AUTSSAR

i Specification of CAN XL
Document Title Transceiver Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1015
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR

2025-11-27 | R25-11 Release « Abstraction from Driver APls
Management
AUTOSAR « Editorial changes

2024-11-27 | R24-11 Release
Management * Fix Service IDs
AUTOSAR

2023-11-23 R23-11 Release « Editorial changes
Management
AUTOSAR

2022-11-24 | R22-11 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation
3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

5 Dependencies to other modules

5.1 File Structure
5.1.1 Code File Structure

6 Requirements Tracing

7 Functional specification

7.1 Initialization e
7.2 Communicationstatehandling
7.3 Wakeuphandling
7.4 Error Classification
7.4.1 DevelopmentErrors
7.4.2 Runtime Errors e
7.4.3 Production Errors e
7.4.4 Extended ProductionErrors

8 API specification
8.1 Importedtypes
8.2 Typedefinitions
8.3 Functiondefinitions
8.3.1 CanXLTrcv_ReportErrorState
8.3.2 CanXLTrcv_TransceiverLinkStateRequest
8.3.3 CanXLTrcv_SetTransceiverMode
8.3.4 CanXLTrcv_GetTransceiverMode
8.3.5 CanXLTrcv_GetLinkState
8.3.6 CanXLTrcv_CheckWakeup
8.4 Callback notifications
8.5 Scheduled functions
8.6 Expectedinterfaces
8.6.1 Mandatory interfaces
8.6.2 Optionalinterfaces
8.6.3 Configurable interfaces

9 Sequence diagrams
9.1 CanXL BusOff handling for Ethernet

© © 00 NN N OO O

—
o ©

—_
N

U G (U U T (ST U G G
a0~ prpBSADNDD

NDMNDMNDMNDMNDMNDNDMNON === a
WWWWMNMNMNMNN 2O O00ONNOO O

N
N

24

AUTSSAR

10 Configuration specification 25
10.1Howtoread thischapter 25
10.2Containers and configuration parameters 25

10.2.1 CanXLTrcvChannel 25
10.3Published Information o 26

A Not applicable requirements 27

B Change History 28
B.1 Change History of this document according to AUTOSAR Release R22-11 28

B.1.1 Added Specification Itemsin R22-11 28
B.1.2 Changed Specification ltemsin R22-11 29
B.1.3 Deleted Specification ltemsin R22-11 29
B.2 Change History of this document according to AUTOSAR Release R23-11 30
B.2.1 Added Specification ltemsin R23-11 30
B.2.2 Changed Specification Itemsin R23-11 30
B.2.3 Deleted Specification temsin R23-11 30
B.3 Change History of this document according to AUTOSAR Release R24-11 31
B.3.1 Added Specification ltemsinR24-11 31
B.3.2 Changed Specification ltemsin R24-11 31
B.3.3 Deleted Specification ltemsinR24-11 31
B.4 Change History of this document according to AUTOSAR Release R25-11 32
B.4.1 Added Specification Itemsin R25-11 32
B.4.2 Changed Specification ltemsin R25-11 32

B.4.3 Deleted Specification Itemsin R25-11 32

N =) N Specification of CAN XL Transceiver Driver
uT = R AUTOSAR CP R25-11

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Basic Software module CAN XL Transceiver Driver. The CAN XL
Transceiver Driver is an extension of the CAN Transceiver Driver so this document
shall only provide information and specifications which differ from the CAN Transceiver
Driver. Some general information is given for a better understanding.

CAN NM

CAN Transport
Protocol

CAN Interface

External
CAN XL Controller

Figure 1.1: Autosar CanXL Layered Architecture

5 of 32 Document ID 1015: AUTOSAR_CP_SWS CANXLTransceiverDriver

AUTSSAR

2 Acronyms and Abbreviations

The CAN XL Transceiver Driver does not define any local acronyms or abbreviations
that are not included in the [1, AUTOSAR glossary].

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of CAN Transceiver Driver
AUTOSAR_CP_SWS_ CANTransceiverDriver

[4] Specification for CAN XL Driver
AUTOSAR_CP_SWS_ CANXLDriver

[5] Specification of CAN Driver
AUTOSAR_CP_SWS_ CANDriver

[6] Specification of CAN Interface
AUTOSAR_CP_SWS_CANiInterface

[7] Specification of Ethernet Interface
AUTOSAR_CP_SWS Ethernetinterface

[8] CiA 610-1 version 1.0.0 (DSP) - CAN XL specifications and test plans - Part 1:
Data link layer and physical coding sub-layer requirements
http://www.can-cia.org

[9] CiA 611-1 version 1.0.0 (DSP) - CAN XL higher layer functions - Part 1: Definition
of service data unit types
http://www.can-cia.org

[10] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[11] Requirements on CAN
AUTOSAR _CP_RS CAN

[12] Specification of Ethernet Transceiver Driver
AUTOSAR_CP_SWS_ EthernetTransceiverDriver

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for CAN XL Transceiver Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN XL Transceiver Driver.

http://www.can-cia.org
http://www.can-cia.org

AUTSSAR

4 Constraints and assumptions

The constraints and assumptions of the CAN XL Transceiver Driver are the same as
for the CAN Transceiver Driver module.

AUTSSAR

5 Dependencies to other modules

The CAN XL Transceiver Driver module extends the CAN Transceiver Driver [3] and
has interfaces towards the [4, CAN XL Driver], [5, CAN Driver], the [6, CAN Interface]
and the [7, Ethernet Interface].

5.1 File Structure

This section explains the file structure of the CAN XL Transceiver Driver module.

5.1.1 Code File Structure

For details, refer to the section 5.1.6 “Code file structure” in [2, SWS BSW General].

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [10] as well as [11] and
link to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[CP_SWS_CanXLTrcv_00001]

[SRS_BSW_00310]

API naming convention

[CP_SWS_CanXLTrcv_10001]
[CP_SWS_CanXLTrcv_10007]
[CP_SWS_CanXLTrcv_10008]
[CP_SWS_CanXLTrcv_10009]
[CP_SWS_CanXLTrcv_10010]
[CP_SWS_CanXLTrcv_10011]

[SRS_BSW_00327]

Error values naming convention

[CP_SWS_CanXLTrcv_10002]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[CP_SWS_CanXLTrcv_10002]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[CP_SWS_CanXLTrcv_10001]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[CP_SWS_CanXLTrcv_10001]
[CP_SWS_CanXLTrcv_10007]
[CP_SWS_CanXLTrcv_10008]
[CP_SWS_CanXLTrcv_10009]
[CP_SWS_CanXLTrcv_10010]
[CP_SWS_CanXLTrcv_10011]

[SRS_BSW_00385]

List possible error notifications

[CP_SWS_CanXLTrcv_10002]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[CP_SWS_CanXLTrcv_10002]

[SRS_BSW_00406]

API handling in uninitialized state

[CP_SWS_CanXLTrcv_10001]
[CP_SWS_CanXLTrcv_10007]
[CP_SWS_CanXLTrcv_10008]
[CP_SWS_CanXLTrcv_10009]
[CP_SWS_CanXLTrcv_10010]
[CP_SWS_CanXLTrcv_10011]

[SRS_Can_01097]

CAN Bus Transceiver driver API shall
be synchronous

[CP_SWS_CanXLTrcv_10001]

[SRS_Can_02002]

The CAN bus transceiver driver shall
support the configuration for more
than one bus

[CP_SWS_CanXLTrcv_00001]
[CP_SWS_CanXLTrcv_00002]
[CP_SWS_CanXLTrcv_00033]
[CP_SWS_CanXLTrcv_00034]
[CP_SWS_CanXLTrcv_00036]
[CP_SWS_CanXLTrcv_00037]
[CP_SWS_CanXLTrcv_00050]
[CP_SWS_CanXLTrcv_00051]
[CP_SWS_CanXLTrcv_00052]
[CP_SWS_CanXLTrcv_10001]
[CP_SWS_CanXLTrcv_10007]
[CP_SWS_CanXLTrcv_10008]
[CP_SWS_CanXLTrcv_10009]
[CP_SWS_CanXLTrcv_10010]
[CP_SWS_CanXLTrcv_10011]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Eth_00040]

The Ethernet Transceiver Driver shall
provide access to the link state.

[CP_SWS_CanXLTrcv_10008]

[SRS_Eth_00108]

The Ethernet Transceiver Driver shall
be able to wake-up an Ethernet
network.

[CP_SWS_CanXLTrcv_10007]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

The following section only describes additional CAN XL Transceiver specific 'Functional
specifications’. The Specification of CAN Transceiver Driver [3] is the base of this
CanXLTransceiverDriver ‘extension’.

For a description of the specific functional behavior of CAN XL refer to the Specification
of the CanXLDriver

7.1 Initialization

[CP_SWS CanXLTrcv_00001]
Upstream requirements: SRS_Can_02002, SRS_BSW_00101

[The canTrcv_Init () shall be extended by all functionality necessary to initialize
the CanXLTransceiverDriver. |

7.2 Communication state handling

The operation mode of each CAN XL Transceiver is controlled only via the CAN stack
over CanTrcv_SetOpMode () as described in the Specification of CAN Transceiver
Driver [3]. Any transceiver mode request over the Ethernet stack has no influence
on the actual operation mode of a CAN XL Transceiver. The corresponding APIs are
only required so that the CanXLTransceiverDriver is compatible with the Ethernet
stack. In order to inform the Ethernet stack whether a communication via the CAN bus
is possible or not, the link state known in the Ethernet stack is reused. The current link
state consists of the CAN XL Transceiver operation mode (CANTRCV_TRCVMODE_ NOR-
MAL, CANTRCV_TRCVMODE_STANDBY Or CANTRCV_TRCVMODE_SLEEP), the status (
CAN_ERRORSTATE_ACTIVE, CAN_ERRORSTATE_PASSIVE Of CAN_ERRORSTATE_-—
BUSOFF) of the corresponding physical CAN bus and the requested link state (
ETHTRCV_LINK_STATE_DOWN Of ETHTRCV_LINK_STATE_ACTIVE) from the Ether-
net stack.

The Ethernet transceiver mode is stored by the CAN XI, Transceiver Driver,
and returned on request. See Chapter 8.3.3 and Chapter 8.3.4 for the behav-
ior of CanXLTrcv_SetTransceiverMode () and CanXLTrcv_GetTransceiver—
Mode ().

[CP_SWS CanXLTrcv_00050]
Upstream requirements: SRS_Can_02002

[The Ethernet transceiver mode shall initially be set to ETH_MODE_DOWN. |

AUTSSAR

The requested Ethernet link state is stored by the CAN XI. Transceiver Driver,
and updated via CanXLTrcv_TransceiverLinkStateRequest as described in
Chapter 8.3.2.

[CP_SWS CanXLTrcv_00051]
Upstream requirements: SRS_Can_02002

[The requested Ethernet link state shall initially be set to
ETHTRCV_LINK_STATE_DOWN. |

The status of the physical CAN bus to which a CAN XL Transceiver is connected is
reported as CAN error state from the CanxLDriver to the CanXLTransceiver—
Driver via CanIf_XLReportErrorState and CanXLTrcv_ReportErrorState
each time it is changed.

[CP_SWS_CanXLTrcv_00002]

Upstream requirements: SRS_Can_02002
[The link state reported by CanXLTrcv_GetLinkState shall be ETHTRCV_LINK_
STATE_ACTIVE if the CAN XL Transceiver operation mode is CANTRCV_TRCVMODE__
NORMAL, the stored CAN error state is CAN_ERRORSTATE_ACTIVE Or CAN_-

ERRORSTATE_PASSIVE and the requested link state is ETHTRCV_LINK_STATE_AC-
TIVE.]|

[CP_SWS CanXLTrcv_00033]
Upstream requirements: SRS_Can_02002

[The link state reported by CanXLTrcv_GetLinkState shall be ETHTRCV_LINK_
STATE_DOWN if the requested link state is ETHTRCV_LINK_STATE_DOWN (indepen-
dent of the current CAN XL Transceiver operation mode and the stored CAN error
state). |

[CP_SWS CanXLTrcv_00034]
Upstream requirements: SRS_Can_02002

[The link state reported by CanXLTrcv_GetLinkState shall be ETHTRCV_LINK_
STATE_DOWN if the stored CAN error state is CAN_ERRORSTATE_BUSOFF (indepen-
dent of the current CAN XL Transceiver operation mode and the requested link state). |

[CP_SWS CanXLTrcv_00052]
Upstream requirements: SRS_Can_02002

[The stored CAN error state shall be initialized as CAN_ERRORSTATE_BUSOFF. |

[CP_SWS_CanXLTrcv_00036]
Upstream requirements: SRS_Can_02002

[The link state reported by CanXLTrcv_GetLinkState shall be ETHTRCV_LINK_
STATE_DOWN if the CAN XL Transceiver operation mode is CANTRCV_TRCVMODE_ -

AUTSSAR

STANDBY or CANTRCV_TRCVMODE_SLEEP (independent of the stored CAN error state
and the requested link state). |

7.3 Wake up handling

The wake up handling for each CAN XL Transceiver is only performed via the CAN
stack as described in the Specification of CAN Transceiver Driver [3]. The Ethernet
stack is neither part of the wake up handling nor is it informed about a occurred wake
up event. The power saving state of a CAN XL Transceiver is indicated to the Ethernet
stack as ETHTRCV_LINK_STATE_DOWN (refer to [CP_SWS_CanXLTrcv_00036]). Af-
ter a successful wake up sequence the Ethernet stack can be informed over the link
state (refer to [CP_SWS_CanXLTrcv_00002]) that a communication via the CAN bus
is possible again.

[CP_SWS CanXLTrcv_00037]
Upstream requirements: SRS_Can_02002

[The canXLTrcv_CheckWakeup shall not actively participate in the wake up handling
of the CAN XL transceiver. |

7.4 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.
Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.4.1 Development Errors

[CP_SWS_CanXLTrcv_10002] Definition of development errors in module Can

XLTrcv
Upstream requirements: SRS_BSW_00327, SRS_BSW_00350, SRS_BSW_00385, SRS _BSW __

00386
[

Type of error Related error code Error value
API called with wrong parameter for the CAN CANXLTRCV_E_INVALID_TRANSCEIVER 0x01
transceiver

API called with null pointer parameter CANXLTRCV_E_PARAM_POINTER 0x02

API service used without initialization CANXLTRCV_E_UNINIT 0x11

Invalid error state CANXLTRCV_E_INVALID_ERROR_STATE 0x30

Y%

AUTSSAR

JAN
Type of error Related error code Error value
Invalid link state CANXLTRCV_E_INVALID_LINK_STATE 0x31

7.4.2 Runtime Errors

There are no addtitional runtime errors.

7.4.3 Production Errors

There are no addtitional production errors.

7.4.4 Extended Production Errors

There are no addtitional extended production errors.

AUTSSAR

8 API specification

Please note, that the CAN XI, Transceiver Driver uses the MSN CanTrcv for
parts that are shared with the [3, CAN Transceiver Driver] and the MSN CanXL-
Trcv for extensions defined in this document. Deviating from SRS_BSW_00101
and SRS _BSW 00407, the CAN XL Transceiver Driver does not provide
separate Init and GetVersionInfo APIs with the MSN cCcanXL. Following
SWS_MemMap_00022, memory sections associated with APls defined in this doc-
ument will use the MSN CcanXx1, and also symbolic name values referring to containers
defined in this document will use the MSN canXL to follow TPS_ECUC_02108.

8.1 Imported types
In this chapter all types included from the following files are listed.

[CP_SWS_CanXLTrcv_10006] Definition of imported datatypes of module Can
XLTrev |

Module Header File Imported Type
Can Can_GeneralTypes.h Can_ErrorStateType
Eth Eth_GeneralTypes.h Eth_ModeType
EthTrcv Eth_GeneralTypes.h EthTrcv_LinkStateType
Std Std_Types.h Std_ReturnType

|

8.2 Type definitions

There are no additional type definitions.

AUTSSAR

8.3 Function definitions

8.3.1 CanXLTrcv_ReportErrorState

[CP_SWS_CanXLTrcv_10001] Definition of API function CanXLTrcv_ReportError

State
Upstream requirements: SRS_Can_02002, SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_-
00357, SRS BSW 00406, SRS Can_01097

[
Service Name CanXLTrcv_ReportErrorState
Syntax Std_ReturnType CanXLTrcv_ReportErrorState (
uint8 Transceiver,
Can_ErrorStateType ErrorState
)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Transceiver CAN transceiver to which API call has to be applied
ErrorState New error state of the corresponding CAN controller
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Report was successful E_NOT_OK: Call was rejected
Description Reports each change of the CAN error state.
Available via CanXLTrcv.h
]

Note: The service CanXLTrcv_ReportErrorState () is implemented in CanXL-
TransceiverDriver and called by CanXLDriver via CanIf after each change of
the CAN error state at the corresponding CAN XL controller.

[CP_SWS_CanXLTrcv_00032] [The CAN error state shall be stored for each CAN XL
Transceiver in the CanXLTransceiverDriver and shall be updated at each call of
the CanXLTrcv_ReportErrorState () J

[CP_SWS_CanXLTrcv_00038] [If development error detection is enabled: the func-
tion shall check that the service CanTrcv_Init () was previously called. If the check
fails, the function shall raise the development error CANXLTRCV_E_UNINIT. |

[CP_SWS_CanXLTrcv_00039] [If development error detection is enabled: the func-
tion shall check the parameter Transceiver for being valid. If the check fails, the
function shall raise the development error CANXLTRCV_E_INVALID_TRANSCEIVER. |

[CP_SWS_CanXLTrcv_00040] [If development error detection is enabled: the func-
tion shall check the parameter ErrorState for being valid. If the check fails, the
function shall raise the development error CANXLTRCV_E_INVALID_ERROR_STATE. |

AUTSSAR

8.3.2 CanXLTrcv_TransceiverLinkStateRequest

[CP_SWS CanXLTrcv_10011] Definition of API function CanXLTrcv_Transceiver
LinkStateRequest
Upstream requirements: SRS_Can_02002, SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_-

00406
[

Service Name CanXLTrcv_TransceiverLinkStateRequest
Syntax Std_ReturnType CanXLTrcv_TransceiverLinkStateRequest (

uint8 TrcvIdx,

EthTrcv_LinkStateType LinkState

)
Service ID [hex] 0x31
Sync/Async Asynchronous
Reentrancy Reentrant for different Trcvldx. Non reentrant for the same Trcvldx.
Parameters (in) Trevldx Index of the transceiver within the context of the Transceiver
Driver
LinkState The link state of a physical connection.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The request has been accepted
E_NOT_OK: The request has not been accepted
Description Request the given link state for the given transceiver
Available via CanXLTrcv.h
J

Note: This API is derived from Ethernet Transceiver Driver ((SWS_EthTrcv_91025]).
For better understanding of the API's original intention you may check [7, Ethernet
Interface] and [12, Ethernet Transceiver Driver].

[CP_SWS_CanXLTrcv_00041] [The requested link state shall be stored for each CAN
XL Transceiver in the CanXLTransceiverDriver and shall be updated at each call
of CanXLTrcv_TransceiverLinkStateRequest ().]

[CP_SWS_CanXLTrcv_00047] [If development error detection is enabled: the func-
tion shall check that the service CanTrcv_Init was previously called. If the check fails,
the function shall raise the development error CANXLTRCV_E_UNINIT. |

[CP_SWS_CanXLTrcv_00048] [If development error detection is enabled: the func-
tion shall check the parameter Trcvldx for being valid. If the check fails, the function
shall raise the development error CANXLTRCV_E_INVALID_TRANSCEIVER. |

[CP_SWS_CanXLTrcv_00049] [If development error detection is enabled: the func-
tion shall check the parameter LinkState for being valid. If the check fails, the function
shall raise the development error CANXLTRCV_E_INVALID_LINK_STATE. |

See also Chapter 7.2.

AUTSSAR

8.3.3 CanXLTrcv_SetTransceiverMode

[CP_SWS_CanXLTrcv_10010] Definition of API function CanXLTrcv_Set

TransceiverMode
Upstream requirements: SRS_Can_02002, SRS_BSW_00310, SRS_BSW_00369, SRS _BSW _-

00406
Service Name CanXLTrcv_SetTransceiverMode
Syntax Std_ReturnType CanXLTrcv_SetTransceiverMode (
uint8 TrcvIdx,
Eth_ModeType TrcvMode
)
Service ID [hex] 0xa8
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) Trevldx Index of the transceiver
TrcvMode ETH_MODE_DOWN: disable the transceiver
ETH_MODE_ACTIVE: enable the transceiver
ETH_MODE_ACTIVE_WITH_WAKEUP_REQUEST: enable the
transceiver and request to trigger a wake-up on the network, if the
used PHY support such a feature. E.g. used for PHYs compliant
to OATC10
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Service accepted
E_NOT_OK: Service denied
Description Enables / disables the indexed transceiver
Available via CanXLTrcv.h

Note: This APl is derived from Ethernet Transceiver Driver ([SWS_EthTrcv_00042]).
For better understanding of the API's original intention you may check [7, Ethernet
Interface] and [12, Ethernet Transceiver Driver].

[CP_SWS_CanXLTrcv_00005] [The set transceiver mode shall be stored for each
CAN XL Transceiver in the CanXLTransceiverDriver and shall be updated at
each call of CanXLTrcv_SetTransceiverMode (). The CanXLTrcv shall directly
callEthIf_TrcvModeIndication ().]

[CP_SWS_CanXLTrcv_00006] [A new requested CanXLTrcv mode shall overwrite
the last requested CanXLTrcv mode. If ETH_MODE_ACTIVE_WITH_WAKEUP_RE-
QUEST was requested, ETH_MODE_ACTIVE shall be stored. |

[CP_SWS_CanXLTrcv_00011] [If development error detection is enabled: the func-
tion shall check that the service CanTrcv_Init was previously called. If the check fails,
the function shall raise the development error CANXLTRCV_E_UNINIT. |

[CP_SWS_CanXLTrcv_00012] [If development error detection is enabled: the func-
tion shall check the parameter Trcvldx for being valid. If the check fails, the function
shall raise the development error CANXLTRCV_E_INVALID_TRANSCEIVER. |

AUTSSAR
See also Chapter 7.2.

8.3.4 CanXLTrcv_GetTransceiverMode

[CP_SWS CanXLTrcv_10009] Definition of API function CanXLTrcv_Get

TransceiverMode
Upstream requirements: SRS_Can_02002, SRS_BSW_00310, SRS_BSW_00369, SRS_BSW _-

00406
Service Name CanXLTrcv_GetTransceiverMode
Syntax Std_ReturnType CanXLTrcv_GetTransceiverMode (
uint8 TrcvIdx,
Eth_ModeTypex TrcvModePtr
)
Service ID [hex] 0x33
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Trevldx Index of the transceiver within the context of the Transceiver
Driver
Parameters (inout) None
Parameters (out) TrcvModePtr ETH_MODE_DOWN: the transceiver is disabled
ETH_MODE_ACTIVE: the transceiver is enable
Return value Std_ReturnType E_OK: success
E_NOT_OK: transceiver could not be initialized
Description Obtains the state of the indexed transceiver
Available via CanXLTrcv.h

Note: This API is derived from Ethernet Transceiver Driver ((SWS_EthTrcv_00048]).
For better understanding of the API's original intention you may check [7, Ethernet
Interface] and [12, Ethernet Transceiver Driver].

[CP_SWS_CanXLTrcv_00015] [The function shall return the stored requested
transceiver mode in CanXLTransceiverDriver for the corresponding transceiver. |

[CP_SWS_CanXLTrcv_00016] [If development error detection is enabled: the func-
tion shall check that the service CanTrcv_Init was previously called. If the check fails,
the function shall raise the development error CANXLTRCV_E_UNINIT. |

[CP_SWS_CanXLTrcv_00017] [If development error detection is enabled: the func-
tion shall check the parameter Trcvldx for being valid. If the check fails, the function
shall raise the development error CANXLTRCV_E_INVALID_TRANSCEIVER. |

[CP_SWS_CanXLTrcv_00018] [If development error detection is enabled: the func-
tion shall check the parameter TrcvModePtr for being valid. If the check fails, the func-
tion shall raise the development error CANXLTRCV_E_PARAM_POINTER. |

See also Chapter 7.2.

AUTSSAR

8.3.5 CanXLTrcv_GetLinkState

[CP_SWS_CanXLTrcv_10008] Definition of API function CanXLTrcv_GetLinkState

Upstream requirements: SRS_Eth_00040, SRS_Can_02002, SRS _BSW_00310, SRS _BSW_-
00369, SRS BSW 00406

Service Name CanXLTrcv_GetLinkState
Syntax Std_ReturnType CanXLTrcv_GetLinkState (
uint8 TrcvIdx,
EthTrcv_LinkStateType*x LinkStatePtr
)
Service ID [hex] 0x34
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Trevldx Index of the transceiver within the context of the Transceiver
Driver
Parameters (inout) None
Parameters (out) LinkStatePtr ETHTRCV_LINK_STATE_DOWN: transceiver is disconnected
ETHTRCV_LINK_STATE_ACTIVE: transceiver is connected
Return value Std_ReturnType E_OK: success
E_NOT_OK: transceiver could not be initialized
Description Obtains the link state of the indexed transceiver
Available via CanXLTrcv.h

Note: This API is derived from Ethernet Transceiver Driver ((SWS_EthTrcv_00061]).
For better understanding of the API's original intention you may check [7, Ethernet
Interface] and [12, Ethernet Transceiver Driver].

[CP_SWS_CanXLTrcv_00020] [If development error detection is enabled: the func-
tion shall check that the service CanTrcv_Init() was previously called. If the check fails,
the function shall raise the development error CANXLTRCV_E_UNINIT. |

[CP_SWS_CanXLTrcv_00021] [If development error detection is enabled: the func-
tion shall check the parameter Trcvldx for being valid. If the check fails, the function
shall raise the development error CANXLTRCV_E_INVALID_TRANSCEIVER. |

[CP_SWS_CanXLTrcv_00022] [If development error detection is enabled: the func-
tion shall check the parameter LinkStatePtr for being valid. If the check fails, the func-
tion shall raise the development error CANXLTRCV_E_PARAM POINTER. |

See also Chapter 7.2.

AUTSSAR

8.3.6 CanXLTrcv_CheckWakeup

[CP_SWS CanXLTrcv_10007] Definition of API function CanXLTrcv_Check
Wakeup

Upstream requirements: SRS_Eth_00108, SRS_Can_02002, SRS _BSW_00310, SRS _BSW_-
00369, SRS _BSW 00406

Service Name CanXLTrcv_CheckWakeup
Syntax Std_ReturnType CanXLTrcv_CheckWakeup (
uint8 TrcvIdx
)
Service ID [hex] 0x35
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Trevldx Index of the transceiver within the context of the Transceiver
Driver
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The function has been successfully executed
E_NOT_OK: The function could not be successfully executed
Description Service is called by Ethlf in case a wake-up interrupt is detected.
Available via CanXLTrcv.h

Note: This API is derived from Ethernet Transceiver Driver ((SWS_EthTrcv_00134]).
For better understanding of the API's original intention you may check [7, Ethernet
Interface] and [12, Ethernet Transceiver Driver].

[CP_SWS_CanXLTrcv_00035] [This function shall have no functional behaviour and
return E_OK. |

[CP_SWS_CanXLTrcv_00027] [If development error detection is enabled: The func-
tion CanXLTrcv_CheckWakeup() shall check that the service CanTrcv_Init was pre-
viously called. If the check fails, the function shall raise the development error
CANXLTRCV_E_UNINIT.|

[CP_SWS_CanXLTrcv_00028] [If development error detection is enabled: The func-
tion CanXLTrcv_CheckWakeup() shall check the parameter Trcvldx for being valid.
If the check fails, the function shall raise the development error CANXLTRCV_E_ -
INVALID_TRANSCEIVER.]

8.4 Callback notifications

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

AUTSSAR

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

The CAN XL Transceiver Driver does not specify any mandatory interfaces.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[CP_SWS_CanXLTrcv_10004] Definition of optional interfaces requested by mod-
ule CanXLTrcv |

API Function Header File Description

Ethlf_TrcvModelndication Ethlf.h Called asynchronously when a mode change has
been read out. If the function is triggered by
previous call of EthTrcv_SetTransceiverMode it can
directly be called within the trigger function.

8.6.3 Configurable interfaces

The CAN XL Transceiver Driver does not specify any configurable interfaces.

AUTSSAR

9 Sequence diagrams

9.1 CanXL BusOff handling for Ethernet

«peripheral» «module» «module» «module»
CanController CanXL Ethif CanXLTrcv

I
|
|
alt I
|

[error sign&ling enabled]
|
| BusOffDetection()

L . .
. CanXLTrcv_ReportErrorState(Transceiver, CAN_ERRORSTAT E_BUSIOFF)

Bus off detection is done
by the controller hardware < -

[errorsign::aling disabled]

|
| CheckForBusOffConditions()

______ _:. —_—— ——— >
Bus off detection is
emulated by the CanXL S EUEDY BROEEG /
driver. [
CanXLTrcv_ReportErrorState(Transceiver, CAN_ERRORSTATE_BUSOFF)

CanXLT rcv_GetLinkState(Std_RetumTyPe, uints,
| EthTrcv_LinkStateType**) |

Retums LINK_STATE DOWN
because
CAN_ERRORSTATE_BUSOFF
has been set previously.

Figure 9.1: CanXL BusOff handling for Ethernet

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CAN XL Transceiver Driver.

Chapter 10.3 specifies published information of the module CAN XL Tranceiver Driver.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.1 CanXLTrcvChannel

[ECUC_CanTrcv_00195] Definition of EcucParamConfContainerDef CanXLTrcv
Channel |

Container Name CanXLTrcvChannel
Parent Container CanTrcvChannel
Description This container is specified in the SWS CAN XL Transceiver Driver and represents a

CAN XL transceiver channel. If this container is present, the CAN transceiver will
provide the extended CanXLTrcv API.

Multiplicity 0.1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

CanXLTrcvEthEcucPartitionRef 0..1 [ECUC_CanTrcv_00196]

No Included Containers

AUTSSAR

[ECUC_CanTrcv_00196] Definition of EcucReferenceDef CanXLTrcvEthEcucPar-
titionRef |

Parameter Name CanXLTrcvEthEcucPartitionRef

Parent Container CanXLTrcvChannel

Description Maps the Ethernet Interface access to the CAN XL transceiver channel to zero or one
ECUC partitions.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[CP_SWS_CanXLTrcv_NA_00999] [These requirements are not applicable to this
specification. |

AUTSSAR

B Change History

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

B.1 Change History of this document according to AUTOSAR Re-
lease R22-11

B.1.1 Added Specification Iltems in R22-11

Number Heading

[CP_SWS_CanXLTrcv_00001]

[CP_SWS_CanXLTrcv_00002]

[CP_SWS_CanXLTrcv_00005]

[CP_SWS_CanXLTrcv_00006]

[CP_SWS_CanXLTrcv_00011]

[CP_SWS_CanXLTrcv_00012]

[CP_SWS_CanXLTrcv_00015]

[CP_SWS_CanXLTrcv_00016]

[CP_SWS_CanXLTrcv_00017]

[CP_SWS_CanXLTrcv_00018]

[CP_SWS_CanXLTrcv_00020]

[CP_SWS_CanXLTrcv_00021]

[CP_SWS_CanXLTrcv_00022]

[CP_SWS_CanXLTrcv_00027]

[CP_SWS_CanXLTrcv_00028]

[CP_SWS_CanXLTrcv_00032]

[CP_SWS_CanXLTrcv_00033]

[CP_SWS_CanXLTrcv_00034]

[CP_SWS_CanXLTrcv_00035]

[CP_SWS_CanXLTrcv_00036]

[CP_SWS_CanXLTrcv_00037]

[CP_SWS_CanXLTrcv_00038]

[CP_SWS_CanXLTrcv_00039]

[CP_SWS_CanXLTrcv_00040]

[CP_SWS_CanXLTrcv_00041]

[CP_SWS_CanXLTrcv_00047]

[CP_SWS_CanXLTrcv_00048]

AUTSSAR

A
Number Heading
[CP_SWS_CanXLTrcv_00049]
[CP_SWS_CanXLTrcv_00050]
[CP_SWS_CanXLTrcv_00051]
[CP_SWS_CanXLTrcv_00052]
[CP_SWS_CanXLTrcv_10001] Definition of API function CanXLTrcv_ReportErrorState
[CP_SWS_CanXLTrcv_10002] Definiton of development errors in module CanXLTrcv
[CP_SWS_CanXLTrcv_10004] Definition of optional interfaces in module CanXLTrcv
[CP_SWS_CanXLTrcv_10006] Definition of imported datatypes of module CanXLTrcv
[CP_SWS_CanXLTrcv_10007] Definition of API function CanXLTrcv_CheckWakeup
[CP_SWS_CanXLTrcv_10008] Definition of API function CanXLTrcv_GetLinkState
[CP_SWS_CanXLTrcv_10009] Definition of API function CanXLTrcv_GetTransceiverMode
[CP_SWS_CanXLTrcv_10010] Definition of API function CanXLTrcv_SetTransceiverMode
[CP_SWS_CanXLTrcv_10011] E{g:;r;iéi;)tn of API function CanXLTrcv_TransceiverLinkState
[CP_SWS_CanXLTrcv_NA_00999]

Table B.1: Added Specification Iltems in R22-11

B.1.2 Changed Specification ltems in R22-11

none

B.1.3 Deleted Specification Items in R22-11

none

AUTSSAR

B.2 Change History of this document according to AUTOSAR Re-
lease R23-11

B.2.1 Added Specification Items in R23-11

none

B.2.2 Changed Specification Items in R23-11

none

B.2.3 Deleted Specification Items in R23-11

none

AUTSSAR

B.3 Change History of this document according to AUTOSAR Re-
lease R24-11

B.3.1 Added Specification Items in R24-11

none

B.3.2 Changed Specification Items in R24-11

Number Heading

[CP_SWS_CanXLTrcv_10001] Definition of API function CanXLTrcv_ReportErrorState
[CP_SWS_CanXLTrcv_10007] Definition of API function CanXLTrcv_CheckWakeup
[CP_SWS_CanXLTrcv_10008] Definition of API function CanXLTrcv_GetLinkState
[CP_SWS_CanXLTrcv_10009] Definition of API function CanXLTrcv_GetTransceiverMode
[CP_SWS_CanXLTrcv_10010] Definition of API function CanXLTrcv_SetTransceiverMode
[CP_SWS_CanXLTrov_10011] gggziet)i;n of API function CanXLTrcv_TransceiverLinkState

Table B.2: Changed Specification Iltems in R24-11

B.3.3 Deleted Specification Iltems in R24-11

none

AUTSSAR

B.4 Change History of this document according to AUTOSAR Re-
lease R25-11

B.4.1 Added Specification Items in R25-11

none

B.4.2 Changed Specification Items in R25-11

Number Heading

[CP_SWS_CanXLTrcv_10010] Definition of API function CanXLTrcv_SetTransceiverMode
[ECUC_CanTrcv_00195] Definition of EcucParamConfContainerDef CanXLTrcvChannel
[ECUC_CanTrcv_00196] Definition of EcucReferenceDef CanXLTrcvEthEcucPartitionRef

Table B.3: Changed Specification Items in R25-11

B.4.3 Deleted Specification Items in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	5 Dependencies to other modules
	5.1 File Structure
	5.1.1 Code File Structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Initialization
	7.2 Communication state handling
	7.3 Wake up handling
	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanXLTrcv_ReportErrorState
	8.3.2 CanXLTrcv_TransceiverLinkStateRequest
	8.3.3 CanXLTrcv_SetTransceiverMode
	8.3.4 CanXLTrcv_GetTransceiverMode
	8.3.5 CanXLTrcv_GetLinkState
	8.3.6 CanXLTrcv_CheckWakeup

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 CanXL BusOff handling for Ethernet

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanXLTrcvChannel

	10.3 Published Information

	A Not applicable requirements
	B Change History
	B.1 Change History of this document according to AUTOSAR Release R22-11
	B.1.1 Added Specification Items in R22-11
	B.1.2 Changed Specification Items in R22-11
	B.1.3 Deleted Specification Items in R22-11

	B.2 Change History of this document according to AUTOSAR Release R23-11
	B.2.1 Added Specification Items in R23-11
	B.2.2 Changed Specification Items in R23-11
	B.2.3 Deleted Specification Items in R23-11

	B.3 Change History of this document according to AUTOSAR Release R24-11
	B.3.1 Added Specification Items in R24-11
	B.3.2 Changed Specification Items in R24-11
	B.3.3 Deleted Specification Items in R24-11

	B.4 Change History of this document according to AUTOSAR Release R25-11
	B.4.1 Added Specification Items in R25-11
	B.4.2 Changed Specification Items in R25-11
	B.4.3 Deleted Specification Items in R25-11

