) associated with <transformerld> shall be set to
FALSE.

2. else if (inputBufferLength == config->DatalLength/8), then

AUTSSAR

« variable NewDataAvailable of state object of type E2E_PXXCheckState Type
(see [SWS_E2EXf 00125]) associated with <transformerld> shall be set to
TRUE.

3. else return E_SAFETY_HARD_RUNTIMEERROR.

7.7.4.2.1 E2EXf_Inv_input_checks_PXXm

Legend
D All types
D Sender/Receiver
[] Publisnersubscriber
D C/S: Server

|:| C/S: Client Profile == PXXm [FALSE]
D Signal to Service

[TRUE] [TRUE]

extractProtocolHeaderFields
== NULL

[FALSE]

return

retumn TRUE
FALSE

Figure 7.15: E2EXf_Inv_input_checks_PXXm

[SWS_E2EXf _00192]
Upstream requirements: RS_E2E_08538

[For profiles P04m, PO7m, PO8m and P44m both the in-place and the out-of-place
E2EXf_Inv_<transformerld> shall perform the following additional precondition checks,
without continuing further processing:

1. extractProtocolHeaderFields == NULL

If any of above conditions is TRUE, then the function shall return E_SAFETY_HARD _
RUNTIMEERROR. |

AUTSSAR

7.7.4.3 E2EXf_Inv_handling_P01_P02

Legend .

(Profile == 01 || Profile == 02) &&
[] At wpes buffer == NULL &&
I:l Sender/Receiver inputBufferLength == 0

|:| Publisher/Subscriber N [TRUE]

D c/s: Server [SWS_E2EXF 00124] 1.

I:, i . [FALSE]
C/S: Client AR

I:l Signal to Service [

create 1 Byte variable and use
pointer to overwrite buffer

e

®

Figure 7.16: E2EXf_Inv_handling_P01_P02

7.7.4.4 E2EXf _Inv_handling_main_check

The following figure provides an activity diagram of the functionality provided by the
function E2EXf_Inv_handling_main_check(). The specific check describes different
activities depending on different communication types (see introduction in Chapter 7).
The major part of this diagram covers client/server communication using m profiles and
non-m profiles. This includes the different subfunctions:

« E2EXf_Inv_handling_Pxxm_client
E2EXf Inv_PXX_ Check_client

E2EXf_Inv_handling_ PXXm_server_pre_check
E2EXf _Inv_extract E2E headerlnfo

E2EXf Inv_PXXCheck_server
E2EXf_Inv_handling_ PXXM_server_post_check

AUTSSAR

I Portinterface == SenderReceiverinterface

[TRUE]

[SWS_E2EXF 00124] 2.
[SWS_E2EXf 00104]

[FALSE]

[TRUE]

checkret = E2EXf_Inv_handling
_PXXm_server_pre_check

checkret = E2E_PXXCheck()(::)

checkret == E2E_E_OK

PortPrototype == PPortPrototype

Legend
|:| All types
D Sender/Receiver
D Publisher/Subscriber

D C/S: Server
[] crs: ctient
D Signal to Service

[FALSE]

checkret = E2EXf_Inv_
handling_PXXm_client

[FALSE]

[TRUE]

checkret =
E2EXf_Inv_extract_E2E_headerInfi

checkret == E2E_E_OK
[FALSE]

Applicable
communication types:
Signal to Service,

Sender/Receiver and
Publisher/Subscriber

C. return
E_SAFETY_HARD_RUNTIMEERROR

checkret =
E2EXf_Inv_PXXCheck server

checkret == E2E_E_OK
[FALSE]

[TRUE]

E2EXf_Inv_handling
_PXXm_server_post_check

checkret == E2E_E_OK

[FALSE]

retum
E_SAFETY_HARD_RUNTIMEERROR

[TRUE]

checkret =
E2EXf_Inv_PXXCheck_client

return
checkret

Figure 7.17: E2EXf_Inv_handling_main_check

[SWS_E2EXf 00123] and [SWS_E2EXf 00124] either pass the pointer to valid buffer
containing the E2E-protected data (in case data is available / is received) or otherwise
provide a pointer to a dummy local variable, which is anyway not used by the E2E
checks (NewDataAvailable is set to FALSE at the same time). Additionally, the length of
the Buffer is checked, which is not done by profiles 1 and 2. It is necessary because the
profiles P1 and P2 behave different from the newer profiles 4, 5, 6, 7, 11 and 22. Profile
1 and 2 do not accept a NULL pointer, and they provide a sophisticated dynamic Max
DeltaCounter and re-synchronization mechanism different to the less complex checks
provided in the newer profiles.

AUTSSAR

However, changes in the legacy profiles 1 and 2 are not done to keep full backward-
compatibility with existing implementations. Therefore, the new configuration parame-
ter profileBehavior configures the E2EXf to reset the MaxDeltaCounter after each call
of E2E_PXXCheck(), and the provided recommended configuration values for MaxNo
NewOrRepeatedData and SyncCounterlnit together with the different behavior of the
mapping function E2E_PXXMapStatusToSM enforce a common behavior of all profiles
when combined with the E2E state machine.

[SWS_E2EXf 00104]

Upstream requirements: RS_E2E_08538

[For PXX = 04, 05, 06, 07, 11, 22: the function E2EXf_Inv_<transformerld> shall
invoke E2E_PXXCheck(), passing to that function:

* config,
* state,
* pointer to data (DataPtr)

— inputBuffer + EndToEndTransformationDescrip-
tion.upperHeaderBitsToShift/8 (out-of-place version) or

— Buffer + EndToEndTransformationDescription.upperHeaderBitsToShift/8 (in-
place version).

* length: inputBufferLength - EndToEndTransformationDescrip-
tion.upperHeaderBitsToShift/8

]

Note: E2E_PXXCheck requires the data (E2E header + payload) of latest received in-
formation. Length for E2E_PXXCheck consequently must equal length of E2E Header
+ payload of latest received information. Input buffer on the other hand contains an-
other protocol header (f.e. SomelP), the E2E header + payload of latest received
information.

[SWS_E2EXf 00123]
Upstream requirements: RS_E2E_08538

[For PXX = 01 or 02 (i.e. for profiles 1 and 2), the out-of-place function E2EXf_
Inv_<transformerld> shall invoke E2E_PXXCheck(), passing to that function:

» Config,
 State,

» pointer to data (DataPtr) inputBuffer + EndToEndTransformationDescrip-
tion.upperHeaderBitsToShift/8 (out-of-place version)

Concerning pointer to Data: if(inputBuffer == NULL and inputBufferLength == 0), then
it shall pass a pointer to a 1-byte variable of E2E transformer, otherwise it shall pass
inputBuffer. |

AUTSSAR

[SWS_E2EXf 00124]
Upstream requirements: RS_E2E_08538

[For PXX = 01 or 02 (i.e. for profiles 1 and 2), the in-place function E2EXf_
Inv_<transformerld> shall invoke E2E_PXXCheck(), passing to that function:

» Config,
« State,

» pointer to data (DataPtr) buffer + EndToEndTransformationDescrip-
tion.upperHeaderBitsToShift/8 (inplace version).

Concerning pointer to Data: if(buffer == NULL and inputBufferLength == 0), then it shall
pass a pointer to a 1-byte variable of E2E transformer, otherwise it shall pass buffer. |

7.7.4.4.1 E2EXf_Inv_handling_PXXm_client

The following figure provides an activity diagram of the functionality provided by the
function E2EXf_Inv_handling_PXXm_client().

Legend
D All types
D Sender/Receiver X
) Profile == PXXm
D Publisher/Subscriber [FALSE]
D C/S: Server
[]ors:crient [TRUE]
D Signal to Service
ok = extractProtocolHeaderFields
(buffer/inputBuffer,
bufferLength/inputBufferLength,
&messageType, &messageResult)
)
[FALSE] ok=E_OK
[TRUE]
[WriteVariable]
sourcelD = config->sourcelD J @
retumn retum

E_SAFETY_HARD_RUNTIMEERROR E2E E OK

Figure 7.18: E2EXf_Inv_handling_PXXm_client

[SWS_E2EXf 00193]
Upstream requirements: RS_E2E_08538

[For profiles P04m, PO7m, P0O8m and P44m the in-place E2EXf_Inv_<transformer
Id> on the client-side shall call the extractProtocolHeaderFields() function passing the
buffer, the bufferLength, the address of local messageType variable, and the address
of a local messageResult variable as parameters. |

AUTSSAR

[SWS_E2EXf 00194]
Upstream requirements: RS_E2E_08538

[For profiles P0O4m, PO7m, PO8m and P44m the out-of-place E2EXf_Inv_<transformer
Id> on the client-side shall call the extractProtocolHeaderFields() function passing the
inputBuffer, the inputBufferLength, the address of a local variable named message
Type, and the address of a local variable named messageResult as parameters. |

[SWS_E2EXf 00196]
Upstream requirements: RS_E2E_08538

[For profiles P04m, PO7m, PO8m and P44m both the in-place and the out-of-place
E2EXf Inv_<transformerld> on the client-side shall set a local variable sourcelD to the
sourcelD stored in the configuration (see SWS_E2EXf _00126). |

7.7.4.4.2 E2EXf_Inv_PXXCheck_client

The following figure provides an activity diagram of the func-
tionality provided by the function E2EXf_Inv_PXXCheck_client().

Legend
I:l All types .

I:, Sender/Receiver

|:| Publisher/Subscriber Profile == 01 [
. . [TRUE]
|:| C/S: Server Profile == 02 [] SWS_E2EXF_00217
; SWS_E2EXF 00218
|:| C/S: Client .-

I:l Signal to Service [State -> LastValidCounter = j

shExpectedResponseE2ECounter - 1

[FALSE] .

State > Counter= | _______________.___. | _ . | See SWS_E2EXf 00170,
SWS_E2EXf 00217 "7 shExpectedResponseE2ECounter -1 SWS_E2EXf 00171
SWS_E2EXF 00218

Profile == PXXm [FALSE]

[TRUE]

AN checkret = E2E_PXXSourceCheck() checkret = E2E_PXXCheck ()
SWS_E2EXF 00200) @)

SWS_E2EXf 00104
SWS_E2EXf 00123

return
checkret

Figure 7.19: E2EXf_Inv_PXXCheck_client

AUTSSAR

[SWS_E2EXf 00217] Store shExpectedE2ECounter to LastValidCounter for
P01/P02

Upstream requirements: RS_E2E_08538
[If profile equals P01 or P02 the function E2EXf_Inv_<transformerld> on the client-side
shall write shExpectedResponseE2ECounter - 1 to state->LastValidCounter. |

[SWS_E2EXf _00218] Decrease Counter for comparison

Upstream requirements: RS_E2E_08538
[If profile does not equal PO1 or P02 the function E2EXf_Inv_<transformerld> on the
client-side shall write shExpectedResponseE2ECounter - 1 to state->Counter. |

[SWS_E2EXf_00200]
Upstream requirements: RS_E2E_08538

[For PXX = P0O4m, PO7m, PO8m and P44m: the function E2EXf_Inv_<transformerld>
on the client-side shall invoke E2E_PXXSourceCheck(), passing to that function:

* config

 state

local variable SourcelD

the local variable messageType

local variable messageResult

pointer to data (DataPtr)

— inputBuffer + EndToEndTransformationDescription.upperHeaderBitsTo
Shift/8 (out-of-place version) or

— buffer + EndToEndTransformationDescription.upperHeaderBitsToShift/8 (in-
place version).

* length: inputBufferLength - EndToEndTransformationDescription.upperHeader
BitsToShift/8

]

Note: The parameter length covers the length of the message payload itself includ-
ing the E2E header data but without any additional header data. This data length
value should not be mixed up with other length values that occur in the context of
E2E_PXXSourceCheck().

To be precise, E2E_PXXSourceCheck() requires the data (E2E header + payload) of
latest received message. Consequently, parameter length for E2E_PXXSourceCheck()
equals length of E2E Header + length of payload of latest received message

AUTSSAR

On the other hand, parameter inputBuffer contains the output of previous transformer +
E2E header + payload of latest received message. So, pointer to data (DataPtr) needs
to be modified to omit header data added by previous transformer.

7.7.4.4.3 E2EXf_Inv_handling_PXXm_server_pre_check

The following figure provides an activity diagram of the functionality provided by the
function E2EXf_Inv_handling_PXXm_server_pre_check.

Legend
D All types
D Sender/Receiver
[] publisnerisubscriber Profile == PXXm
D C/S: Server [FALSE]
[[]ors:ciient
[TRUE]
D Signal to Service
ok = extractProtocolHeaderFields
(buffer/inputBuffer,
bufferLength/inputBufferLength,
&messageType, &messageResult)
[FALSE] ok=E_OK
[TRUE]
return return
E_SAFETY_HARD_RUNTIMEERROR E2E_E_OK

Figure 7.20: E2EXf_Inv_handling_PXXm_server_pre_check

[SWS_E2EXf 00197]
Upstream requirements: RS_E2E_08538

[For profiles PO4m, PO7m, PO8m and P44m the in-place E2EXf_Inv_<transformerld>
on the server-side shall call the extractProtocolHeaderFields() function passing the
buffer, the bufferLength, the address of local messageType variable, and the address
of a local messageResult variable as parameters. |

[SWS_E2EXf 00198]
Upstream requirements: RS_E2E_08538

[For profiles P0O4m, PO7m, PO8m and P44m the out-of-place E2EXf_Inv_<transformer
Id> on the server-side shall call the extractProtocolHeaderFields() function passing the
inputBuffer, the inputBufferLength, the address of local messageType variable, and the
address of a local messageResult variable as parameters. |

[SWS_E2EXf 00199]
Upstream requirements: RS_E2E_08538

[If extractProtocolHeaderFields() returns something different from E_OK, E2EXf_
Inv_<transformerld> shall return E_SAFETY_HARD_RUNTIMEERROR. |

AUTSSAR

7.7.4.4.4 E2EXf Inv_extract E2E_header_info

Legend
I:l All types
[SWS_E2EXf 00216]
I:l Sender/Receiver
Profile == PXXm ;

|:| Publisher/Subscriber

|:| C/S: Server [TRUE} [FALSE] ;
|:| C/s: Client \l/ !
|:| Signal to Service (ret = E2E_PXXGetHeaderInfo)

ret = E2E_PXXmGetHeaderInfo -
.- [SWS_E2EXf 00215]

Figure 7.21: E2EXf_Inv_extract_E2E header_info

[SWS_E2EXf _00215] Extract Counter and Source ID for m-profiles
Upstream requirements: RS_E2E_08538

[In case of Client/Server Communication on the client side and server side
and Profile is PO4m, P07m, P08m or P44m, E2E Counter and sourcelD shall
be retrieved to local variables receivedRequestCounter and receivedSourcelD by
E2E_PXXmGetHeaderInfo(). |

[SWS_E2EXf _00216] Extract Counter for non m-profiles
Upstream requirements: RS_E2E_08538

[In case of Client/Server Communication on the client side and server side and Profile
is P01, P02, P04, P05, P06, P07, P08, P11, P22 or P44, E2E Counter shall be retrieved
to local variable receivedRequestCounter by E2E_PXXGetHeaderInfo(). |

AUTSSAR

7.7.4.4.5 E2EXf Inv_PXXCheck_server

Legend
D All types
D Sender/Receiver
|:| Publisher/Subscriber Profile == PXXm
|:| C/S: Server [FALSE]

[]ers:cient

D Signal to Service [TRUE]

checkret =
E2E_PXXSinkCheck() (::)

checkret =
E2E_PXXCheck() (::)
SWS_E2EXf 00104
SWS_E2EXf 00123

SWS_E2EXF_00201

return
checkret

Figure 7.22: E2EXf_Inv_PXXCheck_server

[SWS_E2EXf_00201]
Upstream requirements: RS_E2E_08538

[For PXX = PO4m, PO7m, PO8m and P44m: the function E2EXf_Inv_<transformerld>
on the server-side shall invoke E2E_PXXSinkCheck(), passing to that function:

* config,
* state,

+ the local variables messageType, messageResult, and the address of the local
variable sourcelD

» data length: inputBufferLength - EndToEndTransformationDescription.upper
HeaderBitsToShift/8

* pointer to data:

— inputBuffer + EndToEndTransformationDescription.upperHeaderBitsTo
Shift/8 (out-of-place version) or

— buffer + EndToEndTransformationDescription.upperHeaderBitsToShift/8 (in-
place version).

7.7.4.4.6 E2EXf_Inv_Handling_PXXm_server_post_check

The following figure provides an activity diagram of the functionality provided by the
function E2EXf_Inv_handling_PXXm_server_post_check.

AUTSSAR

Legend
[]Autypes
D Sender/Receiver
|:| Publisher/Subscriber Profile == PXXm
[] crs: server [FALSE]

D C/S: Client

D Signal to Service

[TRUE]

store receivedSourcelD to
shCopiedE2ESourcelD

b

. store receivedRequestCounter to
SWS_E2EXf_00203 shCopiedRequestE2ECounter

1

Figure 7.23: E2EXf_Inv_handling_PXXm_server_post_check

SWS_E2EXF 00202

3

[SWS_E2EXf _00202]
Upstream requirements: RS_E2E_08538
[For profiles P04m, PO7m, PO8m and P44m both the in-place and the out-of-place

E2EXf Inv_<transformerld> on the server-side shall store the value of receivedSour-
celD to shCopiedE2ESourcelD. |

[SWS_E2EXf 00203]
Upstream requirements: RS_E2E_08538
[For profiles P0O4m, P07m, P0O8m and P44m both the in-place and the out-of-

place E2EXf_Inv_<transformerld> on the server-side shall store the value of receive-
dRequestCounter to shCopiedRequestE2ECounter. |

AUTSSAR

7.7.4.5 E2EXf_Inv_handling P01_P02_forceConstantMaxDeltaCounter

Legend ‘
D All types

I:, Sender/Receiver
) _ (Profile == 01 || Profile == 02) &&
I:l Publisher/Subscriber profileBehavior== R4_2

I:l C/S: Server
[]ers:ciient

I:I Signal to Service [TRUE]
\L [SWS_E2EXf 00142] 1

WriteVariable
State->MaxDeltaCounter =
Config->MaxDeltaCounterlnit

[FALSE]

®

Figure 7.24: E2EXf_Inv_handling_P01_P02_forceConstantMaxDeltaCounter

[SWS_E2EXf 00142]
Upstream requirements: RS_E2E_08538

[If configuration parameter profileBehavior is R4_2, then for PXX = 01 or 02, E2EXf_
Inv_<transformerld> () shall set the variable MaxDeltaCounter of the state object to the
value of variable MaxDeltaCounterlnit of the corresponding configuration object. |

7.7.4.6 E2EXf_Inv_handle_Statemachine

Legend ‘
I:l All types

I:I Sender/Receiver

[] putisner/subscriber
C/S: S [SWS_E2EXf 00029]
D erver [checkStatus = E2E_PXXMapStatusToSM]

I:, C/S: Client (checkret, Status)
D Signal to Service (:2)

[SWS_E2EXF_00175]

Portinterface == ClientServerinterface && [TRUE]
PortPrototype == RPortPrototype &&
1=
checkStatus = E2E_P_OK (FALSE] WiteVariable
checkStatus = E2E_P_ERROR
return
checkStatus

Figure 7.25: E2EXf_Inv_handle_Statemachine

AUTSSAR

[SWS_E2EXf 00029]
Upstream requirements: RS_E2E_08538

[The function E2EXf_Inv_<transformerld> shall invoke E2E_PXXMapStatusToSM(),
passing to that function the return value of E2E_PXXCheck and the profile’s check
Status (variable Status of state object of type E2E_PXXCheckStateType, see [SWS_
E2EXf_00125]), to obtain the profile-independent check status. For P1/P2 mapping
functions, there is an additional call parameter profileBehavior:

« if configuration parameter profileBehavior is R4_2, then E2E_PXXMapStatusTo
SM() shall be invoked with the call parameter profileBehavior = 1

« if configuration parameter profileBehavior is PRE_R4_2, then E2E_PXXMapSta-
tusToSM() shall be invoked with call parameter profileBehavior = 0

]

[SWS_E2EXf 00028]
Upstream requirements: RS_E2E_08538

[The function E2EXf_Inv_<transformerld> shall invoke the E2E_SMCheck() function
if disableEndToEndStateMachine equals FALSE. It shall pass to E2E_SMCheck()
the configuration object of type E2E_SMConfigType (see [SWS_E2EXf _00126]
and [SWS_E2EXf _00088]) and state object of type E2E_SMCheckStateType (see
[SWS_E2EXf 00125]) that are associated with <transformerld>, plus the profile-
independent check status that was computed by E2E_PXXMapStatusToSM() in
[SWS_E2EXf 00029].|

[SWS_E2EXf 00169]
Upstream requirements: RS_E2E 08538

[If disableEndToEndStateMachine is to TRUE,

» The high nibble of the return of the function E2EXf Inv_<transformerld> shall be
set to 0x6.

* The low nibble of the return of the function E2EXf _Inv_<transformerld> shall be
set to the low nibble of the profile-independent check status of type E2E_PCheck
StatusType.

]

[SWS_E2EXf 00027]
Upstream requirements: RS_E2E_08538

[If E2E_SMCheck() returns E2E_E_OK and disableEndToEndStateMachine is FALSE,
then:

+ the high nibble of the return of the function E2EXf_Inv_<transformerld>shall be
set to the low nibble of the state of the state machine (member SMState of object
of type E2E_SMStateType that is associated with <transformerld>, see [SWS _
E2EXf 00125]).

AUTSSAR

* The low nibble of the return of the function E2EXf Inv_<transformerld> shall be
set to the low nibble of the profile-independent check status of type E2E_PCheck
StatusType.

If E2E_SMCheck() does not return E2E_E_OK, the return value shall be E_SAFETY_
SOFT_RUNTIMEERROR. |

[SWS_E2EXf 00175]
Upstream requirements: RS_E2E_08538

[In case of Client/Server Communication on the client side, if the E2E_PXXCheck
function returns a value different from E2E_P_OK, the status shall be set to E2E_P__
ERROR. |

7.7.5 De-Initialization

[SWS_E2EXf 00148]
Upstream requirements: RS_E2E_08538

[E2EXf_Delnit() shall set the module initialization state to FALSE. |

7.8 Error classification

7.8.1 Development Errors
The E2E Transformer shall be able to detect the following development errors

[SWS_E2EXf_00137] Definition of development errors in module E2EXf
Upstream requirements: RS_E2E_08538

[

Type of error Related error code Error value

Error code if any other API service, except Get E2EXF_E_UNINIT 0x01
Versionlinfo is called before the transformer
module was initialized with Init or after a call to De
Init

Error code if an invalid configuration set was E2EXF_E_INIT_FAILED 0x02
selected

API service called with wrong parameter E2EXF_E_PARAM 0x03
API service called with invalid pointer E2EXF_E_PARAM_POINTER 0x04

[SWS_E2EXf 00144]
Upstream requirements: RS_E2E_08538

[If the XfrmDevErrorDetect switch is enabled and the configuration variant is VARIANT-
POST-BUILD, the function E2EXf_Init shall check if a NULL pointer is passed for the

AUTSSAR

ConfigPtr parameter. In this case the remaining function shall not be executed and the
function E2EXf_Init shall report development error code E2EXF_E_PARAM_POINTER
to the Det_ReportError service of the Default Error Tracer. |

[SWS_E2EXf_00145]
Upstream requirements: RS_E2E_08538

[If the XfrmDevErrorDetect switch is enabled and the configuration variant is VARIANT-
POST-BUILD, the function E2EXf_Init shall check the contents of the given configura-
tion set for being within the allowed boundaries. If the function E2EXf_Init detects an
error, then it shall skip the initialization of the E2E Transformer, keep the module inter-
nal state as uninitialized and it shall report development error code E2EXF_E_INIT
FAILED to the Det_ReportError service of the Default Error Tracer. |

[SWS_E2EXf 00146]
Upstream requirements: RS_E2E_08538

[If the configuration parameter XfrmDevErrorDetect is enabled, the function E2EXf_
Delnit shall check if the E2E transformer is initialized. If not initialized, the function
E2EXf_Delnit shall return without any effect and shall report the error to the Default
Error Tracer with the error code E2EXF_E_UNINIT. |

[SWS_E2EXf 00149]
Upstream requirements: RS_E2E_08538

[If the XfrmDevErrorDetect switch is enabled, the function E2EXf_GetVersionInfo shall
check if a NULL pointer is passed for the VersionInfo parameter. In this case of an
error the remaining function E2EXf_GetVersionInfo shall not be executed and the func-
tion E2EXf_GetVersionInfo shall report development error code E2EXF_E_PARAM_
POINTER to the Det_ReportError service of the Default Error Tracer and return. |

[SWS_E2EXf_00150]
Upstream requirements: RS_E2E_08538

[If the configuration parameter XfrmDevErrorDetect is enabled, all parameters of API
E2EXf_<transformerld> (see SWS_E2EXf 00032) shall be checked for being in the
allowed range. In case of an error the mode switch shall not be executed, an the er-
ror shall be reported to the Default Error Tracer with either value E2EXF_E_PARAM
(parameter out of range) resp. E2EXF_E_PARAM_POINTER in case of a pointer
argument (NULL pointer) and the routine shall return the value E_SAFETY_HARD _
RUNTIMEERROR. |

[SWS_E2EXf_00151]
Upstream requirements: RS_E2E_08538

[If the configuration parameter XfrmDevErrorDetect is enabled, the API
E2EXf <transformerld> (see SWS_E2EXf 00032) shall check if the E2E Trans-
former is initialized. In case of an error, the error code E2EXF_E_UNINIT shall be

AUTSSAR

reported to the Default Error Tracer and the routine shall return the value E_SAFETY_
HARD_RUNTIMEERROR. |

[SWS_E2EXf 00152]
Upstream requirements: RS_E2E_08538

[If the configuration parameter XfrmDevErrorDetect is enabled, all parameters of API
E2EXf_Inv_<transformerld> (see SWS_E2EXf 00034) shall be checked for being in
the allowed range. In case of an error the mode switch shall not be executed, the error
shall be reported to the Default Error Tracer with the value E2EXF_E_PARAM resp.
E2EXF_E_PARAM_POINTER in case of a pointer argument (NULL pointer) and the
routine shall return the value E_SAFETY_HARD_RUNTIMEERROR. |

[SWS_E2EXf _00153]
Upstream requirements: RS_E2E_08538

[If the configuration parameter XfrmDevErrorDetect is enabled, the APl E2EXf_
Inv_<transformerld> (see SWS_E2EXf 00034) shall check if the E2E Transformer is
initialized. In case of an error the routine shall not be executed, the error shall be re-
ported to the Default Error Tracer with the error code E2EXF_E_UNINIT and the routine
shall return the value E_SAFETY_HARD_RUNTIMEERROR. |

7.8.2 Runtime Errors

[SWS_E2EXf 00122]
Upstream requirements: RS_E2E_08538

[The runtime errors detected by the E2EXf_<transformerld> function shall be reported
as return value to the caller (i.e. to RTE). |

[SWS_E2EXf 00009]
Upstream requirements: RS_E2E_08538

[The runtime errors detected by E2EXf_Inv_<transformerld> function and errors in the
protected E2E communication shall be reported as return value to the caller (i.e. to
RTE). |

Note: If there is a hard error in one of the transformers then the transformer chain is to
be aborted. The first hard error shall be passed to the server application. If there is at
least one soft error then the first soft error shall be passed to the application. reported
by E2E Transformer.

7.8.3 Production Errors

The function E2EXf Inv_<transformerld> checks for the return value from
E2E_SMCheck() and E2E_CheckStatus().

AUTSSAR

[SWS_E2EXf _00210] Reporting to DEM for Signalgroup
Upstream requirements: RS_E2E_08538
[E2E Transformer shall report the errors to DEM via Dem_SetEventStatus API only if

a diagnostic event is referenced by e2eCrcError, e2eCounterError or e2eTimeoutError
inside ISignalPortToDiagnosticEventMapping for this SignalGroup. |

[SWS_E2EXf_00211] Reporting e2eCrcError

Upstream requirements: RS_E2E_08538
[If the E2E_SMCheck() results as "INVALID" and E2E_PxxMapStatusToSM() returns
an E2E_P_ERROR (CRC, data id, length error), the E2EXf _Inv_<transformerld> shall
notify the DEM with the status DEM_EVENT_STATUS_PREFAILED for dem event de-

fined by ISignalPortToDiagnosticEventMapping.e2eCrcError. It shall only be reported
if DEM_EVENT_STATUS_PREFAILED was previously NOT set. |

[SWS_E2EXf _00212] Reporting e2eCounterError
Upstream requirements: RS_E2E_08538

[If the E2E_SMCheck() results as "INVALID" and E2E_PxxMapStatusToSM() re-
turns anything else than E2E_P_ERROR, the E2EXf_Inv_<transformerld> shall no-
tify the DEM with the status DEM_EVENT_STATUS PREFAILED for counter di-
agnostic event referenced by ISignalPortToDiagnosticEventMapping.e2eCounterError
or timeout error diagnostic event referenced by ISignalPortToDiagnosticEventMap-
ping.e2eTimeoutError depending on the number of errors ([SWS_E2EXf_00213]). It
shall only be reported if DEM_EVENT_STATUS_PREFAILED was previously NOT
set. |

[SWS_E2EXf _00213] Reporting e2eCounterError or timeout
Upstream requirements: RS_E2E_08538

[The diagnostic event for counter error (e2eCounterError) or timeout error
(e2eTimeoutError) shall be triggered based on the following logic:

» The DEM event with most entries of that failure in WindowSize shall be reported.

— E2E_P_REPEATED and E2E_P_WRONGSEQUENCE increment entries
for counter error.

— E2E_P_NONEWDATA increment entries for timeout error.

* In case of an equal number of message counter and timeout failures a timeout
DTC shall be reported.

]

[SWS_E2EXf _00214] Setting to DEM_EVENT_PREPASSED
Upstream requirements: RS_E2E_08538

[If the E2E_SMCheck() results as "VALID" the E2EXf_Inv_<transformerld> shall notify
the DEM via Dem_SetEventStatus API with the status DEM_EVENT PREPASSED. It

AUTSSAR

shall only be reported if DEM_EVENT_STATUS_PREFAILED was previously set for
any E2E DEM event ([SWS_E2EXf_00210]). |

7.8.4 Extended Production Errors

All Extended Production Errors valid for E2E Transformer are specified in [2, General
Specification of Transformers].

Requirement [SWS_Xfrm_00071] (XFRM_E_MALFORMED_MESSAGE) is not appli-
cable for the E2E-Transformer.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter, all types included from the following modules are listed:

[SWS_E2EXf _00047] Definition of imported datatypes of module E2EXf
Upstream requirements: RS_E2E_08538, RS_E2E_08528

[

Module Header File Imported Type

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
E2E.h E2E_P01CheckStateType

E2E E2E.h E2E_P01CheckStatusType
E2E.h E2E_P01ConfigType
E2E.h E2E_P01DatalDMode
E2E.h E2E_PO01ProtectStateType
E2E.h E2E_P02CheckStateType
E2E.h E2E_P02CheckStatusType
E2E.h E2E_P02ConfigType
E2E.h E2E_PO02ProtectState Type
E2E.h E2E_P04CheckStateType
E2E.h E2E_P04CheckStatusType
E2E.h E2E_P04ConfigType
E2E.h E2E_PO04ProtectState Type
E2E.h E2E_P04mCheckStateType
E2E.h E2E_P04mCheckStatusType
E2E.h E2E_P04mConfigType
E2E.h E2E_P04mProtectStateType
E2E.h E2E_P05CheckStateType
E2E.h E2E_P05CheckStatusType
E2E.h E2E_P05ConfigType
E2E.h E2E_PO5ProtectState Type
E2E.h E2E_P06CheckStateType
E2E.h E2E_P06CheckStatusType
E2E.h E2E_P06ConfigType
E2E.h E2E_PO06ProtectState Type
E2E.h E2E_P07CheckStateType
E2E.h E2E_P07CheckStatusType
E2E.h E2E_P07ConfigType
E2E.h E2E_PO7ProtectState Type
E2E.h E2E_P07mCheckStateType

\Y%

AUTSSAR

A

Module Header File Imported Type
E2E.h E2E_P07mCheckStatusType
E2E.h E2E_P07mConfigType
E2E.h E2E_P07mProtectStateType
E2E.h E2E_P08CheckStateType
E2E.h E2E_P08CheckStatusType
E2E.h E2E_P08ConfigType
E2E.h E2E_PO08ProtectState Type
E2E.h E2E_P08mCheckState Type
E2E.h E2E_P08mCheckStatusType
E2E.h E2E_P08mConfigType
E2E.h E2E_P08mProtectStateType
E2E.h E2E_P11CheckStateType
E2E.h E2E_P11CheckStatusType
E2E.h E2E_P11ConfigType
E2E.h E2E_P11DatalDMode
E2E.h E2E_P11ProtectStateType
E2E.h E2E_P22CheckStateType
E2E.h E2E_P22CheckStatusType
E2E.h E2E_P22ConfigType
E2E.h E2E_P22ProtectState Type
E2E.h E2E_P44CheckStateType
E2E.h E2E_P44CheckStatusType
E2E.h E2E_P44ConfigType
E2E.h E2E_P44ProtectStateType
E2E.h E2E_P44mCheckState Type
E2E.h E2E_P44mCheckStatusType
E2E.h E2E_P44mConfigType
E2E.h E2E_P44mProtectStateType
E2E.h E2E_PCheckStatusType
E2E.h E2E_SMCheckStateType
E2E.h E2E_SMConfigType
E2E.h E2E_SMStateType

Std Std_Types.h Std_ExtractProtocolHeaderFieldsType
Std_Types.h Std_MessageResultType
Std_Types.h Std_MessageTypeType
Std_Types.h Std_ReturnType
Std_Types.h Std_TransformerForwardCode (draft)
Std_Types.h Std_VersioninfoType

]

Furthermore, [2, ASWS Transformer] defines types which shall be imported.

AUTSSAR

8.2 Type definitions

8.2.1 E2EXf_ConfigType

[SWS_E2EXf_00030] Definition of datatype E2EXf_ConfigType
Upstream requirements: RS_E2E_08538

Name E2EXf_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Parent container for the configuration of E2E Transformer. The content is implementation-specific.
Available via E2EXf.h

8.3 Function definitions

8.3.1 E2EXf <transformerld>

[SWS_E2EXf 00032] Definition of APl function E2EXf_<transformerid>
Upstream requirements: RS_E2E_08538

Service Name

E2EXf_<transformerld>

Syntax

uint8 E2EXf_<transformerId> (
[Std_TransformerForwardCode forwardedCode],
[Std_ExtractProtocolHeaderFieldsType extractProtocolHeaderFields],
uint8x buffer,
uint32+ bufferLength,
[const uint8* inputBuffer],
uint32 inputBufferLength

)

Service ID [hex]

0x03

Sync/Async

Synchronous

Reentrancy

Non Reentrant

Parameters (in)

forwardedCode Optional parameter of E2E status forwarded to transformer chain
and provided by the RTE. The presence of this parameter
depends solely on the PortAPIOption transformerStatus
Forwarding. The parameter must always be provided by the RTE
if the corresponding PortPrototype is referenced by a Port
APIOption which has the attribute transformerStatusForwarding
set to transformerStatusForwarding.

extractProtocolHeader Optional pointer to the function that shall be used to extract
Fields relevant protocol header fields of the serializing transformer in the
transformer chain.

Used for profiles PXXm.

\Y

AUTSSAR

A
inputBuffer This argument only exists for E2E transformers configured for
out-of-place transformation. It holds the input data for the
transformer.
inputBufferLength This argument holds the length of the E2E transformer’s input

data (in the inputBuffer argument).

Parameters (inout) buffer This argument is only an INOUT argument for E2E transformers
which are configured for in-place transformation. This is the
buffer where the E2E transformer places its output data. If the E2
E transformer is configured for in-place transformation, it also
contains its input data.

If the E2E transformer uses in-place transformation and has a
headerLength different from 0, the output data of the previous
transformer begin at position headerLength.

This argument is only an OUT argument for E2E transformers
configured for out-of-place transformation. It is the buffer
allocated by the RTE, where the transformed data has to be
stored by the transformer.

Parameters (out) bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK):

Function performed successfully.

OxFF (E_SAFETY_HARD_RUNTIMEERROR):

A runtime error occured, safety properties could not be checked
and no output data could be produced.

Description Protects the array/buffer to be transmitted, using the in-place transformation.
Available via E2EXf.h

The return codes of E2EXf_<transformerld> are specified in TransformerTypes, see
ASWS Transformer General.

8.3.2 E2EXf_Inv_<transformerid>

[SWS_E2EXf 00034] Definition of API function E2EXf_Inv_<transformerid>
Upstream requirements: RS_E2E_08538

Service Name E2EXf_Inv_<transformerld>

Syntax uint8 E2EXf_Inv_<transformerId> (
[Std_ExtractProtocolHeaderFieldsType extractProtocolHeaderFields],
uint8x buffer,
uint32+ bufferLength,

[const uint8* inputBuffer],
uint32 inputBufferLength

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) extractProtocolHeader Optional pointer to the function that shall be used to extract
Fields relevant protocol header fields of the serializing transformer in the

transformer chain.
Used for profiles PXXm

V

AUTSSAR

A

inputBuffer

This argument only exists for E2E transformers configured for
out-of-place transformation. It holds the input data for the
transformer. If executeDespiteDataUnavailability is set to true and
the RTE cannot provide data as input to the transformer, it will
hand over a NULL pointer to the transformer.

inputBufferLength

This argument holds the length of the transformer’s input data (in
the inputBuffer argument). If executeDespiteDataUnavailability is
set to true and the RTE cannot provide data as input to the
transformer, the length will be equal to 0.

Parameters (inout)

buffer

This argument is only an INOUT argument for E2E transformers,
which are configured for in-place transformation. It is the buffer
where the input data are placed by the RTE and which is filled by
the transformer with its output. If executeDespiteData
Unavailability is set to true and the RTE cannot provide data as
input to the transformer, it will hand over a NULL pointer to the
transformer.

This argument is only an OUT argument for E2E transformers
configured for out-of-place transformation. It is the buffer
allocated by the RTE, where the transformed data has to be
stored by the transformer.

Parameters (out)

bufferLength

Used length of the output buffer.

Return value

uint8

The high nibble represents the state of the E2E state machine if
disableEndToEndStateMachine equals FALSE. The high nibble
shall be set to 0x6 if the E2E state machine is disabled (disable
EndToEndStateMachine equals TRUE). The low nibble
represents the status of the last E2E check.

For the following return codes, please see SWS Transformer
General:

0x00 (E_OK) This means VALID_OK

0x01 (E_SAFETY_VALID_REP)
0x02 (E_SAFETY_VALID_SEQ)
0x03 (E_SAFETY_VALID_ERR)
0x05 (E_SAFETY_VALID_NND)
0x20 (E_SAFETY_NODATA_OK)
0x21 (E_SAFETY_NODATA_REP)
0x22 (E_SAFETY_NODATA_SEQ)
0x23 (E_SAFETY_NODATA_ERR)
0x25 (E_SAFETY_NODATA_NND)
0x30 (E_SAFETY_INIT_OK)
0x31 (E_SAFETY_INIT_REP)
0x32 (E_SAFETY_INIT_SEQ)
0x33 (E_SAFETY_INIT_ERR)
0x35 (E_SAFETY_INIT_NND)
0x40 (E_SAFETY_INVALID_OK)
0x41 (E_SAFETY_INVALID_REP)
0x42 (E_SAFETY_INVALID_SEQ)
0x43 (E_SAFETY_INVALID_ERR)
0x45 (E_SAFETY_INVALID_NND)
0x60 (E_SAFETY_NOSM_OK)
0x61 (E_SAFETY_NOSM_REP)

0x62 (E_SAFETY_NOSM_SEQ)

0x63 (E_SAFETY_NOSM_ERR)

0x65 (E_SAFETY_NOSM_NND)

0x66 (E_SAFETY_NOSM_DEC)

0x77 (E_SAFETY_SOFT_RUNTIMEERROR): A runtime error
occured, safety properties could not be checked (state or status
cannot be determined) but non-protected output data could be
produced nonetheless.

0x8D (E_E2E_HARD_SAFETY_ERR): A runtime error occured,
during Client/Server-Communication on the server side, safety
properties could not be checked and no output data could be

v
\Y%

AUTSSAR

A

A
produced (see [SWS_E2EXf 00167]).

OxFF (E_SAFETY_HARD_RUNTIMEERROR): A runtime error
occured, safety properties could not be checked and no output
data could be produced.

Description Checks the received data. If the data can be used by the caller, then the function returns E_OK.
Available via E2EXf.h

]

The return codes of E2EXf_Inv_<transformerld> are specified in TransformerTypes,
see ASWS Transformer General.

In case the state machine is disabled: If E2E_PXXMapStatusToSM
(after E2E _PXXCheck() call) returns E2E P OK the function returns
E_SAFETY_NOSM_OK. Technically E_SAFETY_NOSM_OK is implemented as
a specific soft error (value between 0x01 and 0x7F). The application should evaluate
E_SAFETY_NOSM_OK not as an error.

8.3.3 E2EXf Init
Add the following function:

[SWS_E2EXf 00035] Definition of APl function E2EXf_Init
Upstream requirements: RS_E2E_08538

[

Service Name E2EXf_Init
Syntax void E2EXf_Init (
const E2EXf_ConfigTypex config
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) config Pointer to a selected configuration structure, in the
post-build-selectable variant. NULL in link-time variant.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the state of the E2E Transformer. The main part of it is the initialization of the E2E
library state structures, which is done by calling all init-functions from E2E library.
Available via E2EXf.h

AUTSSAR

8.3.4 E2EXf Delnit

[SWS_E2EXf 00138] Definition of API function E2EXf_ Delnit
Upstream requirements: RS_E2E_08538

Service Name E2EXf_Delnit
Syntax void E2EXf_DelInit (
void
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Deinitializes the E2E transformer.
Available via E2EXf.h

8.3.5 E2EXf_GetVersioninfo

[SWS_E2EXf_00036] Definition of API function E2EXf_GetVersioninfo

Upstream requirements: RS_E2E_08538

Service Name E2EXf_GetVersioninfo

Syntax void E2EXf_GetVersionInfo (
Std_VersionInfoTypex versioninfo

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via E2EXf.h

8.4 Callback notifications

None

AUTSSAR

8.5 Scheduled functions

None

8.6 Expected interfaces

In this chapter all external interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all external interfaces, which are required to fulfill the core func-
tionality of the module.

[SWS_E2EXf_00037] Definition of mandatory interfaces required by module E2
EXf

Upstream requirements: RS_E2E_08538

[

API Function Header File Description

E2E_P01Check E2E.h Checks the Data received using the E2E profile 1.
This includes CRC calculation, handling of Counter
and Data ID.

E2E_P01Checklnit E2E.h Initializes the check state

E2E_PO01Forward (draft) E2E.h Protects data which is forwarded by using the E2E

profile 01. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P01MapStatusToSM E2E.h The function maps the check status of Profile 1 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 1
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_PO1Protect E2E.h Protects the array/buffer to be transmitted using the

E2E profile 1. This includes checksum calculation,
handling of counter and Data ID.

E2E_PO01Protectlnit E2E.h Initializes the protection state.

E2E_P02Check E2E.h Check the array/buffer using the E2E profile 2. This
includes checksum calculation, handling of
sequence counter and Data ID.

E2E_P02CheckInit E2E.h Initializes the check state

E2E_PO02Forward (draft) E2E.h Protects data which is forwarded by using the E2E
profile 02. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

AUTSSAR

API Function

Header File

Description

E2E_P02MapStatusToSM

E2E.h

The function maps the check status of Profile 2 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 2
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_PO2Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 2. This includes checksum calculation,
handling of sequence counter and Data ID.

E2E_PO02Protectlnit

E2E.h

Initializes the protection state.

E2E_P04Check

E2E.h

Checks the Data received using the E2E profile 4.
This includes CRC calculation, handling of Counter
and Data ID.

The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P04Checklnit

E2E.h

Initializes the check state

E2E_PO04Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 04. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P04MapStatusToSM

E2E.h

The function maps the check status of Profile 4 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 4
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P04mCheckinit

E2E.h

Initializes the check state

E2E_P0O4mForward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 4m. This includes CRC calculation, handling
of Counter, Data ID, Message Type, Message
Result, and Source ID. Detected Errors of received
message Will be reconstruct on output data.

Tags: atp.Status=draft

E2E_P04mMapStatusToSM

E2E.h

The function maps the check status of Profile 4m to
a generic check status, which can be used by E2E
state machine check function. The E2E Profile 4m
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P04mProtect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 4m. This includes CRC calculation,
handling of Counter, Data ID, Message Type,
Message Result, and Source ID.

E2E_P04mProtectlnit

E2E.h

Initializes the protection state.

E2E_P04mSinkCheck

E2E.h

Checks the Data received using the E2E profile 4m.
This includes CRC calculation, handling of Counter,
Data ID, Message Type, Message Result, and
Source ID.

The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

This function is intended for usage at the data sink
(i.e., in case of C/S communication at the server).

AUTSSAR

API Function

Header File

Description

E2E_P04mSourceCheck

E2E.h

Checks the Data received using the E2E profile 4m.
This includes CRC calculation, handling of Counter,
Data ID, Message Type, Message Result, and
Source ID.

The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

This function is intended for usage at the data
source (i.e., in case of C/S communication at the
client).

E2E_PO04Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 4. This includes checksum calculation,
handling of counter and Data ID.

E2E_P04ProtectInit

E2E.h

Initializes the protection state.

E2E_P05Check

E2E.h

Checks the Data received using the E2E profile 5.
This includes CRC calculation, handling of Counter.
The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P05Checklnit

E2E.h

Initializes the check state

E2E_PO5Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 05. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P05MapStatusToSM

E2E.h

The function maps the check status of Profile 5to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 5
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_PO5Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 5. This includes checksum calculation,
handling of counter.

E2E_PO5Protectlnit

E2E.h

Initializes the protection state.

E2E_P06Check

E2E.h

Checks the Data received using the E2E profile 6.
This includes CRC calculation, handling of Counter.
The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P06Checklnit

E2E.h

Initializes the check state

E2E_PO6Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 06. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P06MapStatusToSM

E2E.h

The function maps the check status of Profile 6 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 6
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_PO6Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 6. This includes checksum calculation,
handling of counter.

E2E_PO6Protectinit

E2E.h

Initializes the protection state.

AUTSSAR

API Function

Header File

Description

E2E_P07Check

E2E.h

Checks the Data received using the E2E profile 7.
This includes CRC calculation, handling of Counter
and Data ID.

The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P07Checklnit

E2E.h

Initializes the check state

E2E_PO0O7Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 07. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P07MapStatusToSM

E2E.h

The function maps the check status of Profile 7 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 7
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P07mCheckInit

E2E.h

Initializes the check state

E2E_PO7mForward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 7m. This includes CRC calculation, handling
of Counter, Data ID, Message Type, Message
Result, and Source ID. Detected Errors of received
message will be reconstruct on output data.

Tags: atp.Status=draft

E2E_P07mMapStatusToSM

E2E.h

The function maps the check status of Profile 7m to
a generic check status, which can be used by E2E
state machine check function. The E2E Profile 7m
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_PO7mProtect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 7m. This includes CRC calculation,
handling of Counter, Data ID, Message Type,
Message Result, and Source ID.

E2E_PO7mProtectinit

E2E.h

Initializes the protection state.

E2E_P07mSinkCheck

E2E.h

Checks the Data received using the E2E profile 7m.
This includes CRC calculation, handling of Counter,
Data ID, Message Type, Message Result, and
Source ID.

The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

This function is intended for usage at the data sink
(i.e., in case of C/S communication at the server).

E2E_P07mSourceCheck

E2E.h

Checks the Data received using the E2E profile 7m.
This includes CRC calculation, handling of Counter,
Data ID, Message Type, Message Result, and
Source ID.

The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

This function is intended for usage at the data
source (i.e., in case of C/S communication at the
client).

E2E_PO07Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 7. This includes checksum calculation,
handling of counter and Data ID.

E2E_PO07Protectlnit

E2E.h

Initializes the protection state.

AUTSSAR

API Function

Header File

Description

E2E_P08Check

E2E.h

Checks the Data received using the E2E profile 08.
This includes CRC calculation, handling of Counter
and Data ID. The function checks only one single
data in one cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P08Checklnit

E2E.h

Initializes the check state

E2E_PO8Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 08. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P08MapStatusToSM

E2E.h

The function maps the check status of Profile 08 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 08
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P08mChecklinit

E2E.h

Initializes the check state

E2E_P08mForward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 08m. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P08mMapStatusToSM

E2E.h

The function maps the check status of Profile 08m to
a generic check status, which can be used by E2E
state machine check function. The E2E Profile 08m
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P08mProtect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 08m. This includes CRC calculation,
handling of counter, Data ID, Message Type,
Message Result and Source ID.

E2E_PO08mProtectinit

E2E.h

Initializes the protection state.

E2E_P08mSinkCheck

E2E.h

Checks the Data received using the E2E profile 8m.
This includes CRC calculation, handling of Counter,
Data ID, Message Type, Message Result, and
Source ID. The function checks only one single data
in one cycle, it does not determine/compute the
accumulated state of the communication link. This
function is intended for usage at the data sink (i.e.,
in case of C/S communication at the server).

E2E_P08mSourceCheck

E2E.h

Checks the Data received using the E2E profile 8m.
This includes CRC calculation, handling of Counter,
Data ID, Message Type, Message Result, and
Source ID. The function checks only one single data
in one cycle, it does not determine/compute the
accumulated state of the communication link. This
function is intended for usage at the data source
(i.e., in case of C/S communication at the client).

E2E_PO08Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 08. This includes checksum calculation,
handling of counter and Data ID.

E2E_PO08Protectlnit

E2E.h

Initializes the protection state.

E2E_P11Check

E2E.h

Checks the Data received using the E2E profile 11.
This includes CRC calculation, handling of Counter.
The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P11Checkinit

E2E.h

Initializes the check state

AUTSSAR

API Function

Header File

Description

E2E_P11Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 11. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P11MapStatusToSM

E2E.h

The function maps the check status of Profile 11 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 11
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P11Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 11. This includes checksum calculation,
handling of counter.

E2E_P11Protectlnit

E2E.h

Initializes the protection state.

E2E_P22Check

E2E.h

Checks the Data received using the E2E profile 22.
This includes CRC calculation, handling of Counter.
The function checks only one single data in one
cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P22Checkinit

E2E.h

Initializes the check state

E2E_P22Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 22. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P22MapStatusToSM

E2E.h

The function maps the check status of Profile 22 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 22
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P22Protect

E2E.h

Protects the array/buffer to be transmitted using the
E2E profile 22. This includes checksum calculation,
handling of counter.

E2E_P22Protectlnit

E2E.h

Initializes the protection state.

E2E_P44Check

E2E.h

Checks the Data received using the E2E profile 44.
This includes CRC calculation, handling of Counter
and Data ID. The function checks only one single
data in one cycle, it does not determine/compute the
accumulated state of the communication link.

E2E_P44Checklnit

E2E.h

Initializes the check state.

E2E_P44Forward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 44. This includes checksum calculation,
handling of counter and Data ID. Detected Errors of
received message will be reconstruct on output data.
Tags: atp.Status=draft

E2E_P44MapStatusToSM

E2E.h

The function maps the check status of Profile 44 to a
generic check status, which can be used by E2E
state machine check function. The E2E Profile 44
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.

E2E_P44mCheckInit

E2E.h

Initializes the check state

E2E_P44mForward (draft)

E2E.h

Protects data which is forwarded by using the E2E
profile 44m. This includes CRC calculation, handling
of Counter, Data ID, Message Type, Message
Result, and Source ID. Detected Errors of received
message will be reconstruct on output data.

Tags: atp.Status=draft

AUTSSAR

A
API Function Header File Description
E2E_P44mMapStatusToSM E2E.h The function maps the check status of Profile 44m to
a generic check status, which can be used by E2E
state machine check function. The E2E Profile 44m
delivers a more fine-granular status, but this is not
relevant for the E2E state machine.
E2E_P44mProtectinit E2E.h Initializes the protection state.
E2E_P44mSinkCheck E2E.h Checks the Data received using the E2E profile

44m. This includes CRC calculation, handling of
Counter, Data ID, Message Type, Message Result,
and Source ID. The function checks only one single
data in one cycle, it does not determine/compute the
accumulated state of the communication link. This
function is intended for usage at the data sink (i.e.,
in case of C/S communication at the server).

E2E_P44mSourceCheck E2E.h Checks the Data received using the E2E profile
44m. This includes CRC calculation, handling of
Counter, Data ID, Message Type, Message Result,
and Source ID. The function checks only one single
data in one cycle, it does not determine/compute the
accumulated state of the communication link. This
function is intended for usage at the data source
(i.e., in case of C/S communication at the client).

E2E_P44Protect E2E.h Protects the array/buffer to be transmitted using the
E2E profile 44. This includes checksum calculation,
handling of counter and Data ID.

E2E_P44Protectlnit E2E.h Initializes the protection state.

E2E_SMCheck E2E.h Checks the communication channel. It determines if
the data can be used for safety-related application,
based on history of checks performed by a
corresponding E2E_P0XCheck() function.

E2E_SMChecklInit E2E.h Initializes the state machine.

8.6.2 Optional Interfaces
This chapter defines optional interfaces to be used by E2E Transformer.

[SWS_E2EXf 91000] Definition of optional interfaces requested by module E2
EXf

Upstream requirements: RS_E2E_08538

[

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

AUTSSAR

8.6.3 Configurable interfaces

None

AUTSSAR

9 Sequence diagrams

The following chapter contains sequence diagrams to show the interaction of AU-
TOSAR modules for E2E protected communication and the specifics per communi-
cation type - signal based communication, service oriented communication, signal to
service translation (see Chapter 7).

9.1 E2E for Sender/Receiver

9.1.1 Send E2E protected signals

SWC «module» «module» «module» «module»
Rte ComBasedXf E2E Com
oo
T

1
Rte_Write_<p>_<0>()

SWC intends to send data

j

ComBasedXf_<transformerld>()

» L
L
< — — E_OKserializeddata U Serialize data

E2EXf_<transformerld>() :
I
|
| E2E_PXXProtect() ey
1 gl Creation of E2E header
| :E2E_E_OK + data to (E2E protection core part)
| be transmitted

 {

:E_OK + data to be Itransmilted ____________ !
e e e e e e e T - |
L L

| Send E2E protected data over netwoh
|
|

Com_SendSignal()

|
|
I
|
1 - 1 1 >
e o b EOK__ A b
I I I
I I I
| | |
T T | | |
1 1

‘RTE_E_OK

Figure 9.1: E2E protect sequence for signal based communication
(E2EXf_<transformerid>)

9.1.2 Receive E2E protected signals (Activation mode)

The following sequence diagram shows how sender/receiver communication for data
transmission and activation of runnable entity (activation mode) on the receiver side
may be implemented (see figure "Sender Receiver communication with event seman-
tics and activation of runnable entity as reception mechanism" in [10, CP-SWS-RTE]).

AUTSSAR

sSwC «module» «module» «module» «module»
Rte ComBasedXf E2E Com
O
T T

|
Rte_ COMCbk(ComUserCbkHandleld)
T

T

|

|

T

Com_ReceiveSignal() |

T T

! :E_OK !

e — e~ g - —

I I

| |

| |

| |

I I

| (void) |

———————————————————— B e e

|
I

! E2EXf_<transformerld>()

Yy

E2E_PXXCheck()

:E2E_PXXCheckState(E2E status + counter)

E2E_PXXMapStatusToSM() T

AN
perform E2E check

:E2E_PCheckStatus

‘_:_'_‘1‘
5
Q
2
S
T
n:
E]
o
(7]
5]
%
—_————e e 4

E2E_SMCheck() T

:E2E_SMState

:E2E result (E2E_PCheckStatus + E2E_SMState) +
buffer of received cli_ata

- — —

I
ComBasedXf_Inv_<transformerld>()]

alt

[E2E_EI OK or Transformer Soft Errof]

__ ReceiversRunnable()
+(void inform application
H____L_L___>

| »
L i
LI< __________ ‘LI Return code + signal data

——— e —

I I I |
Figure 9.2: E2E check sequence for signal based communication - activation mode
(E2EXf_Inv<transformerld>)

9.1.3 Receive E2E protected signals (Polling mode)

The following sequence diagram shows how sender/receiver communication for data
transmission in polling mode on the receiver side may be implemented (see "Sender
Receiver communication with data semantics and dataReceive- PointByArgument as
reception mechanism" in [10, CP-SWS-RTE]).

AUTSSAR

sSwC «module» «module» «module» «module»
Rte ComBasedXf E2E Com
O
T T T

|
Rte_ COMCbk(ComUserCbkHandleld)
T

Receive E2E protected signa!}l

T
|
|
T
Com_ReceiveSignal() | |
T T
|
I
I

I
I R e __E—_OE ________________________
I .
N B S woid) | _____ A N
1 L 1
: Rte_Read_<p>_<0>() ! :
E2EXf_Inv_<transformerld> 1
() > |
E2E_PXXCheck() \
:E2E_PXXCheckState(E2E status + counter)
L
E2E_PXXMapStatusToSM() 1

AN
perform E2E check

:E2E_PCheckStatus

E2E_SMCheck() |

——— e e e 4 4

:E2E_SMState

:E2E result (E2E_PCheckStatus + E2E_SMState) +

buffer of received data
< —————— - e

1
ComBasedXf_Inv_<transformerld>() |
»

[E2E_K_PK or Transformer Soft Errof]

:Return code + signal data
<

[Transfokmer Hard Error]
:Return code

Figure 9.3: E2E check sequence for signal based communication - polling mode
(E2EXf_Inv<transformerld>)

9.2 EZ2E for Events

The following sequence shows the publisher/subscriber pattern. When an event is
updated all subscribers receive an update message. RTE calls Somelp transformer
(serialization) and E2E transformer for E2E protection..

AUTSSAR

9.2.1 Send an E2E Protected Event

Publisher
application

«module»
Rte

«module»
SomelpXf

: Rte_Send(event) :

:RTE_E_OK

SWC Publisher Application intends to trigger an event Iﬁ

«module» «module»
E2E
O

Com

Creation of E2E header
(E2E protection core part)

Send E2E protected data over network Iﬁ
T

-

|
|
I
I |
SomelpXf_<transformerld>() : :
»
L
ke - ———— :E:Of isfrfll_ze_d Eala ______ “ | Creation of string to be E2E pmtectedlﬁ
I
E2EXf_<transformerld>() ! !
1 »
| L
|
1 E2E_PXXProtect()
| L
| :E2E_E_OK + data to
| be transmitted
:E_OK + data to be transmitted !
i gl S
I
I I
| |
Com_SendSignal(event) :
I I
e L EOK o ____
| |
| |
I I

Figure 9.4: E2E protect sequence for events (E2EXf_<transformerld>)

9.2.2 Receive an E2E Protected Event(Activation Mode)

The following sequence diagram shows publisher/subscriber communication for data
transmission and activation of runnable entity (activation mode) on the subscriber side
may be implemented (see figure "Sender Receiver communication with event seman-
tics and activation of runnable entity as reception mechanism" in [10, CP-SWS-RTE]).

In this mode, the receipt of messages triggers the RTE to call the subscriber’s applica-

tion.

AUTSSAR

Subscriber «module» «module» «module» «module»
application Rte SomelpXf E2E Com
oSO
T T T

T T
| |
| | Rte_ COMCbk(ComUserCbkHandleld) | |
T T T
RTE receives the event item e | ‘ReceiveSignal |
from COM and puts it into the Com_ReceiveSignal()
RTE-queue for event e | . |
ke o e — |_'E—95 ____________
I :(void) |
+

E2E_PXXCheck()

:E2E_PXXCheckState
(E2E status + counter)

L
E2E_PXXMapStatusToSM() |

AN
perform E2E check

:E2E_PCheckStatus

E2E_SMCheck() T

:E2E_SMState

|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
I
alt |
|

[E2E_E | OK or Transformer Soft Error]
| . 5
| ReceiversRunnable() Inform application

(void)
il
T) T
| Rte_Receive_<p>_<0>() |
Return code
< ——————=—=--- + event data

———— - ——]

1
[Transformer Hard Error] |
| |
No notification of subscriber 1
|
I

Figure 9.5: E2E check sequence for events - activation mode (E2EXf_<transformerld>)

The E2E protected event comes in at COM. RTE retrieves the message, calls E2E
transformer to check if there was an E2E error and Somelp Transformer for deserial-
ization if there is no E2E error. In case of E2E error the subscriber is not updated, in
case of no E2E error the subscriber gets the updated value of the event.

Inverse E2E transformer and the inverse SOME/IP transformer run in sequence. The
behavior of transformers in a chain and the possible errors are described in chapter
"Error Handling" of [2, ASWS Transformer General].

9.2.3 Receive an E2E Protected Event(Polling Mode)

The following sequence diagram shows publisher/subscriber communication for data
transmission in polling mode on the subscriber side may be implemented (see fig-
ure "Sender Receiver communication with event semantics and dataReceive- PointB-
yArgument as reception mechanism" in [10, CP-SWS-RTE]).

AUTSSAR

Subscriber «module» «module» «module» «module»

application Rte SomelpXf E2E Com
O

T T

| | | | |

| | Rte_COMCbk(ComUserCbkHandleld) | |
receive E2E protected event : T :
| |

Com_ReceiveSignal()

-1

RTE receives the eventiteme | | b ——— — — = — — — — F=——————————-
from COM and puts it into
the RTE-queue for event e

I
| Rte_Receive_<p>_<0>() |

E2EXf_Inv_<transfo:rmerId>()

| E2E_PXXCheck()
poll for incoming events |

| :E2E_PXXCheckState

|

(E2E Status + counter)

perform E2E check E2E_MapStatusToSM() T

:E2E_PCheckStatus

Yy

E2E_SMCheck()

| :E2E_SMState

|
I
I
|
|
I
I
|
|
|
I
I
|
|
|
I
|
|
|
I
:E2E result + buffer of receiveddata ~ |I<~" """ T T T T T T T T T T T |
<---—-—-—---- t-—————————- [
|

|

I

I

|

|

|

I

|

|

|

I

I

|

|

|

I

I

|

|

|
SomelpXf_Inv_<transformerld>()

deserialize event data

[E2E_E _|OK or Transformer Soft Error]

:Return code + event data

...... fommm e
[Transformer Hard Error]
I

:Return code

|

Figure 9.6: E2E check sequence for events - polling mode (E2EXf_<transformerld>)

9.3 E2E for Method Call/Method Response

The following sequences show the method call/method response pattern.

AUTSSAR

9.3.1

Call an E2E Protected Method

Client Application

T
Rte_Call_<p>_<0>() :

«module» «module» «module»
Rte SomelpXf E2E
T T

«module»
Com

Remote method call is asynchronous. Client application is not blocked during execution. Synchronous call is not possible!ll

T
|
|
I
|
|
SWS Client Application intends to send E2E protected method call. Start a timer to expect the response. This timer is |
application based and not a SOME/IP timer. |
T T I
SomelpXf_<transformerld>() | | |
> Serialization of the argument list to an array | |
) . r 1 1
o JEOK+serialized data _ | |
Creation of SOME/IP header to be protected : :
E2EXf_<transformerld>() | | | 1
1 . 1 1
| E2E_PXXProtect() _ | I
1 L
| :E2E_E_OK + data
! to be transmitted Creation of E2E header
L E_OK+datatobetansmited [~ "7 T T T (E2E Protection core part)
| | |
| I | |
Delivery of the entire ! Com_SendSignal(! : _ !
message to the | £ OK | | bl
transmission layer K — - e ————————— e Fe————————
| | |
‘RTE_E_OK ! ! ! !
e —— === - | I I I
L | | | |
| | | |

Figure 9.7: E2E protect sequence for methods (E2EXf_<transformerld>)

The SWC calls a remote method which is executed somewhere else. This is an asyn-
chronous call. The client application is not blocked when the remote method is exe-
cuted at the remote side. The call by client application is first handled by RTE. This
call is E2E protected before it is sent remote where it is executed. So RTE calls the
Somelp transformer for serializing and then the E2E transformer for adding E2E pro-
tection. The E2E protected message is sent over a network to its destination.

AUTSSAR

9.3.2 Receive and respond to an E2E Protected Method Call

Server application|

deserialize received data

1
Receive E2E protected
method call

«module» «module» «module» «module»
Rte SomelpXf E2E Com
T T T
! Rte_COMCbk(ComUserCbkHandleld) ! !

Com_ReceiveSignaIV\ﬁthl;/IetaDala() :
| |
I EOK | ________ o
I I
E2EX{_Inv_<transformerld>() | |
> E2E_PXXCheck() / |
I

T
|
1
I
|
|
-
I
|
T
|
|
I
I
|
|
I
I
|

:E2E result + buffer of received data
e —————— e e ———
I

SomelpXf_Inv_<transformerld>()
>l

I
I
I
I
I
I
I
t/

al

| ServerRunnable()

:Result of method call

E2E_PXXmCheck()

:E2E_PXXCheckState
(E2E status + counter)

E2E_PXXMapStatusToSM() _ |

:E2E_PCheckStatus

_______________ e
T | | | T
. 1 1 1 1
JE]‘__l :Activate Server's Task | I | |
| | | |
| | | |
T | | |
| I I I
[E2E7F70K or Transformer S¢ft|Error] : : :
RTE fetches the server parameters from | | |
its queue and calls the server runnable 1 1 1
T I I I
| | | |
= SomelpXf_<transformerld>() : : : :
I I I
:E_OK + serialized | | |
OK response I I I
______________ | | |
- | | |
------------------------- R | | |
SomelpXf_<transformerld>() : ! : :
| |
:E_OK + serialized No method call I 1
< Error response Serialize Error response message. : :
J | | |
T | | |
I I I I
E2EXf_<transformerld>() | | | I
; > E2E_PXXProtect) | :
L
I ‘E2E_E_OK + data !
: to be transmitted :
:E_OK + data to be transmitted W< T T T T T T T T T T T
<o oo Qe |
I I I
: Com_SendDynSignalWithMetaData() : - :
I | I I]
e e A EOK _ e b
I I I
I I I

Figure 9.8: E2E check sequence for method request (E2EXf_Inv<transformerld>)

The E2E protected message comes in at COM and is forwarded to RTE. RTE calls
E2E transformer to check for E2E errors and then - if there is not E2E error - Somelp
transformer for deserializing. The result of the E2E check decides if the remote function
is called or not. In case of an E2E error there is no call. In both cases (E2E error/no
E2E error) a response/error message is set up and also serialized and E2E protected
before it is sent back.

AUTSSAR

9.3.3 Receive a E2E Protected Response to a Method Call

Client Application «module» «module» «module» «module»
Rte SomelpXf E2E Com
(o o)
T T T T

:RtefCaI I_<p>_<0>()'

_______ timer to expect a remote result This timer is application based and not a SOME/IP timer.

|
‘RTE_E_OK SWS Client Application intends to send E2E protected method call. It starts a deadline |l‘

Some time passes until a response from Server appliction arrives. This scenario of
sending an E2E protected method call is described in chapter 9.3.1.

1
: : Rte_COMCbk(ComUserCbkHandleld)

1
:Activate client'sresponse task
L

I
I
| |
| |
| |
______________ B S e
I I
| |
1
|
I

Receive E2E protected

response. This can be a
response after a successful
call or an error message.

| E2EXf_Inv_<transformerld>()

T
|
|
|
I
|
|
I
|
|
|
|
|
|

=
|
|
|
E2E_PXXCheck() / E2E_PXXmCheck() :

:E2E_PXXCheckState (E2E status + counter)

E2E_PXXMapStatusToSM()

|
perform E2E check

I

I

|

:E2E_PCheckStatus
SM is only called if the remote method is caIIedj

-

periodically and shall be configured accordingly E2E_SMCheck()

(disableEndToEndStateMachine).

:E2E_SMState

|
:E2E result + buffer of received data

< — - oo L To==EE

SomelpXf_Inv_<transformerld>()|

»

)
I m
|\

[e]
Ix
1+
s
18
Iz
5
|(D
ID.
18

2
]

N—

alt) | i
[E2E_E_QK or Transiomer Spff Error] !
CIiemRIesponseRunnable()

]
|
|
I
|
|
|
|
|
|
|
|
|
Return code passed to SWC (defined in SWS RTE chapter 4.3.2). |
In this case, the timer is deactivated, because response has |
arrived within given limit. The limit is configured with parameter :
I

|

|

|

|

|

|

|

|

|

|

|

|

|

I

_______ > endToEndCallResponseTimeout.

T T | |
| |

|
Result<p>_<0>()

@

R
Retrive returned data (successful response or an error response) Iﬁ
< - - ———— : ;

L L | |
------ R il St R EEE RS
[Transfomher Hard Error or no résponse in time]

I | o vl q

| | Application based deadline timer expired.

No notification of application.

Figure 9.9: E2E check sequence for method reponse (E2EXf_Inv<transformerld>)

The E2E protected response message comes in at COM and is forwarded to RTE.
RTE calls E2E transformer and then Somelp transformer to check for E2E errors. In
case of an E2E error an error message is provided to client application. So the client
application is informed that no valid value is returned from remote. In case of no E2E
error the client application can use the result values provided as response message.

9.4 EZ2E in Signal to Service Translation

The following sequence shows signal to service translation with E2E protection.

AUTSSAR

Translation «module» «module» «module» «module» «module»
application Rte SomelpXf ComBasedXf E2E Com
SO
T T T

T T T

I I I 1 1 I

: ! | Rte_COMCbk(ComUserCbkHandleld) ! |
T T T T

1 1 1

I Com_ReceiveSignal()

n 9 | I . | |
Receive E2E protected signal e e 1 __ _-E—PE e e
I

Rte_Read_<p>_<o0>() 1

1
E2EXf_Inv_<transformerld>()
I

> E2E_PXXCheck()

:E2E_PXXCheckState
(E2E status + counter)

I
|
|
I
I
: E2E_PXXMapStatusToSM()

-1

| :E2E_SMState
:E2E result + buffer of receiveddata [———-—-—-—-—-—-— ===
ity ettty ity
| |
ComBasedXf_Inv_<transformerld>() |

1
T L
1 lj
:E2E result + :E_OK deserialize data
<< ——————== F————————-

deserialized data

|
RtefSend,<p>,<0>(): 1 !
|

|
I
|
Translation of signals to service |
|
I
I
|

Serialize service data or emoneous message Il|

I I
| | |
E2EXf_<transformerld>() | |

»

m
o
=
S SR

L
E2E_PXXForward()
The Forward function does either protect the resulting .
service message or create a service message that ——— L E -
triggers an E2E error at receiver.
| E_OK
_______ Send data to be transmitted

Com_SendSignal()

A
|
|
I
I
|
|
|
I
+
|
|
I
I
|
|
|
I
I
|
J I

i e ——————— =
:RTE_E_OK
e = =2 -

T T
1 1

Figure 9.10: E2E sequence for signal to service translation (E2EXf_<Transformerld>)

m
o
=
[T E
|
I
I
|
|
I
I

|

|

|

| .

| — |
|

|

|

1

The Translation Application creates a new message which is built out of the deserialized
data and the E2E result. If this E2E result is an error then the new message is built up
that way that it will also call an E2E error at its receiver.

AUTSSAR

10 Configuration specification

There is no module specific ECU configuration for E2E Transformer. The following is
used for the generation of E2E transformer:

1. Options defined in TPS System Template (defining functional options related to
protection, e.g. IDs, counters)

2. Options defined in TPS Software Component template (defining options for spe-
cific ports that override options defined in TPS System Template)

3. Options defined in ASWS Transformer General (Mapping of TransformationTech-
nology entities of a DataTransformation to the implementing BswModuleEntry en-
tities).

[SWS_E2EXf_00156]
Upstream requirements: SRS_BSW_00159

[The apiServicePrefix of the E2E Transformer’s EcuC shall be set to E2EX. |

AUTSSAR

A Not applicable requirements

[SWS_E2EXf _NA_00001]

Upstream requirements: RS_E2E_08544, SRS _BSW 00386, SRS_BSW_00388, SRS BSW_
00389, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00395, SRS_BSW_00396, SRS_BSW_00397, SRS_BSW_
00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00402,
SRS_BSW_00403, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_
00385, SRS_BSW_00407, SRS_BSW_00409, SRS_BSW_00416,
SRS _BSW_00417, SRS_BSW_00419, SRS_BSW_00422, SRS_BSW _
00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_
00432, SRS_BSW_00433, SRS_BSW_00437, SRS_BSW_00438,
SRS_BSW_00450, SRS_BSW_00451, SRS_BSW_00452, SRS_BSW_
00458, SRS_BSW_00461, SRS_BSW_00466, SRS_BSW_00467,
SRS_BSW_00469, SRS_BSW_00470, SRS_BSW_00471, SRS_BSW_
00472, SRS_BSW_00478, SRS_BSW_00488, SRS_BSW_00489,
SRS_BSW_00490, SRS_BSW_00491, SRS_BSW_00493, SRS_BSW_
00496, SRS_BSW_00384, SRS_BSW_00383, SRS_BSW_00380,
SRS_BSW_00375, SRS_BSW_00369, SRS_BSW_00345, SRS_BSW_
00344, SRS_BSW_00339, SRS_BSW_00337, SRS_BSW_00336,
SRS_BSW_00323, SRS_BSW_00171, SRS_BSW_00170, SRS_BSW_
00168, SRS_BSW_00167, SRS_BSW_00101, SRS_BSW_00004,
SRS_BSW_00406

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AU-
TOSAR Release R22-11

B.2 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.2.1 Added Specification Iltems in R23-11

none

B.2.2 Changed Specification Items in R23-11

[SWS_E2EXf 00026] [SWS_E2EXf 00028] [SWS_E2EXf 00030] [SWS_E2EXf -
00032] [SWS_E2EXf 00034] [SWS_E2EXf 00037] [SWS_E2EXf 00047] [SWS_-
E2EXf 00087] [SWS_E2EXf 00168] [SWS_E2EXf 00175] [SWS_E2EXf 00208]
[SWS_E2EXf _NA_00001]

B.2.3 Deleted Specification Items in R23-11

[SWS_E2EXf 00120] [SWS_E2EXf 00163] [SWS_E2EXf 00176] [SWS_E2EXF -
00177] [SWS_E2EXf 00178] [SWS_E2EXf 00179] [SWS_E2EXf 00204] [SWS._-
E2EXf_00205]

B.3 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.3.1 Added Specification Items in R24-11

none

B.3.2 Changed Specification ltems in R24-11

[SWS_E2EXf 00034] [SWS_E2EXf 00035] [SWS_E2EXf 00088] [SWS_E2EXf -
00138]

B.3.3 Deleted Specification Iltems in R24-11

none

AUTSSAR

B.4 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.4.1 Added Specification Items in R25-11

[SWS_E2EXf 00210] [SWS_E2EXf 00211] [SWS_E2EXf 00212] [SWS_E2EXF -
00213] [SWS_E2EXf 00214] [SWS_E2EXf 00215] [SWS_E2EXf 00216] [SWS_-
E2EXf 00217] [SWS_E2EXf 00218] [SWS_E2EXf 91000]

B.4.2 Changed Specification Items in R25-11

[SWS_E2EXf 00030] [SWS_E2EXf 00032] [SWS_E2EXf 00034] [SWS E2EXf -
00047] [SWS_E2EXf 00104] [SWS_E2EXf 00107] [SWS_E2EXf 00123] [SWS -
E2EXf 00124] [SWS_E2EXf 00142] [SWS_E2EXf 00165] [SWS_E2EXf 00166]
[SWS_E2EXf 00168] [SWS_E2EXf 00170] [SWS_E2EXf 00171] [SWS_E2EXf -
00180] [SWS_E2EXf 00184] [SWS_E2EXf 00188] [SWS_E2EXf 00190] [SWS._-
E2EXf 00191] [SWS_E2EXf 00192] [SWS_E2EXf 00200] [SWS_E2EXf 00201]
[SWS_E2EXf 00202] [SWS_E2EXf 00203] [SWS_E2EXf 00208]

B.4.3 Deleted Specification ltems in R25-11

[SWS_E2EXf 00026] [SWS_E2EXf 00172] [SWS_E2EXf 00173] [SWS_E2EXf -
00189] [SWS_E2EXf_00206] [SWS_E2EXf_00207]

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Supported configuration variants

	6 Requirements Tracing
	7 Functional specification
	7.1 Supported RTE functions
	7.2 Naming for functions and data to be protected by E2E
	7.3 Configuration
	7.3.1 Precedence of configuration attributes
	7.3.2 Disable E2E check
	7.3.3 Configuration variants

	7.4 Generated structure types
	7.4.1 Overall configuration and state of E2E transformer
	7.4.2 Configuration and state of each E2E-protected data

	7.5 Static initialization
	7.5.1 Static initialization of config
	7.5.2 Static Initialization of state

	7.6 Runtime initialization by E2EXf_Init() function
	7.6.1 Runtime selection of configuration (post-build variant only)
	7.6.2 Runtime initialization of State

	7.7 Normal operation
	7.7.1 In-place processing and out-of-place processing
	7.7.2 Transformer pairing and data exchange
	7.7.3 Transformer and E2E protection
	7.7.3.1 E2EXf_<transformerId> overview
	7.7.3.2 E2EXf_input_checks
	7.7.3.3 E2EXf_handling_P01_P02
	7.7.3.4 E2EXf Handling buffer and header
	7.7.3.5 E2EXf_handling_specific_protection
	7.7.3.6 E2EXf_store_request_counter
	7.7.3.7 E2EXf Data Transformation
	7.7.3.8 E2EXf_MapCodeToStatus

	7.7.4 Transformer and E2E check
	7.7.4.1 E2EXf_Inv_<transformerId> overview
	7.7.4.2 E2EXf_Inv_input_checks
	7.7.4.3 E2EXf_Inv_handling_P01_P02
	7.7.4.4 E2EXf_Inv_handling_main_check
	7.7.4.5 E2EXf_Inv_handling_P01_P02_forceConstantMaxDeltaCounter
	7.7.4.6 E2EXf_Inv_handle_Statemachine

	7.7.5 De-Initialization

	7.8 Error classification
	7.8.1 Development Errors
	7.8.2 Runtime Errors
	7.8.3 Production Errors
	7.8.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 E2EXf_ConfigType

	8.3 Function definitions
	8.3.1 E2EXf_<transformerId>
	8.3.2 E2EXf_Inv_<transformerId>
	8.3.3 E2EXf_Init
	8.3.4 E2EXf_DeInit
	8.3.5 E2EXf_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 E2E for Sender/Receiver
	9.1.1 Send E2E protected signals
	9.1.2 Receive E2E protected signals (Activation mode)
	9.1.3 Receive E2E protected signals (Polling mode)

	9.2 E2E for Events
	9.2.1 Send an E2E Protected Event
	9.2.2 Receive an E2E Protected Event(Activation Mode)
	9.2.3 Receive an E2E Protected Event(Polling Mode)

	9.3 E2E for Method Call/Method Response
	9.3.1 Call an E2E Protected Method
	9.3.2 Receive and respond to an E2E Protected Method Call
	9.3.3 Receive a E2E Protected Response to a Method Call

	9.4 E2E in Signal to Service Translation

	10 Configuration specification
	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R22-11
	B.2 Traceable item history of this document according to AUTOSAR Release R23-11
	B.2.1 Added Specification Items in R23-11
	B.2.2 Changed Specification Items in R23-11
	B.2.3 Deleted Specification Items in R23-11

	B.3 Traceable item history of this document according to AUTOSAR Release R24-11
	B.3.1 Added Specification Items in R24-11
	B.3.2 Changed Specification Items in R24-11
	B.3.3 Deleted Specification Items in R24-11

	B.4 Traceable item history of this document according to AUTOSAR Release R25-11
	B.4.1 Added Specification Items in R25-11
	B.4.2 Changed Specification Items in R25-11
	B.4.3 Deleted Specification Items in R25-11

