AUTSSAR

Document Title

Specification of Data Distribution
Service Transformer

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1140
Document Status published

Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description

AUTOSAR

2025-11-27 | R25-11 Release
Management

« Initial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
2 Acronyms, Abbreviations and Definitions

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
5 Dependencies to other modules

51 Filestructure
6 Requirements Tracing

7 Functional specification

7.1 Transformer infrastructure header
7.2 Marshalling of Parameters and Data Structures
7.3 Unmarshalling of Parameters and Data Structures
7.4 Error Classification e
7.4.1 DevelopmentErrors
7.4.2 Runtime Errors e
7.4.3 ProductionErrors
7.4.4 Extended ProductionErrors

8 API specification

8.1 Importedtypes
8.2 Typedefinitions
8.3 Function definitions
8.3.1 General
8.3.1.1 DdsXf GetVersioninfo
8.3.2 SenderReceiverinterface APl,
8.3.2.1 DdsXf <transformerld>
8.3.2.2 DdsXf Inv_<transformerld>
8.3.3 ClientServerinterface APl
8.3.3.1 DdsXf <transformerld>
8.3.3.2 DdsXf Inv_<transformerld>
8.4 Callback notifications
8.5 Scheduled functions
8.6 Expectedinterfaces

9 Sequence diagrams

AUTSSAR

10 Configuration specification
10.1How to read this chapter

10.2Containers and configuration parameters

10.3Published Information.
A Not applicable requirements

B.1 Change History R25-11.

Change history of AUTOSAR traceable items

B.1.1 Added Specification ltemsin R25-11
B.1.2 Changed Specification ltems in R25-11
B.1.3 Deleted Specification ltemsin R25-11

B.1.4 Added Constraints in R25-11 .
B.1.5 Changed Constraints in R25-11
B.1.6 Deleted Constraints in R25-11

C Referenced Meta Classes

33

33
33
33

34

35

35
35
35
35
35
36
36

37

AUTSSAR

Known Limitations

None.

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, API, and the configuration of Data Distri-
bution Service Transformer in the context of AUTOSAR Classic Platform.

The role of the DDS Transformer is to copy input data elements (VvariableDataPro-
totype) and operations (ClientServerOperations) from the application layer into
a buffer provided by the RTE. And vice versa, the DDS transformer has to copy re-
ceived data to data elements of the buffer provided by the application.

Those procedures are referred in this document as Marshalling and Unmarshalling
of VariableDataPrototypes and ClientServerOperations.

DDS Transformer is stateless, no status information needs to be stored.

The DDS Transformer, unlike SOME/IP [1], does not implement a network protocol. Its
role is to encode and decode the information exchanged between the RTE and the Dds
via a buffer, within the same ECU (see Figure 7.1).

AUTSSAR

2 Acronyms, Abbreviations and Definitions

The glossary below includes acronyms, abbreviations and definitions relevant to the
DDS Transformer module that are not included in the [2, AUTOSAR TR Glossary].

Abbreviation / Acronym: Description:

Dds Data Distribution Service Basic software module (i.e the DDS middleware
implementation in AUTOSAR CP)

DdsXf Data Distribution Service Transformer, DDS Transformer

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Definition: Description:
TransactionHandle See SWS_Rte_08732in [3]

Table 2.2: Definitions used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Specification of SOME/IP Transformer
AUTOSAR_CP_SWS SOMEIPTransformer

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[4] General Specification of Transformers
AUTOSAR_CP_ASWS_ TransformerGeneral

[5] Requirements on Transformer
AUTOSAR_CP_RS Transformer

[6] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[7] System Template
AUTOSAR_CP_TPS_SystemTemplate

[8] Specification of Data Distribution Service for Classic Platform
AUTOSAR_CP_SWS_ DataDistributionService

[9] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

[10] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Transformers [4], which is also valid
for DDS Transformer. Thus, the specification "ASWS Transformer General" shall be
considered as additional and required specification for DDS Transformer.

AUTSSAR

4 Constraints and assumptions

The DDS Transformer can be used for all domain applications when Sender-
ReceiverInterface Or ClientServerInterface communication is used.

TriggerInterface typed data structure consists of an ISignal with length equal
to zero and DdsXf provides an infrastructure header only for ClientServerInter-
face. For this reason, DDS Transformer does not support the TriggerInterface
and DdsXf_ExtractProtocolHeaderFields function.

4.1 Limitations

For the DDS Transformer all general transformer limitations [4] apply.

AUTSSAR

5 Dependencies to other modules

The AUTOSAR RTE [3] has to exist to execute the transformer.

5.1 File structure

The source code file structure is defined in the [4].

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [5] and in [6] and links to

the fulfillment of these.

Requirement

Description

Satisfied by

[SRS_BSW_00337]

Classification of development errors

[CP_SWS_DdsXf 00184]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf _00144]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf_00144]

[SRS_BSW_00383]

The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

[CP_SWS_DdsXf_00144]

[SRS_BSW_00385]

List possible error notifications

[CP_SWS_DdsXf 00184]

[SRS_BSW_00392]

Parameters shall have a type

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf_00144]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[CP_SWS_DdsXf_00183]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[CP_SWS_DdsXf_00180]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[CP_SWS_DdsXf_00180]

[SRS_BSW_00417]

Software which is not part of the
SW-C shall report error events only
after the Dem is fully operational.

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf_00144]

[SRS_BSW_00422]

Pre-de-bouncing of error status
information is done within the Dem

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf_00144]

[SRS_BSW_00432]

Modules should have separate main
processing functions for read/receive
and write/transmit data path

[CP_SWS_DdsXf 00138] [CP_SWS_DdsXf 00144]

[SRS_BSW_00462]

All Standardized Autosar Interfaces
shall have unique requirement Id /
number

[CP_SWS_DdsXf 00138] [CP_SWS_DdsXf 00144]

[SRS_BSW_00482]

Get version information function shall
follow a naming rule

[CP_SWS_DdsXf 00180]

[SRS_BSW_00484]

Input parameters of scalar and enum
types shall be passed as a value.

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf _00144]

[SRS_BSW_00485]

Input parameters of structure type
shall be passed as a reference to a
constant structure

[CP_SWS_DdsXf 00138] [CP_SWS_DdsXf 00144]

[SRS_BSW_00486]

Input parameters of array type shall
be passed as a reference to the
constant array base type

[CP_SWS_DdsXf 00138]

[SRS_BSW_00494]

Servicelnterface argument with a
pointer datatype

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf _00144]

[SRS_Xfrm_00001]

A transformer shall work on data
given by the Rte

[CP_SWS_DdsXf_00264] [CP_SWS_DdsXf_00265]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Xfrm_00002]

A transformer shall provide fixed
interfaces

[CP_SWS_DdsXf_00139] [CP_SWS_DdsXf_00142]
[CP_SWS_DdsXf_00145] [CP_SWS_DdsXf_00146]
[CP_SWS_DdsXf 00147] [CP_SWS_DdsXf 00149]
[CP_SWS_DdsXf_00152] [CP_SWS_DdsXf_00153]
[CP_SWS_DdsXf 00161] [CP_SWS_DdsXf 00165]
[CP_SWS_DdsXf_00166] [CP_SWS_DdsXf_00228]
[CP_SWS_DdsXf 00231] [CP_SWS_DdsXf _00232]
[CP_SWS_DdsXf_00266] [CP_SWS_DdsXf_91002]

[SRS_Xfrm_00004]

A transformer shall support error
handling

[CP_SWS_DdsXf_00264] [CP_SWS_DdsXf_00265]

[SRS_Xfrm_00007]

A deserializer transformer shall
support extraction of data

[CP_SWS_DdsXf _00144]

[SRS_Xfrm_00009]

A fixed set of transformer classes
shall exist

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf _00144]

[SRS_Xfrm_00301]

The DDS Transformer shall define a
copy procedure of atomic, structured
data elements and operations into a
memory buffer

[CP_SWS_DdsXf_00138] [CP_SWS_DdsXf_00140]
[CP_SWS_DdsXf_00141] [CP_SWS_DdsXf_00143]
[CP_SWS_DdsXf_00148] [CP_SWS_DdsXf_00160]
[CP_SWS_DdsXf_00163] [CP_SWS_DdsXf_00164]
[CP_SWS_DdsXf_00168] [CP_SWS_DdsXf_00229]
[CP_SWS_DdsXf_00728] [CP_SWS_DdsXf_00730]
[CP_SWS_DdsXf_00731] [CP_SWS_DdsXf_00732]
[CP_SWS_DdsXf_00738] [CP_SWS_DdsXf_00740]
[CP_SWS_DdsXf_00741] [CP_SWS_DdsXf_00742]
[CP_SWS_DdsXf 00751]

[SRS_Xfrm_00305]

The DDS Transformer shall support
autonomous error reactions on the
server side for client/server
communication

[CP_SWS_DdsXf_00160] [CP_SWS_DdsXf_00161]
[CP_SWS_DdsXf_00167] [CP_SWS_DdsXf_00169]
[CP_SWS_DdsXf_00170]

Table 6.1: Requirements Tracing

N =) A Specification of Data Distribution Service
UT<SAR Transformer

AUTOSAR CP R25-11

7 Functional specification

Figure 7.1: Overview of DDS Transformer

Figure 7.1 shows the AUTOSAR Classic Platform communication stack where the DDS
Transformer is used together with the Dds ina ClientServerInterface application
example on server side.

When a SW-C initiates an inter-ECU communication which is configured to be trans-
formed, the SW-C hands the data over to the RTE. The RTE executes the configured
transformer chain which contains the DDS Transformer.

First, the RTE executes the application sample through DdsXf, which creates a copy
of the SW-C data (note: the data is copied into a memory buffer provided by the RTE)
and sends it as a PDU to Dds. Subsequently, Dds extracts the data from the PDU,
serializes it, and packages it into one or more DDS-RTPS message PDUs. Finally, the
PDU is sent to the network stack (SoAd, Tcplp, etc.).

The DDS Transformer on the receiver side copies the data back from the received
PDU into the original data structure in a symmetrical way. These are handed over to
the receiving SW-C. From the SW-C’s point of view, it is totally transparent whether data

13 of 44 Document ID 1140: AUTOSAR_CP_SWS DataDistributionServiceTransformer

AUTSSAR

are transformed or not. It provides also a subset of the transformer errors specified for
this transformer class and supports only out-of-place buffer handling.

The DDS Transformer is a transformer of the class Serializer.

At most one transformer of each transformer class shall be allowed per transformer
chain [4, Transformer Classes] and a Serializer class transformer shall map struc-
tured data type to a linear byte array, so that DDS Transformer can be only the first
transformer in a chain. This property is formalized by [CP_SWS_DdsXf 00139], [CP_
SWS_DdsXf_00146], [CP_SWS_DdsXf_00142], [CP_SWS_DdsXf_00232].

In addition, if the handling of safety and security is performed in scope of the Dds
then no further transformers shall be defined in combination with DDS Transformer as
stated by [constr_3822] in [7, SystemTemplate].

The DDS Transformer has no module specific EcuC because its whole configuration
is based on the DdsTransformationDescription and DdsTransformation—
ISignalProps.

Identifiable

TransformationTechnology

haslInternalState: Boolean [0..1]
needsOriginalData: Boolean [0..1]

protocol: String [0..1]

transformerClass: TransformerClassEnum [0..1]
version: String [0..1]

+ o+ o+ o+

+ransformer 0.1

FibexElement
UploadableDesignEiement «atpVariation,atpSplitable»
ISignal
+transformationDescription |0..1
+ dataTypePolicy: DataTypePolicyEnum [0..1] -
+ iSignalType: ISignalTypeEnum [0..1] Describable
+ length: UnlimitedInteger [0..1] TransformationDescription

«atpSplitable»

+ransformationlSignalProps| 0.* Z

Describable

«atpVariation»

Transformation!SignaiProps DdsTransformation Description

+ csEmorReaction: CSTransformerEmrorReactionEnum [0..1]

i

DdsTransformationlSignalProps

«enumeration»
CSTransformerEmrorReactionEnum

literals

autonomous
applicationOnly

Figure 7.2: DDS Transformer Specific Configuration

AUTSSAR

Class DdsTransformationDescription

Note The DdsTransformationDescription is used to specify the DDS transformer specific attributes.
Tags: atp.Status=candidate

Base ARObject, Describable, TransformationDescription

Aggregated by | TransformationTechnology.transformationDescription

Attribute Type Mult. Kind | Note

Table 7.1: DdsTransformationDescription

Class «atpVariation» DdsTransformationISignalProps

Note The class DdsTransformationISignalProps specifies ISignal specific configuration properties for the DDS
transformer.
Tags: atp.Status=candidate

Base ARObject, Describable, TransformationlSignalProps

Aggregated by | |Signal.transformationlSignalProps, ISignalGroup.transformationlSignalProps

Attribute Type Mult. Kind | Note

Table 7.2: DdsTransformationlSignalProps

[SWS_DdsXf CONSTR_00151] DDS Transformer configuration [The DDS Trans-
former shall be configured according to [constr_3821] defined in [7]]

7.1

Transformer infrastructure header

DDS Transformer infrastructure header parameters are additional information the
DDS Transformer adds into the provided buffer in ClientServerInterface context

only.

This information is used by the Dds to support the Request-Response Method feature
implemented by the DDS middleware as described in [8].

[CP_SWS DdsXf 00751] Infrastructure header definition
Upstream requirements: SRS_Xfrm_00301

[Ddsx £ infrastructure header shall be defined as follow:

* requestId [32 bit]

— clientId[16 bit]

— sequenceCounter [16 bit]

* reserved [24 bit]

* returnValue [8 bit]

AUTSSAR

[CP_SWS_DdsXf CONSTR_00735] reserved parameter of infrastructure header
[The reserved parameter of the infrastructure header data structure shall be set to

0.]

0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \10\11\12\13\14]15\16\17\18\19]20]21]22\23\24\25[26\27\28\29]30]31

requestld (clientld [16 bit] / sequenceCounter) [32 bit]

reserved [24 bit] returnValue[8 bit]

Figure 7.3: Format of infrastructure header

The complete memory layout of the transformed buffer is showed in Figure 7.4.

0] 1 \ 2 \ 3 \ 4 \ 5 \ 6] 7 \ 8 \ 9 \10\11\12\13\14\15\16\17\18\19]20\21\22\23\24]25\26\27\28\29]30]31

requestld (clientld [16 bit] / sequenceCounter) [32 bit]

reserved [24 bit] returnValue[8 bit]

payload [variable size]

Figure 7.4: The complete buffer

7.2 Marshalling of Parameters and Data Structures

[CP_SWS DdsXf _00728] Marshalling of primitive data types

Upstream requirements: SRS_Xfrm_00301
[The Ddsx £ shall perform a raw copy of the source AUTOSAR primitive data types into
the provided memory buffer. |

[CP_SWS DdsXf _00730] Marshalling of ImplementationDataType of category AR-
RAY

Upstream requirements: SRS_Xfrm_00301

[The Ddsxf shall perform a raw copy of the source ImplementationDataType Of
category ARRAY into the provided memory buffer. |

[CP_SWS_DdsXf 00731] Marshalling of ImplementationDataType of category
STRUCTURE

Upstream requirements: SRS_Xfrm_00301

[The Ddsxf shall perform a raw copy of the source ImplementationDataType Of
category STRUCTURE into the provided memory buffer. |

AUTSSAR

[CP_SWS_DdsXf_00732] Marshalling of ImplementationDataType of category
TYPE_REFERENCE

Upstream requirements: SRS_Xfrm_00301

[The Ddsxf shall perform a raw copy of the source ImplementationDataType Of
category TYPE_REFERENCE into the provided memory buffer. |

Note. Data type defined according to [CP_SWS_DdsXf 00732] is also referred as
"Redefinition Implementation Data Type" as stated by [3, chapter 5.3.4.2].

[CP_SWS_DdsXf CONSTR_00733] Marshalling of UNION data type [Tmplemen—
tationDataType of category UNION is not managed by the Dds Transformer. The
DDS Transformer BSW configuration validation shall fail in case a data type is typed
with ImplementationDataType containing a union. |

[CP_SWS_DdsXf CONSTR_00734] Marshalling of POINTER data type [Imple-
mentationDataType of category POINTER is not managed by the Dds. The DDS
Transformer BSW configuration validation shall fail in case a data type is typed with
ImplementationDataType containing a pointer. |

Note. The handling of any kind of String type (e.g fixed length, variable length, dif-
ferent encoding) is covered by [CP_SWS_DdsXf_00730], [CP_SWS_DdsXf 00740].
The DDS Transformer performs a raw copy of the parameters and it does not perform
any check on the data structure consistency. Those kind of checks are up to the DDS
middleware logic implemented in the Dds.

For details about Primitive AUTOSAR CP platform data types, Enumeration and Im-
plementationDataType referto 8.2 [9], and 5.5.4, 5.3.4.2 [3].

7.3 Unmarshalling of Parameters and Data Structures

[CP_SWS_DdsXf_00738] Unmarshalling of primitive data types
Upstream requirements: SRS _Xfrm_00301
[The Ddsxf shall retrieve an AUTOSAR primitive data type from a source memory

buffer representing the same AUTOSAR primitive data type created according to [CP_
SWS_DdsXf_00728] |

[CP_SWS DdsXf 00740] Unmarshalling of ImplementationDataType of category
ARRAY

Upstream requirements: SRS_Xfrm_00301

[The Ddsxf shall retrieve an ImplementationDataType of category ARRAY from
a source memory buffer created according to [CP_SWS_DdsXf_00730]]

AUTSSAR

[CP_SWS_DdsXf_00741] Unmarshalling of ImplementationDataType of category
STRUCTURE

Upstream requirements: SRS_Xfrm_00301

[The DdsXxf shall retrieve an ImplementationDataType of category STRUCTURE
from a source buffer memory created according to [CP_SWS_DdsXf_00731]]

[CP_SWS_DdsXf_00742] Unmarshalling of ImplementationDataType of category
TYPE_REFERENCE

Upstream requirements: SRS_Xfrm_00301

[The Ddsxf shall retrieve an ImplementationDataType of category
TYPE_REFERENCE from a source memory buffer created according to [CP_
SWS_DdsXf_00732]|

7.4 Error Classification

Section "Error Handling" of the document [10] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.4.1 Development Errors

[CP_SWS_DdsXf_00184] Definition of development errors in module DdsXf
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385

[

Type of error Related error code Error value

Error code if any other API service, except Get DDSXF_E_UNINIT 0x01
VersionlInfo is called before the transformer
module was initialized with Init or after a call to De
Init.

Error code if an invalid configuration set was DDSXF_E_INIT_FAILED 0x02
selected

API service called with wrong parameter DDSXF_E_PARAM 0x03
AP service called with invalid pointer DDSXF_E_PARAM_POINTER 0x04

7.4.2 Runtime Errors

There are no runtime errors.

AUTSSAR

7.4.3 Production Errors

There are no production errors.

7.4.4 Extended Production Errors

All Extended Production Errors valid for DDS Transformer are specified in [4]

AUTSSAR

8 API specification

8.1 Imported types

There are no imported types from other modules beyond those specified in [4, ASWS
Transformer General].

In the Module Interlink Headers file which is imported by the DDS Transformer, all
ImplementationDataTypes known to the RTE are included. Using this mechanism,
the DDS Transformer knows all data types of data which shall be transformed.

[CP_SWS_DdsXf 91002] Definition of imported datatypes of module DdsXf
Upstream requirements: SRS_Xfrm_00002

[
Module Header File Imported Type
Rte Rte.h Rte_Cs_TransactionHandleType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

8.2 Type definitions

[CP_SWS_DdsXf_00183] Definition of datatype DdsXf_ConfigType
Upstream requirements: SRS_BSW_00404

[
Name DdsXf_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description This is the type of the data structure containing the initialization data for the transformer.
Available via DdsXf.h
]

8.3 Function definitions

The DDS Transformer provides a subset of the specific interfaces generally required
by [4, ASWS Transformer General].

AUTSSAR

[CP_SWS DdsXf 00266] DDS Transformer shall define DdsTransformationDe-
scription
Upstream requirements: SRS_Xfrm_00002

[The DDS Transformer shall only provide functions for transformers where
the TransformationTechnology aggregates a DdsTransformationDescrip-
tion intherole transformationDescription.]

8.3.1 General
8.3.1.1 DdsXf_GetVersioninfo

[CP_SWS DdsXf 00180] Definition of API function DdsXf_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411, SRS_BSW_00482

[

Service Name DdsXf_GetVersionInfo
Syntax void DdsXf_GetVersionInfo (
Std_VersionInfoType VersionInfo

)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Return value None
Description This service returns the version information of the called transformer module.
Available via DdsXf.h

AUTSSAR

8.3.2 SenderReceiverinterface API

8.3.2.1 DdsXf_<transformerld>

[CP_SWS DdsXf 00138] Definition of APl function DdsXf_<transformerld>

Upstream requirements: SRS_Xfrm_00301, SRS_Xfrm_00009, SRS_BSW_00494, SRS_BSW_
00486, SRS BSW 00485, SRS BSW 00484, SRS BSW 00462,
SRS _BSW 00432, SRS_BSW 00422, SRS _BSW _00417, SRS_BSW _
00392, SRS _BSW 00369, SRS BSW_00357

[

Service Name DdsXf <transformerld>

Syntax uint8 DdsXf_<transformerId> (
uint8* buffer,
uint32x bufferLength,
<paramtype> dataElement

)

Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) dataElement Data element which shall be transformed
Parameters (inout) None
Parameters (out) buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer
bufferLength Used length of the buffer
Return value uint8 0x00 (E_OK): Marshalling successful
Description This function transforms a Sender/Receiver communication using the marshalling procedure of

Dds. It takes the data element as input and outputs a uint8 array containing the marshalled
data. The length of the marshalled data shall be calculated by the transformer during runtime
and returned in the OUT-parameter bufferLength. It may be smaller than the maximum buffer
size used by the RTE for buffer allocation.

Available via DdsXf.h

]

[CP_SWS DdsXf 00228] DdsXf_<transformerld> parameters definition
Upstream requirements: SRS_Xfrm_00002

[In function DdsXf_<transformerId> defined in [CP_SWS_DdsXf _00138] the pa-
rameters:

* paramtype
* type
* transformerId

shall be defined according to [SWS_Xfrm_00036] in [4, TransformerGeneral]. |

The function specified in [CP_SWS_DdsXf 00138] exists for each transformed
SenderReceiverInterface communication which uses the Dds marshalling of
VariableDataPrototypes procedure according to [CP_SWS_DdsXf 00140].

AUTSSAR

[CP_SWS DdsXf 00139] DDS Transformer in a transformer chain
Upstream requirements: SRS_Xfrm_00002

[The function Ddsxf_<transformerId> specifiedin [CP_SWS_DdsXf_00138] shall
exist for the first reference in the list of ordered references t ransformerChain froma
DataTransformationtoa TransformationTechnology ifthe DataTransfor—
mation is referenced by an I1Signal in the role dataTransformation where the
ISignal references a SystemSignal which is referenced by SenderReceiver-—
ToSignalMapping.]

Note. [CP_SWS DdsXf 00139] It represents a restriction of the more general [SWS_
Xfrm_00037] in [4, TransformerGeneral].

[CP_SWS_DdsXf_00152] DDS Transformer in a DataPrototypeMapping
Upstream requirements: SRS_Xfrm_00002

[The function DdsxXf_<transformerId> specifiedin [CP_SWS_DdsXf_00138] shall
exist according to [SWS_Xfrm_00106] in [4, TransformerGeneral]. |

[CP_SWS DdsXf_00140] DDS Transformer data marshalling procedure
Upstream requirements: SRS_Xfrm_00301

[The function DdsxXf_<transformerId> specified in [CP_SWS_DdsXf 00138]
shall perform a raw copy of the primitive or complex data elements of Sender-
ReceiverInterface communication into the provided buffer according to
[CP_SWS_DdsXf_00728], [CP_SWS_DdsXf 00730], [CP_SWS_DdsXf_00731],
[CP_SWS_DdsXf_00732], [CP_SWS_DdsXf CONSTR_00733],
[CP_SWS_DdsXf CONSTR_00734]|

8.3.2.2 DdsXf_Inv_<transformerid>

[CP_SWS DdsXf 00144] Definition of APl function DdsXf_Inv_<transformerid>

Upstream requirements: SRS_Xfrm_00009, SRS_Xfrm_00007, SRS_BSW_00494, SRS_BSW_
00485, SRS BSW 00484, SRS BSW 00462, SRS BSW 00432,
SRS _BSW_00422, SRS BSW_00417, SRS _BSW_00392, SRS BSW_
00383, SRS_BSW_00369, SRS_BSW_00357

Service Name DdsXf_Inv_<transformerld>
Syntax uint8 DdsXf_Inv_<transformerId> (
const uint8x buffer,
uint32 bufferLength,
<type>* dataElement
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant

AUTSSAR

A
Parameters (in) buffer Buffer allocated by the RTE, where the still marshalled data are
stored by the Rte
bufferLength Used length of the buffer
Parameters (inout) None
Parameters (out) dataElement Data element which is the result of the transformation and
contains the unmarshalled data element
Return value uint8 0x00 (E_OK): Unmarshalling successful 0x01 (E_NO_DATA): No
data available which can be unmarshalled 0x89 (E_SER_
MALFORMED_MESSAGE): The received message is
malformed. The transformer is not able to produce an output.
Description This function unmarshalls a Sender/Receiver communication using the unmarshalling
procedure of Dds. It takes the uint8 array containing the marshalled data as input and outputs
the original data element which will be passed to the RTE.
Available via DdsXf.h

[CP_SWS DdsXf_00231] DdsXf_Inv_<transformerld> parameters definition
Upstream requirements: SRS_Xfrm_00002

[In function DdsXf_<transformerId> defined in [CP_SWS_DdsXf_00138] the pa-
rameters:

* type
* transformerId

shall be defined according to [SWS_Xfrm_00042] in [4, TransformerGeneral]. |

This function specified in [CP_SWS_DdsXf 00144] exists for each transformed
SenderReceiverInterface communication which uses the Dds unmarshalling of
VariableDataPrototypes procedure according to [CP_SWS_DdsXf 00147].

[CP_SWS DdsXf 00146] DDS inverse Transformer in a chain
Upstream requirements: SRS_Xfrm_00002

[The function DdsXf_Inv_<transformerId> specifiedin [CP_SWS_DdsXf 00144]
shall exist for the first reference in the list of ordered references transformer—
Chain from a DataTransformation t0 @ TransformationTechnology if the
DataTransformation is referenced by an ISignal in the role dataTransfor-
mation where the ISignal references a SystemSignal which is referenced by
SenderReceiverToSignalMapping. |

Note. [CP_SWS_DdsXf_00146] represents a restriction of the more general [SWS_
Xfrm_00043] in [4, TransformerGeneral].

[CP_SWS_DdsXf_00153] DDS inverse Transformer in a DataPrototypeMapping
Upstream requirements: SRS_Xfrm_00002

[The function Ddsxf_<transformerId> specifiedin [CP_SWS_DdsXf 00138] shall
exist according to [SWS_Xfrm_00107] in [4, TransformerGeneral]. |

AUTSSAR

[CP_SWS_DdsXf_00147] DDS Transformer data unmarshalling procedure
Upstream requirements: SRS_Xfrm_00002
[The function DdsXf_Inv_<transformerId> specifiedin[CP_SWS_DdsXf 00144]

shall retrieve the set of primitive or complex data elements of SenderReceiverIn-
terface from a provided buffer created according to [CP_SWS_DdsXf_00140]|

[CP_SWS_DdsXf_00264] DDS Transformer data unmarshalling with empty buffer
Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00004

[If DdsXf_Inv_<transformerId> specified in [CP_SWS_DdsXf 00144] is called
with buffer equal to NULL_PTR and bufferLength equal to 0, the output buffer shall not
be changed and DdsXf_Inv_<transformerId> shall return with E_NO_DATA. |

8.3.3 ClientServerinterface API

8.3.3.1 DdsXf_<transformerld>

[CP_SWS DdsXf 00141] Definition of APl function DdsXf_<transformerld>
Upstream requirements: SRS_Xfrm_00301

[

Service Name

DdsXf <transformerld>

Syntax

uint8 DdsXf_<transformerId> (
const Rte_Cs_TransactionHandleTypex TransactionHandle,

uint8x buffer,

uint32+ bufferLength,
Std_ReturnType returnValue,

<paramtype> data_l,
<paramtype> data_n

)

Service ID [hex]

0x08

Sync/Async

Synchronous

Reentrancy

Non Reentrant

Parameters (in)

TransactionHandle

Transaction handle according to [SWS_Rte_08732] (clientld and
sequenceCounter) needed to differentiate between multiple
requests.

returnValue

Return value from server side for transmission to the calling
client. This argument is only available for marshallers of the
response of a Client/Server communication if

« the ClientServerOperation has at least one PossibleError

defined or

« autonomous error reaction is activated

data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)
data_n Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)
Parameters (inout) None

V

AUTSSAR

A
Parameters (out) buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer
bufferLength Used length of the buffer
Return value uint8 0x00 (E_OK): Marshalling successful
Description This function transforms a Client/Server communication using the marshalling procedure of

Dds. It takes the operation arguments and optionally the return value as input and outputs a
uint8 array containing the marshalled data. The length of the marshalled data shall be
calculated by the transformer during runtime and returned in the OUT-parameter bufferLength.
It may be smaller than the maximum buffer size used by the RTE for buffer allocation.

Available via DdsXf.h

]

[CP_SWS_ DdsXf _00229] DdsXf_<transformerld> parameters definition
Upstream requirements: SRS_Xfrm_00301

[In function DdsXf_<transformerId> defined in [CP_SWS_DdsXf_00141] the pa-
rameters:

* paramtype

* type
* transformerId

shall be defined according to [SWS_Xfrm_00038] in [4, TransformerGeneral]. |

Please note that both the IN and IN-OUT arguments of the ClientServerOpera-
tion which are transformed are IN arguments from the transformer’s point of view
because both are only read by the transformer and not written.

This function specified in [CP_SWS_DdsXf_00141] exists for the server and each client
of each transformed ClientServerInterface communication which uses the Dds
marshalling of variableDataPrototypes, ClientServerOperations procedure
according to [CP_SWS_DdsXf 00143]

It exists on both the Client and the Server but the arguments are different.

On the client it marshalls the request of the Client/Server call. There, the data_1,
..., data_n arguments of the API correspond to the IN and INOUT arguments of the
ClientServerOperation. The argument returnvalue doesn’t exist.

On the server it marshalls the response of the Client/Server call. There, the data_1,
..., data_n arguments of the API correspond to the INOUT and OUT arguments of the
ClientServerOperation. The argument returnvValue exists here if at least one
possibleError is defined for the ClientServerOperation because the return
code of the operation has to be transmitted.

[CP_SWS_ DdsXf _00142] DDS Transformer in a transformer chain
Upstream requirements: SRS_Xfrm_00002

[The function DdsxXf_<transformerId> specifiedin [CP_SWS_DdsXf_00141] shall
be defined according to [SWS_Xfrm_00039] in [4, TransformerGeneral]. |

AUTSSAR

Due to [CP_SWS_ DdsXf 00142], the API of [CP_SWS_ DdsXf 00141] exists both on
client and server.

[CP_SWS DdsXf 00143] DDS Transformer operation parameters marshalling
procedure

Upstream requirements: SRS_Xfrm_00301

[The function DdsXf_<transformerId> specified in [CP_SWS_DdsXf 00141]
shall perform a raw copy of the primitive or complex operation arguments of
ClientServerInterface communication into the provided buffer according to
[CP_SWS_DdsXf 00728], [CP_SWS_DdsXf 00730], [CP_SWS_DdsXf_00731],
[CP_SWS_DdsXf_00732], [CP_SWS_DdsXf_ CONSTR_00733].
[CP_SWS_DdsXf CONSTR_00734]]

[CP_SWS DdsXf 00169] DDS Transformer infrastructure header set
Upstream requirements: SRS_Xfrm_00305

[The function DdsXf_<transformerId> specified in [CP_SWS_DdsXf 00141]
shall set the infrastructure header according to the format defined in
[CP_SWS_DdsXf_00751]]

[CP_SWS_ DdsXf 00160] Infrastructure header returnValue set
Upstream requirements: SRS_Xfrm_00301, SRS_Xfrm_00305

[If executed on server side, the function DdsXf_ <transformerId> specified
in [CP_SWS_DdsXf 00141] shall copy the returnvalue input parameter into
the Returnvalue field of the provided buffer according to the format defined in
[CP_SWS_DdsXf_00751]]

[CP_SWS DdsXf 00163] Infrastructure header clientld set
Upstream requirements: SRS_Xfrm_00301

[The function Ddsxf_<transformerId> specified in [CP_SWS_DdsXf_00141] shall
copy the clientId field of the TransactionHandle data structure input parameter
into the requestId.client1d field of the provided buffer according to the format
defined in [CP_SWS_DdsXf_00751]|

[CP_SWS_DdsXf_00164] Infrastructure header sequenceCounter set
Upstream requirements: SRS_Xfrm_00301

[The function Ddsxf_<transformerId> specified in [CP_SWS_DdsXf_00141] shall
copy the sequenceCounter field of the TransactionHandle data structure input
parameter into the requestId.sequenceCounter field of the provided buffer ac-
cording to the format defined in [CP_SWS_DdsXf_00751]]

AUTSSAR

[CP_SWS DdsXf 00168] Infrastructure header reserved set
Upstream requirements: SRS_Xfrm_00301

[The function Ddsxf_<transformerId> specifiedin [CP_SWS_DdsXf_00141] shall

set the reserved field of the provided buffer according to the format defined in
[CP_SWS_DdsXf_00751] to 0.

8.3.3.2 DdsXf Inv_<transformerld>

[CP_SWS DdsXf 00145] Definition of API function DdsXf_Inv_<transformerid>
Upstream requirements: SRS_Xfrm_00002

Service Name DdsXf_Inv_<transformerld>

Syntax uint8 DdsXf_Inv_<transformerId> (
Rte_Cs_TransactionHandleType* TransactionHandle,
const uint8x buffer,
uint32+ bufferLength,
Std_ReturnType returnValue,
<type>* data_l,
<type>* data_n

)

Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

buffer

Buffer allocated by the RTE, where the still marshalled data are
stored by the Rte

bufferLength

Used length of the buffer

Parameters (inout)

None

Parameters (out)

TransactionHandle

Transaction handle according to [SWS_Rte_08732] (clientld and
sequenceCounter) needed to differentiate between multiple
requests.

returnValue

Return value from server side for transmission to the calling
client. This argument is only available for marshallers of the
response of a Client/Server communication if

« the ClientServerOperation has at least one PossibleError

defined or

« autonomous error reaction is activated

data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)
data_n Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)
Return value uint8 0x00 (E_OK): Unmarshalling successful 0x01 (E_NO_DATA): No

data available which can be marshalled 0x89 (E_SER_
MALFORMED_MESSAGE): The received message is
malformed. The transformer is not able to produce an output.

Description

This function unmarshalls a Client/Server communication using the unmarshalling procedure of
Dds. It takes the uint8 array containing the marshalled data as input and outputs the return
value of the server runnable and the operation arguments which have to be passed from the

server to the client.

Available via

DdsXf.h

AUTSSAR

[CP_SWS_DdsXf_00232] DdsXf_Inv_<transformerld> parameters definition
Upstream requirements: SRS_Xfrm_00002

[In function DdsXf_ Inv_<transformerId> defined in [CP_SWS_DdsXf 00145]
the parameters:

* paramtype

* type
* transformerId

shall be defined according to [SWS_Xfrm_00044] in [4, TransformerGeneral]. |

Please note that both the IN and IN-OUT arguments of the ClientServerOpera-
tion which are transformed are OUT arguments from the transformer’s point of view
because both are only read by the transformer and not written.

This function specified in [CP_SWS_DdsXf_00141] exists for the server and each client
of each transformed ClientServerInterface communication which uses the Dds
unmarshalling of VariableDataPrototypeSs, ClientServerOperationS proce-
dure according to [CP_SWS_DdsXf 00149]

It exists on both the Client and the Server but the arguments are different.

On the server it unmarshalls the request of the Client/Server call. There, the data_1,
..., data_n arguments of the API correpsond to the IN and INOUT arguments of the
ClientServerOperation. The argument returnvalue doesn’t exist.

On the client it unmarshalls the response of the Client/Server call. There, the data_1,
..., data_n arguments of the API correpsond to the INOUT and OUT arguments of
the ClientServerOperation. If the ClientServerOperation has at least one
possibleError defined, the returnValue shall be determined by subtracting Ox1F from
the Return Code value. Otherwise the return value shall be set to the actual value of
the Return Code.

[CP_SWS DdsXf 00148] DDS inverse Transformer in a chain
Upstream requirements: SRS_Xfrm_00301

[The function DdsXf_Inv_<transformerId> specifiedin[CP_SWS_DdsXf 00145]
shall be defined according to [SWS_Xfrm_00045] in [4, TransformerGeneral]. |

Due to [CP_SWS_DdsXf _00148], the API of [CP_SWS_DdsXf 00145] exists both on
client and server.

[CP_SWS DdsXf 00149] DDS Transformer operation parameters unmarshalling
procedure
Upstream requirements: SRS_Xfrm_00002

[The function DdsXf_Inv_<transformerId> specifiedin [CP_SWS_DdsXf 00145]
shall retrieve the set of primitive or complex operation argumentsinaclientServer—

AUTSSAR

Interface from a provided buffer created according to [CP_SWS_DdsXf_00143],
[CP_SWS_DdsXf_00169]. |

[CP_SWS DdsXf _00170] DDS Transformer infrastructure header get
Upstream requirements: SRS_Xfrm_00305

[The function Ddsxf_Inv_<transformerId> specifiedin [CP_SWS_DdsXf 00141]
shall get the infrastructure header from a provided buffer created according to [CP_-
SWS_DdsXf_00143], [CP_SWS_DdsXf_00160] |

[CP_SWS DdsXf 00161] DDS Transformer returnValue get
Upstream requirements: SRS_Xfrm_00002, SRS_Xfrm_00305

[If executed on client side, the function DdsXf_Inv_<transformerId> specified in
[CP_SWS_DdsXf_00145] shall copy the Returnvalue from a provided buffer cre-
ated according to [CP_SWS_DdsXf 00143], [CP_SWS_DdsXf_00169] into the output
parameter rreturnvalue.]

[CP_SWS DdsXf_00165] DDS Transformer clientld get
Upstream requirements: SRS_Xfrm_00002

[The function DdsXf_Inv_<transformerId> specifiedin [CP_SWS_DdsXf 00145]
shall copy the requestId.clientId from a provided buffer created according
to [CP_SWS_DdsXf 00143], [CP_SWS_DdsXf 00169] into the output parameter

TransactionHandle->clientId.]

[CP_SWS _DdsXf _00166] DDS Transformer sequenceCounter get
Upstream requirements: SRS_Xfrm_00002

[The function DdsXf_Inv_<transformerId> specifiedin [CP_SWS_DdsXf 00145]
shall copy the requestId.sequenceCounter from a provided buffer created ac-
cording to [CP_SWS_DdsXf 00143], [CP_SWS_DdsXf_00169] into the output param-

eter TransactionHandle->sequenceCounter. |

[CP_SWS_ DdsXf 00167] Infrastructure header reserved field check
Upstream requirements: SRS_Xfrm_00305

[The function DdsXf_Inv_<transformerId> specifiedin[CP_SWS_DdsXf 00145]
shall return with E_SER_MALFORMED_MESSAGE and the output buffer shall not be
changed if the provided buffer, created according to [CP_SWS_DdsXf_00143], [CP_
SWS_DdsXf_00169], contains a reserved field not set to 0. |

[CP_SWS_ DdsXf _00265] DDS Transformer operation parameters unmarshalling
procedure with empty buffer

Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00004
[If DdsXf_Inv_<transformerId> specified in [CP_SWS_DdsXf 00145] is called

with buffer equal to NULL_PTR and bufferLength equal to 0, the output buffer shall not
be changed and DdsXf_Inv_<transformerId> shall return with E_NO_DATA. |

AUTSSAR

8.4 Callback notifications

DDS Transformer has no callbacks functions.

8.5 Scheduled functions

DDS Transformer has no scheduled functions

8.6 Expected interfaces

There are no expected interfaces.

AUTSSAR

9 Sequence diagrams

There are no sequence diagrams.

AUTSSAR

10 Configuration specification

There is no module specific configuration available to the Dds. The EcuC defined in [4,
ASWS Transformer General] shall be used.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in [10].

10.2 Containers and configuration parameters

This specification does not have any configuration parameters.

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in [10].

AUTSSAR

A Not applicable requirements

[SWS_DdsXf_NA_00000] Not applicable requirements

Upstream requirements: SRS_BSW_00004, SRS_BSW_00101, SRS_BSW_00159, SRS_BSW _
00167, SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00171,
SRS_BSW_00323, SRS_BSW_00336, SRS_BSW_00339, SRS_BSW _
00344, SRS_BSW_00345, SRS_BSW_00375, SRS_BSW_00380,
SRS_BSW_00384, SRS_BSW_00386, SRS_BSW_00388, SRS_BSW_
00389, SRS_BSW_00390, SRS_BSW_00393, SRS_BSW_00395,
SRS_BSW_00396, SRS_BSW_00397, SRS_BSW_00398, SRS_BSW _
00399, SRS_BSW_00400, SRS_BSW_00402, SRS_BSW_00403,
SRS_BSW_00405, SRS_BSW_00406, SRS_BSW_00409, SRS_BSW_
00416, SRS_BSW_00419, SRS_BSW_00423, SRS_BSW_00424,
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_
00428, SRS_BSW_00429, SRS_BSW_00433, SRS_BSW_00437,
SRS_BSW_00438, SRS_BSW_00450, SRS_BSW_00451, SRS_BSW _
00452, SRS_BSW_00458, SRS_BSW_00461, SRS_BSW_00466,
SRS_BSW_00467, SRS_BSW_00469, SRS_BSW_00470, SRS_BSW_
00471, SRS_BSW_00472, SRS_BSW_00478, SRS_BSW_00488,
SRS_BSW_00489, SRS_BSW_00490, SRS_BSW_00491, SRS_BSW_
00493, SRS_BSW_00496

[This item lists all the not applicable requirements for this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include requirements that have been
removed from the specification in a later version. These requirements do not appear
as hyperlinks in the document.

B.1

B.1.1

Change History R25-11

Added Specification Items in R25-11

[CP_SWS_DdsXf 00138] [CP_SWS_DdsXf 00139] [CP_SWS_DdsXf_00140] [CP_

SWS_DdsXf 00141]
SWS_DdsXf 00144]
SWS_DdsXf 00147]
SWS_DdsXf 00152]
SWS_DdsXf 00161]
SWS_DdsXf 00165]
SWS_DdsXf 00168]
SWS_DdsXf 00180]
SWS_DdsXf 00228]
SWS_DdsXf 00232]
SWS_DdsXf_00266]
SWS_DdsXf_00731]
SWS_DdsXf 00740]

[CP_SWS_DdsXf_00142]
[CP_SWS_DdsXf_00145]
[CP_SWS_DdsXf_00148]
[CP_SWS_DdsXf 00153]
[CP_SWS_DdsXf _00163]
[CP_SWS_DdsXf_00166]
[CP_SWS_DdsXf 00169]
[CP_SWS_DdsXf 00183]
[CP_SWS_DdsXf_00229]
[CP_SWS_DdsXf_00264]
[CP_SWS_DdsXf_00728]
[CP_SWS_DdsXf_00732]
[CP_SWS_DdsXf_00741]

SWS_DdsXf_00751] [CP_SWS_DdsXf_91002]

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

B.1.4 Added Constraints in R25-11

[CP_SWS_DdsXf_CONSTR_00733]

[CP_SWS_DdsXf _00143]
[CP_SWS_DdsXf_00146]
[CP_SWS_DdsXf_00149]
[CP_SWS_DdsXf_00160]
[CP_SWS_DdsXf_00164]
[CP_SWS_DdsXf_00167]
[CP_SWS_DdsXf_00170]
[CP_SWS_DdsXf_00184]
[CP_SWS_DdsXf_00231]
[CP_SWS_DdsXf_00265]
[CP_SWS_DdsXf_00730]
[CP_SWS_DdsXf_00738]
[CP_SWS_DdsXf_00742]

[CP_SWS_DdsXf_CONSTR_00734]

SWS_DdsXf_CONSTR_00735] [SWS_DdsXf_CONSTR_00151]

[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_
[CP_

[CP_

AUTSSAR

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

AUTSSAR

C Referenced Meta Classes

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ClientServerinterface

Note A client/server interface declares a number of operations that can be invoked on a server by a client.
Tags: atp.recommendedPackage=PortInterfaces

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable

Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

*

operation ClientServerOperation aggr ClientServerOperation(s) of this
ClientServerInterface.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel

vh.latestBinding Time=blueprintDerivationTime

This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table C.1: ClientServerinterface

Class ClientServerOperation

Note An operation declared within the scope of a client/server interface.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by | Applicationinterface.command, AtpClassifier.atpFeature, ClientServerlnterface.operation, Diagnostic
DataElementinterface.read, DiagnosticDataldentifierInterface.read, DiagnosticDataldentifierInterface.
write, DiagnosticExtendedDataRecordInterface.provide, DiagnosticRoutinelnterface.requestResult,
DiagnosticRoutinelnterface.start, DiagnosticRoutinelnterface.stop, PhmRecoveryActionInterface.
recovery, Servicelnterface.method

Attribute Type Mult. Kind | Note
argument ArgumentDataPrototype * aggr An argument of this ClientServerOperation.
(ordered) Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime

AUTSSAR

Class

ClientServerOperation

diagArglntegrity

Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.

This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is
aware of the usage of a shared buffer and takes
precautions to avoid unintentional overwrite of input
arguments.

If the attribute does not exist or is set to false the
ClientServerOperation does not have to consider
the usage of a shared buffer.

This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError

ApplicationError ref Possible errors that may by raised by the referring
operation.
This Attribute is only used by the AUTOSAR Classic

Platform.

Table C.2: ClientServerOperation

Class DataPrototypeMapping
Note Defines the mapping of two particular VariableDataPrototypes, ParameterDataPrototypes Or
ArgumentDataPrototypes with non-equal shortNames, non-equal structure (specific condition is
described by [constr_1187]), and/or non-equal semantic (resolution or range) in context of two different
SenderReceiverInterface, NvDatalInterface Or ParameterInterface Or Operations.
If the semantic is unequal, the following rules apply: The textTableMapping is only applicable if the
referred DataPrototypes are typed by AutosarDataType referring to CompuMethods of category
TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE Of BITFIELD_TEXTTABLE.
In the case that the DataPrototypes are typed by AutosarDataType either referring to
CompuMethods of category LINEAR, IDENTICAL or referring to no CompuMethod (which is similar as
IDENTICAL) the linear conversion factor is calculated out of the factorSiToUnit and
offsetSiToUnit attributes of the referred units and the CompuRationalCoeffs of a
compulnternalToPhys of the referred CompuMethods.
Base ARObject
Aggregated by | ClientServerOperationMapping.argumentMapping, VariableAndParameterinterfaceMapping.dataMapping
Attribute Type Mulit. Kind | Note
firstData AutosarDataPrototype 0..1 ref First to be mapped DataPrototype in context of a Sender
Prototype Receiverinterface, NvDatalnterface, Parameterinterface
or Operation.
firstToSecond DataTransformation 0..1 ref This reference defines the need to execute the Data
Data Transformation <Mip>_<transformerld> functions of the
Transformation transformation chain when communicating from the Data
PrototypeMapping.firstDataPrototype to the Data
PrototypeMapping.secondDataPrototype.
This reference also specifies the reverse Data
Transformation <Mip>_Inv_<transformerld> functions of
the transformation chain (i.e. from the DataPrototype
Mapping.secondDataPrototype to the DataPrototype
Mapping.firstDataPrototype) if the referenced Data
Transformation is symmetric, i.e. attribute Data
Transformation.dataTransformationKind is set to
symmetric.
secondData AutosarDataPrototype 0..1 ref Second to be mapped DataPrototype in context of a
Prototype SenderReceiverinterface, NvDatalnterface, Parameter
Interface or Operation.

AUT<

SSAR

A
Class DataPrototypeMapping
secondToFirst DataTransformation 0..1 ref This defines the need to execute the reverse Data
Data Transformation <Mip>_Inv_<transformerld> functions of
Transformation the transformation chain when communicating from the
DataPrototypeMapping.secondDataPrototype to the Data
PrototypeMapping.firstDataPrototype.
subElement SubElementMapping * aggr This represents the owned SubelementMapping.
Mapping Stereotypes: atpSplitable
Tags: atp.Splitkey=subElementMapping
textTable TextTableMapping 0.2 aggr | Applied TextTableMapping(s)
Mapping
Table C.3: DataPrototypeMapping
Class DataTransformation
Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | DataTransformationSet.dataTransformation
Attribute Type Mult. Kind | Note
data DataTransformationKind 0..1 attr This attribute controls the kind of DataTransformation to
Transformation Enum be applied.
Kind
executeDespite Boolean 0..1 attr Specifies whether the transformer chain is executed even
Data if no input data are available.
Unavailability
transformer Transformation * ref This attribute represents the definition of a chain of
Chain (ordered) | Technology transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.
Table C.4: DataTransformation
Class ISignal
Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignallPdus to multiple receivers.
To support the RTE "signal fan-out" each SignallPdu contains ISignals. If the same System Signal is to
be mapped into several SignallPdus there is one ISignal needed for each ISignalTolPduMapping.
ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).
In case of the SystemSignalGroup an ISignal shall be created for each SystemSignal contained in the
SystemSignalGroup.
Tags: atp.recommendedPackage=ISignals
Base ARElement, ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
data DataTransformation 0..1 ref Optional reference to a DataTransformation which
Transformation represents the transformer chain that is used to transform

the data that shall be placed inside this ISignal.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataTransformation.dataTransformation,
dataTransformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

AUTSSAR

Class ISignal

dataTypePolicy DataTypePolicyEnum 0..1 attr With the aggregation of SwDataDefProps an ISignal
specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be
used to support flexible development methodology as well
as subsequent integrity checks.

If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used. If
the "override" policy is chosen the requirements specified
in the PortInterface and in the ComSpec are not fulfilled
by the networkRepresentationProps. In case the System
Description doesn’t use a complete Software Component
Description (VFB View) the "legacy" policy can be
chosen.

initValue ValueSpecification 0..1 agor Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.

This value can be used to configure the Signal’s "Init
Value".

If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec. In this case the
initvalues in SenderComSpec and/or ReceiverComSpec
override this optional value specification. Further
restrictions apply from the RTE specification.

iSignalProps ISignalProps 0..1 aggr Additional optional ISignal properties that may be stored
in different files.

Stereotypes: atpSplitable

Tags: atp.Splitkey=iSignalProps

iSignalType ISignalTypeEnum 0..1 attr This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

length Unlimitedinteger 0..1 attr Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE. Indicates maximum size for dynamic length
signals.

The ISignal length of zero bits is allowed.

network SwDataDefProps 0..1 agor Specification of the actual network representation. The
Representation usage of SwDataDefProps for this purpose is restricted to
Props the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.

The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.

If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the Portinterface and in the
network representation of the ComSpec.

In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDatalnvalid
Value" and the Data Semantics.

Stereotypes: atpSplitable

Tags: atp.Splitkey=networkRepresentationProps

AUTSSAR

A

Class ISignal

reception ValueSpecification * agar Value used to fill data on the receiver side, if less then

DefaultValue expected data is received.

(ordered) The value is expected to cover the entire expected ISignal
network payload.

Tags: atp.Status=obsolete

systemSignal SystemSignal 0..1 ref Reference to the System Signal that is supposed to be
transmitted in the ISignal.

timeout ValueSpecification 0..1 aggr Defines and enables the ComTimeoutSubstituition for this

Substitution ISignal.

Value

transformation TransformationlSignal * aggr A transformer chain consists of an ordered list of

ISignalProps Props transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=transformationlSignalProps

Table C.5: ISignal

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtoBlueprintable, AtoClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this

SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to

Optional STRUCTURE.

Element If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement ImplementationData * aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation

DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

AUT<

SSAR

A
Class ImplementationDataType
typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table C.6: ImplementationDataType
Class SenderReceiverinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataElement VariableDataPrototype * aggr | The data elements of this SenderReceiverInterface.
invalidation InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement
Policy
metaDataltem MetaDataltemSet * aggr | This aggregation defines fixed sets of meta-data items
Set associated with dataElements of the enclosing
SenderReceiverInterface

Table C.7: SenderReceiverinterface

Class SenderReceiverToSignalMapping
Note Mapping of a sender receiver communication data element to a signal.
Base ARObject, DataMapping
Aggregated by | SystemMapping.dataMapping
Attribute Type Mult. Kind | Note
dataElement VariableDataPrototype 0..1 iref Reference to the data element.
InstanceRef implemented by: VariableDataPrototypeln
SystemInstanceRef
senderToSignal TextTableMapping 0..1 aggr | This mapping allows for the text-table translation between
TextTable the sending DataPrototype that is defined in the Port
Mapping Prototype and the physicalProps defined for the System
Signal.
signalTo TextTableMapping 0..1 aggr | This mapping allows for the text-table translation between
ReceiverText the physicalProps defined for the SystemSignal and a
TableMapping receiving DataPrototype that is defined in the Port
Prototype.
systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the data
element.
Table C.8: SenderReceiverToSignalMapping
Class SystemSignal
Note The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.
Tags: atp.recommendedPackage=SystemSignals
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable

Element, Referrable

\Y%

AUT<

SSAR

A
Class SystemSignal
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dynamicLength Boolean 0..1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).
physicalProps SwDataDefProps 0..1 aggr Specification of the physical representation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=physicalProps
Table C.9: SystemSignal
Class TransformationTechnology
Note A TransformationTechnology is a transformer inside a transformer chain.
Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | DataTransformationSet.transformationTechnology
Attribute Type Mult. Kind | Note
bufferProperties | BufferProperties 0..1 agor Aggregation of the mandatory BufferProperties.
hasinternal Boolean 0..1 attr This attribute defines whether the Transformer has an
State internal state or not.
needsOriginal Boolean 0..1 attr Specifies whether this transformer gets access to the
Data SWC’s original data.
protocol String 0..1 attr Specifies the protocol that is implemented by this
transformer.
transformation Transformation 0..1 aggr | A transformer can be configured with transformer specific
Description Description parameters which are represented by the Transformer
Description.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=transformationDescription, transformation
Description.variationPoint.shortLabel
vh.latestBindingTime=postBuild
transformer TransformerClassEnum 0..1 attr Specifies to which transformer class this transformer
Class belongs.
version String 0..1 attr Version of the implemented protocol.
Table C.10: TransformationTechnology
Class Triggerinterface
Note A trigger interface declares a number of triggers that can be sent by an trigger source.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
trigger Trigger * aggr | The Trigger of this trigger interface.

Table C.11: Triggerinterface

AUTSSAR

Class

VariableDataPrototype

Note

AvariableDataPrototype represents a formalized generic piece of information that is typically
mutable by the application software layer. variableDataPrototype is used in various contexts and
the specific context gives the otherwise generic variableDataPrototype a dedicated semantics.

Base

ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by

ApplicationInterface.indication, AfpClassifier.atpFeature, BswinternalBehavior.arTypedPerlnstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, DiagnosticSovdAccessArgument.contentObject, InternalBehavior.staticMemory,
NvBlockDescriptor.ramBlock, NvDatalnterface.nvData, SenderReceiverinterface.dataElement, Service
Interface.event, SwclnternalBehavior.arTypedPerInstanceMemory, SwcinternalBehavior.explicitinter
RunnableVariable, SwcinternalBehavior.implicitinterRunnableVariable

Attribute

Type Mult. Kind | Note

initValue

ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table C.12: VariableDataPrototype

	1 Introduction and functional overview
	2 Acronyms, Abbreviations and Definitions
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Transformer infrastructure header
	7.2 Marshalling of Parameters and Data Structures
	7.3 Unmarshalling of Parameters and Data Structures
	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 General
	8.3.1.1 DdsXf_GetVersionInfo

	8.3.2 SenderReceiverInterface API
	8.3.2.1 DdsXf_<transformerId>
	8.3.2.2 DdsXf_Inv_<transformerId>

	8.3.3 ClientServerInterface API
	8.3.3.1 DdsXf_<transformerId>
	8.3.3.2 DdsXf_Inv_<transformerId>

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Change History R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	C Referenced Meta Classes

