
Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Document Title
Specification of SW-C
End-to-End Communication
Protection Library

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 428

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Add 2 new functions for E2E for methods

• Remove use cases

• Remove all references to E2EPW

2024-11-27 R24-11
AUTOSAR
Release
Management

• E2EPW Support removed

• Profile 76 added

• Change Interfaces of Profile 22

2023-11-23 R23-11
AUTOSAR
Release
Management

• Corrections of Length type in P44m

2022-11-24 R22-11
AUTOSAR
Release
Management

• Corrections of MinDataLength in P04m
and P07m

• Correction of syntax errors in profiles
P11 and P22

• Chapters 8 and Annex B: Make Service
IDs of functions unique

2021-11-25 R21-11
AUTOSAR
Release
Management

• New profiles 8m, 44m

2020-11-30 R20-11
AUTOSAR
Release
Management

• New profiles 4m, 7m, 08,44

• E2E for methods

• Extension of E2E State Machine
▽

1 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△

2019-11-28 R19-11
AUTOSAR
Release
Management

• Incorporated E2E_PxxForward methods
to replicate detected E2E-Errors on
outgoing messages

• E2E P0xSTATUS_ERROR values are
now the same for all profiles

• Fixed minor inconsistencies and typos

• Updated Tracing from SRS_E2E to
RS_E2E

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Added clarification regarding
assumptions on failure modes and
detection capabilities in annex A.

• Fixed inconsistent definition of length in
E2E header for P04, P05, and P06

• Clarification of parameters
CounterOffset and CRCOffset in
E2E_P01ConfigType

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Updated traceability to SRS E2E.

• Fixed enumeration literals for
E2E_PxxCheckStatusType for profiles 1
and 2.

• Corrected name of step
E2E_SMClearProfileStatus to
E2E_SMClearStatus in Routine
E2E_SM_checkinit

• Various clarifications in configuration
and routine parameters, mainly of profile
2 and 7.

▽

2 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Added new Profiles 7, 11 and 22.

• Fixed initialization of profile 1 and 2 in
the init function. Now properly sets
WaitForFirstData to TRUE.

• Corrected/unified initialization of Counter
state variable and bit/byte conversion in
configuration data in profiles 4, 5, and 6.

• Removed chapter 8.3.7 elementary
protocol functions that were marked
obsolete since several releases.

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Introduced new E2E state machine
profile status E2E_P_NONEWDATA.
Adapted figures, API tables and
mapping functions. This solves an issue
with deterministic startup of the state
machine.

• Updated Figure 7 7, added behavior in
case ReceivedCounter is out of range.

• Assigned new specification ID
SWS_E2E_00478 to duplicate
specification SWS_E2E_00324
(specification of profile 4).

• Fixed "Calculate CRC over Data ID and
Data", which was already fixed in R4.1.2
but falsely included as of R4.1.1.

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Introduction of E2E profiles 4, 5, 6

• Introduction of E2E state machine

• Introduction of init functions and status
mapping functions for profiles 1, 2

• Overview of wrapper, by means of
several new diagrams.

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Editorial changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Correction in E2E variant 1C

• Various minor corrections

• Editorial changes
▽

3 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△

2013-03-15 4.1.1
AUTOSAR
Release
Management

• Full support for E2E protection at signal
group level

• Removed dependency to Rte_IsUpdated

• Changed recommendations about the
maximum data lengths

• Addition of initialization functions to the
redundant wrapper

• Corrections in code examples

• Reworked according to the new
SWS_BSWGeneral

• New indexing scheme for requirements

• Extension of E2E Profile 1 to support
12-bit Data IDs (variant 1C)

• Alignment with ISO 26262 (terms,
communication faults)

• Quality ameliorations (due to document
review)

• Clarification in the configuration of E2E
parameters

2011-12-22 4.0.3
AUTOSAR
Release
Management

• E2E Profile 3 removed (not backward
compatible)

• Several bugfixes in of E2E Protection
Wrapper API (not backward compatible)

• Modified return values of E2E Protection
Wrapper API (not backward compatible)

• Addition of init API for the E2E
Protection Wrapper

• Several bugfixes and modifications in
code examples of E2E Protection
Wrapper

• Extensions in configuration, making
sender and receiver more independent

• Bugfix in the profile 1 alternating mode
CRC calculation

▽
▽

4 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
△

• Clarifications with in E2E Profile 1 with
respect to the CRC

• Several minor bug fixes

• Several optimizations in the text
descriptions

• New template with requirements
traceability

2010-09-30 3.1.5
AUTOSAR
Release
Management

• Corrected the wrapper configuration.

• Corrected the code example for the
usage of the wrapper.

2010-02-02 3.1.4
AUTOSAR
Release
Management

• Initial release

5 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

6 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 14

2 Acronyms and Abbreviations 16

3 Related documentation 17

3.1 Input documents & related standards and norms 17
3.2 Related specification . 17

4 Constraints and assumptions 18

4.1 Limitations . 18
4.2 Implementation of the E2E Library . 18

5 Dependencies to other modules 19

5.1 Required file structure . 19
5.2 Dependency on CRC library . 19

6 Requirements Tracing 21

7 Functional specification 26

7.1 Error classification . 26
7.1.1 Development Errors . 26
7.1.2 Runtime Errors . 27
7.1.3 Production Errors . 27
7.1.4 Extended Production Errors . 27

8 API specification 28

8.1 Imported types . 28
8.2 Type definitions . 28

8.2.1 E2E Profile 1 types . 29
8.2.1.1 E2E_P01ConfigType . 29
8.2.1.2 E2E_P01DataIDMode . 30
8.2.1.3 E2E_P01ProtectStateType . 31
8.2.1.4 E2E_P01CheckStateType . 32
8.2.1.5 E2E_P01CheckStatusType . 33

8.2.2 E2E Profile 2 types . 34
8.2.2.1 E2E_P02ConfigType . 35
8.2.2.2 E2E_P02ProtectStateType . 36
8.2.2.3 E2E_P02CheckStateType . 36
8.2.2.4 E2E_P02CheckStatusType . 37

8.2.3 E2E Profile 4 types . 39
8.2.3.1 E2E_P04ConfigType . 39
8.2.3.2 E2E_P04ProtectStateType . 40
8.2.3.3 E2E_P04CheckStateType . 40

7 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.3.4 E2E_P04CheckStatusType . 41
8.2.3.5 E2E_P04HeaderInformationType 42

8.2.4 E2E Profile 4m types . 42
8.2.4.1 E2E_P04mConfigType . 42
8.2.4.2 E2E_P04mProtectStateType . 43
8.2.4.3 E2E_P04mCheckStateType . 44
8.2.4.4 E2E_P04mCheckStatusType 45
8.2.4.5 E2E_P04mHeaderInformationType 45

8.2.5 E2E Profile 5 types . 46
8.2.5.1 E2E_P05ConfigType . 46
8.2.5.2 E2E_P05ProtectStateType . 47
8.2.5.3 E2E_P05CheckStateType . 47
8.2.5.4 E2E_P05CheckStatusType . 48
8.2.5.5 E2E_P05HeaderInformationType 49

8.2.6 E2E Profile 6 types . 50
8.2.6.1 E2E_P06ConfigType . 50
8.2.6.2 E2E_P06ProtectStateType . 51
8.2.6.3 E2E_P06CheckStateType . 51
8.2.6.4 E2E_P06CheckStatusType . 52
8.2.6.5 E2E_P06HeaderInformationType 53

8.2.7 E2E Profile 7 types . 53
8.2.7.1 E2E_P07ConfigType . 53
8.2.7.2 E2E_P07ProtectStateType . 54
8.2.7.3 E2E_P07CheckStateType . 55
8.2.7.4 E2E_P07CheckStatusType . 56
8.2.7.5 E2E_P07HeaderInformationType 56

8.2.8 E2E Profile 7m types . 57
8.2.8.1 E2E_P07mConfigType . 57
8.2.8.2 E2E_P07mProtectStateType . 58
8.2.8.3 E2E_P07mCheckStateType . 59
8.2.8.4 E2E_P07mCheckStatusType 59
8.2.8.5 E2E_P07mHeaderInformationType 60

8.2.9 E2E Profile 8 types . 61
8.2.9.1 E2E_P08ConfigType . 61
8.2.9.2 E2E_P08ProtectStateType . 62
8.2.9.3 E2E_P08CheckStateType . 62
8.2.9.4 E2E_P08CheckStatusType . 63
8.2.9.5 E2E_P08HeaderInformationType 64

8.2.10 E2E Profile 8m types . 64
8.2.10.1 E2E_P08mConfigType . 64
8.2.10.2 E2E_P08mProtectStateType . 65
8.2.10.3 E2E_P08mCheckStateType . 66
8.2.10.4 E2E_P08mCheckStatusType 67

8 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.10.5 E2E_P08mHeaderInformationType 67
8.2.11 E2E Profile 11 types . 68

8.2.11.1 E2E_P11ConfigType . 68
8.2.11.2 E2E_P11DataIDMode . 69
8.2.11.3 E2E_P11ProtectStateType . 70
8.2.11.4 E2E_P11CheckStateType . 70
8.2.11.5 E2E_P11CheckStatusType . 71

8.2.12 E2E Profile 22 types . 72
8.2.12.1 E2E_P22ConfigType . 72
8.2.12.2 E2E_P22ProtectStateType . 73
8.2.12.3 E2E_P22CheckStateType . 73
8.2.12.4 E2E_P22CheckStatusType . 74

8.2.13 E2E Profile 44 types . 75
8.2.13.1 E2E_P44ConfigType . 75
8.2.13.2 E2E_P44ProtectStateType . 76
8.2.13.3 E2E_P44CheckStateType . 76
8.2.13.4 E2E_P44CheckStatusType . 77
8.2.13.5 E2E_P44HeaderInformationType 78

8.2.14 E2E Profile 44m types . 78
8.2.14.1 E2E_P44mConfigType . 78
8.2.14.2 E2E_ P44mProtectStateType 79
8.2.14.3 E2E_P44mCheckStateType . 80
8.2.14.4 E2E_P44mCheckStatusType 81
8.2.14.5 E2E_P44mHeaderInformationType 81

8.2.15 E2E Profile 76 Types . 82
8.2.15.1 E2E_P76ConfigType . 82
8.2.15.2 E2E_P76ProtectStateType . 83
8.2.15.3 E2E_P76CheckStateType . 83
8.2.15.4 E2E_P76CheckStatusType . 84

8.2.16 E2E state machine types . 85
8.2.16.1 E2E_PCheckStatusType . 85
8.2.16.2 E2E_SMConfigType . 86
8.2.16.3 E2E_SMCheckStateType . 87
8.2.16.4 E2E_SMStateType . 88

8.3 Routine definitions . 89
8.3.1 E2E Profile 1 routines . 89

8.3.1.1 E2E_P01Protect . 89
8.3.1.2 E2E_P01ProtectInit . 90
8.3.1.3 E2E_P01Forward . 90
8.3.1.4 E2E_P01Check . 91
8.3.1.5 E2E_P01CheckInit . 92
8.3.1.6 E2E_P01MapStatusToSM . 93

8.3.2 E2E Profile 2 routines . 95

9 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.2.1 E2E_P02Protect . 95
8.3.2.2 E2E_P02ProtectInit . 95
8.3.2.3 E2E_P02Forward . 96
8.3.2.4 E2E_P02Check . 97
8.3.2.5 E2E_P02CheckInit . 97
8.3.2.6 E2E_P02MapStatusToSM . 98

8.3.3 E2E Profile 4 routines . 100
8.3.3.1 E2E_P04Protect . 100
8.3.3.2 E2E_P04ProtectInit . 101
8.3.3.3 E2E_P04Forward . 102
8.3.3.4 E2E_P04Check . 102
8.3.3.5 E2E_P04CheckInit . 103
8.3.3.6 E2E_P04MapStatusToSM . 104
8.3.3.7 E2E_P04GetHeaderInfo . 105

8.3.4 E2E Profile 4m routines . 106
8.3.4.1 E2E_P04mProtect . 106
8.3.4.2 E2E_P04mProtectInit . 106
8.3.4.3 E2E_P04mForward . 107
8.3.4.4 E2E_P04mSourceCheck . 108
8.3.4.5 E2E_P04mSinkCheck . 109
8.3.4.6 E2E_P04mCheckInit . 110
8.3.4.7 E2E_P04mMapStatusToSM . 110
8.3.4.8 E2E_P04mGetHeaderInfo . 112

8.3.5 E2E Profile 5 routines . 112
8.3.5.1 E2E_P05Protect . 112
8.3.5.2 E2E_P05ProtectInit . 113
8.3.5.3 E2E_P05Forward . 114
8.3.5.4 E2E_P05Check . 114
8.3.5.5 E2E_P05CheckInit . 115
8.3.5.6 E2E_P05MapStatusToSM . 116
8.3.5.7 E2E_P05GetHeaderInfo . 117

8.3.6 E2E Profile 6 routines . 118
8.3.6.1 E2E_P06Protect . 118
8.3.6.2 E2E_P06ProtectInit . 118
8.3.6.3 E2E_P06Forward . 119
8.3.6.4 E2E_P06Check . 120
8.3.6.5 E2E_P06CheckInit . 120
8.3.6.6 E2E_P06MapStatusToSM . 121
8.3.6.7 E2E_P06GetHeaderInfo . 122

8.3.7 E2E Profile 7 routines . 123
8.3.7.1 E2E_P07Protect . 123
8.3.7.2 E2E_P07ProtectInit . 123
8.3.7.3 E2E_P07Forward . 124

10 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.7.4 E2E_P07Check . 125
8.3.7.5 E2E_P07CheckInit . 126
8.3.7.6 E2E_P07MapStatusToSM . 126
8.3.7.7 E2E_P07GetHeaderInfo . 128

8.3.8 E2E Profile 7m routines . 128
8.3.8.1 E2E_P07mProtect . 128
8.3.8.2 E2E_P07mProtectInit . 129
8.3.8.3 E2E_P07mForward . 130
8.3.8.4 E2E_P07mSourceCheck . 131
8.3.8.5 E2E_P07mSinkCheck . 132
8.3.8.6 E2E_P07mCheckInit . 132
8.3.8.7 E2E_P07mMapStatusToSM . 133
8.3.8.8 E2E_P07mGetHeaderInfo . 134

8.3.9 E2E Profile 8 routines . 135
8.3.9.1 E2E_P08Protect . 135
8.3.9.2 E2E_P08ProtectInit . 136
8.3.9.3 E2E_P08Forward . 137
8.3.9.4 E2E_P08Check . 137
8.3.9.5 E2E_P08CheckInit . 138
8.3.9.6 E2E_P08MapStatusToSM . 139
8.3.9.7 E2E_P08GetHeaderInfo . 140

8.3.10 E2E Profile 8m routines . 141
8.3.10.1 E2E_P08mProtect . 141
8.3.10.2 E2E_P08mProtectInit . 141
8.3.10.3 E2E_P08mForward . 142
8.3.10.4 E2E_P08mSourceCheck . 143
8.3.10.5 E2E_P08mSinkCheck . 144
8.3.10.6 E2E_P08mCheckInit . 145
8.3.10.7 E2E_P08mMapStatusToSM . 145
8.3.10.8 E2E_P08mGetHeaderInfo . 147

8.3.11 E2E Profile 11 routines . 147
8.3.11.1 E2E_P11Protect . 147
8.3.11.2 E2E_P11ProtectInit . 148
8.3.11.3 E2E_P11Forward . 149
8.3.11.4 E2E_P11Check . 149
8.3.11.5 E2E_P11CheckInit . 150
8.3.11.6 E2E_P11MapStatusToSM . 151

8.3.12 E2E Profile 22 routines . 152
8.3.12.1 E2E_P22Protect . 152
8.3.12.2 E2E_P22ProtectInit . 152
8.3.12.3 E2E_P22Forward . 153
8.3.12.4 E2E_P22Check . 154
8.3.12.5 E2E_P22CheckInit . 154

11 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.12.6 E2E_P22MapStatusToSM . 155
8.3.13 E2E Profile 44 routines . 156

8.3.13.1 E2E_P44Protect . 156
8.3.13.2 E2E_P44ProtectInit . 157
8.3.13.3 E2E_P44Forward . 158
8.3.13.4 E2E_P44Check . 158
8.3.13.5 E2E_P44CheckInit . 159
8.3.13.6 E2E_P44MapStatusToSM . 160
8.3.13.7 E2E_P44GetHeaderInfo . 161

8.3.14 E2E Profile 44m routines . 161
8.3.14.1 E2E_P44mProtect . 161
8.3.14.2 E2E_P44mProtectInit . 162
8.3.14.3 E2E_P44mForward . 163
8.3.14.4 E2E_P44mSourceCheck . 164
8.3.14.5 E2E_P44mSinkCheck . 165
8.3.14.6 E2E_P44mCheckInit . 165
8.3.14.7 E2E_P44mMapStatusToSM . 166
8.3.14.8 E2E_P44mGetHeaderInfo . 167

8.3.15 E2E Profile 76 routines . 168
8.3.15.1 E2E_P76Protect . 168
8.3.15.2 E2E_P76ProtectInit . 169
8.3.15.3 E2E_P76Check . 170
8.3.15.4 E2E_P76CheckInit . 170
8.3.15.5 E2E_P76MapStatusToSM . 171

8.3.16 E2E State machine routines . 173
8.3.16.1 E2E_SMCheck . 173
8.3.16.2 E2E_SMCheckInit . 174

8.3.17 Auxiliary Functions . 175
8.3.17.1 E2E_GetVersionInfo . 175

8.4 Callback notifications . 175
8.5 Scheduled functions . 175
8.6 Expected interfaces . 176

8.6.1 Mandatory Interfaces . 176

9 Sequence diagrams 177

9.1 Sender . 177
9.1.1 Sender of data elements . 177
9.1.2 Sender at signal group level . 179

9.2 Receiver . 180
9.2.1 Receiver at data element level . 183
9.2.2 Receiver at signal group level . 185

10 Configuration specification 187

10.1Published Information . 187

12 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

A Annex A: Safety Manual for usage of E2E Library 188

A.1 E2E profiles and their standard variants 188
A.2 E2E error handling . 188
A.3 Methodology of usage of E2E Library . 188
A.4 RTE configuration constraints for SW-C level protection 189

A.4.1 Communication model for SW-C level protection 189
A.4.2 Multiplicities for SW-C level protection 189
A.4.3 Explicit access . 190

A.5 Restrictions on the use of COM features 190

B Annex B: Application hints on usage of E2E Library 193

B.1 COM E2E Callouts . 194
B.1.1 Functional overview . 194

B.1.1.1 Sending/Calling . 196
B.1.1.2 Reception . 197

B.1.2 Methodology . 198
B.1.3 Code Example . 199

B.2 Protection at RTE level through E2E Transformer 200

C Not applicable requirements 201

D Change history of AUTOSAR traceable items 202

D.1 Traceable item history of this document according to AUTOSAR Release
R22-11 . 202

D.1.1 Added Specification Items in R22-11 202
D.1.2 Changed Specification Items in R22-11 203
D.1.3 Deleted Specification Items in R22-11 203

D.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . 204

D.2.1 Added Specification Items in R23-11 204
D.2.2 Changed Specification Items in R23-11 204
D.2.3 Deleted Specification Items in R23-11 204

D.3 Traceable item history of this document according to AUTOSAR Release
R24-11 . 204

D.3.1 Added Specification Items in R24-11 204
D.3.2 Changed Specification Items in R24-11 204
D.3.3 Deleted Specification Items in R24-11 205

D.4 Traceable item history of this document according to AUTOSAR Release
R25-11 . 205

D.4.1 Added Specification Items in R25-11 205
D.4.2 Changed Specification Items in R25-11 205
D.4.3 Deleted Specification Items in R25-11 206

13 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

1 Introduction and functional overview

This document cointains the platform specific implementation requirements of the PRS
E2E Protocol. This includes interfaces and datatypes used.

The main part of the functional specification is given in the AUTOSAR Foundation
document 849 "E2E Protocol Specification".

Platform dependent functional specifications extending the protocol specifications are
collected in the following sub section(s).

The concept of E2E protection assumes that safety-related data exchange shall be
protected at runtime against the effects of faults within the communication link (see
Figure 1.1). Examples for such faults are random HW faults (e.g. corrupt registers
of a CAN transceiver), interference (e.g. due to EMC), and systematic faults within
the software implementing the VFB communication (e.g. RTE, IOC, COM and network
stacks).

Figure 1.1: Example of faults mitigated by E2E protection

By using E2E communication protection mechanisms, the faults in the communication
link can be detected and handled at runtime.The E2E Library provides mechanisms for
E2E protection, adequate for safety-related communication having requirements up to
ASIL D.

The algorithms of protection mechanisms are implemented in the E2E Library. The
callers of the E2E Library are responsible for the correct usage of the library, in partic-
ular for providing correct parameters the E2E Library routines.

The E2E protectionallows the following:

14 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

• It protects the safety-related data elements to be sent over the RTE by attaching
control data,

• It verifies the safety-related data elements received from the RTE using this con-
trol data, and

• It indicates that received safety-related data elements faulty,which then has to be
handled by the receiver SW-C.

To provide the appropriate solution addressing flexibility and standardization, AU-
TOSAR specifies a set of flexible E2E profiles that implementan appropriate combi-
nation of E2E protection mechanisms. Each specified E2E profile has a fixed behavior,
but it has some configuration options by function parameters (e.g. the location of CRC
in relation to the data, which are to be protected).

The E2E library is invoked from:

1. E2E Transformer (a new, standardized way to invoke E2E, introduced in R4.2.1)

2. COM E2E Callout.

Regardless where E2E is executed, the E2E Protection is for data elements. The E2E
Protection is performed on the serialized representation of data elements, on the same
bit layout as the one transmitted on the bus. This means:

• In case E2E Transformer is used, the serialization is performed by a transformer
above E2E Transformer (COM-based transformer or Some/IP transformer).

• In case the COM callout is used, the serialization is done by the communication
stack (RTE, COM), so the callout operates directly on the serialized signal groups
in the I-PDU.

A data element (and the corresponding signal group) is either completely E2E-
protected, or it is not protected. It is not possible to protect a part of it.

An I-PDU may carry several data elements (and corresponding signal groups). It is
possible to independently E2E-protect a subset of these data elements.

An appropriate usage of the E2E Library alone is not sufficient to achieve a safe E2E
communication according to ASIL D requirements. Solely the user is responsible to
demonstrate that the selected profile provides sufficient error detection capabilitiesfor
the considered network (e.g. by evaluation hardware failure rates, bit error rates, num-
ber of nodes in the network, repetition rate of messages and the usage of a gateway).

15 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

2 Acronyms and Abbreviations

All technical terms used in this document, except the ones listed in the table below, can
be found in the official AUTOSAR glossary [1, AUTOSAR_TR_Glossary].

Acronyms and abbreviations that have a local scope and therefore are not contained
in the AUTOSAR glossary appear in the glossary below.

Abbreviation / Acronym: Description:

E2E Library Short name for the End-to-End Communication Protection Library.

Data ID An identifier that uniquely identifies the message / data element / data.

Source ID An identifier that uniquely identified the source (origin) of the message / data
element / data.

Repetition Repetition of information.

Loss Loss of information.
Delay Delay of information.

Insertion Insertion of information.
Masquerade Masquerade.

Incorrect addressing Incorrect addressing of information.

Incorrect sequence Incorrect sequence of information.

Corruption Corruption of information.

Asymmetric information Asymmetric information sent from a sender to multiple receivers.

Subset Information from a sender received by only a subset of the receivers.

Blocking Blocking access to a communication channel.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

In the whole document, there are many requirements that apply to all E2E Profiles
at the same time.Such requirements are defined as one requirement that applies to all
profiles at the same time. In case some names are profile dependent, then XX notation
is used: if in a requirement appears the string containing XX, then it is developed to
strings with 01, 02, 04, 4m, 05, 06, 07, 7m, 11, 12, 22, and 44 respectively instead of
XX. For example, E2E_PXXCheck() develops to the following two E2E_P01Check(),
E2E_P02Check() a.s.o.

16 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[3] E2E Protocol Specification
AUTOSAR_FO_PRS_E2EProtocol

[4] Requirements on E2E
AUTOSAR_FO_RS_E2E

[5] Requirements on Libraries
AUTOSAR_CP_RS_Libraries

[6] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[7] System Template
AUTOSAR_CP_TPS_SystemTemplate

[8] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[9] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for E2ELibrary.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for E2ELibrary.

17 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

General limitations regarding E2E protection and the detectable failure modes are de-
scribed in [3, AUTOSAR PRS E2EProtocol]. E2E Profile 2 has in R4.2.1 a new setting
offset. This offset can be configured in the system template. However, the E2E Pro-
file 2 specification does not support the case when offset is different than 0. The
specification of E2E Profile 2 will be fixed in a future AUTOSAR release, to support a
configurable offset.

E2E Profile 1 in the "Double Data ID configuration"uses an implicit 2-byte Data ID, over
which CRC8 is calculated. As a CRC over two different 2-byte numbers may result
with the same CRC, some precautions must be taken by the user. See PRS_E2E_
UC_00072 and PRS_E2E_UC_00073.

E2E Profile 2 uses an implicit 1-byte Data ID, selected from a List of Data IDs depend-
ing on each value of the counter, for calculation of the CRC. See [3, AUTOSAR PRS
E2EProtocol] for details on the usage and generation of DataIDList for E2E profile 2.

4.2 Implementation of the E2E Library

[SWS_E2E_00050]
Upstream requirements: RS_E2E_08527

⌈The implementation of the E2E Library shall comply with the requirements for the
development of safety-related software for the automotive domain.⌋

The ASIL assigned to the requirements implemented by the E2E library depends on
the safety concept of a particular system. Depending on that application, the E2E
Library at least may need to comply with an ASIL A, B, C or D development process.
Therefore, it may be most efficient to develop the library according to the highest ASIL,
which enables to use the same library for lower ASILs as well.

[SWS_E2E_00311]
Upstream requirements: RS_E2E_08528

⌈The configuration of the E2E Library and of the code invoking it (e.g. E2E wrapper ,
E2E callouts , E2E transformer) shall be implemented and configured (including con-
figuration options used from other subsystems, e.g. COM signal to I-PDU mapping)
according to the requirements for the development of safety-related software for the
automotive domain.⌋

18 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

5 Dependencies to other modules

5.1 Required file structure

[SWS_E2E_00048]
Upstream requirements: RS_E2E_08528

⌈E2E library shall be built of the following files: E2E.h (common header), E2E.c (imple-
mentation of common parts),E2E_PXX.c (where XX: e.g. 01, 02, ... representing the
profile) and E2E_SM.c (for E2E state machine).⌋

[SWS_E2E_00215]
Upstream requirements: RS_E2E_08528

⌈Files E2E_PXX.c and E2E.h shall contain implementation parts specific of each pro-
file.⌋

The below requirement is redundant with above ones, but important to be stated ex-
plicitly:

[SWS_E2E_00115]
Upstream requirements: RS_E2E_08528

⌈E2E library files (i.e. E2E_*.*) shall not include any RTE files.⌋

5.2 Dependency on CRC library

It is important to note that the function Crc_CalculateCRC8 of CRC library / CRC rou-
tines have changed is functionality since R4.0, i.e. it is different in R3.2 and >=R4.0:

• There is an additional parameter Crc_IsFirstCall

• The function has different start value and different XOR values (changed from
0x00 to OxFF).

This results with a different value of computed CRC of a given buffer.

To have the same results of the functions E2E_P01Protect() and E2E_P01Check() in
>=R4.0 and R3.2, while using differently functioning CRC library, E2E "compensates"
different behavior of the CRC library. This results with different invocation of the CRC
library by E2E library in >=R4.0 and R3.2.

Mandatory interfaces to CRC Library are listed here:

19 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91095] Definition of mandatory interfaces required by module E2E
Upstream requirements: RS_E2E_08530, RS_E2E_08533, RS_E2E_08531

⌈
API Function Header File Description

Crc_CalculateCRC16 Crc.h This service makes a CRC16 calculation on Crc_
Length data bytes.

Crc_CalculateCRC32P4 Crc.h This service makes a CRC32 calculation on Crc_
Length data bytes, using the polynomial 0xF4
ACFB13.
This CRC routine is used by E2E Profile 4.

Crc_CalculateCRC64 Crc.h This service makes a CRC64 calculation on Crc_
Length data bytes, using the polynomial 0x42F0E1
EBA9EA3693.
This CRC routine is used by E2E Profile 7.

Crc_CalculateCRC8 Crc.h This service makes a CRC8 calculation on Crc_
Length data bytes, with SAE J1850 parameters

Crc_CalculateCRC8H2F Crc.h This service makes a CRC8 calculation with the
Polynomial 0x2F on Crc_Length

⌋

20 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

6 Requirements Tracing

The following tables reference the requirements specified in [4, Requirements on E2E],
[5, Requirements on Libraries], [6, General Requirements on Basic Software Modules]
and links to the fulfillment of these. Please note that if column “Satisfied by” is empty for
a specific requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_E2E_08527] Implementation of E2E protocol shall
fulfill ISO 26262

[SWS_E2E_00050] [SWS_E2E_00158]
[SWS_E2E_00160] [SWS_E2E_00161]
[SWS_E2E_00166] [SWS_E2E_00338]
[SWS_E2E_00339] [SWS_E2E_00349]
[SWS_E2E_00350] [SWS_E2E_00373]
[SWS_E2E_00379] [SWS_E2E_00382]
[SWS_E2E_00385] [SWS_E2E_00387]
[SWS_E2E_00390] [SWS_E2E_00391]
[SWS_E2E_00393] [SWS_E2E_00446]
[SWS_E2E_00447] [SWS_E2E_00449]
[SWS_E2E_00450] [SWS_E2E_00452]
[SWS_E2E_00455] [SWS_E2E_00457]
[SWS_E2E_00458] [SWS_E2E_00460]
[SWS_E2E_00546] [SWS_E2E_00547]
[SWS_E2E_00548] [SWS_E2E_00549]
[SWS_E2E_00550] [SWS_E2E_00572]
[SWS_E2E_00573] [SWS_E2E_00574]
[SWS_E2E_00575] [SWS_E2E_00576]
[SWS_E2E_00577] [SWS_E2E_00578]
[SWS_E2E_00579] [SWS_E2E_00580]
[SWS_E2E_00581] [SWS_E2E_00583]
[SWS_E2E_00584] [SWS_E2E_00585]
[SWS_E2E_00586] [SWS_E2E_00587]
[SWS_E2E_00588] [SWS_E2E_00589]
[SWS_E2E_00590] [SWS_E2E_00614]
[SWS_E2E_00615] [SWS_E2E_91001]
[SWS_E2E_91002] [SWS_E2E_91003]
[SWS_E2E_91004] [SWS_E2E_91005]
[SWS_E2E_91006] [SWS_E2E_91007]
[SWS_E2E_91012] [SWS_E2E_91013]
[SWS_E2E_91014] [SWS_E2E_91015]
[SWS_E2E_91016] [SWS_E2E_91017]
[SWS_E2E_91018] [SWS_E2E_91027]
[SWS_E2E_91028] [SWS_E2E_91029]
[SWS_E2E_91030] [SWS_E2E_91031]
[SWS_E2E_91032] [SWS_E2E_91033]
[SWS_E2E_91034] [SWS_E2E_91035]
[SWS_E2E_91036] [SWS_E2E_91037]
[SWS_E2E_91038] [SWS_E2E_91039]
[SWS_E2E_91040] [SWS_E2E_91041]
[SWS_E2E_91059] [SWS_E2E_91070]
[SWS_E2E_91071] [SWS_E2E_91073]
[SWS_E2E_91074] [SWS_E2E_91075]
[SWS_E2E_91076] [SWS_E2E_91077]
[SWS_E2E_91078] [SWS_E2E_91079]
[SWS_E2E_91080] [SWS_E2E_91081]
[SWS_E2E_91082] [SWS_E2E_91083]
[SWS_E2E_91084] [SWS_E2E_91085]
[SWS_E2E_91086] [SWS_E2E_91087]
[SWS_E2E_91088] [SWS_E2E_91089]
[SWS_E2E_91090] [SWS_E2E_91091]
[SWS_E2E_91092] [SWS_E2E_91093]
[SWS_E2E_91094] [SWS_E2E_91098]
[SWS_E2E_91099] [SWS_E2E_91100]

▽

▽

21 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Requirement Description Satisfied by

△
[SWS_E2E_91101] [SWS_E2E_91102]
[SWS_E2E_91113] [SWS_E2E_91114]
[SWS_E2E_91115] [SWS_E2E_91117]
[SWS_E2E_91118] [SWS_E2E_91119]
[SWS_E2E_91120] [SWS_E2E_91121]
[SWS_E2E_91122]

[RS_E2E_08528] E2E protocol shall provide different
E2E profiles

[SWS_E2E_00011] [SWS_E2E_00017]
[SWS_E2E_00018] [SWS_E2E_00020]
[SWS_E2E_00021] [SWS_E2E_00033]
[SWS_E2E_00048] [SWS_E2E_00110]
[SWS_E2E_00115] [SWS_E2E_00152]
[SWS_E2E_00153] [SWS_E2E_00154]
[SWS_E2E_00158] [SWS_E2E_00160]
[SWS_E2E_00161] [SWS_E2E_00166]
[SWS_E2E_00200] [SWS_E2E_00215]
[SWS_E2E_00311] [SWS_E2E_00334]
[SWS_E2E_00335] [SWS_E2E_00336]
[SWS_E2E_00337] [SWS_E2E_00338]
[SWS_E2E_00339] [SWS_E2E_00349]
[SWS_E2E_00350] [SWS_E2E_00353]
[SWS_E2E_00370] [SWS_E2E_00371]
[SWS_E2E_00373] [SWS_E2E_00378]
[SWS_E2E_00379] [SWS_E2E_00380]
[SWS_E2E_00381] [SWS_E2E_00382]
[SWS_E2E_00383] [SWS_E2E_00384]
[SWS_E2E_00386] [SWS_E2E_00387]
[SWS_E2E_00388] [SWS_E2E_00389]
[SWS_E2E_00390] [SWS_E2E_00391]
[SWS_E2E_00392] [SWS_E2E_00393]
[SWS_E2E_00437] [SWS_E2E_00438]
[SWS_E2E_00439] [SWS_E2E_00440]
[SWS_E2E_00441] [SWS_E2E_00443]
[SWS_E2E_00444] [SWS_E2E_00445]
[SWS_E2E_00446] [SWS_E2E_00447]
[SWS_E2E_00449] [SWS_E2E_00450]
[SWS_E2E_00451] [SWS_E2E_00452]
[SWS_E2E_00455] [SWS_E2E_00456]
[SWS_E2E_00457] [SWS_E2E_00458]
[SWS_E2E_00459] [SWS_E2E_00460]
[SWS_E2E_00476] [SWS_E2E_00477]
[SWS_E2E_00542] [SWS_E2E_00544]
[SWS_E2E_00545] [SWS_E2E_00546]
[SWS_E2E_00547] [SWS_E2E_00548]
[SWS_E2E_00549] [SWS_E2E_00550]
[SWS_E2E_00551] [SWS_E2E_00552]
[SWS_E2E_00555] [SWS_E2E_00556]
[SWS_E2E_00557] [SWS_E2E_00558]
[SWS_E2E_00559] [SWS_E2E_00560]
[SWS_E2E_00561] [SWS_E2E_00562]
[SWS_E2E_00563] [SWS_E2E_00564]
[SWS_E2E_00565] [SWS_E2E_00566]
[SWS_E2E_00567] [SWS_E2E_00568]
[SWS_E2E_00569] [SWS_E2E_00570]
[SWS_E2E_00571] [SWS_E2E_00572]
[SWS_E2E_00573] [SWS_E2E_00574]
[SWS_E2E_00575] [SWS_E2E_00576]
[SWS_E2E_00577] [SWS_E2E_00578]
[SWS_E2E_00579] [SWS_E2E_00580]
[SWS_E2E_00581] [SWS_E2E_00583]
[SWS_E2E_00584] [SWS_E2E_00585]
[SWS_E2E_00586] [SWS_E2E_00587]
[SWS_E2E_00588] [SWS_E2E_00589]

▽

▽

22 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Requirement Description Satisfied by

△
[SWS_E2E_00590] [SWS_E2E_00591]
[SWS_E2E_00601] [SWS_E2E_00602]
[SWS_E2E_00605] [SWS_E2E_00606]
[SWS_E2E_00608] [SWS_E2E_00609]
[SWS_E2E_00614] [SWS_E2E_00615]
[SWS_E2E_00616] [SWS_E2E_00617]
[SWS_E2E_00618] [SWS_E2E_00619]
[SWS_E2E_00624] [SWS_E2E_00625]
[SWS_E2E_10002] [SWS_E2E_10004]
[SWS_E2E_10005] [SWS_E2E_91021]
[SWS_E2E_91023] [SWS_E2E_91024]
[SWS_E2E_91025] [SWS_E2E_91026]
[SWS_E2E_91027] [SWS_E2E_91028]
[SWS_E2E_91042] [SWS_E2E_91053]
[SWS_E2E_91059] [SWS_E2E_91060]
[SWS_E2E_91063] [SWS_E2E_91068]
[SWS_E2E_91070] [SWS_E2E_91071]
[SWS_E2E_91072] [SWS_E2E_91073]
[SWS_E2E_91074] [SWS_E2E_91075]
[SWS_E2E_91076] [SWS_E2E_91077]
[SWS_E2E_91078] [SWS_E2E_91079]
[SWS_E2E_91080] [SWS_E2E_91081]
[SWS_E2E_91082] [SWS_E2E_91083]
[SWS_E2E_91084] [SWS_E2E_91085]
[SWS_E2E_91086] [SWS_E2E_91087]
[SWS_E2E_91088] [SWS_E2E_91089]
[SWS_E2E_91090] [SWS_E2E_91091]
[SWS_E2E_91092] [SWS_E2E_91093]
[SWS_E2E_91094] [SWS_E2E_91103]
[SWS_E2E_91104] [SWS_E2E_91105]
[SWS_E2E_91106] [SWS_E2E_91107]
[SWS_E2E_91108] [SWS_E2E_91109]
[SWS_E2E_91110] [SWS_E2E_91111]
[SWS_E2E_91112] [SWS_E2E_91113]
[SWS_E2E_91114] [SWS_E2E_91115]
[SWS_E2E_91117] [SWS_E2E_91118]
[SWS_E2E_91119] [SWS_E2E_91120]
[SWS_E2E_91121] [SWS_E2E_91122]
[UC_E2E_00053] [UC_E2E_00202]
[UC_E2E_00203] [UC_E2E_00204]
[UC_E2E_00205] [UC_E2E_00206]
[UC_E2E_00207] [UC_E2E_00209]
[UC_E2E_00230] [UC_E2E_00232]
[UC_E2E_00233] [UC_E2E_00235]
[UC_E2E_00250] [UC_E2E_00251]
[UC_E2E_00258] [UC_E2E_00270]
[UC_E2E_00271] [UC_E2E_00277]
[UC_E2E_00278] [UC_E2E_00290]
[UC_E2E_00313]

[RS_E2E_08530] Each E2E profile shall define a set of
protection mechanisms and its
behavior

[SWS_E2E_91095]

[RS_E2E_08531] E2E Library shall call the CRC
routines of CRC library

[SWS_E2E_91095]

[RS_E2E_08533] CRC used in a E2E profile shall be
different than the CRC used by the
underlying physical communication
protocol

[SWS_E2E_91095]

▽

23 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[RS_E2E_08534] E2E protocol shall provide E2E
Check status to the application

[SWS_E2E_00021] [SWS_E2E_00022]
[SWS_E2E_00047] [SWS_E2E_00049]
[SWS_E2E_00154] [SWS_E2E_00214]
[SWS_E2E_00336] [SWS_E2E_00337]
[SWS_E2E_00439] [SWS_E2E_00440]
[SWS_E2E_00444] [SWS_E2E_00445]
[SWS_E2E_00542] [SWS_E2E_00563]
[SWS_E2E_00564] [SWS_E2E_00568]
[SWS_E2E_00569] [SWS_E2E_00591]
[SWS_E2E_00617] [SWS_E2E_00618]
[SWS_E2E_91008] [SWS_E2E_91009]
[SWS_E2E_91019] [SWS_E2E_91022]
[SWS_E2E_91025] [SWS_E2E_91026]
[SWS_E2E_91035] [SWS_E2E_91075]
[SWS_E2E_91076] [SWS_E2E_91079]
[SWS_E2E_91080] [SWS_E2E_91103]
[SWS_E2E_91104] [SWS_E2E_91105]
[SWS_E2E_91106] [SWS_E2E_91107]
[SWS_E2E_91108] [SWS_E2E_91109]
[SWS_E2E_91110] [SWS_E2E_91111]
[SWS_E2E_91112]

[RS_E2E_08539] An E2E protection mechanism for
inter-ECU communication of short to
large data shall be provided

[SWS_E2E_00334] [SWS_E2E_00335]
[SWS_E2E_00336] [SWS_E2E_00338]
[SWS_E2E_00339] [SWS_E2E_00349]
[SWS_E2E_00350] [SWS_E2E_00373]
[SWS_E2E_00377] [SWS_E2E_00378]
[SWS_E2E_00385] [SWS_E2E_00393]
[SWS_E2E_00437] [SWS_E2E_00438]
[SWS_E2E_00439] [SWS_E2E_00440]
[SWS_E2E_00441] [SWS_E2E_00443]
[SWS_E2E_00444] [SWS_E2E_00445]
[SWS_E2E_00446] [SWS_E2E_00447]
[SWS_E2E_00448] [SWS_E2E_00449]
[SWS_E2E_00450] [SWS_E2E_00451]
[SWS_E2E_00452] [SWS_E2E_00453]
[SWS_E2E_00455] [SWS_E2E_00456]
[SWS_E2E_00457] [SWS_E2E_00458]
[SWS_E2E_00459] [SWS_E2E_00460]
[SWS_E2E_00461] [SWS_E2E_00542]
[SWS_E2E_00544] [SWS_E2E_00545]
[SWS_E2E_00546] [SWS_E2E_00547]
[SWS_E2E_00548] [SWS_E2E_00549]
[SWS_E2E_00550] [SWS_E2E_00551]
[SWS_E2E_00552] [SWS_E2E_00584]
[SWS_E2E_00585] [SWS_E2E_00586]
[SWS_E2E_00590] [SWS_E2E_00592]
[SWS_E2E_00593] [SWS_E2E_00594]
[SWS_E2E_00595] [SWS_E2E_00596]
[SWS_E2E_00597] [SWS_E2E_00598]
[SWS_E2E_00599] [SWS_E2E_00603]
[SWS_E2E_00604] [SWS_E2E_00610]
[SWS_E2E_00611] [SWS_E2E_00614]
[SWS_E2E_00615] [SWS_E2E_00616]
[SWS_E2E_00617] [SWS_E2E_00619]
[SWS_E2E_00624] [SWS_E2E_00625]
[SWS_E2E_10001] [SWS_E2E_10002]
[SWS_E2E_10004] [SWS_E2E_10005]
[SWS_E2E_91001] [SWS_E2E_91002]
[SWS_E2E_91003] [SWS_E2E_91004]
[SWS_E2E_91005] [SWS_E2E_91006]
[SWS_E2E_91007] [SWS_E2E_91008]
[SWS_E2E_91010] [SWS_E2E_91011]

▽

▽

24 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Requirement Description Satisfied by

△
[SWS_E2E_91012] [SWS_E2E_91013]
[SWS_E2E_91014] [SWS_E2E_91015]
[SWS_E2E_91016] [SWS_E2E_91017]
[SWS_E2E_91018] [SWS_E2E_91019]
[SWS_E2E_91020] [SWS_E2E_91036]
[SWS_E2E_91037] [SWS_E2E_91038]
[SWS_E2E_91039] [SWS_E2E_91040]
[SWS_E2E_91041] [SWS_E2E_91042]
[SWS_E2E_91059] [SWS_E2E_91070]
[SWS_E2E_91098] [SWS_E2E_91099]
[SWS_E2E_91100] [SWS_E2E_91101]
[SWS_E2E_91102]

[RS_E2E_08548] E2E protocol shall provide E2E
overall state to the application

[SWS_E2E_00340] [SWS_E2E_00342]
[SWS_E2E_00343] [SWS_E2E_00344]
[SWS_E2E_00347] [SWS_E2E_00351]
[SWS_E2E_00352] [SWS_E2E_00380]
[SWS_E2E_00381] [SWS_E2E_00383]
[SWS_E2E_00384] [SWS_E2E_00453]
[SWS_E2E_00454] [SWS_E2E_00461]
[SWS_E2E_00462] [SWS_E2E_00476]
[SWS_E2E_00477] [SWS_E2E_00553]
[SWS_E2E_00554] [SWS_E2E_00557]
[SWS_E2E_00558] [SWS_E2E_00561]
[SWS_E2E_00562] [SWS_E2E_00600]
[SWS_E2E_00601] [SWS_E2E_00602]
[SWS_E2E_00603] [SWS_E2E_00604]
[SWS_E2E_00605] [SWS_E2E_00606]
[SWS_E2E_00607] [SWS_E2E_00608]
[SWS_E2E_00609] [SWS_E2E_00612]
[SWS_E2E_00613] [SWS_E2E_00623]
[SWS_E2E_00626] [SWS_E2E_00627]
[SWS_E2E_10003] [SWS_E2E_10006]
[SWS_E2E_10007] [SWS_E2E_91060]

[SRS_BSW_00003] All software modules shall provide
version and identification information

[SWS_E2E_00032]

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_E2E_00047]

[SRS_BSW_00337] Classification of development errors [SWS_E2E_00047]

[SRS_LIBS_00001] The functional behavior of each
library functions shall not be
configurable

[SWS_E2E_00037]

[SRS_LIBS_00005] Each library shall provide one header
file with its public interface

[SWS_E2E_00038]

[SRS_LIBS_00018] A library function may only call library
functions

[SWS_E2E_00216]

Table 6.1: Requirements Tracing

25 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

7 Functional specification

7.1 Error classification

Libraries have no configuration and therefore a tracing of development errors cannot be
disabled or enabled. Thus, there is no possibility to classify errors detected by library-
internal mechanisms as development or production errors. Moreover, Libraries cannot
call BSW modules (e.g. DEM or DET). Therefore, the errors detected by library-internal
mechanisms are reported to callers synchronously. Note that both CRC Library and
E2E Library are not BSW Modules; Libraries are allowed to call each other.

[SWS_E2E_00049]
Upstream requirements: RS_E2E_08534

⌈The E2E library shall not contain library-internal mechanisms for error detection to be
traced as development errors.⌋

[SWS_E2E_00011]
Upstream requirements: RS_E2E_08528

⌈The E2E Library shall report errors detected by library-internal mechanisms to callers
of E2E functions through return value.⌋

[SWS_E2E_00216]
Upstream requirements: SRS_LIBS_00018

⌈The E2E Library shall not call BSW modules for error reporting (in particular DEM and
DET), nor for any other purpose. The E2E Library shall not call RTE.⌋

7.1.1 Development Errors

The following error flags for errors shall be used by all E2E Library functions:

[SWS_E2E_00047] Definition of development errors in module E2E
Upstream requirements: SRS_BSW_00337, SRS_BSW_00323, RS_E2E_08534

⌈
Type of error Related error code Error value

At least one pointer parameter is a NULL pointer E2E_E_INPUTERR_NULL 0x13

At least one input parameter is erroneous, e.g. out
of range

E2E_E_INPUTERR_WRONG 0x17

Function executed in wrong state E2E_E_WRONGSTATE 0x1A

⌋

The range 0x80..0xFE is foreseen only for extending the AUTOSAR profiles with ven-
dor specific return values.

26 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[UC_E2E_00313]
Upstream requirements: RS_E2E_08528

⌈The caller of the E2E functions E2E_PXXProtect() / E2E_PXXCheck() shall handle
the errors/stati defined in SWS_E2E_00047 according to the column "How do caller of
E2E shall handle it".⌋

In other words, the E2E libary does not define any integration errors for itself. How-
ever, the caller of E2E library uses the return values of E2E functions and does the
corresponding error handling.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Production Errors

There are no production errors.

7.1.4 Extended Production Errors

27 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8 API specification

This chapter specifies the API of E2E Library.

Members of the configuration structures (e.g. in Figure 8.1) are in alphabetical or-
der. However, for implementation, the sequence of members of this data structure is
provided by table specification items (e.g. [SWS_E2E_00386]).

8.1 Imported types

In this chapter, all types and #defines included from the following files are listed:

[SWS_E2E_00017] Definition of imported datatypes of module E2E
Upstream requirements: RS_E2E_08528

⌈
Module Header File Imported Type

Std_Types.h Std_MessageResultType

Std_Types.h Std_MessageTypeType

Std_Types.h Std_ReturnType

Std

Std_Types.h Std_VersionInfoType

⌋

8.2 Type definitions

This chapter defines the data types defined by E2E Library that are visible to the callers.

Some attributes shown below define data offset. The offset is defined according to the
following rules:

• The offset is in bits,

• Within a byte, bits are numbered from 0 upwards, with bit 0 being the least signif-
icant bit (regardless of the microcontroller or bus endianness).

Example 1 - Counter with bit offset = 8 on MSB microcontroller:

MSB LSB
7 6 5 4 3 2 1 0Data[0]

CRC with bit offset 0
15 14 13 12 11 10 9 8Data[1]

User data with bit offset 12 Counter with offset 8
23 22 21 20 19 18 17 16Data[2]

User data with bit offset 20 User data with bit offset 16

28 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.1 E2E Profile 1 types

Note: Since AUTOSAR 4.1.1, type names were renamed. If an existing application
using E2E Library requires compatibility of interfaces to previous release versions, then
the header file E2E.h shall contain following type definitions:

typedef E2E_P01ProtectStateType E2E_P01SenderStateType;

typedef E2E_P01CheckStateType E2E_P01ReceiverStateType;

typedef E2E_P01CheckStatusType E2E_P01ReceiverStatusType;

«structure»
E2E_P01Types::E2E_P01ConfigType

- CounterOffset: uint16
- CRCOffset: uint16
- DataID: uint16
- DataIDMode: E2E_P01DataIDMode
- DataIDNibbleOffset: uint16
- DataLength: uint16
- MaxDeltaCounterInit: uint8
- MaxNoNewOrRepeatedData: uint8
- SyncCounterInit: uint8

«enumeration»
E2E_P01Types::

E2E_P01DataIDMode

l i terals
 E2E_P01_DATAID_BOTH = 0
 E2E_P01_DATAID_ALT = 1
 E2E_P01_DATAID_LOW = 2
 E2E_P01_DATAID_NIBBLE = 3

Figure 8.1: E2E Profile 1 configuration

8.2.1.1 E2E_P01ConfigType

[SWS_E2E_00018] Definition of datatype E2E_P01ConfigType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P01ConfigType

Kind Structure

CounterOffset

Type uint16

Comment Bit offset of Counter in MSB first order. CounterOffset shall be a
multiple of 4. In variants 1A, 1B, and 1C, CounterOffset is 8.

CRCOffset

Type uint16

Comment Bit offset of CRC (i.e. since *Data) in MSB first order. The offset shall
be a multiple of 8. In variants 1A, 1B, and 1C, CRCOffset is 0.

DataID

Type uint16

Comment A unique identifier, for protection against masquerading. There are
some constraints on the selection of ID values, described in section
"Configuration constraints on Data IDs".

DataIDNibbleOffset

Elements

Type uint16

▽

29 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Bit offset of the low nibble of the high byte of Data ID. This parameter

is used by E2E Library only if DataIDMode = E2E_P01_DATAID_
NIBBLE (otherwise it is ignored by E2E Library).
For DataIDMode different than E2E_P01_DATAID_NIBBLE, Data
IDNibbleOffset shall be initialized to 0 (even if it is ignored by E2E
Library).

DataIDMode

Type E2E_P01DataIDMode

Comment Inclusion mode of ID in CRC computation (both bytes, alternating, or
low byte only of ID included).

DataLength

Type uint16

Comment Length of data, in bits. The value shall be a multiple of 8.

MaxDeltaCounterInit

Type uint8

Comment Initial maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounterInit is 1, then at the next
reception the receiver can accept Counters with values 2 and 3, but
not 4.
Note that if the receiver does not receive new Data at a consecutive
read, then the receiver increments the tolerance by 1.

MaxNoNewOrRepeatedData

Type uint8

Comment The maximum amount of missing or repeated Data which the receiver
does not expect to exceed under normal communication conditions.

SyncCounterInit

Type uint8

Comment Number of Data required for validating the consistency of the counter
that must be received with a valid counter (i.e. counter within the
allowed lock-in range) after the detection of an unexpected behavior of
a received counter.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 1. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.1.2 E2E_P01DataIDMode

Note: The values for the enumeration constants are specified on the associated UML
diagram.

30 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00200] Definition of datatype E2E_P01DataIDMode
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P01DataIDMode

Kind Enumeration

E2E_P01_DATAID_BOTH 0 Two bytes are included in the CRC (double ID
configuration) This is used in E2E variant 1A.

E2E_P01_DATAID_ALT 1 One of the two bytes byte is included,
alternating high and low byte, depending on
parity of the counter (alternating ID
configuration). For an even counter, the low
byte is included. For an odd counter, the high
byte is included. This is used in E2E variant 1
B.

E2E_P01_DATAID_LOW 2 Only the low byte is included, the high byte is
never used. This is applicable if the IDs in a
particular system are 8 bits.

Range

E2E_P01_DATAID_NIBBLE 3 The low byte is included in the implicit CRC
calculation, the low nibble of the high byte is
transmitted along with the data (i.e. it is
explicitly included), the high nibble of the high
byte is not used. This is applicable for the IDs
up to 12 bits. This is used in E2E variant 1C.

Description The Data ID is two bytes long in E2E Profile 1. There are four inclusion modes how the implicit
two-byte Data ID is included in the one-byte CRC.

Available via E2E.h

⌋

8.2.1.3 E2E_P01ProtectStateType

[SWS_E2E_00020] Definition of datatype E2E_P01ProtectStateType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P01ProtectStateType

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that the first Data will have the counter 0. After the
protection by the Counter, the Counter is incremented modulo 0xF. The
value 0xF is skipped (after 0xE the next is 0x0), as 0xF value
represents the error value. The four high bits are always 0.

Description State of the sender for a Data protected with E2E Profile 1.

Available via E2E.h

⌋

31 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.1.4 E2E_P01CheckStateType

Note: The values for the enumeration constants are specified on the associated UML
diagram. Note that in previous SWS E2E versions, E2E_P01STATUS_OK was equal
to 0x10.

«structure»

E2E_P01Types::

E2E_P01CheckStateType

+ LastValidCounter: uint8

+ LostData: uint8

+ MaxDeltaCounter: uint8

+ NewDataAvailable: boolean

+ NoNewOrRepeatedDataCounter: uint8

+ Status: E2E_P01CheckStatusType

+ SyncCounter: uint8

+ WaitForFirstData: boolean

«enumeration»

E2E_P01Types::E2E_P01CheckStatusType

li terals

 E2E_P01STATUS_OK = 0x00

 E2E_P01STATUS_NONEWDATA = 0x01

 E2E_P01STATUS_WRONGCRC = 0x02

 E2E_P01STATUS_SYNC = 0x03

 E2E_P01STATUS_INITIAL = 0x04

 E2E_P01STATUS_REPEATED = 0x08

 E2E_P01STATUS_OKSOMELOST = 0x20

 E2E_P01STATUS_WRONGSEQUENCE = 0x40

Figure 8.2: E2E Profile 1 check state type

[SWS_E2E_00021] Definition of datatype E2E_P01CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P01CheckStateType

Kind Structure

LastValidCounter

Type uint8

Comment Counter value most recently received. If no data has been yet
received, then the value is 0x0. After each reception, the counter is
updated with the value received.

MaxDeltaCounter

Type uint8

Comment MaxDeltaCounter specifies the maximum allowed difference between
two counter values of consecutively received valid messages.

WaitForFirstData

Type boolean

Comment If true means that no correct data (with correct Data ID and CRC) has
been yet received after the receiver initialization or reinitialization.

NewDataAvailable

Type boolean

Comment Indicates to E2E Library that a new data is available for Library to be
checked. This attribute is set by the E2E Library caller, and not by the
E2E Library.

LostData

Type uint8

Comment Number of data (messages) lost since reception of last valid one. This
attribute is set only if Status equals E2E_P01STATUS_OK or E2E_P01
STATUS_OKSOMELOST. For other values of Status, the value of Lost
Data is undefined. E2E_P01CheckStatusType Status Result of the
verification of the Data, determined by the Check function.

Status

Elements

Type E2E_P01CheckStatusType

▽

32 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Result of the verification of the Data, determined by the Check

function.

SyncCounter

Type uint8

Comment Number of Data required for validating the consistency of the counter
that must be received with a valid counter (i.e. counter within the
allowed lock-in range) after the detection of an unexpected behavior of
a received counter.

NoNewOrRepeatedDataCounter

Type uint8

Comment Amount of consecutive reception cycles in which either (1) there was
no new data, or (2) when the data was repeated.

Description State of the receiver for a Data protected with E2E Profile 1.

Available via E2E.h

⌋

8.2.1.5 E2E_P01CheckStatusType

[SWS_E2E_00022] Definition of datatype E2E_P01CheckStatusType
Upstream requirements: RS_E2E_08534

⌈
Name E2E_P01CheckStatusType

Kind Enumeration

E2E_P01STATUS_OK 0x00 OK: The new data has been received
according to communication medium, the
CRC is correct, the Counter is incremented
by 1 with respect to the most recent Data
received with Status _INITIAL, _OK, or _
OKSOMELOST. This means that no Data has
been lost since the last correct data
reception.

E2E_P01STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.

Range

E2E_P01STATUS_
WRONGCRC

0x02 Error: The data has been received according
to communication medium, but
1. the CRC is incorrect (applicable for all E2E

Profile 1 configurations) or

2. the low nibble of the high byte of Data ID is
incorrect (applicable only for E2E Profile 1
with E2E_P01DataIDMode = E2E_P01_
DATAID_NIBBLE).

The two above errors can be a result of
corruption, incorrect addressing or
masquerade.

▽

33 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
E2E_P01STATUS_SYNC 0x03 NOT VALID: The new data has been received

after detection of an unexpected behavior of
counter. The data has a correct CRC and a
counter within the expected range with
respect to the most recent Data received, but
the determined continuity check for the
counter is not finalized yet.

E2E_P01STATUS_INITIAL 0x04 Initial: The new data has been received
according to communication medium, the
CRC is correct, but this is the first Data since
the receiver’s initialization or reinitialization,
so the Counter cannot be verified yet.

E2E_P01STATUS_
REPEATED

0x08 Error: The new data has been received
according to communication medium, the
CRC is correct, but the Counter is identical to
the most recent Data received with Status _
INITIAL, _OK, or _OKSOMELOST.

E2E_P01STATUS_
OKSOMELOST

0x20 OK: The new data has been received
according to communication medium, the
CRC is correct, the Counter is incremented
by DeltaCounter (1 < DeltaCounter = Max
DeltaCounter) with respect to the most recent
Data received with Status _INITIAL, _OK, or
_OKSOMELOST. This means that some Data
in the sequence have been probably lost
since the last correct/initial reception, but this
is within the configured tolerance range.

E2E_P01STATUS_
WRONGSEQUENCE

0x40 Error: The new data has been received
according to communication medium, the
CRC is correct, but the Counter Delta is too
big (DeltaCounter > MaxDeltaCounter) with
respect to the most recent Data received with
Status _INITIAL, _OK, or _OKSOMELOST.
This means that too many Data in the
sequence have been probably lost since the
last correct/initial reception.

Description Result of the verification of the Data in E2E Profile 1, determined by the Check function.

Available via E2E.h

⌋

8.2.2 E2E Profile 2 types

Since AUTOSAR 4.1.1, type names were renamed. If an existing application using
E2E Library requires compatibility of interfaces to previous release versions, then the
header file E2E.h shall contain following type definitions:

typedef E2E_P02ProtectStateType E2E_P02SenderStateType;

typedef E2E_P02CheckStateType E2E_P02ReceiverStateType;

typedef E2E_P02CheckStatusType E2E_P02ReceiverStatusType;

34 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.2.1 E2E_P02ConfigType

[SWS_E2E_00152] Definition of datatype E2E_P02ConfigType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P02ConfigType

Kind Structure
DataLength

Type uint16

Comment Length of Data, in bits. The value shall be a multiple of 8.

DataIDList

Type Array of uint8

Size 16

Comment An array of appropriately chosen Data IDs for protection against
masquerading.

MaxDeltaCounterInit

Type uint8

Comment Initial maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounterInit is 1, then at the next
reception the receiver can accept Counters with values 2 and 3, but
not 4.
Note that if the receiver does not receive new Data at a consecutive
read, then the receiver increments the tolerance by 1.

MaxNoNewOrRepeatedData

Type uint8

Comment The maximum amount of missing or repeated Data which the receiver
does not expect to exceed under normal communication conditions.

SyncCounterInit

Type uint8

Comment Number of Data required for validating the consistency of the counter
that must be received with a valid counter (i.e. counter within the
allowed lock-in range) after the detection of an unexpected behavior of
a received counter.

Offset

Type uint16

Elements

Comment Offset of the E2E header in the Data[] array in bits.
It shall be: 0 <= Offset <= DataLength-(2*8).

Description Non-modifiable configuration of the data element sent over an RTE port, for E2E profile 2.
The position of the counter and CRC is not configurable in profile 2.

Available via E2E.h

⌋

35 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.2.2 E2E_P02ProtectStateType

[SWS_E2E_00153] Definition of datatype E2E_P02ProtectStateType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P02ProtectStateType

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the Data. The initial value is 0. As
the counter is incremented before sending, the first Data will have the
counter value 1

Description State of the sender for a Data protected with E2E Profile 2.

Available via E2E.h

⌋

8.2.2.3 E2E_P02CheckStateType

Note that in previous SWS E2E versions, E2E_P02STATUS_OK was equal to 0x10.

«structure»

E2E_P02Types::

E2E_P02CheckStateType

+ LastValidCounter: uint8

+ LostData: uint8

+ MaxDeltaCounter: uint8

+ NewDataAvailable: boolean

+ NoNewOrRepeatedDataCounter: uint8

+ Status: E2E_P02CheckStatusType

+ SyncCounter: uint8

+ WaitForFirstData: boolean

«enumeration»

E2E_P02Types::E2E_P02CheckStatusType

li terals

 E2E_P02STATUS_OK = 0x00

 E2E_P02STATUS_NONEWDATA = 0x01

 E2E_P02STATUS_WRONGCRC = 0x02

 E2E_P02STATUS_SYNC = 0x03

 E2E_P02STATUS_INITIAL = 0x04

 E2E_P02STATUS_REPEATED = 0x08

 E2E_P02STATUS_OKSOMELOST = 0x20

 E2E_P02STATUS_WRONGSEQUENCE = 0x40

Figure 8.3: E2E Profile 2 check state

[SWS_E2E_00154] Definition of datatype E2E_P02CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P02CheckStateType

Kind Structure

LastValidCounter

Type uint8

Comment Counter of last valid received message.

MaxDeltaCounter

Type uint8

Comment MaxDeltaCounter specifies the maximum allowed difference between
two counter values of consecutively received valid messages.

Elements

WaitForFirstData
▽

36 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type boolean

Comment If true means that no correct data (with correct Data ID and CRC) has
been yet received after the receiver initialization or reinitialization.

NewDataAvailable

Type boolean

Comment Indicates to E2E Library that a new data is available for Library to be
checked. This attribute is set by the E2E Library caller, and not by the
E2E Library.

LostData

Type uint8

Comment Number of data (messages) lost since reception of last valid one.

Status

Type E2E_P02CheckStatusType

Comment Result of the verification of the Data, determined by the Check
function.

SyncCounter

Type uint8

Comment Number of Data required for validating the consistency of the counter
that must be received with a valid counter (i.e. counter within the
allowed lock-in range) after the detection of an unexpected behavior of
a received counter.

NoNewOrRepeatedDataCounter

Type uint8

Comment Amount of consecutive reception cycles in which either (1) there was
no new data, or (2) when the data was repeated.

Description State of the sender for a Data protected with E2E Profile 2.

Available via E2E.h

⌋

8.2.2.4 E2E_P02CheckStatusType

Note: The values for the enumeration constants are specified on the associated UML
diagram.

37 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00214] Definition of datatype E2E_P02CheckStatusType
Upstream requirements: RS_E2E_08534

⌈
Name E2E_P02CheckStatusType

Kind Enumeration

E2E_P02STATUS_OK 0x00 OK: The new data has been received
according to communication medium, the
CRC is correct, the Counter is incremented
by 1 with respect to the most recent Data
received with Status _INITIAL, _OK, or _
OKSOMELOST. This means that no Data has
been lost since the last correct data
reception.

E2E_P02STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.

E2E_P02STATUS_
WRONGCRC

0x02 Error: The data has been received according
to communication medium, but the CRC is
incorrect.

E2E_P02STATUS_SYNC 0x03 NOT VALID: The new data has been received
after detection of an unexpected behavior of
counter. The data has a correct CRC and a
counter within the expected range with
respect to the most recent Data received, but
the determined continuity check for the
counter is not finalized yet.

E2E_P02STATUS_INITIAL 0x04 Initial: The new data has been received
according to communication medium, the
CRC is correct, but this is the first Data since
the receiver’s initialization or reinitialization,
so the Counter cannot be verified yet.

E2E_P02STATUS_
REPEATED

0x08 Error: The new data has been received
according to communication medium, the
CRC is correct, but the Counter is identical to
the most recent Data received with Status _
INITIAL, _OK, or _OKSOMELOST.

E2E_P02STATUS_
OKSOMELOST

0x20 OK: The new data has been received
according to communication medium, the
CRC is correct, the Counter is incremented
by DeltaCounter (1 < DeltaCounter =Max
DeltaCounter) with respect to the most recent
Data received with Status _INITIAL, _OK, or
_OKSOMELOST. This means that some Data
in the sequence have been probably lost
since the last correct/initial reception, but this
is within the configured tolerance range.

Range

E2E_P02STATUS_
WRONGSEQUENCE

0x40 Error: The new data has been received
according to communication medium, the
CRC is correct, but the Counter Delta is too
big (DeltaCounter > MaxDeltaCounter) with
respect to the most recent Data received with
Status _INITIAL, _OK, or _OKSOMELOST.
This means that too many Data in the
sequence have been probably lost since the
last correct/initial reception.

Description Result of the verification of the Data in E2E Profile 2, determined by the Check function.

Available via E2E.h

⌋

38 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.3 E2E Profile 4 types

«structure»
E2E_P04Types::

E2E_P04ConfigType

+ DataID: uint32
+ MaxDataLength: uint16
+ MaxDeltaCounter: uint16
+ MinDataLength: uint16
+ Offset: uint16

Figure 8.4: E2E Profile 4 configuration

8.2.3.1 E2E_P04ConfigType

[SWS_E2E_00334] Definition of datatype E2E_P04ConfigType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P04ConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Offset

Type uint16

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(12*8). Example: If
Offset equals 8, then the high byte of the E2E Length (16 bit) is written
to Byte 1, the low Byte is written to Byte 2.

MinDataLength

Type uint16

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_00651]). The value shall be a multiple of
8.

MaxDataLength

Type uint16

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00651]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint16

Elements

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 4. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

39 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.3.2 E2E_P04ProtectStateType

[SWS_E2E_00335] Definition of datatype E2E_P04ProtectStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P04ProtectStateType

Kind Structure

Counter

Type uint16
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P04
Protect() is called, it increments the counter up to 0xFF’FF. After the
maximum value is reached, the next value is 0x0. The overflow is not
reported to the caller.

Description State of the sender for a Data protected with E2E Profile 4.

Available via E2E.h

⌋

8.2.3.3 E2E_P04CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«enumeration»

E2E_P04Types::E2E_P04CheckStatusType

l i terals

Attributes

+ E2E_P04STATUS_OK = 0x00

+ E2E_P04STATUS_OKSOMELOST = 0x20

+ E2E_P04STATUS_REPEATED = 0x08

+ E2E_P04STATUS_NONEWDATA = 0x01

+ E2E_P04STATUS_WRONGSEQUENCE = 0x40

+ E2E_P04STATUS_ERROR = 0x07

«structure»

E2E_P04Types::

E2E_P04CheckStateType

+ Counter: uint16

+ Status: E2E_P04CheckStatusType

Figure 8.5: E2E Profile 4 check state

[SWS_E2E_00336] Definition of datatype E2E_P04CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P04CheckStateType

Kind Structure

Status

Type E2E_P04CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Elements

Type uint16

▽

40 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 4.

Available via E2E.h

⌋

8.2.3.4 E2E_P04CheckStatusType

[SWS_E2E_00337] Definition of datatype E2E_P04CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P04CheckStatusType

Kind Enumeration

E2E_P04STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P04STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P04
STATUS_REPEATED.

E2E_P04STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P04STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P04STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P04STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 4.

Available via E2E.h

⌋

Note that the status E2E_P04STATUS_ERROR is new (with respect to E2E Profiles 1
and 2).

41 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.3.5 E2E_P04HeaderInformationType

«structure»

E2E_P04Types::E2E_P04HeaderInformationType

+ SequenceCounter: uint16

Figure 8.6: E2E Profile 04 header information type

[SWS_E2E_91103] Definition of datatype E2E_P04HeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P04HeaderInformationType

Kind Structure

SequenceCounter

Type uint16

Elements

Comment sequence counter of profile P04

Description Data that can be retrieved from E2E header on receiver side in case E2E Profile 04 is used.

Available via E2E.h

⌋

8.2.4 E2E Profile 4m types

8.2.4.1 E2E_P04mConfigType

«structure»
E2E::E2E_P04mTypes::
E2E_P04mConfigType

+ DataID: uint32
+ MaxDataLength: uint16
+ MaxDeltaCounter: uint16
+ MinDataLength: uint16
+ Offset: uint16

Figure 8.7: E2E Profile 4m configuration

[SWS_E2E_91021] Definition of datatype E2E_P04mConfigType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P04mConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Elements

Offset
▽

42 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type uint16

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(12*8). Example: If
Offset equals 8, then the high byte of the E2E Length (16 bit) is written
to Byte 1, the low Byte is written to Byte 2.

MinDataLength

Type uint16

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_00852]). The value shall be a multiple of
8.

MaxDataLength

Type uint16

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00852]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint16

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 4m. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.4.2 E2E_P04mProtectStateType

«structure»
E2E::E2E_P04mTypes::

E2E_P04mProtectStateType

+ Counter: uint16

Figure 8.8: E2E Profile 4m Protect state type

[SWS_E2E_91020] Definition of datatype E2E_P04mProtectStateType
Upstream requirements: RS_E2E_08539

⌈
Name E2E_P04mProtectStateType

Kind Structure

CounterElements
Type uint16

▽

43 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Counter to be used for protecting the next Data. The initial value is 0,

which means that in the first cycle, Counter is 0. Each time E2E_P04m
Protect() is called, it increments the counter up to 0xFF’FF. After the
maximum value is reached, the next value is 0x0. The overflow is not
reported to the caller.

Description State of the sender for a Data protected with E2E Profile 4m.

Available via E2E.h

⌋

8.2.4.3 E2E_P04mCheckStateType

«structure»

E2E::E2E_P04mTypes::

E2E_P04mCheckStateType

+ Counter: uint16

+ Status: E2E_P04mCheckStatusType

«enumeration»

E2E::E2E_P04mTypes::

E2E_P04mCheckStatusType

l iterals

 E2E_P04MSTATUS_OK = 0x00

 E2E_P04MSTATUS_OKSOMELOST = 0x20

 E2E_P04MSTATUS_REPEATED = 0x08

 E2E_P04MSTATUS_NONEWDATA = 0x01

 E2E_P04MSTATUS_WRONGSEQUENCE = 0x40

 E2E_P04MSTATUS_ERROR = 0x07

Figure 8.9: E2E Profile 4m check state

[SWS_E2E_91019] Definition of datatype E2E_P04mCheckStateType
Upstream requirements: RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P04mCheckStateType

Kind Structure

Status

Type E2E_P04mCheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint16

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 4m.

Available via E2E.h

⌋

44 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.4.4 E2E_P04mCheckStatusType

[SWS_E2E_91022] Definition of datatype E2E_P04mCheckStatusType
Upstream requirements: RS_E2E_08534

⌈
Name E2E_P04mCheckStatusType

Kind Enumeration

E2E_P04MSTATUS_OK 0x00 –

E2E_P04MSTATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P04
STATUS_REPEATED.

E2E_P04MSTATUS_
ERROR

0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P04MSTATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P04MSTATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P04MSTATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 4m.

Available via E2E.h

⌋

Note that the status E2E_P04MSTATUS_ERROR is new (with respect to E2E Profiles
1 and 2).

8.2.4.5 E2E_P04mHeaderInformationType

«structure»

E2E_P04mTypes::E2E_P04mHeaderInformationType

+ SequenceCounter: uint16

+ SourceID: uint32

Figure 8.10: E2E Profile 04m header information type

45 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91109] Definition of datatype E2E_P04mHeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P04mHeaderInformationType

Kind Structure

SequenceCounter

Type uint16

Comment sequence counter of profile P04m

SourceID

Type uint32

Elements

Comment sourceID

Description Profile P04m specific data type containing the relevant profile specific header elements

Available via E2E.h

⌋

8.2.5 E2E Profile 5 types

8.2.5.1 E2E_P05ConfigType

«structure»
E2E_P05Types::

E2E_P05ConfigType

+ DataID: uint16
+ DataLength: uint16
+ MaxDeltaCounter: uint8
+ Offset: uint16

Figure 8.11: E2E Profile 5 configuration

[SWS_E2E_00437] Definition of datatype E2E_P05ConfigType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P05ConfigType

Kind Structure

Offset

Type uint16

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= DataLength-(3*8). Example: If Offset
equals 8, then the low byte of the E2E Crc (16 bit) is written to Byte 1,
the high Byte is written to Byte 2.

DataLength

Elements

Type uint16

▽

46 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Length of data, in bits

The Length shall be <= 4096*8 (4KB) and shall be >= 3*8 The value
shall be a multiple of 8.

DataID

Type uint16

Comment A system-unique identifier of the Data

MaxDeltaCounter

Type uint8

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 5. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.5.2 E2E_P05ProtectStateType

«structure»
E2E_P05Types::

E2E_P05ProtectStateType

+ Counter: uint8

Figure 8.12: E2E Profile 5 Protect state type

[SWS_E2E_00438] Definition of datatype E2E_P05ProtectStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P05ProtectStateType

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P05
Protect() is called, it increments the counter up to 0xFF.

Description State of the sender for a Data protected with E2E Profile 5.

Available via E2E.h

⌋

8.2.5.3 E2E_P05CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

47 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

«structure»

E2E_P05Types::

E2E_P05CheckStateType

+ Counter: uint8

+ Status: E2E_P05CheckStatusType

«enumeration»

E2E_P05Types::E2E_P05CheckStatusType

li terals

Attributes

+ E2E_P05STATUS_NONEWDATA = 0x01

+ E2E_P05STATUS_ERROR = 0x07

+ E2E_P05STATUS_WRONGSEQUENCE = 0x40

+ E2E_P05STATUS_REPEATED = 0x08

+ E2E_P05STATUS_OKSOMELOST = 0x20

+ E2E_P05STATUS_OK = 0x00

Figure 8.13: E2E Profile 5 Check state type

[SWS_E2E_00439] Definition of datatype E2E_P05CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P05CheckStateType

Kind Structure

Status

Type E2E_P05CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint8

Elements

Comment Counter of the data in previous cycle.

Description Description: State of the reception on one single Data protected with E2E Profile 5.

Available via E2E.h

⌋

8.2.5.4 E2E_P05CheckStatusType

[SWS_E2E_00440] Definition of datatype E2E_P05CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P05CheckStatusType

Kind Enumeration

E2E_P05STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P05STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P05
STATUS_REPEATED.

Range

E2E_P05STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length).

▽

48 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
E2E_P05STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P05STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

E2E_P05STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 5.

Available via E2E.h

⌋

8.2.5.5 E2E_P05HeaderInformationType

«structure»

E2E_P05Types::E2E_P05HeaderInformationType

+ SequenceCounter: uint8

Figure 8.14: E2E Profile 05 header information type

[SWS_E2E_91104] Definition of datatype E2E_P05HeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P05HeaderInformationType

Kind Structure

SequenceCounter

Type uint8

Elements

Comment sequence counter of profile P05

Description Data that can be retrieved from E2E header on receiver side in case E2E Profile 05 is used.

Available via E2E.h

⌋

49 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.6 E2E Profile 6 types

8.2.6.1 E2E_P06ConfigType

«structure»
E2E_P06Types::

E2E_P06ConfigType

+ DataID: uint16
+ MaxDataLength: uint16
+ MaxDeltaCounter: uint8
+ MinDataLength: uint16
+ Offset: uint16

Figure 8.15: E2E Profile 6 configuration

[SWS_E2E_00441] Definition of datatype E2E_P06ConfigType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P06ConfigType

Kind Structure

Offset

Type uint16

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(5*8). Example: If
Offset equals 8, then the high byte of the E2E Crc (16 bit) is written to
Byte 1, the low Byte is written to Byte 2.

MinDataLength

Type uint16

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_00657]). The value shall be a multiple of
8.

MaxDataLength

Type uint16

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00657]). The value shall be a multiple of
8.

DataID

Type uint16

Comment A system-unique identifier of the Data

MaxDeltaCounter

Type uint8

Elements

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 6. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

50 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.6.2 E2E_P06ProtectStateType

«structure»
E2E_P06Types::

E2E_P06ProtectStateType

+ Counter: uint8

Figure 8.16: E2E Profile 6 Protect state type

[SWS_E2E_00443] Definition of datatype E2E_P06ProtectStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P06ProtectStateType

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P06
Protect() is called, it increments the counter up to 0xFF. After the
maximum value is reached, the next value is 0x0. The overflow is not
reported to the caller.

Description State of the sender for a Data protected with E2E Profile 6.

Available via E2E.h

⌋

8.2.6.3 E2E_P06CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E_P06Types::

E2E_P06CheckStateType

+ Counter: uint8

+ Status: E2E_P06CheckStatusType

«enumeration»

E2E_P06Types::E2E_P06CheckStatusType

li terals

Attributes

+ E2E_P06STATUS_NONEWDATA = 0x01

+ E2E_P06STATUS_ERROR = 0x07

+ E2E_P06STATUS_WRONGSEQUENCE = 0x40

+ E2E_P06STATUS_REPEATED = 0x08

+ E2E_P06STATUS_OKSOMELOST = 0x20

+ E2E_P06STATUS_OK = 0x00

Figure 8.17: E2E Profile 6 Check state type

51 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00444] Definition of datatype E2E_P06CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P06CheckStateType

Kind Structure

Status

Type E2E_P06CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint8

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 6.

Available via E2E.h

⌋

8.2.6.4 E2E_P06CheckStatusType

[SWS_E2E_00445] Definition of datatype E2E_P06CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P06CheckStatusType

Kind Enumeration

E2E_P06STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P06STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P06
STATUS_REPEATED.

E2E_P06STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length).

E2E_P06STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P06STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P06STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 6.

▽

52 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Available via E2E.h

⌋

8.2.6.5 E2E_P06HeaderInformationType

«structure»

E2E_P06Types::E2E_P06HeaderInformationType

+ SequenceCounter: uint8

Figure 8.18: E2E Profile 06 header information type

[SWS_E2E_91105] Definition of datatype E2E_P06HeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P06HeaderInformationType

Kind Structure

SequenceCounter

Type uint8

Elements

Comment sequence counter of profile P06

Description Data that can be retrieved from E2E header on receiver side in case E2E Profile 06 is used.

Available via E2E.h

⌋

8.2.7 E2E Profile 7 types

8.2.7.1 E2E_P07ConfigType

«structure»
E2E_P07Types::

E2E_P07ConfigType

+ DataID: uint32
+ MaxDataLength: uint32
+ MaxDeltaCounter: uint32
+ MinDataLength: uint32
+ Offset: uint32

Figure 8.19: E2E Profile 7 configuration

53 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00544] Definition of datatype E2E_P07ConfigType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P07ConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Offset

Type uint32

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(20*8). Example: If
Offset equals 8, then the first byte of the E2E Length (32 bit) is written
to byte 1, the next byte is written to byte 2 and so on.

MinDataLength

Type uint32

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_00660]). The value shall be a multiple of
8.

MaxDataLength

Type uint32

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00660]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint32

Elements

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 7. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.7.2 E2E_P07ProtectStateType

«structure»
E2E_P07Types::

E2E_P07ProtectStateType

+ Counter: uint32

Figure 8.20: E2E Profile 7 Protect state type

54 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00545] Definition of datatype E2E_P07ProtectStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P07ProtectStateType

Kind Structure

Counter

Type uint32
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P07
Protect() is called, it increments the counter up to 0xFF’FF’FF’FF.

Description State of the sender for a Data protected with E2E Profile 7.

Available via E2E.h

⌋

8.2.7.3 E2E_P07CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«enumeration»

E2E_P07Types::E2E_P07CheckStatusType

l i terals

Attributes

+ E2E_P07STATUS_OK = 0x00

+ E2E_P07STATUS_OKSOMELOST = 0x20

+ E2E_P07STATUS_REPEATED = 0x08

+ E2E_P07STATUS_NONEWDATA = 0x01

+ E2E_P07STATUS_WRONGSEQUENCE = 0x40

+ E2E_P07STATUS_ERROR = 0x07

«structure»

E2E_P07Types::

E2E_P07CheckStateType

+ Counter: uint32

+ Status: E2E_P07CheckStatusType

Figure 8.21: E2E Profile 7 Check state type

[SWS_E2E_00542] Definition of datatype E2E_P07CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P07CheckStateType

Kind Structure

Status

Type E2E_P07CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint32

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 7.

Available via E2E.h

⌋

55 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.7.4 E2E_P07CheckStatusType

[SWS_E2E_00591] Definition of datatype E2E_P07CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P07CheckStatusType

Kind Enumeration

E2E_P07STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P07STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P07
STATUS_REPEATED.

E2E_P07STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P07STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P07STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P07STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 7.

Available via E2E.h

⌋

8.2.7.5 E2E_P07HeaderInformationType

«structure»

E2E_P07Types::E2E_P07HeaderInformationType

+ SequenceCounter: uint32

Figure 8.22: E2E Profile 07 header information type

56 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91106] Definition of datatype E2E_P07HeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P07HeaderInformationType

Kind Structure

SequenceCounter

Type uint32

Elements

Comment sequence counter of profile P07

Description Data that can be retrieved from E2E header on receiver side in case E2E Profile 07 is used.

Available via E2E.h

⌋

8.2.8 E2E Profile 7m types

8.2.8.1 E2E_P07mConfigType

«structure»
E2E::E2E_P07mTypes::
E2E_P07mConfigType

+ DataID: uint32
+ MaxDataLength: uint32
+ MaxDeltaCounter: uint32
+ MinDataLength: uint32
+ Offset: uint32

Figure 8.23: E2E Profile 7m configuration

[SWS_E2E_91010] Definition of datatype E2E_P07mConfigType
Upstream requirements: RS_E2E_08539

⌈
Name E2E_P07mConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Offset

Type uint32

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(24*8). Example: If
Offset equals 8, then the high byte of the E2E Length (16 bit) is written
to Byte 1, the low Byte is written to Byte 2.

MinDataLength

Elements

Type uint32

▽

57 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min

DataLength (see [PRS_E2E_00851]). The value shall be a multiple of
8.

MaxDataLength

Type uint32

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00851]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint32

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 7m. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.8.2 E2E_P07mProtectStateType

«structure»
E2E::E2E_P07mTypes::

E2E_P07mProtectStateType

+ Counter: uint32

Figure 8.24: E2E Profile 7m Protect state type

[SWS_E2E_91011] Definition of datatype E2E_P07mProtectStateType
Upstream requirements: RS_E2E_08539

⌈
Name E2E_P07mProtectStateType

Kind Structure

Counter

Type uint32
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P07m
Protect() is called, it increments the counter up to 0xFF’FF’FF’FF. After
the maximum value is reached, the next value is 0x0. The overflow is
not reported to the caller.

Description State of the sender for a Data protected with E2E Profile 7m.

Available via E2E.h

⌋

58 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.8.3 E2E_P07mCheckStateType

«structure»

E2E::E2E_P07mTypes::

E2E_P07mCheckStateType

+ Counter: uint32

+ Status: E2E_P07mCheckStatusType

«enumeration»

E2E::E2E_P07mTypes::E2E_P07mCheckStatusType

l i terals

 E2E_P07MSTATUS_OK = 0x00

 E2E_P07MSTATUS_OKSOMELOST = 0x20

 E2E_P07MSTATUS_REPEATED = 0x08

 E2E_P07MSTATUS_NONEWDATA = 0x01

 E2E_P07MSTATUS_WRONGSEQUENCE = 0x40

 E2E_P07MSTATUS_ERROR = 0x07

Figure 8.25: E2E Profile 7m Check state type

[SWS_E2E_91008] Definition of datatype E2E_P07mCheckStateType
Upstream requirements: RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P07mCheckStateType

Kind Structure

Status

Type E2E_P07mCheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint32

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 7m.

Available via E2E.h

⌋

8.2.8.4 E2E_P07mCheckStatusType

[SWS_E2E_91009] Definition of datatype E2E_P07mCheckStatusType
Upstream requirements: RS_E2E_08534

⌈
Name E2E_P07mCheckStatusType

Kind Enumeration

E2E_P07MSTATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

Range

E2E_P07MSTATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P07
STATUS_REPEATED.

▽

59 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
E2E_P07MSTATUS_
ERROR

0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P07MSTATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P07MSTATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

E2E_P07MSTATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 7m.

Available via E2E.h

⌋

8.2.8.5 E2E_P07mHeaderInformationType

«structure»

E2E_P07mTypes::E2E_P07mHeaderInformationType

+ SequenceCounter: uint32

+ SourceID: uint32

Figure 8.26: E2E Profile 07m header information type

[SWS_E2E_91110] Definition of datatype E2E_P07mHeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P07mHeaderInformationType

Kind Structure

SequenceCounter

Type uint32

Comment sequence counter of profile P07m

SourceID

Type uint32

Elements

Comment SourceID

Description Profile P07m specific data type containing the relevant profile specific header elements

Available via E2E.h

⌋

60 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.9 E2E Profile 8 types

8.2.9.1 E2E_P08ConfigType

«structure»
E2E::E2E_P08Types::
E2E_P08ConfigType

+ DataID: uint32
+ MaxDataLength: uint32
+ MaxDeltaCounter: uint32
+ MinDataLength: uint32
+ Offset: uint32

Figure 8.27: E2E Profile 08 configuration

[SWS_E2E_91033] Definition of datatype E2E_P08ConfigType
Upstream requirements: RS_E2E_08527

⌈
Name E2E_P08ConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Offset

Type uint32

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(16*8). Example: If
Offset equals 8, then the high byte of the E2E Length (32 bit) is written
to byte 1, the next byte is written to byte 2 and so on.

MinDataLength

Type uint32

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_00706]). The value shall be a multiple of
8.

MaxDataLength

Type uint32

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00706]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint32

Elements

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 08. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

61 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.9.2 E2E_P08ProtectStateType

«structure»
E2E::E2E_P08Types::

E2E_P08ProtectStateType

+ Counter: uint32

Figure 8.28: E2E Profile 08 Protect state type

[SWS_E2E_91042] Definition of datatype E2E_P08ProtectStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P08ProtectStateType

Kind Structure

Counter

Type uint32
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_ P08
Protect() is called, it increments the counter up to 0xFF’FF’FF’FF.

Description State of the sender for a Data protected with E2E Profile 08.

Available via E2E.h

⌋

8.2.9.3 E2E_P08CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E::E2E_P08Types::

E2E_P08CheckStateType

+ Counter: uint32

+ Status: E2E_P08CheckStatusType

«enumeration»

E2E::E2E_P08Types::E2E_P08CheckStatusType

l i terals

 E2E_P08STATUS_OK = 0x00

 E2E_P08STATUS_NONEWDATA = 0x01

 E2E_P08STATUS_ERROR = 0x07

 E2E_P08STATUS_REPEATED = 0x08

 E2E_P08STATUS_OKSOMELOST = 0x20

 E2E_P08STATUS_WRONGSEQUENCE = 0x40

Figure 8.29: E2E Profile 08 Check state type

[SWS_E2E_91034] Definition of datatype E2E_P08CheckStateType
Upstream requirements: RS_E2E_08527

⌈
Name E2E_P08CheckStateType

Kind Structure
Elements Status

▽

62 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type E2E_P08CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint32

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 08

Available via E2E.h

⌋

8.2.9.4 E2E_P08CheckStatusType

[SWS_E2E_91035] Definition of datatype E2E_P08CheckStatusType
Upstream requirements: RS_E2E_08527, RS_E2E_08534

⌈
Name E2E_P08CheckStatusType

Kind Enumeration

E2E_P08STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P08STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_ P08
STATUS_REPEATED.

E2E_P08STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P08STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P08STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P08STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 08.

Available via E2E.h

⌋

Note that the status E2E_P08STATUS_ERROR is new (with respect to E2E Profiles 1
and 2).

63 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.9.5 E2E_P08HeaderInformationType

«structure»

E2E_P08Types::E2E_P08HeaderInformationType

+ SequenceCounter: uint32

Figure 8.30: E2E Profile 08 header information type

[SWS_E2E_91107] Definition of datatype E2E_P08HeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P08HeaderInformationType

Kind Structure

SequenceCounter

Type uint32

Elements

Comment sequence counter of profile P08

Description Data that can be retrieved from E2E header on receiver side in case E2E Profile 08 is used.

Available via E2E.h

⌋

8.2.10 E2E Profile 8m types

8.2.10.1 E2E_P08mConfigType

«structure»
E2E::E2E_P08mTypes::
E2E_P08mConfigType

+ DataID: uint32
+ MaxDataLength: uint32
+ MaxDeltaCounter: uint32
+ MinDataLength: uint32
+ Offset: uint32

Figure 8.31: E2E Profile 08m configuration

[SWS_E2E_91073] Definition of datatype E2E_P08mConfigType
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Name E2E_P08mConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Elements

MinDataLength

▽

64 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type uint32

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_01154]). The value shall be a multiple of
8.

MaxDataLength

Type uint32

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_01154]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint32

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Offset

Type uint32

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(16*8). Example: If
Offset equals 8, then the high byte of the E2E Length (32 bit) is written
to byte 1, the next byte is written to byte 2 and so on.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 08m. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.10.2 E2E_P08mProtectStateType

«structure»
E2E::E2E_P08mTypes::

E2E_P08mProtectStateType

+ Counter: uint32

Figure 8.32: E2E Profile 08m Protect state type

[SWS_E2E_91074] Definition of datatype E2E_P08mProtectStateType
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Name E2E_P08mProtectStateType

Kind Structure

Counter

Type uint32
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_
P08mProtect() is called, it increments the counter up to 0xFF’FF’FF’FF.

Description State of the sender for a Data protected with E2E Profile 08m.

▽

65 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Available via E2E.h

⌋

8.2.10.3 E2E_P08mCheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E::E2E_P08mTypes::

E2E_P08mCheckStateType

+ Counter: uint32

+ Status: E2E_P08mCheckStatusType

«enumeration»

E2E::E2E_P08mTypes::E2E_P08mCheckStatusType

li terals

 E2E_P08MSTATUS_OK = 0x00

 E2E_P08MSTATUS_NONEWDATA = 0x01

 E2E_P08MSTATUS_ERROR = 0x07

 E2E_P08MSTATUS_REPEATED = 0x08

 E2E_P08MSTATUS_OKSOMELOST = 0x20

 E2E_P08MSTATUS_WRONGSEQUENCE = 0x40

Figure 8.33: E2E Profile 08m Check state type

[SWS_E2E_91075] Definition of datatype E2E_P08mCheckStateType
Upstream requirements: RS_E2E_08527, RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P08mCheckStateType

Kind Structure

Status

Type E2E_P08mCheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint32

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 08m.

Available via E2E.h

⌋

66 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.10.4 E2E_P08mCheckStatusType

[SWS_E2E_91076] Definition of datatype E2E_P08mCheckStatusType
Upstream requirements: RS_E2E_08527, RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P08mCheckStatusType

Kind Enumeration

E2E_P08MSTATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P08MSTATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P08
MSTATUS_REPEATED.

E2E_P08MSTATUS_
ERROR

0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P08MSTATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P08MSTATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P08MSTATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta.

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 08m.

Available via E2E.h

⌋

Note that the status E2E_P08MSTATUS_ERROR is new (with respect to E2E Profiles
1 and 2).

8.2.10.5 E2E_P08mHeaderInformationType

«structure»

E2E_P08mTypes::E2E_P08mHeaderInformationType

+ SequenceCounter: uint32

+ SourceID: uint32

Figure 8.34: E2E Profile 08m header information type

67 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91111] Definition of datatype E2E_P08mHeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P08mHeaderInformationType

Kind Structure

SequenceCounter

Type uint32

Comment sequence counter of profile P08m

SourceID

Type uint32

Elements

Comment SourceID

Description Profile P08m specific data type containing the relevant profile specific header elements

Available via E2E.h

⌋

8.2.11 E2E Profile 11 types

8.2.11.1 E2E_P11ConfigType

«structure»
E2E_P11Types::E2E_P11ConfigType

+ CounterOffset: uint16
+ CRCOffset: uint16
+ DataID: uint16
+ DataIDMode: E2E_P11DataIDMode
+ DataIDNibbleOffset: uint16
+ DataLength: uint16
+ MaxDeltaCounter: uint8

«enumeration»
E2E_P11Types::

E2E_P11DataIDMode

l i terals
 E2E_P11_DATAID_BOTH = 0
 E2E_P11_DATAID_NIBBLE = 3

Figure 8.35: E2E Profile 11 configuration

[SWS_E2E_00565] Definition of datatype E2E_P11ConfigType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P11ConfigType

Kind Structure
DataLength

Type uint16

Comment Length of data, in bits. The value shall be a multiple of 8.

DataID

Type uint16

Comment A unique identifier, for protection against masquerading. There are
some constraints on the selection of ID values, described in section
"Configuration constraints on Data IDs".

Elements

MaxDeltaCounter
▽

68 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type uint8

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

DataIDMode

Type E2E_P11DataIDMode

Comment –

CRCOffset

Type uint16

Comment Bit offset of CRC (i.e. since *Data) in MSB first order. In variants 1A
and 1B, CRCOffset is 0. The offset shall be a multiple of 8.

CounterOffset

Type uint16

Comment Bit offset of Counter in MSB first order. In variants 1A and 1B, Counter
Offset is 8. The offset shall be a multiple of 4.

DataIDNibbleOffset

Type uint16

Comment Bit offset of the low nibble of the high byte of Data ID. This parameter
is used by E2E Library only if DataIDMode = E2E_P11_DATAID_
NIBBLE (otherwise it is ignored by E2E Library).
For DataIDMode different than E2E_P11_DATAID_NIBBLE, Data
IDNibbleOffset shall be initialized to 0 (even if it is ignored by E2E
Library).

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 11. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.11.2 E2E_P11DataIDMode

[SWS_E2E_00566] Definition of datatype E2E_P11DataIDMode
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P11DataIDMode

Kind Enumeration

E2E_P11_DATAID_BOTH 0 Two bytes are included in the CRC (double ID
configuration) This is used in E2E variant 1A.

Range

E2E_P11_DATAID_NIBBLE 3 The low byte is included in the implicit CRC
calculation, the low nibble of the high byte is
transmitted along with the data (i.e. it is
explicitly included), the high nibble of the high
byte is not used. This is applicable for the IDs
up to 12 bits. This is used in E2E variant 1C.

Description The Data ID is two bytes long in E2E Profile 1. There are four inclusion modes how the implicit
two-byte Data ID is included in the one-byte CRC.

Available via E2E.h

⌋

69 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.11.3 E2E_P11ProtectStateType

«structure»
E2E_P11Types::

E2E_P11ProtectStateType

+ Counter: uint8

Figure 8.36: E2E Profile 11 Protect state type

[SWS_E2E_00567] Definition of datatype E2E_P11ProtectStateType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P11ProtectStateType

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P11
Protect() is called, it increments the counter up to 0x0E.

Description State of the sender for a Data protected with E2E Profile 11.

Available via E2E.h

⌋

8.2.11.4 E2E_P11CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E_P11Types::

E2E_P11CheckStateType

+ Counter: uint8

+ Status: E2E_P11CheckStatusType

«enumeration»

E2E_P11Types::E2E_P11CheckStatusType

li terals

Attributes

+ E2E_P11STATUS_NONEWDATA = 0x01

+ E2E_P11STATUS_ERROR = 0x07

+ E2E_P11STATUS_WRONGSEQUENCE = 0x40

+ E2E_P11STATUS_REPEATED = 0x08

+ E2E_P11STATUS_OKSOMELOST = 0x20

+ E2E_P11STATUS_OK = 0x00

Figure 8.37: E2E Profile 11 Check state type

[SWS_E2E_00563] Definition of datatype E2E_P11CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P11CheckStateType

Kind Structure
Elements Status

▽

70 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type E2E_P11CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint8

Comment Counter of the data in previous cycle.

Description Description: State of the reception on one single Data protected with E2E Profile 11.

Available via E2E.h

⌋

8.2.11.5 E2E_P11CheckStatusType

[SWS_E2E_00564] Definition of datatype E2E_P11CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P11CheckStatusType

Kind Enumeration

E2E_P11STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P11STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P11
STATUS_REPEATED.

E2E_P11STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length).

E2E_P11STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P11STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P11STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 11.

Available via E2E.h

⌋

71 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.12 E2E Profile 22 types

8.2.12.1 E2E_P22ConfigType

«structure»
E2E_P22Types::

E2E_P22ConfigType

+ DataIDList: uint8[16]
+ MaxDataLength: uint16
+ MaxDeltaCounter: uint8
+ MinDataLength: uint16
+ Offset: uint16

Figure 8.38: E2E Profile 22 configuration

[SWS_E2E_00571] Definition of datatype E2E_P22ConfigType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P22ConfigType

Kind Structure
MinDataLength

Type uint16

Comment Length of Data, in bits. The value shall be a multiple of 8 and MinData
Length >= Offset +(2*8). The value shall be the same as MaxData
Length.

MaxDataLength

Type uint16

Comment Length of Data, in bits. The value shall be the same as MinDataLength.

DataIDList

Type Array of uint8

Size 16

Comment An array of appropriately chosen Data IDs for protection against
masquerading.

MaxDeltaCounter

Type uint8

Comment Initial maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounterInit is 1, then at the next
reception the receiver can accept Counters with values 2 and 3, but
not 4.
Note that if the receiver does not receive new Data at a consecutive
read, then the receiver increments the tolerance by 1.

Offset

Type uint16

Elements

Comment Offset of the E2E header in the Data[] array in bits.
It shall be: 0 <= Offset <= DataLength-(2*8).

Description Non-modifiable configuration of the data element sent over an RTE port, for E2E profile 22.
The position of the counter and CRC is not configurable in profile 22.

Available via E2E.h

⌋

72 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.12.2 E2E_P22ProtectStateType

«structure»
E2E_P22Types::

E2E_P22ProtectStateType

+ Counter: uint8

Figure 8.39: E2E Profile 22 Protect state type

[SWS_E2E_00570] Definition of datatype E2E_P22ProtectStateType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P22ProtectStateType

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the Data. The initial value is 0, which
means that the first Data will have the counter 0. After the protection
by the counter, the counter is incremented modulo 16.

Description State of the sender for a Data protected with E2E Profile 22.

Available via E2E.h

⌋

8.2.12.3 E2E_P22CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E_P22Types::

E2E_P22CheckStateType

+ Counter: uint8

+ Status: E2E_P22CheckStatusType

«enumeration»

E2E_P22Types::E2E_P22CheckStatusType

l iterals

 E2E_P22STATUS_OK = 0x00

 E2E_P22STATUS_NONEWDATA = 0x01

 E2E_P22STATUS_ERROR = 0x07

 E2E_P22STATUS_REPEATED = 0x08

 E2E_P22STATUS_OKSOMELOST = 0x20

 E2E_P22STATUS_WRONGSEQUENCE = 0x40

Figure 8.40: E2E Profile 22 Check state type

[SWS_E2E_00568] Definition of datatype E2E_P22CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P22CheckStateType

Kind Structure
Elements Counter

▽

73 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type uint8

Comment Counter of last valid received message.

Status

Type E2E_P22CheckStatusType

Comment Result of the verification of the Data, determined by the Check
function.

Description State of the sender for a Data protected with E2E Profile 22.

Available via E2E.h

⌋

8.2.12.4 E2E_P22CheckStatusType

[SWS_E2E_00569] Definition of datatype E2E_P22CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P22CheckStatusType

Kind Enumeration

E2E_P22STATUS_OK 0x00 OK: The new data has been received
according to communication medium, the
CRC is correct, the Counter is incremented
by 1 with respect to the most recent Data
received with Status _INITIAL, _OK, or _
OKSOMELOST. This means that no Data has
been lost since the last correct data
reception.

E2E_P22STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.

E2E_P22STATUS_ERROR 0x07 Error: The data has been received according
to communication medium, but the CRC is
incorrect.

E2E_P22STATUS_
REPEATED

0x08 Error: The new data has been received
according to communication medium, the
CRC is correct, but the Counter is identical to
the most recent Data received with Status _
INITIAL, _OK, or _OKSOMELOST.

Range

E2E_P22STATUS_
OKSOMELOST

0x20 OK: The new data has been received
according to communication medium, the
CRC is correct, the Counter is incremented
by DeltaCounter (1 < DeltaCounter =Max
DeltaCounter) with respect to the most recent
Data received with Status _INITIAL, _OK, or
_OKSOMELOST. This means that some Data
in the sequence have been probably lost
since the last correct/initial reception, but this
is within the configured tolerance range.

▽

74 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
E2E_P22STATUS_
WRONGSEQUENCE

0x40 Error: The new data has been received
according to communication medium, the
CRC is correct, but the Counter Delta is too
big (DeltaCounter > MaxDeltaCounter) with
respect to the most recent Data received with
Status _INITIAL, _OK, or _OKSOMELOST.
This means that too many Data in the
sequence have been probably lost since the
last correct/initial reception.

Description Result of the verification of the Data in E2E Profile 22, determined by the Check function.

Available via E2E.h

⌋

8.2.13 E2E Profile 44 types

8.2.13.1 E2E_P44ConfigType

«structure»
E2E::E2E_P44Types::
E2E_P44ConfigType

+ DataID: uint32
+ MaxDataLength: uint32
+ MaxDeltaCounter: uint16
+ MinDataLength: uint32
+ Offset: uint32

Figure 8.41: E2E Profile 44 configuration

[SWS_E2E_91023] Definition of datatype E2E_P44ConfigType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P44ConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

Offset

Type uint32

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(12*8). Example: If
Offset equals 8, then the high byte of the E2E Length (16 bit) is written
to Byte 1, the low Byte is written to Byte 2.

MinDataLength

Type uint32

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_00735]). The value shall be a multiple of
8.

Elements

MaxDataLength

▽

75 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Type uint32

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_00735]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint16

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 44. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.13.2 E2E_P44ProtectStateType

[SWS_E2E_91024] Definition of datatype E2E_P44ProtectStateType
Upstream requirements: RS_E2E_08528

⌈
Name E2E_P44ProtectStateType

Kind Structure

Counter

Type uint16
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P44
Protect() is called, it increments the counter up to 0xFF’FF. After the
maximum value is reached, the next value is 0x0. The overflow is not
reported to the caller.

Description State of the sender for a Data protected with E2E Profile 44.

Available via E2E.h

⌋

8.2.13.3 E2E_P44CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E::E2E_P44Types::E2E_P44CheckStateType

+ Counter: uint16

+ Status: E2E_P44CheckStatusType

«enumeration»

E2E::E2E_P44Types::E2E_P44CheckStatusType

li terals

 E2E_P44STATUS_OK = 0x00

 E2E_P44STATUS_NONEWDATA = 0x01

 E2E_P44STATUS_ERROR = 0x07

 E2E_P44STATUS_REPEATED = 0x08

 E2E_P44STATUS_OKSOMELOST = 0x20

 E2E_P44STATUS_WRONGSEQUENCE = 0x40

Figure 8.42: E2E Profile 44 Check state type

76 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91025] Definition of datatype E2E_P44CheckStateType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P44CheckStateType

Kind Structure

Status

Type E2E_P44CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint16

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 44.

Available via E2E.h

⌋

8.2.13.4 E2E_P44CheckStatusType

[SWS_E2E_91026] Definition of datatype E2E_P44CheckStatusType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P44CheckStatusType

Kind Enumeration

E2E_P44STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P44STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_ P44
STATUS_REPEATED.

E2E_P44STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P44STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P44STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P44STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 44.

▽

77 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Available via E2E.h

⌋

Note that the status E2E_P44STATUS_ERROR is new (with respect to E2E Profiles 1
and 2).

8.2.13.5 E2E_P44HeaderInformationType

«structure»

E2E_P44Types::E2E_P44HeaderInformationType

+ SequenceCounter: uint16

Figure 8.43: E2E Profile 44 header information type

[SWS_E2E_91108] Definition of datatype E2E_P44HeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P44HeaderInformationType

Kind Structure

SequenceCounter

Type uint16

Elements

Comment sequence counter of profile P44

Description Data that can be retrieved from E2E header on receiver side in case E2E Profile 44 is used.

Available via E2E.h

⌋

8.2.14 E2E Profile 44m types

8.2.14.1 E2E_P44mConfigType

«structure»
E2E::E2E_P44mTypes::
E2E_P44mConfigType

+ DataID: uint32
+ MaxDataLength: uint32
+ MaxDeltaCounter: uint16
+ MinDataLength: uint32
+ Offset: uint32

Figure 8.44: E2E Profile 44m configuration

78 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91077] Definition of datatype E2E_P44mConfigType
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Name E2E_P44mConfigType

Kind Structure
DataID

Type uint32

Comment A system-unique identifier of the Data.

MinDataLength

Type uint32

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength (see [PRS_E2E_01202]). The value shall be a multiple of
8.

MaxDataLength

Type uint32

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength (see [PRS_E2E_01202]). The value shall be a multiple of
8.

MaxDeltaCounter

Type uint16

Comment Maximum allowed gap between two counter values of two
consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Offset

Type uint32

Elements

Comment Bit offset of the first bit of the E2E header from the beginning of the
Data (bit numbering: bit 0 is the least important). The offset shall be a
multiple of 8 and 0 <= Offset <= MaxDataLength-(12*8). Example: If
Offset equals 8, then the high byte of the E2E Length (16 bit) is written
to Byte 1, the low Byte is written to Byte 2.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 44m. For each
transmitted Data, there is an instance of this typedef.

Available via E2E.h

⌋

8.2.14.2 E2E_ P44mProtectStateType

«structure»
E2E::E2E_P44mTypes::

E2E_P44mProtectStateType

+ Counter: uint16

Figure 8.45: E2E Profile 44m Protect state type

79 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91078] Definition of datatype E2E_P44mProtectStateType
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Name E2E_P44mProtectStateType

Kind Structure

Counter

Type uint16
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_P44m
Protect() is called, it increments the counter up to 0xFF’FF. After the
maximum value is reached, the next value is 0x0. The overflow is not
reported to the caller.

Description State of the sender for a Data protected with E2E Profile 44m.

Available via E2E.h

⌋

8.2.14.3 E2E_P44mCheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»

E2E::E2E_P44mTypes::

E2E_P44mCheckStateType

+ Counter: uint16

+ Status: E2E_P44mCheckStatusType

«enumeration»

E2E::E2E_P44mTypes::E2E_P44mCheckStatusType

l iterals

 E2E_P44MSTATUS_OK = 0x00

 E2E_P44MSTATUS_NONEWDATA = 0x01

 E2E_P44MSTATUS_ERROR = 0x07

 E2E_P44MSTATUS_REPEATED = 0x08

 E2E_P44MSTATUS_OKSOMELOST = 0x20

 E2E_P44MSTATUS_WRONGSEQUENCE = 0x40

Figure 8.46: E2E Profile 44m Check state type

[SWS_E2E_91079] Definition of datatype E2E_P44mCheckStateType
Upstream requirements: RS_E2E_08527, RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P44mCheckStateType

Kind Structure

Status

Type E2E_P44mCheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint16

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 44m.

Available via E2E.h

⌋

80 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.14.4 E2E_P44mCheckStatusType

[SWS_E2E_91080] Definition of datatype E2E_P44mCheckStatusType
Upstream requirements: RS_E2E_08527, RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P44mCheckStatusType

Kind Enumeration

E2E_P44MSTATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P44MSTATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_P44
MSTATUS_REPEATED.

E2E_P44MSTATUS_
ERROR

0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P44MSTATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

E2E_P44MSTATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

Range

E2E_P44MSTATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta.

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 44m.

Available via E2E.h

⌋

Note that the status E2E_P44MSTATUS_ERROR is new (with respect to E2E Profiles
1 and 2).

8.2.14.5 E2E_P44mHeaderInformationType

«structure»

E2E_P44mTypes::E2E_P44mHeaderInformationType

+ SequenceCounter: uint16

+ SourceID: uint32

Figure 8.47: E2E Profile 44m header information type

81 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91112] Definition of datatype E2E_P44mHeaderInformationType
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P44mHeaderInformationType

Kind Structure

SequenceCounter

Type uint16

Comment sequence counter of profile P44m

SourceID

Type uint32

Elements

Comment SourceID

Description Profile P44m specific data type containing the relevant profile specific header elements

Available via E2E.h

⌋

8.2.15 E2E Profile 76 Types

8.2.15.1 E2E_P76ConfigType

«structure»
E2E::E2E_P76Types::
E2E_P76ConfigType

+ MaxDataLength: uint8
+ MaxDeltaCounter: uint8
+ MinDataLength: uint8

Figure 8.48: E2E Profile 76 configuration

[SWS_E2E_00616] Definition of datatype E2E_P76ConfigType
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P76ConfigType (draft)

Kind Structure
MinDataLength

Type uint8

Comment Minimal length of Data, in bits. E2E checks that DataLength is >= Min
DataLength. The value shall be a multiple of 8.

MaxDataLength

Type uint8

Comment Maximal length of Data, in bits. E2E checks that DataLength is <= Max
DataLength. The value shall be a multiple of 8.

MaxDeltaCounter

Elements

Type uint8

▽

82 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Maximum allowed gap between two counter values of two

consecutively received valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounter is 3, then at the next
reception the receiver can accept Counters with values 2, 3 or 4.

Description Configuration of transmitted Data (Data Element or I-PDU), for E2E Profile 76. For each
transmitted Data, there is an instance of this typedef.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.2.15.2 E2E_P76ProtectStateType

[SWS_E2E_00619] Definition of datatype E2E_P76ProtectStateType
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈
Name E2E_P76ProtectStateType (draft)

Kind Structure

Counter

Type uint8
Elements

Comment Counter to be used for protecting the next Data. The initial value is 0,
which means that in the first cycle, Counter is 0. Each time E2E_ P76
Protect() is called, it increments the counter up to 0x1F (31). After the
maximum value is reached, the next value is 0x0. The overflow is not
reported to the caller.

Description State of the sender for a Data protected with E2E Profile 76.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.2.15.3 E2E_P76CheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«enumeration»

E2E::E2E_P76Types::E2E_P76CheckStatusType

l i terals

 E2E_P76STATUS_OK = 0x00

 E2E_P76STATUS_NONEWDATA = 0x01

 E2E_P76STATUS_ERROR = 0x07

 E2E_P76STATUS_REPEATED = 0x08

 E2E_P76STATUS_OKSOMELOST = 0x20

 E2E_P76STATUS_WRONGSEQUENCE = 0x40

«structure»

E2E::E2E_P76Types::

E2E_P76CheckStateType

+ Counter: uint8

+ Status: E2E_P76CheckStatusType

Figure 8.49: E2E Profile 76 check state

83 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00617] Definition of datatype E2E_P76CheckStateType
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08534

⌈
Name E2E_P76CheckStateType (draft)

Kind Structure

Status

Type E2E_P76CheckStatusType

Comment Result of the verification of the Data in this cycle, determined by the
Check function.

Counter

Type uint8

Elements

Comment Counter of the data in previous cycle.

Description State of the reception on one single Data protected with E2E Profile 76.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.2.15.4 E2E_P76CheckStatusType

[SWS_E2E_00618] Definition of datatype E2E_P76CheckStatusType
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08534

⌈
Name E2E_P76CheckStatusType (draft)

Kind Enumeration

E2E_P76STATUS_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented by 1).

E2E_P76STATUS_
NONEWDATA

0x01 Error: the Check function has been invoked
but no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E checks
of Data have been consequently executed.
This may be considered similar to E2E_ P76
STATUS_REPEATED.

E2E_P76STATUS_ERROR 0x07 Error: error not related to counters occurred
(e.g. wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_P76STATUS_
REPEATED

0x08 Error: the checks of the Data in this cycle
were successful, with the exception of the
repetition.

Range

E2E_P76STATUS_
OKSOMELOST

0x20 OK: the checks of the Data in this cycle were
successful (including counter check, which
was incremented within the allowed
configured delta).

▽

84 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
E2E_P76STATUS_
WRONGSEQUENCE

0x40 Error: the checks of the Data in this cycle
were successful, with the exception of
counter jump, which changed more than the
allowed delta

Description Status of the reception on one single Data in one cycle, protected with E2E Profile 76.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.2.16 E2E state machine types

8.2.16.1 E2E_PCheckStatusType

[SWS_E2E_00347] Definition of datatype E2E_PCheckStatusType
Upstream requirements: RS_E2E_08548

⌈
Name E2E_PCheckStatusType

Kind Enumeration

E2E_P_OK 0x00 OK: the checks of the Data in this cycle were
successful (including counter check).

E2E_P_REPEATED 0x01 Data has a repeated counter.

E2E_P_
WRONGSEQUENCE

0x02 The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the allowed
delta.

E2E_P_ERROR 0x03 Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong Data ID) or
the return of the check function was not OK.

E2E_P_NOTAVAILABLE 0x04 No value has been received yet (e.g. during
initialization). This is used as the initialization
value for the buffer, it is not returned by any
E2E profile.

E2E_P_NONEWDATA 0x05 No new data is available.

Range

reserved 0x07, 0x0F reserved for runtime errors (shall not be used
for any status in future).

Description Profile-independent status of the reception on one single Data in one cycle.

Available via E2E.h

⌋

85 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.2.16.2 E2E_SMConfigType

[SWS_E2E_00342] Definition of datatype E2E_SMConfigType
Upstream requirements: RS_E2E_08548

⌈
Name E2E_SMConfigType

Kind Structure

WindowSizeValid

Type uint8

Comment Size of the monitoring window for the state machine during state
VALID.

MinOkStateInit

Type uint8

Comment Minimal number of checks in which ProfileStatus equal to E2E_P_OK
was determined within the last WindowSize checks (for the state E2E_
SM_INIT) required to change to state E2E_SM_VALID.

MaxErrorStateInit

Type uint8

Comment Maximal number of checks in which ProfileStatus equal to E2E_P_
ERROR was determined, within the last WindowSize checks (for the
state E2E_SM_INIT).

MinOkStateValid

Type uint8

Comment Minimal number of checks in which ProfileStatus equal to E2E_P_OK
was determined within the last WindowSize checks (for the state E2E_
SM_VALID) required to keep in state E2E_SM_VALID.

MaxErrorStateValid

Type uint8

Comment Maximal number of checks in which ProfileStatus equal to E2E_P_
ERROR was determined, within the last WindowSize checks (for the
state E2E_SM_VALID).

MinOkStateInvalid

Type uint8

Comment Minimum number of checks in which ProfileStatus equal to E2E_P_OK
was determined within the last WindowSize checks (for the state E2E_
SM_INVALID) required to change to state E2E_SM_VALID.

MaxErrorStateInvalid

Type uint8

Comment Maximal number of checks in which ProfileStatus equal to E2E_P_
ERROR was determined, within the last WindowSize checks (for the
state E2E_SM_INVALID).

WindowSizeInit

Type uint8

Comment Size of the monitoring windows for the state machine during state INIT.

WindowSizeInvalid

Elements

Type uint8

▽

86 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Size of the monitoring window for the state machine during state

INVALID.

ClearToInvalid

Type boolean

Comment Clear monitoring window data on transition to state INVALID.

transitToInvalidExtended

Type boolean

Comment Restrict/allow tranistion from states INIT/NODATA to INVALID state.

Description Configuration of a communication channel for exchanging Data.

Available via E2E.h

⌋

8.2.16.3 E2E_SMCheckStateType

Note: The values for the enumeration constants are specified only on the associated
UML diagram (not in the table).

«structure»
E2E_StateMachineTypes::
E2E_SMCheckStateType

+ ErrorCount: uint8
+ NoDataInitCount: uint8
+ OkCount: uint8
+ Profi leStatusWindow: uint8*
+ SMState: E2E_SMStateType
+ WindowTopIndex: uint8

«enumeration»
E2E_StateMachineTypes::

E2E_SMStateType

l iterals

Attributes
+ E2E_SM_VALID = 0x00
+ E2E_SM_DEINIT = 0x01
+ E2E_SM_NODATA = 0x02
+ E2E_SM_INIT = 0x03
+ E2E_SM_INVALID = 0x04
+ reserved = 0x07, 0x0F

Figure 8.50: E2E SM check state

[SWS_E2E_00343] Definition of datatype E2E_SMCheckStateType
Upstream requirements: RS_E2E_08548

⌈
Name E2E_SMCheckStateType

Kind Structure

ProfileStatusWindow

Type uint8*

Comment Pointer to an array, in which the ProfileStatus-es of the last E2
E-checks are stored.
The array size shall be WindowSize

WindowTopIndex

Type uint8

Comment index in the array, at which the next ProfileStatus is to be written.

OkCount

Elements

Type uint8

▽

87 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Comment Count of checks in which ProfileStatus equal to E2E_P_OK was

determined, within the last WindowSize checks.

ErrorCount

Type uint8

Comment Count of checks in which ProfileStatus equal to E2E_P_ERROR was
determined, within the last WindowSize checks.

SMState

Type E2E_SMStateType

Comment The current state in the state machine. The value is not explicitly used
in the pseudocode of the state machine, because it is expressed in
UML as UML states.

NoDataInitCount

Type uint8

Comment Count of checks in the state E2E_SM_NODATA or E2E_SM_INIT
without transitioning to the state E2E_SM_VALID. Length of this
counter is less or equal than WindowSizeValid.

Description State of the protection of a communication channel.

Available via E2E.h

⌋

8.2.16.4 E2E_SMStateType

[SWS_E2E_00344] Definition of datatype E2E_SMStateType
Upstream requirements: RS_E2E_08548

⌈
Name E2E_SMStateType

Kind Enumeration

E2E_SM_VALID 0x00 Communication functioning properly
according to E2E, data can be used.

E2E_SM_DEINIT 0x01 State before E2E_SMCheckInit() is invoked,
data cannot be used.

E2E_SM_NODATA 0x02 No data from the sender is available since the
initialization, data cannot be used.

E2E_SM_INIT 0x03 There has been some data received since
startup, but it is not yet possible use it, data
cannot be used.

E2E_SM_INVALID 0x04 Communication not functioning properly, data
cannot be used.

Range

reserved 0x07, 0x0F reserved for runtime errors (shall not be used
for any state in future)

Description Status of the communication channel exchanging the data. If the status is OK, then the data may
be used.

Available via E2E.h

⌋

88 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3 Routine definitions

This chapter defines the routines provided by E2E Library. The provided routines can
be implemented as:

• Functions

• Inline functions

• Macros

8.3.1 E2E Profile 1 routines

8.3.1.1 E2E_P01Protect

[SWS_E2E_00166] Definition of API function E2E_P01Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P01Protect

Syntax Std_ReturnType E2E_P01Protect (
const E2E_P01ConfigType* ConfigPtr,
E2E_P01ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ConfigPtr Pointer to static configuration.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 1. This includes checksum
calculation, handling of counter and Data ID.

Available via E2E.h

⌋

89 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.1.2 E2E_P01ProtectInit

[SWS_E2E_00385] Definition of API function E2E_P01ProtectInit
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P01ProtectInit

Syntax Std_ReturnType E2E_P01ProtectInit (
E2E_P01ProtectStateType* StatePtr

)

Service ID [hex] 0x1b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00386]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P01ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.1.3 E2E_P01Forward

[SWS_E2E_00588] Definition of API function E2E_P01Forward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P01Forward (draft)

Syntax Std_ReturnType E2E_P01Forward (
const E2E_P01ConfigType* ConfigPtr,
E2E_PCheckStatusType ForwardStatus,
E2E_P01ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x38

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ConfigPtr Pointer to static configuration.

▽

90 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 01. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.1.4 E2E_P01Check

[SWS_E2E_00158] Definition of API function E2E_P01Check
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P01Check

Syntax Std_ReturnType E2E_P01Check (
const E2E_P01ConfigType* Config,
E2E_P01CheckStateType* State,
const uint8* Data

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Config Pointer to static configuration.Parameters (in)

Data Pointer to received data.

Parameters (inout) State Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 1. This includes CRC calculation, handling of
Counter and Data ID.

Available via E2E.h

⌋

91 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.1.5 E2E_P01CheckInit

[SWS_E2E_00390] Definition of API function E2E_P01CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P01CheckInit

Syntax Std_ReturnType E2E_P01CheckInit (
E2E_P01CheckStateType* StatePtr

)

Service ID [hex] 0x1c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00389]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P01CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

• LastValidCounter = 0

• MaxDeltaCounter = 0

• WaitForFirstData = TRUE

• NewDataAvailable = TRUE

• LostData = 0

• Status = E2E_P01STATUS_NONEWDATA

• NoNewOrRepeatedDataCounter = 0

• SyncCounter = 0.

⌋

The LastValidCounter is ignored in the first cycle(s) because WaitForFirstData is set to
TRUE, therefore the value does not need to be set to 0xE.

92 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.1.6 E2E_P01MapStatusToSM

[SWS_E2E_00382] Definition of API function E2E_P01MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P01MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P01MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P01CheckStatusType Status,
boolean profileBehavior

)

Service ID [hex] 0x1d

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P01Check function

Status Status determined by E2E_P01Check function

Parameters (in)

profileBehavior FALSE: check has the legacy behavior, before R4.2 TRUE: check
behaves like new P4/P5/P6 profiles introduced in R4.2

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 1 to a generic check status, which can be used by
E2E state machine check function. The E2E Profile 1 delivers a more fine-granular status, but
this is not relevant for the E2E state machine.

Available via E2E.h

⌋

This represents the R4.2 behavior:

[SWS_E2E_00383]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn == E2E_E_OK and ProfileBehavior == TRUE, then the function E2E_
P01MapStatusToSM shall return the values depending on the value of Status: See
[SWS_E2E_00602]⌋

[SWS_E2E_00602] Mapping of Profile 1
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈
Status Return value

E2E_P01STATUS_OK
E2E_P01STATUS_OKSOMELOST
E2E_P01STATUS_SYNC

E2E_P_OK

E2E_P01STATUS_WRONGCRC E2E_P_ERROR

E2E_P01STATUS_REPEATED E2E_P_REPEATED

E2E_P01STATUS_NONEWDATA E2E_P_NONEWDATA

▽

93 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
E2E_P01STATUS_WRONGSEQUENCE
E2E_P01STATUS_INITIAL

E2E_P_WRONGSEQUENCE

⌋

This represents the pre-R4.2 behavior.

[SWS_E2E_00476]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn == E2E_E_OK and ProfileBehavior == FALSE, then the function E2E_
P01MapStatusToSM shall return the values depending on the value of Status: See
[SWS_E2E_00605]⌋

[SWS_E2E_00605]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈
Status Return value

E2E_P01STATUS_OK
E2E_P01STATUS_OKSOMELOST
E2E_P01STATUS_INITIAL

E2E_P_OK

E2E_P01STATUS_WRONGCRC E2E_P_ERROR

E2E_P01STATUS_REPEATED E2E_P_REPEATED

E2E_P01STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P01STATUS_WRONGSEQUENCE
E2E_P01STATUS_SYNC

E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00384]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P01MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

94 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.2 E2E Profile 2 routines

8.3.2.1 E2E_P02Protect

[SWS_E2E_00160] Definition of API function E2E_P02Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P02Protect

Syntax Std_ReturnType E2E_P02Protect (
const E2E_P02ConfigType* ConfigPtr,
E2E_P02ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ConfigPtr Pointer to static configuration.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to the data to be protected.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 2. This includes checksum
calculation, handling of sequence counter and Data ID.

Available via E2E.h

⌋

8.3.2.2 E2E_P02ProtectInit

[SWS_E2E_00387] Definition of API function E2E_P02ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P02ProtectInit

Syntax Std_ReturnType E2E_P02ProtectInit (
E2E_P02ProtectStateType* StatePtr

)

Service ID [hex] 0x1e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

▽

95 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00388]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P02ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.2.3 E2E_P02Forward

[SWS_E2E_00583] Definition of API function E2E_P02Forward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P02Forward (draft)

Syntax Std_ReturnType E2E_P02Forward (
const E2E_P02ConfigType* ConfigPtr,
E2E_PCheckStatusType ForwardStatus,
E2E_P02ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x32

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 02. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

96 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.2.4 E2E_P02Check

[SWS_E2E_00161] Definition of API function E2E_P02Check
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P02Check

Syntax Std_ReturnType E2E_P02Check (
const E2E_P02ConfigType* ConfigPtr,
E2E_P02CheckStateType* StatePtr,
const uint8* DataPtr

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

DataPtr –

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Check the array/buffer using the E2E profile 2. This includes checksum calculation, handling of
sequence counter and Data ID.

Available via E2E.h

⌋

8.3.2.5 E2E_P02CheckInit

[SWS_E2E_00391] Definition of API function E2E_P02CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P02CheckInit

Syntax Std_ReturnType E2E_P02CheckInit (
E2E_P02CheckStateType* StatePtr

)

Service ID [hex] 0x1f

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the check state

▽

97 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Available via E2E.h

⌋

[SWS_E2E_00392]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P02CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

• LastValidCounter = 0

• MaxDeltaCounter = 0

• WaitForFirstData = TRUE

• NewDataAvailable = TRUE

• LostData = 0

• Status = E2E_P02STATUS_NONEWDATA

• NoNewOrRepeatedDataCounter = 0

• SyncCounter = 0.

⌋

The LastValidCounter is ignored in the first cycle(s) because WaitForFirstData is set to
TRUE, therefore the value does not need to be set to 0xF.

8.3.2.6 E2E_P02MapStatusToSM

[SWS_E2E_00379] Definition of API function E2E_P02MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P02MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P02MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P02CheckStatusType Status,
boolean profileBehavior

)

Service ID [hex] 0x20

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P02Check functionParameters (in)

Status Status determined by E2E_P02Check function

▽

98 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
profileBehavior FALSE: check has the legacy behavior, before R4.2 TRUE: check

behaves like new P4/P5/P6 profiles introduced in R4.2

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 2 to a generic check status, which can be used by
E2E state machine check function. The E2E Profile 2 delivers a more fine-granular status, but
this is not relevant for the E2E state machine.

Available via E2E.h

⌋

This represents the R4.2 behavior:

[SWS_E2E_00380]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn == E2E_E_OKand ProfileBehavior == 1, then the function E2E_
P02MapStatusToSM shall return the values depending on the value of Status: See
[SWS_E2E_00601]⌋

[SWS_E2E_00601] Mapping of Profile 1
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈

Status Return value

E2E_P02STATUS_OK
E2E_P02STATUS_OKSOMELOST
E2E_P02STATUS_SYNC

E2E_P_OK

E2E_P02STATUS_WRONGCRC E2E_P_ERROR

E2E_P02STATUS_REPEATED E2E_P_REPEATED

E2E_P02STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P02STATUS_WRONGSEQUENCE
E2E_P02STATUS_INITIAL

E2E_P_WRONGSEQUENCE

⌋

This represents the pre-R4.2 behavior.

[SWS_E2E_00477]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn == E2E_E_OK and ProfileBehavior == 0, then the function E2E_
P02MapStatusToSM shall return the values depending on the value of Status: See
[SWS_E2E_00606]⌋

99 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00606] Mapping of profile 02
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈
Status Return value

E2E_P02STATUS_OK
E2E_P02STATUS_OKSOMELOST
E2E_P02STATUS_INITIAL

E2E_P_OK

E2E_P02STATUS_WRONGCRC E2E_P_ERROR

E2E_P02STATUS_REPEATED E2E_P_REPEATED

E2E_P02STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P02STATUS_WRONGSEQUENCE
E2E_P02STATUS_SYNC

E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00381]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P02MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

8.3.3 E2E Profile 4 routines

8.3.3.1 E2E_P04Protect

[SWS_E2E_00338] Definition of API function E2E_P04Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04Protect

Syntax Std_ReturnType E2E_P04Protect (
const E2E_P04ConfigType* ConfigPtr,
E2E_P04ProtectStateType* StatePtr,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x70

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

▽

100 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Protects the array/buffer to be transmitted using the E2E profile 4. This includes checksum

calculation, handling of counter and Data ID.

Available via E2E.h

⌋

8.3.3.2 E2E_P04ProtectInit

[SWS_E2E_00373] Definition of API function E2E_P04ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04ProtectInit

Syntax Std_ReturnType E2E_P04ProtectInit (
E2E_P04ProtectStateType* StatePtr

)

Service ID [hex] 0x22

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00377]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P04ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

101 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.3.3 E2E_P04Forward

[SWS_E2E_00584] Definition of API function E2E_P04Forward
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P04Forward (draft)

Syntax Std_ReturnType E2E_P04Forward (
const E2E_P04ConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P04ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x33

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 04. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.3.4 E2E_P04Check

[SWS_E2E_00339] Definition of API function E2E_P04Check
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04Check

Syntax Std_ReturnType E2E_P04Check (
const E2E_P04ConfigType* ConfigPtr,
E2E_P04CheckStateType* StatePtr,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x23

▽

102 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 4. This includes CRC calculation, handling of
Counter and Data ID.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.

Available via E2E.h

⌋

8.3.3.5 E2E_P04CheckInit

[SWS_E2E_00350] Definition of API function E2E_P04CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04CheckInit

Syntax Std_ReturnType E2E_P04CheckInit (
E2E_P04CheckStateType* StatePtr

)

Service ID [hex] 0x24

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00378]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P04CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF’FF.

2. Status to E2E_P04STATUS_ERROR.

103 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

⌋

8.3.3.6 E2E_P04MapStatusToSM

[SWS_E2E_00349] Definition of API function E2E_P04MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P04MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P04CheckStatusType Status

)

Service ID [hex] 0x25

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P04Check functionParameters (in)

Status Status determined by E2E_P04Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 4 to a generic check status, which can be used by
E2E state machine check function. The E2E Profile 4 delivers a more fine-granular status, but
this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00351]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P04MapStatusToSMshall return
the values depending on the value of Status: See [SWS_E2E_00600]⌋

[SWS_E2E_00600] Mapping of profile 04
Upstream requirements: RS_E2E_08548

⌈

Status Return value

E2E_P04STATUS_OK or E2E_P04STATUS_OKSOMELOST E2E_P_OK

E2E_P04STATUS_ERROR E2E_P_ERROR

E2E_P04STATUS_REPEATED E2E_P_REPEATED

E2E_P04STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P04STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

104 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00352]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P04MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

8.3.3.7 E2E_P04GetHeaderInfo

[SWS_E2E_91113] Definition of API function E2E_P04GetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P04GetHeaderInfo

Syntax Std_ReturnType E2E_P04GetHeaderInfo (
const E2E_P04ConfigType* ConfigPtr,
const uint8* DataPtr,
uint16 Length,
E2E_P04HeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x88

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter) retrieved
from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 04. This
includes the SequenceCounter.

Available via E2E.h

⌋

105 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.4 E2E Profile 4m routines

8.3.4.1 E2E_P04mProtect

[SWS_E2E_91005] Definition of API function E2E_P04mProtect
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04mProtect

Syntax Std_ReturnType E2E_P04mProtect (
const E2E_P04mConfigType* ConfigPtr,
E2E_P04mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x46

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

MessageResult Result of the message (OK/ERROR)

Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 4m. This includes CRC
calculation, handling of Counter, Data ID, Message Type, Message Result, and Source ID.

Available via E2E.h

⌋

8.3.4.2 E2E_P04mProtectInit

[SWS_E2E_91006] Definition of API function E2E_P04mProtectInit
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04mProtectInit

Syntax Std_ReturnType E2E_P04mProtectInit (
E2E_P04mProtectStateType* StatePtr

)

▽

106 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Service ID [hex] 0x47

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00592]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P04mProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.4.3 E2E_P04mForward

[SWS_E2E_91007] Definition of API function E2E_P04mForward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P04mForward (draft)

Syntax Std_ReturnType E2E_P04mForward (
const E2E_P04mConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P04mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
uint8* DataPtr

)

Service ID [hex] 0x48

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

ForwardStatus E2E Status of the received message

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Parameters (in)

MessageResult Result of the message (OK/ERROR)

▽

107 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 4m. This includes CRC calculation,
handling of Counter, Data ID, Message Type, Message Result, and Source ID. Detected Errors
of received message will be reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.4.4 E2E_P04mSourceCheck

[SWS_E2E_91002] Definition of API function E2E_P04mSourceCheck
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04mSourceCheck

Syntax Std_ReturnType E2E_P04mSourceCheck (
const E2E_P04mConfigType* ConfigPtr,
E2E_P04mCheckStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x43

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

MessageResult Result of the message (OK/ERROR)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

▽

108 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Checks the Data received using the E2E profile 4m. This includes CRC calculation, handling of

Counter, Data ID, Message Type, Message Result, and Source ID.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.
This function is intended for usage at the data source (i.e., in case of C/S communication at the
client).

Available via E2E.h

⌋

8.3.4.5 E2E_P04mSinkCheck

[SWS_E2E_91003] Definition of API function E2E_P04mSinkCheck
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04mSinkCheck

Syntax Std_ReturnType E2E_P04mSinkCheck (
const E2E_P04mConfigType* ConfigPtr,
E2E_P04mCheckStateType StatePtr,
uint32* SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x44

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

MessageType Type of the message (request/response)

MessageResult Result of the message (OK/ERROR)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) SourceID A system-unique identifier of the Data Source.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 4m. This includes CRC calculation, handling of
Counter, Data ID, Message Type, Message Result, and Source ID.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.
This function is intended for usage at the data sink (i.e., in case of C/S communication at the
server).

Available via E2E.h

⌋

109 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.4.6 E2E_P04mCheckInit

[SWS_E2E_91001] Definition of API function E2E_P04mCheckInit
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04mCheckInit

Syntax Std_ReturnType E2E_P04mCheckInit (
E2E_P04mCheckStateType* StatePtr

)

Service ID [hex] 0x42

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00593]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P04mCheckInit shall return immediately

with E2E_E_INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF’FF.

2. Status to E2E_P04MSTATUS_ERROR.

⌋

8.3.4.7 E2E_P04mMapStatusToSM

[SWS_E2E_91004] Definition of API function E2E_P04mMapStatusToSM
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P04mMapStatusToSM

Syntax E2E_PCheckStatusType E2E_P04mMapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P04mCheckStatusType Status

)

Service ID [hex] 0x45

Sync/Async Synchronous

▽

110 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Reentrancy Reentrant

CheckReturn Return value of the E2E_P04mSinkCheck/E2E_P04mSource
Check function

Parameters (in)

Status Status determined by E2E_P04mSinkCheck/E2E_P04mSource
Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 4m to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 4m delivers a more fine-granular status,
but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00594]
Upstream requirements: RS_E2E_08539

⌈If CheckReturn = E2E_E_OK, then the function E2E_P04mMapStatusToSMshall re-
turn the values depending on the value of Status: See [SWS_E2E_00610]⌋

[SWS_E2E_00610] Mapping of profile 04m
Upstream requirements: RS_E2E_08539

⌈
Status Return value

E2E_P04MSTATUS_OK or E2E_P04MSTATUS_
OKSOMELOST

E2E_P_OK

E2E_P04MSTATUS_ERROR E2E_P_ERROR

E2E_P04MSTATUS_REPEATED E2E_P_REPEATED

E2E_P04MSTATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P04MSTATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00595]
Upstream requirements: RS_E2E_08539

⌈If CheckReturn != E2E_E_OK, then the function E2E_P04mMapStatusToSM() shall
return E2E_P_ERROR (regardless of value of Status).⌋

111 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.4.8 E2E_P04mGetHeaderInfo

[SWS_E2E_91119] Definition of API function E2E_P04mGetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P04mGetHeaderInfo

Syntax Std_ReturnType E2E_P04mGetHeaderInfo (
const E2E_P04mConfigType* ConfigPtr,
const uint8* DataPtr,
uint16 Length,
E2E_P04mHeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x8e

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter and Source
ID) retrieved from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 04m. This
includes SequenceCounter and SourceID.

Available via E2E.h

⌋

8.3.5 E2E Profile 5 routines

8.3.5.1 E2E_P05Protect

[SWS_E2E_00446] Definition of API function E2E_P05Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P05Protect

Syntax Std_ReturnType E2E_P05Protect (
const E2E_P05ConfigType* ConfigPtr,
E2E_P05ProtectStateType* StatePtr,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x26

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ConfigPtr Pointer to static configuration.

▽

112 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Length Length of the data in bytes

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 5. This includes checksum
calculation, handling of counter.

Available via E2E.h

⌋

8.3.5.2 E2E_P05ProtectInit

[SWS_E2E_00447] Definition of API function E2E_P05ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P05ProtectInit

Syntax Std_ReturnType E2E_P05ProtectInit (
E2E_P05ProtectStateType* StatePtr

)

Service ID [hex] 0x27

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00448]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P05ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

113 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.5.3 E2E_P05Forward

[SWS_E2E_00585] Definition of API function E2E_P05Forward
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P05Forward (draft)

Syntax Std_ReturnType E2E_P05Forward (
const E2E_P05ConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P05ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x34

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 05. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.5.4 E2E_P05Check

[SWS_E2E_00449] Definition of API function E2E_P05Check
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P05Check

Syntax Std_ReturnType E2E_P05Check (
const E2E_P05ConfigType* ConfigPtr,
E2E_P05CheckStateType* StatePtr,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x28

▽

114 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 5. This includes CRC calculation, handling of
Counter.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.

Available via E2E.h

⌋

8.3.5.5 E2E_P05CheckInit

[SWS_E2E_00450] Definition of API function E2E_P05CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P05CheckInit

Syntax Std_ReturnType E2E_P05CheckInit (
E2E_P05CheckStateType* StatePtr

)

Service ID [hex] 0x29

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00451]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P05CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF

2. Status to E2E_P05STATUS_ERROR.

115 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

⌋

8.3.5.6 E2E_P05MapStatusToSM

[SWS_E2E_00452] Definition of API function E2E_P05MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P05MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P05MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P05CheckStatusType Status

)

Service ID [hex] 0x2a

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P05Check functionParameters (in)

Status Status determined by E2E_P05Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 5 to a generic check status, which can be used by
E2E state machine check function. The E2E Profile 5 delivers a more fine-granular status, but
this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00453]
Upstream requirements: RS_E2E_08539, RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P05MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00603]⌋

[SWS_E2E_00603] Mapping of profile 05
Upstream requirements: RS_E2E_08539, RS_E2E_08548

⌈
Status Return value

E2E_P05STATUS_OK or E2E_P05STATUS_OKSOMELOST E2E_P_OK

E2E_P05STATUS_ERROR E2E_P_ERROR

E2E_P05STATUS_REPEATED E2E_P_REPEATED

E2E_P05STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P05STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

116 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00454]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P05MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

8.3.5.7 E2E_P05GetHeaderInfo

[SWS_E2E_91114] Definition of API function E2E_P05GetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P05GetHeaderInfo

Syntax Std_ReturnType E2E_P05GetHeaderInfo (
const E2E_P05ConfigType* ConfigPtr,
const uint8* DataPtr,
uint8 Length,
E2E_P05HeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x89

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter) retrieved
from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 05. This
includes the SequenceCounter.

Available via E2E.h

⌋

117 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.6 E2E Profile 6 routines

8.3.6.1 E2E_P06Protect

[SWS_E2E_00393] Definition of API function E2E_P06Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P06Protect

Syntax Std_ReturnType E2E_P06Protect (
const E2E_P06ConfigType* ConfigPtr,
E2E_P06ProtectStateType* StatePtr,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x2b

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 6. This includes checksum
calculation, handling of counter.

Available via E2E.h

⌋

8.3.6.2 E2E_P06ProtectInit

[SWS_E2E_00455] Definition of API function E2E_P06ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P06ProtectInit

Syntax Std_ReturnType E2E_P06ProtectInit (
E2E_P06ProtectStateType* StatePtr

)

Service ID [hex] 0x2c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

▽

118 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00456]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P06ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.6.3 E2E_P06Forward

[SWS_E2E_00586] Definition of API function E2E_P06Forward
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P06Forward (draft)

Syntax Std_ReturnType E2E_P06Forward (
const E2E_P06ConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P06ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x35

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 06. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

119 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.6.4 E2E_P06Check

[SWS_E2E_00457] Definition of API function E2E_P06Check
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P06Check

Syntax Std_ReturnType E2E_P06Check (
const E2E_P06ConfigType* ConfigPtr,
E2E_P06CheckStateType* StatePtr,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x2d

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 6. This includes CRC calculation, handling of
Counter.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.

Available via E2E.h

⌋

8.3.6.5 E2E_P06CheckInit

[SWS_E2E_00458] Definition of API function E2E_P06CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P06CheckInit

Syntax Std_ReturnType E2E_P06CheckInit (
E2E_P06CheckStateType* StatePtr

)

Service ID [hex] 0x2e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

▽

120 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed

E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00459]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P06CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF

2. Status to E2E_P06STATUS_ERROR.

⌋

8.3.6.6 E2E_P06MapStatusToSM

[SWS_E2E_00460] Definition of API function E2E_P06MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P06MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P06MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P06CheckStatusType Status

)

Service ID [hex] 0x2f

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P06Check functionParameters (in)

Status Status determined by E2E_P06Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 6 to a generic check status, which can be used by
E2E state machine check function. The E2E Profile 6 delivers a more fine-granular status, but
this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00461]
Upstream requirements: RS_E2E_08539, RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P06MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00604]⌋

121 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00604] Mapping of profile 06
Upstream requirements: RS_E2E_08539, RS_E2E_08548

⌈
Status Return value

E2E_P06STATUS_OK or E2E_P06STATUS_OKSOMELOST E2E_P_OK

E2E_P06STATUS_ERROR E2E_P_ERROR

E2E_P06STATUS_REPEATED E2E_P_REPEATED

E2E_P06STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P06STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00462]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P06MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

8.3.6.7 E2E_P06GetHeaderInfo

[SWS_E2E_91115] Definition of API function E2E_P06GetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P06GetHeaderInfo

Syntax Std_ReturnType E2E_P06GetHeaderInfo (
const E2E_P06ConfigType* ConfigPtr,
const uint8* DataPtr,
uint8 Length,
E2E_P06HeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x8a

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter) retrieved
from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 06. This
includes the SequenceCounter.

Available via E2E.h

⌋

122 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.7 E2E Profile 7 routines

8.3.7.1 E2E_P07Protect

[SWS_E2E_00546] Definition of API function E2E_P07Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07Protect

Syntax Std_ReturnType E2E_P07Protect (
const E2E_P07ConfigType* ConfigPtr,
E2E_P07ProtectStateType* StatePtr,
uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x21

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 7. This includes checksum
calculation, handling of counter and Data ID.

Available via E2E.h

⌋

8.3.7.2 E2E_P07ProtectInit

[SWS_E2E_00547] Definition of API function E2E_P07ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07ProtectInit

Syntax Std_ReturnType E2E_P07ProtectInit (
E2E_P07ProtectStateType* StatePtr

)

Service ID [hex] 0x77

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

▽

123 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00551]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P07ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.7.3 E2E_P07Forward

[SWS_E2E_00590] Definition of API function E2E_P07Forward
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P07Forward (draft)

Syntax Std_ReturnType E2E_P07Forward (
E2E_P07ConfigType* ConfigPtr,
uint32 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P07ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x39

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

▽

124 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Protects data which is forwarded by using the E2E profile 07. This includes checksum

calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.7.4 E2E_P07Check

[SWS_E2E_00548] Definition of API function E2E_P07Check
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07Check

Syntax Std_ReturnType E2E_P07Check (
const E2E_P07ConfigType* ConfigPtr,
E2E_P07CheckStateType* StatePtr,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x78

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 7. This includes CRC calculation, handling of
Counter and Data ID.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.

Available via E2E.h

⌋

125 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.7.5 E2E_P07CheckInit

[SWS_E2E_00549] Definition of API function E2E_P07CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07CheckInit

Syntax Std_ReturnType E2E_P07CheckInit (
E2E_P07CheckStateType* StatePtr

)

Service ID [hex] 0x79

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00552]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P07CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF’FF’FF’FF

2. Status to E2E_P07STATUS_ERROR.

⌋

8.3.7.6 E2E_P07MapStatusToSM

[SWS_E2E_00550] Definition of API function E2E_P07MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P07MapStatusToSM (
E2E_PCheckStatusType return,
E2E_P07CheckStatusType Status

)

Service ID [hex] 0x80

▽

126 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

return Profile-independent status of the reception on one single Data in
one cycle.

Parameters (in)

Status Status determined by E2E_P07Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 7 to a generic check status, which can be used by
E2E state machine check function. The E2E Profile 7 delivers a more fine-granular status, but
this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00553]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P07MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00607]⌋

[SWS_E2E_00607] Mapping of profile 07
Upstream requirements: RS_E2E_08548

⌈
Status Return value

E2E_P07STATUS_OK or E2E_P07STATUS_OKSOMELOST E2E_P_OK

E2E_P07STATUS_ERROR E2E_P_ERROR

E2E_P07STATUS_REPEATED E2E_P_REPEATED

E2E_P07STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P07STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00554]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P07MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

127 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.7.7 E2E_P07GetHeaderInfo

[SWS_E2E_91116] Definition of API function E2E_P07GetHeaderInfo ⌈
Service Name E2E_P07GetHeaderInfo

Syntax Std_ReturnType E2E_P07GetHeaderInfo (
const E2E_P07ConfigType* ConfigPtr,
const uint8* DataPtr,
uint32 Length,
E2E_P07HeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x8b

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter) retrieved
from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 07. This
includes the SequenceCounter

Available via E2E.h

⌋

8.3.8 E2E Profile 7m routines

8.3.8.1 E2E_P07mProtect

[SWS_E2E_91014] Definition of API function E2E_P07mProtect
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07mProtect

Syntax Std_ReturnType E2E_P07mProtect (
const E2E_P07mConfigType* ConfigPtr,
E2E_P07mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x4b

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

SourceID A system-unique identifier of the Data Source.

▽

128 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
MessageType Type of the message (request/response)

MessageResult Result of the message (OK/ERROR)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 7m. This includes CRC
calculation, handling of Counter, Data ID, Message Type, Message Result, and Source ID.

Available via E2E.h

⌋

8.3.8.2 E2E_P07mProtectInit

[SWS_E2E_91015] Definition of API function E2E_P07mProtectInit
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07mProtectInit

Syntax Std_ReturnType E2E_P07mProtectInit (
E2E_P07mProtectStateType* StatePtr

)

Service ID [hex] 0x4c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00596]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P07mProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

129 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.8.3 E2E_P07mForward

[SWS_E2E_91016] Definition of API function E2E_P07mForward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P07mForward (draft)

Syntax Std_ReturnType E2E_P07mForward (
const E2E_P07mConfigType* ConfigPtr,
uint32 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P07mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
uint8* DataPtr

)

Service ID [hex] 0x4d

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

ForwardStatus E2E Status of the received message

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Parameters (in)

MessageResult Result of the message (OK/ERROR)

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 7m. This includes CRC calculation,
handling of Counter, Data ID, Message Type, Message Result, and Source ID. Detected Errors
of received message will be reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

130 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.8.4 E2E_P07mSourceCheck

[SWS_E2E_91018] Definition of API function E2E_P07mSourceCheck
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07mSourceCheck

Syntax Std_ReturnType E2E_P07mSourceCheck (
const E2E_P07mConfigType* ConfigPtr,
E2E_P07mCheckStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x4f

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

MessageResult Result of the message (OK/ERROR)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 7m. This includes CRC calculation, handling of
Counter, Data ID, Message Type, Message Result, and Source ID.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.
This function is intended for usage at the data source (i.e., in case of C/S communication at the
client).

Available via E2E.h

⌋

131 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.8.5 E2E_P07mSinkCheck

[SWS_E2E_91017] Definition of API function E2E_P07mSinkCheck
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07mSinkCheck

Syntax Std_ReturnType E2E_P07mSinkCheck (
const E2E_P07mConfigType* ConfigPtr,
E2E_P07mCheckStateType* StatePtr,
uint32* SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType MessageResult,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x4e

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

MessageType Type of the message (request/response)

MessageResult Result of the message (OK/ERROR)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) SourceID A system-unique identifier of the Data Source.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 7m. This includes CRC calculation, handling of
Counter, Data ID, Message Type, Message Result, and Source ID.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.
This function is intended for usage at the data sink (i.e., in case of C/S communication at the
server).

Available via E2E.h

⌋

8.3.8.6 E2E_P07mCheckInit

[SWS_E2E_91012] Definition of API function E2E_P07mCheckInit
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07mCheckInit

Syntax Std_ReturnType E2E_P07mCheckInit (
E2E_P07mCheckStateType* StatePtr

)

▽

132 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Service ID [hex] 0x49

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00597]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P07mCheckInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF’FF’FF’FF.

2. Status to E2E_P07MSTATUS_ERROR.

⌋

8.3.8.7 E2E_P07mMapStatusToSM

[SWS_E2E_91013] Definition of API function E2E_P07mMapStatusToSM
Upstream requirements: RS_E2E_08539, RS_E2E_08527

⌈
Service Name E2E_P07mMapStatusToSM

Syntax E2E_PCheckStatusType E2E_P07mMapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P07mCheckStatusType Status

)

Service ID [hex] 0x4a

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P07mSinkCheck/E2E_P07mSource
Check function

Parameters (in)

Status Status determined by E2E_P07mSinkCheck/E2E_P07mSource
Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

▽

133 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description The function maps the check status of Profile 7m to a generic check status, which can be used

by E2E state machine check function. The E2E Profile 7m delivers a more fine-granular status,
but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00598]
Upstream requirements: RS_E2E_08539

⌈If CheckReturn = E2E_E_OK, then the function E2E_P07mMapStatusToSMshall re-
turn the values depending on the value of Status: See [SWS_E2E_00611]⌋

[SWS_E2E_00611] Mapping of profile 07m
Upstream requirements: RS_E2E_08539

⌈
Status Return value

E2E_P07MSTATUS_OK or E2E_P07MSTATUS_
OKSOMELOST

E2E_P_OK

E2E_P07MSTATUS_ERROR E2E_P_ERROR

E2E_P07MSTATUS_REPEATED E2E_P_REPEATED

E2E_P07MSTATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P07MSTATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00599]
Upstream requirements: RS_E2E_08539

⌈If CheckReturn != E2E_E_OK, then the function E2E_P07mMapStatusToSM() shall
return E2E_P_ERROR (regardless of value of Status).⌋

8.3.8.8 E2E_P07mGetHeaderInfo

[SWS_E2E_91120] Definition of API function E2E_P07mGetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P07mGetHeaderInfo

Syntax Std_ReturnType E2E_P07mGetHeaderInfo (
const E2E_P07mConfigType* ConfigPtr,
const uint8* DataPtr,
uint32 Length,
E2E_P07mHeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x8f

Sync/Async Synchronous

▽

134 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter and Source
ID) retrieved from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 07m. This
includes SequenceCounter and SourceID.

Available via E2E.h

⌋

8.3.9 E2E Profile 8 routines

8.3.9.1 E2E_P08Protect

[SWS_E2E_91036] Definition of API function E2E_P08Protect
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P08Protect

Syntax Std_ReturnType E2E_P08Protect (
const E2E_P08ConfigType* ConfigPtr,
E2E_P08ProtectStateType* StatePtr,
uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x57

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) DataPtr Pointer to Data to be transmitted.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 08. This includes checksum
calculation, handling of counter and Data ID.

Available via E2E.h

⌋

135 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.9.2 E2E_P08ProtectInit

[SWS_E2E_91037] Definition of API function E2E_P08ProtectInit
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P08ProtectInit

Syntax Std_ReturnType E2E_P08ProtectInit (
E2E_P08ProtectStateType* StatePtr

)

Service ID [hex] 0x58

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Initializes the protection state.

Available via E2E.h

⌋

RS_E2E_08528, RS_E2E_08539, RS_E2E_08527)

[SWS_E2E_10004]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P08ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

136 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.9.3 E2E_P08Forward

[SWS_E2E_91038] Definition of API function E2E_P08Forward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P08Forward (draft)

Syntax Std_ReturnType E2E_P08Forward (
const E2E_P08ConfigType* ConfigPtr,
uint32 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P08ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x59

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 08. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.9.4 E2E_P08Check

[SWS_E2E_91039] Definition of API function E2E_P08Check
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P08Check

Syntax Std_ReturnType E2E_P08Check (
const E2E_P08ConfigType* ConfigPtr,
E2E_P08CheckStateType* StatePtr,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x5a

▽

137 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 08. This includes CRC calculation, handling of
Counter and Data ID. The function checks only one single data in one cycle, it does not
determine/compute the accumulated state of the communication link.

Available via E2E.h

⌋

(RS_E2E_08528, RS_E2E_08539, RS_E2E_08527)

8.3.9.5 E2E_P08CheckInit

[SWS_E2E_91040] Definition of API function E2E_P08CheckInit
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P08CheckInit

Syntax Std_ReturnType E2E_P08CheckInit (
E2E_P08CheckStateType* StatePtr

)

Service ID [hex] 0x5b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_10005]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P08CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF’FF’FF’FF

138 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

2. Status to E2E_P08STATUS_ERROR.

⌋

8.3.9.6 E2E_P08MapStatusToSM

[SWS_E2E_91041] Definition of API function E2E_P08MapStatusToSM
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P08MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P08MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P08CheckStatusType Status

)

Service ID [hex] 0x5C

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P08Check functionParameters (in)

Status Status determined by E2E_P08Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 08 to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 08 delivers a more fine-granular status,
but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_10006]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P08MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00613]⌋

[SWS_E2E_00613] Mapping of profile 08
Upstream requirements: RS_E2E_08548

⌈
Status Return value

E2E_P08STATUS_OK or E2E_P08STATUS_OKSOMELOST E2E_P_OK

E2E_P08STATUS_ERROR E2E_P_ERROR

E2E_P08STATUS_REPEATED E2E_P_REPEATED

E2E_P08STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P08STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

139 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_10007]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P08MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

8.3.9.7 E2E_P08GetHeaderInfo

[SWS_E2E_91117] Definition of API function E2E_P08GetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P08GetHeaderInfo

Syntax Std_ReturnType E2E_P08GetHeaderInfo (
const E2E_P08ConfigType* ConfigPtr,
const uint8* DataPtr,
uint32 Length,
E2E_P08HeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x8c

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter) retrieved
from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 08. This
includes the SequenceCounter

Available via E2E.h

⌋

140 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.10 E2E Profile 8m routines

8.3.10.1 E2E_P08mProtect

[SWS_E2E_91081] Definition of API function E2E_P08mProtect
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mProtect

Syntax Std_ReturnType E2E_P08mProtect (
const E2E_P08mConfigType* ConfigPtr,
E2E_P08mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x60

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 08m. This includes CRC
calculation, handling of counter, Data ID, Message Type, Message Result and Source ID.

Available via E2E.h

⌋

8.3.10.2 E2E_P08mProtectInit

[SWS_E2E_91082] Definition of API function E2E_P08mProtectInit
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mProtectInit

Syntax Std_ReturnType E2E_P08mProtectInit (
E2E_P08mProtectStateType* StatePtr

)

▽

141 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Service ID [hex] 0x61

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

RS_E2E_08527, RS_E2E_08539)

[SWS_E2E_91053]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P08mProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.10.3 E2E_P08mForward

[SWS_E2E_91083] Definition of API function E2E_P08mForward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mForward (draft)

Syntax Std_ReturnType E2E_P08mForward (
const E2E_P08mConfigType* ConfigPtr,
uint32 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P08mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
uint8* DataPtr

)

Service ID [hex] 0x62

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

ForwardStatus E2E Status of the received message

Parameters (in)

SourceID A system-unique identifier of the Data Source.

▽

142 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 08m. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.10.4 E2E_P08mSourceCheck

[SWS_E2E_91084] Definition of API function E2E_P08mSourceCheck
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mSourceCheck

Syntax Std_ReturnType E2E_P08mSourceCheck (
const E2E_P08mConfigType* ConfigPtr,
E2E_P08mCheckStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x63

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

▽

143 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Checks the Data received using the E2E profile 8m. This includes CRC calculation, handling of

Counter, Data ID, Message Type, Message Result, and Source ID. The function checks only
one single data in one cycle, it does not determine/compute the accumulated state of the
communication link. This function is intended for usage at the data source (i.e., in case of C/S
communication at the client).

Available via E2E.h

⌋

8.3.10.5 E2E_P08mSinkCheck

[SWS_E2E_91085] Definition of API function E2E_P08mSinkCheck
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mSinkCheck

Syntax Std_ReturnType E2E_P08mSinkCheck (
const E2E_P08mConfigType* ConfigPtr,
E2E_P08mCheckStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x64

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) SourceID A system-unique identifier of the Data Source.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 8m. This includes CRC calculation, handling of
Counter, Data ID, Message Type, Message Result, and Source ID. The function checks only
one single data in one cycle, it does not determine/compute the accumulated state of the
communication link. This function is intended for usage at the data sink (i.e., in case of C/S
communication at the server).

Available via E2E.h

⌋

144 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.10.6 E2E_P08mCheckInit

[SWS_E2E_91086] Definition of API function E2E_P08mCheckInit
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mCheckInit

Syntax Std_ReturnType E2E_P08mCheckInit (
E2E_P08mCheckStateType* StatePtr

)

Service ID [hex] 0x65

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_91072]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P08mCheckInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0x FF’FF’FF’FF.

2. Status to E2E_P08MSTATUS_ERROR.⌋

8.3.10.7 E2E_P08mMapStatusToSM

[SWS_E2E_91087] Definition of API function E2E_P08mMapStatusToSM
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P08mMapStatusToSM

Syntax E2E_PCheckStatusType E2E_P08mMapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P08mCheckStatusType Status

)

Service ID [hex] 0x66

Sync/Async Synchronous

Reentrancy Reentrant

▽

145 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
CheckReturn Return value of the E2E_P08mSinkCheck/E2E_P08mSource

Check function
Parameters (in)

Status Status determined by E2E_P08mSinkCheck/E2E_P08mSource
Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 08m to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 08m delivers a more fine-granular
status, but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_91059]
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈If CheckReturn = E2E_E_OK, then the function E2E_P08mMapStatusToSMshall re-
turn the values depending on the value of Status: See [SWS_E2E_00614]⌋

[SWS_E2E_00614] Mapping of profile 08m
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Status Return value

E2E_P08MSTATUS_OK or E2E_P08MSTATUS_
OKSOMELOST

E2E_P_OK

E2E_P08MSTATUS_ERROR E2E_P_ERROR

E2E_P08MSTATUS_REPEATED E2E_P_REPEATED

E2E_P08MSTATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P08MSTATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_91060]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P08mMapStatusToSM() shall
return E2E_P_ERROR (regardless of value of Status).⌋

146 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.10.8 E2E_P08mGetHeaderInfo

[SWS_E2E_91121] Definition of API function E2E_P08mGetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P08mGetHeaderInfo

Syntax Std_ReturnType E2E_P08mGetHeaderInfo (
const E2E_P08mConfigType* ConfigPtr,
const uint8* DataPtr,
uint32 Length,
E2E_P08mHeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x90

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter and Source
ID) retrieved from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 08m. This
includes SequenceCounter and SourceID.

Available via E2E.h

⌋

8.3.11 E2E Profile 11 routines

8.3.11.1 E2E_P11Protect

[SWS_E2E_00575] Definition of API function E2E_P11Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P11Protect

Syntax Std_ReturnType E2E_P11Protect (
const E2E_P11ConfigType* ConfigPtr,
E2E_P11ProtectStateType* StatePtr,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x3b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ConfigPtr Pointer to static configuration.

▽

147 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Length Length of the data in bytes

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL, E2E_E_OK, E2E_E_INPUTERR_
WRONG, For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 11. This includes checksum
calculation, handling of counter.

Available via E2E.h

⌋

8.3.11.2 E2E_P11ProtectInit

[SWS_E2E_00576] Definition of API function E2E_P11ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P11ProtectInit

Syntax Std_ReturnType E2E_P11ProtectInit (
E2E_P11ProtectStateType* StatePtr

)

Service ID [hex] 0x3c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed, E2E_E_OK.

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00555]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P11ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

148 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.11.3 E2E_P11Forward

[SWS_E2E_00587] Definition of API function E2E_P11Forward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P11Forward (draft)

Syntax Std_ReturnType E2E_P11Forward (
const E2E_P11ConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P11ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x36

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 11. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.11.4 E2E_P11Check

[SWS_E2E_00572] Definition of API function E2E_P11Check
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P11Check

Syntax Std_ReturnType E2E_P11Check (
const E2E_P11ConfigType* ConfigPtr,
E2E_P11CheckStateType* StatePtr,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x81

▽

149 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL, E2E_E_OK, E2E_E_INPUTERR_
WRONG, For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 11. This includes CRC calculation, handling of
Counter.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.

Available via E2E.h

⌋

8.3.11.5 E2E_P11CheckInit

[SWS_E2E_00573] Definition of API function E2E_P11CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P11CheckInit

Syntax Std_ReturnType E2E_P11CheckInit (
E2E_P11CheckStateType* StatePtr

)

Service ID [hex] 0x82

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK.

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00556]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P11CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xE

2. Status to E2E_P11STATUS_ERROR.

⌋

150 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.11.6 E2E_P11MapStatusToSM

[SWS_E2E_00574] Definition of API function E2E_P11MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P11MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P11MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P11CheckStatusType Status

)

Service ID [hex] 0x3a

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P11Check functionParameters (in)

Status Status determined by E2E_P11Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 11 to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 11 delivers a more fine-granular status,
but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00557]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P11MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00608]⌋

[SWS_E2E_00608] Mapping of profile 11
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈
Status Return value

E2E_P11STATUS_OK or E2E_P11STATUS_OKSOMELOST E2E_P_OK

E2E_P11STATUS_ERROR E2E_P_ERROR

E2E_P11STATUS_REPEATED E2E_P_REPEATED

E2E_P11STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P11STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00558]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P11MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

151 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.12 E2E Profile 22 routines

8.3.12.1 E2E_P22Protect

[SWS_E2E_00580] Definition of API function E2E_P22Protect
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P22Protect

Syntax Std_ReturnType E2E_P22Protect (
const E2E_P22ConfigType* ConfigPtr,
E2E_P22ProtectStateType* StatePtr,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x40

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL, E2E_E_OK, E2E_E_INPUTERR_
WRONG, For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 22. This includes checksum
calculation, handling of counter.

Available via E2E.h

⌋

8.3.12.2 E2E_P22ProtectInit

[SWS_E2E_00581] Definition of API function E2E_P22ProtectInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P22ProtectInit

Syntax Std_ReturnType E2E_P22ProtectInit (
E2E_P22ProtectStateType* StatePtr

)

Service ID [hex] 0x41

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed, E2E_E_OK.

▽

152 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_00559]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P22ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

8.3.12.3 E2E_P22Forward

[SWS_E2E_00589] Definition of API function E2E_P22Forward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P22Forward (draft)

Syntax Std_ReturnType E2E_P22Forward (
E2E_P22ConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P22ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x37

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 22. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

153 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.12.4 E2E_P22Check

[SWS_E2E_00577] Definition of API function E2E_P22Check
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P22Check

Syntax Std_ReturnType E2E_P22Check (
const E2E_P22ConfigType* ConfigPtr,
E2E_P22CheckStateType* StatePtr,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x3d

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL, E2E_E_OK, E2E_E_INPUTERR_
WRONG, For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 22. This includes CRC calculation, handling of
Counter.
The function checks only one single data in one cycle, it does not determine/compute the
accumulated state of the communication link.

Available via E2E.h

⌋

8.3.12.5 E2E_P22CheckInit

[SWS_E2E_00578] Definition of API function E2E_P22CheckInit
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P22CheckInit

Syntax Std_ReturnType E2E_P22CheckInit (
E2E_P22CheckStateType* StatePtr

)

Service ID [hex] 0x3e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK.

▽

154 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_00560]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P22CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xF

2. Status to E2E_P22STATUS_ERROR.

⌋

8.3.12.6 E2E_P22MapStatusToSM

[SWS_E2E_00579] Definition of API function E2E_P22MapStatusToSM
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P22MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P22MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P22CheckStatusType Status

)

Service ID [hex] 0x3f

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P22Check functionParameters (in)

Status Status determined by E2E_P22Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 22 to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 22 delivers a more fine-granular status,
but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_00561]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P22MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00609]⌋

155 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_00609] Mapping of profile 22
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈
Status Return value

E2E_P22STATUS_OK or E2E_P22STATUS_OKSOMELOST E2E_P_OK

E2E_P22STATUS_ERROR E2E_P_ERROR

E2E_P22STATUS_REPEATED E2E_P_REPEATED

E2E_P22STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P22STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00562]
Upstream requirements: RS_E2E_08528, RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P22MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

8.3.13 E2E Profile 44 routines

8.3.13.1 E2E_P44Protect

[SWS_E2E_91027] Definition of API function E2E_P44Protect
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44Protect

Syntax Std_ReturnType E2E_P44Protect (
const E2E_P44ConfigType* ConfigPtr,
E2E_P44ProtectStateType* StatePtr,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x50

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 44. This includes checksum
calculation, handling of counter and Data ID.

▽

156 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Available via E2E.h

⌋

8.3.13.2 E2E_P44ProtectInit

[SWS_E2E_91028] Definition of API function E2E_P44ProtectInit
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44ProtectInit

Syntax Std_ReturnType E2E_P44ProtectInit (
E2E_P44ProtectStateType* StatePtr

)

Service ID [hex] 0x51

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_10001]
Upstream requirements: RS_E2E_08539

⌈In case State is NULL, E2E_P44ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

157 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.13.3 E2E_P44Forward

[SWS_E2E_91029] Definition of API function E2E_P44Forward
Status: DRAFT
Upstream requirements: RS_E2E_08527

⌈
Service Name E2E_P44Forward (draft)

Syntax Std_ReturnType E2E_P44Forward (
const E2E_P44ConfigType* ConfigPtr,
uint16 Length,
E2E_P44CheckStatusType ForwardStatus,
E2E_P44ProtectStateType* StatePtr,
uint8* DataPtr

)

Service ID [hex] 0x52

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

Parameters (in)

ForwardStatus E2E Status of the received message

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 44. This includes checksum
calculation, handling of counter and Data ID. Detected Errors of received message will be
reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

8.3.13.4 E2E_P44Check

[SWS_E2E_91030] Definition of API function E2E_P44Check
Upstream requirements: RS_E2E_08527

⌈
Service Name E2E_P44Check

Syntax Std_ReturnType E2E_P44Check (
const E2E_P44ConfigType* ConfigPtr,
E2E_P44CheckStateType* StatePtr,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x53

▽

158 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 44. This includes CRC calculation, handling of
Counter and Data ID. The function checks only one single data in one cycle, it does not
determine/compute the accumulated state of the communication link.

Available via E2E.h

⌋

8.3.13.5 E2E_P44CheckInit

[SWS_E2E_91031] Definition of API function E2E_P44CheckInit
Upstream requirements: RS_E2E_08527

⌈
Service Name E2E_P44CheckInit

Syntax Std_ReturnType E2E_P44CheckInit (
E2E_P44CheckStateType* StatePtr

)

Service ID [hex] 0x55

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK

Description Initializes the check state.

Available via E2E.h

⌋

[SWS_E2E_10002]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P44CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0xFF’FF.

2. Status to E2E_P44STATUS_ERROR.

159 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

⌋

8.3.13.6 E2E_P44MapStatusToSM

[SWS_E2E_91032] Definition of API function E2E_P44MapStatusToSM
Upstream requirements: RS_E2E_08527

⌈
Service Name E2E_P44MapStatusToSM

Syntax E2E_PCheckStatusType E2E_P44MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P44CheckStatusType Status

)

Service ID [hex] 0x56

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P44Check functionParameters (in)

Status Status determined by E2E_P44Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 44 to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 44 delivers a more fine-granular status,
but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

[SWS_E2E_10003]
Upstream requirements: RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P44MapStatusToSMshall return
the values depending on the value of Status: See [SWS_E2E_00612] If CheckReturn
!= E2E_E_OK, then the function E2E_P44MapStatusToSM() shall return E2E_P_ER-
ROR (regardless of value of Status).⌋

[SWS_E2E_00612] Mapping of profile 44
Upstream requirements: RS_E2E_08548

⌈
Status Return value

E2E_P44STATUS_OK or E2E_P44STATUS_OKSOMELOST E2E_P_OK

E2E_P44STATUS_ERROR E2E_P_ERROR

E2E_P44STATUS_REPEATED E2E_P_REPEATED

E2E_P44STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P44STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

160 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.13.7 E2E_P44GetHeaderInfo

[SWS_E2E_91118] Definition of API function E2E_P44GetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P44GetHeaderInfo

Syntax Std_ReturnType E2E_P44GetHeaderInfo (
const E2E_P44ConfigType* ConfigPtr,
const uint8* DataPtr,
uint16 Length,
E2E_P44HeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x8d

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter) retrieved
from DataPtr

Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL
E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 44. This
includes the SequenceCounter

Available via E2E.h

⌋

8.3.14 E2E Profile 44m routines

8.3.14.1 E2E_P44mProtect

[SWS_E2E_91088] Definition of API function E2E_P44mProtect
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mProtect

Syntax Std_ReturnType E2E_P44mProtect (
const E2E_P44mConfigType* ConfigPtr,
E2E_P44mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x68

Sync/Async Synchronous

▽

161 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

Parameters (in)

Length Length of the data in bytes.

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 44m. This includes CRC
calculation, handling of counter, Data ID, Message Type, Message Result and Source ID.

Available via E2E.h

⌋

8.3.14.2 E2E_P44mProtectInit

[SWS_E2E_91089] Definition of API function E2E_P44mProtectInit
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mProtectInit

Syntax Std_ReturnType E2E_P44mProtectInit (
E2E_P44mProtectStateType* StatePtr

)

Service ID [hex] 0x69

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the protection state.

Available via E2E.h

⌋

[SWS_E2E_91063]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P44mProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

162 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.14.3 E2E_P44mForward

[SWS_E2E_91090] Definition of API function E2E_P44mForward
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mForward (draft)

Syntax Std_ReturnType E2E_P44mForward (
const E2E_P44mConfigType* ConfigPtr,
uint16 Length,
E2E_PCheckStatusType ForwardStatus,
E2E_P44mProtectStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
uint8* DataPtr

)

Service ID [hex] 0x6A

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

Length Length of the data in bytes.

ForwardStatus E2E Status of the received message

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Parameters (in)

Messageresult Result of the message (OK/Error)

StatePtr Pointer to port/data communication state.Parameters (inout)

DataPtr Pointer to Data to be transmitted.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects data which is forwarded by using the E2E profile 44m. This includes CRC calculation,
handling of Counter, Data ID, Message Type, Message Result, and Source ID. Detected Errors
of received message will be reconstruct on output data.
Tags: atp.Status=draft

Available via E2E.h

⌋

163 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.14.4 E2E_P44mSourceCheck

[SWS_E2E_91091] Definition of API function E2E_P44mSourceCheck
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mSourceCheck

Syntax Std_ReturnType E2E_P44mSourceCheck (
const E2E_P44mConfigType* ConfigPtr,
E2E_P44mCheckStateType* StatePtr,
uint32 SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x6B

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

SourceID A system-unique identifier of the Data Source.

MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 44m. This includes CRC calculation, handling
of Counter, Data ID, Message Type, Message Result, and Source ID. The function checks only
one single data in one cycle, it does not determine/compute the accumulated state of the
communication link. This function is intended for usage at the data source (i.e., in case of C/S
communication at the client).

Available via E2E.h

⌋

164 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.14.5 E2E_P44mSinkCheck

[SWS_E2E_91092] Definition of API function E2E_P44mSinkCheck
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mSinkCheck

Syntax Std_ReturnType E2E_P44mSinkCheck (
const E2E_P44mConfigType* ConfigPtr,
E2E_P44mCheckStateType* StatePtr,
uint32* SourceID,
Std_MessageTypeType MessageType,
Std_MessageResultType Messageresult,
const uint8* DataPtr,
uint16 Length

)

Service ID [hex] 0x6C

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

MessageType Type of the message (request/response)

Messageresult Result of the message (OK/Error)

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) SourceID A system-unique identifier of the Data Source.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 44m. This includes CRC calculation, handling
of Counter, Data ID, Message Type, Message Result, and Source ID. The function checks only
one single data in one cycle, it does not determine/compute the accumulated state of the
communication link. This function is intended for usage at the data sink (i.e., in case of C/S
communication at the server).

Available via E2E.h

⌋

8.3.14.6 E2E_P44mCheckInit

[SWS_E2E_91093] Definition of API function E2E_P44mCheckInit
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mCheckInit

Syntax Std_ReturnType E2E_P44mCheckInit (
E2E_P44mCheckStateType* StatePtr

)

Service ID [hex] 0x6E

▽

165 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK
E2E_E_OK

Description Initializes the check state

Available via E2E.h

⌋

[SWS_E2E_91068]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL, E2E_P44mCheckInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0x FF’FF’FF’FF.

2. Status to E2E_P44MSTATUS_ERROR.⌋

8.3.14.7 E2E_P44mMapStatusToSM

[SWS_E2E_91094] Definition of API function E2E_P44mMapStatusToSM
Upstream requirements: RS_E2E_08527, RS_E2E_08528

⌈
Service Name E2E_P44mMapStatusToSM

Syntax E2E_PCheckStatusType E2E_P44mMapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P44mCheckStatusType Status

)

Service ID [hex] 0x6F

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P44mCheck functionParameters (in)

Status Status determined by E2E_P44mCheck function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

Description The function maps the check status of Profile 44m to a generic check status, which can be used
by E2E state machine check function. The E2E Profile 44m delivers a more fine-granular
status, but this is not relevant for the E2E state machine.

Available via E2E.h

⌋

166 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_91070]
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈If CheckReturn = E2E_E_OK, then the function E2E_P44mMapStatusToSMshall re-
turn the values depending on the value of Status: See [SWS_E2E_00615]⌋

[SWS_E2E_00615] Mapping of profile 44m
Upstream requirements: RS_E2E_08528, RS_E2E_08539, RS_E2E_08527

⌈
Status Return value

E2E_P44MSTATUS_OK or E2E_P44MSTATUS_
OKSOMELOST

E2E_P_OK

E2E_P44MSTATUS_ERROR E2E_P_ERROR

E2E_P44MSTATUS_REPEATED E2E_P_REPEATED

E2E_P44MSTATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P44MSTATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_91071]
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈If CheckReturn != E2E_E_OK, then the function E2E_P44mMapStatusToSM() shall
return E2E_P_ERROR (regardless of value of Status).⌋

8.3.14.8 E2E_P44mGetHeaderInfo

[SWS_E2E_91122] Definition of API function E2E_P44mGetHeaderInfo
Upstream requirements: RS_E2E_08528, RS_E2E_08527

⌈
Service Name E2E_P44mGetHeaderInfo

Syntax Std_ReturnType E2E_P44mGetHeaderInfo (
const E2E_P44mConfigType* ConfigPtr,
const uint8* DataPtr,
uint16 Length,
E2E_P44mHeaderInformationType* HeaderInfoPtr

)

Service ID [hex] 0x91

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data

Parameters (in)

Length Length of the data in bytes

Parameters (inout) None

Parameters (out) HeaderInfoPtr Profile specific header elements (SequenceCounter and Source
ID) retrieved from DataPtr

▽

167 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Return value Std_ReturnType E2E_E_INPUTERR_NULL: Length or DataPtr NULL

E2E_E_OK: Retrieval successful

Description Retrieves header element data for further processing when using the E2E profile 44m. This
includes SequenceCounter and SourceID.

Available via E2E.h

⌋

8.3.15 E2E Profile 76 routines

8.3.15.1 E2E_P76Protect

[SWS_E2E_91099] Definition of API function E2E_P76Protect
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P76Protect (draft)

Syntax Std_ReturnType E2E_P76Protect (
const E2E_P76ConfigType* ConfigPtr,
E2E_P76ProtectStateType* StatePtr,
uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x87

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.Parameters (in)

Length Length of the data in bytes

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) DataPtr Pointer to Data to be transmitted.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Protects the array/buffer to be transmitted using the E2E profile 76. This includes checksum
calculation, handling of counter.
Tags: atp.Status=draft

Available via E2E.h

⌋

168 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.15.2 E2E_P76ProtectInit

[SWS_E2E_91100] Definition of API function E2E_P76ProtectInit
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P76ProtectInit (draft)

Syntax Std_ReturnType E2E_P76ProtectInit (
E2E_P76ProtectStateType* StatePtr

)

Service ID [hex] 0x86

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Initializes the protection state.
Tags: atp.Status=draft

Available via E2E.h

⌋

RS_E2E_08528, RS_E2E_08539, RS_E2E_08527)

[SWS_E2E_00624] P76Protect - State NULL
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P76ProtectInit shall return immediately with E2E_E_
INPUTERR_NULL. Otherwise, it shall initialize the state structure, setting Counter to
0.⌋

169 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.15.3 E2E_P76Check

[SWS_E2E_91102] Definition of API function E2E_P76Check
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P76Check (draft)

Syntax Std_ReturnType E2E_P76Check (
const E2E_P76ConfigType* ConfigPtr,
E2E_P76CheckStateType* StatePtr,
const uint8* DataPtr,
uint32 Length

)

Service ID [hex] 0x84

Sync/Async Synchronous

Reentrancy Reentrant

ConfigPtr Pointer to static configuration.

DataPtr Pointer to received data.

Parameters (in)

Length Length of the data in bytes.

Parameters (inout) StatePtr Pointer to received data.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
For definitions for return values, see SWS_E2E_00047.

Description Checks the Data received using the E2E profile 76. This includes CRC calculation, handling of
Counter. The function checks only one single data in one cycle, it does not determine/compute
the accumulated state of the communication link.
Tags: atp.Status=draft

Available via E2E.h

⌋

(RS_E2E_08528, RS_E2E_08539, RS_E2E_08527)

8.3.15.4 E2E_P76CheckInit

[SWS_E2E_91101] Definition of API function E2E_P76CheckInit
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P76CheckInit (draft)

Syntax Std_ReturnType E2E_P76CheckInit (
E2E_P76CheckStateType* StatePtr

)

Service ID [hex] 0x83

Sync/Async Synchronous

▽

170 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed E2E_E_OK

Description Initializes the check state
Tags: atp.Status=draft

Available via E2E.h

⌋

[SWS_E2E_00625] P76Check - State NULL
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08539

⌈In case State is NULL, E2E_P76CheckInit shall return immediately with E2E_E_IN-
PUTERR_NULL. Otherwise, it shall initialize the state structure, setting:

1. Counter to 0x1F

2. Status to E2E_P76STATUS_ERROR.

⌋

8.3.15.5 E2E_P76MapStatusToSM

[SWS_E2E_91098] Definition of API function E2E_P76MapStatusToSM
Status: DRAFT
Upstream requirements: RS_E2E_08527, RS_E2E_08539

⌈
Service Name E2E_P76MapStatusToSM (draft)

Syntax E2E_PCheckStatusType E2E_P76MapStatusToSM (
Std_ReturnType CheckReturn,
E2E_P76CheckStatusType Status

)

Service ID [hex] 0x5d

Sync/Async Synchronous

Reentrancy Reentrant

CheckReturn Return value of the E2E_P76Check functionParameters (in)

Status Status determined by E2E_P76Check function

Parameters (inout) None

Parameters (out) None

Return value E2E_PCheckStatusType Profile-independent status of the reception on one single Data in
one cycle.

▽

171 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
Description The function maps the check status of Profile 76 to a generic check status, which can be used

by E2E state machine check function. The E2E Profile 76 delivers a more fine-granular status,
but this is not relevant for the E2E state machine.
Tags: atp.Status=draft

Available via E2E.h

⌋

[SWS_E2E_00626] P76 Status Mapping
Status: DRAFT
Upstream requirements: RS_E2E_08548

⌈If CheckReturn = E2E_E_OK, then the function E2E_P76MapStatusToSM shall return
the values depending on the value of Status: See [SWS_E2E_00623]⌋

[SWS_E2E_00623] Mapping of profile 76
Status: DRAFT
Upstream requirements: RS_E2E_08548

⌈
Status Return value

E2E_P76STATUS_OK or E2E_P76STATUS_OKSOMELOST E2E_P_OK

E2E_P76STATUS_ERROR E2E_P_ERROR

E2E_P76STATUS_REPEATED E2E_P_REPEATED

E2E_P76STATUS_NONEWDATA E2E_P_NONEWDATA

E2E_P76STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

⌋

[SWS_E2E_00627] P76 Error
Status: DRAFT
Upstream requirements: RS_E2E_08548

⌈If CheckReturn != E2E_E_OK, then the function E2E_P76MapStatusToSM() shall re-
turn E2E_P_ERROR (regardless of value of Status).⌋

172 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.16 E2E State machine routines

8.3.16.1 E2E_SMCheck

[SWS_E2E_00340] Definition of API function E2E_SMCheck
Upstream requirements: RS_E2E_08548

⌈
Service Name E2E_SMCheck

Syntax Std_ReturnType E2E_SMCheck (
E2E_PCheckStatusType ProfileStatus,
const E2E_SMConfigType* ConfigPtr,
E2E_SMCheckStateType* StatePtr

)

Service ID [hex] 0x30

Sync/Async Synchronous

Reentrancy Reentrant

ProfileStatus Profile-independent status of the reception on one single Data in
one cycle

Parameters (in)

ConfigPtr Pointer to static configuration.

Parameters (inout) StatePtr Pointer to port/data communication state.

Parameters (out) None

Return value Std_ReturnType E2E_E_INPUTERR_NULL
E2E_E_INPUTERR_WRONG
E2E_E_OK
E2E_E_WRONGSTATE
For definitions for return values, see SWS_E2E_00047.

Description Checks the communication channel. It determines if the data can be used for safety-related
application, based on history of checks performed by a corresponding E2E_P0XCheck()
function.

Available via E2E.h

⌋

[SWS_E2E_00371]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL or Config is NULL, the function E2E_SMCheck shall return
immediately with E2E_E_INPUTERR_NULL.

Else, the function E2E_SMCheck shall perform the logic according to the specified
state machine.⌋

173 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.16.2 E2E_SMCheckInit

[SWS_E2E_00353] Definition of API function E2E_SMCheckInit
Upstream requirements: RS_E2E_08528

⌈
Service Name E2E_SMCheckInit

Syntax Std_ReturnType E2E_SMCheckInit (
E2E_SMCheckStateType* StatePtr,
const E2E_SMConfigType* ConfigPtr

)

Service ID [hex] 0x31

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ConfigPtr Pointer to configuration of the state machine

Parameters (inout) None

Parameters (out) StatePtr Pointer to port/data communication state.

Return value Std_ReturnType E2E_E_INPUTERR_NULL - null pointer passed
E2E_E_OK

Description Initializes the state machine.

Available via E2E.h

⌋

[SWS_E2E_00370]
Upstream requirements: RS_E2E_08528

⌈In case State is NULL or Config is NULL, the function E2E_SMCheckInit shall return
immediately with E2E_E_INPUTERR_NULL.

Else (i.e. both pointers arenot NULL), the function E2E_SMCheckInit shall initialize the
State structure, setting:

1. ProfileStatusWindow[] to E2E_P_NOTAVAILABLE on each element of the array

2. WindowTopIndex to 0

3. OKCount to 0

4. ERRORCount to 0

5. SMState to E2E_SM_NODATA

and it shall return with E2E_E_OK.⌋

174 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.3.17 Auxiliary Functions

8.3.17.1 E2E_GetVersionInfo

[SWS_E2E_00032] Definition of API function E2E_GetVersionInfo
Upstream requirements: SRS_BSW_00003

⌈
Service Name E2E_GetVersionInfo

Syntax void E2E_GetVersionInfo (
Std_VersionInfoType* VersionInfo

)

Service ID [hex] 0x14

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via E2E.h

⌋

[SWS_E2E_00033]
Upstream requirements: RS_E2E_08528

⌈The function E2E_GetVersionInfo shall return the version information of this module.
The version information includes:

• vendor ID

• module ID

• sw_major_version

• sw_minor_version

• sw_patch_version

⌋

8.4 Callback notifications

None. The E2E library does not have call-back notifications.

8.5 Scheduled functions

None. The E2E library does not have scheduled functions.

175 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

8.6 Expected interfaces

In this chapter, all interfaces required from other modules are listed. The functions
of the E2E Library are not allowed to call any other external functions than the listed
below. In particular, E2E library does not call RTE.

[SWS_E2E_00110]
Upstream requirements: RS_E2E_08528

⌈The E2E library shall not call any functions from external modules apart from explicitly
listed expected interfaces of E2E Library.⌋

8.6.1 Mandatory Interfaces

This chapter defines the interfaces, which are required to fulfill the core functionality of
the module.

«module»
E2E

Crc_CalculateCRC8 Crc_CalculateCRC8H2FCrc_CalculateCRC16 Crc_CalculateCRC32P4 Crc_CalculateCRC64

«mandatory» «mandatory»«mandatory» «mandatory»«mandatory»

Figure 8.51: Expected mandatory interfaces by E2E library

176 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

9 Sequence diagrams

This chapter describes how the E2E library is supposed to be invoked by the callers. It
shows how the E2E Library is used to protect data elements and I-PDUs.

9.1 Sender

[UC_E2E_00202]
Upstream requirements: RS_E2E_08528

⌈During its initialization, the Sender shall instantiate the structures PXXConfigType and
PXXProtectStateType, separately for each Data to be protected.⌋

[UC_E2E_00203]
Upstream requirements: RS_E2E_08528

⌈During its initialization, the Sender shall initialize the PXXConfigType with the required
configured settings, for each Data to be protected.⌋

Settings for each instance of PXXConfigType are different for each Data; they are
defined in Software Component template in the class EndToEndDescription.

[UC_E2E_00204]
Upstream requirements: RS_E2E_08528

⌈During its initialization, the Sender shall initialize the E2E_PXXProtectStateType for
each Data, with the configured following values: Counter = 0.⌋

[UC_E2E_00205]
Upstream requirements: RS_E2E_08528

⌈In every send cycle, the Sender shall invoke once the function E2E_PXXProtect() and
then once the function to transmit the data (e.g. Rte_Send_<p>_<o>() or PduR_Com
Transmit()).

This means that is not allowed e.g. to call E2E_PXXProtect() twice without having Rte_
Send_<p>_<o>() in between. It is also not allowed e.g. to call PduR_ComTransmit()
twice without having E2E_PXXProtect() in between.⌋

9.1.1 Sender of data elements

The diagram below specifies the overall sequence involving the E2E Library called
by the Sender of data elements. The Sender itself can be realized by one or more
modules/files. After the diagram, there are requirements specific to Sender of data
elements.

177 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Sender of Data
Elements

E2E Library CRC Library «module»

Rte

alt

[al lowed for any Data Element]

[for opaque arrays the implementer is allowed to use casting]

alt

[inter-ECU communication and DataElement is not uint8 array]

[in case E2E Profi le 1 and 2]:Use Crc_CalculateCRCx()
to calculate CRC over DataID and Data

create array Data from DataElements. Data must
have the same layout as corresponding I-PDU

[At Sender startup]:Instantiate and initialize Config and
State structures

RTE_Write_<p>_<o>(Instance,
DataElement)

Data =
(uint8*)DataElement

Write updated control fields in Data, e.g. CRC and
Counter

Execute l ibrary logic, e.g. increment
Counter

E2E_PXXProtect(Config, State,
Data)

Update DataElements with fresh values

Copy control fields from array Data to
DataElements

Evaluate ret0 and handle library internal
errors

ret0

Figure 9.1: Sender of data elements

After the new data element is available, before calling E2E_PXXProtect(), the Sender
of data elements, shall:

[UC_E2E_00230]
Upstream requirements: RS_E2E_08528

⌈In case the data element communication is inter-ECU and the data element is not an
opaque uint8 array, then the user of the E2E Library shall serialize the data element
into the array Data. The content of the array Data shall be the equal to the content of
the serialized representation of corresponding signal group in an I-PDU.⌋

Note that there can be several protected signal groups in an I-PDU.

178 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

To fulfill the above requirement, the user of E2E library needs to know how safety-
related data elements are mapped by RTE to signals and then by COM to areas in
I-PDUs so that it can replay this step. This is quite a complex activity because this
means that the Sender needs to do a "user-level" COM.

[UC_E2E_00232]
Upstream requirements: RS_E2E_08528

⌈For sending of data elements different from opaque arrays, the caller of E2E Library
shall serialize the data element to Data, then it shall call the E2E_PXXProtect() routine
and then it shall copy back the control fields from Data to data element.⌋

By its nature, the serialization involves data copying. If a data element is an opaque
array, then there is no need for data serialization to array and the caller can cast adata
elementto uint8*. However, to avoid a special treatment of opaque arrays with respect
to other data types, an implementer may decide to apply serialization of data element
to Data also for opaque arrays.

The offsets of control fields in Data are defined in Software Component Template meta-
class EndToEndDescription.

9.1.2 Sender at signal group level

The diagram below species the overall sequence involving the E2E Library by the
Sender at the signal group level. The Sender itself can be realized by one or more
modules/files (e.g. COM plus callouts, or COM plus complex device driver).

The diagram shows the example when there is only one E2E-protected signal group in
the I-PDU, but in general it is possible to have several of them (0 or 1 E2E-protections
per signal group). In such case, the sender of I-PDUs invokes E2E_PXXProtect on
each E2E-protected signal group.

179 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Sender of I-PDUs E2E Library CRC Library «module»

PduR

Write updated control fields in
Data, e.g. CRC and Counter

Execute l ibrary logic, e.g. increment
Counter

[in case E2E Profi le 1 and 2]:Use Crc_CalculateCRCx() to
calculate CRC over DataID and Data

Update I-PDU with fresh values from signals

[At Sender startup]:Instantiate and initial ize Config and State
structures

E2E_PXXProtect(Config, State, Data)

Data = (uint8*) I-PDU

PduR_ComTransmit

Evaluate ret and handle library
internal errors, e.g. report to DEM

ret

Figure 9.2: Sender of I-PDUs

9.2 Receiver

[UC_E2E_00206]
Upstream requirements: RS_E2E_08528

⌈During its initialization, the Receiver shall instantiate the structures PXXConfigType
and PXXReceiverType.⌋

Note: When selecting the following initialization and configuration parameters the func-
tional behaviour of the enhanced E2E_PXXCheck()-functions (introduced in AUTOSAR
R4.0.4 and R3.2.2) is application-wise backward compatible to the E2E_PxxCheck()-
function of the earlier AUTOSAR releases:

State -> SyncCounter := 0;

Config -> MaxNoNewOrRepeatedData := 14 (when using Profile 1);

Config -> MaxNoNewOrRepeatedData := 15 (when using Profile 2);

180 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Config -> SyncCounterInit := 0;

Figure 9.3: Configuration parameters of the E2E_PxxCheck() function and their effects

Clarification regarding SYNC states in Figure 9.3: In cycle 9, the counter value is not
trustable anymore since the NoNewOrRepeatedData exceeds MaxNoNewOrRepeated
Data. The resulting behavior is similar to as if an "unexpected behavior of the counter"
is detected in cycle 9. Thus, the "counter continuity check" spans from cycle 10-11.

[UC_E2E_00207]
Upstream requirements: RS_E2E_08528

⌈During its initialization, the Receiver shall initialize the PXXConfigType with the re-
quired configured settings, for each Data.⌋

Settings for each instance of PXXConfigType are different for each Data; they are
defined in Software Component template in the class EndToEndDescription.

[UC_E2E_00209]
Upstream requirements: RS_E2E_08528

⌈In every receive cycle, the Receiver shall:

• Invoke once the reception function Rte_Read_<p>_<o>().

1. Set the attribute State->NewDataAvailable to TRUE if new data has been re-
ceived without any errors:

• In case of single channel or channel 1: State->NewDataAvailable = (retRte
Read == RTE_E_OK) ? TRUE : FALSE;

181 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

• In case of channel 2: State->NewDataAvailable = TRUE; (note: the second
channel has no access to Rte_Read return value).

2. Update Data, using received data element or I-PDU.

3. Call once the function E2E_PXXCheck().

4. Handle results (return value and State parameter) returned by E2E_PXXCheck().

⌋

Note: In case of single channel only, the NewDataAvailable flag may additionally incor-
porate the return value of the Rte_IsUpdated() API (if available) in the following way:

1. Invoke once the function Rte_IsUpdated_<p>_<o>().

2. Distinguish

• If Rte_IsUpdated_<p>_<o>() returned FALSE : Set the attribute State->New
DataAvailable to FALSE and retRteRead to RTE_E_OK

• If Rte_IsUpdated_<p>_<o>() returned TRUE :

– Invoke once the reception function Rte_Read_<p>_<o>()

– Set the attribute State->NewDataAvailable to TRUE if Rte_
Read_<p>_<o>() returned RTE_E_OK, otherwise set it to FALSE

3. Steps 3.-5. as stated in [UC_E2E_00209].

This resembles the optional functionality of E2EPW_Read_<p>_<o>() as specified in
AR 3.2.1 - 3.2.2 / AR 4.0.1 - AR 4.1.1. It was changed as the functionality of RTE_IsUp-
dated_<p>_<o>() strongly depends on the underlying Com stack to provide a reliable
reception indication (callback). Otherwise, corrupted data might be masked.

Note: In case of single channel only AND if AliveTimeout is configured, the New-
DataAvailable flag may additionally incorporate the return value of the Rte_IsUpdated()
API (if available) in the following way:

1. Invoke Rte_IsUpdated_<p>_<o>

2. Invoke Rte_Read_<p>_<o>

3. Distinguish:

• Set State->NewDataAvailable to TRUE if
Rte_Read_<p>_<o> returned TRUE AND
Rte_IsUpdated_<p>_<o> returned TRUE

• Set State->NewDataAvailable to FALSE otherwise

This way the AliveTimeout "RTE_E_MAX_AGE_EXCEEDED" is returned via
Rte_Read_<p>_<o> to the SWC.

182 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

The Functions E2E_PXXCheck() return the results of verification, by means of param-
eter State. Within the State (structure E2E_PXXCheckStateType), there is the attribute
LostData, which is has a defined value and makes sense only for the following states:
E2E_PXXSTATUS_OK and E2E_PXXSTATUS_OKSOMELOST.

[UC_E2E_00233]
Upstream requirements: RS_E2E_08528

⌈If the return from the function E2E_PXXCheck() is different than E2E_PXXSTATUS_
OK and E2E_PXXSTATUS_OKSOMELOST, then the caller shall not evaluate the at-
tribute State->LostData.⌋

9.2.1 Receiver at data element level

The diagram below specifies the overall sequence involving the E2E Library called by
the Receiver atdata element level. The Sender itself can be realized by one or more
modules/files. After the diagram, there are requirements specific to Sender of data
elements.

183 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Receiver of Data
Elements

E2E Library CRC Library «module»

Rte

alt

[al lowed for any Data Element]

[for opaque arrays the implementer is allowed to use casting]

Verify that in DataElement all unused "high" bits are 0s.

Consume DataElement

State.NewDataAvailable = Rte_IsUpdated_<p>_<o>(Instance)

Evaluate ret and handle l ibrary internal errors

ret

create array Data from DataElement. Data must have the
same layout as corresponding I-PDU

Execute library logic, e.g. check all
control fields

Data = (uint8*)DataElement

[State.NewDataAvailable == TRUE]:Rte_Read_<p>_<o>(Instance, DataElement) : ret0

[At Receiver startup]:Instantiate and initial ize Config and
State structures

update State
depending on
checks

[In case E2E Profi le 1,2, 11 and 22]:Use
Crc_CalculateCRCx to calculate CRC

E2E_P01Check(Config, State, Data)

Figure 9.4: Receiver of data elements

[UC_E2E_00277]
Upstream requirements: RS_E2E_08528

⌈In case the data element communication is inter-ECU and the data element is not
an opaque uint8 array, then the Receiver shall serialize the data element into the array
Data. The layout (content) of Data shall be the same as the layout of the corresponding
I-PDU over which the data element is sent. Moreover, the Receiver shall also verify that
all bits that are not transmitted in I-PDU (i.e. which are not present in Data) are equal
to 0.⌋

To fulfill the above requirement, the Receiver needs to know how safety-related data
elements are mapped by RTE to signals and then by COM to I-PDUs so that it can
replay this step. This is quite a complex activity because this means that the Sender
needs to do a "user-level" COM.

184 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

An example of bit verification: Assuming that 10 bits in I-PDU are expanded by COM
into 16-bit signal and then by RTE into a 16-bit data element. In this case, the 6 most
significant bits of the data element shall be 0. This shall be verified by the Receiver.

[UC_E2E_00278]
Upstream requirements: RS_E2E_08528

⌈For reception of data elements different from opaque arrays, the caller of E2E Library
shall serialize the data element to Data, then it shall call the check routine.⌋

9.2.2 Receiver at signal group level

The diagram below summarizes the sequence involving the E2E Library by the Re-
ceiver at signal group level.

The diagram shows the example when there is only one E2E-protected signal group in
the I-PDU, but in general, it is possible to have several of them (0 or 1 E2E-protections
per signal group). In such case, the receiverof I-PDUs invokes E2E_PXXCheck on
each E2E-protected signal group.

Diagram below shows the step "State.".

This applies only for channel 2. For channel 1 and single channel, the step is
"State.NewDataAvailable = (ret0 == RTE_E_OK) ? TRUE : FALSE".

185 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Receiver of I-PDUs E2E Library CRC Library «module»

PduR

ret

Update Signals with
the Content from I-

PDU

Execute l ibrary logic, e.g. check all
control fields

Data = (uint8*) I-PDU

[At Receiver startup]:Instantiate and
initial ize Config and State structures

E2E_P01Check(Config, State, Data)

read I-PDU: Read_Status

State->NewDataAvailable = TRUE

Evaluate ret and handle library
internal errors, e.g. report to DEM

[In case E2E Profi le 1,2, 11 and 22]:
Use Crc_CalculateCRCx() to calculate
CRC over DataID and Date

update State
depending on checks

Figure 9.5: Receiver of I-PDUs

186 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

10 Configuration specification

E2E Library, like all AUTOSAR libraries, has no configuration options. All the infor-
mation needed for execution of Library functions is passed at runtime by function
parameters. For the functions E2E_PXXProtect() and E2E_PXXCheck(), one of the
parameters is Config, which contains the options for the protection of Data.

[SWS_E2E_00037]
Upstream requirements: SRS_LIBS_00001

⌈The E2E library shall not have any configuration options.⌋

10.1 Published Information

[SWS_E2E_00038]
Upstream requirements: SRS_LIBS_00005

⌈The standardized common published parameters as required by SRS_BSW_00402
in [6, General Requirements on Basic Software Modules] shall be published within the
header file of this module and need to be provided in the BSW Module Description.
The according module abbreviation can be found in [2, General Specification of Basic
Software Modules].⌋

Additional module-specific published parameters are listed below if applicable.

187 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

A Annex A: Safety Manual for usage of E2E Library

This chapter contains requirements on usage of E2E Library when designing and im-
plementing safety-related systems, which are depending on E2E Protection of commu-
nication.

The description how to invoke/call of E2E Library API is defined in Chapter 9.

A.1 E2E profiles and their standard variants

E2E Library provides two E2E Profiles. They can be used for inter and intra ECU
communication.

Because E2E Profile 1 has several configuration options, the recommended/default
values for the options are defined asstandard E2E profile 1 variants.

[UC_E2E_00053]
Upstream requirements: RS_E2E_08528

⌈Any user of E2E Profile 1 shall use whenever possible the defined E2E variants.⌋

A.2 E2E error handling

The E2E library itselfdoes not handle detected communication errors. It only detects
such errors for single received data elements and returns this information to the callers
(e.g.SW-Cs), which haveto react appropriately.

A general standardization of the error handing of an application is usually not possible.

[UC_E2E_00235]
Upstream requirements: RS_E2E_08528

⌈The user (caller) of E2E Library, in particular the receiver, shall provide the error
handling mechanisms for the faults detected by the E2E Library .⌋

A.3 Methodology of usage of E2E Library

This section summarizes the steps needed to use the E2E Library. In AUTOSAR R4.0
the usage of E2E Library is not defined by AUTOSAR methodology. There are four
main steps, as described below.

In the first step the user selects the architectural approach how E2E Library is used in a
given system (through COM callouts, through E2E Protection wrapper etc). There are
several architectural solutions of usage of E2E Library described in Chapter Chapter
A.5.

188 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

In the second step, the user selects which data elements or signal groups need to
be protected and with which E2E Profile.In principle, all transmitted data identified as
safety-related are those that need to be protected.

In the third step, the user determines the settings for each selected data element or
signal group to be protected. The settings are stored in Software Component Template
metaclass EndToEndDescription. The settings include e.g. Data ID, CRC offset.

1. For each signal group to be protected, there is a separate instance of EndToEnd
Description, associated in System Template to ISignalIPdu metaclass.

2. For each data element to be protected, there is a separate instance of End
ToEndDescription, associated indirectly to VariableDataPrototype, SenderCom
Spec and ReceiverComSpec metaclasses.

In the fourth and last step, the user generates (or otherwise develops) the necessary
glue code (e.g. E2E Protection Wrapper, COM callouts), responsible for invocation of
E2E Library functions. The glue code serves as an adapter between the communica-
tion modules (e.g. COM, RTE) and E2E Library.

A.4 RTE configuration constraints for SW-C level protection

In case the E2E Library is used to protect data elements, there are a few constraints
how RTE needs to be configured.

If the protection takes place at the level of I-PDUs, then there are no constraints from
the side of E2E on RTE configuration.

A.4.1 Communication model for SW-C level protection

AUTOSAR RTE supports different communication models, like client-server, sender-
receiver, mode switch etc.

A.4.2 Multiplicities for SW-C level protection

The E2E Library is not intended to be used for N:1 sender-receiver multiplicities.

[UC_E2E_00258]
Upstream requirements: RS_E2E_08528

⌈In case the E2E Library is used to protect data elements, then the selected multiplicity
shall be 1:N or 1:1.⌋

189 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

A.4.3 Explicit access

Sender-receiver SW-C communication is asynchronous in the sense that the sender
does not wait for the receiver. It means that the sender passes the data element to
RTE and continues the execution - it does not wait for the receiver to receive the data
- this is not configurable. RTE transmits the data to the receiver concurrently to the
execution of the sender.

Now, the question is how the receiver gets the data. There are two ways to do it in
AUTOSAR, which is configurable in RTE:

• The receiver waits for new data: it is blocked/waiting until new data element from
the sender arrives (RTE communication modes "wake up of wait point" and "acti-
vation of Runnable entity")

• The receiver gets the currently available data element from RTE, i.e. the most
recent data element (RTE communication modes "Implicit data read access" and
"Explicit data read access")

E2E Profile 1 and 2 together with the proposed E2E protection wrapper provide timeout
detection (which is one of the failure modes to handle - e.g. message loss). This is
achieved by having the receiver executing independently from the reception of the data,
and by the usage of a counter within E2E Profiles. By this means, if e.g. a data element
is lost, it is seen by the receiver that every time the read data element has the same
counter. This however requires that the receiver is not solely executed uponthe arrival
of data.

In case the receiver is event-driven, then a timeout mechanism at the receiver needs
to be used. The timeout mechanism is not a part of E2E Library.

A.5 Restrictions on the use of COM features

The following table lists COM features with a brief description and provides a classi-
fication of restriction of use in combination with End-to-End communication protection
as described in this document.

Note: This list only covers features of the BSW module COM in combination with E2E
Library and E2E Protection Wrapper. It does not address features of above layers (e.g.
RTE) or use-cases where the E2E Transformer is used.

The restriction classes are as follows:

• "supported" means that both (E2E COM Callout and E2EPW) do support this
feature.

• "use case dependent" means that the feature might be used/usable depending
on the actual use case and configuration on sender and receiver side. However,
suitability for an actual system and its influence on the safety requirements has
to be analysed.

190 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

• "not supported" means that at least one variant (either E2E COM Callout or
E2EPW) does not support this feature or a failure mode can be masked.

COM Feature / brief description Classification

[SRS_Com_02078] Support of endianess conversion supported

[SRS_Com_02086] Support of Sign-Extension for received
signals

supported

[SRS_Com_02042] Initialization of unused areas/ bits of an
I-PDU

supported

[SRS_Com_02083] Transmission Modes use case dependent

[SRS_Com_02082] Two different Transmission Modes use case dependent

[SRS_Com_02084] Signal data based selection of
Transmission Mode

use case dependent

[SRS_Com_02113] Signal data based transmission modes
for configured serialized data

use case dependent

[SRS_Com_02046] Configuration of signal notification supported

[SRS_Com_02080] Cancelation outstanding repetitions in
case of a new send request

use case dependent

[SRS_Com_02089] Two configurable options to handle
signal timeouts on receiver side

use case dependent

[SRS_Com_02077] Signal invalidation mechanism on
sender-side

use case dependent

[SRS_Com_02079] Signal invalidation mechanism on
receiver-side

use case dependent

[SRS_Com_02087] Substitution of invalid value by
configurable data value

use case dependent

[SRS_Com_02088] Substitution of the last received value by
the init value in case of signal timeout

use case dependent

[SRS_Com_00218] Starting/ Stopping communication of
I-PDU groups

supported

[SRS_Com_00192] Enabling/ disabling reception deadline
monitoring of I-PDU groups

use case dependent

[SRS_Com_02041] Consistent transfer of complex data
types

supported

[SRS_Com_02091] Placement of large or dynamical length
signals

not supported

[SRS_Com_02092] Support only one dynamic length signal
per I-PDU

not supported

[SRS_Com_02093] Dynamic length signal must be placed
last in I PDU

not supported

[SRS_Com_02094] Dynamic length signals must be of type
UINT8[n]

not supported

[SRS_Com_02095] TP shall be used to fragment and
reassemble large signals and dynamical signals

not supported

[SRS_Com_02030] Identify if a signal/signal group is
updated by the sender

use case dependent

[SRS_Com_02058] Deadline monitoring of receiving
updated signals/signal groups

use case dependent

[SRS_Com_02099] I-PDU Counter mechanism use case dependent

[SRS_Com_02100] I-PDU Counter configuration use case dependent

[SRS_Com_02101] Transmission and reception using I-PDU
Counter

use case dependent

[SRS_Com_02102] I-PDU Counter error handling use case dependent

▽

191 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

△
COM Feature / brief description Classification

[SRS_Com_02103] I-PDU Replication mechanism use case dependent

[SRS_Com_02104] I-PDU replication configuration use case dependent

[SRS_Com_02105] Transmission and reception using I-PDU
Replication

use case dependent

[SRS_Com_02106] I-PDU Replication error handling use case dependent

Minimum Delay Time use case dependent

Filtering at receiver side (e.g. COM273) use case dependent

Filtering at sender side use case dependent

Multiple Signal groups within an I-PDU use case dependent

Table A.1: Classification of COM features

192 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

B Annex B: Application hints on usage of E2E Library

To enable the proper usage of the E2E Library different solutions are possible. They
may depend e.g. on the integrity of RTE, COM or other basic software modules as well
as the usage of other SW/HW mechanisms.

The user is responsible for selecting the solution for usage of E2E Library that is fulfill-
ing safety requirements of his particular safety-related system.

Each particular implementation based on solutions described in this chapter needs to
be evaluated with regard to functional safety prior to their use.

The E2E Library can be used in different ways (each explained in a separate section
of this chapter):

• COM callouts - non-standard integrator code to protect I-PDUs (Chapter B.1).

• Out-of-box protection at RTE level (E2E Transformer)(Chapter B.2)

The best situation is when the integrity of operation of RTE and COM for transmitting/
converting safety-related data can be guaranteed. In short, we call this safe RTE and
safe COM.

This annex describes an exemplary,basic solution how E2E Library can be invoked.
This can be done by means of dedicated COM Callouts invoking E2E Library to protect
signal groups representing data elements (which is called COM E2E Callouts, see
Chapter B.1).

All necessary options, enabling to generate the code for the described solutions are
available in AUTOSAR configuration, defined in [7, System Template] and [8, Software
Component Template]. This contains e.g. association of I-PDUs with Data IDs.

To generate the COM E2E callouts for an I-PDU, the user defines EndToEnd* meta-
classes and associates them to ISignalIPdu metaclass (representing the I-PDU).

There are a few E2E mechanisms in which an I-PDU can be protected. There is a new
standard mechanism: E2E Transformer, and there is the de-facto-standard mechanism
COM E2E callouts. Finally, some integrators use their own mechanisms like safe COM
module. It makes only sense to use one of the mechanism for a given I-PDU.

[UC_E2E_00271]
Upstream requirements: RS_E2E_08528

⌈A given I-PDU, if protected by E2E, shall be protected by only one E2E mechanism.⌋

193 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

B.1 COM E2E Callouts

In this approach, the E2E communication protection protects the data exchange be-
tween COM modules. The protection is done at the level of COM’s signal groups,
which are protected and checked by E2E Library.

This solution works with all communication models, multiplicities offered by RTE for
inter-ECU communication.

The callout invokes the E2E Library,once for each E2E-protected signal group ina given
I-PDU.

This solution can be used in the systems where the integrity of operation of COM and
RTE is provided.

B.1.1 Functional overview

For each I-PDU, there is a separate callout function. Each I-PDU callout function
"knows" if and how each signal group of the I-PDU needs to be protected/checked.
This means that the callout invokes the E2E Library functions with appropriate set-
tings and state parameters. The E2E Library does now "know" signal groups and their
settings - entire information is passed as function parameters to E2E library functions.

On both receiver and sender side, if a callout returns TRUE, then COM continues. If a
COM E2E Callout returns FALSE, then COM stops to process the given I-PDU (in this
cycle). The COM E2E Callout returns FALSE if and only if there is an internal error,
e.g. program flow error, data corruption error in E2E Lib.

The sender callout always TRUE if there are no runtime errors detected (e.g. wrong
parameter), otherwise FALSE. The receiver callout receiver returns TRUE if there are
no runtime errors detected and the result of the check is either E2E_P02STATUS_OK
or E2E_P02STATUS_OKSOMELOST.

The diagram below summarizes the COM E2E Callout solution on the sender side. The
SW-C is completely not impacted, and only additional activities in COM is invocation
of the generated callout (step 6). If the return value from the callout is TRUE, then
the IpduData modified by E2E Library is then transmitted by PDU router. If false, then
COM stops further processing of this I-PDU in this cycle.

194 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Figure B.1: Callout - overall flow - P-port

The diagram below summarizes the COM E2E Callout solution. The very important
step is that the E2E Library overwrites CRC byte in the signal group by the check
status bits (E2E_PXXCheckStateType). Then, this overwritten CRC byte is converted
by COM to signals and then by RTE to data elements. As a result, the SW-C receives
in the CRC data element the E2E check bits, and not the CRC value.

Figure B.2: Callout - overall flow - R-port

195 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

B.1.1.1 Sending/Calling

On the sender COM side, when the I-PDU has been built from signals and the con-
versions (e.g. Endianness) have taken place, and the I-PDU is ready, then COM calls
a callout function. There is a separate callout for each I-PDU (if defined). Once the
callout returns, COM invokes the PDU Router to transmit the data (fuction PduR_Com
Transmit).

The callout function is generated to protect the signal groups of one I-PDU and simply
invokes the E2E Library(once per each E2E-protected signal group) with the correct
hard-coded settings. The hard-coded settings have been generated from the settings
described in the previous section.

When the callout returns TRUE, COM invokes PduR_ComTransmit(), to route the I-
PDU through the network.

«module»

Com

COM Callout
IPDU_E2EProtect_21

«module»

E2E

«module»

PduR

«module»

Rte

SWC

Execute
protection
algorithms

E2E_P01Protect(&Settings, &State,
IPduInfo->SduDataPtr)

IPDU_E2EProtect_21(TxPduId,
IPduInfo)

PduR_ComTransmit()

[One time at startup]:Hardcoded initial ization of config and state
structures

Create I-PDU_21 out of signals, do necessary conversions e.g.
endiannes

Signals to transmit

Data elements to transmit

Updated SduData

Updated SduData

Figure B.3: Callout - sequence - sending

According to COM SWS, the callouts shall conform to the following syntax:

boolean <IPDU_CalloutName> (PduIdType TxPduId, PduInfoType* PduInfoPtr)

[UC_E2E_00250]
Upstream requirements: RS_E2E_08528

⌈The transmission callout for usage with E2E shall be the following: IPDU_
E2EProtect_<IPDU ID>(PduIdType TxPduId, PduInfoType* PduInfoPtr).

196 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

For example, the callout to protect the I-PDU with handle 21 shall have the name IPDU_
E2EProtect_21().⌋

B.1.1.2 Reception

On the receiver COM side, when the I-PDU is available at PDU Router, PDU Router
invokes COM’s function COM_RxIndication(). COM then calls the generated I-PDU
callout (if configured for the given I-PDU). The callout, generated specifically for that
I-PDU, calls the E2E Library with specific parameters (once for each E2E-protected
signal group). The E2E Library executes the checks and stores the check results in the
status.

Once E2E Library check function returns, the callout copies the status into the CRC
byte, so that it can be analyzed, if needed, by receiver SW-C.

«module»

Com

COM Callout

IPDU_E2ECheck_21

«module»

E2E

«module»

PduR

«module»

Rte

SWC

Updated State

Create signals out of I-PDU 21, do necessary conversions e.g. endiannes

ret = ((State.Status == E2E_P01STATUS_OK) || (State.Status == E2E_P01STATUS_OK))

[One time at startup]:Hardcoded initialization of config/state

structures

State.NewDataAvailable = TRUE

E2E_P01Check(&Settings, &State,

IPduInfo->SduDataPtr)

Execute check

algorithms

Received data elements

IPDU_E2ECheck_21(RxPduId,

IPduInfo)

Received signals

COM_RxIndication()

ret

[ret == FALSE]:exit processing of I-PDU

Figure B.4: Callout - sequence - reception

[UC_E2E_00251]
Upstream requirements: RS_E2E_08528

⌈The reception callout for usage with E2E shall be the following: IPDU_
E2ECheck_<IPDU ID>(PduIdType RxPduId, const PduInfoType* PduInfoPtr).

197 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

For example, the callout to protect the signal groups inan I-PDU with handle 21 shall
have the name IPDU_E2ECheck_21().⌋

B.1.2 Methodology

Note: Different releases of AUTOSAR have different names for COM classes. The text
description below is generalized to fit to different releases, but the diagrams are slightly
different (main differences are different names of classes and objects).

The information how each signal group needs to be protected (e.g. which E2E Profile,
which offset) is defined in [7, System Template] , [8, Software Component Template]
and [9, Specification of ECU Configuration]. This configuration information is used to
generate the callout functions.

By means of the settings defined by AUTOSAR templates, it is possible to generate the
COM callouts for invoking the E2E Library.

The configuration is done in the following configuration areas:

• Definition of I-PDUs (system template)

• Definition of E2E settings ([8, Software Component Template])

• Association of I-PDUs to E2E protection settings (system template).

• Definition of I-PDU details (ECU configuration)

The four above steps are described in more details below.

First, according to System Template, the I-PDUs exchanged by COM are defined.

Secondly, according to Software Component Template, for each signal group to be pro-
tected, the classes EndToEndProtection and EndToEndDescription are defined. The
settings include information like CRC offset.

Thirdly, according to System Template, each I-PDU to be protected is associated to a
corresponding EndToEndProtection.

Fourth, after the extraction of ECU configuration, according to ECU configuration, the
I-PDU handles (numerical I-PDU identifers) and callout functions are defined. COM
requires that there is a separate callout function for each I-PDU (separate piece of
code).

Allconfiguration options needed to generate the COM callouts automatically is available
in AUTOSAR methodology. For each I-PDU to be protected/checked, a separate callout
routine shall be genrated, which invokes E2E Library (once or several times).

198 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[UC_E2E_00270]
Upstream requirements: RS_E2E_08528

⌈The COM E2E callout shall be generated for the I-PDU for which the corresponding
EndToEnd* metaclasses are defined.⌋

[UC_E2E_00290]
Upstream requirements: RS_E2E_08528

⌈If the E2EProtection is done via COM Callouts then the EndToEndProtectionISignal
IPdu shall be defined.⌋

Note that in R3.2 (contrary to >=R4.0), the ISignalIPdu is called "SignalIPdu" and it
inherits the unusedBitPattern attribute from IPdu.

The important settings are:

• ISignalIPdu (represents an I-PDU)

– ISignalIPdu.unusedBitPattern: bits that are not used in an I-PDU,

• ISignalToIPduMapping: describes the mapping of signals to I-PDUs,

– ISignalToIPduMapping.startPosition: offset in bits of a signal in the I-PDU,

• EndToEndProtectionISignalIPdu: association of one E2E protection to a one I-
PDU and to one signal group,

– EndToEndProtectionISignalIPdu.dataOffset: offset in bits of the signal group
in the I-PDU.

ISignalIPdu.unusedBitPattern is not used by E2E COM callouts, because they are set
by COM and E2E COM callouts operate on the same buffers.

B.1.3 Code Example

Note that the code examples for the COM E2E callouts are for the case when there is
one signal group in the I-PDU. In general, it is possible to have N signal groups in an
I-PDU and M signal groups protected by E2E, where 0<= M <= N. In such a case, the
callout invokes E2E Library functions M times (for each of the protected signal group).

Transmitter
boolean IPDU_E2EProtect_21 (PduIdType RxPduId, PduInfoType* PduInfoPtr)

{
/* At first run, instantiate the structures and set the init Values

*/
static E2E_P01ConfigType Cfg_Write_21 = { 64, 21,

E2E_P01_DATAID_BOTH, 1, 0, 8 };
static E2E_P01ProtectStateType Sta_Write_21 = {0};

199 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

Std_ReturnType ret = E2E_P01Protect(& Cfg_Write_21, & Sta_Write_21,
PduInfoPtr->SduDataPtr);

/* return TRUE if no error in protect function */
return (ret != 0);

}

Receiver
boolean IPDU_E2ECheck_21 (PduIdType RxPduId, const PduInfoType*

PduInfoPtr) {
/* At first run, instantiate the structures and set the init values

*/
static E2E_P01ConfigType Cfg_Read_21 = { 64, 21,

E2E_P01_DATAID_BOTH, 1, 0, 8 };
static E2E_P01CheckStateType Sta_Read_21 = {0, 0, TRUE, FALSE,

E2E_P01STATUS_NONEWDATA};
/* If callout is invoked, this means that new data is available At

COM */
Sta_Read_21.NewDataAvailable = TRUE;
Std_ReturnType ret = E2E_P01Check(Cfg_Read_21, Sta_Read_21,

PduInfoPtr->SduDataPtr);

/* return TRUE if no error, possibly only some messages lost Within
counter tolerance */

if(ret == E2E_OK && (Sta_Read_21.Status == E2E_P01STATUS_OK ||
Sta_Read_21.Status == E2E_P02STATUS_OKSOMELOST)) {
return TRUE;

}
else {

return FALSE;
}

}

B.2 Protection at RTE level through E2E Transformer

In this scenario, the RTE is considered safety-related. COM is QM. The RTE does
the serialization of data elements into one dynamic-size signal, then RTE calls E2E to
protect it. Then, RTE provides this E2E-protected dynamic-size signal to COM.

This solution is out-of-box, which means that AUTOSAR needs to be configured, but
there is no need of integrator code for the E2E invocation.

This scenario is specified in details in SWS E2E Transformer.

200 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

C Not applicable requirements

[SWS_E2E_NA_00294]
Upstream requirements: SRS_LIBS_00002, SRS_LIBS_00003, SRS_LIBS_00004, SRS_LIBS_

00007, SRS_LIBS_00008, SRS_LIBS_00009, SRS_LIBS_00010, SRS_
LIBS_00011, SRS_LIBS_00012, SRS_LIBS_00013, SRS_LIBS_00015,
SRS_LIBS_00016, SRS_LIBS_00017, SRS_LIBS_08518, SRS_LIBS_
08521, SRS_LIBS_08525, SRS_LIBS_08526, SRS_BSW_00004, SRS_
BSW_00101, SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00168,
SRS_BSW_00170, SRS_BSW_00171, SRS_BSW_00336, SRS_BSW_
00339, SRS_BSW_00344, SRS_BSW_00345, SRS_BSW_00369,
SRS_BSW_00375, SRS_BSW_00380, SRS_BSW_00383, SRS_BSW_
00384, SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00388,
SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_
00393, SRS_BSW_00395, SRS_BSW_00396, SRS_BSW_00397,
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_
00402, SRS_BSW_00403, SRS_BSW_00404, SRS_BSW_00405,
SRS_BSW_00406, SRS_BSW_00407, SRS_BSW_00409, SRS_BSW_
00416, SRS_BSW_00417, SRS_BSW_00419, SRS_BSW_00422,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_
00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429,
SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00437, SRS_BSW_
00438, SRS_BSW_00450, SRS_BSW_00451, SRS_BSW_00452,
SRS_BSW_00458, SRS_BSW_00461, SRS_BSW_00466, SRS_BSW_
00467, SRS_BSW_00469, SRS_BSW_00470, SRS_BSW_00471,
SRS_BSW_00472, SRS_BSW_00478, SRS_BSW_00488, SRS_BSW_
00489, SRS_BSW_00490, SRS_BSW_00491, SRS_BSW_00493,
SRS_BSW_00496

⌈These requirements are not applicable to this specification.⌋

201 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

D Change history of AUTOSAR traceable items

D.1 Traceable item history of this document according to AU-
TOSAR Release R22-11

D.1.1 Added Specification Items in R22-11

[SWS_E2E_00011] [SWS_E2E_00017] [SWS_E2E_00018] [SWS_E2E_00020]
[SWS_E2E_00021] [SWS_E2E_00022] [SWS_E2E_00032] [SWS_E2E_00033]
[SWS_E2E_00037] [SWS_E2E_00038] [SWS_E2E_00047] [SWS_E2E_00048]
[SWS_E2E_00049] [SWS_E2E_00050] [SWS_E2E_00110] [SWS_E2E_00115]
[SWS_E2E_00152] [SWS_E2E_00153] [SWS_E2E_00154] [SWS_E2E_00158]
[SWS_E2E_00160] [SWS_E2E_00161] [SWS_E2E_00166] [SWS_E2E_00200]
[SWS_E2E_00214] [SWS_E2E_00215] [SWS_E2E_00216] [SWS_E2E_00311]
[SWS_E2E_00314] [SWS_E2E_00318] [SWS_E2E_00319] [SWS_E2E_00320]
[SWS_E2E_00321] [SWS_E2E_00322] [SWS_E2E_00323] [SWS_E2E_00324]
[SWS_E2E_00325] [SWS_E2E_00334] [SWS_E2E_00335] [SWS_E2E_00336]
[SWS_E2E_00337] [SWS_E2E_00338] [SWS_E2E_00339] [SWS_E2E_00340]
[SWS_E2E_00342] [SWS_E2E_00343] [SWS_E2E_00344] [SWS_E2E_00347]
[SWS_E2E_00349] [SWS_E2E_00350] [SWS_E2E_00351] [SWS_E2E_00352]
[SWS_E2E_00353] [SWS_E2E_00370] [SWS_E2E_00371] [SWS_E2E_00373]
[SWS_E2E_00377] [SWS_E2E_00378] [SWS_E2E_00379] [SWS_E2E_00380]
[SWS_E2E_00381] [SWS_E2E_00382] [SWS_E2E_00383] [SWS_E2E_00384]
[SWS_E2E_00385] [SWS_E2E_00386] [SWS_E2E_00387] [SWS_E2E_00388]
[SWS_E2E_00389] [SWS_E2E_00390] [SWS_E2E_00391] [SWS_E2E_00392]
[SWS_E2E_00393] [SWS_E2E_00437] [SWS_E2E_00438] [SWS_E2E_00439]
[SWS_E2E_00440] [SWS_E2E_00441] [SWS_E2E_00443] [SWS_E2E_00444]
[SWS_E2E_00445] [SWS_E2E_00446] [SWS_E2E_00447] [SWS_E2E_00448]
[SWS_E2E_00449] [SWS_E2E_00450] [SWS_E2E_00451] [SWS_E2E_00452]
[SWS_E2E_00453] [SWS_E2E_00454] [SWS_E2E_00455] [SWS_E2E_00456]
[SWS_E2E_00457] [SWS_E2E_00458] [SWS_E2E_00459] [SWS_E2E_00460]
[SWS_E2E_00461] [SWS_E2E_00462] [SWS_E2E_00476] [SWS_E2E_00477]
[SWS_E2E_00542] [SWS_E2E_00544] [SWS_E2E_00545] [SWS_E2E_00546]
[SWS_E2E_00547] [SWS_E2E_00548] [SWS_E2E_00549] [SWS_E2E_00550]
[SWS_E2E_00551] [SWS_E2E_00552] [SWS_E2E_00553] [SWS_E2E_00554]
[SWS_E2E_00555] [SWS_E2E_00556] [SWS_E2E_00557] [SWS_E2E_00558]
[SWS_E2E_00559] [SWS_E2E_00560] [SWS_E2E_00561] [SWS_E2E_00562]
[SWS_E2E_00563] [SWS_E2E_00564] [SWS_E2E_00565] [SWS_E2E_00567]
[SWS_E2E_00568] [SWS_E2E_00569] [SWS_E2E_00570] [SWS_E2E_00571]
[SWS_E2E_00572] [SWS_E2E_00573] [SWS_E2E_00574] [SWS_E2E_00575]
[SWS_E2E_00576] [SWS_E2E_00577] [SWS_E2E_00578] [SWS_E2E_00579]
[SWS_E2E_00580] [SWS_E2E_00581] [SWS_E2E_00583] [SWS_E2E_00584]
[SWS_E2E_00585] [SWS_E2E_00586] [SWS_E2E_00587] [SWS_E2E_00588]
[SWS_E2E_00589] [SWS_E2E_00590] [SWS_E2E_00591] [SWS_E2E_00592]
[SWS_E2E_00593] [SWS_E2E_00594] [SWS_E2E_00595] [SWS_E2E_00596]
[SWS_E2E_00597] [SWS_E2E_00598] [SWS_E2E_00599] [SWS_E2E_10001]

202 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

[SWS_E2E_10002] [SWS_E2E_10003] [SWS_E2E_10004] [SWS_E2E_10005]
[SWS_E2E_10006] [SWS_E2E_10007] [SWS_E2E_91001] [SWS_E2E_91002]
[SWS_E2E_91003] [SWS_E2E_91004] [SWS_E2E_91005] [SWS_E2E_91006]
[SWS_E2E_91007] [SWS_E2E_91008] [SWS_E2E_91009] [SWS_E2E_91010]
[SWS_E2E_91011] [SWS_E2E_91012] [SWS_E2E_91013] [SWS_E2E_91014]
[SWS_E2E_91015] [SWS_E2E_91016] [SWS_E2E_91017] [SWS_E2E_91018]
[SWS_E2E_91019] [SWS_E2E_91020] [SWS_E2E_91021] [SWS_E2E_91022]
[SWS_E2E_91023] [SWS_E2E_91024] [SWS_E2E_91025] [SWS_E2E_91026]
[SWS_E2E_91027] [SWS_E2E_91028] [SWS_E2E_91029] [SWS_E2E_91030]
[SWS_E2E_91031] [SWS_E2E_91032] [SWS_E2E_91033] [SWS_E2E_91034]
[SWS_E2E_91035] [SWS_E2E_91036] [SWS_E2E_91037] [SWS_E2E_91038]
[SWS_E2E_91039] [SWS_E2E_91040] [SWS_E2E_91041] [SWS_E2E_91042]
[SWS_E2E_91053] [SWS_E2E_91059] [SWS_E2E_91060] [SWS_E2E_91063]
[SWS_E2E_91068] [SWS_E2E_91070] [SWS_E2E_91071] [SWS_E2E_91072]
[SWS_E2E_91073] [SWS_E2E_91074] [SWS_E2E_91075] [SWS_E2E_91076]
[SWS_E2E_91077] [SWS_E2E_91078] [SWS_E2E_91079] [SWS_E2E_91080]
[SWS_E2E_91081] [SWS_E2E_91082] [SWS_E2E_91083] [SWS_E2E_91084]
[SWS_E2E_91085] [SWS_E2E_91086] [SWS_E2E_91087] [SWS_E2E_91088]
[SWS_E2E_91089] [SWS_E2E_91090] [SWS_E2E_91091] [SWS_E2E_91092]
[SWS_E2E_91093] [SWS_E2E_91094] [SWS_E2E_NA_00294] [UC_E2E_00053]
[UC_E2E_00089] [UC_E2E_00165] [UC_E2E_00192] [UC_E2E_00202] [UC_E2E_
00203] [UC_E2E_00204] [UC_E2E_00205] [UC_E2E_00206] [UC_E2E_00207] [UC_
E2E_00209] [UC_E2E_00213] [UC_E2E_00230] [UC_E2E_00232] [UC_E2E_00233]
[UC_E2E_00235] [UC_E2E_00239] [UC_E2E_00242] [UC_E2E_00248] [UC_E2E_
00249] [UC_E2E_00250] [UC_E2E_00251] [UC_E2E_00256] [UC_E2E_00257] [UC_
E2E_00258] [UC_E2E_00261] [UC_E2E_00262] [UC_E2E_00263] [UC_E2E_00264]
[UC_E2E_00265] [UC_E2E_00266] [UC_E2E_00267] [UC_E2E_00268] [UC_E2E_
00270] [UC_E2E_00271] [UC_E2E_00272] [UC_E2E_00273] [UC_E2E_00274] [UC_
E2E_00275] [UC_E2E_00277] [UC_E2E_00278] [UC_E2E_00279] [UC_E2E_00280]
[UC_E2E_00288] [UC_E2E_00289] [UC_E2E_00290] [UC_E2E_00292] [UC_E2E_
00293] [UC_E2E_00296] [UC_E2E_00297] [UC_E2E_00300] [UC_E2E_00301] [UC_
E2E_00302] [UC_E2E_00303] [UC_E2E_00304] [UC_E2E_00313] [UC_E2E_00328]

D.1.2 Changed Specification Items in R22-11

none

D.1.3 Deleted Specification Items in R22-11

none

203 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

D.2 Traceable item history of this document according to AU-
TOSAR Release R23-11

D.2.1 Added Specification Items in R23-11

[SWS_E2E_00566] [SWS_E2E_00600] [SWS_E2E_00601] [SWS_E2E_00602]
[SWS_E2E_00603] [SWS_E2E_00604] [SWS_E2E_00605] [SWS_E2E_00606]
[SWS_E2E_00607] [SWS_E2E_00608] [SWS_E2E_00609] [SWS_E2E_00610]
[SWS_E2E_00611] [SWS_E2E_00612] [SWS_E2E_00613] [SWS_E2E_00614]
[SWS_E2E_00615]

D.2.2 Changed Specification Items in R23-11

[SWS_E2E_00572] [SWS_E2E_00589] [SWS_E2E_91088] [SWS_E2E_91090]
[SWS_E2E_91091] [SWS_E2E_91092]

D.2.3 Deleted Specification Items in R23-11

none

D.3 Traceable item history of this document according to AU-
TOSAR Release R24-11

D.3.1 Added Specification Items in R24-11

[SWS_E2E_00616] [SWS_E2E_00617] [SWS_E2E_00618] [SWS_E2E_00619]
[SWS_E2E_00623] [SWS_E2E_00624] [SWS_E2E_00625] [SWS_E2E_00626]
[SWS_E2E_00627] [SWS_E2E_91095] [SWS_E2E_91096] [SWS_E2E_91098]
[SWS_E2E_91099] [SWS_E2E_91100] [SWS_E2E_91101] [SWS_E2E_91102]

D.3.2 Changed Specification Items in R24-11

[SWS_E2E_00038] [SWS_E2E_00314] [SWS_E2E_00318] [SWS_E2E_00319]
[SWS_E2E_00320] [SWS_E2E_00321] [SWS_E2E_00322] [SWS_E2E_00323]
[SWS_E2E_00324] [SWS_E2E_00325] [SWS_E2E_00343] [SWS_E2E_00571]
[SWS_E2E_00584] [SWS_E2E_00589] [SWS_E2E_91029] [SWS_E2E_91038] [UC_
E2E_00089] [UC_E2E_00165] [UC_E2E_00192] [UC_E2E_00213] [UC_E2E_00239]
[UC_E2E_00242] [UC_E2E_00248] [UC_E2E_00249] [UC_E2E_00256] [UC_E2E_
00257] [UC_E2E_00261] [UC_E2E_00262] [UC_E2E_00263] [UC_E2E_00264] [UC_
E2E_00265] [UC_E2E_00266] [UC_E2E_00267] [UC_E2E_00268] [UC_E2E_00272]
[UC_E2E_00273] [UC_E2E_00274] [UC_E2E_00275] [UC_E2E_00279] [UC_E2E_
00280] [UC_E2E_00288] [UC_E2E_00289] [UC_E2E_00292] [UC_E2E_00293] [UC_

204 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

E2E_00296] [UC_E2E_00297] [UC_E2E_00300] [UC_E2E_00301] [UC_E2E_00302]
[UC_E2E_00303] [UC_E2E_00304] [UC_E2E_00328]

D.3.3 Deleted Specification Items in R24-11

none

D.4 Traceable item history of this document according to AU-
TOSAR Release R25-11

D.4.1 Added Specification Items in R25-11

[SWS_E2E_91103] [SWS_E2E_91104] [SWS_E2E_91105] [SWS_E2E_91106]
[SWS_E2E_91107] [SWS_E2E_91108] [SWS_E2E_91109] [SWS_E2E_91110]
[SWS_E2E_91111] [SWS_E2E_91112] [SWS_E2E_91113] [SWS_E2E_91114]
[SWS_E2E_91115] [SWS_E2E_91116] [SWS_E2E_91117] [SWS_E2E_91118]
[SWS_E2E_91119] [SWS_E2E_91120] [SWS_E2E_91121] [SWS_E2E_91122]

D.4.2 Changed Specification Items in R25-11

[SWS_E2E_00037] [SWS_E2E_00038] [SWS_E2E_00047] [SWS_E2E_00049]
[SWS_E2E_00158] [SWS_E2E_00160] [SWS_E2E_00161] [SWS_E2E_00166]
[SWS_E2E_00216] [SWS_E2E_00334] [SWS_E2E_00338] [SWS_E2E_00339]
[SWS_E2E_00340] [SWS_E2E_00393] [SWS_E2E_00437] [SWS_E2E_00441]
[SWS_E2E_00446] [SWS_E2E_00449] [SWS_E2E_00457] [SWS_E2E_00544]
[SWS_E2E_00546] [SWS_E2E_00547] [SWS_E2E_00548] [SWS_E2E_00549]
[SWS_E2E_00565] [SWS_E2E_00583] [SWS_E2E_00584] [SWS_E2E_00585]
[SWS_E2E_00586] [SWS_E2E_00587] [SWS_E2E_00588] [SWS_E2E_00589]
[SWS_E2E_00590] [SWS_E2E_00616] [SWS_E2E_91002] [SWS_E2E_91003]
[SWS_E2E_91005] [SWS_E2E_91007] [SWS_E2E_91010] [SWS_E2E_91014]
[SWS_E2E_91016] [SWS_E2E_91017] [SWS_E2E_91018] [SWS_E2E_91021]
[SWS_E2E_91022] [SWS_E2E_91023] [SWS_E2E_91027] [SWS_E2E_91029]
[SWS_E2E_91030] [SWS_E2E_91033] [SWS_E2E_91036] [SWS_E2E_91037]
[SWS_E2E_91038] [SWS_E2E_91039] [SWS_E2E_91073] [SWS_E2E_91077]
[SWS_E2E_91081] [SWS_E2E_91083] [SWS_E2E_91084] [SWS_E2E_91085]
[SWS_E2E_91088] [SWS_E2E_91090] [SWS_E2E_91091] [SWS_E2E_91092]
[SWS_E2E_91095] [SWS_E2E_91099] [SWS_E2E_91100] [SWS_E2E_91102] [UC_
E2E_00251]

205 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

Specification of SW-C End-to-End Communication
Protection Library

AUTOSAR CP R25-11

D.4.3 Deleted Specification Items in R25-11

[SWS_E2E_00314] [SWS_E2E_00318] [SWS_E2E_00319] [SWS_E2E_00320]
[SWS_E2E_00321] [SWS_E2E_00322] [SWS_E2E_00323] [SWS_E2E_00324]
[SWS_E2E_00325] [SWS_E2E_91096] [UC_E2E_00089] [UC_E2E_00165] [UC_
E2E_00192] [UC_E2E_00213] [UC_E2E_00239] [UC_E2E_00242] [UC_E2E_00248]
[UC_E2E_00249] [UC_E2E_00256] [UC_E2E_00257] [UC_E2E_00261] [UC_E2E_
00262] [UC_E2E_00263] [UC_E2E_00264] [UC_E2E_00265] [UC_E2E_00266] [UC_
E2E_00267] [UC_E2E_00268] [UC_E2E_00272] [UC_E2E_00273] [UC_E2E_00274]
[UC_E2E_00275] [UC_E2E_00279] [UC_E2E_00280] [UC_E2E_00288] [UC_E2E_
00289] [UC_E2E_00292] [UC_E2E_00293] [UC_E2E_00296] [UC_E2E_00297] [UC_
E2E_00300] [UC_E2E_00301] [UC_E2E_00302] [UC_E2E_00303] [UC_E2E_00304]
[UC_E2E_00328]

206 of 206 Document ID 428: AUTOSAR_CP_SWS_E2ELibrary

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Implementation of the E2E Library

	5 Dependencies to other modules
	5.1 Required file structure
	5.2 Dependency on CRC library

	6 Requirements Tracing
	7 Functional specification
	7.1 Error classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Production Errors
	7.1.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 E2E Profile 1 types
	8.2.1.1 E2E_P01ConfigType
	8.2.1.2 E2E_P01DataIDMode
	8.2.1.3 E2E_P01ProtectStateType
	8.2.1.4 E2E_P01CheckStateType
	8.2.1.5 E2E_P01CheckStatusType

	8.2.2 E2E Profile 2 types
	8.2.2.1 E2E_P02ConfigType
	8.2.2.2 E2E_P02ProtectStateType
	8.2.2.3 E2E_P02CheckStateType
	8.2.2.4 E2E_P02CheckStatusType

	8.2.3 E2E Profile 4 types
	8.2.3.1 E2E_P04ConfigType
	8.2.3.2 E2E_P04ProtectStateType
	8.2.3.3 E2E_P04CheckStateType
	8.2.3.4 E2E_P04CheckStatusType
	8.2.3.5 E2E_P04HeaderInformationType

	8.2.4 E2E Profile 4m types
	8.2.4.1 E2E_P04mConfigType
	8.2.4.2 E2E_P04mProtectStateType
	8.2.4.3 E2E_P04mCheckStateType
	8.2.4.4 E2E_P04mCheckStatusType
	8.2.4.5 E2E_P04mHeaderInformationType

	8.2.5 E2E Profile 5 types
	8.2.5.1 E2E_P05ConfigType
	8.2.5.2 E2E_P05ProtectStateType
	8.2.5.3 E2E_P05CheckStateType
	8.2.5.4 E2E_P05CheckStatusType
	8.2.5.5 E2E_P05HeaderInformationType

	8.2.6 E2E Profile 6 types
	8.2.6.1 E2E_P06ConfigType
	8.2.6.2 E2E_P06ProtectStateType
	8.2.6.3 E2E_P06CheckStateType
	8.2.6.4 E2E_P06CheckStatusType
	8.2.6.5 E2E_P06HeaderInformationType

	8.2.7 E2E Profile 7 types
	8.2.7.1 E2E_P07ConfigType
	8.2.7.2 E2E_P07ProtectStateType
	8.2.7.3 E2E_P07CheckStateType
	8.2.7.4 E2E_P07CheckStatusType
	8.2.7.5 E2E_P07HeaderInformationType

	8.2.8 E2E Profile 7m types
	8.2.8.1 E2E_P07mConfigType
	8.2.8.2 E2E_P07mProtectStateType
	8.2.8.3 E2E_P07mCheckStateType
	8.2.8.4 E2E_P07mCheckStatusType
	8.2.8.5 E2E_P07mHeaderInformationType

	8.2.9 E2E Profile 8 types
	8.2.9.1 E2E_P08ConfigType
	8.2.9.2 E2E_P08ProtectStateType
	8.2.9.3 E2E_P08CheckStateType
	8.2.9.4 E2E_P08CheckStatusType
	8.2.9.5 E2E_P08HeaderInformationType

	8.2.10 E2E Profile 8m types
	8.2.10.1 E2E_P08mConfigType
	8.2.10.2 E2E_P08mProtectStateType
	8.2.10.3 E2E_P08mCheckStateType
	8.2.10.4 E2E_P08mCheckStatusType
	8.2.10.5 E2E_P08mHeaderInformationType

	8.2.11 E2E Profile 11 types
	8.2.11.1 E2E_P11ConfigType
	8.2.11.2 E2E_P11DataIDMode
	8.2.11.3 E2E_P11ProtectStateType
	8.2.11.4 E2E_P11CheckStateType
	8.2.11.5 E2E_P11CheckStatusType

	8.2.12 E2E Profile 22 types
	8.2.12.1 E2E_P22ConfigType
	8.2.12.2 E2E_P22ProtectStateType
	8.2.12.3 E2E_P22CheckStateType
	8.2.12.4 E2E_P22CheckStatusType

	8.2.13 E2E Profile 44 types
	8.2.13.1 E2E_P44ConfigType
	8.2.13.2 E2E_P44ProtectStateType
	8.2.13.3 E2E_P44CheckStateType
	8.2.13.4 E2E_P44CheckStatusType
	8.2.13.5 E2E_P44HeaderInformationType

	8.2.14 E2E Profile 44m types
	8.2.14.1 E2E_P44mConfigType
	8.2.14.2 E2E_ P44mProtectStateType
	8.2.14.3 E2E_P44mCheckStateType
	8.2.14.4 E2E_P44mCheckStatusType
	8.2.14.5 E2E_P44mHeaderInformationType

	8.2.15 E2E Profile 76 Types
	8.2.15.1 E2E_P76ConfigType
	8.2.15.2 E2E_P76ProtectStateType
	8.2.15.3 E2E_P76CheckStateType
	8.2.15.4 E2E_P76CheckStatusType

	8.2.16 E2E state machine types
	8.2.16.1 E2E_PCheckStatusType
	8.2.16.2 E2E_SMConfigType
	8.2.16.3 E2E_SMCheckStateType
	8.2.16.4 E2E_SMStateType

	8.3 Routine definitions
	8.3.1 E2E Profile 1 routines
	8.3.1.1 E2E_P01Protect
	8.3.1.2 E2E_P01ProtectInit
	8.3.1.3 E2E_P01Forward
	8.3.1.4 E2E_P01Check
	8.3.1.5 E2E_P01CheckInit
	8.3.1.6 E2E_P01MapStatusToSM

	8.3.2 E2E Profile 2 routines
	8.3.2.1 E2E_P02Protect
	8.3.2.2 E2E_P02ProtectInit
	8.3.2.3 E2E_P02Forward
	8.3.2.4 E2E_P02Check
	8.3.2.5 E2E_P02CheckInit
	8.3.2.6 E2E_P02MapStatusToSM

	8.3.3 E2E Profile 4 routines
	8.3.3.1 E2E_P04Protect
	8.3.3.2 E2E_P04ProtectInit
	8.3.3.3 E2E_P04Forward
	8.3.3.4 E2E_P04Check
	8.3.3.5 E2E_P04CheckInit
	8.3.3.6 E2E_P04MapStatusToSM
	8.3.3.7 E2E_P04GetHeaderInfo

	8.3.4 E2E Profile 4m routines
	8.3.4.1 E2E_P04mProtect
	8.3.4.2 E2E_P04mProtectInit
	8.3.4.3 E2E_P04mForward
	8.3.4.4 E2E_P04mSourceCheck
	8.3.4.5 E2E_P04mSinkCheck
	8.3.4.6 E2E_P04mCheckInit
	8.3.4.7 E2E_P04mMapStatusToSM
	8.3.4.8 E2E_P04mGetHeaderInfo

	8.3.5 E2E Profile 5 routines
	8.3.5.1 E2E_P05Protect
	8.3.5.2 E2E_P05ProtectInit
	8.3.5.3 E2E_P05Forward
	8.3.5.4 E2E_P05Check
	8.3.5.5 E2E_P05CheckInit
	8.3.5.6 E2E_P05MapStatusToSM
	8.3.5.7 E2E_P05GetHeaderInfo

	8.3.6 E2E Profile 6 routines
	8.3.6.1 E2E_P06Protect
	8.3.6.2 E2E_P06ProtectInit
	8.3.6.3 E2E_P06Forward
	8.3.6.4 E2E_P06Check
	8.3.6.5 E2E_P06CheckInit
	8.3.6.6 E2E_P06MapStatusToSM
	8.3.6.7 E2E_P06GetHeaderInfo

	8.3.7 E2E Profile 7 routines
	8.3.7.1 E2E_P07Protect
	8.3.7.2 E2E_P07ProtectInit
	8.3.7.3 E2E_P07Forward
	8.3.7.4 E2E_P07Check
	8.3.7.5 E2E_P07CheckInit
	8.3.7.6 E2E_P07MapStatusToSM
	8.3.7.7 E2E_P07GetHeaderInfo

	8.3.8 E2E Profile 7m routines
	8.3.8.1 E2E_P07mProtect
	8.3.8.2 E2E_P07mProtectInit
	8.3.8.3 E2E_P07mForward
	8.3.8.4 E2E_P07mSourceCheck
	8.3.8.5 E2E_P07mSinkCheck
	8.3.8.6 E2E_P07mCheckInit
	8.3.8.7 E2E_P07mMapStatusToSM
	8.3.8.8 E2E_P07mGetHeaderInfo

	8.3.9 E2E Profile 8 routines
	8.3.9.1 E2E_P08Protect
	8.3.9.2 E2E_P08ProtectInit
	8.3.9.3 E2E_P08Forward
	8.3.9.4 E2E_P08Check
	8.3.9.5 E2E_P08CheckInit
	8.3.9.6 E2E_P08MapStatusToSM
	8.3.9.7 E2E_P08GetHeaderInfo

	8.3.10 E2E Profile 8m routines
	8.3.10.1 E2E_P08mProtect
	8.3.10.2 E2E_P08mProtectInit
	8.3.10.3 E2E_P08mForward
	8.3.10.4 E2E_P08mSourceCheck
	8.3.10.5 E2E_P08mSinkCheck
	8.3.10.6 E2E_P08mCheckInit
	8.3.10.7 E2E_P08mMapStatusToSM
	8.3.10.8 E2E_P08mGetHeaderInfo

	8.3.11 E2E Profile 11 routines
	8.3.11.1 E2E_P11Protect
	8.3.11.2 E2E_P11ProtectInit
	8.3.11.3 E2E_P11Forward
	8.3.11.4 E2E_P11Check
	8.3.11.5 E2E_P11CheckInit
	8.3.11.6 E2E_P11MapStatusToSM

	8.3.12 E2E Profile 22 routines
	8.3.12.1 E2E_P22Protect
	8.3.12.2 E2E_P22ProtectInit
	8.3.12.3 E2E_P22Forward
	8.3.12.4 E2E_P22Check
	8.3.12.5 E2E_P22CheckInit
	8.3.12.6 E2E_P22MapStatusToSM

	8.3.13 E2E Profile 44 routines
	8.3.13.1 E2E_P44Protect
	8.3.13.2 E2E_P44ProtectInit
	8.3.13.3 E2E_P44Forward
	8.3.13.4 E2E_P44Check
	8.3.13.5 E2E_P44CheckInit
	8.3.13.6 E2E_P44MapStatusToSM
	8.3.13.7 E2E_P44GetHeaderInfo

	8.3.14 E2E Profile 44m routines
	8.3.14.1 E2E_P44mProtect
	8.3.14.2 E2E_P44mProtectInit
	8.3.14.3 E2E_P44mForward
	8.3.14.4 E2E_P44mSourceCheck
	8.3.14.5 E2E_P44mSinkCheck
	8.3.14.6 E2E_P44mCheckInit
	8.3.14.7 E2E_P44mMapStatusToSM
	8.3.14.8 E2E_P44mGetHeaderInfo

	8.3.15 E2E Profile 76 routines
	8.3.15.1 E2E_P76Protect
	8.3.15.2 E2E_P76ProtectInit
	8.3.15.3 E2E_P76Check
	8.3.15.4 E2E_P76CheckInit
	8.3.15.5 E2E_P76MapStatusToSM

	8.3.16 E2E State machine routines
	8.3.16.1 E2E_SMCheck
	8.3.16.2 E2E_SMCheckInit

	8.3.17 Auxiliary Functions
	8.3.17.1 E2E_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces

	9 Sequence diagrams
	9.1 Sender
	9.1.1 Sender of data elements
	9.1.2 Sender at signal group level

	9.2 Receiver
	9.2.1 Receiver at data element level
	9.2.2 Receiver at signal group level

	10 Configuration specification
	10.1 Published Information

	A Annex A: Safety Manual for usage of E2E Library
	A.1 E2E profiles and their standard variants
	A.2 E2E error handling
	A.3 Methodology of usage of E2E Library
	A.4 RTE configuration constraints for SW-C level protection
	A.4.1 Communication model for SW-C level protection
	A.4.2 Multiplicities for SW-C level protection
	A.4.3 Explicit access

	A.5 Restrictions on the use of COM features

	B Annex B: Application hints on usage of E2E Library
	B.1 COM E2E Callouts
	B.1.1 Functional overview
	B.1.1.1 Sending/Calling
	B.1.1.2 Reception

	B.1.2 Methodology
	B.1.3 Code Example

	B.2 Protection at RTE level through E2E Transformer

	C Not applicable requirements
	D Change history of AUTOSAR traceable items
	D.1 Traceable item history of this document according to AUTOSAR Release R22-11
	D.1.1 Added Specification Items in R22-11
	D.1.2 Changed Specification Items in R22-11
	D.1.3 Deleted Specification Items in R22-11

	D.2 Traceable item history of this document according to AUTOSAR Release R23-11
	D.2.1 Added Specification Items in R23-11
	D.2.2 Changed Specification Items in R23-11
	D.2.3 Deleted Specification Items in R23-11

	D.3 Traceable item history of this document according to AUTOSAR Release R24-11
	D.3.1 Added Specification Items in R24-11
	D.3.2 Changed Specification Items in R24-11
	D.3.3 Deleted Specification Items in R24-11

	D.4 Traceable item history of this document according to AUTOSAR Release R25-11
	D.4.1 Added Specification Items in R25-11
	D.4.2 Changed Specification Items in R25-11
	D.4.3 Deleted Specification Items in R25-11

