AUTSSAR

Document Title Specification of Core Test
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 259

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR « Removed [SWS_CorTst_01007]
2024-11-27 | R24-11 Release
Management « Editorial changes
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR
* Changed [SWS_CorTst_00999] to
2022-11-24 | R22-11 Release [SWS_ CorTst NA_00999]
Management
2021-11-25 R21-11 QSLSS:R * Artifact inclusion based on
o i ArtifactAnalysis corrected.
Management
AUTOSAR
2020-11-30 | R20-11 Release * Clean up of Error Classification chapter
Management
* Incorporated changes to support
AUTOSAR MCALMulticoreDistribution
2019-11-28 | R19-11 Release _
Management » Changed Document Status from Final to
published
AUTOSAR
* Incorporated changes to support
2018-10-31 | 4.4.0 Release MCALMulticoreDistribution (Draft)
Management
AUTOSAR
2017-12-08 | 4.3.1 Release * Minor corrections
Management

AUTSSAR

» Replaced Development Error Tracer with

AUTOSAR Default Error Tracer
2016-11-30 | 4.3.0 Release _ _
Management » Removed Debugging Support section
* Removed Variants section
« Correction of CorTst_Init prototype
AUTOSAR * Added CorTst_ConfigType and
2015-07-31 | 4.2.2 Release CorTst_ResultType
Management + Debugging support marked as obsolete
* Minor corrections
« CORTST_E_CORE_FAILURE extended
AUTOSAR production error formalization, including
2014-10-31 | 4.2.1 Release healing.
Management « Correction of CorTst_
GetCurrentStatus prototype
» Removed timing attribute of required
W Tst_00067
AUTOSAR [SWS_CorTst_00067]
2013-10-31 | 4.1.2 Release - Editorial changes
Management
* Removed chapter(s) on change
documentation
* Alignment to new SWS_BSWGeneral
document
9013-03-15 | 4.1.1 AUTQ_SAR _ . Updateq document for Extended
Administration Production Errors
* Alignment to official naming in other
Autosar documents
» Clarification of some requirements.
5011-12-22 | 4.03 AUTOSAR » Typos correction.

Administration

* Removed redundant and useless
requirements.

AUTSSAR

A
» Added new requirements for
configuration and error detection.
» Clarification of some requirements.
2010-09-30 | 3.1.5 AUTOSAR « Added new configuration parameters.
Administration
* Removed obsolete requirements.
* Improvement of static error detection.
* Removed unsued types.
2010-02-02 3.1.4 AUTQ.SAR. * Initial release
Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations e
4.2 Applicability to cardomains L.
4.3 Applicability to safety related environments

5 Dependencies to other modules

51 Filestructure s
5.1.1 Codefile structure

6 Requirements Tracing

7 Functional specification

7.1 General Behavior e
7.1.1 Background & Rationale
7.2 Error Classification
7.2.1 DevelopmentErrors
7.2.2 Runtime Errors e
7.2.3 Production Errors e
7.2.4 Extended ProductionErrors
7.24.1 CORTST E CORE FAILURE.
7.3 General Requirements
7.4 Security Events

8 API specification

8.1 Importedtypes e
8.2 Type definitions
8.2.1 CorTst_ConfigType
8.2.2 CorTst_CsumSignatureType
8.2.3 CorTst_CsumSignatureBgndType
8.2.4 CorTst_ErrOKType
8.2.5 CorTst_ResultType.
8.2.6 CorTst StateType
8.2.7 CorTst_TestldFgndType
8.3 Function definitions oL
83.1 CorTst Init
8.3.2 CorTst Delnit. e

© o © (o]

AUTSSAR

10

8.3.3 CorTst Abort
8.3.4 CorTst GetState
8.3.5 CorTst GetCurrentStatus
8.3.6 CorTst _GetSignature
8.3.7 CorTst_GetFgndSignature
8.3.8 CorTst Start e
8.3.9 CorTst _GetVersioninfo
8.4 Callback notifications
8.5 Scheduled functions
8.6 Expectedinterfaces
8.6.1 Mandatoryinterfaces
8.6.2 Optionalinterfaces
8.6.3 Configurableinterfaces

Sequence diagrams

9.1 Initialization
9.2 Deinitialization
9.3 Background Test
9.3.1 Test Result Calculation within Core Test Module
9.3.2 Core Test Signature provided to Calling Entity

Configuration specification

10.1How toread thischapter,
10.2Containers and configuration parameters
10.21CorTst. o e
10.2.2CorTstGeneral
10.2.3CorTstSelect
10.2.4 CorTstBackgroundConfigSet
10.2.5 CorTstForegroundConfigSet,
10.2.6 CorTstConfigApiServices,
10.2.7 CorTstDemEventParameterRefs
10.3Published Information.

Not applicable requirements

Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 e

B.1.1 Added Specification ltemsin R25-11
B.1.2 Changed Specification ltemsin R25-11
B.1.3 Deleted Specification Itemsin R25-11

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and configuration of the AUTOSAR
Basic Software module called Core Test Driver. This specification is applicable to
drivers for all kind of cores regardless if the driver is executing during power-on sit-
uations of an ECU or during ECU application runtime.

The Core Test Driver provides services for configuring, starting, polling, terminating
and notifying the application about Core Test results. It also provides services for
returning test results in a predefined way. Furthermore it provides several tests to
verify dedicated core functionality like e.g. general purpose registers or Arithmetical
and Logical Unit (ALU). It is assumed that every tested core hardware functionality can
be exclusively accessed for testing purposes. It is up to the user of Core Test Driver
API to choose suitable test combination and a scheduled execution order to fulfill the
safety requirements of the system. The behaviour of those services is asynchronous
or synchronous.

A Core Test driver accesses the microcontroller core directly without any intermediate
software layers and is located in the Microcontroller Abstraction Layer (MCAL).

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CoreTest
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

MCAL Microcomputer Abstraction Layer

DEM Diagnostic Event Manager

DET Default Error Tracer

CPU Central Processing Unit

MPU Memory Protection Unit

L1 15t level memory

L2 2nd |evel memory

MCU Microcontroller Unit

BIST Built in Self Test

IRQ Interrupt Request

Core A CPU plus closely located functional resources

CSUM/Checksum/signature A numerical representation of the result of a test execution.

Background test Background test is called periodically by a SW-scheduler/RTOS.

Foreground test A foreground test is a synchronous test and shall not be interrupted. It is called
via user application calls.

'Golden (Ref.) Value’ Reference value used for comparison (e.g. Checksum/Signature) to a previously
computed test result value.

'Good Case’ The execution finished without reporting an error

Atomic sequence/ atomic piece An atomic sequence is a piece of test which shall not be interrupted.

External device A physical external entity; e.g. a second microcontroller

Resource A ’hardware resource’ is the smallest unit (instance) that can be selected by a

CORETest driver user. It can be tested in one or several atomic sequences. It is
a core internal unit which executes a unique functionality (e.g. IRQ-controller).

Partial test A partial test is defined as the test of one or more hardware resources’. (A

(orange block in Figure3) partial test is interruptible because it is executed in background mode).

Entity/unit Hardware functionality inside the core (e.g. CPU, MMU etc.)

Caller/calling entity The caller/calling entity is located on a higher AUTOSAR or ISO layer [2]. It is the
user of the API call.

test interval CoreTest test Interval: the sum of all the partial tests (executed in background
mode) on the hardware resources that are configured to make one complete
Core test.

Test Interval Id Identifier of a test interval, which shall be incremented by each start of a new test
interval.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

As this is a document from professionals for professionals, all other terms are expected
to be known.

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] Requirements on Core Test
AUTOSAR_CP_RS_CoreTest

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[6] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for CoreTest.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CoreTest.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

A Core test module implementation might be limited to be executed during power-
up/start-up time where core resources are not shared among different active AU-
TOSAR related software tasks or hardware-entities (e.g. IRQ-controller, DMA, Cache,
MMU/MPU and MemorylIF)

-OR-

might be limited to test resources which are not shared during runtime software exe-
cution (e.g. ALU and CPU-registers). This is overall automotive system architecture
dependent and cannot be covered in a MCAL Core Test SWS specification.

There must be a managing entity or architecture available who manages tasks like
’hardware-resource-access-managing’ due to the inability of a MCAL-driver to handle
such tasks on its own.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

This module can be used within safety related systems if the upper layer software
provides mechanisms to handle the Core Test API results by:

» Checksum/signature protection

» Checking Core Test code integrity before using it
» Redundant storage of Checksum/signature
 External decision execution of Core Test results

and the Core Test module implementation is embedded into a system safety architec-
ture concept.

AUTSSAR

5 Dependencies to other modules

The CoreTest module depends on the following modules:
» BSW scheduler is required to trigger main function in background mode

The Core Test library module and/or source code module is dependent on the micro-
controller platform and therefore on the silicon manufacturers hardware implementation
and even on a silicon revision.

The Core Test library module and/or source code module is dependent on an actively
working core clock domain.

5.1 File structure

5.1.1 Code file structure

[SWS_CorTst_00002]
Upstream requirements: SRS_BSW_00164, SRS_CoreTst_14105

[The Core Test module shall provide interrupt service routines for test purposes only. |

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4], [5] and [6] and links to
the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific

requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_CorTst_00112]

[SRS_BSW_00004]

All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_CorTst_00112]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_CorTst_00040] [SWS_CorTst_00041]

[SRS_BSW_00164]

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_CorTst_00002]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data
types

[SWS_CorTst_00027]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_CorTst_00161]

[SRS_BSW_00327]

Error values naming convention

[SWS_CorTst_00016]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_CorTst_00037] [SWS_CorTst_00038]
[SWS_CorTst_00039]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_CorTst_00045] [SWS_CorTst_00046]

[SRS_BSW_00337]

Classification of development errors

[SWS_CorTst_00016]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_CorTst_00154] [SWS_CorTst_00155]
[SWS_CorTst_00177] [SWS_CorTst_01000]
[SWS_CorTst_01001] [SWS_CorTst_01002]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_CorTst_00183]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_CorTst_00064]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_CorTst_00040]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_CorTst_00076]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_CorTst_00076]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_CorTst_00183]

[SRS_BSW_00385]

List possible error notifications

[SWS_CorTst_00016] [SWS_CorTst_01000]

vV

AUTSSAR

Requirement

Description

Satisfied by

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_CorTst_01000]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_CorTst_00040] [SWS_CorTst_00044]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_CorTst_00112] [SWS_CorTst_00118]

[SRS_BSW_00409]

All production code error ID symbols
are defined by the Dem module and
shall be retrieved by the other BSW

modules from Dem configuration

[SWS_CorTst_00154] [SWS_CorTst_00155]
[SWS_CorTst_01001] [SWS_CorTst_01002]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_CorTst_00112]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_CorTst_00040] [SWS_CorTst_01003]
[SWS_CorTst_01004]

[SRS_BSW_00422]

Pre-de-bouncing of error status
information is done within the Dem

[SWS_CorTst_00154] [SWS_CorTst_00155]
[SWS_CorTst_01000] [SWS_CorTst_01001]
[SWS_CorTst_01002]

[SRS_BSW_00433]

Main processing functions are only
allowed to be called from task bodies
provided by the BSW Scheduler

[SWS_CorTst_00067]

[SRS_BSW_00466]

Classification of extended production
errors

[SWS_CorTst_00154] [SWS_CorTst_00155]
[SWS_CorTst_01000] [SWS_CorTst_01001]
[SWS_CorTst_01002]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_CorTst_00154] [SWS_CorTst_00155]
[SWS_CorTst_01000] [SWS_CorTst_01001]
[SWS_CorTst_01002]

[SRS_CoreTst_14104]

Core Register Test Shall Be Available

[SWS_CorTst_00008]

[SRS_CoreTst_14105]

Core Interrupt and Exception
Detection Tests Shall Be Available

[SWS_CorTst_00002] [SWS_CorTst_00009]

[SRS_CoreTst_14106]

Core ALU Test Shall Be Available

[SWS_CorTst_00010]

[SRS_CoreTst_14107]

Core Address Generator Test Shall
Be Available

[SWS_CorTst_00011]

[SRS_CoreTst_14108]

Core Memory Interfaces Test Shall
Be Available

[SWS_CorTst_00012]

[SRS_CoreTst_14109]

Memory Management/Protection Unit
(MMU/MPU) Test Shall Be Available

[SWS_CorTst_00013]

[SRS_CoreTst_14110]

Cache Controller Test Shall Be
Available

[SWS_CorTst_00014]

[SRS_CoreTst_14112]

There Shall Be a Single API for the
Core Test Service

[SWS_CorTst_00064] [SWS_CorTst_00067]
[SWS_CorTst_00144]

[SRS_CoreTst_14113]

The API Shall Have a Parameter to
Select Which Component Shall Be
Tested

[SWS_CorTst_00064] [SWS_CorTst_00160]

[SRS_CoreTst_14114]

A Main Function for the Core Test
Shall Be Available

[SWS_CorTst_00067] [SWS_CorTst_00144]

[SRS_CoreTst_14115]

Test Metrics Shall Be Available to
Caller

[SWS_CorTst_00057] [SWS_CorTst_00060]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_CoreTst_14116]

A Service shall be provided which
returns a checksum/signature as test
result

[SWS_CorTst_00057] [SWS_CorTst_00058]
[SWS_CorTst_00060] [SWS_CorTst_00061]
[SWS_CorTst_00176]

[SRS_CoreTst_14117]

Faults Shall Be Treated as Production
Errors

[SWS_CorTst_00016] [SWS_CorTst_00021]

[SRS_CoreTst_14118]

The results of the Core test module
shall be provided to the user

[SWS_CorTst_00053] [SWS_CorTst_00054]

[SRS_CoreTst_14119]

A Notification of Completion Shall Be
Provided

[SWS_CorTst_00076] [SWS_CorTst_00077]

[SRS_CoreTst_14126]

It Shall Be Possible to Cancel a
Running Test

[SWS_CorTst_00048] [SWS_CorTst_00050]

[SRS_CoreTst_14130]

Destructive Test Shall Restore
Original State of tested Entity

[SWS_CorTst_00026]

[SRS_CoreTst_14131]

A Service shall be provided which
returns a Pass/Fail Status
Representation as a test result

[SWS_CorTst_00055] [SWS_CorTst_00056]
[SWS_CorTst_01005]

[SRS_CoreTst_14133]

Each Core Test interval shall have an
identifier

[SWS_CorTst_00137] [SWS_CorTst_00139]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_CorTst_00077]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_CorTst_00041] [SWS_CorTst_00179]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_CorTst_00179]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_CorTst_00045]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General Behavior

[SWS_CorTst_00008]
Upstream requirements: SRS_CoreTst_14104

[Core Test shall provide a procedure to test all CPU registers. |

[SWS_CorTst_00009]
Upstream requirements: SRS_CoreTst_14105

[The Core Test shall provide an Interrupt Controller and Exception detection test. Es-
pecially the detection of an interrupt itself and a branch to a valid interrupt service
address shall be part of the test. It is regardless if the test is triggered by software
exceptions or by a dedicated hardware unit built in silicon. |

[SWS_CorTst _00010]
Upstream requirements: SRS_CoreTst_14106

[The Core Test shall provide an Arithmetic and Logical Unit (ALU) test. |

[SWS CorTst _00011]
Upstream requirements: SRS_CoreTst 14107

[The Core Test shall provide an address generation test. |

[SWS_CorTst_00012]
Upstream requirements: SRS_CoreTst_14108

[The Core Test shall provide a core memory interface test. This explicitly excludes
tests on memory locations themselves which are connected external to a core itself or
reside internal in a core. |

Note: Details of the required tests to be executed are provided in the corresponding
HW documentation e.g. HW safety manual.

[SWS_CorTst_00013]
Upstream requirements: SRS_CoreTst_14109

[The Core Test shall provide a memory protection unit test (MPU). This is valid even if
a Memory Management Unit (MMU) executes MPU functionality. |

[SWS_CorTst_00014]
Upstream requirements: SRS_CoreTst_14110
[The Core Test shall provide a Cache Controller Test. Especially the coherency and

consistency between data or instructions located in memory outside the core and its
appropriate cache entry representation shall be tested. |

AUTSSAR

[SWS_CorTst_00137]
Upstream requirements: SRS_CoreTst_14133

[Each Core Test Interval shall have an Identifier, which shall be incremented by each
start of a new test interval in background mode. |
[SWS_CorTst_00144]

Upstream requirements: SRS_CoreTst_14112, SRS_CoreTst_14114
[Core Test module shall provide test execution services in background and foreground
mode. |

Core Test states in background mode are described in [SWS_CorTst_00153]. The
described states are driver states in background operation mode only.

[SWS_CorTst_00153] |
stm CorTst /

Reset ‘

|
CORTST_UNINT CorTst_Init() CORTST_INIT
’ CorTst_Delnit() ‘
/ \

CorTst_Delnit()

CorTst_Abort()
Test completed autostart

CorTst_Abort() CORTST_ABORT CORTST_RUNNING_BGND
CorTst_Abort()

]

[SWS_CorTst_00145] [Core Test is structured in partial tests (sets of hardware re-
source test) which can be interrupted by a higher priority task. |

AUTSSAR

CorTst_MainFunction CorTst_MainFunction Other_Function()
1 11
. l l ' l ! !l % l
A y ! I ! 1 »t
I e ! ! ! [
.| HRt HRt HRt P HRt
; :_p——CoreTest Interval > i +—
: Overall Software !

Figure 7.1: Background Test: Scheduling of Core Test (CorTst)

Each partial test is made up of atomic sequences which cannot be interrupted.

The following picture shows how CorTst_MainFunction is called by the scheduler,
and how it can be interrupted between atomic pieces by higher priority tasks.

CorTst_MainFunction() CorTst MainFunction()
— Lo’ t
Time needed to accomplish a partial > D I:l I:l I:ll D
test if CorTst_MainFunction is not 1 ¢ > (L ¢
interrupted (by a higher priority task) Time needed to Example of time needed
accomplish one atomic to complete a higher
test sequence priority task

Figure 7.2: MainFunction called by scheduler

7.1.1 Background & Rationale

As described in [4], the Core Test is focused on testing the core, which includes the
CPU and locally coupled units like e.g. MMU/MPU and Interrupt controller.

Due to complexity of a core implementation, a very deep knowledge of the core struc-
ture is a prerequisite to implement a Core Test. Therefore, it is assumed that a silicon
manufacturer is the right entity to implement a Core Test by using an AUTOSAR API
and provides the test as a library to user or application implementer.

Furthermore, it is assumed that a Core Test implementation may rarely be given away
as a plain source code module from the silicon manufacturer to avoid IP draining.

AUTSSAR

7.2 Error Classification

Chapter [3, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

[SWS CorTst 00021]
Upstream requirements: SRS_CoreTst 14117
[Except faults detected inside the CPU itself (e.g.ALU, MAC, etc.), which cannot be

reliably reported by software. The errors that cannot be reliably reported by the
Dem_SetEventStatus API shall be documented by the implementer. |

7.2.1 Development Errors

[SWS_CorTst_00016] Definition of development errors in module CorTst

Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_
CoreTst_14117

Type of error Related error code Error value
A particular APl is called in an unexpected state CORTST_E_STATUS_FAILURE 0x01

API service called with wrong parameter range CORTST_E_PARAM_INVALID 0x11

API called without Core Test initialization CORTST_E_UNINIT 0x20

API service CorTst_Init() called again without a CORTST_E_ALREADY_INITIALIZED 0x23
CorTst_Delnit() inbetween

API service called with a NULL pointer for CorTst_ | CORTST_E_PARAM_POINTER 0x24
GetVersionlnfo() and CorTst_GetCurrentStatus()

7.2.2 Runtime Errors

There are no runtime errors.

7.2.3 Production Errors

There are no production errors.

AUTSSAR

7.2.4 Extended Production Errors

7.2.41 CORTST_E_CORE_FAILURE

[SWS_CorTst_01000] Core failure during tests

Upstream requirements: SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00385, SRS _BSW __
00386, SRS_BSW_00466, SRS_BSW_00469

Diagnostic Event (Error Name) CORTST_E_CORE_FAILURE

Description This error indicates that the CorTst module detected a failure in a core.

Failed condition PREFAILED is reported when CorTst_Start or CorTst_MainFunction detect a core
failure. See [SWS_CorTst_00154] and [SWS_CorTst_00155].

Passed condition PREPASSED is reported when CorTst_Start or CorTst_MainFunction could complete
a core test without detecting an error. See [SWS_CorTst_01001] and [SWS_CorTst_
01002].

7.3 General Requirements

[SWS_CorTst_00023] [Due to the fact that Core Test is a MCAL driver module with
no knowledge about the hardware/software system architecture, the tested entities and
resources (e.g. ALU) shall be exclusively available prior start of test execution during
runtime. |

[SWS_CorTst_00024] [The Core Test implementer shall give an indication on the fault
coverage achievements of a Core Test implementation. |

[SWS_CorTst_00026]
Upstream requirements: SRS_CoreTst 14130

[The Core Test shall be nondestructive to the tested entity. If Core Test modifies an
entity setup, values, settings or selections on its own, it has to restore previous entity
status before returning to calling service. |

7.4 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_CorTst_00027] Definition of imported datatypes of module CorTst
Upstream requirements: SRS_BSW_00304

[
Module Header File Imported Type
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

8.2 Type definitions

8.2.1 CorTst_ConfigType

[SWS_CorTst_01003] Definition of datatype CorTst_ConfigType
Upstream requirements: SRS_BSW_00414

[
Name CorTst_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the CorTst module.

Available via

CorTst.h

AUTSSAR

8.2.2 CorTst_CsumSignatureType

[SWS_CorTst_00037] Definition of datatype CorTst_CsumSignatureType
Upstream requirements: SRS_BSW_00331

caller of the API.

Name CorTst_CsumSignatureType
Kind Type
Derived from Basetype Variation
uint16 -
uint32 -
Range 16..32 bit - Size depends on target platform.
Description This is the type of the Core Test return value if a checksum/signature is returned from API to the

Available via

CorTst.h

8.2.3 CorTst_CsumSignatureBgndType

[SWS_CorTst_00176] Definition of datatype CorTst_CsumSignatureBgndType
Upstream requirements: SRS_CoreTst_14116

Name CorTst_CsumSignatureBgndType

Kind Structure

Elements implementation specifc
Type uint8, uint16, uint 32
Comment Implementation specific type
0..<CorTstTestIntervalld EndValue>
Type uint8, uint16, uint32
Comment value of CorTstTestIntervalld, which is incremented by each start of a

test interval.
Description Type for test signature in background mode
Available via CorTst.h

AUTSSAR

8.2.4 CorTst_ErrOkType

[SWS_CorTst_00038] Definition of datatype CorTst_ErrOkType
Upstream requirements: SRS_BSW_00331

[

Name CorTst_ErrOkType
Kind Structure
Elements 0..<CorTstTestlntervalld EndValue>
Type uint8, uint16, uint32
Comment value of CorTstTestIntervalld, which is incremented by each start of a

test interval.

returnvalue
Type CorTst_ResultType

Comment CORTST_E_NOT_OK The Core Test detected at least one single test
errors. CORTST_E_OKAY The Core test passed without errors.
CORTST_E_NOT_TESTED There is no Core Test result available
(default)

Description This is the type of the Core Test test return if a status is retuned from API to the caller of the API.
Available via CorTst.h

]

[SWS_CorTst_00138] [For the type CorTst_ErrOkType, the enumeration value
CORTST_ E _NOT_TESTED shall be the default value after a reset. CorTstTestIntervalld
shall have value zero per default. |

8.2.5 CorTst_ResuliType

[SWS_CorTst_01005] Definition of datatype CorTst_ResultType
Upstream requirements: SRS_CoreTst_14131

Name CorTst_ResultType
Kind Enumeration
Range CORTST_E_NOT_OK 0x00 The Core Test detected at least one single
test errors.
CORTST_E_OKAY 0x01 The Core test passed without errors.
CORTST_E_NOT_TESTED | 0x02 There is no Core Test result available (default)
Description This is the type of the Core Test test return if a status is retuned from API to the caller of the API.
Available via CorTst.h

AUTSSAR

8.2.6 CorTst_StateType

[SWS_CorTst_00039] Definition of datatype CorTst_StateType

Upstream requirements: SRS_BSW_00331

Name CorTst_StateType
Kind Enumeration
Range CORTST_ABORT 0x00 The Core Test has been cancelled by API Cor
Tst_Abort().
CORTST_INIT 0x01 The Core Test is initialized and can be
started.
CORTST_UNINIT 0x02 The Core Test can be initialized.
CORTST_RUNNING_ 0x03 The Core Test is currently executed
BGND
Description This is a status value returned by the API CorTst_GetState().
Available via CorTst.h

8.2.7 CorTst_TestldFgndType

[SWS_CorTst_00160] Definition of datatype CorTst_TestidFgndType
Upstream requirements: SRS_CoreTst 14113

[
Name CorTst_TestldFgndType
Kind Type
Derived from Basetype Variation
uint16 -
uint32 -
uint8 -
Range 8..32 bit - Size depends on target platform.
Description This is the type of the parameter (Id) used for a specific foreground test configuration to run. (The
Id shall be used in the call to the API CorTst_Start(CorTst_TestldFgndType Testld)).
Available via CorTst.h

8.3 Function definitions

This is a list of functions provided for calling services and upper layer modules.

AUTSSAR

8.3.1 CorTst_Init

[SWS_CorTst_00040] Definition of API function CorTst_Init
Upstream requirements: SRS_BSW_00101, SRS_BSW_00406, SRS_BSW_00358, SRS_BSW_

00414
[
Service Name CorTst_Init
Syntax void CorTst_Init (
const CorTst_ConfigType* ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service for initialization and change of state of the Core Test
Available via CorTst.h
]

[SWS CorTst 01004]
Upstream requirements: SRS_BSW_00414

[The configuration pointer ConfigPtr shall always have NULL_PTR value. |

Note: The configuration pointer ConfigPtr is currently not used and shall therefore
be set NULL_PTR value.

[SWS_CorTst_00041]
Upstream requirements: SRS_BSW_00101, SRS_SPAL_12057
[The function corTst_Init shall initialize all CorTst relevant data structures, global

variables, registers and special test hardware (if existing) with appropriate values used
for core test. |

[SWS_CorTst 00179]
Upstream requirements: SRS_SPAL_12057, SRS_SPAL_12125

[The function CorTst_Init shall only initialize the configured resources and shall not
touch resources that are not configured in the configuration file. |

[SWS_CorTst_00042] [Execution state will be changed to CORTST_INIT if the driver
is called while in state CORTST_UNINIT. |

[SWS_CorTst_00178] [If corTst_Init is called again while not in state CORTST__
UNINIT a development error CORTST_E_ALREADY_INITIALIZED is reported. Exe-
cution state remains unchanged, the APl call CorTst_Init is ignored.]

AUTSSAR

[SWS_CorTst_00044]
Upstream requirements: SRS_BSW_00406

[The function CorTst_Init shall be called first before calling any other CoreTest
functions except the functions CorTst_GetState and CorTst_GetVersionInfo.

If this sequence is not respected, the error code CORTST_E_UNINIT shall be reported
to the Default Error Tracer (if development error detection is enabled). |

8.3.2 CorTst_Delnit

[SWS_CorTst_00045] Definition of API function CorTst_Delnit
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163

[

Service Name CorTst_Delnit
Syntax void CorTst_DelInit (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to change from CORTST_ABORT or CORTST_INIT to CORTST_UNINIT state
Available via CorTst.h
]

[SWS_CorTst_00046]
Upstream requirements: SRS_BSW_00336

[The function APl CorTst_DeInit shallinitialize all data structures, global variables,
registers and special test hardware (if existing) with the default values after running the
startup software (variable/structures) or power-on (HW-default). |

[SWS_CorTst_00047] [If in state CORTST_INIT: The state shall be changed from
CORTST_INIT to CORTST_UNINIT state.

[SWS_CorTst_00136] [If in state CORTST_ABORT: The state shall be changed from
CORTST_ABORT t0 CORTST_UNINIT state. |

[SWS_CorTst_00149] [If the DET is enabled and the status of the CORE Test module
IS CORTST_RUNNING_BGND, the function CorTst_DeInit shall report the error value
CORTST_E_STATUS_FAILURE to the DET, and then immediately return. |

AUTSSAR

8.3.3 CorTst_Abort

[SWS_CorTst_00048] Definition of API function CorTst_Abort
Upstream requirements: SRS_CoreTst 14126

Service Name CorTst_Abort
Syntax void CorTst_Abort (
void
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

None

Parameters (inout)

None

Parameters (out)

None

Return value

None

Description

Service to change from CORTST_INIT to CORTST_ABORT state

Available via

CorTst.h

]

[SWS_CorTst_00049] [If the current state is CORTST_INIT the state shall be
changed from CORTST_INIT to CORTST_ABORT state. |

[SWS_CorTst_00105] [If the current state is CORTST_RUNNING_BGND the state shall
be changed from CORTST_RUNNING_BGND to CORTST_ABORT state. |

[SWS_CorTst_00050]
Upstream requirements: SRS_CoreTst 14126

[When the CorTst_aAbort function is called, CorTst_MainFunction shall finish
the current atomic sequence it is executing plus shall provide already finished atomic
test sequence results, before changing from CORTST_RUNNING_BGND t0 CORTST_
ABORT state. |

[SWS_CorTst_00051] [After a call to CorTst_Abort, CorTst_MainFunction
shall not begin testing again when called by the scheduler before a complete re-
initialization of the Core test module takes place by calling CorTst_DeInit and
CorTst_Init again.|

[SWS_CorTst_00052] [A call to CorTst_Abort while already being in state
CORTST_ABORT does not change the state. |

[SWS_CorTst_00152] [A call to CorTst_Abort shall set the result of function
CorTst_GetCurrentStatus to return CORTST_E_NOT_TESTED.J

AUTSSAR

8.3.4 CorTst_GetState

[SWS_CorTst_00053] Definition of API function CorTst_GetState
Upstream requirements: SRS_CoreTst 14118

[

Service Name CorTst_GetState
Syntax CorTst_StateType CorTst_GetState (
void
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value CorTst_StateType See type definition
Description Service for Core Test to immediately return status on currently executed Core Test.
Available via CorTst.h

]

[SWS_CorTst_00054]
Upstream requirements: SRS_CoreTst_14118

[The function CorTst_GetState shall return the current Core Test execution state
regardless which state is currently executed. It is allowed to call this function in any
execution state. |

8.3.5 CorTst_GetCurrentStatus

[SWS_CorTst_00055] Definition of API function CorTst_GetCurrentStatus
Upstream requirements: SRS_CoreTst_14131

[

Service Name CorTst_GetCurrentStatus
Syntax void CorTst_GetCurrentStatus (
CorTst_ErrOkType* ErrOk
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) ErrOk ‘ See type definition
Return value None

Y

AUTSSAR

A

Service for Core Test to get indicator of the last executed Core Test result

Description

Available via CorTst.h

]

[SWS_CorTst_00056]
Upstream requirements: SRS_CoreTst_14131

[The function CorTst_GetCurrentStatus shall return the result of the last com-
pleted Core Test run plus it shall return the Test Interval Id of the last background test. |

[SWS_CorTst_00120] [The function CorTst_GetCurrentStatus shall return
CORTST_E_NOT_TESTED per default if no result is available. |

8.3.6 CorTst_GetSignature

[SWS_CorTst_00057] Definition of APl function CorTst_GetSignature
Upstream requirements: SRS_CoreTst_14115, SRS_CoreTst_14116

[

Service Name

CorTst_GetSignature

Syntax CorTst_CsumSignatureBgndType CorTst_GetSignature (
void
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

CorTst_CsumSignature
BgndType

Implementation specific

Description

Service to get signature of the last executed Core Test in background mode.

Available via

CorTst.h

]

[SWS_CorTst_00058]
Upstream requirements: SRS_CoreTst_14116

[The function CorTst_GetSignature shall return currently pending Core Test result
signature and Core Test Interval Id of the last completed test run in background mode. |

[SWS_CorTst_00121] [The function CorTst_GetSignature shall return value zero
per default as signature until a first initial Core Test run has successfully been executed
which will provide a first valid signature representation. |

AUTSSAR

8.3.7 CorTst_GetFgndSignature

[SWS_CorTst_00060] Definition of API function CorTst_GetFgndSignature
Upstream requirements: SRS_CoreTst_14115, SRS_CoreTst_14116

[

Service Name

CorTst_GetFgndSignature

Syntax CorTst_CsumSignatureType CorTst_GetFgndSignature (
void

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value CorTst_CsumSignature Implementation specific
Type

Description

Service to get signature of the last executed Core Test in foreground mode.

Available via

CorTst.h

]

[SWS_CorTst_00061]
Upstream requirements: SRS_CoreTst_14116

[The function CorTst_GetFgndSignature shall return Core Test result signature

type as Core Test result of the last completed test run in foreground mode. |

[SWS_CorTst_00122] [The function CorTst_GetFgndSignature shall return value
zero per default as signature until a first initial Core Test run has successfully been

executed which will provide first valid signature representation. |

8.3.8 CorTst_Start

[SWS_CorTst_00064] Definition of API function CorTst_Start
Upstream requirements: SRS_BSW_00357, SRS_CoreTst 14112, SRS_CoreTst_14113

[

Service Name

CorTst_Start

Syntax Std_ReturnType CorTst_Start (
CorTst_TestIdFgndType TestId
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

Testld | Id of the foreground test configuration to be executed.

Y%

AUTSSAR

JAN
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Foreground test processed
E_NOT_OK: Foreground test not accepted
Description Service for executing foreground Core Test.
Available via CorTst.h

]

[SWS_CorTst_00065] [The function CorTst_sStart is only applicable for Fore-
ground mode Core Test operation. |

[SWS_CorTst_00109] [If the execution state is CORTST_RUNNING_BGND while this
function APl is called, the function shall return without any action and the return value
shall be E_OK. |

[SWS_CorTst_00154]

Upstream requirements: SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00409, SRS _BSW __
00466, SRS_BSW_00469

[In case an error occurs during test, the CorTst_sStart function shall report the ex-
tended production error CORTST_E_CORE_FAILURE (see [ECUC_CorTst_00157]) as
DEM_EVENT_STATUS_PREFAILED to the DEM if the core can still report errors reliably
by software. |

[SWS_CorTst 01001]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00409, SRS_BSW_
00466, SRS_BSW_00469
[In case no errors occured during test, the CorTst_Start function shall report the
extended production error CORTST_E_CORE_FAILURE (see [ECUC_CorTst_00157])
as DEM_EVENT_STATUS_PREPASSED to the DEM. |

[SWS_CorTst_00161]
Upstream requirements: SRS_BSW_00323
[If development error detection is enabled and the parameter Testld is out of the range,

the DET error value CORTST_E_PARAM INVALID shall be raised and the function shall
return without any action with return value E_NOT_OX. |

AUTSSAR

8.3.9 CorTst_GetVersioninfo

[SWS _CorTst_00112] Definition of API function CorTst_GetVersioninfo
Upstream requirements: SRS_BSW_00004, SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_

00411
[
Service Name CorTst_GetVersioninfo
Syntax void CorTst_GetVersionInfo (
Std_VersionInfoType* versioninfo
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None
Description Service returns the version information of this module.
Available via CorTst.h
]

[SWS_CorTst_00118]
Upstream requirements: SRS_BSW_00407

[If the function CorTst_GetVersionInfo is called with a NULL pointer as parameter,
it shall return immediately without any further action. If DET is enabled, this function
shall report the error value CORTST_E_PARAM POINTER to the DET module, before
returning without any further action. |

8.4 Callback notifications

Since Core Test module is a MCAL driver module, it does not provide any call-back
functions for lower layered modules.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

AUTSSAR

[SWS_CorTst_00067] Definition of scheduled function CorTst_MainFunction
Upstream requirements: SRS_BSW_00433, SRS_CoreTst_14112, SRS_CoreTst_14114

Service Name CorTst_MainFunction
Syntax void CorTst_MainFunction (
void
)
Service ID [hex] 0x0b
Description Cyclically called by scheduler to perform processing of Core Test.
Available via SchM_CorTst.h

[SWS_CorTst_00068] [The function CorTst_MainFunction shall set state to
CORTST_INIT, if all work within a Core Test interval has been finished. |

[SWS_CorTst_00069] [The function CorTst_MainFunction shall set state to
CORTST_INIT, if no work within a Core Test needs to be done. |

[SWS_CorTst_00070] [If the CoreTest module is in the state CORTST_INIT, a call to
the APl CorTst_MainFunction shall change the state of the module to CORTST_
RUNNING_BGND. |

[SWS_CorTst_00071] [CorTst_MainFunction shall test all selected core hard-
ware entities as configured in [ECUC_CorTst_00087]. |

[SWS_CorTst_00072] [The function CorTst_MainFunction shall set Core Test re-
sult status to CORTST_E_OKAY or CORTST_E_NOT_OK after each complete test cycle
- which may consist itself of many different atomic test cycles - depending on the result
of Core Test. |

[SWS_CorTst_00073] [CORTST_E_OKAY shall be set as status from CorTst_Main-
Function processing only in the case that every selected atomic part of CorTst_
MainFunction has been successfully executed without any kind of errors. In all other
cases CORTST_E_NOT_OK is returned as current status. Status can be checked by
calling CorTst_GetCurrentStatus.]

[SWS_CorTst_00074] [CorTst_MainFunction shall set CORTST_E_NOT_OK sta-
tus after first detected error in a sequence of atomic parts of Core Test module. Status
can be checked by calling CorTst_GetCurrentStatus.]

[SWS_CorTst_00139]
Upstream requirements: SRS_CoreTst 14133

[The function CorTst_MainFunction shall increment Test Interval Id before start
of a new test interval. The first test interval shall always have the Test Interval Id =
"0" (=zero). If Test Interval Id becomes greater than or equal t0 CorTstTestInter-
valIdEndValue Test Interval Id shall start again with value "0" (=zero) for the next

AUTSSAR

test interval. The value shall be provided as part of the return values of CorTst_
GetSignature and CorTst_GetCurrentStatus in background mode. |

[SWS CorTst 00155]

Upstream requirements: SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00409, SRS_BSW_
00466, SRS _BSW_00469

[In case an error occurs during test, the CorTst_MainFunction func-
tion shall report the extended production error CORTST_E_CORE_FAILURE (see
[ECUC_CorTst_00157]) as DEM_EVENT_STATUS_PREFAILED to the DEM if the core
can still report errors reliably by software. |

[SWS_CorTst_01002]

Upstream requirements: SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00409, SRS_BSW_
00466, SRS BSW 00469

[In case a core test is completed during a CorTst_MainFunction invocation and no
errors occured during this test, the CorTst_MainFunction function shall report the
extended production error CORTST_E_CORE_FAILURE (see [ECUC_CorTst_00157])
as DEM_EVENT_STATUS_PREPASSED to the DEM. |

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

[SWS_CorTst_00177] Definition of mandatory interfaces required by module Cor
Tst

Upstream requirements: SRS _BSW_00339

[

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

AUTSSAR

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_CorTst_00183] Definition of optional interfaces requested by module Cor
Tst

Upstream requirements: SRS_BSW_00369, SRS_BSW_00350

[

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

[SWS_CorTst_00076] Definition of API function CorTst_TestCompletedNotifica-
tion
Upstream requirements: SRS_BSW_00359, SRS_BSW_00360, SRS_CoreTst_14119

Service Name CorTst_TestCompletedNotification
Syntax void CorTst_TestCompletedNotification (
CorTst_ErrOkType ResultOfLastCorTstRun
)
Service ID [hex] 0x0c
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ResultOfLastCorTstRun CORTST_E_OKAY Last Core Test execution successfully
finished with no errors
CORTST_E_NOT_OK Last Core Test execution finished with
errors.
Parameters (inout) None
Parameters (out) None
Return value None
Description The function CorTst_TestCompletedNotification shall be called every time when a complete test
cycle has been executed.
Available via CorTst.h

AUTSSAR

[SWS_CorTst_00077]
Upstream requirements: SRS_CoreTst_14119, SRS_SPAL_00157

[The Core Test module shall call the callback notification CorTst_TestCompleted-
Notification every time when it has executed a complete Core Test cycle based on
a combination of atomic parts of Core Test in background mode. |

[SWS_CorTst_00140] [The call of function CorTst_TestCompletedNotifica-—
tion shall be pre compile time configurable by the configuration parameter CorT-
stNotificationSupported.]

AUTSSAR

9 Sequence diagrams

9.1 Initialization

Generic Elementg «module»
:CorTst User CorTst

T T
! 1
! CorTst_Init(ConfigPtr) 1

P
I I
I I
I I
| |
Description: CorTst_Init() gives service for Core Test initialization.
comments:
Figure 9.1: Core Test Init
= =g - -
9.2 Deinitialization
Generic Elements] «module»
:CorTst User CorTst
T T
: CorTst_Delnit() g :
>
| |
| |
Description: CorTst_Delnit() gives service for CorTest De-initialization.
comments:

Figure 9.2: Core Test De-initialization

AUTSSAR

9.3 Background Test

9.3.1 Test Result Calculation within Core Test Module

Generic Elements| «module»
:CorTst User CorTst

BSW scheduler

CorTst_Init(ConfigPtr)

State: CORTST_INIT

loop (background test))

|
I

|

> |

U State: CORTST_UNINIT |

|

|

____________________ |
|

Ij |

|

|

|

,

|

|

I

[running]:CorTst_MainFunction()

State: CORTST_RUNNING Il‘

CorTst_TestCompletedNotification()

State: CORTST_INIT
< _____________________

Figure 9.3: Result Calculation within Core Test Driver

AUTSSAR

9.3.2 Core Test Signature provided to Calling Entity

State: CORTST_UNINIT
State: CORTST_INIT Il|

CorTst_MainFunction()

O

BSW scheduler

State: CORTST_RUNNING

Generic Elements] «module»
:CorTst User CorTst
T T
| |
: CorTst_Init() - :
L

| |
| |
I I
| |
| |
| |
I I
I I
| |
| |
1 <
I

|

|

|

I

I

|

|

|

I

|

| |
| |
I I
I I
| |
| |
| |
| CorTst_TestCompletedNotification() |

__________________________ >
T T
| |
I CorTst_GetSignature() |
e CorTst_CsumSignatureBgndType()

e

Figure 9.4: Result Calculation on Calling Entity

e

State: CORTST_INIT

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CoreTest.

Chapter 10.3 specifies published information of the module CoreTest.

10.1 How to read this chapter
For details refer to [3] Chapter 10.1 “Introduction to configuration specification”. in [3].

[SWS_CorTst_01006] [The Core Test module shall reject configurations with partition
mappings which are not supported by the implementation. |

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.1 CorTst

[ECUC_CorTst_00125] Definition of EcucModuleDef CorTst |

Module Name CorTst

Description Configuration of the CorTst module.

Post-Build Variant Support false

Supported Config Variants VARIANT-LINK-TIME, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

CorTstBackgroundConfigSet 0..” Multiple Configuration Set Container, defines background mode.
CorTstConfigApiServices 1 -

CorTstDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements

which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

CorTstForegroundConfigSet 1.7 Multiple Configuration Set Container , defines foreground mode.

CorTstGeneral 1 -

AUTSSAR

CorTst: EcucModuleDef | +container

lowerMultiplicity = 0
upperMultiplicity = 1|

CorTstConfigApiServices:

EcucParamConfContainerDef

+container

CorTstGeneral:
EcucParamConfContainerDef

EcucParamConfContainerDef

CorTstBackgroundConfigSet:

+container

lowerMultiplicity = 0
upperMultiplicity = *

CorTstForegroundConfigSet:
EcucParamConfContainerDef

+reference

CorT stEcucPartitionRef:

EcucRefi Def

lowerMultiplicity = 0
upperMultiplicity = *

CorTstBackgroundEcucPartitionRef:

+reference

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer

CorTstSelect:
EcucParamConfContainerDef

+subContainer

+container

lowerMultiplicity = 1
upperMultiplicity = *

lowerMultiplicity = 1
upperMultiplicity = 1

+destination

+destination

EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+p

CorTstTestldFgnd:
EcucintegerParamDef

lowerMultiplicity = 1
upperMultiplicity = 1
min =0

max = 4294967295

+reference

+destination

CorT stForegroundEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+container

CorTstDemEventParameterRefs:

EcucParamConfContainerDef

+reference

lowerMultiplicity = 0
upperMultiplicity = 1

CORTST_E_CORE_FAILURE:
EcucReferenceDef

DemEventld:
EcucintegerParamDef

max = 65535
min=1
symbolicNameValue = true,|

+parameter

lowerMultiplicity = 0
upperMultiplicity = 1

requiresSymbolicNameValue = true

+destination\|/

EcucParamConfContainerDef

DemEventParameter:

upperMultiplicity = 65535
lowerMultiplicity = 1

Figure 10.1: CorTst

10.2.2 CorTstGeneral

[ECUC_CorTst_00081] Definition of EcucParamConfContainerDef CorTstGeneral

[

Container Name CorTstGeneral
Parent Container CorTst
Description -

Multiplicity 1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

CorTstDevErrorDetect 1 [ECUC_CorTst_00082]
CorTstFgndTestNumber 1 [ECUC_CorTst_00159]
CorTstNotificationSupported 1 [ECUC_CorTst_00083]
CorTstTestIntervalldEndValue 0..1 [ECUC_CorTst_00143]
CorTstTestResultMode 1 [ECUC_CorTst_00086]
CorTstEcucPartitionRef 0..” [ECUC_CorTst_00160]

No Included Containers

]

[ECUC_CorTst_00082] Definition of EcucBooleanParamDef CorTstDevErrorDe-

tect [
Parameter Name CorTstDevErrorDetect
Parent Container CorTstGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and natification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CorTst_00159] Definition of EcucintegerParamDef CorTstFgndTestNum-

ber |
Parameter Name CorTstFgndTestNumber
Parent Container CorTstGeneral

Description This parameter holds the number of test configurations available for the foreground
tests as defined in this configuration.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 4294967295

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_CorTst_00083] Definition of EcucBooleanParamDef CorTstNotification

Supported |

Parameter Name

CorTstNotificationSupported

Parent Container CorTstGeneral

Description Switch to indicate that the notification is supported.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CorTst_00143] Definition of EcuclntegerParamDef CorTstTestIntervalld

EndValue |

Parameter Name CorTstTestIntervalldEndValue

Parent Container CorTstGeneral

Description Defines the end value of the Test Interval Id.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CorTst_00086]
Mode |

Definition of EcucBooleanParamDef CorTstTestResult

Parameter Name

CorTstTestResultMode

Parent Container

CorTstGeneral

Description Switch for enabling test result comparison within the Core test driver. In this mode a
core test result OK or NOTOK shall not be calculated from the core test driver. Within
core test driver no comparison against the reference value is processed.

Multiplicity 1

Type EcucBooleanParamDef

Default value

false

V

AUTSSAR

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]
[ECUC_CorTst_00160] Definition of EcucReferenceDef CorTstEcucPartitionRef |

Parameter Name CorTstEcucPartitionRef

Parent Container CorTstGeneral

Description Maps the core test to zero or multiple ECUC partitions to make the modules API
available in this partition.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time -
Post-build time -

Dependency

CorTstDevErrorDetect:

CorTstGeneral: AN NI AT,
A ConfContai EcucBooleanParamDef

+parameter
EcucParamConfContainerDe P

defaultValue = false

CorTstNotificationSupported:

+parameter
EcucBooleanParamDef

defaultValue = true

CorTstTestResultMode:

+parameter
P EcucBooleanParamDef

defaultValue = false

CorTstTestIntervalldEndValue:
EcucIntegerParamDef

lowerMultiplicity = 0
upperMultiplicity = 1
min =0

max = 4294967295

+parameter

CorTstFgndTestNumber:

+parameter EcucintegerParamDef

min =1
max = 4294967295

CorTstEcucPartitionRef:
EcucReferenceDef

EcucPartition:

+reference e L
EcucParamConfContainerDef

+destination

lowerMultiplicity = 0

upperMultiplicity = *

Figure 10.2: CorTstGeneral

lowerMultiplicity = 0
upperMultiplicity = *

AUTSSAR

10.2.3 CorTstSelect

[ECUC_CorTst_00089] Definition of EcucParamConfContainerDef CorTstSelect
[

Container Name CorTstSelect
Parent Container CorTstBackgroundConfigSet, CorTstForegroundConfigSet
Description This container specifies configuration parameters to select individual tests for

foreground mode and background mode. The availability is hardware and
implementation specific.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CorTstAddress 1 [ECUC_CorTst_00130]
CorTstAlu 1 [ECUC_CorTst_00129]
CorTstCache 1 [ECUC_CorTst_00133]
CorTstlnterrupt 1 [ECUC_CorTst_00128]
CorTstMemorylf 1 [ECUC_CorTst_00131]
CorTstMpu 1 [ECUC_CorTst_00132]
CorTstRegister 1 [ECUC_CorTst_00127]

| No Included Containers

]
[ECUC_CorTst_00130] Definition of EcucBooleanParamDef CorTstAddress |

Parameter Name CorTstAddress

Parent Container CorTstSelect

Description Enable/Disables core address test.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

J
[ECUC_CorTst_00129] Definition of EcucBooleanParamDef CorTstAlu |

Parameter Name CorTstAlu

Parent Container CorTstSelect

Description Enable/Disables core ALU test.
Multiplicity 1

\Y

AUTSSAR

A
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_CorTst_00133] Definition of EcucBooleanParamDef CorTstCache |

Parameter Name CorTstCache

Parent Container CorTstSelect

Description Enable/Disables core cache test.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_CorTst_00128] Definition of EcucBooleanParamDef CorTstinterrupt |

Parameter Name

CorTstlnterrupt

Parent Container

CorTstSelect

Description Enable/Disables core interrupt test
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_CorTst_00131] Definition of EcucBooleanParamDef CorTstMemorylf |

Parameter Name

CorTstMemorylf

Parent Container

CorTstSelect

Description Enable/Disables core memory interface test
Multiplicity 1
Type EcucBooleanParamDef

Y%

AUTSSAR

Default value

false

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_CorTst_00132] Definition of EcucBooleanParamDef CorTstMpu |

Parameter Name

CorTstMpu

Parent Container

CorTstSelect

Description Enable/Disables core MPU test
Multiplicity 1

Type EcucBooleanParamDef
Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

]

[ECUC_CorTst_00127] Definition of EcucBooleanParamDef CorTstRegister |

Parameter Name CorTstRegister

Parent Container CorTstSelect

Description Enable/Disables core register test
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

Dependency

AUTSSAR

CorTstSelect: +parameter CorTstRegister:
EcucParamConfContainerDef EcucBooleanParamDef

lowerMultiplicity = 1 defaultValue = false

upperMultiplicity = 1 +parameter CorTstinterrupt:
EcucBooleanParamDef

defaultvValue = false

+parameter| - corrgalu: EcucBooleanParamDef

defaultvalue = false

+parameter| o, rgaddress EcucBooleanParamDef

defaultvalue = false

+parameter CorTstMemorylf:
EcucBooleanParamDef
>

defaultValue = false

‘+parameter CorTstMpu: EcucBooleanParamDef

defaultvalue = false

+parameter
CorTstCache: EcucBooleanParamDef

defaultvalue = false

Figure 10.3: CorTstSelect

10.2.4 CorTstBackgroundConfigSet

[ECUC_CorTst_00087] Definition of EcucParamConfContainerDef CorTstBack-
groundConfigSet |

Container Name CorTstBackgroundConfigSet

Parent Container CorTst

Description Multiple Configuration Set Container, defines background mode.
Multiplicity 0..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

CorTstBackgroundEcucPartitionRef 0..1 [ECUC_CorTst_00161]

Included Containers
Container Name Multiplicity Dependency

CorTstSelect 1 This container specifies configuration parameters to select
individual tests for foreground mode and background mode. The
availability is hardware and implementation specific.

AUTSSAR

[ECUC_CorTst_00161] Definition of EcucReferenceDef CorTstBackgroundEcuc
PartitionRef |

Parameter Name CorTstBackgroundEcucPartitionRef

Parent Container CorTstBackgroundConfigSet

Description Maps the background test configuration to zero or one ECUC partitions. The ECUC
partition referenced is a subset of the ECUC partitions where the CorTst driver is
mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[SWS_CorTst_01008] [The ECUC partitions referenced by CorTstBackgroundE-
cucPartitionRef shall be a subset of the ECUC partitions referenced by corT-
stEcucPartitionRef.]

[SWS_CorTst_01010] [If CorTstEcucPartitionRef references one or more
ECUC partitions, CorTstBackgroundEcucPartitionRef shall have a multiplicity
of one and reference one of these ECUC partitions as well. |

10.2.5 CorTstForegroundConfigSet

[ECUC_CorTst_00088] Definition of EcucParamConfContainerDef CorTstFore-
groundConfigSet |

Container Name CorTstForegroundConfigSet

Parent Container CorTst

Description Multiple Configuration Set Container , defines foreground mode.
Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CorTstTestldFgnd 1 [ECUC_CorTst_00158]
CorTstForegroundEcucPartitionRef 0..1 [ECUC_CorTst_00162]

Included Containers
Container Name Multiplicity Dependency

CorTstSelect 1 This container specifies configuration parameters to select
individual tests for foreground mode and background mode. The
availability is hardware and implementation specific.

AUTSSAR

[ECUC_CorTst_00158] Definition of EcuclntegerParamDef CorTstTestldFgnd |

Parameter Name CorTstTestldFgnd
Parent Container CorTstForegroundConfigSet
Description This is the Id of this specific foreground test configuration. The value shall be used in
the call to the API CorTst_Start(CorTst_TestldFgndType Testld).
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_CorTst_00162] Definition of EcucReferenceDef CorTstForegroundEcuc
PartitionRef |

Parameter Name CorTstForegroundEcucPartitionRef

Parent Container CorTstForegroundConfigSet

Description Maps the foreground test configuration to zero or one ECUC partitions. The ECUC
partition referenced is a subset of the ECUC partitions where the CorTst driver is
mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[SWS_CorTst_01011] [The ECUC partitions referenced by CorTstForegroundE-
cucPartitionRef shall be a subset of the ECUC partitions referenced by CorT-
stEcucPartitionRef.]

[SWS_CorTst_01012] [If CorTstEcucPartitionRef references one or more
ECUC partitions, CorTstForegroundEcucPartitionRef shall have a multiplicity
of one and reference one of these ECUC partitions as well. |

10.2.6 CorTstConfigApiServices

[ECUC_CorTst_00092] Definition of EcucParamConfContainerDef CorTstConfig
ApiServices |

AUTSSAR

Container Name

CorTstConfigApiServices

Parent Container

CorTst

Description

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUCID

CorTstAbortApi

1

[ECUC_CorTst_00094]

CorTstGetCurrentStatus

1

[ECUC_CorTst_00104]

CorTstGetFgndSignature

1

[ECUC_CorTst_00103]

CorTstGetSignature 1 [ECUC_CorTst_00097]
CorTstGetStateApi 1 [ECUC_CorTst_00096]
CorTstStartApi 1 [ECUC_CorTst_00093]

CorTstVersionInfoApi

[ECUC_CorTst_00098]

No Included Containers

]

[ECUC_CorTst_00094] Definition of EcucBooleanParamDef CorTstAbortApi [

Parameter Name

CorTstAbortApi

Parent Container

CorTstConfigApiServices

Description Adds / removes the service CorTst_Abort() from the code.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CorTst_00104]

Status |

Definition of EcucBooleanParamDef CorTstGetCurrent

Parameter Name

CorTstGetCurrentStatus

Parent Container

CorTstConfigApiServices

Description Adds / removes the service CorTst_GetCurrentStatus() from the code.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

AUTSSAR

Post-build time B

Dependency

]

[ECUC_CorTst_00103] Definition of EcucBooleanParamDef CorTstGetFgndSig-

nature |

Parameter Name

CorTstGetFgndSignature

Parent Container

CorTstConfigApiServices

Description Adds / removes the service CorTst_GetFgndSignature() from the code.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CorTst_00097] Definition of EcucBooleanParamDef CorTstGetSignature

[

Parameter Name

CorTstGetSignature

Parent Container

CorTstConfigApiServices

Description Adds / removes the service CorTst_GetSignature() from the code.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CorTst_00096] Definition of EcucBooleanParamDef CorTstGetStateApi |

Parameter Name

CorTstGetStateApi

Parent Container

CorTstConfigApiServices

Description Adds / removes the service CorTst_GetState() from the code.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Y%

AUTSSAR

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CorTst_00093] Definition of EcucBooleanParamDef CorTstStartApi |

Parameter Name

CorTstStartApi

Parent Container

CorTstConfigApiServices

Description Adds / removes the service CorTst_Start() from the code.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CorTst_00098]
Api |

Definition of EcucBooleanParamDef CorTstVersioninfo

Parameter Name

CorTstVersionInfoApi

Parent Container CorTstConfigApiServices

Description Adds / removes the service CorTst_GetVersionInfo() from the code.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

CorTstConfigApiServices: +parameter CorTstStartApi: EcucBooleanParamDef
EcucParamConfContainerDef

defaultValue = false

+parameter CorTstAbortApi:
EcucBooleanParamDef

defaultValue = false

CorTstGetStateApi:

+parameter
P EcucBooleanParamDef

defaultValue = false

CorTstGetSignature:
+parameter EcucBooleanParamDef

defaultValue = false

CorTstGetFgndSignature:

+parameter EcucBooleanParamDef

defaultValue = false

+parameter CorTstGetCumrentStatus:
EcucBooleanParamDef

defaultValue = false

+parameter CorTstVersionInfoApi:
EcucBooleanParamDef

defaultValue = false

Figure 10.4: CorTstConfigApiServices

10.2.7 CorTstDemEventParameterRefs

[ECUC_CorTst_00156] Definition of EcucParamConfContainerDef CorTstDem
EventParameterRefs |

Container Name CorTstDemEventParameterRefs
Parent Container CorTst
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1
Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

CORTST_E_CORE_FAILURE 0.1 [ECUC_CorTst_00157]

No Included Containers

AUTSSAR

[ECUC_CorTst_00157] Definition of EcucReferenceDef CORTST_E_CORE_FAIL-
URE [

Parameter Name CORTST_E_CORE_FAILURE

Parent Container CorTstDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "CORE
failure" has occured.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency Dem

10.3 Published Information

For details refer to [3] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_CorTst_NA_00999]

Upstream requirements: SRS_BSW_00167, SRS_BSW_00168, SRS_BSW_00344, SRS_BSW _
00375, SRS_BSW_00383, SRS _BSW _00398, SRS _BSW_00399,
SRS _BSW 00404, SRS _BSW 00405, SRS BSW 00416, SRS BSW
00417, SRS BSW 00423, SRS BSW 00424, SRS BSW 00425,
SRS_BSW 00426, SRS _BSW _00428, SRS _BSW 00429, SRS BSW
00432, SRS _BSW 00437, SRS _BSW 00438, SRS BSW 00170,
SRS _BSW 00171, SRS_CoreTst 14125, SRS CoreTst 14124, SRS _
CoreTst_14121, SRS _CoreTst 14127, SRS _CoreTst_14128

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General Behavior
	7.1.1 Background & Rationale

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Production Errors
	7.2.4 Extended Production Errors
	7.2.4.1 CORTST_E_CORE_FAILURE

	7.3 General Requirements
	7.4 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CorTst_ConfigType
	8.2.2 CorTst_CsumSignatureType
	8.2.3 CorTst_CsumSignatureBgndType
	8.2.4 CorTst_ErrOkType
	8.2.5 CorTst_ResultType
	8.2.6 CorTst_StateType
	8.2.7 CorTst_TestIdFgndType

	8.3 Function definitions
	8.3.1 CorTst_Init
	8.3.2 CorTst_DeInit
	8.3.3 CorTst_Abort
	8.3.4 CorTst_GetState
	8.3.5 CorTst_GetCurrentStatus
	8.3.6 CorTst_GetSignature
	8.3.7 CorTst_GetFgndSignature
	8.3.8 CorTst_Start
	8.3.9 CorTst_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 Deinitialization
	9.3 Background Test
	9.3.1 Test Result Calculation within Core Test Module
	9.3.2 Core Test Signature provided to Calling Entity

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CorTst
	10.2.2 CorTstGeneral
	10.2.3 CorTstSelect
	10.2.4 CorTstBackgroundConfigSet
	10.2.5 CorTstForegroundConfigSet
	10.2.6 CorTstConfigApiServices
	10.2.7 CorTstDemEventParameterRefs

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

