AUTSSAR

Document Title Specification of CRC Library
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 16

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Removed remaining references to CRC
AUTOSAR hardware implementation
2025-11-27 | R25-11 Release o
Management Minor corrections / clarifications /
editorial changes
* Introduction of a new CRC-32 based on
AUTOSAR SAE J1939-76 Standard
2024-11-27 | R24-11 Release , , e
Management * Minor corrections / clarifications /
editorial changes
» Removed hardware supported CRC
AUTOSAR calculation
2023-11-23 | R23-11 Release o
Management » Minor corrections / clarifications /
editorial changes
AUTOSAR : . e
» Minor corrections / clarifications /
2022-11-24 | R22-11 Release editorial changes
Management
» Minor corrections / clarifications /
AUTOSAR editorial changes
2021-11-25 | R21-11 Release .
Management » Changed Document Status from Final to
published
AUTOSAR I d the struct f the ’error
5020-11-30 | R20-11 Release mpt(O\r/]e, e structure of the ’erro
Management sections
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management

published

AUTSSAR

« Introduction of a new CRC-16 with the

AUTOSAR :
2018-10-31 | 4.4.0 Release polynomial 0x8005
Management « Editorial changes
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
AUTOSAR . Intrqduction of a new CRC-64 for E2E
2016-11-30 | 4.3.0 Release Profile 7
Management « Editorial changes
AUTOSAR
* Corrected the magic check for the
2015-07-31 4.2.2 Release
Management CRC32 and CRC32P4
AUTOSAR . Introduct.ion of a new CRC-32 with the
2014-10-31 | 4.2.1 Release polynomial OxF4ACFB13
Management « Editorial changes
AUTOSAR » CRC32 IEEE 802.3 check values
2014-03-31 | 4.1.3 Release corrected
Management « Editorial changes
AUTOSAR « Editorial changes
2013-10-31 4.1.2 Ili{/lelease ; * Removed chapter(s) on change
anagemen documentation
* New examples on how to use CRC
AUTOSAR routines and clarifications concerning
2013-03-15 | 4.1.1 Administration CCITT standard
* Removal of debugging concept
2011-12-22 | 4.0.3 AUTQSAR _ . Thg GetVersionInfo APl is always
Administration available
» New parameter added to APIs in or-der
to chain CRC computations
2010-09-30 | 3.1.5 ﬁgTOS?Rt * CRC check values corrected and
ministration checked values better explained
* CRC magic check added
* Introduction of a new CRC-8 with the
polynomial 2Fh
2010-02-02 | 3.1.4 AUTOSAR

Administration

» CRC-8 is now compliant to SAE J1850

* Legal disclaimer revised

AUTSSAR

» Separated CRC requirements from

2008-08-13 | 3.1.1 AUTQSAR ' Memory Services Requirements
Administration
» CRC8 management added
» Separated CRC requirements from
2008-02-01 | 3.02 AUTOSAR Memory Services Requirements
Administration
* CRC8 management added
AUTOSAR * Document meta information extended
2007-12-21 3.0.1 o .
Administration « Small layout adaptations made
* "Advice for users" revised
2007-01-24 2.1.15 ﬁgTQ.SAR .
ministration « "Revision Information" added
*Crc_CalculateCRC16 and
Crc_CalculateCRC32 APls,
AUTOSAR Crc_DataPtr parameter : void pointer
2006-11-2 2.1.1 . , —
006 8 Administration changed to uint8 pointer
* Legal disclaimer revised
» Document structure adapted to common
Release 2.0 SWS Template
AUTOSAR * UML model introduction
2006-05-16 | 2.0 o . .
Administration « Requirements traceability update
» Reentrancy at calculating CRC with
hardware support
2005-05-31 1.0 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

5 Dependencies to other modules
6 Requirements Tracing

7 Functional specification

7.1 Basic Concepts of CRC Codes
7.1.1 Mathematical Description,
7.1.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences . . .
7.1.3 CRC calculation, Variations and Parameter
7.1.4 Encoding of CRC polynomials

7.2 Standard parameterso
7.2.1 8-bit CRC calculation

7.2.1.1 8-bit SAE J1850 CRC Calculation
7.2.1.2 8-bit 0x2F polynomial CRC Calculation
7.2.2 16-bit CRCcalculation
7.221 16-bit CCITT-FALSECRC16
7.2.2.2 16-bit 0x8005 polynomial CRC calculation
7.2.3 32-bit CRCcalculation
7.2.3.1 32-bit Ethernet CRC Calculation.
7.2.3.2 32-bit 0XF4ACFB13 polynomial CRC calculation.
7.2.3.3 32-bit SAE J1939-76 CRC Calculation
7.2.4 64-bitCRCcalculation.
7.2.4.1 64-bit ECMA polynomial CRC calculation.

7.3 Generalbehavior

7.4 Versioncheck

7.5 Debuggingconcept

7.6 Error Classification
7.6.1 DevelopmentErrors
7.6.2 RuntimeErrors
7.6.3 ProductionErrorso
7.6.4 Extended ProductionErrors oL

10

10
10

11

11
11

12

AUTSSAR

8 API specification

8.1 Importedtypes e
8.2 Type definitions
8.3 Functiondefinitions o
8.3.1 8-bit CRC Calculation
8.3.1.1 8-bit SAE J1850 CRC Calculation
8.3.1.2 8-bit 0x2F polynomial CRC Calculation
8.3.2 16-bit CRC Calculation
8.3.2.1 16-bit CCITT-FALSECRC16
8.3.2.2 16-bit 0x8005 polynomial CRC calculation
8.3.3 32-bit CRC Calculation
8.3.3.1 32-bit Ethernet CRC Calculation.
8.3.3.2 32-bit 0XF4ACFB13 polynomial CRC calculation.
8.3.3.3 32-bit SAE J1939-76 CRC Calculation
8.3.4 64-bit CRC Calculation
8.3.4.1 64-bit 0x42FOE1EBA9EA3693 polynomial CRC calculation
8.3.5 Crc _GetVersioninfo
8.4 Callback notifications
8.5 Scheduled functions
8.6 Expectedinterfaces o
8.6.1 Mandatoryinterfaces
8.6.2 Optionalinterfaces,
8.6.3 Configurable interfaces
8.7 Servicelnterfaces

9 Sequence diagrams

9.1 Crc_CalculateCRC8() o o
9.2 Crc_CalculateCRC8H2F()
9.3 Crc_CalculateCRC16() o o e e
9.4 Crc_CalculateCRC16ARC() o o i i i it i e
9.5 Crc_CalculateCRC32() o o i e
9.6 Crc_CalculateCRC32P4() i
9.7 Crc_CalculateCRC32P76()+« v o o i e e e e e e e e
9.8 Crc_CalculateCRC6B4() o i i e e

10 Configuration specification

10.1How toread thischapter
10.1.1 Configuration and configuration parameters
10.1.2Containers e e
10.2Containers and configuration parameters
10.2.1Crc . . . o
10.3Published Information o

A Not applicable requirements

29

29
29
29
33
33
34
35
35
36
37
37
38
39
40
40
41
41
42
42
42
42
42
42

43

43
43
44
44
45
45
46
47

48

48
48
48
50
50
55

57

AUTSSAR

B Change History 58
B.1 Change History of this document according to AUTOSAR Release R22-11 58
B.1.1 Added Specification ItemsinR22-11 58
B.1.2 Changed Specification ltemsin R22-11 58
B.1.3 Deleted Specification Itemsin R22-11 58
B.2 Change History of this document according to AUTOSAR Release R23-11 58
B.2.1 Added Specification ltemsin R23-11 58
B.2.2 Changed Specification ltemsin R23-11 58
B.2.3 Deleted Specification Itemsin R23-11 59
B.3 Change History of this document according to AUTOSAR Release R24-11 59
B.3.1 Added Specification ltemsinR24-11 59
B.3.2 Changed Specification ltemsin R24-11 59
B.3.3 Deleted Specification ltemsinR24-11 59
B.4 Change History of this document according to AUTOSAR Release R25-11 59
B.4.1 Added Specification ltemsin R25-11 59
B.4.2 Changed Specification ltemsin R25-11 59

B.4.3 Deleted Specification ltemsin R25-11 59

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Library CRC.

The CRC library contains the following routines for CRC calculation:
+ CRC8: SAEJ1850

CRC8H2F: CRC8 0x2F polynomial

CRC16

CRC32

CRC32P4: CRC32 0xF4ACFB13 polynomial

CRC32P76: CRC32 0x6938392D polynomial

CRC64: CRC-64-ECMA

For all routines (CRC8, CRC8H2F, CRC16, CRC32, CRC32P4 and CRC64), the fol-
lowing calculation methods are possible:

+ Table based calculation: Fast execution, but larger code size (ROM table)
* Runtime calculation: Slower execution, but small code size (no ROM table)

All routines are re-entrant and can be used by multiple applications at the same time.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CRC module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
ALU Arithmetic Logic Unit

Table 2.1: Acronyms and abbreviations

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[38] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[4] Requirements on Libraries
AUTOSAR_CP_RS_Libraries

[5] ITU-T Recommendation X.25: Interface between Data Terminal Equipment (DTE)
and Data Circuit-terminating Equipment (DCE) for terminals operating in the
packet mode and connected to public data networks by dedicated circuit
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-1!!PDF-
E&type=items

[6] 32-bit cyclic redundancy codes for Internet applications

[7] Listing of CRCs, including CRC-64-ECMA
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

[8] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[9] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for CRC.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for AUTOSAR CRC Library.

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No known limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

There are no dependencies to other modules.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [3] and [4] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Crc_00050]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Crc_00011] [SWS_Crc_00017]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Crc_00011] [SWS_Crc_00017]

[SRS_LIBS_00005]

Each library shall provide one header
file with its public interface

[SWS_Crc_00019] [SWS_Crc_00020]
[SWS_Crc_00021] [SWS_Crc_00031]
[SWS_Crc_00043] [SWS_Crc_00058]
[SWS_Crc_00061] [SWS_Crc_00071]
[SWS_Crc_00091]

[SRS_LIBS_00009]

All library functions shall be re-entrant

[SWS_Crc_00019] [SWS_Crc_00020]
[SWS_Crc_00021] [SWS_Crc_00031]
[SWS_Crc_00043] [SWS_Crc_00058]
[SWS_Crc_00061] [SWS_Crc_00071]
[SWS_Crc_00091]

[SRS_LIBS_00011]

All function names and type names
shall start with "Library short name_"

[SWS_Crc_00019] [SWS_Crc_00020]
[SWS_Crc_00021] [SWS_Crc_00031]
[SWS_Crc_00043] [SWS_Crc_00058]
[SWS_Crc_00061] [SWS_Crc_00071]
[SWS_Crc_00091]

[SRS_LIBS_00018]

A library function may only call library
functions

[SWS_Crc_00072]

[SRS_LIBS_08521]

All CRC routines shall allow
step-by-step-wise calculation of a
large data block

[SWS_Crc_00019] [SWS_Crc_00020]
[SWS_Crc_00031] [SWS_Crc_00043]
[SWS_Crc_00058] [SWS_Crc_00061]
[SWS_Crc_00071] [SWS_Crc_00091]

[SRS_LIBS_08525]

The CRC library shall support the
standard generator polynomials

[SWS_Crc_00002] [SWS_Crc_00003]
[SWS_Crc_00015] [SWS_Crc_00016]
[SWS_Crc_00030] [SWS_Crc_00032]
[SWS_Crc_00042] [SWS_Crc_00044]
[SWS_Crc_00052] [SWS_Crc_00053]
[SWS_Crc_00054] [SWS_Crc_00055]
[SWS_Crc_00056] [SWS_Crc_00057]
[SWS_Crc_00059] [SWS_Crc_00062]
[SWS_Crc_00063] [SWS_Crc_00064]
[SWS_Crc_00067] [SWS_Crc_00068]
[SWS_Crc_00069] [SWS_Crc_00073]
[SWS_Crc_00074] [SWS_Crc_00075]
[SWS_Crc_00076] [SWS_Crc_00077]
[SWS_Crc_00078] [SWS_Crc_00079]
[SWS_Crc_00080] [SWS_Crc_00081]
[SWS_Crc_00082] [SWS_Crc_00083]
[SWS_Crc_00084] [SWS_Crc_00085]
[SWS_Crc_00086] [SWS_Crc_00087]
[SWS_Crc_00088] [SWS_Crc_00089]
[SWS_Crc_00090] [SWS_Crc_00092]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Basic Concepts of CRC Codes

7.1.1 Mathematical Description
Let D be a bitwise representation of data with a total number of n bit, i.e.
D = (dn—la dn—Qu dn—37 cee 7d17 dO)a

with dy, dy, ... = 0b, 1b. The corresponding Redundant Code C'is represented by n + k
bit as
C = (D7 R) = (dn—la dn—27 dn—37 CIE ad27 d17 dOark’—la < T, 7”177.0)

with ro,r1,... = 0b,1band R = (rg_1,...,r2,71,70). The code is simply a concatenation
of the data and the redundant part. (For our application, we will chose k = 16, 32 and
n as a multiple of 16 respectively 32).

CRC-Algorithms are related to polynomials with coefficients in the finite field of two
element, using arithmetic operations & and * according to the following tables.

The & operation is identified as the binary operation exclusive-or, that is usually avail-
able in the ALU of any CPU.

@

0b

1b

0b

0b

1b

0b

1b

1b

1b

0b

0b

0b

0b

16

0b

1b

For simplicity, we will write ab instead of a * b

We introduce some examples for polynomials with coefficients in the field of two ele-
ments and give the simplified notation of it.

(ex. 1) pi(X) = 1bX3 + 0bX? + 10X + 00X° = X3 + X
(ex. 2) po(X) = 1bX2 + 10X + 16X = X2 + X' 4+ 1b
Any code word, represented by n + & bit can be mapped to a polynomial of order

n + k — 1 with coefficients in the field of two elements. We use the intuitive mapping of
the bits i.e.

C(X) = dpr XETgedyy o X2 e dp XFP2 4y XE 4 dp X E o X o X724
c. 7’1X + 7o

C(X) = Xk(dn_an_l + dn_QXn_z + ...+ d2X2 + lel + do) + Tk_le_l + Tk_QXk_z +
—|—7’1X—|—'f'0

C(X) = X*D(X)® R(X)

This mapping is one-to-one.

AUTSSAR

A certain space C'RC of Cyclic Redundant Code Polynomials is defined to be a multi-
ple of a given Generator Polynomial G(X) = X* 4+ g 1 X* P+ gp o X2+ + X2 +
91X + go. By definition, for any code polynomial C'(X) in C RC there is a polynomial
M (X) with

For a fixed irreducible (i.e. prime-) polynomial G(X), the mapping M (X) — C(X) is
one-to-one. Now, how are data of a given codeword verified? This is basically a division
of polynomials, using the Euclidian Algorithm. In practice, we are not interested in
M (X), but in the remainder of the division, C'(X) mod G(X). For a correct code word
C, this remainder has to be zero, C'(X) mod G(X) = 0. If this is not the case - there is
an error in the codeword. Given G(X) has some additional algebraic properties, one
can determine the error-location and correct the codeword.

Calculating the code word from the data can also be done with the Euclidian Algorithm.
For a given data polynomial D(z) = d,, 1 X" ' +d,, o X" 2+ ... + d; X' + dy and the
corresponding code polynomial C'(X) we have

C(X)=X"D(X)® R(X) = M(X)G(X)

Performing the operation modG(X') on both sides, one obtains

0= C(X) mod G(X) = [X*D(X)] mod G(X) ® R(X) mod G(X) (7.1)

We denote that the order of the Polynomial R(X) is less than the order of G(X), so the
modulo division gives zero with remainder R(X):

R(X) mod G(X) = R(X)

For polynomial R(X) with coefficients in the finite field with two elements we have the
remarkable property R(X) + R(X) = 0. If we add R(X) on both sides of equation 7.1
we obtain

R(X) = X*D(X) mod G(X)

The important implication is that the redundant part of the requested code can be
determined by using the Euclidian Algorithm for polynomials. At present, any CRC
calculation method is a more or less sophisticated variation of this basic algorithm.

Up to this point, the propositions on CRC Codes are summarized as follows:

1. The construction principle of CRC Codes is based on polynomials with coeffi-
cients in the finite field of two elements. The @ operation of this field is identical
to the binary operation "XOR" (exclusive or).

AUTSSAR

2. There is a natural mapping of bit-sequences into this space of polynomials.

3. Both calculation and verification of the CRC code polynomial is based on division
modulo a given generator polynomial.

4. This generator polynomial has to have certain algebraic properties in order to
achieve error-detection and eventually error-correction.

7.1.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences

Given a Polynomial P,,(X) = p, X" +p, 1 X" 1 +. .. +p2 X%+ p1 X + po With coefficients
in the finite field of two elements. Let Q(X) = X* 4+ ¢ 1 XF + qp o X724+ + X2+
@1 X + qo be another polynomial of exact order £ > 0. Let R,(X) be the remainder of
the polynomial division of maximum order k£ — 1 and M,,(X) corresponding so that

R (X) & My (X)Q(X) = P (X)

Euclidian Algorithm - Recursive

(Termination of recursion)

If n < k, then choose R,,(X) = P,(X) and M,, = 0.
(Recursionn +1 — n)

Let P,.1(X) be of maximum order n + 1.

If n+ 1 >= k calculate P,(X) = P 1(X) — pp1Q(X) X" %+ This polynomial is of
maximum order n. Then

Poa (X) mod Q(X) = P,(X) mod Q(X)

Proof of recursion

Choose R,,1(X) = P,+1(X) mod Q(X) and M,,.1(X) so that

Bpi1 (X) @ M1 (X)Q(X) = P (X)

Then Ry 41(X) — Ro(X) = Poy1(X) — M1 (X)Q(X) — Po(X) & M, (X)Q(X).
With P,41(X) — Py(X) = pnirQ(X)X"*+1 we obtain:

Roi1(X) = Ru(X) = pun Q) X" 4+ My (X)Q(X) — M1 (X)Q(X)

Rya (X) - RH(X> = Q(X)[pn—HXnikJrl + Mn(X) - Mn—i-l(X)]

AUTSSAR

On the left side, there is a polynomial of maximum order k—1. On the right side Q(X) is
of exact order k. This implies that both sides are trivial and equal to zero. One obtains

Rp1(X) = Rn(X) (7.2)

My 1(X) = Mo (X) 4 ppn X" (7.3)
(end of proof)
Example 7.1
PX)=P{X)=X*"+X?+ X +1;QX)=X2+ X +1byn=4;k =2
PBX)=X'"+X?+ X+ 10— 1p(X?’+ X +10)X?2=X3+ X +1b
PQ(X):X3+X+1b—1bX(X2+X+lb) X2 +1b
PX)=X?+1-10(X>+X+1)=X
R(X) = () mod Q(X) = Ri(X) = A(X) =X

7.1.3 CRC calculation, Variations and Parameter

Based on the Euclidian Algorithm, some variations have been developed in order to
improve the calculation performance. All these variations do not improve the capability
to detect or correct errors - the so-called Hamming Distance of the resulting code is
determined only by the generator polynomial. Variations simply optimize for different
implementing ALUs.

CRC-Calculation methods are characterized as follows:

1. Rule for Mapping of Data to a bit sequence (d,,_1,d,_2,d,_3,...,d;,dy) and the
corresponding data polynomial D(X) (standard or reflected data).

Generator polynomial G(X)
Start value and corresponding Polynomial S(X)

Appendix A(X), also called XOR-value for modifying the final result.

o b~ 0 D

Rule for mapping the resulting CRC-remainder R(.X) to codeword. (Standard or
reflected data)

The calculation itself is organized in the following steps
* Map Data to D(X)

« Perform Euclidian Algorithm on X* D(X) + X" *"15(X) + A(X) and determine
R(X) = [X*D(X) + X" *15(X) + A(X)] mod G(X)

« Map D(X), R(X) to codeword

AUTSSAR

7.1.4 Encoding of CRC polynomials

There are three notations for encoding the polynomial, so to clarify, all three notations
are shown bellow as examples for the 42’FO'’E1’EB’A9’EA’36°93h polynomial:

1 Polynomial as binary 0001°0100°0010’1111°0000°1110°0001°1110°1011’1010°1001°
1110'1010°0011°0110°1001°0011
Normal representation with high bit 01’42’FO’E1’EB’A9’EA’36’93h
Normal representation 42’FO’E1T’EB’A9’EA’36°93h
Reversed reciprocal representation A1'7870'F5'D4'F5'1B’'49h
(=Koopman representation)

Table 7.1: Encoding of CRC polynomials

Notes:

1.
2.

Normal representation with high bit = hex representation of polynomial as binary

Normal representation with high bit = Koopman representation * 2 + 1

Within this document (and consistently unless otherwise noted) in AUTOSAR CP the
Normal representation (without high bit), i.e., notation 3 in the above table, is used.

7.2

Standard parameters

This section gives a rough overview on the standard parameters that are commonly
used for 8-bit, 16-bit and 32-bit CRC calculation.

CRC result width: Defines the result data width of the CRC calculation.

Polynomial: Defines the generator polynomial which is used for the CRC algo-
rithm.

Initial value: Defines the start condition for the CRC algorithm.

Input data reflected: Defines whether the bits of each input byte are reflected
before being processed (see definition below).

Result data reflected: Similar to "Input data reflected" this parameter defines
whether the bits of the CRC result are reflected (see definition below). The result
is reflected over 8-bit for a CRC8, over 16-bit for a CRC16 and over 32-bit for a
CRC32.

XOR value: This Value is XORed to the final register value before the value is
returned as the official checksum.

Check: This field is a check value that can be used as a weak validator of imple-
mentations of the algorithm. The field contains the checksum obtained when the
ASCl| values’1’’2’°3'’4’’5’6’ '7° '8’ '9’ corresponding to values 31h 32h 33h 34h
35h 36h 37h 38h 39h is fed through the specified algorithm.

AUTSSAR

» Magic check: The CRC checking process calculates the CRC over the entire data
block, including the CRC result. An error-free data block will always result in the
unigue constant polynomial (magic check) - representing the CRC-result XORed
with ’XOR value’- regardless of the data block content.

Example 7.2

Magic check calculation of SAE-J1850 CRC8 (see detailed parameters in
[SWS_Crc_00030]) over data bytes 00h 00h 00h 00h:

* CRC generation: CRC over 00h 00h 00h 00h, start value FFh:
— CRC-result = 59h
* CRC check: CRC over 00h 00h 00h 00h 59h, start value FFh:
— CRC-result = 3Bh
— Magic check = CRC-result XORed with ’XOR value’: C4h = 3Bh xor FFh

Data reflection: It is a reflection on a bit basis where data bits are written in the reverse
order. The formula is:

n—1
reflect,,(z) = sz x it
=0

where z is the data and n the number of data bits.
E.g. The reflectionqg of 2D+¢ (n = 8) (001011015,) is B445 (10110100,)

The reflectione of 12345678+ (N = 16) (0001 0010 0011 0100 0101 01100111 1000,)
is 1TE6A2C48+5 (0001 11100110 1010 0010 1100 0100 1000,).

The reflections, of 123456789ABCDEFO (n = 32) (0001 0010 0011 0100 0101 0110
0111 1000 1001 1010 1011 1100 1101 1110 1111 0000,) is OF7B3D591 E6A2C48,¢
(0000 1111 0111 1011 0011 1101 0101 1001 0001 1110 0110 1010 0010 1100 0100
10005).

The reflectiong of 123456789ABCDEFO0 (n = 8) (0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111 0000,) is 84C2A6E195D3B7F0+¢ (1000
0100 1100 0010 10100110 1110 0001 1001 0101 1101 0011 1011 0111 1111 0000y).

7.2.1 8-bit CRC calculation
7.2.1.1 8-bit SAE J1850 CRC Calculation

[SWS_Crc_00030]
Upstream requirements: SRS_LIBS 08525

[The Crc_calculateCRC8 function of the CRC module shall implement the CRC8
routine based on the SAE-J1850 CRC8 Standard, according to [SWS_Crc_00073]. |

AUTSSAR

[SWS_Crc_00073] SAE-J1850 CRC8 Polynomial
Upstream requirements: SRS_LIBS_08525

[
CRC result width: 8 bits
Polynomial: 1Dh
Initial value: FFh
Input data reflected: No
Result data reflected: No
XOR value: FFh
Check: 4Bh
Magic check: C4h

J

[SWS_Crc_00052]

Upstream requirements: SRS_LIBS_ 08525
[The Crc_calculateCRCS8 function of the CRC module shall provide the following
CRC results, according to [SWS_Crc_00074]. |

[SWS_Crc_00074] Crc_CalculateCRCS8 results
Upstream requirements: SRS_LIBS 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 59
F2 01 83 37
OF AA 00 55 79
00 FF 55 11 B8
33 22 55 AA BB cC DD EE FF CB
92 6B 55 8C
FF FF FF FF 74
J

7.2.1.2 8-bit 0x2F polynomial CRC Calculation

[SWS_Crc_00042]
Upstream requirements: SRS_LIBS_ 08525
[The Crc_calculateCRC8H2F function of the CRC module shall implement

the CRC8 routine based on the generator polynomial 0x2F, according to
[SWS_Crc_00075]. |

AUTSSAR

[SWS_Crc_00075] CRC8 Polynomial
Upstream requirements: SRS_LIBS_08525

[
CRC result width: 8 bits
Polynomial: 2Fh
Initial value: FFh
Input data reflected: No
Result data reflected: No
XOR value: FFh
Check: DFh
Magic check: 42h

J

[SWS_Crc_00053]

Upstream requirements: SRS_LIBS_ 08525
[The Crc_CalculateCRC8H2F function of the CRC module shall provide the follow-
ing CRC results, according to [SWS_Crc_00076]. |

[SWS_Crc_00076] Crc_CalculateCRC8H2F results
Upstream requirements: SRS_LIBS 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 12
F2 01 83 c2
OF AA 00 55 C6
00 FF 55 11 7
33 22 55 AA BB CC DD EE FF 11
92 6B 55 33
FF FF FF FF 6C
J

7.2.2 16-bit CRC calculation
7.2.2.1 16-bit CCITT-FALSE CRC16

[SWS_Crc_00002]

Upstream requirements: SRS_LIBS 08525
[The CRC module shall implement the CRC16 routine based on the CCITT-FALSE
CRC16 Standard, according to [SWS_Crc_00077].]

Note concerning the standard document [5]:

The computed FCS is equal to CRC16 XOR FFFFh when the frame is built (first com-
plement of the CCITT-FALSE CRC16).

AUTSSAR

For the verification, the CRC16 (CCITT-FALSE) is computed on the same data + FCS,
and the resulting value is always 1DOFh.

Note that, if during the verification, the check would have been done on data + CRC16
(i.,e. FCS XOR FFFFh) the resulting value would have been 0000h that is the CCITT-
FALSE magic check.

[SWS_Crc_00077] CCITT-FALSE CRC16 Polynomial
Upstream requirements: SRS_LIBS_ 08525

[
CRC result width: 16 bits
Polynomial: 1021h
Initial value: FFFFh
Input data reflected: No
Result data reflected: No
XOR value: 0000h
Check: 29B1h
Magic check: 0000h

]

[SWS_Crc_00054]

Upstream requirements: SRS_LIBS 08525
[The Crc_CalculateCRC16 function of the CRC module shall provide the following
CRC results, according to [SWS_Crc_00078]. |

[SWS_Crc_00078] Crc_CalculateCRC16 results
Upstream requirements: SRS_LIBS 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 84C0
F2 01 83 D374
OF AA 00 55 2023
00 FF 55 11 B8F9
33 22 55 AA BB CC DD EE FF F53F
92 6B 55 0745
FF FF FF FF 1DOF
J

7.2.2.2 16-bit 0x8005 polynomial CRC calculation

[SWS_Crc_00067]
Upstream requirements: SRS_LIBS_ 08525

[The CRC module shall implement the CRC16 based on the CRC-16/ARC Standard,
according to [SWS_Crc_00079]. |

AUTSSAR

[SWS_Crc_00079] CRC-16/ARC Polynomial
Upstream requirements: SRS_LIBS_08525

[
CRC result width: 16 bits
Polynomial: 8005h
Initial value: 0000h
Input data reflected: Yes
Result data reflected: Yes
XOR value: 0000h
Check: BB3Dh
Magic check: 0000h
J

[SWS_Crc_00068]

Upstream requirements: SRS_LIBS_ 08525
[The Crc_CalculateCRC16ARC function of the CRC module shall provide the fol-
lowing CRC results, according to [SWS_Crc_00080]. |

[SWS_Crc_00080] Crc_CalculateCRC16ARC results
Upstream requirements: SRS_LIBS 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 0000
F2 01 83 C2E1
OF AA 00 55 0BE3
00 FF 55 11 6CCF
33 22 55 AA BB CC DD EE FF AE98
92 6B 55 E24E
FF FF FF FF 9401
J

7.2.3 32-bit CRC calculation
7.2.3.1 32-bit Ethernet CRC Calculation

[SWS_Crc_00003]
Upstream requirements: SRS_LIBS_ 08525

[The CRC module shall implement the CRC32 routine based on the IEEE-802.3
CRC32 Ethernet Standard, according to [SWS_Crc_00081]. |

AUTSSAR

[SWS_Crc_00081] IEEE-802.3 CRC32 Ethernet Polynomial
Upstream requirements: SRS_LIBS_08525

[
CRC result width: 32 bits
Polynomial: 04C11DB7h
Initial value: FFFFFFFFh
Input data reflected: Yes
Result data reflected: Yes
XOR value: FFFFFFFFh
Check: CBF43926h
Magic check*: DEBB20E3h
J

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result.

[SWS_Crc_00055]

Upstream requirements: SRS_LIBS_ 08525
[The Crc_CalculateCRC32 function of the CRC module shall provide the following
CRC results, according to [SWS_Crc_00082] |

[SWS_Crc_00082] Crc_CalculateCRC32 results
Upstream requirements: SRS_LIBS 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 2144DF1C
F2 01 83 24AB9D77
OF AA 00 55 B6C9B287
00 FF 55 11 32A06212
33 22 55 AA BB CC DD EE FF BOAE863D
92 6B 55 9CDEA29B
FF FF FF FF FFFFFFFF
J

7.2.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation

This 32-bit CRC function is described in [6]. It has an advantage with respect to the
Ethernet CRC - it has a Hamming Distance of 6 up to 4kB.

[SWS_Crc_00056]
Upstream requirements: SRS_LIBS_ 08525

[The CRC module shall implement the CRC32 routine using the 0xF4’AC’FB’13 poly-
nomial, according to [SWS_Crc_00083]. |

AUTSSAR

[SWS_Crc_00083] 0xF4’AC’FB’13 Polynomial

Upstream requirements: SRS_LIBS_08525

[

]

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result.

[SWS_Crc_00057]
Upstream requirements: SRS_LIBS 08525

[The Crc_CalculateCRC32P4 function of the CRC module shall provide the follow-

CRC result width: 32 bits
Polynomial: F4'AC’FB'13h
Initial value: FFFFFFFFh

Input data reflected: Yes
Result data reflected: Yes
XOR value: FFFFFFFFh
Check: 16’97’D0’6Ah
Magic check*: 90’4C’DD’BFh

Hamming distance:

6, up to 4096 bytes (including CRC)

ing CRC results, according to [SWS_Crc_00084]. |

[SWS_Crc_00084] Crc_CalculateCRC32P4 results

Upstream requirements: SRS_LIBS 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 6FB32240h
F2 01 83 4F721A25h
OF AA 00 55 20662DF8h
00 FF 55 11 9BD7996Eh
33 22 55 AA BB CC DD EE FF A65A343Dh
92 6B 55 EE688A78h
FF FF FF FF FFFFFFFFh
J

7.2.3.3 32-bit SAE J1939-76 CRC Calculation

[SWS Crc_00087] SAE J1939-76 CRC Calculation

Status:
Upstream requirements: SRS_LIBS 08525

[The CRC module shall implement the CRC32 routine based on the SAE J1939-76

DRAFT

CRC32 Standard, according to [SWS_Crc_00088]. |

AUTSSAR

[SWS_Crc_00088] SAE J1939-76 CRC32 Polynomial

Status: DRAFT
Upstream requirements: SRS_LIBS_ 08525
[
CRC result width: 32 bits
Polynomial: 6938392Dh
Initial value: FFFFFFFFh
Input data reflected: No
Result data reflected: No
XOR value: 00000000h
Check: 4DB36B68
Magic check: 00000000h
]
[SWS_Crc_00089] Crc_CalculateCRC32P76 results
Status: DRAFT

Upstream requirements: SRS_LIBS 08525

[The Crc_CalculateCRc32P76 function of the CRC module shall provide the fol-
lowing CRC results, according to [SWS_Crc_00090] |

[SWS_Crc_00090] Crc_CalculateCRC32P76 results

Status: DRAFT
Upstream requirements: SRS_LIBS_08525
[
Data bytes (hexadecimal) CRC
00 00 00 00 FFD18D4D
F2 01 83 22E39B5D
OF AA 00 55 1E7F978E
00 FF 55 11 E3574865
33 22 55 AA BB cc DD EE FF 09ADD524
92 6B 55 93057FCD
FF FF FF FF 00000000
J

7.2.4 64-bit CRC calculation
7.2.4.1 64-bit ECMA polynomial CRC calculation

This 64-bit CRC function is described in [7]. It has a good hamming distance of 4, for
long data (see below).

AUTSSAR

[SWS_Crc_00062]

Upstream requirements: SRS_LIBS_08525
[The CRC module shall implement the CRC64 routine using the
0x42’FO’E1T’EB’A9’EA’36’93 polynomial, according to [SWS_Crc_00085]. |

[SWS_Crc_00085] 0x42'FO’E1’EB’A9’EA’36°93 Polynomial
Upstream requirements: SRS_LIBS_ 08525

[
CRC result width: 64 bits
Polynomial: 42’FO'E1’EB’A9’EA’36'93h
Initial value: FFFFFFFFFFFFFFFFh
Input data reflected: Yes
Result data reflected: Yes
XOR value: FFFFFFFFFFFFFFFFh
Check: 99'5D’C9’'BB’DF’19'39’FAh
Magic check™: 49'95'8C’9A’BD’7D’35'3Fh
Hamming distance: 4, up to almost 8 GB

J

*Important note: To match the magic check value, the CRC must be appended in little
endian format, i.e. low significant byte first. This is due to the reflections of the input
and the result.

[SWS_Crc_00063]

Upstream requirements: SRS_LIBS_08525
[The Crc_CalculateCRC64 function of the CRC module shall provide the following
CRC results, according to [SWS_Crc_00086]. |

[SWS_Crc_00086] Crc_CalculateCRC64 results
Upstream requirements: SRS_LIBS_ 08525

[
Data bytes (hexadecimal) CRC
00 00 00 00 F4A586351E1B9F4Bh
F2 01 83 319C27668164F1C6h
OoF AA 00 55 54C5D0F7667C1575h
00 FF 55 11 A63822BE7E0704E6h
33 22 55 AA BB CC DD EE FF 701ECEB219A8E5D5h
92 6B 55 5FAA96A9B59F3E4Eh
FF FF FF FF FFFFFFFF00000000h

AUTSSAR

7.3 General behavior

Data blocks are passed to the CRC routines using the parameters "start address”,
"size" and "start value". The return value is the CRC result.

7.4 \Version check

For details, refer to [2] Chapter 5.1.8 “Version check”.

7.5 Debugging concept

None

7.6 Error Classification

The document [2] Chapter 7.2 “Error Handling” describes the error handling of the
Basic Software in detail. Above all, it constitutes a classification scheme consisting of
five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.6.1 Development Errors

There are no development errors.

7.6.2 Runtime Errors

There are no runtime errors.

7.6.3 Production Errors

There are no production errors.

7.6.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter, all types included from the following modules are listed:

[SWS_Crc_00018] Definition of imported datatypes of module Crc |

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType

8.2 Type definitions

None.

8.3 Function definitions

This chapter contains the APIs provided by the Crc library. The caller of a Crc APl is
responsible to pass valid arguments. Crc functions do not perform checks on validity
of input parameters.

[SWS_Crc_00072]
Upstream requirements: SRS_LIBS_ 00018

[The CRC library functions shall not call any BSW modules functions (e.g. the DET). |

[SWS_Crc_00014] [The CRC function (with parameter Crc_IsFirstCall = TRUE) shall
do the following operations:

1. As ’Initial value’ of the CRC computation, uses the attribute ’Initial value’ of the
polynomial:
Crc = PolynomiallnitV al

2. If the attribute ’Input data reflected’ of the polynomial is TRUE, then reflects input
data (byte per byte) obtained via parameters Crc_DataPtr and Crc_Length:

Data = reflectg(Data) (in the case *Input data reflected” is TRUE)

3. Compute the CRC over the data, the last CRC and the CRC polynomial:
Crc = f(Data, Cre, Polynomial)

4. Execute the XOR operation between crc and ’XOR value’ of the polynomial:

Crc = Crc® Polynomial XORV al

AUTSSAR

5. If the attribute 'Result data reflected’ of the polynomial is TRUE, then reflect the

CRC (over 8, 16, 32 or 64 bits, depending on the CRC size):

Cre = reflectcresize(Cre) (in the case "Result data reflected’ is TRUE)

6. The CRC is returned:

return C're

Steps 2 and 3 are performed as long as data are available |

[SWS_Crc_00041] [The CRC function (with parameter Crc_IsFirstCall = FALSE) shall
do the following operations:

1.

As ’Initial value’ of the CRC computation, uses the parameter Crc_StartValueX
(where X is 8, 8H2F, 16, 16ARC, 32, P4 or 64) that should be the CRC result of
the last call. The result is then XORed with ’XOR value’ and reflected if 'Result
data reflected’ of the polynomial is TRUE:

Crc = Crc_StartValueX & Polynomial XORV al

Cre = reflectoresize(Cre) (in the case "Result data reflected’ is TRUE)

Steps 2 to 6 are identical to [SWS_Crc_00014]. |

Usage of CRC functions:

For the first or the unique call the user of a CRC function shall:

1.
2.
3.

5.
6.

give a pointer to the data (Crc_DataPtr)
give the number of bytes of data (Crc_Length)

give the Crc_StartValueX parameter a don’t care value (the initialization value is
known by the chosen algorithm)

. give the Crc_IsFirstCall parameter the value TRUE to inform the library that it is

the first or unique call
call the CRC function
get the CRC

For the subsequent calls the user has to:

1.
2.
3.

give a pointer to the data (Crc_DataPtr)
give the number of bytes of data (Crc_Length)

give the Crc_StartValueX parameter (X is 8, 8H2F, 16, 16ARC, 32, P4 or 64) the
CRC result of the previous call

give the Crc_IsFirstCall parameter the value FALSE to inform the library that it is
not the first call

AUTSSAR

5. call the CRC function
6. get the CRC
Example 8.1

Calculation of CRC8: calculation of CRC8 SAEJ1850, over one of test patterns defined

by SAE J1850 specification (00h, FFh, 55h, 11h results with CRC B8h)

+ If done in one step:

uint8 Array([4] = {0x00, OxFF, 0x55, 0Ox11};
uint8 ignored_val = 0x001; /* any value, it is ignored =/

uint8 resultSAE = Crc_CalculateCRCS8 (&Array[0], 4,
Listing 8.1: Single-step CRC8 SAEJ1850 calculation

resultSAE shall be equal to B8h
* If done in several steps:

uint8 Array[4] = {0x00, OxFF, 0x55, O0x11};
uint8 ignored_val = 0x001; /* any value, it is ignored «/

uint8 resultSAE = Crc_CalculateCRCS8 (&Array[0], 2,

resultSAE = Crc_CalculateCRC8 (&Array[2], 1, resultSAE, FALSE);
resultSAE = Crc_CalculateCRC8 (&Array[3], 1, resultSAE, FALSE);

Listing 8.2: Multi-step CRC8 SAEJ1850 calculation

resultSAE shall be also equal to B8h

Example 8.2

ignored_val, TRUE);

ignored_val, TRUE);

Calculation of CRC8: calculation of that is not compatible with SAE J1850, but it is

compatible with AUTOSAR releases before R4.0:
* If done in one step:
uint8 Array([4] = {0x00, OxFF, 0x55, 0x11};

/+ The first call also gets IsFirstCall set to FALSE,
value, which is immediately XORed with OxFF by CalculateCRCS8,

resulting with start value equal to 0x00. =/

uint8 resultRel3 = Crc_CalculateCRC8 (&Array[0], 4, OxFF, FALSE);

/+ The last XORing must be negated by the caller,

value. */
resultRel3 = resultR3 © OxFF;
Listing 8.3: Single-step AUTOSAR R3.2 CRC8 calculation
resultRel3 contains the same value as computed by AUTOSAR R3.2 CRCS.

* If done in several steps:
uint8 Array[4] = {0x00, OxFF, 0x55, Ox11};

and OxFF as start

to come to 0x00 XOR

AUTSSAR

/+ The first call also gets IsFirstCall set to FALSE, and OxFF as start
value, which is immediately XORed with OxFF by CalculateCRCS8,
resulting with start value equal to 0x00. =/

uint8 resultRel3 = Crc_CalculateCRC8 (&Array[0], 2, OxFF, FALSE);
resultRel3 Crc_CalculateCRCS8 (&Array[2], 1, resultRel3,FALSE);
resultRel3 Crc_CalculateCRC8 (&Array[3], 1, resultRel3, FALSE);

/+ The last XORing must be negated by the caller, to come to 0x00 XOR
value. =*/

resultRel3 = resultR3 ~ O0xFF; }
Listing 8.4: Multi-step AUTOSAR R3.2 CRC8 calculation

resultRel3 contains also the same value as computed by AUTOSAR R3.2 CRCS.

Example 8.3

Calculation of CRC32 Ethernet Standard (see detailed parameters in
[SWS_Crc_00003]) over data bytes 01h 02h 03h 04h 05h 06h 07h 08h:

* In one function call, CRC over 01h 02h 03h 04h 05h 06h 07h 08h, start value
FFFFFFFFh:

— CRC-result = 3FCA88C5h (final value)
* In two function calls:
— CRC over 01h 02h 03h 04h, start value FFFFFFFFh:
«+ CRC-result of first call = B63BCFBCDh (intermediate value)

— CRC over 05h 06h 07h 08h, start value: B63CFBCDh xor XOR value
(FFFFFFFFh) = 49C30432h and after reflection: 4C20C392h

« CRC-result of final call = 3FCA88C5h (final value)

The following C-code example shows that the caller modifies the start value by using
the previous result (without any rework) and indicates that it is no more the first call:
InterResult = Crc_CalculateCRC32 (&Arrayl2345678[0], 4, OxFFFFFFFF, TRUE

)
result = Crc_CalculateCRC32 (&Arrayl2345678[4], 4, InterResult, FALSE);

Listing 8.5: CRC calculation using the previous result

AUTSSAR

8.3.1 8-bit CRC Calculation

8.3.1.1 8-bit SAE J1850 CRC Calculation

[SWS_Crc_00031] Definition of API function Crc_CalculateCRC8
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC8

Syntax uint8 Crc_CalculateCRC8 (
const uint8x Crc_DataPtr,
uint32 Crc_Length,
uint8 Crc_StartValues,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.

Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue8 Start value when the algorithm starts.

Crc_lsFirstCall TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue8. FALSE: Subsequent
call in a call sequence; Crc_StartValue8 is interpreted to be the
return value of the previous function call.

Parameters (inout) None
Parameters (out) None
Return value uint8 8 bit result of CRC calculation.

Description

This service makes a CRC8 calculation on Crc_Length data bytes, with SAE J1850 parameters

Available via

Crc.h

]

[SWS_Crc_00032]

Upstream requirements: SRS_LIBS 08525

[The function Crc_CalculateCRC8 shall perform a CRC8 calculation using polyno-
mial 0x1D on Crc_Length data bytes, pointed to by Crc_DataPtr, with the starting
value of Crc_Startvalue8.]

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method should be configured for the
function Crc_CalculateCRCS8 in order to decrease the calculation time.

The function Crc_CalculateCRCS8 requires specification of configuration parameters
defined in Crc8Mode.

AUTSSAR

8.3.1.2 8-bit 0x2F polynomial CRC Calculation

[SWS_Crc_00043] Definition of API function Crc_CalculateCRC8H2F
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC8H2F

Syntax uint8 Crc_CalculateCRC8H2F (
const uint8x Crc_DataPtr,
uint32 Crc_Length,
uint8 Crc_StartValue8H2F,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.
Crc_Length Length of data block to be calculated in bytes.
Crc_StartValue8H2F Start value when the algorithm starts.
Crc_lsFirstCall TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue8H2F. FALSE:
Subsequent call in a call sequence; Crc_StartValue8H2F is
interpreted to be the return value of the previous function call.
Parameters (inout) None
Parameters (out) None
Return value uint8 8 bit result of CRC calculation.

Description

This service makes a CRC8 calculation with the Polynomial 0x2F on Crc_Length

Available via

Crc.h

]

[SWS_Crc_00044]

Upstream requirements: SRS_LIBS_ 08525

[The function Crc_CalculateCRC8H2F shall perform a CRC8 calculation with the
polynomial Ox2F on Crc_Length data bytes, pointed to by Crc_DataPtr, with the
starting value of Crc_Startvalue8H2F. |

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method should be configured for the
function Crc_CalculateCRC8H2F in order to decrease the calculation time.

The function Crc_CalculateCRC8H2F requires specification of configuration param-
eters defined Crc8H2FMode.

AUTSSAR

8.3.2 16-bit CRC Calculation

8.3.2.1 16-bit CCITT-FALSE CRC16

[SWS_Crc_00019] Definition of API function Crc_CalculateCRC16
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC16

Syntax uint16 Crc_CalculateCRC16 (
const uint8* Crc_DataPtr,
uint32 Crc_Length,
uintl6 Crc_StartValuelo,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.
Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue16

Start value when the algorithm starts.

Crc_IsFirstCall

TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue16. FALSE: Subsequent
call in a call sequence; Crc_StartValue16 is interpreted to be the
return value of the previous function call.

Parameters (inout) None
Parameters (out) None
Return value uint16 16 bit result of CRC calculation.

Description

This service makes a CRC16 calculation on Crc_Length data bytes.

Available via

Crc.h

]

[SWS_Crc_00015]
Upstream requirements: SRS_LIBS 08525

[The function Crc_CalculateCRC16 shall perform a CRC16 calculation using poly-
nomial 0x1021 on Crc_Length data bytes, pointed to by Crc_DataPtr, with the

starting value of Crc_Startvaluelé.]

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method should be configured for the
function Crc_CalculateCRC16 in order to decrease the calculation time.

The function Crc_CalculateCRC16 requires specification of configuration parame-
ters defined in Crc16Mode.

AUTSSAR

8.3.2.2 16-bit 0x8005 polynomial CRC calculation

[SWS_Crc_00071] Definition of API function Crc_CalculateCRC16ARC
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC16ARC

Syntax uintl6 Crc_CalculateCRC16ARC (
const uint8x Crc_DataPtr,
uint32 Crc_Length,
uintl6 Crc_StartValuelo,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.
Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue16 Start value when the algorithm starts.

Crc_lsFirstCall TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue16. FALSE: Subsequent
call in a call sequence; Crc_StartValue16 is interpreted to be the

return value of the previous function call.

Parameters (inout) None
Parameters (out) None
Return value uint16 16 bit result of CRC calculation.

Description

This service makes a CRC16 calculation on Crc_Length data bytes, using the polynomial
0x8005.

Available via

Crc.h

]

[SWS_Crc_00069]

Upstream requirements: SRS_LIBS 08525

[The function Crc_CalculateCRC16ARC shall perform a CRC16 calculation using
polynomial 0x8005 on Crc_TLength data bytes, pointed to by Crc_DataPtr, with the
starting value of Crc_Startvaluelé.]

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method should be configured for the
function Crc_CalculateCRC16ARC in order to decrease the calculation time.

The function Crc_CalculateCRC16ARC requires specification of configuration pa-
rameters defined in Crc1 6ARCMode.

AUTSSAR

8.3.3 32-bit CRC Calculation

8.3.3.1 32-bit Ethernet CRC Calculation

[SWS_Crc_00020] Definition of API function Crc_CalculateCRC32
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC32

Syntax uint32 Crc_CalculateCRC32 (
const uint8* Crc_DataPtr,
uint32 Crc_Length,
uint32 Crc_StartValue32,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.
Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue32

Start value when the algorithm starts.

Crc_IsFirstCall

TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue32. FALSE: Subsequent
call in a call sequence; Crc_StartValue32 is interpreted to be the
return value of the previous function call.

Parameters (inout) None
Parameters (out) None
Return value uint32 32 bit result of CRC calculation.

Description

This service makes a CRC32 calculation on Crc_Length data bytes.

Available via

Crc.h

]

[SWS_Crc_00016]
Upstream requirements: SRS_LIBS 08525

[The function Crc_CalculateCRC32 shall perform a CRC32 calculation using poly-
nomial 0x04C11DB7 on Crc_Length data bytes, pointed to by Crc_DataPtr, with
the starting value of Crc_Startvalue32.|

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method should be configured for the
function Crc_CalculateCRC32 in order to decrease the calculation time.

The function Crc_CalculateCRC32 requires specification of configuration parame-
ters defined in Crc32Mode.

AUTSSAR

8.3.3.2 32-bit 0xF4AACFB13 polynomial CRC calculation

[SWS_Crc_00058] Definition of API function Crc_CalculateCRC32P4
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC32P4

Syntax uint32 Crc_CalculateCRC32P4 (
const uint8x Crc_DataPtr,
uint32 Crc_Length,
uint32 Crc_StartValue32,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.

Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue32 Start value when the algorithm starts.

Crc_lsFirstCall TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue32. FALSE: Subsequent
call in a call sequence; Crc_StartValue32 is interpreted to be the
return value of the previous function call.

Parameters (inout) None
Parameters (out) None
Return value uint32 32 bit result of CRC calculation.

Description

This service makes a CRC32 calculation on Crc_Length data bytes, using the polynomial 0xF4
ACFB13.
This CRC routine is used by E2E Profile 4.

Available via

Crc.h

]

[SWS_Crc_00059]

Upstream requirements: SRS_LIBS 08525

[The function Crc_calculateCRc32P4 shall perform a CRC32 calculation using
polynomial 0XF4ACFB13 on Crc_Length data bytes, pointed to by Crc_DataPtr,
with the starting value of Crc_Startvalue32.]|

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method, should be configured for
the function Crc_CalculateCRC32P4 in order to decrease the calculation time.

The function Crc_CalculateCRC32P4 requires specification of configuration param-
eters defined in Crc32P4Mode.

AUTSSAR

8.3.3.3 32-bit SAE J1939-76 CRC Calculation

[SWS_Crc_00091] Definition of API function Crc_CalculateCRC32P76
Status: DRAFT
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_ 00009, SRS _LIBS 00011, SRS _LIBS -

08521

Service Name Crc_CalculateCRC32P76 (draft)

Syntax uint32 Crc_CalculateCRC32P76 (
const uint8+ Crc_DataPtr,
uint32 Crc_Length,
uint32 Crc_StartValue32,
boolean Crc_IsFirstCall

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.

Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue32 Start value when the algorithm starts.

Crc_IsFirstCall TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue32. FALSE: Subsequent
call in a call sequence; Crc_StartValue32 is interpreted to be the
return value of the previous function call.

Parameters (inout) None

Parameters (out) None

Return value uint32 32 bit result of CRC calculation.

Description This service makes a CRC32 calculation on Crc_Length data bytes, using the polynomial

0x0x6938392D.

Tags: atp.Status=draft

Available via Crc.h

]

[SWS_Crc_00092] CRC32 calculation using polynomial 0x6938392D
Status: DRAFT
Upstream requirements: SRS_LIBS 08525

[The function Crc_CalculateCRC32P76 shall perform a CRC32 calculation using
polynomial 0x6938392D on Crc_Length data bytes, pointed to by Crc_DataPtr,
with the starting value of Crc_sStartvalue32.]|

Note: If large data blocks have to be calculated (>32 bytes, depending on performance
of processor platform), the table based calculation method should be configured for the
function Crc_CalculateCRC32P76 in order to decrease the calculation time.

The function Crc_CalculateCRC32P76 requires specification of configuration pa-
rameters defined in Crc32P76Mode.

AUTSSAR

8.3.4 64-bit CRC Calculation

8.3.4.1 64-bit 0x42FOE1EBA9EA3693 polynomial CRC calculation

[SWS_Crc_00061] Definition of API function Crc_CalculateCRC64
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011, SRS_LIBS_-

[

08521

Service Name

Crc_CalculateCRC64

Syntax uint64 Crc_CalculateCRC64 (
const uint8x Crc_DataPtr,
uint32 Crc_Length,
uint64 Crc_StartValueb4,
boolean Crc_IsFirstCall
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Crc_DataPtr Pointer to start address of data block to be calculated.

Crc_Length Length of data block to be calculated in bytes.

Crc_StartValue64 Start value when the algorithm starts.

Crc_lsFirstCall TRUE: First call in a sequence or individual CRC calculation; start
from initial value, ignore Crc_StartValue64. FALSE: Subsequent
call in a call sequence; Crc_StartValue64 is interpreted to be the
return value of the previous function call.

Parameters (inout) None
Parameters (out) None
Return value uint64 64 bit result of CRC calculation.

Description

This service makes a CRC64 calculation on Crc_Length data bytes, using the polynomial 0x42
FOE1EBA9EA3693.
This CRC routine is used by E2E Profile 7.

Available via

Crc.h

]

[SWS_Crc_00064]

Upstream requirements: SRS_LIBS 08525

[The function Crc_CalculateCRC64 shall perform a CRC64 calculation using poly-
nomial Ox42FOE1EBA9EA3693 on Crc_Length data bytes, pointed to by Crc_Dat-
aPtr, with the starting value of Crc_Startvalue64. |

Note: If large data blocks have to be calculated (>64 bytes, depending on performance
of processor platform), the table based calculation method, should be configured for
the function Crc_CalculateCRC64 in order to decrease the calculation time.

The function Crc_CalculateCRC64 requires specification of configuration parame-
ters defined in Crc64Mode.

AUTSSAR

8.3.5 Crc_GetVersioninfo

[SWS_Crc_00021] Definition of API function Crc_GetVersioninfo
Upstream requirements: SRS_LIBS_ 00005, SRS_LIBS_00009, SRS_LIBS_00011

[
Service Name Crc_GetVersioninfo
Syntax void Crc_GetVersionInfo (
Std_VersionInfoType* Versioninfo
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Return value None

Description

This service returns the version information of this module.

Available via

Crc.h

J
[SWS _Crc_00011]

Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[The function Crc_GetVersionInfo shall return the version information of the CRC
module. The version information includes:

* Module Id
 Vendor Id
* Vendor specific version numbers (SRS_BSW_00407).

]

[SWS_Crc_00017]
Upstream requirements: SRS_BSW_00407, SRS BSW_00411

[If source code for caller and callee of the function Crc_GetvVersionInfo is avail-
able, the CRC module should realize this function as a macro, defined in the modules
header file. |

8.4 Callback notifications

None.

AUTSSAR

8.5 Scheduled functions

The Crc module does not have scheduled functions.

8.6 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

None

8.6.2 Optional interfaces

None.

8.6.3 Configurable interfaces

None.

8.7 Service Interfaces

None.

AUTSSAR

9 Sequence diagrams

9.1 Crc_CalculateCRCS8()

The following diagram shows the synchronous function call Crc_CalculateCRCS.

:User «module»

:Crc

! Crc_CalculateCRC8(uint8, const uint8*, uint32, uint8, boolean) I

Crc_CalculateCRC8()

Description:
Crc_CalculateCRC8() is performed synchronously. The result is
returned within the function call.

Figure 9.1: Crc_CalculateCRC8

9.2 Crc_CalculateCRC8H2F()

The following diagram shows the synchronous function call Crc_Calculate-
CRC8H2F.

:User «module»

:Crc

|
| Crc_CalculateCRC8H2F(uint8, const uint8*, uint32, uint8, boolean) |

Crc_CalculateCRC8H2F()

Description:
Crc_CalculateCRC8H2F() is performed synchronously. The result is
retumed within the function call.

Figure 9.2: Crc_CalculateCRC8H2F

AUTSSAR

9.3 Crc_CalculateCRC16()

The following diagram shows the synchronous function call Crc_CalculateCRC16.

:User «module»
:Crc

| Crc_CalculateCRC16(uintl16, const uint8*, uint32, uintl6, boolean) |

Crc_CalculateCRC16()

Description:
Crc_CalculateCRC16/32() is performed synchronously. The result is
retumed with the function call.

Figure 9.3: Crc_CalculateCRC16

9.4 Crc_CalculateCRC16ARC()

The following diagram shows the synchronous function call Crc_Calculate-
CRC16ARC.

:User «module»
:Crc

| Crc_CalculateCRC16ARC(uint16, const uint8*, uint32, uintl6, boolean) |

Crc_CalculateCRC16ARC()

Description:
Crc_CalculateCRC16ARC() is performed synchronously. The result is
retumed with the function call.

Figure 9.4: Crc_CalculateCRC16ARC

AUTSSAR

9.5 Crc_CalculateCRC32()

The following diagram shows the synchronous function call Crc_CalculateCRC32.

‘User

«module»
:Crc

Crc_CalculateCRC32(uint32, const uint8*, uint32, uint32, boolean)

Crc_CalculateCRC32()

Description:
Crc_CalculateCRC16/32() is performed synchronously. The result is
returned with the function call.

Figure 9.5: Crc_CalculateCRC32

9.6 Crc_CalculateCRC32P4()

The following diagram shows the synchronous function

CRC32P4.

:User

Crc_CalculateCRC32P4(uint32, const uint8*, uint32, uint32, boolean)

call Crc_Calculate-

«module»
:Crc

Crc_CalculateCRC32P4()

Description:
Crc_CalculateCRC32P4() is performed synchronously. The result is
retumed with the function call.

Figure 9.6: Crc_CalculateCRC32P4

AUTSSAR

9.7 Crc_CalculateCRC32P76()

The following diagram shows the synchronous function call Crc_Calculate-
CRC32P76.

:User «module»

Crc
OO

| |
| |
ICrc_CalculateCRC32P76(uint32, const uint8*, uint32, uint32, boolean)l

M ’_I—

< Crc_CalculateCRC32P76()

Description:
Crc_CalculateCRC32P76() is performed synchronously. The
result is retumed with the function call.

Figure 9.7: Crc_CalculateCRC32P76

AUTSSAR

9.8 Crc_CalculateCRC64()

The following diagram shows the synchronous function call Crc_CalculateCRC64.

:User «module»
:Crc

| Crc_CalculateCRC64(uint64, const uint8*, uint32, uint64, boolean) |

Crc_CalculateCRC64()

Description:
Crc_CalculateCRC64() is performed synchronously. The result is
retumed with the function call.

Figure 9.8: Crc_CalculateCRC64

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CRC.

Chapter 10.3 specifies published information of the module CRC.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.
In addition to this section, it is highly recommended to read the documents:
+ AUTOSAR Layered Architecture [8]

« AUTOSAR ECU Configuration Specification [9]:
This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detalil.

The following is only a short survey of the topic and it will not replace the ECU Config-
uration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implementa-
tion of a module. This means that only generic or configurable module implementation
can be adapted to the environment (software/hardware) in use during system and/or
ECU configuration.

The configuration of parameters can be achieved at different times during the software
process: before compile time, before link time or after build time. In the following, the
term "configuration class" (of a parameter) shall be used in order to refer to a specific
configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:

« All configuration parameters are kept in containers.

AUTSSAR

* (Sub-) containers can reference (sub-) containers. It is possible to assign a mul-
tiplicity to these references. The multiplicity then defines the possible number of
instances of the contained parameters.

AUTSSAR

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in chapters 7 and 8.

Crc: EcucModuleDef CrcGeneral: Cre8Mode: +literal CRC_8 TABLE:
EcucParamConfContainerDef —— o— i e =
upperMultiplicity = 1 - EcucEnumerationParam Def EcucEnumerationLiteral Def
lowerMultiplicity = 0 \@——— lowerMultiplicity = 0
upperMultiplicity = 1 B
LS #literal | cRC 8 RUNTIME:

EcucEnumerationLiteralDef

Cre8H2FMode: +literal | CRC_8H2F TABLE:
EcucEnumerationParamDef <& EcucEnumerationLiteralDef

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

+literal | CRC 8H2F RUNTIME:
EcucEnumerationLiteral Def

Cre16Mode: el GRe 16 TABLE:
+parameter |EcucEnumerationParamDef| EcucEnumerationLiteralDef
lowerMultiplicity = 0 +literal CRG._16_RUNTIME:
Rppeibiuliplicialy | EcucEnumerationLiteral Def

+container

+literal | CRC 16_ARC_TABLE:

e ICARCHodeA EcucEnumerationLiteralDef

+parameter| EcucEnumerationParamDef

+literal

lowerMultiplicity = 0 .
M. /@——— CRC_16_ARC RUNTIME:
tppsiMIiplicivegy EcucEnumerationLiteral Def
Crc32Mode: +iteral CRC_32 TABLE:
EcucEnumerationParam Def (@ EcucEnumerationLiteral Def
+parameter lowerMultiplicity = 0
upperMultiplicity = 1 B
“iteral] GRC 32 RUNTIME:
Gro32RaModed +literal | CRC_32P4_RUNTIME:
EcucEnumerationParam Deff EcucEnumerationLiteral Def
+parameter lowerMultiplicity = 0

upperMultiplicity = 1
+literal | CRC_32P4_TABLE:
EcucEnumerationLiteralDef

Figure 10.1: CRC

10.2.1 Crc

[ECUC_Crc_00033] Definition of EcucModuleDef Crc |

Module Name Crc

Description Configuration of the Crc (Crc routines) module.
Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency
CrcGeneral 1 General configuration of CRC module

J
[ECUC_Crc_00006] Definition of EcucParamConfContainerDef CrcGeneral |

AUTSSAR

Container Name

CrcGeneral

Parent Container

Crc

Description

General configuration of CRC module

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

Crc16ARCMode 0..1 [ECUC_Crc_00035]
Crc16Mode 0..1 [ECUC_Crc_00025]
Crc32Mode 0..1 [ECUC_Crc_00026]
Crc32P4Mode 0..1 [ECUC_Crc_00032]
Crc32P76Mode 0..1 [ECUC_Crc_00036]
Crc64Mode 0..1 [ECUC_Crc_00034]
Crc8H2FMode 0..1 [ECUC_Crc_00031]
Crc8Mode 0..1 [ECUC_Crc_00030]

No Included Containers

]

[ECUC_Crc_00035] Definition of EcucEnumerationParamDef Crc16ARCMode [

Parameter Name

Crc16ARCMode

Parent Container

CrcGeneral

Description Switch to select one of the available CRC-16/ARC (polynomial 8005) calculation
methods

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CRC_16_ARC_RUNTIME runtime based CRC16 calculation

CRC_16_ARC_TABLE

table based CRC16 calculation (default selection)

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Crc_00025] Definition of EcucEnumerationParamDef Crc16Mode |

Parameter Name

Crc16Mode

Parent Container

CrcGeneral

Description

Switch to select one of the available CRC 16-bit (CCITT) calculation methods

Multiplicity

0..1

V

AUTSSAR

A

Type

EcucEnumerationParamDef

Range

CRC_16_RUNTIME runtime based CRC16 calculation

CRC_16_TABLE table based CRC16 calculation (default selection)

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

[ECUC_Crc_00026] Definition of EcucEnumerationParamDef Crc32Mode |

Parameter Name Crc32Mode
Parent Container CrcGeneral
Description Switch to select one of the available CRC 32-bit (IEEE-802.3 CRC32 Ethernet
Standard) calculation methods
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CRC_32_RUNTIME runtime based CRC32 calculation
CRC_32_TABLE table based CRC32 calculation (default selection)
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

[ECUC_Crc_00032] Definition of EcucEnumerationParamDef Crc32P4Mode |

Parameter Name Crc32P4Mode

Parent Container CrcGeneral

Description Switch to select one of the available CRC 32-bit E2E Profile 4 calculation methods.
Multiplicity 0..1

Type EcucEnumerationParamDef

Range CRC_32P4_RUNTIME runtime based CRC32P4 calculation

CRC_32P4 TABLE table based CRC32P4 calculation (default

selection)

Post-Build Variant Multiplicity

false

AUTSSAR

Post-Build Variant Value

false

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Crc_00036] Definition of EcucEnumerationParamDef Crc32P76Mode

Status: DRAFT

Parameter Name

Crc32P76Mode

Parent Container

CrcGeneral

Description Switch to select one of the available CRC 32-bit SAE J1939-76 calculation methods.
Tags: atp.Status=draft

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CRC_32P76_RUNTIME runtime based CRC32P76 calculation

Tags: atp.Status=draft

CRC_32P76_TABLE table based CRC32P76 calculation

Tags: atp.Status=draft

Default value

CRC_32P76_TABLE

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Crc_00034] Definition of EcucEnumerationParamDef Crc64Mode |

Parameter Name

Crc64Mode

Parent Container

CrcGeneral

Description Switch to select one of the available CRC 64-bit calculation methods.
Multiplicity 0..1

Type EcucEnumerationParamDef

Range CRC_64_RUNTIME runtime based CRC64 calculation

CRC_64_TABLE table based CRC64 calculation (default selection)

Post-Build Variant Multiplicity

false

AUTSSAR

Post-Build Variant Value

false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

[ECUC_Crc_00031] Definition of EcucEnumerationParamDef Crc8H2FMode |

Parameter Name

Crc8H2FMode

Parent Container

CrcGeneral

Description Switch to select one of the available CRC 8-bit (2Fh polynomial) calculation methods
Multiplicity 0..1

Type EcucEnumerationParamDef

Range CRC_8H2F_RUNTIME runtime based CRC8H2F calculation

CRC_8H2F_TABLE

table based CRC8H2F calculation (default
selection)

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

[ECUC_Crc_00030] Definition of EcucEnumerationParamDef Crc8Mode |

Parameter Name

Crc8Mode

Parent Container

CrcGeneral

Description Switch to select one of the available CRC 8-bit (SAE J1850) calculation methods
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CRC_8_RUNTIME runtime based CRC8 calculation
CRC_8 _TABLE table based CRC8 calculation (default selection)
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

AUTSSAR

Link time -
Post-build time -

Dependency

10.3 Published Information
For details refer to [2] Chapter 10.3 “Published Information”.
[SWS_Crc_00050]

Upstream requirements: SRS_BSW_00402
[The standardized common published parameters as required by

SRS_BSW_00402 in the SRS General on Basic Software Modules [3] shall be pub-
lished within the header file of this module and need to be provided in the BSW Mod-
uleDescription. The according module abbreviation can be found in the SWS General
on Basic Software Modules [2]. |

Additional module-specific published parameters are listed below if applicable.

[SWS_Crc_00048] [

Information elements

Information element name Type / Range Information element
description
CRC_VENDOR_ID #define/ uint16 Vendor ID of the dedicated

implementation of this
module according to the
AUTOSAR vendor list

CRC_MODULE_ID #define/ uint16 Module ID of this module
from Module List
CRC_AR_RELEASE_MAJOR_VERSION #define/ uint8 Major version number of

AUTOSAR release on which
the appropriate
implementation is based on.

CRC_AR_RELEASE_MINOR_VERSION #define/ uint8 Minor version number of
AUTOSAR release on which
the appropriate
implementation is based on.

CRC_AR_RELEASE_REVISION_VERSION #define/ uint8 Patch level version number of
AUTOSAR release on which
the appropriate
implementation is based on.

CRC_SW_MAJOR_VERSION #define/ uint8 Major version number of the
vendor specific
implementation of the
module. The numbering is
vendor specific.

AUTSSAR

CRC_SW_MINOR_VERSION

#define/ uint8

Minor version number of the
vendor specific
implementation of the
module. The numbering is
vendor specific.

CRC_SW_PATCH_VERSION

#define/ uint8

Patch level version number of
the vendor specific
implementation of the
module. The numbering is
vendor specific.

AUTSSAR

A Not applicable requirements

[SWS_Crc_NA_00051]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW _
00170, SRS_BSW_00383, SRS _BSW_00384, SRS _BSW_00388,
SRS_BSW_00389, SRS_BSW_00395, SRS_BSW_00398, SRS_BSW_
00399, SRS_BSW_00400, SRS _BSW_00375, SRS_BSW_00101,
SRS_BSW_00416, SRS_BSW_00406, SRS_BSW_00168, SRS_BSW_
00423, SRS BSW_00424, SRS BSW_00425, SRS _BSW_00427,
SRS _BSW_00428, SRS _BSW_00429, SRS _BSW_00432, SRS_BSW _
00433, SRS_BSW_00336, SRS_BSW_00337, SRS_BSW_00369,
SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_
00323, SRS_BSW_00409, SRS _BSW_00385, SRS_BSW_00386,
SRS LIBS 00001, SRS _LIBS 00002, SRS LIBS 00003, SRS LIBS
00004, SRS_LIBS_ 00007, SRS_LIBS_ 00008, SRS_LIBS_00010, SRS _
LIBS_00012, SRS_LIBS_ 00013, SRS_LIBS_00015, SRS_LIBS_00016,
SRS_LIBS_00017

[These requirements are not applicable to this specification. |

AUTSSAR

B Change History

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

B.1 Change History of this document according to AUTOSAR Re-
lease R22-11

B.1.1 Added Specification Iltems in R22-11
[SWS_Crc_NA 00051]

B.1.2 Changed Specification Items in R22-11

[SWS_Crc_00002] [SWS_Crc_00003] [SWS_Crc _00018] [SWS_Crc_00019] [SWS _
Crc_00020] [SWS_Crc_00021] [SWS_Crc_00030] [SWS_Crc_00031] [SWS_Crc_-
00042] [SWS_Crc_00043] [SWS_Crc_00052] [SWS_Crc_00053] [SWS_Crc_00054]
[SWS_Crc_00055] [SWS_Crc_00056] [SWS_Crc_00057] [SWS_Crc_00058] [SWS_
Crc_00061] [SWS_Crc_00062] [SWS_Crc_00063] [SWS_Crc_00067] [SWS_Crc_-
00068] [SWS_Crc_00071]

B.1.3 Deleted Specification ltems in R22-11
[SWS_Crc_00051]

B.2 Change History of this document according to AUTOSAR Re-
lease R23-11

B.2.1 Added Specification Iltems in R23-11

[SWS_Crc_00073] [SWS_Crc_00074] [SWS_Crc_00075] [SWS_Crc_00076] [SWS_
Crc_00077] [SWS_Crc_00078] [SWS_Crc_00079] [SWS_Crc_00080] [SWS_Crc_-
00081] [SWS_Crc_00082] [SWS_Crc_00083] [SWS_Crc_00084] [SWS_Crc_00085]
[SWS_Crc_00086]

B.2.2 Changed Specification Items in R23-11

none

AUTSSAR

B.2.3 Deleted Specification Items in R23-11

[SWS_Crc_00009] [SWS_Crc_00010] [SWS_Crc_00033] [SWS_Crc_00045] [SWS_
Crc_00060] [SWS_Crc_00065] [SWS_Crc_00070]

B.3 Change History of this document according to AUTOSAR Re-
lease R24-11

B.3.1 Added Specification ltems in R24-11

[ECUC_Crc_00036] [SWS_Crc_00087] [SWS_Crc_00088] [SWS_Crc_00089]
[SWS_Crc_00090] [SWS_Crc_00091] [SWS_Crc_00092]

B.3.2 Changed Specification ltems in R24-11
[ECUC_Crc_00006] [SWS_Crc_00050]

B.3.3 Deleted Specification Items in R24-11

none

B.4 Change History of this document according to AUTOSAR Re-
lease R25-11

B.4.1 Added Specification Iltems in R25-11

none

B.4.2 Changed Specification Items in R25-11

[ECUC_Crc_00025] [ECUC_Crc 00026] [ECUC Crc 00030] [ECUC Crc 00031]
[ECUC_Crc_00032] [ECUC_Crc_00034] [ECUC_Crc_00035] [ECUC_Crc_00036]

B.4.3 Deleted Specification Items in R25-11
[SWS_Crc_00013]

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Basic Concepts of CRC Codes
	7.1.1 Mathematical Description
	7.1.2 Euclidian Algorithm for Binary Polynomials and Bit-Sequences
	7.1.3 CRC calculation, Variations and Parameter
	7.1.4 Encoding of CRC polynomials

	7.2 Standard parameters
	7.2.1 8-bit CRC calculation
	7.2.1.1 8-bit SAE J1850 CRC Calculation
	7.2.1.2 8-bit 0x2F polynomial CRC Calculation

	7.2.2 16-bit CRC calculation
	7.2.2.1 16-bit CCITT-FALSE CRC16
	7.2.2.2 16-bit 0x8005 polynomial CRC calculation

	7.2.3 32-bit CRC calculation
	7.2.3.1 32-bit Ethernet CRC Calculation
	7.2.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation
	7.2.3.3 32-bit SAE J1939-76 CRC Calculation

	7.2.4 64-bit CRC calculation
	7.2.4.1 64-bit ECMA polynomial CRC calculation

	7.3 General behavior
	7.4 Version check
	7.5 Debugging concept
	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Production Errors
	7.6.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 8-bit CRC Calculation
	8.3.1.1 8-bit SAE J1850 CRC Calculation
	8.3.1.2 8-bit 0x2F polynomial CRC Calculation

	8.3.2 16-bit CRC Calculation
	8.3.2.1 16-bit CCITT-FALSE CRC16
	8.3.2.2 16-bit 0x8005 polynomial CRC calculation

	8.3.3 32-bit CRC Calculation
	8.3.3.1 32-bit Ethernet CRC Calculation
	8.3.3.2 32-bit 0xF4ACFB13 polynomial CRC calculation
	8.3.3.3 32-bit SAE J1939-76 CRC Calculation

	8.3.4 64-bit CRC Calculation
	8.3.4.1 64-bit 0x42F0E1EBA9EA3693 polynomial CRC calculation

	8.3.5 Crc_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	8.7 Service Interfaces

	9 Sequence diagrams
	9.1 Crc_CalculateCRC8()
	9.2 Crc_CalculateCRC8H2F()
	9.3 Crc_CalculateCRC16()
	9.4 Crc_CalculateCRC16ARC()
	9.5 Crc_CalculateCRC32()
	9.6 Crc_CalculateCRC32P4()
	9.7 Crc_CalculateCRC32P76()
	9.8 Crc_CalculateCRC64()

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers

	10.2 Containers and configuration parameters
	10.2.1 Crc

	10.3 Published Information

	A Not applicable requirements
	B Change History
	B.1 Change History of this document according to AUTOSAR Release R22-11
	B.1.1 Added Specification Items in R22-11
	B.1.2 Changed Specification Items in R22-11
	B.1.3 Deleted Specification Items in R22-11

	B.2 Change History of this document according to AUTOSAR Release R23-11
	B.2.1 Added Specification Items in R23-11
	B.2.2 Changed Specification Items in R23-11
	B.2.3 Deleted Specification Items in R23-11

	B.3 Change History of this document according to AUTOSAR Release R24-11
	B.3.1 Added Specification Items in R24-11
	B.3.2 Changed Specification Items in R24-11
	B.3.3 Deleted Specification Items in R24-11

	B.4 Change History of this document according to AUTOSAR Release R25-11
	B.4.1 Added Specification Items in R25-11
	B.4.2 Changed Specification Items in R25-11
	B.4.3 Deleted Specification Items in R25-11

