AUTSSAR

Document Titl Specification of CAN Transport
e Layer

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 14

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR o
5025-11-27 | R25-11 Release . ?Sdgﬁ Tranlsm|53|on Request Queue for
Management anneis
AUTOSAR » Changed lower layer to LSduR
2024-11-27 | R24-11 Release
Management + Added detection of header violations
» Added Extended Production Errors to
AUTOSAR indicate timeouts and errors
2023-11-23 | R23-11 Release
Management » Removed dependency of the addressing
format for shared PDUs/SDUs
AUTOSAR Clarificati f PAuR it value i
2022-11-24 | R22-11 Release faj[m |cat|?[n of PduR result value in case
Management of transmit error
AUTOSAR * Improve Error handling
2021-11-25 | R21-11 Release
Management » Clarifications
AUTOSAR * Improve Error sections
2020-11-30 | R20-11 Release
Management » Clarifications
» Added configuration diagrams
AUTOSAR * Clarifications
2019-11-28 | R19-11 Release
Management » Changed Document Status from Final to
published
AUTOSAR * Removed some limitations for
2018-10-31 | 4.4.0 Release Half-duplex
Management

* Minor corrections

AUTSSAR

» Clarification of metadata provision

AUTOSAR + Extend data length for CAN-FD
2017-12-08 | 4.3.1 Release
Management * Rollout of Runtime errors
* Minor corrections
* Harmonized API functions description
* Parallel handling of CAN 2.0 and
AUTOSAR CAN-FD clarification
2016-11-30 | 4.3.0 Release . '
Management * Introduction of reliable TxConfirmation
+ Clarification of addressing in Upper
Layers using MetaData
* File structure correction
AUTOSAR s
2015-07-31 490 Release FC_QOVFL clarification
Management * DET Renaming and Extension
Incorporation
* Introduced support for CAN Flexible
AUTOSAR Data rate
2014-10-31 | 4.2.1 Release « Minor corrections
Management
» Clarifications
* Revised padding behaviour.
« Clarified relation between CanTpMain
AUTOSAR FunctionPeriod and other timers.
2014-03-31 4.1.3 Ili{/lelease * Revised CanTp_RxIndication()
anagement prototype.
» Extended parameter CanTpTc for
receive cancellation.
* Replace NTFRSLT_OK\NTFRSLT _
<other> E_OK\E_NOT_OK
AUTOSAR + Handling of unexpected arrival of N-PDU
2013-10-31 | 4.1.2 Release table clarification
Management

« Editorial changes

» Removed chapter(s) on change
documentation

AUTSSAR

* Error handling has been improved

AUTOSAR « PostBuild concept has been refined
2013-03-15 | 4.1.1 Release .
Management * Introduction of HDV support
« Clarifications of buffer handling
» CanTp does not report production errors
anymore
AUTOSAR » Metamodel structure changed
2011-12-22 | 4.0.3 Release « Harmonization with the new buffer
Management concept
» Change the BlockSize to be statically
configurable instead a maximum value
* Corrections and improvement in errors
description;
AUTOSAR * API services correction;
2011-04-15 | 4.0.2 Release « Clarifications in relation with buffer
Management handling
» Updated table in Ch. 6 for half and full
duplex support
» Added Mixed Addressing Mode
» CanTp supports Full Duplex Mode
AUTOSAR ,
* New buffering concept
2009-12-18 | 4.0.1 Release
Management » Added possibility to change CanTp
parameters
* Legal disclaimer revised
* Addition of transmit cancellation feature
 DatalLength check only for too small
DLC (CanTp220)
AUTOSAR
2007-12-21 3.0.1 Release * Restriction on mapping of N-Pdu (SWS_
Management CanTp_00248)

» Document meta information extended

» Small layout adaptations made

AUTSSAR

AUTOSAR * “Advice for users” revised
2007-07-24 | 2.1.16 Release
Management * “Revision Information” added
» Clarification and correction of error
management: list of
production\development error and
behavior in case of error
+ Addition of SWS_CanTp_00166 and
SWS_CanTp_00167 to avoid blocking
situation in case of no buffer provided by
upper layer
AUTOSAR
2007-01-24 | 2.1.15 Release * Remove of CanTpRxWftMax of
Management container CanTpTxNSdu
* 1 parameter added for the call of Det_
ReportError
» Add header files inclusions
+ Addition of CanTpNSa container in
configuration chapter
* Legal disclaimer revised
2006-11-28 | 2.1 QELSS:R » Document structure adapted to common
: M Release 2.0 SWS Template.
anagement
AUTOSAR
2005-05-31 1.0 Release * Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability in automotive domain oL

5 Dependencies to other modules

5.1 AUTOSAR architecture basicconcepts
5.1.1 CAN Transport Layer connection(s)
5.1.2 CAN Transport Layer interactions
5.1.3 Processingmode.
5.1.4 Dataconsistency
5.1.5 Staticconfiguration. o oo
5.1.6 PDURouterservices
5.1.7 L-SDU Routerservices

52 Filestructure
5.2.1 Codefilestructure
5.2.2 Headerfilestructure
523 Versioncheck
524 DesignRules

6 Requirements Tracing

7 Functional specification
7.1 Services providedtoupperlayer. oL
7.1.1 Initialization and shutdown
7.1.2 Transmitrequest L
7.1.3 Transmitcancellation
7.2 Services provided tothe lowerlayer
7.2.1 Transmitconfirmation,
7.2.2 Receptionindication oL
723 Pending TXxN-SDUs
7.3 Internal behavior
7.3.1 N-SDUReception
7.3.2 N-SDU Transmission.
7.3.3 Bufferstrategy
7.3.4 Protocol parameter setting services
7.3.5 TxandRxdataflow,

AUTSSAR

7.3.6 Relationship between CAN NSduld and CAN LSduld 39
7.3.7 Concurrentconnection 41
7.3.8 N-PDUpadding 42
7.3.9 Handling of unexpected N-PDU arrival 45
7.4 Error Classification 45
7.4.1 DevelopmentErrors 46
742 RuntimeErrors 46
7.4.3 Production Errors 47
7.4.4 Extended ProductionErrorso 47
7.5 Security Events 51
8 API specification 54
8.1 Importedtypes e 54
8.2 Typedefinitions 55
8.2.1 CanTp_ConfigType i 55
8.3 Function definitions 55
8.3.1 CanTp_Init 55
8.3.2 CanTp_GetVersioninfo 56
8.3.3 CanTp_Shutdown 57
8.3.4 CanTp_Transmit i 57
8.3.5 CanTp_CancelTransmit 59
8.3.6 CanTp_CancelReceive 60
8.3.7 CanTp_ChangeParameter 61
8.3.8 CanTp_ReadParameter 62
8.3.9 MainFunction 63
8.4 Callback notifications 63
8.4.1 CanTp_RxIndication 63
8.4.2 CanTp_TxConfirmation 64
8.5 Expectedinterfaces 65
8.5.1 Mandatory Interfaces, 65
8.5.2 Optional Interfaces 66
9 Sequence diagrams 67
9.1 SF N-SDU received and no buffer available. 67
9.1.1 Assumptions 67
9.1.2 Sequencediagramo 67
9.1.3 Transitiondescription 68
9.2 Successful SFN-PDUreception, 68
9.2.1 Assumptions 68
9.22 Sequencediagram e e 69
9.2.3 Transition description oo 69
9.3 Transmitrequestof SFN-SDU 70
9.3.1 Assumptions 70

9.3.2 Sequencediagramo 71

AUTSSAR

9.3.3 Transition description Lo 72
9.4 TransmitrequestoflargerN-SDU 73
9.4.1 Assumptions 73
9.4.2 Sequencediagram 73
9.4.3 Transitiondescription 74
9.5 Large N-SDU Reception 75
9.5.1 Assumptions 75
9.5.2 Sequencediagram Lo 76
9.5.3 Transitiondescription 77
10 Configuration specification 78
10.1How toread thischapter 78
10.2Containers and configuration parameters 78
10.21CanTp e 78
10.2.2CanTpConfig o o 79
10.2.3CanTpGeneral 81
10.2.4 CanTpDemEventParameterRefs 86
10.2.5 CanTpEnableSecurityEventRefs 94
10.2.6 CanTpChannel e 99
10.2.7CanTpRxNSdu 101
10.2.8 CanTpTxFcNPdu 109
10.29CanTpRxNPdu 110
10.2.10 CanTpTxNSdu 112
10.2.11 CanTpTxNPdu 118
10.2.12 CanTpRxFcNPdu oo 119
10.213 CanTpNTa 120
10.2.14 CanTpNSa 121
10.2.15 CanTpNAe e 122
10.3Published Information 123
A Not applicable requirements 124
B Change history of AUTOSAR traceable items 125
B.1 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e 125
B.1.1 Added Specification Itemsin R23-11 125
B.1.2 Changed Specification ltems in R23-11 125
B.1.3 Deleted Specification Itemsin R23-11 125
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 125
B.2.1 Added Specification ltemsin R24-11 125
B.2.2 Changed Specification ltemsin R24-11 126
B.2.3 Deleted Specification Itemsin R24-11 126

B.3 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 126

AUTSSAR

B.3.1 Added Specification Items in R25-11

B.3.2 Changed Specification Itemsin R25-11

B.3.3 Deleted Specification Items in R25-11

AUTSSAR

1 Introduction and functional overview

This specification defines the functionality, APl and the configuration of the AUTOSAR
Basic Software module CAN Transport Layer (CanTp).

CanTp is the module between the PDU Router and the L-SDU Router module (see
Figure 1.1). The main purpose of the CAN TP module is to segment and reassemble
CAN I-PDUs longer than 8 bytes or longer than 64 bytes in case of CAN FD.

The PDU Router deploys AUTOSAR COM and DCM I-PDUs onto different communi-
cation protocols. The routing through a network system type (e.g. CAN, LIN and Flex
Ray) depends on the I-PDU identifier. The PDU Router also determines if a transport
protocol has to be used or not. Lastly, this module carries out gateway functionality,
when there is no rate conversion.

L-SDU Router Module (LSduR) provides equal mechanisms to access a CAN bus
channel regardless of its location (uC internal/external). From the location of CAN
controllers (on chip / onboard), it extracts the ECU hardware layout and the number of
CAN drivers. Because CanTp only handles transport protocol frames (i.e. SF, FF, CF
and FC PDUs), depending on the N-PDU ID, the L-SDU Router module has to forward
an I-PDU to CanTp or PduR.

. =

State
Manager

CAN Transport

Protocol

L-SDU Router

CAN Interface

CAN Transceiver | Driver for ext.
Driver i . CAN ASIC

CAN Driver

External
CAN Controller

Figure 1.1: AUTOSAR Communication Stack

AUTSSAR

According to AUTOSAR basic software architecture, CanTp provides services for:
» Segmentation of data in transmit direction

* Reassembling of data in receive direction

Control of data flow

 Detection of errors in segmentation sessions
» Transmit cancellation

» Receive cancellation

It is an AUTOSAR decision to base basic software module specifications on existing
standards, thus this AUTOSAR CAN Transport Layer specification is based on the
international standard ISO 15765, which is the most used standard in the automotive
domain.

ISO 15765 (containing four sections) describes two applicable CAN Transport Layer
specifications: ISO 15765-2 for OEM enhanced diagnostics [1] and ISO 15765-4 for
OBD diagnostics [2]. Concerning the transport layer, ISO 15765-4 (the section of ISO
15765 which also covers the data link layer and physical layer) is in accordance with
ISO 15765-2 with some restrictions/additions. In order that there is no incompatibility
problem between ISO 15765-2 and ISO 15765-4, differences will be solved by the CAN
Transport Layer configuration.

Although CAN transport protocol is mainly used for vehicle diagnostic systems, it has
also been developed to deal with requirements from other CAN based systems requir-
ing a transport layer protocol.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN Trans-
port Layer module that are not included in the [3, AUTOSAR glossary].

The prefix notation used in this document, is as follows:

Prefix: Description:

I- Relative to AUTOSAR COM Interaction Layer

L- Relative to the L-SDU Router module which is equivalent to the Logical Link Control (the upper
part of the Data Link Layer - the lower part is called Media Access Control)

N- Relative to the CAN Transport Layer which is equivalent to the OSI Network Layer.

Table 2.1: Layer mapping

All acronyms and abbreviations, which are specific to the CAN Transport Layer and are
therefore not contained in the AUTOSAR glossary, are described in the following:

Acronym: Description:

CAN L-SDU This is the SDU of the L-SDU Router module. It is similar to CAN N-PDU but from the L-SDU
Router module point of view.

CAN LSduld This is the unique identifier of a SDU within the L-SDU Router module. It is used for referencing
L-SDUr’s routing properties.
Consequently, in order to interact with the L-SDU Router module through its API, an upper layer
uses CAN LSduld to refer to a CAN L-SDU Info Structure.

CAN N-PDU This is the PDU of the CAN Transport Layer. It contains a unique identifier, data length and data
(protocol control information plus the whole N-SDU or a part of it).

CAN N-SDU This is the SDU of the CAN Transport Layer. In the AUTOSAR architecture, it is a set of data

coming from the PDU Router.

CAN N-SDU Info

This is a CAN Transport Layer internal constant structure that contains specific CAN Transport

Structure Layer information to process transmission, reception, segmentation and reassembly of the
related CAN N-SDU.
CAN NSduld Unique SDU identifier within the CAN Transport Layer. It is used to reference N-SDU'’s routing

properties.
Consequently, to interact with the CAN Transport Layer via its API, an upper layer uses CAN
NSduld to refer to a CAN N-SDU Info Structure.

PdulnfoType

This type refers to a structure used to store basic information to process the
transmission\reception of a PDU (or a SDU), namely a pointer to its payload in RAM and the
corresponding length (in bytes).

Table 2.2: Acronyms of communication entities

Abbreviation: Description:

BS Block Size

Can CAN Driver module

CAN CF CAN Consecutive Frame N-PDU
CAN FC CAN Flow Control N-PDU

CAN FF CAN First Frame N-PDU

CAN SF CAN Single Frame N-PDU
LSduR L-SDU Router

CanTp CAN Transport Layer

AUTSSAR

A
Abbreviation: Description:
CanTrev CAN Transceiver module
CF See “CAN CF”
Com AUTOSAR COM module
Dcm Diagnostic Communication Manager module
IdsM Intrusion Detection System Manager
FC See “CAN FC”
FF See “CAN FF”
FIM Function Inhibition Manager
MetaData Meta data transferred alongside a PDU, consisting of a set of meta data items

MetaDataltem

A single item of MetaData of defined type and size

Mtype Message Type (possible value: diagnostics, remote diagnostics)

N_Al Network Address Information (see ISO 15765-2).

N_AE Network Address Extension (see ISO 15765-2 [1]).

N_Ar Time for transmission of the CAN frame (any N-PDU) on the receiver side (see ISO 15765-2 [1]).

N_As Time for transmission of the CAN frame (any N-PDU) on the sender side (see ISO 15765-2 [1]).

N_Br Time until transmission of the next flow control N-PDU (see ISO 15765-2 [1]).

N_Bs Time until reception of the next flow control N-PDU (see ISO 15765-2 [1]).

N_Cr Time until reception of the next consecutive frame N-PDU (see ISO 15765-2 [1]).

N_Cs Time until transmission of the next consecutive frame N-PDU (see ISO 15765-2 [1]).

N_Data Data information of the transport layer

N_PCI Protocol Control Information of the transport layer

N_SA Network Source Address (see ISO 15765-2 [1]).

N_TA Network Target Address (see ISO 15765-2 [1]). It might already contain the N_TAtype(physical/
function) in case of ExtendedAddressing.

N_TAtype Network Target Address type (see ISO 15765-2 [1]).

PduR PDU Router

SN Sequence Number (see ISO 15765-2 [1]).

STmin The minimum time the sender is to wait between transmission of two CFs (see ISO 15765-2 [1]).

FS Flow Status

CAN FD CAN flexible data rate

CAN_DL CAN frame data length

TX_DL Transmit data link layer data length

RX_DL Received data link layer data length

SF_DL SingleFrame data length in bytes

WFTmax Upper limit to the number of FC.WAIT a receiver is allowed to send in a row (see ISO 15765-2

().

Table 2.3: Acronyms and Abbreviations

The following table contains some of the concepts, which are useful in this work:

Definitions:

Description:

Default Error Tracer

The Default Error Tracer is merely a support to SW development and integration and is not
contained in the production code. The API is defined, but the functionality can be chosen and
implemented by the developer according to his specific needs.

\Y%

AUTSSAR

A

Definitions:

Description:

Diagnostic Event
Manager

The Diagnostic Event Manager is a standard AUTOSAR module which is available in the
production code and whose functionality is specified in the AUTOSAR project.

Intrusion Detection
System Manager

The Intrusion Detection Manager is a standardized interface for receiving notifications of security
events (SEv). The SEvs can be reported by security sensors implemented in other functional
clusters and adaptive applications. The security events are qualified and further handling of the
events is done by the IdsM module.

Extended addressing
format

A unique CAN identifier is assigned to each combination of N_SA and Mtype. A unique address
is filed to each combination of N_TA and N_TAtype in the first data byte of the CAN frame data
field. N_PCIl and N_Data are filed in the remaining bytes of the CAN frame data field.

Function Inhibition
Manager

The Function Inhibition Manager (FIM) stands for the evaluation and assignment of events to the
required actions for Software Components (e.g. inhibition of specific “monitoring functions”). The
DEM informs and updates the Function Inhibition Manager (FIM) upon changes of the event
status in order to stop or release functional entities according to assigned dependencies. An
interface to the functional entities is defined and supported by the Mode Manager. The FIM is not
part of the DEM.

Functional addressing

In the transport layer, functional addressing refers to N-SDU, of which parameter N_TAtype
(which is an extension to the N_TA parameter [1] used to encode the communication model) has
the value functional.

This means the N-SDU is used in 1 to n communications. Thus with the CAN protocol, functional
addressing will only be supported for Single Frame communication.

In terms of application, functional addressing is used by the external (or internal) tester if it does
not know the physical address of an ECU that should respond to a service request or if the
functionality of the ECU is implemented as a distributed server over several ECUs. When
functional addressing is used, the communication is a communication broadcast from the
external tester to one or more ECUs (1 to n communication).

Use cases are (for example) broadcasting messages, such as “ECUReset” or “Communication
Control”

OBD communication will always be performed as part of functional addressing.

Mixed addressing
format

A unigue CAN identifier is assigned to each combination of N_SA, N_TA, N_TAtype. N_AE is
placed in the first data byte of the CAN frame data field. N_PCIl and N_Data are placed in the
remaining bytes of the CAN frame data field.

Multiple connection

The CAN Transport Layer should manage several transport protocol communication sessions at
a time.

Normal addressing
format

A unique CAN identifier is assigned to each combination of N_SA, N_TA, N_TAtype and Mtype.
N_PCl and
N_Data are filed in the CAN frame data field.

Physical addressing

In the transport layer, physical addressing refers to N-SDU, of which parameter N_TAtype (which
is an extension of the N_TA parameter [1] used to encode the communication model) has the
value physical.

This means the N-SDU is used in 1 to 1 communication, thus physical addressing will be
supported for all types of network layer messages.

In terms of application, physical addressing is used by the external (or internal) tester if it knows
the physical address of an ECU that should respond to a service request. When physical
addressing is used, a point to point communication takes place (1 to 1 communication).

Use cases are (for example) messages, such as "ReadDataByldentifier” or "InputOutputControl
Byldentifier”

Single connection

The CAN Transport Layer will only manage one transport protocol communication session at a
time.

Connection channel

The CAN Transport Layer is handling resources used by multiple connections in order to save
RAM. When a connection becames active, the channel that is used by this connection will be
unavailable for other connections.

Connection

A transport protocol session, either is a transmission or a reception session on a N-SDU.

Table 2.4: Concepts of CAN Transport Layer

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] ISO 15765-2 — Road vehicles — Diagnostics on Controller Area Networks (CAN)
— Part2: Network layer services

[2] ISO 15765-4 — Diagnostics on controller area network (CAN) — Part 4: Require-
ments for emission-related systems (Release 2005 01-04)

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[5] Specification of PDU Router
AUTOSAR_CP_SWS_PDURouter

[6] Specification of Linklayer Sdu Routing Module
AUTOSAR_CP_SWS_LSduRouter

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on CAN
AUTOSAR_CP_RS_CAN

[9] ISO 11898-1:2015 — Road vehicles — Controller area network (CAN)

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules (see [4]),
which is also valid for CAN Transport Layer. Thus, the specification SWS BSW Gen-
eral [4] shall be considered as additional and required specification for CAN Transport
Layer.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The AUTOSAR architecture defines communication system specific transport layers
(CanTp, LinTp including Linlf, FlexRayTp). Thus the CAN Transport Layer only covers
CAN transport protocol specifics.

The CAN Transport Layer has an interface to a single underlying L-SDU Router module
and a single upper PDU Router module.

According to the AUTOSAR release plan, this CAN Transport Layer specification has
the following restriction:

« CAN Transport Layer runs only in an event triggered mode

4.2 Applicability in automotive domain

The CAN Transport Layer can be used for all domains whenever the CAN communica-
tion system is connected to the appropriate ECU.

AUTSSAR

5 Dependencies to other modules

This section sets out relations between the CanTp and other AUTOSAR basic software
modules. It contains short descriptions of some AUTOSAR basic concepts, configura-
tion information and services, which are required by the CanTp from other modules.

5.1 AUTOSAR architecture basic concepts

5.1.1 CAN Transport Layer connection(s)

In the AUTOSAR architecture final release, transport protocol facilities will be used to
transport both diagnostic (e.g. OBD and UDS protocols) and AUTOSAR COM I-PDUs.
Therefore, the CanTp module is able to deal with multiple connections simultaneously
(i.e. multiple segmentation sessions in parallel).

The maximum number of simultaneous connections is statically configured. This con-
figuration has an important impact on complexity and resource consumption (CPU,
ROM and RAM) of the code generated, because resources (e.g. Rx and Tx state ma-
chines, variables used to work on N-PCI data and so on) have to be reserved for each
simultaneous access.

To allow the user to choose which I-PDUs could be received (or sent) simultaneously,
each N-SDU identifier will be internally routed through a configured CanTp “connection
channel”. Since a “connection channel” is not accessible externally, all necessary infor-
mation (see Chapter 10.2) to transfer an N-SDU will be linked to the N-SDU identifier
(e.g. “connection channel” number, timeouts, addressing format, and so on).

Depending on the Meta Data configuration, an N-SDU acts either as a specific con-
nection with defined N_AI, or as a generic connection, where the N_TA, N_SA, and N_
AE vary at runtime, while N_TAtype, MType, and the addressing format are statically
defined.

5.1.2 CAN Transport Layer interactions

The figure below shows the interactions between CanTp, PduR and LSduR modules.

The CanTp’s upper interface offers the PduR module global access, to transmit and
receive data. This access is achieved by CAN N-SDU identifier (CAN NSduld). CAN
NSduld refers to a constant data structure which consists of attributes describing CAN
N-SDU. Each CAN N-SDU specific data structure may contain attributes such as: type
of N-SDU (Tx or Rx), its addressing format, L-SDU identifier of this message or other
attributes that are useful for implementation.

AUTSSAR

PduR PduR
CanTp CanTp

s N-PDU |-~ - »{[ol
rou [npou |

S

L-SduR L-SduR

Figure 5.1: CAN Transport Layer interactions

5.1.3 Processing mode

The AUTOSAR communication stack supports both polling and event triggering mode.
Therefore, each communication layer can receive information from its lower layer and
propagate information to its upper layer by different mechanisms.

In the case of the CAN Transport Layer, only the event triggering mode is supported.

5.1.4 Data consistency

To optimize the communication stack, AUTOSAR limits the CAN Transport Layer buffer-
ing capacity. Therefore, the CanTp copies N-SDU payload directly from the upper layer
(DCM, COM or PDU Router - in the case of 1:1 TP routing) to the CAN driver and vice-
versa. Thus to guarantee data consistency, the upper layer will observe the following
rules:

+ At transmission time, the N-SDU data payload will remain unchanged, from trans-
mit request until transmit confirmation has been received

« At reception time, the N-SDU data access will be locked, from start of reception
until the reception indication has been received.

5.1.5 Static configuration

At runtime the CAN Transport module must have all information required to manage
transport connection. Therefore, the following properties should be statically config-
ured:

* Number of CAN N-SDU
+ Unique identifier of each CAN N-SDU

AUTSSAR

» Communication direction of each CAN N-SDU (Tx or Rx)

» Addressing format of each connection (normal, extended, mixed 11bit, normal
fixed, or mixed 29 bit) and, depending on the addressing format, additionally:

— Normal: none
— Extended: N_TA

— Mixed 11 bit: N_AF

Normal fixed: N_TA, N_SA

Mixed 29 bit: N_TA, N_SA, N_AE

The static addressing information may be omitted for generic connections that use
N-SDUs with MetaData.

» Addressing format of each connection (normal, extended or mixed) and, in the
case of extended addressing format, the N_TA value or in case of mixed ad-
dressing format the N_AE value.

» Associated CAN L-SDU identifier of each CAN N-SDU identifier and if necessary
(multiple frame segmentation session) the CAN L-SDU identifier used to transmit
the CAN FC N-PDU

» Classic CAN frames and CAN FD frames

The configuration of the CAN Transport Layer can be performed during compilation or
post-build (See Chapter 10).

5.1.6 PDU Router services

The CAN Transport Layer uses callback functions of the PDU Router to copy trans-
mit data and to confirm transmission, to initiate reception, copy received data and to
indicate reception of a message:

* PduR_CanTpRxIndication

* PduR_CanTpStartOfReception
* PduR_CanTpCopyRxData

* PduR_CanTpCopyTxData

* PduR_CanTpTxConfirmation

For more information about these functions, refer to the PDU Router module specifica-
tion [5].

AUTSSAR

5.1.7 L-SDU Router services

The CAN Transport Layer uses the following services of the L-SDU Router module to
transmit CAN N-PDUs:

* LSduR_CanTpTransmit

For more information about this function, refer to the L-SDU Router module specifica-
tion [6].

5.2 File structure

5.2.1 Code file structure

For details refer to [4] Chapter 5.1.6 “Code file structure”.

5.2.2 Header file structure

AUTOSAR specifies that an ECU can be created from modules provided as object
code, source code (generated or not) and even mixed.

The decision to provide a module as object code or source code is based on a com-
promise between IP protection, test coverage, code efficiency and configurability at
system generation time. Thus depending on the configurability requirements of the
OEM, suppliers may deliver the CanTp module as object code, generated code or
source code.

5.2.3 Version check

[SWS_CanTp_00267] [Version number macros can be used for checking and reading
out the software version of a software module, during compile-time and run-time. |

5.2.4 Design Rules

For details refer to [4] Chapter 7.1.4 “Platform independency”, [4] Chapter 7.1.8
“Shared code” and [4] Chapter 7.1.9 “Global data”.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [7] and [8] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific

requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_Ids_00810]

Basic SW security events

[SWS_CanTp_00371] [SWS_CanTp_00372]
[SWS_CanTp_00373] [SWS_CanTp_00374]
[SWS_CanTp_00375] [SWS_CanTp_00376]
[SWS_CanTp_00377] [SWS_CanTp_00378]
[SWS_CanTp_00379] [SWS_CanTp_00380]
[SWS_CanTp_00381] [SWS_CanTp_00382]
[SWS_CanTp_00383]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_CanTp_00208]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_CanTp_00146]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_CanTp_00147]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_CanTp_00010]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_CanTp_00008]

[SRS_BSW_00353]

All integer type definitions of target
and compiler specific scope shall be
placed and organized in a single type
header

[SWS_CanTp_00002]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_CanTp_00208]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_CanTp_00164]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_CanTp_00161]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_CanTp_00208]

[SRS_BSW_00424]

BSW module main processing
functions shall not be allowed to enter
a wait state

[SWS_CanTp_00164]

[SRS_Can_01065]

The AUTOSAR CAN Transport Layer
shall be based on ISO 15765-2 and
15765-4 specifications

[SWS_CanTp_00033] [SWS_CanTp_00350]

[SRS_Can_01066]

The AUTOSAR CAN Transport Layer
shall be statically configurable to
support either single or multiple
connections in an optimizing way

[SWS_CanTp_00096] [SWS_CanTp_00120]
[SWS_CanTp_00121] [SWS_CanTp_00122]
[SWS_CanTp_00123] [SWS_CanTp_00124]

[SRS_Can_01068]

The CAN Transport Layer shall
identify each N-SDU with a unique

[SWS_CanTp_00035]

identifier.
\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Can_01069]

CAN address information and N-SDU
identifier mapping

[SWS_CanTp_00035]

[SRS_Can_01071]

The CAN Transport Layer shall
identify each N-PDU (also called
L-SDU) with a unique identifier

[SWS_CanTp_00035] [SWS_CanTp_00231]
[SWS_CanTp_00232]

[SRS_Can_01073]

The CAN Transport Layer shall be
statically configured to pad unused
bytes of PDU

[SWS_CanTp_00116] [SWS_CanTp_00344]
[SWS_CanTp_00345] [SWS_CanTp_00346]
[SWS_CanTp_00348] [SWS_CanTp_00351]

[SRS_Can_01074]

The Transport connection properties
shall be statically configured

[SWS_CanTp_00231] [SWS_CanTp_00232]

[SRS_Can_01075]

The CAN Transport Layer shall
implement an interface for
initialization

[SWS_CanTp_00030] [SWS_CanTp_00170]

[SRS_Can_01076]

The CAN Transport Layer services
shall not be operational before
initializing the module

[SWS_CanTp_00031]

[SRS_Can_01078]

The AUTOSAR CAN Transport Layer
shall support the ISO 15765-2
addressing formats

[SWS_CanTp_00035]

[SRS_Can_01079]

The CAN Transport Layer shall be
compliant with the CAN Interface
module notifications

[SWS_CanTp_00086]

[SRS_Can_01082]

Error handling

[SWS_CanTp_00057]

[SRS_Can_01086]

Data padding value of unused bytes

[SWS_CanTp_00059]

[SRS_Can_01163]

The AUTOSAR CAN Transport Layer
shall support classic CAN and CAN
FD communication as specified by
ISO 15765-2

[SWS_CanTp_00354]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

This section provides a description of the CAN Transport Layer functionality. It explains
the services provided to the upper and lower layers and the internal behavior of the
CAN Transport Layer.

The CanTp module offers services for segmentation, transmission with flow control,
and reassembly of messages. Its main purpose is to transmit and receive messages
that may or may not fit into a single CAN frame. Messages that do not fit into a single
CAN frame are segmented into multiple parts, such that each can be transmitted in a
single CAN frame.

While reading this document, it is necessary to bear in mind, that this module will
follow the recommendations ISO 15765-2 (OEM enhanced diagnostics [1]) and should
be able to fulfill ISO 15765-4 (Requirements for emissions-related systems [2]).

[SWS_CanTp_00033]

Upstream requirements: SRS_Can_01065
[If a recommendation of ISO 15765-2 is not explicitly excluded in the SWS, the CanTp
module shall follow this recommendation. |

For further descriptions of SF, FF, CF and FC frames, network layer timing parameters,
and further functionalities of CAN Transport Layer please refer to the ISO 15765-2
specification [1].

ISO 15765-4 is a particular case of ISO-15765-2. Therefore, the CAN Transport Layer
will be configurable in order to be able to adapt the module to all ISO 15765-4 use
cases (e.g. specific timing, padding configuration, addressing mode). See chapter 10,
Configuration specification, for detalils.

7.1 Services provided to upper layer

The service interface of the CanTp module can be divided into the following main
categories:

* Initialization and shutdown
« Communication services

The following paragraphs describe the functionality of each services category.

7.1.1 Initialization and shutdown

[SWS_CanTp_00027] [The CanTp module shall have two internal states, CANTP_OFF
and CANTP_ON. |

AUTSSAR

[SWS_CanTp_00168] [The CanTp module shall be in the CANTP_OFF state after
power up. |

[SWS_CanTp_00169] [In the state caANTP_OFF, the CanTp shall allow an update of
the postbuild configuration. |

[SWS_CanTp_00170]
Upstream requirements: SRS_Can_01075

[The CanTp module shall change to the internal state cANTP_ON when the CanTp has
been successfully initialized with CanTp_Init ().]

[SWS_CanTp_00238] [The CanTp module shall perform segmentation and reassem-
bly tasks only when the CanTp is in the CANTP_ON state. |

[SWS_CanTp_00030]

Upstream requirements: SRS_Can_01075
[The function canTp_1Init shall initialize all global variables of the module and sets
all transport protocol connections in a sub-state of CANTP_ON, in which neither seg-

mented transmission nor segmented reception are in progress (Rx thread in state
CANTP_RX_WAIT and Tx thread in state CANTP_TX_WATIT).]

[SWS_CanTp_00031]
Upstream requirements: SRS_Can_01076

[If development error detection for the CanTp module is enabled the CanTp module
shall raise an error (CANTP_E_UNINIT) when the PDU Router or the L-SDU Router
module tries to use any function (except CanTp_GetVersionInfo) before the func-
tion CanTp_Init has been called. |

[SWS_CanTp_00111] [If called when the CanTp module is in the global state
CANTP_ON, the function canTp_Init shall return the module to state Idle (state =
CANTP_ON, but neither transmission nor reception are in progress). |

[SWS_CanTp_00273] [The CanTp module shall loose all current connections if
CanTp_Init is called when CanTp module is in the global state CANTP_ON. |

[SWS_CanTp_00010]
Upstream requirements: SRS_BSW_00336

[The function cCanTp_shutdown shall stop the CanTp module properly. |

The following figure summarizes all of the above requirements:

AUTSSAR

stm CanTp Life Cycle
CanTp_lnit ()
. [with emor] CanTp_Shutdown()

CANTP_OFF

PowerDown >®
PowerDown
CanTp_lInit ()
[without error] CanTp_Shutdown ()
o CANTP_ON ™
[Rx Connection Channel]
CANTP_RX_WAIT Receive N-PDU CANTP_RX_PROCESSING
[no more N-PDU expected]
Init CanTp_Init ()
[Tx Connection Channel]
CANTP_TX_WAIT Transmit N-SDU /7~ CANTP_TX_PROCESSING
. [no more N-SDU to transmit]
Init
[Other Connection Channel]
- Based on the same substates: CANTP_Xx_WAIT and CANTP_Xx_PROCESSING,
- Based on the same transitions: Receive/transmit and no more N-PDU.

Figure 7.1: CAN Transport Layer life cycle

7.1.2 Transmit request

The transmit operation, CanTp_Transmit (), will allow upper layers to ask for data
transfer using CAN transport protocol facilities (segmentation, extended addressing
format and so on).

[SWS_CanTp_00177] [After the transmit request was accepted, the CanTp module

shall notify its upper layer if the N-SDU transfer is fully processed (successfully or
not). |

7.1.3 Transmit cancellation

The transmit cancellation feature allows the upper layer to cancel a transmission in
progress.

AUTSSAR

Use case: Cancel a diagnostic transmission due to the reception of another diagnostic
protocol with higher priority.

[SWS_CanTp_00242] [This feature shall be (de)activated by static configuration (pa-
rameter CanTpTc).

[SWS_CanTp_00274] [Transmit Cancellation is triggered by the call of CanTp_Can-

celTransmit ().]

[SWS_CanTp_00243] [After the call of the service CanTp_CancelTransmit (), the
transfer on this connection shall be aborted. |

Note: The Api PduR_CanTpTxConfirmation() shall be called after a transmit can-
cellation with value E_NOT_OK. (see also [SWS_CanTp_00255])

Note that if a transfer is in progress, that will generate a time-out error on the receiver
side.

7.2 Services provided to the lower layer

According to the AUTOSAR specification of the communication stack, the CAN Trans-
port Layer provides the following two callback functions to the L-SDU Router module:
CanTp_TxConfirmation () and CanTp_RxIndication ().

7.2.1 Transmit confirmation

The LSduR module shall call the transmit confirmation function to notify the CAN Trans-
port Layer that a CAN frame transmission, requested by the CanTp, has been per-
formed successfully or not. The L-PDU identifier is associated with the call in order to
identify the corresponding transmission.

[SWS_CanTp_00075] [When the transmit confirmation is not received after a maxi-
mum time (equal to N_As), the CanTp module shall abort the corresponding session.
The N-PDU remains unavailable to other concurrent sessions until the TxConfirma-
tion is received, successful or not. |

[SWS_CanTp_00076] [For confirmation calls, the CanTp module shall provide the
function cCanTp_TxConfirmation ().]

[SWS_CanTp_00355] [CanTp shall abort the corrensponding session, when
CanTp_TxConfirmation () is called with the result E_NOT_OK. |

AUTSSAR

7.2.2 Reception indication

The LSduR module shall call the reception indication function to notify the CanTp mod-
ule that a new CAN N-PDU frame (i.e. a transport protocol frame) has been received.

The reception indication can be performed in ISR context.

[SWS_CanTp_00078] [For reception indication, the CanTp module shall provide
CanTp_RxIndication().]

7.2.3 Pending Tx N-SDUs

In case that multiple Tx N-SDUs are being requested for transmission while the asso-
ciated channel is busy, the CanTp module will be able to assign a pending state (‘wait’
state) to the requested N-SDUs. They will be sent as soon as the associated channel
is free, in an order that is implementation defined (i.e FIFO, based on N-SDU id...).
This feature is enabled/disabled by the CanTpPendingTxNSduSupport parameter.

[SWS_CanTp_00384] Transmission Request Queue for TP Channels [If a con-
nection channel is assigned to multiple N-SDUs, then resources are shared between
different N-SDUs, and the CAN Transport Layer will mark the transmission N-SDUs
as pending, if no free connection channels are available, and if CanTpPendingTxNS-
dusSupport is enabled. |

Note: If a N-SDU is marked as pending, the CanTp module shall send it as soon as
there is a free associated connection channel.

[SWS_CanTp_00385] Transmission Request Queue for TP Channels [When
CanTp_Transmit is called for a N-SDU with MetaData and the connection chan-
nel is in use, the received MetaData of the N-SDU shall be stored until the connection
channel becomes available. |

[SWS_CanTp_00386] Transmission Request Queue for TP Channels [When the
connection channel becomes available, CanTp shall start transmitting the pending Tx
N-SDU and remove the pending state. |

[SWS_CanTp_00387] Transmission Request Queue for TP Channels [If CanTp-
PendingTxNSduSupport is enabled and the configured transmit connection channel
is in use (state CANTP_TX_PROCESSING), the CanTp module shall assign a pending
state to the new transmission requests linked to this channel. |

[SWS_CanTp_00388] Transmission Request Queue for TP Channels [If CanTp-
PendingTxNSduSupport is enabled, after assigning the pending state to a transmis-
sion request, the CanTp_Transmit function shall return E_OK. |

[SWS_CanTp_00389] Transmission Request Queue for TP Channels [If a con-
nection channel is assigned to multiple N-SDUs, then resources are shared between

AUTSSAR

different N-SDUs, and the CAN Transport Layer will reject transmission if no free con-
nection channels are available and if CanTpPendingTxNSduSupport is disabled. |

7.3 Internal behavior

The internal operation of the CAN Transport Layer provides basic mechanisms in order
to perform the main purpose of this module, which is to transfer messages in a single
CAN frame or in multiple CAN frames.

The entire behavior of the CAN Transport Layer will be event triggered, so that CanTp
can processes transfer of N-SDU (respectively L-SDU) coming from the PDU Router
(respectively the L-SDU Router module) directly.

7.3.1 N-SDU Reception

[SWS_CanTp_00079] [When receiving an SF or an FF N-PDU, the CanTp mod-
ule shall notify the upper layer (PDU Router) about this reception using the
PduR_CanTpStartOfReception function.]

Note: The upper layer will reserve and lock a buffer for reception of the N-SDU.

[SWS_CanTp_00329] [CanTp shall provide the content of the FF/SF to PduR using
the parameter TpSduInfoPtr of PAduR_CanTpStartOfReception (). |

[SWS_CanTp_00350]
Upstream requirements: SRS_Can_01065

[The received data link layer data length (Rx_D1) shall be derived from the first re-
ceived payload length of the CAN frame/PDU (CAN_DL) as follows:

* For cAN_DL values less than or equal to eight bytes the rRx_D1L value shall be
eight.

» For CAN_DL values greater than eight bytes the Rx_DL value equals the CAN_DL
value.

]

Note: ISO frame overview table:

AUTSSAR

N_PCI bytes
N_PDU name Byte #1
Byte #2 Byte #3 Byte #4 Byte #5 Byte #6
Bits 7—-4 | Bits 3-0
SingleFrame (SF)
(CAN_DL < 8)@ 0000 SF_DL
SingleFrame (SF)
(CAN_DL > 8)b 0000 0000 SF_DL
FirstFrame (FF)
(FF_DL <= 4095)2 0001 FF_DL
FirstFrame (FF)
(FF_DL > 4095)2 0001 0000 0000 0000 FF_DL
ConsecutiveFrame
(CF)a 0010 SN
FlowControl (FC)2 0011 FS BS STmin N/A N/A N/A
NOTE Shaded cells are not utilized for PCI information, but depending on the PDU, they might be utilized for
payload data.
@ CAN20o0rCANFD
b CANFD only

Figure 7.2: Summary of N_PCI bytes

[SWS_CanTp_00330] [When CanTp_RxIndication is called for a SF or FF N-PDU
with MetaData (indicating a generic connection), the CanTp module shall store the
addressing information contained in the Met aData of the PDU and use this information
for the initiation of the connection to the upper layer, for transmission of FC N-PDUs
and for identification of CF N-PDUs. The addressing information in the MetabData
depends on the addressing format:

* Normal, Extended, Mixed 11 bit: none

* Normal fixed, Mixed 29 bit: N_sa, N_TA

]

[SWS_CanTp_00331] [When calling PduR_CanTpStartOfReception() for a
generic connection (N-SDU with MetaData), the CanTp module shall forward the
extracted addressing information via the MetaData of the N-SDU. The addressing
information in the Met aData depends on the addressing format:

* Normal: none

Extended: N_TA

Mixed 11 bit: N_AE

Normal fixed: N_SA, N_TA

Mixed 29 bit: N_SA, N_TA, N_AE

AUTSSAR

[SWS_CanTp_00332] [When calling LSduR_CanTpTransmit() for an FC on a
generic connection (N-PDU with MetaData), the CanTp module shall provide the
stored addressing information via the MetaData of the N-PDU. The addressing in-
formation in the Met aData depends on the addressing format:

* Normal, Extended, Mixed 11 bit: none

» Normal fixed, Mixed 29 bit: N_SA (saved N_TA2), N_TA (saved N_SA)

]

[SWS_CanTp_00333] [When canTp_RxIndication is called for a CF on a generic
connection (N-PDU with MetaData), the CanTp module shall check the addressing
information contained in the MetaData of the N-PDU against the stored values from
the FF. |

[SWS_CanTp_00166] [At the reception of a FF or last CF of a block (except the last
CF of the message), the CanTp module shall start a time-out N_Br before calling
PduR_CanTpStartOfReception Ofr PAuR_CanTpCopyRxData. |

[SWS_CanTp_00080] [The available Rx buffer size is reported to the CanTp in the
output pointer parameter of the PduR_CanTpStartOfReception() service. The
available Rx buffer can be smaller than the expected N-SDU data length. |

Note: If the upper layer cannot make a buffer available because of an error (e.g. in
the gateway case it may indicate that the transport session to the destination network
has been broken) or a resource limitation (e.g. N-SDU length exceeds the maximum
buffer size of the upper layer), the PduR_CanTpStartOfReception() function re-
turns BUFREQ_FE_NOT_OK or BUFREQ_E_OVFL.

[SWS_CanTp_00081] [After the reception of a First Frame or Single Frame, if the
function PAuR_CanTpStartOfReception() returns BUFREQ_E_NOT_OK to the Can
Tp module, the CanTp module shall abort the reception of this N-SDU. No Flow Control
will be sent and PduR_CanTpRxIndication() will not be called in this case. |

[SWS_CanTp_00318] [After the reception of a First Frame, if the function
PduR_CanTpStartOfReception() returns BUFREQ_E_OVFL to the CanTp module,
the CanTp module shall send a Flow Control N-PDU with overflow status (FC (OVFLW))
and abort the N-SDU reception. |

[SWS_CanTp_00353] [After the reception of a Single Frame, if the function
PduR_CanTpStartOfReception() returns BUFREQ_E_OVFL to the CanTp module,
the CanTp module shall abort the N-SDU reception. |

[SWS_CanTp_00339] [After the reception of a First Frame or Single Frame, if the
function PduR_CanTpStartOfReception() returns BUFREQ_OK with a smaller avail-
able buffer size than needed for the already received data, the CanTp module shall
abort the reception of the N-SDU and call PduR_CanTpRxIndication() with the re-
Sult E_NOT_OK. |

AUTSSAR

[SWS_CanTp_00082] [After the reception of a First Frame, if the function
PduR_CanTpStartOfReception() returns BUFREQ_OK with a smaller available
buffer size than needed for the next block, the CanTp module shall start the timer
N_Br.|

[SWS_CanTp_00325] [If the function PduR_CanTpCopyRxData() called after recep-
tion of the last Consecutive Frame of a block returns BUFREQ_OK, but the remaining
buffer is not sufficient for the reception of the next block, the CanTp module shall start
the timer N_Br. |

[SWS_CanTp_00222] [While the timer N_Br is active, the CanTp module shall call
the service PduR_CanTpCopyRxData() with a data length 0 (zero) and NULL_PTR as
data buffer during each processing of the MainFunction.]

Note: ISO 15765-2 specification defines the following performance requirement: (N_
Br + N_Ar) < 0.9 * N_Bs timeout.

[SWS_CanTp_00341] [If the N_Br timer expires and the available buffer size is still
not big enough, the CanTp module shall send a new FC (WAIT) to suspend the N-SDU
reception and reload the N_Br timer. |

[SWS_CanTp_00223] [The CanTp module shall send a maximum of WFTmax con-
secutive FC (WAIT) N-PDU. If this number is reached, the CanTp module shall abort
the reception of this N-SDU (the receiver did not send any FC N-PDU, so the N_Bs
timer expires on the sender side and then the transmission is aborted) and a receiving
indication with E_NOT_OK occurs. |

[SWS_CanTp_00311] [In case of N_Ar timeout occurrence (no confirmation from
CAN driver for any of the FC frame sent) the CanTp module shall abort recep-
tion and notify the upper layer of this failure by calling the indication function
PduR_CanTpRxIndication() with the result E_NOT_OX. |

[SWS_CanTp_00224] [When the Rx buffer is large enough for the next block (directly
after the First Frame or the last Consecutive Frame of a block, or after repeated calls to
PduR_CanTpCopyRxData() according to [SWS_CanTp_00222]), the CanTp module
shall send a Flow Control N-PDU with ClearToSend status (FC (CTS)) and shall then
expect the reception of Consecutive Frame N-PDUs. |

[SWS_CanTp_00269] [After reception of each Consecutive Frame the CanTp module
shall call the PduR_CanTpCopyRxData() function with a PduInfo pointer containing
data buffer and data length:

- 6 or 7 bytes or less in case of the last CF for CAN 2.0 frames
- DLC-1 or DLC-2 bytes for CAN FD frames (see [SWS_CanTp_00351]).

The output pointer parameter provides CanTp with available Rx buffer size after data
have been copied. |

AUTSSAR

Note: For details refer to Figure 7.3.

[SWS_CanTp_00312] [The CanTp module shall start a time-out N_Cr at each indica-
tion of CF reception (except the last one in a block) and at each confirmation of a FC
transmission that initiate a CF transmission on the sender side (FC with FS=CTSs). |

[SWS_CanTp_00313] [In case of N_cCr timeout occurrence the CanTp module shall
abort reception and notify the upper layer of this failure by calling the indication function
PduR_CanTpRxIndication() with the result E_NOT_OX. |

[SWS_CanTp_00271] [If the PduR_CanTpCopyRxData() returns
BUFREQ_E_NOT_OK after reception of a Consecutive Frame in a block the Can
Tp shall abort the reception of N-SDU and notify the PduR module by calling the
PduR_CanTpRxIndication() with the result E_NOT_OK. |

[SWS_CanTp_00314] [The CanTp shall check the correctness of each sN received
during a segmented reception. In case of wrong sN received the CanTp module shall
abort reception and notify the upper layer of this failure by calling the indication function
PduR_CanTpRxIndication() with the result E_NOT_OX. |

[SWS_CanTp_00084] [When the transport reception session is completed (suc-
cessfully or not) the CanTp module shall call the upper layer notification service
PduR_CanTpRxIndication().|

[SWS_CanTp_00277] [With regard to FF N-PDU reception, the content of the Flow
Control N-PDU depends on the PduR_CanTpStartOfReception() service result. |

[SWS_CanTp_00064] [Furthermore, it should be noted that when receiving a
FF N-PDU, the Flow Control shall only be sent after having the result of the
PduR_CanTpStartOfReception() service. |

[SWS_CanTp_00278] [It is important to note that FC N-PDU will only be sent after
every block, composed of a number BS (Block Size) of consecutive frames. |

[SWS_CanTp_00067] [The CanTp shall use the same value for the BS and STmin
parameters on each FC sent during a segmented reception. Different values of these
parameters can be used on different N-SDUs reception. |

[SWS_CanTp_00342] [CanTp shall terminate the current reception connection when
LSduR_CanTpTransmit() returns E_NOT_OK when transmitting an FC. |

7.3.2 N-SDU Transmission

As described in chapter 7.1.2, the upper layer asks for the transmission of a N-SDU by
calling CanTp_Transmit (). The parameters of CanTp_Transmit () describe the
CAN NSduld and the full Tx N-SDU length to be sent .

AUTSSAR

[SWS_CanTp_00225] [For specific connections that do not use Metabata, the func-
tion CanTp_Transmit shall only use the full SduLength information and shall not
use the available N-SDU data buffer in order to prepare Single Frame or First Frame
PCI.]

[SWS_CanTp_00334] [When canTp_Transmit is called for an N-SDU with Meta-
Data, the CanTp module shall store the addressing information contained in the
MetaData of the N-SDU and use this information for transmission of SF, FF, and
CF N-PDUs and for identification of FC N-PDUs. The addressing information in the
MetaData depends on the addressing format:

* Normal: none
» Extended: N_TA

Mixed 11 bit: N_AE

Normal fixed: N_SA, N_TA

Mixed 29 bit: N_SA, N_TA, N_AE.

]

[SWS_CanTp_00335] [When calling LsduR_CanTpTransmit() for an SF, FF, or CF
of a generic connection (N-PDU with MetaData), the CanTp module shall provide the
stored addressing information via MetaData of the N-PDU. The addressing informa-
tion in the MetaData depends on the addressing format:

* Normal, Extended, Mixed 11 bit: none

* Normal fixed, Mixed 29 bit: N_SA, N_TA.
]

[SWS_CanTp_00336] [When CanTp_RxIndication is called foran FC on a generic
connection (N-PDU with MetaData), the CanTp module shall check the addressing
information contained in the MetaData against the stored values. |

[SWS_CanTp_00167] [After a transmission request from upper layer, the CanTp mod-
ule shall start time-out N_Cs before the call of PduR_CanTpCopyTxData. If no data is
available before the timer elapsed, the CanTp module shall abort the communication. |

[SWS_CanTp_00086]
Upstream requirements: SRS_Can_01079
[The CanTp module shall call the PduR_CanTpCopyTxData service for each seg-

ment that is sent (SF, FF and CF). The upper layer copy the transmit data on the
PduInfoType structure. |

[SWS_CanTp_00272] [The APl PduR_CanTpCopyTxData() contains a parameter
used for the recovery mechanism - retry’. Because ISO 15765-2 does not support

AUTSSAR

such a mechanism, the CAN Transport Layer does not implement any kind of recovery.
Thus, the parameter is always set to NULL pointer. |

If the upper layer cannot make Tx data available because of an error (e.g. in gateway
case it may indicate that the transport session from the source network was termi-
nated), the PduR_CanTpCopyTxData() function returns BUFREQ_FE_NOT_OK.

[SWS_CanTp_00087] [If PduR_CanTpCopyTxData() returns BUFREQ_E_NOT_OK,
the CanTp module shall abort the transmit request and notify the upper layer of this
failure by calling the callback function PduR_CanTpTxConfirmation() with the re-
Sult E_NOT_OK. |

Note: If upper layer temporarily has no Tx buffer available, the
PduR_CanTpCopyTxData() function returns BUFREQ_FE_BUSY.

[SWS_CanTp_00184] [If the PduR_CanTpCopyTxData() function returns
BUFREQ_E_BUSY, the CanTp module shall later (implementation specific) retry
to copy the data. |

Note: If no data is available before the expiration of the N_cCs timer (ISO 15765-2
specification defines the following performance requirement: (N_Cs + N_As) < 0.9*N_
Cr timeout), the CanTp module shall abort this transmission session.

[SWS_CanTp_00280] [If data is not available within N_Cs timeout the CanTp
module shall notify the upper layer of this failure by calling the callback function
PduR_CanTpTxConfirmation with the result E_NOT_OX. |

[SWS_CanTp_00089] [When Tx data is available, the CanTp module shall resume
the transmission of the N-SDU. |

[SWS_CanTp_00310] [In case of N_As timeout occurrence (no confirmation from
CAN driver) the CanTp module shall notify the upper layer by calling the callback func-
tion PAduR_CanTpTxConfirmation() with the result E_NOT_OXK. |

[SWS_CanTp_00309] [If a FC frame is received with the Fs set to ovrFLw the Can
Tp module shall abort the transmit request and notify the upper layer by calling the
callback function PduR_CanTpTxConfirmation() with the result E_NOT_OX. |

[SWS_CanTp_00317] [If a FC frame is received with an invalid s the CanTp module
shall abort the transmission of this message and notify the upper layer by calling the
callback function PduR_CanTpTxConfirmation() with the result E_NOT_OX. |

[SWS_CanTp_00315] [The CanTp module shall start a timeout observation for N_Bs
time at confirmation of the FF transmission, last CF of a block transmission and at each
indication of FC with Fs=wT (i.e. time until reception of the next FC). |

AUTSSAR

[SWS_CanTp_00316] [In case of N_Bs timeout occurrence the CanTp module shall
abort transmission of this message and notify the upper layer by calling the callback
function PduR_CanTpTxConfirmation() with the result E_NOT_OK. |

[SWS_CanTp_00090] [When the transport transmission session is successfully
completed, the CanTp module shall call a notification service of the upper layer,
PduR_CanTpTxConfirmation(), with the result E_OK. |

[SWS_CanTp_00343] [CanTp shall terminate the current transmission connection
when LSduR_CanTpTransmit() returns E_NOT_OK when transmitting an SF, FF or
CF.|

7.3.3 Buffer strategy

Because CanTp has no buffering capability, the N-SDU payload, which is to be trans-
mitted, is not copied internally and the N-PDU received is not reassembled internally.

The CAN Transport Layer works directly on the memory area of the upper layers (e.g.
PduR, DCM, or COM). To access these memory areas, the CAN Transport Layer uses
the PduR_CanTpCopyTxData() or PAduR_CanTpCopyRxData() functions.

Thus, to guarantee data consistency, the upper layer should lock this memory area
until an indication occurs.

When a transmit buffer is locked, the upper layer must not write data inside the buffer
area.

When a receiving buffer is locked the CAN Transport Layer does not guarantee data
consistency of the buffer. The upper layer should neither read nor write data in the
buffer area.

sm Buffer lock -~

Transmit Buffer Receiving Buffer

: LOCK : : LOCK :

CanTp_Transmit() call of PduR_CanTpTxConfirmation PduR_CanTpStartOfReception
retun = E_OK return = BUFREQ_OK

: UNLOCK : : UNLOCK :

call of PduR_CanTpRxIndication

Figure 7.3: Tx and Rx Buffer locking

It is assumed that upper layer module has locked the buffer when it returns a status
BUFREQ_OK t0 @ PduR_CanTpStartOfReception() call or when CanTp_Transmit

AUTSSAR

() returns E_OK and shall keep the buffer locked until a confirmation or indication (
PduR_CanTpTxConfirmation() or PduR_CanTpRxIndication() call) occurs.

The following figure provides an example, to summarize the process of sending a
frame, with a length of 50 bytes utilizing CAN 2.0 frames.

1 CanTp_Transmit (id, *(datél' length=50), TxCnt)

PduR_CanTpCopyTxData (id,i*(*(buf, length)), state, *TxCnt) D

'
ALETTTO EO
i

e ———— Z> Start sending data. D

N_Cs

1
1
1
1
'
1
| :
PduR_CanTpCopyTxData (id, *[*(buf, length)), state, *TxCnt) "r

Confirmation <__<

PduR_CanTpTxConfirm:etlion (id, OK) G

T e S S S R SIS Y

Figure 7.4: Example of transmit process

—

: The PduR asks for the transmission of 50 data bytes;
2: The CanTp asks the PduR for the payload data; the CanTp send the First Frame;

3: The CanTp send the rest of payload data as sequences of Consecutive Frames; 6
or 7 payload data bytes are copied by the upper layer on each CF;

4: The CanTp confirms transmission of the payload data.

The next figure is an example of an N-SDU receiving 49 bytes; the upper layer reports
25 bytes as available Rx buffer.

AUTSSAR

LSduR CanTp PduR

CanTp_RxIndication (id, *(data, length))

1
\ PduR_CanTpStartOfReception (id, length=49, *RemainingRxBuff)

Canlf LSduR_CanlfRxIndication (id, *(data, length))

Remaining bytes
received)
frame and in the
length in the SDU available
buffer
FF / 6 bytes 43 19
i& CF /7 bytes 36 12
CF /7 bytes 29 5
* No receiving, waiting for available buffer. No buffer
* CF /7 bytes 22 18 ! 6
PduR_CanTpCopyRxData (id, *(NULL_PTR, 0), *RemainingRxBuff)
CF /7 bytes 15 11
* No receiving, waiting for available buffer. No buffer
Zgﬂ CF /7 bytes 8 18 7
CF /7 bytes 1 11
* CF /1 byte 0 10
%k FlowControl, CTS with BS=x PduR_CanTpRxIndication (id, OK)
* FlowControl, Wait \ 8

Figure 7.5: Example of receiving process

1: The LSduR notifies a new reception with CanTp_RxIndication (). The CanTp
forwards this notification to the PduR;

2: The PduR returns an available buffer size of 25 bytes, CanTp sends a FlowControl
CTS to the originator;

3: The CanTp provides the data of each received frame to the PduR and monitors the
remaining buffer size. After the second consecutive frame, the remaining buffer size is
not enough for the next block (two Consecutive Frames);

4: The CanTp asks the PduR for the remaining buffer size by calling
PduR_CanTpCopyRxData() with 0 as data length and NULL_PTR as data, and sends
a FlowControl Wait to the originator. This is done until sufficient buffer for the next block
is available;

5: When the buffer size is finally sufficient for the next block, the CanTp will send a
FlowControl CTS to the originator and continues the reception of the next Consecutive
Frames block;

AUTSSAR

6: After copying the last consecutive frame of the block, the remaining buffer is too
low for the next block, so CanTp again sends wait frames and monitors the remaining
buffer size;

7: When the buffer for the last block is available, CanTp will continue the reception;

8: The CanTp informs the PduR of the end of reception by a call to
PduR_CanTpRxIndication().

7.3.4 Protocol parameter setting services

[SWS_CanTp_00091] [The CanTp module shall support optional primitives (proposed
in ISO 15765-2 specification) for the dynamic setting of some transport protocol internal
parameters (STmin and BS) by application.

The Bs value is only a maximum value. For reasons of buffer length, the CAN Transport
Layer can adapt the Bs value within the limit of the configured maximum value. |

7.3.5 Tx and Rx data flow

The following figures show examples of an un-segmented message transmission and
a segmented one.

Sender Receiver

\

Single frame

Figure 7.6: Example of single part message

AUTSSAR

Sender Receiver

_H_h\
First frame

‘_____‘__*——-_‘

Flow Conftrel frame

e

Consecutive frame

1_‘_\

Consecutive frame

Consecutive frame

Flow Conftrel frame

|
—______———m—‘

Consecutive frame

I

Consecutive frame

Figure 7.7: Example of multiple parts message

Flow control is used to adjust the sender to the capabilities of the receiver. The main
usage of this transport protocol is peer-to-peer communication (i.e. 1 to 1 communica-
tion - physical addressing [1]).

[SWS_CanTp_00092] [The CanTp module shall provide 1 to n communication (i.e.
functional addressing [1]), in the form of functionality to SF N-PDUs (and only SF N-
SDU). |

The configuration tool shall check whether it is only SF N-PDUs that have been config-
ured with a functional addressing property.

[SWS_CanTp_00093] [If a multiple segmented session occurs (on both receiver and
sender side) with a handle whose communication type is functional, the CanTp module
shall reject the request and report the runtime error code CANTP_E_INVALID_TATYPE
to the Default Error Tracer. |

7.3.6 Relationship between CAN NSduld and CAN LSduld

This chapter describes the connection that exists between CAN NSduld and CAN LSdu
Id, in order to make transmission and reception of transport protocol data units possi-
ble.

[SWS_CanTp_00035]
Upstream requirements: SRS_Can_01068, SRS _Can_01069, SRS_Can_01071, SRS_Can_-
01078
[A CAN NSduld shall only be linked to one CAN LSduld that is used to transmit SF, FF,
FC and CF frames. |

AUTSSAR

[SWS_CanTp_00281] [However, if the message is configured to use an extended or a
mixed addressing format, the CanTp module must fill the first byte of each transmitted
segment (SF, FF and CF) with the N_TA (in case of extended addressing) or N_AE (in
case of mixed addressing) value. Therefore a CAN NSduld may also be related to a
N_TA or N_AE value. |

[SWS_CanTp_00282] [FC protocol data units give receivers the possibility of con-
trolling senders’ data flow by authorizing or delaying transmission of subsequent CF
N-PDUs. |

[SWS_CanTp_00283] [For extended addressing format, the first data byte of the FC
also contains the N_Ta value or a unique combination of N_TA and N_TAtype value.
For mixed addressing format, the first data byte of the FC contains the N_AE value. |

[SWS_CanTp_00094] [Thus the CAN LSduld of a FC frame combined with its N_TA
value (e.g. the N_AT) or with N_AE value shall only identify one CAN NSduld. |

[SWS_CanTp_00284] [In the reception direction, the first data byte value of each (SF,
FF or CF) transport protocol data unit will be used to determine the relevant N-SDU. |

[SWS_CanTp_00095] [Therefore, in extended addressing N-PDU reception, the Can
Tp module shall extract the N_Ta value to establish the related N-SDU. The same
process shall be applied for mixed addressing mode in relation with N_AE value. |

The following figure summarizes these discussions.

cd Data Model .

N-SDU NSduld N_AI

L-SDU LSduld

il

FC SF FF CF

Constraint:
- SF, FF and CF use the same LSduld
- FC uses a different LSduld

Figure 7.8: Possible links between NSduld and LSduld

AUTSSAR

7.3.7 Concurrent connection

The CAN Transport Layer is able to manage several connections simultaneously (e.g.
a UDS and an OBD request can be received at the same time).

[SWS_CanTp_00096]
Upstream requirements: SRS_Can_01066

[The CanTp module shall support several connections simultaneously. |

[SWS_CanTp_00120]
Upstream requirements: SRS_Can_01066

[It shall be possible to configure concurrent connections in the CanTp module. |

[SWS_CanTp_00285] [The connection channels are only destined for CAN TP inter-
nal use, so they are not accessible externally. |

[SWS_CanTp_00286] [All the necessary information (Channel number, Timing pa-
rameter . ..) is configured inside the CAN Transport Layer module. |

[SWS_CanTp_00121]
Upstream requirements: SRS_Can_01066

[Each N-SDU is statically linked to one connection channel. This connection channel
represents an internal path, for the transmission or receiving of the N-SDU. A connec-
tion channel is attached to one or more N-SDU. |

[SWS_CanTp_00122]
Upstream requirements: SRS_Can_01066

[Each connection channel is independent of the other connection channels. This
means that a connection channel uses its own resources, such as internal buffer, timer,
or state machine. |

[SWS_CanTp_00190] [The CanTp module shall route the N-SDU through the cor-
rectly configured connection channel. |

[SWS_CanTp_00287] [The CanTp module shall not accept the receiving or the trans-
mission of N-SDU with the same identifier in parallel, because otherwise the received
frames cannot be assigned to the correct connection. When only specific connections
(without MetaData) are used, this requirement is enforced by the configuration, be-
cause each N-SDU is linked to only one connection channel. |

If a user wants to dedicate a specific connection channel to only one N-SDU, they
should assign this connection channel to one N-SDU only during the configuration
process.

AUTSSAR

[SWS_CanTp_00288] [If a connection channel is assigned to multiple N-SDUs, then
resources are shared between different N-SDUs, and the CAN Transport Layer will
abort receiving if no free connection channels are available. |

[SWS_CanTp_00289] [The number of connection channels is not directly config-
urable. It will be determined by the configuration tools during the configuration process,
by analyzing the N-SDU/Channel routing table. |

[SWS_CanTp_00123]
Upstream requirements: SRS_Can_01066

[If CanTpPendingTxNSduSupport is disabled and the configured transmit connec-
tion channel is in use (state CANTP_TX_PROCESSING), the CanTp module shall re-
ject new transmission requests linked to this channel. To reject a transmission, Can
Tp returns E_NOT_OK when the upper layer asks for a transmission with the CanTp_
Transmit () function. |

[SWS_CanTp_00124]
Upstream requirements: SRS_Can_01066

[When an SF or FF N-PDU without MetaData is received, and the corre-
sponding connection channel is currently receiving the same connection (state
CANTP_RX_PROCESSING, same N_AT), the CanTp module shall abort the reception
in progress and shall process the received frame as the start of a new reception.

When an SF or FF N-PDU without MetaData is received for another connection (dif-
ferent N_AT) on an active connection channel, the SF or FF shall be ignored. |

[SWS_CanTp_00337] [When an SF or FF N-PDU with MetaData (indicating a
generic connection) is received, and the corresponding connection channel is currently
receiving, the SF or FF shall be ignored. |

[SWS_CanTp_00248] [When a Tx N-PDU is used by two or more different connec-
tions on different channels, access to this N-PDU shall be serialized by using the Tx-
Confirmation. An Rx N-PDU can only be used on two or more different connection
channels if extended or mixed addressing is used in relation with this N-PDU or when
it has MetaData (and thus belongs to a generic connection). |

Note: CAN FD and CAN frames will be mapped to different PDUs by LSduR depending
on the frame format (CAN FD or CAN 2.0). Therefore, it is possible to distinguish
between CAN FD and classic CAN communication.

7.3.8 N-PDU padding

To guarantee complete compatibility with all upper layer requirements concerning the
frame data length (e.g. OBD requires data length to always be set to 8 bytes, however
UDS does not), the padding activation is configurable at pre-compile time per N-SDU

AUTSSAR

by using either CanTpRxPaddingActivation fora Rx N-SDU or CanTpTxPaddin-
gActivation fora Tx N-SDU.

[SWS_CanTp_00116]
Upstream requirements: SRS_Can_01073

[In both padding and no padding modes, the CanTp module shall only transfer used
data bytes to the upper layer. |

[SWS_CanTp_00059]
Upstream requirements: SRS_Can_01086

[The value used for padding bytes is configurable via configuration parameter
CANTP_PADDING_BYTE (see CanTpPaddingByte).]

[SWS_CanTp_00344]
Upstream requirements: SRS_Can_01073

[If frames with a payload <= 8 (either CAN 2.0 frames or small CAN FD frames) are
used for a Rx N-SDU and canTpRxPaddingActivation is equal to CANTP_ON, then
CanTp shall only accept SF Rx N-PDUs or last CF Rx N-PDUs, belonging to that N-
SDU, with a length of eight bytes (i.e. PdulnfoPtr.SduLength = 8). |

[SWS_CanTp_00345]
Upstream requirements: SRS_Can_01073

[If frames with a payload <= 8 (either CAN 2.0 frames or small CAN FD frames) are
used for a Rx N-SDU and canTpRxPaddingActivation is equal to CANTP_ON, then
CanTp receives by means of CanTp_RxIndication () callan SF Rx N-PDU belong-
ing to that N-SDU, with a length smaller than eight bytes (i.e. PdulnfoPtr.SduLength <
8), CanTp shall reject the reception. The runtime error code CANTP_E_PADDING shall
be reported to the Default Error Tracer. |

[SWS_CanTp_00346]
Upstream requirements: SRS_Can_01073

[If frames with a payload <= 8 (either CAN 2.0 frames or small CAN FD frames) are
used for a Rx N-SDU and CanTpRxPaddingActivation is equal to CANTP_ON,
and CanTp receives by means of CanTp_RxIndication () call a last CF Rx N-
PDU belonging to that N-SDU, with a length smaller than eight bytes (i.e. Pduln-
foPtr. SduLength != 8), CanTp shall abort the ongoing reception by calling
PduR_CanTpRxIndication() with the result E_NOT_OK. The runtime error code
CANTP_E_PADDING shall be reported to the Default Error Tracer. |

[SWS_CanTp_00347] [If CanTpRxPaddingActivation is equal to CANTP_ON for
an Rx N-SDU, the CanTp module shall transmit FC N-PDUs with a length of eight
bytes. Unused bytes in N-PDU shall be updated with CANTP_PADDING_BYTE (see
CanTpPaddingByte).]

AUTSSAR

[SWS_CanTp_00348]
Upstream requirements: SRS_Can_01073

[If frames with a payload <= 8 (either CAN 2.0 frames or small CAN FD frames) are
used for a Tx N-SDU and if CcanTpTxPaddingActivation is equal to CANTP_ON,
CanTp shall transmit by means of LSduR_CanTpTransmit() call, SF Tx N-PDU
or last CF Tx N-PDU that belongs to that Tx N-SDU with the length of eight
bytes(i.e. PdulnfoPtr.SduLength = 8). Unused bytes in N-PDU shall be updated with
CANTP_PADDING_BYTE (See CanTpPaddingByte).]

[SWS_CanTp_00349] [If CanTpTxPaddingActivation is equal to CANTP_ON for
a Tx N-SDU, and if a FC N-PDU is received for that Tx N-SDU on a ongoing trans-
mission, by means of CanTp_RxIndication () call, and the length of this FC is
smaller than eight bytes (i.e. PdulnfoPtr.SduLength <8) the CanTp module shall abort
the transmission session by calling PduR_CanTpTxConfirmation() with the result
E_NOT_OK. The runtime error code CANTP_E_PADDING shall be reported to the De-
fault Error Tracer. |

[SWS_CanTp_00351]
Upstream requirements: SRS_Can_01073

[If the data length which shall be transmitted via LSduR_CanTpTransmit() does not
match possible DLC values (0..8, 12, 16, 20, 24, 32, 48, or 64), CanTp shall use the
next higher valid DLC for transmission with initialization of unused bytes to the value of
CANTP_PADDING_BYTE (see CanTpPaddingByte).]

Rationale: The ISO 11898-1:2015 [9] DLC values from 9 to 15 are assigned to non-
linear discrete values for CAN frame payload length up to 64 byte. To prevent the
transmission of uninitialized data the padding of CAN frame data is mandatory for DLC
values greater than eight when the length of the N_PDU size to be transmitted is not
equal to one of the discrete length values defined in the [9] DLC table. For DLC values
from 9 to 15 only the mandatory padding should be used.

The following picture represents an ISO frame:

P

11129 CAN 2.0/
bits CANFD | +
K_H KJH K_H A
' B
TX CAN Frame CAN ID Format DLC D1 D2 D3 D4 ... | Dn2z | Dna Dn
N
N AI allowed resulting CAN 2.0 | CAN FD
DLC CAN_DL (n) allowed | allowed
/
N TA, N SA, N TAtype TX_DL=8 2-8 2-8 yes yes
2-8,12, 16, 20,
TX_DL>8 2-15 24, 32, 48, 64 no yes

S

Flgure 7.9: ISO frame construction

AUTSSAR

7.3.9 Handling of unexpected N-PDU arrival

The behavior of the CAN Transport Layer on unexpected N-PDU arrival is greatly de-
pendent on the communication direction type of the processing N-SDU.

[SWS_CanTp_00057]
Upstream requirements: SRS_Can_01082
[If unexpected frames are received, the CanTp module shall behave according to the

table below. This table specifies the N-PDU handling considering the current CanTp
internal status (CanTp status). |

It must be understood, that the received N-PDU contains the same address information
(N_AT) as the reception or transmission, which may be in progress at the time the N_

PDU is received.

CanTp Reception of
status SF N-PDU FF N-PDU CF N-PDU FC N-PDU Unknown
N-PDU
Segmented If areceptionisin | If areceptionisin | If areceptionisin | If awaited, Ignore
Transmit progress process | progress process | progress process | process the FC
it according to it according to it according to N-PDU,
in the cell below, the cell below, the cell below, otherwise ignore
progress otherwise otherwise otherwise ignore it.
process the SF process the FF it.
N-PDU as the N-PDU as the
start of a new start of a new
reception reception
Segmented Terminate the Terminate the Process the CF If a transmission Ignore
Recei current reception, | current reception, N-PDU in the is in progress
eceive : 4
report an report an on-going process it
in indication, with indication, with reception and according to the
progress parameter Result | parameter Result | perform the cell above,
setto E_NOT_OK, | setto E_NOT_OK, | required checks otherwise ignore
to the upper to the upper (e.g. SN in right it.
layer, and layer, and order)
process the SF process the FF
N-PDU as the N-PDU as the
start of a new start of a new
reception reception
Idlet Process the SF Process the FF Ignore Ignore Ignore
N-PDU as the N-PDU as the
start of a new start of a new
reception reception

Table 1: Handling of N-PDU arrivals

7.4 Error Classification

This section describes how the CanTp module has to manage the several error classes
that may occur during the life cycle of this basic software.

'Idle = CANTP_ON.CANTP_RX_WATIT and CANTP_ON.CANTP_TX_ WAIT

AUTSSAR

[SWS_CanTp_00008]
Upstream requirements: SRS_BSW_00339

[On errors and exceptions, the CanTp module shall not modify its current module state
(see Figure 3: CAN Transport Layer life cycle) but shall simply report the error event. |

[SWS_CanTp_00291] [In case of production error, the Diagnostic Event Manager

module (via the Function Inhibition Manager) will perform the appropriate action (e.g.
status modification of the calling module). |

7.4.1 Development Errors

[SWS_CanTp_00293] Definition of development errors in module CanTp |

Type of error Related error code Error value
API service called with wrong parameter(s): When | CANTP_E_PARAM_CONFIG 0x01
CanTp_ChangeParameter is called with invalid

value.

API service called with wrong parameter(s): When | CANTP_E_PARAM_ID 0x02

CanTp_ChangeParameter or CanTp_Read
Parameter is called with invalid parameter ID.

API service called with a NULL pointer. CANTP_E_PARAM_POINTER 0x03
Module initialization has failed, e.g. CanTp_Init() CANTP_E_INIT_FAILED 0x04
called with an invalid pointer in postbuild.

API service used without module initialization : On | CANTP_E_UNINIT 0x20

any API call except CanTp_Init(), CanTp_Get
VersionInfo() and CanTp_MainFunction() if CanTp
is in state CANTP_OFF

Invalid Transmit PDU identifier (e.g. a service is CANTP_E_INVALID_TX_ID 0x30
called with an inexistent Tx PDU identifier)
Invalid Receive PDU identifier (e.g. a service is CANTP_E_INVALID_RX_ID 0x40

called with an inexistent Rx PDU identifier)

7.4.2 Runtime Errors

[SWS_CanTp_00352] Definition of runtime errors in module CanTp |

Type of error Related error code Error value
PDU received with a length smaller than 8 bytes. CANTP_E_PADDING 0x70

(i.e. PdulnfoPtr.SduLength < 8)

CanTp_Transmit() is called for a configured Tx CANTP_E_INVALID_TATYPE 0x90

I-Pdu with functional addressing and the length
parameter indicates, that the message can not be
sent with a SF

Requested operation is not supported - a cancel CANTP_E_OPER_NOT_SUPPORTED 0xA0
transmission/reception request for an N-SDU that
it is not on transmission/reception process

\Y

AUTSSAR

JAN
Type of error Related error code Error value
Event reported in case of an implementation CANTP_E_COM 0xB0O
specific error other than a protocol timeout error
during a reception or a transmission
Event reported in case of a protocol timeout error CANTP_E_RX_COM 0xCO0
during reception
Event reported in case of a protocol timeout error CANTP_E_TX_COM 0xD0
during transmission

]

[SWS_CanTp_00229] [If the task was aborted due to As, Bs, Cs, Ar, Br, Cr timeout,
the CanTp module shall raise the development error CANTP_E_RX_COM (in case of a
reception operation) or CANTP_E_TX_COM (in case of a transmission operation). If the
task was aborted due to any other protocol error, the CanTp module shall raise the

runtime error code CANTP_E_COM to the Default Error Tracer. |

7.4.3 Production Errors

There are no production errors.

7.4.4 Extended Production Errors

[SWS_CanTp_00361] |

Error Name: CANTP_E_CANTPNAS_TIMEOUT_OCCURRED
Short Description: A N_As timeout is detected
Long Description: CanTp shall report a CANTP_E_CANTPNAS_TIMEOUT_

OCCURRED Extended Production Error to DEM when a N_As
timeout is detected.

Detection Criteria: Fail N_As timer expired
Pass CanTp_Init function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event

AUTSSAR

[SWS_CanTp_00362] |

Error Name:

CANTP_E_CANTPNAR_TIMEOUT_OCCURRED

Short Description:

A N_Ar timeout is detected

Long Description:

CanTp shall report a CANTP_E_CANTPNAR_TIMEOUT_
OCCURRED Extended Production Error to DEM when a N_Ar
timeout is detected.

Detection Criteria: Fail N_Ar timer expired
Pass CanTp_Init function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
]

[SWS_CanTp_00363] |

Error Name:

CANTP_E_CANTPNBS_TIMEOUT_OCCURRED

Short Description:

A N_Bs timeout is detected

Long Description:

CanTp shall report a CANTP_E_CANTPNBS_TIMEOUT_
OCCURRED Extended Production Error to DEM when a N_Bs
timeout is detected.

Detection Criteria: Fail N_Bs timer expired
Pass CanTp_Init function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
]

[SWS_CanTp_00364] |

Error Name:

CANTP_E_CANTPNBR_TIMEOUT_OCCURRED

Short Description:

A N_Br timeout is detected

Long Description:

CanTp shall report a CANTP_E_CANTPNBR_TIMEOUT_
OCCURRED Extended Production Error to DEM when a N_Br
timeout is detected.

Detection Criteria:

Fail N_Br timer expired

Pass CanTp_Init function call

Secondary
Parameters:

The condition under which the FAIL and/or PASS detection is
active: None

Time Required:

Not applicable

V

AUTSSAR

A
| Monitor Frequency: | on event
]
[SWS_CanTp_00365] |
Error Name: CANTP_E_CANTPNCS_TIMEOUT_OCCURRED
Short Description: A N_Cs timeout is detected
Long Description: CanTp shall report a CANTP_E_CANTPNCS_TIMEOUT_

OCCURRED Extended Production Error to DEM when a N_Cs
timeout is detected.

Detection Criteria: Fail N_Cs timer expired
Pass CanTp_Init function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
]
[SWS_CanTp_00366] |
Error Name: CANTP_E_CANTPNCR_TIMEOUT_OCCURRED
Short Description: A N_Cr timeout is detected
Long Description: CanTp shall report a CANTP_E_CANTPNCR_TIMEOUT_

OCCURRED Extended Production Error to DEM whena N_Cr
timeout is detected.

Detection Criteria: Fail N_Cr timer expired
Pass CanTp_Init function call
Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
]
[SWS_CanTp_00367] |
Error Name: CANTP_E_SWAPPED_CONSECUTIVE_FRAMES_RECEIVED
Short Description: A swapped Consecutive Frame is received
Long Description: CanTp shall report a CANTP_E_SWAPPED_CONSECUTIVE_

FRAMES_ RECEIVED Extended Production Error to DEM when
swapped Consecutive Frames are received.

Y%

AUTSSAR

A
Detection Criteria: Fail Swapped Consecutive Frames are received
Pass CanTp_Init function call

Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
]

[SWS_CanTp_00368] |

Error Name:

CANTP_E_DROPPED_CONSECUTIVE_FRAMES_DETECTED

Short Description:

Missing Consecutive Frame is detected

Long Description:

CanTp shall report a CANTP_E_DROPPED_CONSECUTIVE_
FRAMES_DETECTED Extended Production Error to DEM when
missing Consecutive Frames are detected.

Detection Criteria:

Fail Missing Consecutive Frame is detected

Pass CanTp_Init function call

Secondary The condition under which the FAIL and/or PASS detection is
Parameters: active: None
Time Required: Not applicable
Monitor Frequency: on event
]

[SWS_CanTp_00369] |

Error Name:

CANTP_E_FC_OVERFLOW_RECEIVED

Short Description:

Flow Control with status Overflow is received

Long Description:

CanTp shall report a CANTP_E_FC_OVERFLOW_RECEIVED
Extended Production Error to DEM when Flow Control with
status Overflow is received.

Detection Criteria:

Fail Flow Control with status Overflow is received

Pass CanTp_Init function call

Secondary
Parameters:

The condition under which the FAIL and/or PASS detection is
active: None

Time Required:

Not applicable

Monitor Frequency:

on event

AUTSSAR

[SWS_CanTp_00370] |

Error Name:

CANTP_E_FC_OVERFLOW_TRANSMITTED

Short Description:

Flow Control with status Overflow is transmitted

Long Description:

CanTp shall report a CANTP_E_FC_OVERFLOW_TRANSMITTED

Extended Production Error to DEM when Flow Control with

status Overflow is transmitted.

Detection Criteria: Fail Flow Control with status Overflow is transmitted
Pass CanTp_Init function call

Secondary The condition under which the FAIL and/or PASS detection is

Parameters: active: None

Time Required: Not applicable

Monitor Frequency: on event

7.5 Security Events

[SWS_CanTp_00371] Security events
Upstream requirements: RS_lds_00810

[

Name Description ID

SEV_CAN_ERROR_WFT_OVRN The Flow Control WAIT frame exceeded the maximum 77
counter N_WFTmax received.

SEV_CAN_ERROR_TIMEOUT_A N_Ar timeout. 78

SEV_CAN_ERROR_TIMEOUT_CR N_Cr timeout. 79

SEV_CAN_ERROR_WRONG_SN Invalid sequence number value received. 80

SEV_CAN_ERROR_NO_BUFFER Flow Control with OVFLW Flow Status received. 81

SEV_CAN_ERROR_INVALID_FS Flow Control with invalid Flow Status received. 82

SEV_CAN_ERROR_TIMEOUT_BS N_Bs timeout. 83

SEV_CAN_ERROR_UNEXP_PDU Unexpected protocol data unit received (segmented 84
reception in progress).

SEV_CAN_ERROR_PADING PDU received with a length smaller than 8 bytes. 86

SEV_CAN_INVALID_TATYPE Reception requested on an I-PDU with functional 87
aScli:dressing but the lenght indicates that the message not a

]

[SWS_CanTp_00372] Enable IdsM security event reporting
Upstream requirements: RS_Ids_00810

[If security event reporting has been enabled for the CanTp module (CanTpEn-
ableSecurityEventReporting = true) the respective security events shall be re-
ported to the IdsM via the interfaces defined in SWS_BSWGeneral [4]. |

AUTSSAR

[SWS_CanTp_00373] IdsM security event - WFT exceeded
Upstream requirements: RS_lds_00810

[When the maximum number of WFTmax consecutive FC(WAIT) N-PDUs is reached,
the CanTp module shall report the security event SEV_CAN_ERROR_WFT_OVRN. |

[SWS_CanTp_00374] IdsM security event - N_Ar timeout
Upstream requirements: RS_lds_00810

[In case of N_Ar timeout occurence, the CanTp module shall report the security event
SEV_CAN_ERROR_TIMEOUT_A.]

[SWS_CanTp_00375] IdsM security event - N_Cr timeout
Upstream requirements: RS_Ids_00810

[In case of N_Cr timeout occurence, the CanTp module shall report the security event
SEV_CAN_ERROR_TIMEOUT_CR.|

[SWS_CanTp_00376] IdsM security event - wrong SN
Upstream requirements: RS_lds_00810

[If a wrong SN is received during a segmented reception, the CanTp module shall
report the security event SEV_CAN_ERROR_WRONG_ SN. |

[SWS_CanTp_00377] IdsM security event - overflow FS received
Upstream requirements: RS_lds_00810

[If a FC frame with Fs set to OVFLW is received, the CanTp module shall report the
security event SEV_CAN_ERROR_NO_BUFFER. |

[SWS_CanTp_00378] IdsM security event - invalid FS received

Upstream requirements: RS_lds_00810
[If a FC frame with an invalid F's is received, the CanTp module shall report the security
event SEV_CAN_ERROR_INVALID_FS.]|

[SWS_CanTp_00379] IdsM security event - N_Bs timeout
Upstream requirements: RS_lds_00810

[In case of N_Bs timeout occurence, the CanTp module shall report the security event
SEV_CAN_ERROR_TIMEOUT_BS.|

[SWS_CanTp_00380] IdsM security event - unexpected PDU
Upstream requirements: RS_lds_00810

[If a new SF or FF is received during an ongoing segmented reception, the CanTp
module shall report the security event SEV_CAN_ERROR_UNEXP_PDU. |

AUTSSAR

[SWS_CanTp_00381] IdsM security event - SF error padding
Upstream requirements: RS_lds_00810

[If frames with a payload <= 8 (either CAN 2.0 frames or small CAN FD frames) are
used for a Rx N-SDU and CanTpRxPaddingActivation is equal to CANTP_ON and
CanTp receives a SF Rx N-PDU belonging to that N-SDU, with a length smaller than
eight bytes (i.e. PdulnfoPtr.SduLength < 8), the CanTp module shall report the security
event SEV_CAN_ERROR_PADDING.

[SWS_CanTp_00382] IdsM security event - CF error padding
Upstream requirements: RS_lds_00810

[If frames with a payload <= 8 (either CAN 2.0 frames or small CAN FD frames) are
used for a Rx N-SDU and canTpRxPaddingActivation is equal to CANTP_ON and
CanTp receives a last cF Rx N-PDU belonging to that N-SDU, with a length smaller
than eight bytes (i.e. PdulnfoPtr.SduLength < 8), the CanTp module shall report the
security event SEV_CAN_ERROR_PADDING.]

[SWS_CanTp_00383] IdsM security event - CF error padding
Upstream requirements: RS_lds_00810
[If a multi-frame message reception occurs with a handle whose communication type

is functional, the CanTp module shall report the security event SEV_CAN_INVALID_
TATYPE. |

AUTSSAR

8 API specification

8.1 Imported types
In this chapter, all types included from the following modules are listed:

[SWS_CanTp_00209] Definition of imported datatypes of module CanTp |

Module Header File Imported Type
Comtype ComStack_Types.h BufReq_ReturnType
ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType
ComStack_Types.h RetryInfoType
ComStack_Types.h TPParameterType
ComStack_Types.h TpDataStateType
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
]

In order to receive a consistent AP| for the AUTOSAR communication stack, basic
types have been defined. These types are used by the CAN Transport Layer to com-
municate with the Pdu-Router and with the L-SDU Router.

For more information, these basic types are presented in depth in the AUTOSAR COM
stack API specification.

These AUTOSAR standard types will be used without any type redefinition.
[SWS_CanTp_00002]
Upstream requirements: SRS_BSW_00353

[If, for implementation reasons, some additional types have to be defined, the CanTp
module shall label these types as follows: CanTp_<TypeName>Type, where <Type-—
Name> is the name of this type adhering to the rules:

« No underscore usage

« First letter of each word upper case, consecutive letters lower case.

]

[SWS_CanTp_00296] [The CanTp module shall ensure that implementation-specific
types are not "visible" outside of CanTp. Otherwise, the complete architecture would
be corrupted. |

AUTSSAR

8.2 Type definitions

8.2.1 CanTp_ConfigType

[SWS_CanTp_00340] Definition of datatype CanTp_ConfigType |

Name CanTp_ConfigType
Kind Structure
Description Data structure type for the post-build configuration parameters.
Available via CanTp.h
]

Implementation specific data structure type for the post-build configuration parame-
ters.

8.3 Function definitions

This is a list of functions provided for upper layer modules

8.3.1 CanTp_lInit

[SWS_CanTp_00208] Definition of API function CanTp_Init
Upstream requirements: SRS_BSW_00101, SRS_BSW_00358, SRS_BSW_00414

[
Service Name CanTp_Init
Syntax void CanTp_Init (
const CanTp_ConfigTypex CfgPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) CfgPtr Pointer to the CanTp post-build configuration data.
Parameters (inout) None
Parameters (out) None
Return value None
Description This function initializes the CanTp module.
Available via CanTp.h
J

After power up, CanTp is in a state called CANTP_OFF (see [SWS_CanTp_00168]). In
this state, the CanTp is not yet configured and therefore cannot perform any commu-
nication task.

The function canTp_1Init initializes all global variables of the CAN Transport Layer
with the given configuration set and set it in the idle state (state = CANTP_ON but

AUTSSAR

neither transmission nor reception are in progress) (see [SWS_CanTp_00170] and
[SWS_CanTp_00030]).

The function canTp_Init has no return value because configuration data errors
should be detected during configuration time (e.g. by the configuration tools). Fur-
thermore, if a hardware error occurs, it will be reported via the error manager modules.

[SWS_CanTp_00199] [The CanTp module’s environment shall call CanTp_TInit be-
fore using the CanTp module for further processing. |

Parameter checking for the initialization function is specified within BSW General [4].

[SWS_CanTp_00161]
Upstream requirements: SRS_BSW_00406

[A static status variable, denoting whether a BSW module is initialized, should be
initialized with value 0 before any APIs of the BSW module are called.

The initialization function of the BSW modules will set the static status variable to a
value not equal to 0.

This variable is used to check if the module has been initialized before calling an API. |

8.3.2 CanTp_ GetVersioninfo

[SWS_CanTp_00210] Definition of API function CanTp_GetVersioninfo |

Service Name CanTp_GetVersioninfo
Syntax void CanTp_GetVersionInfo (
Std_VersionInfoType* versioninfo
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Indicator as to where to store the version information of this
module.
Return value None
Description This function returns the version information of the CanTp module.
Available via CanTp.h

]

[SWS_CanTp_00319] [If development error detection is enabled the function
CanTp_GetVersionInfo shall raise CANTP_E_PARAM_ POINTER error if the argu-
ment is a NULL pointer. |

AUTSSAR

8.3.3 CanTp_Shutdown

[SWS_CanTp_00211] Definition of API function CanTp_Shutdown |

Service Name

CanTp_Shutdown

Syntax void CanTp_Shutdown (
void
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This function is called to shutdown the CanTp module.
Available via CanTp.h

]

[SWS_CanTp_00202] [The function CanTp_sShutdown shall close all pending trans-
port protocol connections, free all resources and set the CanTp module into the
CANTP_OFTF state. |

[SWS_CanTp_00200] [The function CanTp_Shutdown shall not raise a notification
about the pending frame transmission or reception. |

8.3.4 CanTp_Transmit

[SWS_CanTp_00212] Definition of API function CanTp_Transmit |

Service Name

CanTp_Transmit

Syntax Std_ReturnType CanTp_Transmit (
PduldType TxPduld,
const PdulnfoTypex PdulnfoPtr
)

Service ID [hex] 0x49
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identifier of the PDU to be transmitted

PdulnfoPtr Length of and pointer to the PDU data and pointer to MetaData.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Transmit request has been accepted.

E_NOT_OK: Transmit request has not been accepted.

Description Requests transmission of a PDU.

Available via CanTp.h

AUTSSAR

[SWS_CanTp_00231]
Upstream requirements: SRS_Can_01071, SRS_Can_01074

[If data does fit into the associated N-PDU, the function CanTp_Transmit () shall
send a SF N-PDU. |

[SWS_CanTp_00232]
Upstream requirements: SRS_Can_01071, SRS_Can_01074

[If data does not fit into the associated N-PDU, the function CanTp_Transmit () shall
initiate a multiple frame transmission session. |

[SWS_CanTp_00354]
Upstream requirements: SRS_Can_01163

[The maximum Tx length of the N-PDU shall be derived from the PduLength configu-
ration parameter of EcuC. This parameter is equivalent to Tx_DL of ISO 15765-2. |

[SWS_CanTp_00204] [The CanTp module shall notify the upper layer by calling the
PduR_CanTpTxConfirmation calloback when the transmit request has been com-
pleted. |

[SWS_CanTp_00205] [The CanTp module shall abort the transmit request and call
the PduR_CanTpTxConfirmation callback function with E_NOT_OK result value if
an error occurred (over flow, N_As timeout, N_Bs timeout and so on). |

[SWS_CanTp_00206] [The function canTp_Transmit shall reject a request if the
CanTp_Transmit service is called for a N-SDU identifier which is being used in a
currently running CAN Transport Layer session. |

[SWS_CanTp_00298] [CanTp has limited buffering capability, and hence the N-SDU
payload to be transmitted is not copied internally. The CAN Transport Layer obtains
the data directly from the upper layer via the PduR_CanTpCopyTxData Service. |

Thus, to guarantee the data consistency, the upper layer (e.g. DCM, PduRouter or
AUTOSAR COM) must lock this memory area until the confirmation notification occurs.

[SWS_CanTp_00299] [When the upper layer calls this function for an N-SDU without
MetaData, only the data length information of the structure indicated by PduInfoPtr
has to be used. Its value indicates the payload length of the N-SDU, which is to be
transmitted.

For an N-SDU with MetaData, besides the length information also the MetaData pro-
vided via the PdulnfoPtr is relevant. To obtain actual Tx data, the CAN Transport Layer
shall call the PduR_CanTpCopyTxData Service. |

[SWS_CanTp_00321] [If development error detection is enabled the function
CanTp_Transmit shall raise CANTP_E_PARAM_POINTER error if the argument
PduInfoPtr is a NULL pointer. |

AUTSSAR

[SWS_CanTp_00356] [If development error detection is enabled the function
CanTp_Transmit shall check the validity of function parameter TxPduId. If its value
is invalid, the CanTp_Transmit function shall raise the development error CANTP_
E_INVALID_TX_1ID.]

8.3.5 CanTp_CancelTransmit

[SWS_CanTp_00246] Definition of API function CanTp_CancelTransmit |

Service Name CanTp_CancelTransmit
Syntax Std_ReturnType CanTp_CancelTransmit (
PduIdType TxPduld
)
Service ID [hex] Ox4a
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identification of the PDU to be cancelled.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Cancellation was executed successfully by the destination
module.
E_NOT_OK: Cancellation was rejected by the destination module.
Description Requests cancellation of an ongoing transmission of a PDU in a lower layer communication
module.
Available via CanTp.h

]

This service cancels the transmission of an N-SDU that has already requested for
transmission by calling CanTp_Transmit service.

[SWS_CanTp_00254] [If development error detection is enabled the function
CanTp_CancelTransmit shall check the validity of function parameter TxPdu1d. If
its value is invalid, the CanTp_CancelTransmit function shall raise the development
error CANTP_E_ INVALID_TX_1ID.

If the parameter value indicates a cancel transmission request for an N-SDU that it
is not on transmission process the CanTp module shall report a runtime error code
CANTP_E_OPER_NOT_SUPPORTED to the Default Error Tracer and the service shall
return E_NOT_OX. |

[SWS_CanTp_00256] [The CanTp shall abort the transmission of the current N-SDU
if the service returns E_OK. |

[SWS_CanTp_00255] [If the CanTp_CancelTransmit service has been success-
fully executed the CanTp shall call the PduR_CanTpTxConfirmation with notifica-
tion result E_NOT_OX. |

AUTSSAR

8.3.6 CanTp_CancelReceive

[SWS_CanTp_00257] Definition of API function CanTp_CancelReceive |

Service Name

CanTp_CancelReceive

Syntax Std_ReturnType CanTp_CancelReceive (
PduIldType RxPduld

)
Service ID [hex] Ox4c
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) RxPduld Identification of the PDU to be cancelled.
Parameters (inout) None
Parameters (out) None

Return value Std_ReturnType E_OK: Cancellation was executed successfully by the destination
module.

E_NOT_OK: Cancellation was rejected by the destination module.

Description Requests cancellation of an ongoing reception of a PDU in a lower layer transport protocol
module.
Available via CanTp.h

The service CanTp_CancelReceive cancels the reception of an N-SDU initiated by
the reception of a First Frame and consequently calls of PduR_StartOfReception.
When the function returns, no reception is in progress anymore with the given N-SDU
identifier.

[SWS_CanTp_00260] [If development error detection is enabled the function
CanTp_CancelReceive shall check the validity of function parameter RxPduId. If
its value is invalid, the CanTp_CancelReceive function shall raise the development
error CANTP_E_ INVALID_RX_ID.

If the parameter value indicates a cancel reception request for an N-SDU that it is not
on reception process the CanTp module shall report the runtime error code CANTP_
E_OPER_NOT_SUPPORTED to the Default Error Tracer and the service shall return
E_NOT_OK.]

[SWS_CanTp_00261] [The CanTp shall abort the reception of the current N-SDU if
the service returns E_OK. |

[SWS_CanTp_00262] [The CanTp shall reject the request for receive cancellation in
case of a Single Frame reception or if the CanTp is in the process of receiving the last
Consecutive Frame of the N-SDU (i.e. the service is called after N-Cr timeout is started
for the last Consecutive Frame). In this case the CanTp shall return E_NOT_OKXK. |

[SWS_CanTp_00263] [If the CanTp_CancelReceive service has been successfully
executed the CanTp shall call the PduR_CanTpRxIndication with notification result
E_NOT_OK.]

AUTSSAR

8.3.7 CanTp_ChangeParameter

[SWS_CanTp_00302] Definition of API function CanTp_ChangeParameter |

Service Name CanTp_ChangeParameter
Syntax Std_ReturnType CanTp_ChangeParameter (
PduldType id,
TPParameterType parameter,
uintlé value
)
Service ID [hex] 0x4b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) id Identification of the PDU which the parameter change shall affect.
parameter ID of the parameter that shall be changed.
value The new value of the parameter.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The parameter was changed successfully.
E_NOT_OK: The parameter change was rejected.
Description Request to change a specific transport protocol parameter (e.g. block size).
Available via CanTp.h

The service CanTp_ChangeParameter is used to change the value of the reception
parameter BS and STmin associated to each received N-SDU.

Implementation of this service depends on the configuration parameter CcanT-
pChangeParameterApi (i.e. the service shall be implemented when the parameter
is set to TRUE).

[SWS_CanTp_00303] [A parameter change is only possible if the related N-SDU is
not in the process of reception - i.e. a change of parameter value it is not possible after
reception of FF until indication for last CF reception of the related N-SDU. |

[SWS_CanTp_00304] [If the change of a parameter is requested for an N-SDU that
is on reception process the service CanTp_ChangeParameter immediately returns
E_NOT_OK and no parameter value is changed |

[SWS_CanTp_00338] [When CanTp_ChangeParameter is called for an N-SDU with
MetaData (indicating a generic connection), the change shall be applied to all generic
connections, so that it is used for all following receptions. |

[SWS_CanTp_00305] [If development error detection is enabled, the function
CanTp_ChangeParameter shall check the validity of function parameters (parame-
ter and value). If the parameter parameter is invalid, the CanTp_ChangeParam-
eter function shall raise the development error CANTP_E_PARAM_1ID. If the value
parameter is invalid, the CanTp_ChangeParameter function shall raise the develop-
ment error CANTP_F_PARAM_CONFIG.]

AUTSSAR

[SWS_CanTp_00357] [If development error detection is enabled the function
CanTp_ChangeParameter shall check the validity of function parameter id. If its
value is invalid, the CanTp_ChangeParameter function shall raise the development
error CANTP_FE_INVALID_RX_ID.|

8.3.8 CanTp_ReadParameter

[SWS_CanTp_00323] Definition of API function CanTp_ReadParameter |

Service Name CanTp_ReadParameter
Syntax Std_ReturnType CanTp_ReadParameter (
PduldType id,
TPParameterType parameter,
uintléx value
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) id Identifier of the received N-SDU on which the reception
parameter are read.
parameter Specify the parameter to which the value has to be read (BS or
STmin).
Parameters (inout) None
Parameters (out) value Pointer where the parameter value will be provided.
Return value Std_ReturnType E_OK: request is accepted.
E_NOT_OK: request is not accepted.
Description This service is used to read the current value of reception parameters BS and STmin for a
specified N-SDU.
Available via CanTp.h

]

Implementation of this service depends on the configuration parameter CanT-
pChangeParameterApi (i.e. the service shall be implemented when the parameter
is set to TRUE).

[SWS_CanTp_00324] [If development error detection is enabled the function
CanTp_ReadParameter shall check the validity of function parameter parameter. If
its value is invalid, the CanTp_ReadParameter function shall raise the development
error CANTP_FE_PARAM_1ID. |

[SWS_CanTp_00358] [If development error detection is enabled the function

CanTp_ReadParameter shall check the validity of function parameter id. If its value
is invalid, the CanTp_ReadParameter function shall raise the development error
CANTP_E_INVALID_RX_ID.]|

AUTSSAR

8.3.9 Main Function

[SWS_CanTp_00213] Definition of scheduled function CanTp_MainFunction |

Service Name CanTp_MainFunction
Syntax void CanTp_MainFunction (
void
)
Service ID [hex] 0x06
Description The main function for scheduling the CAN TP.
Available via SchM_CanTp.h

]

[SWS_CanTp_00164]
Upstream requirements: SRS_BSW_00424, SRS_BSW_00373

[The main function for scheduling the CAN TP (Entry point for scheduling)

The main function will be called by the Schedule Manager or by the Free Running
Timer module according of the call period needed. CanTp_MainFunction isinvolved

in handling of CAN TP timeouts N_As, N_Bs, N_Cs, N_Ar, N_Br,

N_Cr and STmin.]

[SWS_CanTp_00300] [The function CanTp_MainFunction is affected by configura-

tion parameter CanTpMainFunctionPeriod. |

8.4 Callback notifications

The following is a list of functions provided for lower layer modules.

8.4.1 CanTp_Rxindication

[SWS_CanTp_00214] Definition of callback function CanTp_RxIndication |

Service Name

CanTp_RxIndication

Syntax void CanTp_RxIndication (
PduldType RxPduld,
const PdulnfoTypex PdulnfoPtr
)
Service ID [hex] 0x42
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in)

RxPduld ID of the received PDU.

PdulnfoPtr Contains the length (SduLength) of the received PDU, a pointer
to a buffer (SduDataPtr) containing the PDU, and the MetaData
related to this PDU.

\Y

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value None
Description Indication of a received PDU from a lower layer communication interface module.
Available via CanTp.h
]

The LSduR module shall call this function after a successful reception of a Rx CAN
L-PDU.

The data will be copied by the CanTp via the PDU structure PduInfoType. Inthis case
the L-PDU buffers are not global and are therefore distributed in the corresponding
CAN Transport Layer.

Note that PduInfoPtr contains also the MetaData in case of dynamic Rx N-PDUs.

[SWS_CanTp_00235] [The function CanTp_RxIndication shall be callable in in-
terrupt context (it could be called from the CAN receive interrupt). |

[SWS_CanTp_00322] [If development error detection is enabled the function
CanTp_RxIndication shall raise CANTP_E_PARAM_POINTER error if the argument
PduInfoPtr is a NULL pointer.

[SWS_CanTp_00359] [If development error detection is enabled the function
CanTp_RxIndication shall check the validity of function parameter RxpPduld. If
its value is invalid, the CanTp_RxIndication function shall raise the development
error CANTP_FE_INVALID_RX_ID.]|

8.4.2 CanTp_TxConfirmation

[SWS_CanTp_00215] Definition of callback function CanTp_TxConfirmation |

Service Name CanTp_TxConfirmation
Syntax void CanTp_TxConfirmation (
PduIdType TxPduld,
Std_ReturnType result
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld ID of the PDU that has been transmitted.
result E_OK: The PDU was transmitted. E_NOT_OK: Transmission of
the PDU failed.
Parameters (inout) None
Parameters (out) None

AUTSSAR

A
Return value None
Description The lower layer communication interface module confirms the transmission of a PDU, or the
failure to transmit a PDU.
Available via CanTp.h

]

The LSduR module shall call the function CanTp_TxConfirmation after the TP re-
lated CAN Frame (SF, FF, CF, FC) has been transmitted through the CAN network.

[SWS_CanTp_00236] [The function CanTp_TxConfirmation shall be callable in
interrupt context (it could be called from the CAN transmit interrupt). |

[SWS_CanTp_00360] [If development error detection is enabled the function
CanTp_TxConfirmation shall check the validity of function parameter TxPdu1d. If
its value is invalid, the CanTp_TxConfirmation function shall raise the development
error CANTP_E_INVALID_TX_ID.]

8.5 Expected interfaces

In this chapter, all interfaces required from other modules are listed.

8.5.1 Mandatory Interfaces

This chapter defines all interfaces, which are required, in order to fulfill the core func-
tionality of the module.

[SWS_CanTp_00216] Definition of mandatory interfaces required by module Can
Tp [

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

LSduR_CanTpTransmit (draft) LSduR_<module>.h Requests transmission of a PDU.

PduR_CanTpCopyRxData PduR_CanTp.h This function is called to provide the received data of

an I-PDU segment (N-PDU) to the upper layer. Each
call to this function provides the next part of the
|-PDU data. The size of the remaining buffer is
written to the position indicated by bufferSizePtr.

AUTSSAR

API Function Header File Description

PduR_CanTpCopyTxData PduR_CanTp.h This function is called to acquire the transmit data of
an I-PDU segment (N-PDU). Each call to this
function provides the next part of the I-PDU data
unless retry->TpDataState is TP_DATARETRY. In
this case the function restarts to copy the data
beginning at the offset from the current position
indicated by retry->TxTpDataCnt. The size of the
remaining data is written to the position indicated by
availableDataPtr.

PduR_CanTpRxIndication PduR_CanTp.h Called after an I-PDU has been received via the TP
API, the result indicates whether the transmission
was successful or not.

PduR_CanTpStartOfReception PduR_CanTp.h This function is called at the start of receiving an
N-SDU. The N-SDU might be fragmented into
multiple N-PDUs (FF with one or more following
CFs) or might consist of a single N-PDU (SF). The
service shall provide the currently available
maximum buffer size when invoked with TpSdu
Length equal to 0.

PduR_CanTpTxConfirmation PduR_CanTp.h This function is called after the I-PDU has been
transmitted on its network, the result indicates
whether the transmission was successful or not.

8.5.2 Optional Interfaces

This chapter defines the interface, which is required, in order to fulfill the optional func-
tionality of the module.

[SWS_CanTp_00217] Definition of optional interfaces requested by module Can
Tp [

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError Det.h Service to report development errors.

AUTSSAR

9 Sequence diagrams

The goal of this chapter is to make it easier to understand the CAN Transport Layer
by describing most of the more frequent and complicated use cases. Thus, the fol-
lowing diagram sequences are not exhaustive and do not reflect all the specified API
possibilities.

9.1 SF N-SDU received and no buffer available.

9.1.1 Assumptions

* All input parameters are OK;
» The N-SDU data length fits into the associated N-PDU;

» Upper layer can not make an Rx buffer available.

9.1.2 Sequence diagram

«module» «module» «module»
PduR CanTp LSduR

T
|
| | CanTp_RxIndication() |
I
L

. PduR_CanTpStartOfReception() v
< < .
IT|~ e N m - > |
| | \“

[N
AN Comment
Comment The CAN Transport Layer does an ID Comment:
Upper layer can not provide any buffer. So the translation and extract the useful data length When the lower layer receives a frame (here a
BUFREQ_E_NOT_OK value is returned. from the N-PDU payload. single frame), it notifies CanTp with
The CanTp ends the CanTp_RxIndication function Then it asks its upper layer to provide a buffer CanTp_RxIndication callback. CanTpRxPduld
without copying any data. for this incoming data with =

Ny represents the ID of L-PDU that has been
PduR_CanTpStartOfReception call.

TpSduLength is set to SF_DL (extract from the
N-PClI field). It indicates the overall amount of
bytes to be received.

received, and CanTpRxPduPtr point to the L-
PDU payload and the L-PDU datalength.

Figure 9.1: SF N-SDU received and no buffer available

Note: This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered during such reception, more modules are
involved. Since this reception can be triggered in the context of CAN ISR, the CAN_Tp
operation should be as short as possible.

AUTSSAR

9.1.3 Transition description

Transition

Name

Description

1

CanTp_RxIndication (
RxPduld,
PdulnfoPtr

)

When the lower layer receives a frame
(here a single frame), it notifies CanTp
by means of a CanTp_RxIndication
callback. RxPduld represents the ID of
L-PDU that has been received, and
PdulnfoPtr indicates the L-PDU
payload and the L-PDU data length.

PduR_CanTpStartOfReception(
id,

info,

TpSdulLength,

bufferSizePtr

)

The CAN Transport Layer performs an
ID translation and extracts the useful
data length from the N-PDU payload.
It then asks its upper layer to make a
buffer available for this incoming data
with a PduR_CanTpStartOfReception
callback.

TpSdulLength is set to SF_DL
(extracted from the N-PCl field). It
indicates the overall amount of bytes to
be received.

BUFREQ_E_NOT_OK

The upper layer cannot make any
buffer available, so the BUFREQ_E_
NOT_OK value is returned.

The CanTp ends the CanTp_Rx
Indication function without copying any
data.

Table 9.1: SF N-SDU received and no buffer available

9.2 Successful SF N-PDU reception

9.2.1 Assumptions

* All input parameters are OK;
» The N-SDU data length fits into the associated N-PDU;

» The SF N-PDU is successfully received.

AUTSSAR

9.2.2 Sequence diagram

«module» «module» «module»
PduR CanTp LSduR

T T . T
1 1 K 1
| | CanTp_RxIndication() / |
| 7
|

PduR_CanTpStartOfReception()
el el
: PduR_CanTpCopyRxData()
! Comment
X Comment h When the lower layer receives a frame (here a
L | Upper Iayer allocates and locks ' single frame), it notifies CanTp with
the required Rx buffer. Then ' CanTp_RxIndication callback. CanTpRxPduld
returns BUFREQ_OK. ' represent the D of L-PDU that has been
' received, and CanTpRxPduPtr point to the L-
\ N PDU payload and the L-PDU datalength.
------- e
T ' PduR_CanTpRxIndication() .
¢ Ky
——————— R e
-------------------------- >
| L L
| Comment: | |
The upper layer copies
the received N-PDU
payload into the
provided buffer.
[AN

Comment:
The CAN Transport Layer does an ID
translation and extract the useful data

Comment
CanTp ends the
CanTp_RxIndication

length from the N-PDU payload.

Comment: Then it asks its upper layer to provide a F
When the copy is done, a Rx buffer for this incoming data with function.
indication is raised to upper layer. PduR CanTpStartOfReception callback.

Result is normally set to E OK TpSdulength is set to SF_DL (extract

from the N-PCl field). It indicates the
overall amount of bytes to be received.

Figure 9.2: Successful SF N-PDU reception

Note: This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered during such reception, more modules are
involved. Since this reception can be triggered in the context of CAN ISR, the CAN_Tp
operation should be as short as possible.

9.2.3 Transition description

Transition Name Description

1 CanTp_RxIndication (When the lower layer receives a frame
RxPduld, (here a single frame), it notifies CanTp
PdulnfoPtr by means of a CanTp_RxIndication
) callback. RxPduld represents the ID of

the L-PDU that has been received, and
PdulnfoPtr indicates the L-PDU
payload and the L-PDU data length.

AUTSSAR

A
Transition Name Description
2 PduR_CanTpStartOfReception(The CAN Transport Layer performs an
id, ID translation and extracts the useful
info, data length from the N-PDU payload.
TpSdulLength, It then asks its upper layer to make a
bufferSizePtr buffer available for this incoming data
) with a PduR_CanTpStartOfReception
callback.
TpSdulLength is set to SF_DL
(extracted from the N-PClI field). It
indicates the overall amount of bytes to
be received.
3 BUFREQ_OK Upper layer allocates and locks the
required Rx buffer. Then returns
BUFREQ_OK.
4 PduR_CanTpCopyRxData(The upper layer copies the received
id, N-PDU payload into the buffer.
info,
bufferSizePtr
)
5 PduR_CanTpRxIndication (When the copy is complete, an Rx
id, indication is sent to the upper layer.
result The result is set to E_OK.
)
6 CanTp ends the CanTp_RxIndication

function.

Table 9.2: Successful SF N-PDU reception

9.3 Transmit request of SF N-SDU

9.3.1 Assumptions

 All input parameters are OK;
» The N-SDU data length fits into the associated N-PDU;

» The transmission is successfully processed.

AUTSSAR

9.3.2 Sequence diagram

]<__| “ 71 Copy .
C data '

AN

Comment

The PDU Router needs to transmit an |-PDU
that requires transport protocol functionality
and whose data can be refers to with the data
structure information CanTpTxInfoPtr (see
definition of type: Std_PdulnfoType).

So the PduR translates the I-PDU identifier to
find which transport layer to use (CanTp, LinTp
or FrTp), and what the associate N-SDU
identifier is (identifier translation). Then PduR
calls the CanTp's primitive CanTp_Transmit.
This function shall perform these following
steps:

* Validates input parameters and resource
availability

* Searches out the useful information to
process the transmit request in the
configuration set of this CanTp entity (e.g.
SF/FF/CF N-PDU identifier, FC N-PDU identifier,
N_TA value, and so on)

* Launches an internal transmit task with
parameters: CanTpTxSduld and
CanTpTxInfoPtr.

Note: only the length information within the
CanTpTxInfoPtr structure shall be analyzed. The
pointer to the payload data shall be discarded.

«module» «module» «module»
PduR CanTp LSduR
T T T
| . | |
| CanTp_Transmit() | |
_______________ |
1 —-. .. I
; SRR I
Comment [.
The value E_OK is Check |
retumed to indicate inputs |
upper layer that the |
transmit request is R [
accepted C ¥ :
\ Activate a |
e TP task !
|
|
|
|
|
|
I
|
|
1

LSduR_CanTpTransmit()

Comment: A
The PduR_CanTpCopyTxData is called to request the
necessary transmit buffer and copy segment data.

Comment:

The CanTp performed a translation from
CanTpTxSduld to CanTxPduld. In case of extended
addressing format, concatenates the N-SDU
payload with the N_TA value.

And do a transmit request on the Canlf module.

Comment
Upper layer allocates and locks the required
Tx buffer. Then returns BUFREQ_OK.

Comment
The Canlf module can process the transmit
request received via LSduR.

e

CanTp_TxConfirmation()

PduR_CanTpTxConfirmation() .l

Comment | |

Comment:
The N-PDU is successfully transmitted.
Result is normally set to E_OK.

Notify the PDU Router that the N-SDU has be ! !
successfully transmitted.
Result is normally set to E OK

Figure 9.3: Transmit request of SF N-

SDU

AUTSSAR

9.3.3 Transition description

Transition

Name

Description

1

CanTp_Transmit(
TxPduld,
PdulnfoPtr

)

The PDU Router needs to transmit an
I-PDU that requires transport protocol
functionality and whose data can be
refers to with the data structure
information PdulnfoPtr (see definition
of type: Std_PdulnfoType).

So the PduR translates the I-PDU
identifier to find which transport layer to
use (CanTp, LinTp or FrTp), and what
the associate N-SDU identifier is
(identifier translation). Then PduR calls
the CanTp’s primitive CanTp_Transmit.
This function shall perform these
following steps:

- Validates input parameters and
resource availability

- Searches out the useful information
to process the transmit request in the
configuration set of this CanTp entity
(e.g. SF/FF/CF N-PDU identifier, FC
N-PDU identifier, N_TA value, and so
on)

- Launches an internal transmit task
with parameters: TxPduld and Pdulnfo
Ptr.

Note: only the length information within
the PdulnfoPtr structure shall be
analyzed. The pointer to the payload
data shall be discarded.

E_OK

The value E_OK is returned to indicate
to the upper layer that the transmit
request is accepted.

The upper layer locks the required Tx
buffer.

PduR_CanTpCopyTxdata (
id,

info,

retry,

availableDataPtr

)

The PduR_CanTpCopyTxData is
called to copy segment data.

BUFREQ_OK

Upper layer copy data, then returns
BUFREQ_OK.

LSduR_CanTpTransmit(
TxPduld,

PdulnfoPtr

)

The CanTp performs a translation of
the TxPduld. In case of extended
addressing format, it concatenates the
N-SDU payload with the N_TA value, to
perform a transmit request on the LSdu
R module.

E_OK

The LuSduR module can process the
transmit request.

CanTp_TxConfirmation(
TxPduld,
result

)

The N-PDU is successfully transmitted.

\Y

AUTSSAR

A

Transition

Name

Description

8

PduR_CanTpTxConfirmation (
id,
result

)

Notifies the PDU Router that the
N-SDU has been successfully

Type structure has to be unlocked.
Result is set to E_OK.

Table 9.3: Transmit request of SF N-SDU

9.4 Transmit request of larger N-SDU

9.4.1 Assumptions

* All input parameters are OK;

» The N-SDU data length does not fit into the associated N-PDU;

» The transmission is successfully processed.

9.4.2 Sequence diagram

«module»
PduR

transmitted. Consequently, the Pdulnfo

«module» «module»

CanTp LSduR

CanTp_Transmit()

IJ-;‘__' _ - --1Check inputs.

Activate a Tx task.

loop N-SDU data transfer)

[still ddlta to be sent from this N-SDU]

PduR_CanTpCopyT xData()

” 7 Copy segment data.

____________________________________>

LSduR_CanTpTransmit()

PduR_CanTpTxConfirmation()

Figure 9.4: Transmit request of larger N-SDU

AUTSSAR

9.4.3 Transition description

Transition

Name

Description

1

CanTp_Transmit (
TxPduld,
PdulnfoPtr

)

The PDU Router needs to transmit an
I-PDU that requires transport protocol
functionality and whose data refers to
with the data structure information Pdu
InfoPtr (see definition of type: Pdulnfo
Type).

So the PduR translates the I-PDU
identifier to find which transport layer to
use (CanTp, LinTp or FrTp), and what
the associate N-SDU identifier is
(identifier translation). Then PduR calls
the CanTp’s primitive CanTp_Transmit.
This function shall perform these
following steps:

- Validates input parameters and
resource availability

- Searches out the useful information
to process the transmit request in the
configuration set of this CanTp entity
(e.g. SF/FF/CF N-PDU identifier, FC
N-PDU identifier, N_TA value, and so
on)

- Launches an internal transmit task
with parameters: TxPduld and Pdulnfo
Ptr.

Note: only the length information within
the PdulnfoPtr structure shall be
analyzed. The pointer to the payload
data shall be discarded.

Upon successful return of the call, the
upper layer locks the required Tx
buffer.

E_OK

The upper layer allocates and locks the
required Tx buffer. Then returns E_OK.

PduR_CanTpCopyTxData (
id,

info,

retry,

availableDataPtr

)

The PduR_CanTpCopyTxData is
called. The upper layer copies segment
data into the destination buffer.

LSduR_CanTpTransmit (
TxPduld,

PdulnfoPtr

)

Within the task, CanTp calls the L-SDU
Router module by using LSduR_Can
TpTransmit, where TxPduld identifies
the L-SDU (a translation has to be
preformed between the N-SDU Id used
by CanTp and the L-SDU Id used by
L-SDU Router module), and PdulnfoPtr
indicator data and their length.

CanTp_TxConfirmation(
TxPduld,
result

)

CanTp awaits a confirmation from the
L-SDU Router module (CanTp_Tx
Confirmation)

PduR_CanTpCopyTxData (
id,

info,

retry,

availableDataPtr

)

For each consecutive frame CanTp
asks the PDU Router to provide new
data to be sent.

Y%

AUTSSAR

A

Transition

Name

Description

7

PduR_CanTpTxConfirmation (
id,
result

)

When all data have been sent, or when
an error occurs, CanTp notifies PDU
Router with PduR_CanTpTx
Confirmation. Id identify the N-SDU
which transmission is confirmed, and
result indicates if transmission has
been completed or not.

9.5 Large N-SDU Reception

9.5.1 Assumptions

* All input parameters are OK;
» The N-SDU data length does not fit into the associated N-PDU;

» Reception is successfully processed.

Table 9.4: Transmit request of larger N-SDU

AUTSSAR

9.5.2 Sequence diagram

«module» «module» «module»
PduR CanTp LSduR

T T
| |
| CanTp_RxIndication() 1

PduR_CanTpStartOfReception()

__ ..] Check connection
r__l' acceptance and
C prepare FC.

: """ Activate Tx task.

PduR_CanTpCopyRxData() I:

_____ Copy FF data.

___________________________>
I >
| T T
1 1 1
alt CanTp task J | | |
1 ! CanTp_RxIndication() |
[interrupt] |
| PduR_CanTpCopyRxData()
""""" Copy CF data.
___________________________>

alt Indication /

[normal case]

[cyclic task]

Figure 9.5: Large N-SDU Reception

Note : This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered in such reception, more modules are in-
volved. Since this reception can be triggered in the context of a CAN ISR, the CAN Tp
operation should be as short as possible.

AUTSSAR

9.5.3 Transition description

Transition Name Description
1 CanTp_RxIndication (When the L-SDU Router module
RxPduld, receives a frame (here a first frame), it
PdulnfoPtr notifies CanTp by means of a CanTp_
) RxIndication callback. RxPduld
represents the ID of L-PDU that has
been received and PdulnfoPtr indicates
payload and L-SDU datalength to the
L-SDU.
2 PduR_CanTpStartOfReception(CanTp ask PDU Router to make a
id, buffer available for incoming data with
info, PduR_CanTpStartOfReception
TpSdulLength, callback.
bufferSizePtr
)

3 Check connection acceptance and
prepare FC parameters.

4 CanTp activates a task for sending an
FC with a Flow Status set to Continue
ToSend. (see step 8.)

5 CanTp_RxIndication (When the L-SDU Router receives a

RxPduld, frame (here a consecutive frame),

PdulnfoPtr L-SDU Router notifies CanTp by

) means of a CanTp_RxIndication
callback. RxPduld represents the ID of
the CAN frame that has been received
and PdulnfoPtr indicates payload to the
L-SDU.

6 CanTp shall verify the sequence
number and if correct, it asks the PduR
to copy the data.

7 PduR_CanTpCopyRxData(Three cases can apply :

id, - Normal Case: the received

info, consecutive frame is not the last one.

bufferSizePtr CanTp forwards received data to the

) upper layer.

Or - Last CF Received: this consecutive

PduR_CanTpRxIndication (frame is the last (Total length

id, information was, as parameter, in the

result first frame). CanTp shall notify PDU

) Router with PduR_CanTpRxIndication
callback.

8 When flow control needs to be sent,

the CanTp cyclical task should call the
L-SDU Router by using LSduR_CanTp
Transmit and wait confirmation from
the L-SDU Router.

Flow control can be either ContinueTo
Send or Wait, depending on the
available buffer in the upper layer.

Table 9.5: Large N-SDU Reception

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CAN Transport Layer.

Chapter 10.3 specifies published information of the module CAN Transport Layer.

[SWS_CanTp_00146]
Upstream requirements: SRS_BSW_00159

[The listed configuration items can be derived from a network description database,
which is based on the EcuConfigurationTemplate. The configuration tool should extract
all information to configure the CAN Transport Protocol. |

[SWS_CanTp_00147]
Upstream requirements: SRS BSW 00167

[The consistency of the configuration must be checked by the configuration tool at
configuration time. |

10.1 How to read this chapter

For details refer to [4] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in Chapters 7 and 8.

[SWS_CanTp_00328] [The same NPdu may be referenced by more than one NSdu
(RXNSdu or TxNSdu, via CanTpRxNPdu, CanTpTxFcNPdu, CanTpTxNPdu or CanTp
RxFcNPdu) independent of the used addressing format. |

10.2.1 CanTp

[ECUC_CanTp_00306] Definition of EcucModuleDef CanTp |

AUTSSAR

Module Name CanTp

Description Configuration of the CanTp (CAN Transport Protocol) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

CanTpConfig 1 This container contains the configuration parameters and sub
containers of the AUTOSAR CanTp module.

CanTpDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements

which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Event Id is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

CanTpGeneral 1 This container contains the general configuration parameters of
the CanTp module.

CanTp: EcucModuleDef +eontainer CanTEGeneraI:.
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

CanTpDemEventParameterRefs:
+container| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1
+container
CanTpMaxChannelCnt:
CanTpConfig: EcucintegerParamDef
+parameter

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

CanTpRxNSdu:

CanTpchannel; EcucParamConfContainerbef

EcucParamConfContainerDef +subContainer

lowerMultiplicity = 0

lowerMultiplicity = 1 upperMultiplicity = *

+subContainer upperMultiplicity = *

. CanTpTxNSdu:
+subContainer(EcycparamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanTpMainFunctionPeriod:

+parameter EcucFloatParamDef

min =0
max = INF

Figure 10.1: Configuration overview

10.2.2 CanTpConfig

[ECUC_CanTp_00290] Definition of EcucParamConfContainerDef CanTpConfig
[

AUTSSAR

Container Name

CanTpConfig

Parent Container

CanTp

Description

This container contains the configuration parameters and sub containers of the
AUTOSAR CanTp module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanTpMainFunctionPeriod 1 [ECUC_CanTp_00240]

CanTpMaxChannelCnt 0..1 [ECUC_CanTp_00304]

Included Containers

Container Name Multiplicity Dependency

CanTpChannel 1.7 This container contains the configuration parameters of the Can
Tp channel.

]

[ECUC_CanTp_00240] Definition of EcucFloatParamDef CanTpMainFunctionPe-

riod [
Parameter Name CanTpMainFunctionPeriod
Parent Container CanTpConfig

Description Allow to configure the time for the MainFunction (as float in seconds). The CanTpMain
FunctionPeriod should be assigned a value which is optimal regarding all of the timers
configured for CanTp in TX and RX data transfer i.e. the differences from the
configured timing should be as small as possible. Please note: This period shall be the
same as call cycle time of the periodic task were CanTp Main function is called.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_CanTp_00304] Definition of EcucintegerParamDef CanTpMaxChannelCnt

[

Parameter Name

CanTpMaxChannelCnt

Parent Container

CanTpConfig

Description Maximum number of channels. This parameter is needed only in case of post-build
loadable implementation using static memory allocation.

Multiplicity 0..1

Type EcuclntegerParamDef

Y%

AUTSSAR

A
Range 0 .. 18446744073709551615 |
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.3 CanTpGeneral

[ECUC_CanTp_00278] Definition of EcucParamConfContainerDef CanTpGeneral

[

Container Name

CanTpGeneral

Parent Container

CanTp

Description

This container contains the general configuration parameters of the CanTp module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanTpChangeParameterApi 1 [ECUC_CanTp_00299]
CanTpDevErrorDetect 1 [ECUC_CanTp_00239]
CanTpDynldSupport 0..1 [ECUC_CanTp_00302]
CanTpEnableSecurityEventReporting 1 [ECUC_CanTp_00318]
CanTpFlexibleDataRateSupport 0..1 [ECUC_CanTp_00305]
CanTpGenericConnectionSupport 0..1 [ECUC_CanTp_00303]
CanTpPaddingByte 1 [ECUC_CanTp_00298]
CanTpPendingTxNSduSupport 1 [ECUC_CanTp_00330]
CanTpReadParameterApi 1 [ECUC_CanTp_00300]
CanTpVersionInfoApi 1 [ECUC_CanTp_00283]
Included Containers

Container Name Multiplicity Dependency

CanTpEnableSecurityEventRefs 0..1 Container for the references to IdsMEvent elements representing

the security events that the CanTp module shall report to the Ids
M in case the coresponding security related event occurs (and if
CanTpEnableSecurityEventReporting is set to "true"). The
standardized security events in this container can be extended
by vendor-specific security events.

AUTSSAR

[ECUC_CanTp_00299]
rameterApi [

Definition of EcucBooleanParamDef CanTpChangePa-

Parameter Name

CanTpChangeParameterApi

Parent Container

CanTpGeneral

Description This parameter, if set to true, enables the CanTp_ChangeParameterRequest Api for
this Module.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_CanTp_00239] Definition of EcucBooleanParamDef CanTpDevErrorDe-

tect |

Parameter Name CanTpDevErrorDetect

Parent Container CanTpGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00302] Definition of EcucBooleanParamDef CanTpDynldSupport

[

Parameter Name

CanTpDynldSupport

Parent Container

CanTpGeneral

Description Enable support for dynamic ID handling via N-PDU MetaData.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

]

[ECUC_CanTp_00318] Definition of EcucBooleanParamDef CanTpEnableSecu-
rityEventReporting |

Parameter Name CanTpEnableSecurityEventReporting

Parent Container CanTpGeneral

Description Switches the reporting of security events to the IdsM: * true: reporting is enabled. *
false: reporting is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00305] Definition of EcucBooleanParamDef CanTpFlexibleData
RateSupport |

Parameter Name CanTpFlexibleDataRateSupport

Parent Container CanTpGeneral

Description Enable support for CAN FD frames.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value true

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_CanTp_00303]
nectionSupport |

Definition of EcucBooleanParamDef CanTpGenericCon-

Parameter Name

CanTpGenericConnectionSupport

Parent Container

CanTpGeneral

Description Enable support for the handling of generic connections using N-SDUs with MetaData.
Requires CanTpDynldSupport.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

Requires CanTpDynldSupport.

]

[ECUC_CanTp_00298] Definition of EcucintegerParamDef CanTpPaddingByte |

Parameter Name

CanTpPaddingByte

Parent Container

CanTpGeneral

Description Used for the initialization of unused bytes with a certain value

Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00330]
NSduSupport |

Definition of EcucBooleanParamDef CanTpPendingTx

Parameter Name

CanTpPendingTxNSduSupport

Parent Container

CanTpGeneral

Description Enable support for handling N-SDU transmissions whose connection channel is
already busy. A pending state will be associated to those kind of N-SDUs and will be
transmitted when the channel is free.

Multiplicity 1

Type EcucBooleanParamDef

Default value

false

V

AUTSSAR

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CanTp_00300] Definition of EcucBooleanParamDef CanTpReadParame-

terApi [
Parameter Name CanTpReadParameterApi
Parent Container CanTpGeneral

Description This parameter, if set to true, enables the CanTp_ReadParameterApi for this module.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CanTp_00283]
Api |

Definition of EcucBooleanParamDef CanTpVersioninfo

Parameter Name

CanTpVersionInfoApi

Parent Container

CanTpGeneral

Description The function CanTp_GetVersionInfo is configurable (On/Off) by this configuration
parameter.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

CanTeGeneralil +parameter CanTpDevErorDetect:
EcucParamConfContainerDef P EcucBooleanParamDef

defaultValue = false

+parameter CanTpVersionIinfoApi:
EcucBooleanParamDet

defaultValue = false

CanTpPaddingByte:
+parameter EcuclintegerParamDef
min =0

max = 255

+parameter CanTpChangeParameterApi:

EcucBooleanParamDef

+parameter| CanTpReadParameterApi:
EcucBooleanParamDef

CanTpDynldSupport:

EcucBooleanParamDef
+parameter ——

lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = false

CanTpGenericConnectionSupport:
+parameter EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = false

CanTpFlexibleDataRateSupport:
+parameter EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = true

CanTpEnableSecurityEventReporting:
+parameter EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1

CanTpEnableSecurityEventRefs:

+subContainer " EeucParamGoniContainerDet

lowerMultiplicity = 0
upperMultiplicity = 1

CanTpPendingTxNSduSupport:
+parameter EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.2: CanTpGeneral configuration overview

10.2.4 CanTpDemEventParameterRefs

[ECUC_CanTp_00307] Definition of EcucParamConfContainerDef CanTpDem
EventParameterRefs |

AUTSSAR

Container Name CanTpDemEventParameterRefs
Parent Container CanTp
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CANTP_E_CANTPNAR_TIMEOUT_OCCURRED 0..1 [ECUC_CanTp_00309]
CANTP_E_CANTPNAS_TIMEOUT_OCCURRED 0..1 [ECUC_CanTp_00308]
CANTP_E_CANTPNBR_TIMEOUT_OCCURRED 0..1 [ECUC_CanTp_00311]
CANTP_E_CANTPNBS_TIMEOUT_OCCURRED 0..1 [ECUC_CanTp_00310]
CANTP_E_CANTPNCR_TIMEOUT OCCURRED 0.1 [ECUC_CanTp_00313]
CANTP_E_CANTPNCS_TIMEOUT_OCCURRED 0..1 [ECUC_CanTp_00312]
CANTP_E_DROPPED_CONSECUTIVE_FRAMES_- 0.1 [ECUC_CanTp_00315]
DETECTED

CANTP_E_FC_OVERFLOW_RECEIVED 0..1 [ECUC_CanTp_00316]
CANTP_E_FC_OVERFLOW_TRANSMITTED 0..1 [ECUC_CanTp_00317]
CANTP_E_SWAPPED CONSECUTIVE_FRAMES - 0.1 [ECUC_CanTp_00314]
RECEIVED

No Included Containers

]

[ECUC_CanTp_00309] Definition of EcucReferenceDef CANTP_E_CANTPNAR_
TIMEOUT_OCCURRED |

Parameter Name CANTP_E_CANTPNAR_TIMEOUT_OCCURRED
Parent Container CanTpDemEventParameterRefs
Description A Reference to DemEventParameter element which shall be invoked using the API

Dem_SetEventStatus in case CANTP_E_CANTPNAR_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter’'s DemEventid
symbolic value.

Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00308] Definition of EcucReferenceDef CANTP_E_CANTPNAS _
TIMEOUT_OCCURRED |

Parameter Name

CANTP_E_CANTPNAS_TIMEOUT_OCCURRED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_CANTPNAS_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter’s DemEventld
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00311] Definition of EcucReferenceDef CANTP_E_CANTPNBR_
TIMEOUT_OCCURRED |

Parameter Name

CANTP_E_CANTPNBR_TIMEOUT_OCCURRED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_CANTPNBR_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventid
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_CanTp_00310] Definition of EcucReferenceDef CANTP_E_CANTPNBS _
TIMEOUT_OCCURRED |

Parameter Name

CANTP_E_CANTPNBS_TIMEOUT_OCCURRED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_CANTPNBS_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventid
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00313] Definition of EcucReferenceDef CANTP_E_CANTPNCR_
TIMEOUT_OCCURRED |

Parameter Name

CANTP_E_CANTPNCR_TIMEOUT_OCCURRED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_CANTPNCR_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventid
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_CanTp_00312] Definition of EcucReferenceDef CANTP_E_CANTPNCS_
TIMEOUT_OCCURRED |

Parameter Name

CANTP_E_CANTPNCS_TIMEOUT_OCCURRED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_CANTPNCS_TIMEOUT_OCCURRED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventid
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00315] Definition of EcucReferenceDef CANTP_E_DROPPED _
CONSECUTIVE_FRAMES_DETECTED |

Parameter Name

CANTP_E_DROPPED_CONSECUTIVE_FRAMES_DETECTED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_DROPPED_CONSECUTIVE_FRAMES
DETECTED error occurs. The Eventld is taken from the referenced DemEvent
Parameter's DemEventld symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_CanTp_00316]
FLOW_RECEIVED |

Definition of EcucReferenceDef CANTP_E_FC_OVER-

Parameter Name

CANTP_E_FC_OVERFLOW_RECEIVED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E_FC_OVERFLOW_RECEIVED error occurs.
The Eventld is taken from the referenced DemEventParameter's DemEventld symbolic
value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CanTp_00317]
FLOW_TRANSMITTED |

Definition of EcucReferenceDef CANTP_E_FC_OVER-

Parameter Name

CANTP_E_FC_OVERFLOW_TRANSMITTED

Parent Container

CanTpDemEventParameterRefs

Description A Reference to DemEventParameter element which shall be invoked using the API
Dem_SetEventStatus in case CANTP_E FC_OVERFLOW_TRANSMITTED error
occurs. The Eventld is taken from the referenced DemEventParameter's DemEventid
symbolic value.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_CanTp_00314] Definition of EcucReferenceDef CANTP_E_SWAPPED _
CONSECUTIVE_FRAMES_RECEIVED |

Parameter Name CANTP_E_SWAPPED_CONSECUTIVE_FRAMES_RECEIVED
Parent Container CanTpDemEventParameterRefs
Description A Reference to DemEventParameter element which shall be invoked using the API

Dem_SetEventStatus in case CANTP_E_SWAPPED_CONSECUTIVE_FRAMES _
RECEIVED error occurs. The Eventld is taken from the referenced DemEvent
Parameter’s DemEventld symbolic value.

Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

AUTSSAR

CanTpDemEventParameterRefs:

EcucParamConfContainerDef

CANTP_E_CANTPNAS_TIMEOUT_OCCURRED:

lowerMultiplicity = 0
upperMultiplicity = 1

+reference EcucReferenceDef

+reference EcucReferenceDef

DemEventParameter:
EcucParamConfContainerDef

+destination upperMultiplicity = 65535

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

CANTP_E_CANTPNAR_TIMEOUT_OCCURRED:

+reference EcucReferenceDef

+reference EcucReferenceDef

lowerMultiplicity = 1

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

CANTP_E_CANTPNBS_TIMEOUT_ OCCURRED:

+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

CANTP_E_CANTPNBR_TIMEOUT OCCURRED:

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

CANTP_E_CANTPNCS TIMEOUT OCCURRED:

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

CANTP_E_CANTPNCR_TIMEOUT_OCCURRED:

+reference EcucReferenceDef

+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

CANTP_E _SWAPPED_CONSECUTIVE _FRAMES RECEIVED:

+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

CANTP_E _DROPPED_CONSECUTIVE FRAMES DETECTED:

+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

CANTP_E_FC_OVERFLOW_RECEIVED:

+reference EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

CANTP_E_FC_OVERFLOW_TRANSMITTED:

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

(from Dem)

Figure 10.3: CanTpDemEventParameterRefs configuration overview

AUTSSAR

10.2.5 CanTpEnableSecurityEventRefs

[ECUC_CanTp_00319] Definition of EcucParamConfContainerDef CanTpEnable

SecurityEventRefs |

Container Name

CanTpEnableSecurityEventRefs

Parent Container

CanTpGeneral

Description Container for the references to [dsMEvent elements representing the security events
that the CanTp module shall report to the IdsM in case the coresponding security
related event occurs (and if CanTpEnableSecurityEventReporting is set to "true"). The
standardized security events in this container can be extended by vendor-specific
security events.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

SEV_CAN_ERROR_INVALID_FS 0..1 [ECUC_CanTp_00325]
SEV_CAN_ERROR_NO_BUFFER 0..1 [ECUC_CanTp_00324]
SEV_CAN_ERROR_PADDING 0..1 [ECUC_CanTp_00328]
SEV_CAN_ERROR_TIMEOUT_A 0..1 [ECUC_CanTp_00321]
SEV_CAN_ERROR_TIMEOUT_BS 0..1 [ECUC_CanTp_00326]
SEV_CAN_ERROR_TIMEOUT_CR 0..1 [ECUC_CanTp_00322]
SEV_CAN_ERROR_UNEXP_PDU 0..1 [ECUC_CanTp_00327]
SEV_CAN_ERROR_WFT_OVRN 0..1 [ECUC_CanTp_00320]
SEV_CAN_ERROR_WRONG_SN 0..1 [ECUC_CanTp_00323]
SEV_CAN_INVALID_TATYPE 0..1 [ECUC_CanTp_00329]

| No Included Containers

]

[ECUC_CanTp_00325] Definition of EcucReferenceDef SEV_CAN_ERROR_IN-

VALID_FS [

Parameter Name

SEV_CAN_ERROR_INVALID_FS

Parent Container

CanTpEnableSecurityEventRefs

Description Flow Control with invalid Flow Status received.

Multiplicity 0..1

Type Symbolic name reference to I[dsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -

Post-build time -

AUTSSAR

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_CanTp_00324] Definition of EcucReferenceDef SEV_CAN_ERROR_NO_
BUFFER |

Parameter Name

SEV_CAN_ERROR_NO_BUFFER

Parent Container

CanTpEnableSecurityEventRefs

Description Flow Control with OVFLW Flow Status received.

Multiplicity 0..1

Type Symbolic name reference to IdsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CanTp_00328] Definition of EcucReferenceDef SEV_CAN_ERROR_
PADDING [

Parameter Name

SEV_CAN_ERROR_PADDING

Parent Container

CanTpEnableSecurityEventRefs

Description PDU received with a length smaller than 8 bytes (i.e. PdulnfoPtr.SduLength < 8).

Multiplicity 0..1

Type Symbolic name reference to IldsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_CanTp_00321] Definition of EcucReferenceDef SEV_CAN_ERROR_TIME-

OUT A

Parameter Name

SEV_CAN_ERROR_TIMEOUT_A

Parent Container

CanTpEnableSecurityEventRefs

Description N_Ar timeout.

Multiplicity 0..1

Type Symbolic name reference to [dsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CanTp_00326] Definition of EcucReferenceDef SEV_CAN_ERROR_TIME-

OUT BS [

Parameter Name

SEV_CAN_ERROR_TIMEOUT BS

Parent Container

CanTpEnableSecurityEventRefs

Description N_Bs timeout.

Multiplicity 0..1

Type Symbolic name reference to I[dsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CanTp_00322] Definition of EcucReferenceDef SEV_CAN_ERROR_TIME-

OUT CR [

Parameter Name

SEV_CAN_ERROR_TIMEOUT_CR

Parent Container

CanTpEnableSecurityEventRefs

Description N_Cr timeout.
Multiplicity 0..1
Type Symbolic name reference to IdsMEvent

Post-Build Variant Multiplicity

false

\Y%

AUTSSAR

Post-Build Variant Value

false

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00327] Definition of EcucReferenceDef SEV_CAN_ERROR_UN-

EXP_PDU [

Parameter Name

SEV_CAN_ERROR_UNEXP_PDU

Parent Container

CanTpEnableSecurityEventRefs

Description Unexpected protocol data unit received (segmented reception in progress).

Multiplicity 0..1

Type Symbolic name reference to IdsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CanTp_00320] Definition of EcucReferenceDef SEV_CAN_ERROR_WFT_

OVRN [

Parameter Name

SEV_CAN_ERROR_WFT_OVRN

Parent Container

CanTpEnableSecurityEventRefs

Description The Flow Control WAIT frame exceeded the maximum counter N WFTmax received.

Multiplicity 0..1

Type Symbolic name reference to ldsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

[ECUC_CanTp_00323]
WRONG_SN [

Definition of EcucReferenceDef SEV_CAN_ERROR

Parameter Name

SEV_CAN_ERROR_WRONG_SN

Parent Container

CanTpEnableSecurityEventRefs

Description Invalid sequence number value received.

Multiplicity 0..1

Type Symbolic name reference to I[dsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

[ECUC_CanTp_00329]
TATYPE [

Definition of EcucReferenceDef SEV_CAN_INVALID

Parameter Name

SEV_CAN_INVALID_TATYPE

Parent Container

CanTpEnableSecurityEventRefs

Description Multi-frame reception occurs with a handle whose communication type is functional.

Multiplicity 0..1

Type Symbolic name reference to IdsMEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

CanTpEnableSecurityEventRefs: SEV_CAN_ERROR_WFT_OVRN:
EcucParamConfContainerDef +reference EcucReferenceDef

IdsMEvent:
+destination| EcucParamConfContainerDef

lowerMultiplicity = 0 lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity =1 upperMultiplicity = 65535
requiresSymbolicNameValue = true

SEV_CAN_ERROR_TIMEOUT_A:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_TIMEOUT_CR:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_WRONG_SN:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_NO_BUFFER:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_INVALID_FS:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_TIMEOUT_BS:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_UNEXP_PDU:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_ERROR_PADDING:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

SEV_CAN_INVALID_TATYPE:
+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

(from ldsM)

Figure 10.4: CanTpEnableSecurityEventRefs configuration overview

10.2.6 CanTpChannel

[ECUC_CanTp_00288] Definition of EcucParamConfContainerDef CanTpChannel
[

AUTSSAR

Container Name CanTpChannel

Parent Container CanTpConfig

Description This container contains the configuration parameters of the CanTp channel.
Multiplicity 1.*

Post-Build Variant Multiplicity

Multiplicity Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

No Included Parameters

Included Containers

Container Name

Multiplicity

Dependency

CanTpRxNSdu

0.”

The following parameters needs to be configured for each CAN
N-SDU that the CanTp module receives via the CanTpChannel.
This N-SDU produces meta data items of type SOURCE_
ADDRESS_16, TARGET_ADDRESS_16 and ADDRESS_
EXTENSION_S8.

CanTpTxNSdu

The following parameters needs to be configured for each CAN
N-SDU that the CanTp module transmits via the CanTpChannel.
This N-SDU consumes meta data items of type SOURCE_
ADDRESS_16, TARGET_ADDRESS_16 and ADDRESS_
EXTENSION_S8.

AUTSSAR

CanTpRxNSdu: CanTpRxNPdu: CanTpRxNPduRef:
EcucParamConfContainerDef| *subContainer|EcucParamConfContainerDef +reference EcucReferenceDef
+destination .
lowerMultiplicity = 0 upperMultiplicity = 1 upperMultiplicity = 1 - CPd_L:C .
upperMultiplicity = * lowerMultiplicity = 1 JowerMultiplicity = 1 cucParamConfContainerDe
lowerMultiplicity = 0
upperMultiplicity = *
: CanTpTxFcNPdu: CanTpTxFcNPduRef: o
+subContainer | o, paramConfContainerDef| +reference EcucReferenceDef +destination
upperMultiplicity = 1 upperMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 1

CanTpRxNSduRef:

+reference EcucReferenceDef +destination

upperMultiplicity = 1
lowerMultiplicity = 1

+subContainer

CanTpChannel:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+subContainer

CanTpTxNSdu:
EcucParamConfContainerDef

CanTpTxNSduRef:

+reference EcucReferenceDef +destination

lowerMultiplicity = 0 >
upperMultiplicity = * upperMultiplicity = 1
lowerMultiplicity = 1

CanTpRxFcNPduRef: +destination
CanTpRxFcNPdu: EcucReferenceDef

- reference
EcucParamConfContainerDef

+subContainer

upperMultiplicity = 1
upperMultiplicity = 1 lowerMultiplicity = 1 +destination
lowerMultiplicity = 0

CanTpTxNPduRef:

. CanTpTxNPdu: EcucReferenceDef
+subContainer EcucParamConfContainerDef| +reference UpperMultiplicity =K

lowerMultiplicity = 1

upperMultiplicity = 1
lowerMultiplicity = 1

Figure 10.5: CanTpChannel configuration overview

10.2.7 CanTpRxNSdu

[ECUC_CanTp_00137] Definition of EcucParamConfContainerDef CanTpRxNSdu
[

Container Name CanTpRxNSdu
Parent Container CanTpChannel
Description The following parameters needs to be configured for each CAN N-SDU that the CanTp

module receives via the CanTpChannel. This N-SDU produces meta data items of type
SOURCE_ADDRESS_16, TARGET_ADDRESS_16 and ADDRESS_EXTENSION_8.

Multiplicity 0..”
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE

Link time -

AUTSSAR

A

Post-build time | X | VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanTpBs 0..1 [ECUC_CanTp_00276]
CanTpNar 0..1 [ECUC_CanTp_00277]
CanTpNbr 0..1 [ECUC_CanTp_00245]
CanTpNcr 0..1 [ECUC_CanTp_00279]
CanTpRxAddressingFormat 1 [ECUC_CanTp_00281]
CanTpRxNSduld 1 [ECUC_CanTp_00301]
CanTpRxPaddingActivation 1 [ECUC_CanTp_00249]
CanTpRxTaType 1 [ECUC_CanTp_00250]
CanTpRxWftMax 0..1 [ECUC_CanTp_00251]
CanTpSTmin 0..1 [ECUC_CanTp_00252]
CanTpRxNSduRef 1 [ECUC_CanTp_00241]

Included Containers

Container Name Multiplicity

Dependency

CanTpNAe 0..1

This container is required for each RxNSdu and TxNSdu with
AddressingFormat CANTP_MIXED or CANTP_MIXED29BIT.

CanTpNSa 0..1

This container is required for each RxNSdu and TxNSdu with Rx
TaType CANTP_PHYSICAL and CanTpAddressingFormat
CANTP_EXTENDED. When DynldSupport is enabled, this
container is also required for each TxNSdu with Addressing
Format CANTP_NORMALFIXED or CANTP_MIXED29BIT.
When DynldSupport is enabled and GenericConnectionSupport
is not enabled, this container is also required for each RxNSdu
with AddressingFormat CANTP_NORMALFIXED or CANTP_
MIXED29BIT.

CanTpNTa 0..1

This container is required for each RxNSdu and TxNSdu with
AddressingFormat CANTP_EXTENDED. When DynldSupport is
enabled, this container is also required for each RxNSdu with
AddressingFormat CANTP_NORMALFIXED or CANTP_
MIXED29BIT. When DynldSupport is enabled and Generic
ConnectionSupport is not enabled, this container is also required
for each TxNSdu with AddressingFormat CANTP_
NORMALFIXED or CANTP_MIXED29BIT.

CanTpRxNPdu 1

Used for grouping of the ID of a PDU and the Reference to a
PDU. This N-PDU consumes a meta data item of type CAN_ID_
32.

CanTpTxFcNPdu 0..1

Used for grouping of the ID of a PDU and the Reference to a
PDU. This N-PDU produces a meta data item of type CAN_ID_
32.

AUTSSAR

[ECUC_CanTp_00276] Definition of EcuclntegerParamDef CanTpBs |

Parameter Name

CanTpBs

Parent Container

CanTpRxNSdu

Description Sets the number of N-PDUs the CanTp receiver allows the sender to send, before
waiting for an authorization to continue transmission of the following N-PDUs.For
further details on this parameter value see ISO 15765-2 specification.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0..255

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

[ECUC_CanTp_00277] Definition of EcucFloatParamDef CanTpNar |

Parameter Name

CanTpNar

Parent Container

CanTpRxNSdu

Description Value in seconds of the N_Ar timeout. N_Ar is the time for transmission of a CAN frame
(any N_PDU) on the receiver side.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_CanTp_00245] Definition of EcucFloatParamDef CanTpNbr |

Parameter Name

CanTpNbr

Parent Container

CanTpRxNSdu

Description Value in seconds of the performance requirement for (N_Br + N_Ar). N_Br is the
elapsed time between the receiving indication of a FF or CF or the transmit
confirmation of a FC, until the transmit request of the next FC.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanTp_00279] Definition of EcucFloatParamDef CanTpNcr |

Parameter Name

CanTpNcr

Parent Container

CanTpRxNSdu

Description Value in seconds of the N_Cr timeout. N_Cr is the time until reception of the next
Consecutive Frame N_PDU.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanTp_00281] Definition of EcucEnumerationParamDef CanTpRxAd-
dressingFormat |

Parameter Name CanTpRxAddressingFormat

CanTpRxNSdu

Declares which communication addressing mode is supported for this RxNSdu.
Definition of Enumeration values: CanTpStandard to use normal addressing format.
CanTpExtended to use extended addressing format. CanTpMixed to use mixed 11 bit
addressing format. CanTpNormalFixed to use normal fixed addressing format. CanTp
Mixed29Bit to use mixed 29 bit addressing format.

Y%

Parent Container

Description

AUTSSAR

A
Multiplicity 1
Type EcucEnumerationParamDef
Range CANTP_EXTENDED Extended addressing format

CANTP_MIXED

Mixed 11 bit addressing format

CANTP_MIXED29BIT

Mixed 29 bit addressing format

CANTP_NORMALFIXED

Normal fixed addressing format

CANTP_STANDARD

Normal addressing format

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00301] Definition of EcucintegerParamDef CanTpRxNSduld |

Parameter Name CanTpRxNSduld

Parent Container CanTpRxNSdu

Description Unique identifier user by the upper layer to call CanTp_CancelReceive, CanTp_
ChangeParameter and CanTp_ReadParameter.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_CanTp_00249]
PaddingActivation |

Definition of EcucEnumerationParamDef CanTpRx

Parameter Name

CanTpRxPaddingActivation

Parent Container

CanTpRxNSdu

Description

Defines if the received frame uses padding or not. This parameter is restricted to 8
bytes N-PDUs.

Definition of enumeration values:

CanTpOn: The N-PDU received uses padding for SF, FC and the last CF. (N-PDU
length is always >= 8 bytes in case of CAN 2.0)

CanTpOff: The N-PDU received does not use padding for SF, FC and the last CF.
(N-PDU length is dynamic - any valid DLC value). Note: The mandatory mapping to the
next higher valid DLC value for N-PDUs with a length > 8 bytes is not affected by this
parameter.

Multiplicity

1

Type

EcucEnumerationParamDef

Range

CANTP_OFF

| Padding is not used

\Y%

AUTSSAR

A
CANTP_ON ‘ Padding is used
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanTp_00250] Definition of EcucEnumerationParamDef CanTpRxTaType

[

Parameter Name

CanTpRxTaType

Parent Container

CanTpRxNSdu

Description Declares the communication type of this Rx N-SDU.
Multiplicity 1

Type EcucEnumerationParamDef

Range CANTP_FUNCTIONAL Functional request type

CANTP_PHYSICAL

Physical request type

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

]

[ECUC_CanTp_00251] Definition of EcucintegerParamDef CanTpRxWftMax |

Parameter Name

CanTpRxWftMax

Parent Container

CanTpRxNSdu

Description This parameter indicates how many Flow Control wait N-PDUs can be consecutively
transmitted by the receiver. It is local to the node and is not transmitted inside the FC
protocol data unit.

CanTpRxWftMax is used to avoid sender nodes being potentially hooked-up in case of
a temporarily reception inability on the part of the receiver nodes, whereby the sender
could be waiting continuously.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time

Post-build time

X VARIANT-POST-BUILD

AUTSSAR

| Dependency

]

[ECUC_CanTp_00252] Definition of EcucFloatParamDef CanTpSTmin |

Parameter Name

CanTpSTmin

Parent Container

CanTpRxNSdu

Description Sets the duration of the minimum time the CanTp sender shall wait between the
transmissions of two CF N-PDUs.
For further details on this parameter value see ISO 15765-2 specification.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanTp_00241] Definition of EcucReferenceDef CanTpRxNSduRef |

Parameter Name

CanTpRxNSduRef

Parent Container

CanTpRxNSdu

Description Reference to a Pdu in the COM-Stack.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

CanTpChannel:

EcucParamConfContainerDef CanToRxNPduld:
lowerMultiplicity = 1 CanTpRxNPdu: EcucintegerParamDef

EcucParamConfContainerDef +parameter min =0
max = 65535
withAuto = true

symbolicNameValue = true

upperMultiplicity = *

upperMultiplicity = 1
lowerMultiplicity = 1

+subContainer

CanTpRxNSdu: +subContaine +reference CanTpRxNPduRef:
EcucParamConfContainerDef ® o EcucReferenceDef
lowerMultiplicity = 0 upperMultiplicity = 1
upperMultiplicity = * lowerMultiplicity = 1
CanTpTxFcNPdu: +reference)
EcucParamConfContainerDef | CanTpTxFcNPduRef:
EcucReferenceDef
upperMultiplicity = 1 o
+subContainer lowerMultiplicity = 0 upperMultiplicity = 1 —
lowerMultiplicity = 1
. " CanTpTxFcNPduConfirmationPduld:
parameter EcucintegerParamDef
min =0
max = 65535
withAuto = true
CanTpNTa: symbolicNameValue = true
+subContainer EcucParamConfContainerDef
upperMultiplicity = 1 CanTpNAe:
lowerMultiplicity = 0 EcucParamConfContainerDef
+subContainer upperMultiplicity = 1
> lowerMultiplicity = 0
CanTpNSa: +dedtination +destination
+subContainer EcucParamConfContainerDef
> T Pdu:
upperMultiplicity = 1 CanTpRxNSduRef: |4 degination | EcucParamConfContainerDef
lowerMultiplicity = 0 EcucReferenceDef
—— lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *
+reference lowerMultiplicity = 1
‘ (from EcucPdu)
+literal c
CanTpRxTaType: > AN PHYSI.CAL'
o EcucEnumerationLiteralDef
+parameter | EcucEnumerationParamDef
+literal
CANTP_FUNCTIONAL:
EcucEnumerationLiteralDef
+literal CANTP_STANDARD:

CanTpRxAddresingFormat: | @p»————— EcucEnumerationLiteralDef
EcucEnumerationParamDef -

+literal
CANTP_NORMALFIXED:
EcucEnumerationLiteral Def

+parameter P Hiteral CANTP_MIXED29BIT:

EcucEnumerationLiteral Def

+literal CANTP_EXTENDED:

® EcucEnumerationLiteralDef

+literal CANTP_MIXED:
EcucEnumerationLiteralDef

CanTpRxPaddingActivation: | +iteral CANTP_OFF:
+parameter EcucEnumerationParamDef EcucEnumerationLiteralDef

+literal

CANTP_ON:
EcucEnumerationLiteralDef

Figure 10.6: CanTpRxNSdu configuration overview (part 1)

AUTSSAR

Figure 10.7: CanTpRxNSdu configuration overview (part 2)

CanTpBs: EcuclntegerParamDef

lowerMultiplicity = 0
upperMultiplicity = 1
min =0

max = 255

CanTpSTmin:
EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

CanTpRxWftMax:
EcucintegerParamDef

min =0

max = 65535
lowerMultiplicity = 0
upperMultiplicity = 1

CanTpNar: EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

CanTpNbr: EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

CanTpNcr: EcucFloatParamDef

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

CanTpRxNSduld:
EcucintegerParamDef

min =0

max = 65535

withAuto = true
symbolicNameValue = true

10.2.8 CanTpTxFcNPdu

[ECUC_CanTp_00259] Definition of EcucParamConfContainerDef CanTpTxFc

NPdu |

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

CanTpChannel:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+waontainex

CanTpRxNSdu:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Container Name

CanTpTxFcNPdu

Parent Container

CanTpRxNSdu

Description Used for grouping of the ID of a PDU and the Reference to a PDU. This N-PDU
produces a meta data item of type CAN_ID_32.
Multiplicity 0..1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID
CanTpTxFcNPduConfirmationPduld 1 [ECUC_CanTp_00287]
CanTpTxFcNPduRef 1 [ECUC_CanTp_00260]

| No Included Containers

]

[ECUC_CanTp_00287] Definition of EcucintegerParamDef CanTpTxFcNPduCon-

firmationPduld |

Parameter Name

CanTpTxFcNPduConfirmationPduld

Parent Container

CanTpTxFcNPdu

Description Handle Id to be used by the LSduR to confirm the transmission of the CanTpTxFcNPdu
to the LSduR module.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

withAuto = true

]

[ECUC_CanTp_00260] Definition of EcucReferenceDef CanTpTxFcNPduRef |

Parameter Name CanTpTxFcNPduRef

Parent Container CanTpTxFcNPdu

Description Reference to a Pdu in the COM-Stack.
Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.9 CanTpRxNPdu

[ECUC_CanTp_00256] Definition of EcucParamConfContainerDef CanTpRxNPdu

[

AUTSSAR

Container Name

CanTpRxNPdu

Parent Container

CanTpRxNSdu

Description

Used for grouping of the ID of a PDU and the Reference to a PDU. This N-PDU
consumes a meta data item of type CAN_ID_32.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanTpRxNPduld 1 [ECUC_CanTp_00258]
CanTpRxNPduRef 1 [ECUC_CanTp_00257]

No Included Containers

]

[ECUC_CanTp_00258] Definition of EcuclintegerParamDef CanTpRxNPduld |

Parameter Name

CanTpRxNPduld

Parent Container

CanTpRxNPdu

Description The N-PDU identifier attached to the RxNsdu is identified by CanTpRxNSduld.
Each RxNsdu identifier is linked to only one SF/FF/CF N-PDU identifier. Nevertheless,
in the case of extended or mixed addressing format, the same N-PDU identifier can be
used for several N-SDU identifiers. The distinction is made by the N_TA or N_AE value
(first data byte of SF or FF frames).

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_CanTp_00257] Definition of EcucReferenceDef CanTpRxNPduRef |

Parameter Name

CanTpRxNPduRef

Parent Container

CanTpRxNPdu

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.2.10 CanTpTxNSdu

[ECUC_CanTp_00138] Definition of EcucParamConfContainerDef CanTpTxNSdu

[

Container Name

CanTpTxNSdu

Parent Container

CanTpChannel

Description The following parameters needs to be configured for each CAN N-SDU that the CanTp
module transmits via the CanTpChannel. This N-SDU consumes meta data items of
type SOURCE_ADDRESS_16, TARGET_ADDRESS_16 and ADDRESS_
EXTENSION_S.

Multiplicity 0..”

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanTpNas 1 [ECUC_CanTp_00263]

CanTpNbs 0..1 [ECUC_CanTp_00264]

CanTpNcs 0..1 [ECUC_CanTp_00265]

CanTpTc 1 [ECUC_CanTp_00282]

CanTpTxAddressingFormat 1 [ECUC_CanTp_00262]

CanTpTxNSduld 1 [ECUC_CanTp_00268]

CanTpTxPaddingActivation 1 [ECUC_CanTp_00269]

CanTpTxTaType 1 [ECUC_CanTp_00270]

CanTpTxNSduRef 1 [ECUC_CanTp_00261]

Included Containers

Container Name Multiplicity Dependency

CanTpNAe 0..1 This container is required for each RxNSdu and TxNSdu with
AddressingFormat CANTP_MIXED or CANTP_MIXED29BIT.

CanTpNSa 0..1 This container is required for each RxNSdu and TxNSdu with Rx
TaType CANTP_PHYSICAL and CanTpAddressingFormat
CANTP_EXTENDED. When DynldSupport is enabled, this
container is also required for each TxNSdu with Addressing
Format CANTP_NORMALFIXED or CANTP_MIXED29BIT.
When DynldSupport is enabled and GenericConnectionSupport
is not enabled, this container is also required for each RxNSdu
with AddressingFormat CANTP_NORMALFIXED or CANTP_
MIXED29BIT.

CanTpNTa 0..1 This container is required for each RxNSdu and TxNSdu with
AddressingFormat CANTP_EXTENDED. When DynldSupport is
enabled, this container is also required for each RxNSdu with
AddressingFormat CANTP_NORMALFIXED or CANTP_
MIXED29BIT. When DynldSupport is enabled and Generic
ConnectionSupport is not enabled, this container is also required
for each TxNSdu with AddressingFormat CANTP_
NORMALFIXED or CANTP_MIXED29BIT.

Y%

AUTSSAR

A
Included Containers
Container Name Multiplicity Dependency
CanTpRxFcNPdu 0..1 Used for grouping of the ID of a PDU and the Reference to a
PDU. This N-PDU consumes a meta data item of type CAN_ID_
32.
CanTpTxNPdu 1 Used for grouping of the ID of a PDU and the Reference to a

PDU. This N-PDU produces a meta data item of type CAN_ID_
32.

]

[ECUC_CanTp_00263] Definition of EcucFloatParamDef CanTpNas |

Parameter Name

CanTpNas

Parent Container

CanTpTxNSdu

Description Value in second of the N_As timeout. N_As is the time for transmission of a CAN frame
(any N_PDU) on the part of the sender.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanTp_00264] Definition of EcucFloatParamDef CanTpNbs |

Parameter Name

CanTpNbs

Parent Container

CanTpTxNSdu

Description Value in seconds of the N_Bs timeout. N_Bs is the time of transmission until reception
of the next Flow Control N_PDU.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time

Post-build time

X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_CanTp_00265] Definition of EcucFloatParamDef CanTpNcs |

Parameter Name

CanTpNcs

Parent Container

CanTpTxNSdu

Description Value in seconds of the performance requirements relating to N_Cs. CanTpNcs is the
time in which CanTp is allowed to request from PduR the Tx data of a Consecutive
Frame N_PDU.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF]

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanTp_00282] Definition of EcucBooleanParamDef CanTpTc |

Parameter Name

CanTpTc

Parent Container

CanTpTxNSdu

Description Switch for enabling Transmit Cancellation.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_CanTp_00262]
dressingFormat |

Definition of EcucEnumerationParamDef CanTpTxAd-

Parameter Name

CanTpTxAddressingFormat

Parent Container

CanTpTxNSdu

Description Declares which communication addressing format is supported for this TxNSdu.
Definition of Enumeration values: CanTpStandard to use normal addressing format.
CanTpExtended to use extended addressing format. CanTpMixed to use mixed 11 bit
addressing format. CanTpNormalFixed to use normal fixed addressing format. CanTp
Mixed29Bit to use mixed 29 bit addressing format.

Multiplicity 1

Type EcucEnumerationParamDef

V

AUTSSAR

A

Range

CANTP_EXTENDED

Extended addressing format

CANTP_MIXED

Mixed 11 bit addressing format

CANTP_MIXED29BIT

Mixed 29 bit addressing format

CANTP_NORMALFIXED

Normal fixed addressing format

CANTP_STANDARD

Normal addressing format

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_CanTp_00268] Definition of EcucintegerParamDef CanTpTxNSduld |

Parameter Name

CanTpTxNSduld

Parent Container

CanTpTxNSdu

Description Unique identifier to a structure that contains all useful information to process the
transmission of a TxNsdu.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_CanTp_00269]
PaddingActivation |

Definition of EcucEnumerationParamDef CanTpTx

Parameter Name

CanTpTxPaddingActivation

Parent Container

CanTpTxNSdu

Description

Defines if the transmit frame use padding or not. This parameter is restricted to 8 byte
N-PDUs.

Definition of Enumeration values:

CanTpOn The transmit N-PDU uses padding for SF, FC and the last CF. (N-PDU length
is always 8 bytes in case of CAN 2.0)

CanTpOff The transmit N-PDU does not use padding for SF, CF and the last CF.
(N-PDU length is dynamic - any valid DLC value). Note: The mandatory mapping to the
next higher valid DLC value for N-PDUs with a length > 8 bytes is not affected by this
parameter.

Multiplicity

1

Type

EcucEnumerationParamDef

Range

CANTP_OFF Padding is not used

CANTP_ON Padding is used

Post-Build Variant Value

true

AUTSSAR

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]

[ECUC_CanTp_00270] Definition of EcucEnumerationParamDef CanTpTxTaType
[

Parameter Name CanTpTxTaType
Parent Container CanTpTxNSdu
Description Declares the communication type of this TxNsdu.

Enumeration values: CanTpPhysical. Used for 1:1 communication. CanTpFunctional.
Used for 1:n communication.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTP_FUNCTIONAL Functional request type
CANTP_PHYSICAL Physical request type

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
[ECUC_CanTp_00261] Definition of EcucReferenceDef CanTpTxNSduRef |

Parameter Name CanTpTxNSduRef

Parent Container CanTpTxNSdu

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

CanTpChannel: CanTpTxNPduRef:
EcucParamConfContainerDef CanTpTxNPdu: +reference EcucReferenceDef

lowerMultiplicity = 1 EcicRammEoniEoniaineref upperMultiplicity = 1

upperMultiplicity = * upperMultiplicity = 1 lowerMultiplicity = 1
lowerMultiplicity = 1

+parameter CanTpTxNPduConfirmationPduld:
+subContainer e EcucintegerParamDef
+subContainer - 0
min =
CanTpTxNSdu: D oE— v = (e

EcucParamConfContainerDef withAuto = true

symbolicNameValue = true

lowerMultiplicity = 0
upperMultiplicity = *

CanTpRxFcNPduld:

CanTpRxFcNPdu: EcucintegerParamDef
EcucParamConfContainerDef +parameter o6
+subContainer upperMultiplicity = 1 max = 65535
lowerMultiplicity = 0 withAuto = true
symbolicNameValue = true
+reference
CanTpRxFcNPduRef:
EcucReferenceDef
CanTpNTa: upperMultiplicity = 1
+subContainer| EcucParamConfContainerDef lowerMultiplicity = 1

upperMultiplicity = 1
lowerMultiplicity = 0 CanTpNAe:
+subContainer| EcucParamConfContainerDef

>
upperMultiplicity = 1
CanTpNSa: lowerMultiplicity = 0
+subContainer| EcucParamConfContainerDef
upperMultiplicity = 1
lowerMultiplicity = 0 .
+parameter CanTpTc: EcucBooleanParamDef
>
CanTpTxNSduRef:
+reference EcucReferenceDef
upperMultiplicity = 1 CanTpNcs: EcucFloatParamDef
lowerMultiplicity = 1 =0
+parameter
‘ max = INF
lowerMultiplicity = 0
+parameter| CanTpNas: EcucFloatParamDef upperMultiplicity = 1
min =0
max = INF +parameter| canTpNbs: EcucFloatParamDef
>
min =0
CanTpTxNSduld: max = INF
EcucintegerParamDef lowerMultiplicity = 0
+parameter N
=0 upperMultiplicity = 1
max = 65535
withAuto = true
symbolicNameValue = true
+literal CANTP_ON:
. o "€l EcucEnumerationLiteral Def
CanTpTxPaddingActivation: >
+parameter EcucEnumerationParamDef
+literal CANTP_OFF:
EcucEnumerationLiteral Def
+literal
CanToTxTaTyne: e8| CANTP_PHYSICAL:
p ype: > —
+parameter| EcucEnumerationParamDef EcucEnumerationLiteral Def
P Hliteral | CANTP_FUNCTIONAL:
EcucEnumerationLiteral Def
+literal .
Q . CANTP_STANDARD:
Canil TxAddregsun ormaty g EcucEnumerationLiteralDef
EcucEnumerationParamDef | +literal .
gt EcucEnumerationLiteralDef
+parameter +literal CANTP_EXTENDED:
EcucEnumerationLiteralDef
+literal
‘ CANTP_NORMALFIXED:
EcucEnumerationLiteralDef
+literal CANTP_MIXED29BIT:

EcucEnumerationLiteral Def

Figure 10.8: CanTpTxNSdu configuration overview

AUTSSAR

10.2.11 CanTpTxNPdu

[ECUC_CanTp_00274] Definition of EcucParamConfContainerDef CanTpTxNPdu

[

Container Name

CanTpTxNPdu

Parent Container

CanTpTxNSdu

Description

Used for grouping of the ID of a PDU and the Reference to a PDU. This N-PDU
produces a meta data item of type CAN_ID_32.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanTpTxNPduConfirmationPduld 1 [ECUC_CanTp_00286]
CanTpTxNPduRef 1 [ECUC_CanTp_00275]

| No Included Containers

]

[ECUC_CanTp_00286] Definition of EcuclntegerParamDef CanTpTxNPduConfir-

mationPduld |

Parameter Name

CanTpTxNPduConfirmationPduld

Parent Container

CanTpTxNPdu

Description Handle Id to be used by the LSduR to confirm the transmission of the CanTpTxNPdu to
the LSduR module.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0.. 65535

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_CanTp_00275] Definition of EcucReferenceDef CanTpTxNPduRef |

Parameter Name

CanTpTxNPduRef

Parent Container

CanTpTxNPdu

Description Reference to a Pdu in the COM-Stack.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time ‘ X ‘ VARIANT-PRE-COMPILE

Y%

AUTSSAR

Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.12 CanTpRxFcNPdu

[ECUC_CanTp_00271] Definition of EcucParamConfContainerDef CanTpRxFc
NPdu |

Container Name CanTpRxFcNPdu

Parent Container CanTpTxNSdu

Description Used for grouping of the ID of a PDU and the Reference to a PDU. This N-PDU
consumes a meta data item of type CAN_ID_32.

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanTpRxFcNPduld 1 [ECUC_CanTp_00273]
CanTpRxFcNPduRef 1 [ECUC_CanTp_00272]

| No Included Containers

]

[ECUC_CanTp_00273] Definition of EcucintegerParamDef CanTpRxFcNPduld |
Parameter Name CanTpRxFcNPduld

Parent Container CanTpRxFcNPdu
Description N-PDU identifier attached to the FC N-PDU of this TxNsdu identified by CanTpTxNSdu
Id.

Each TxNsdu identifier is linked to one Rx FC N-PDU identifier only. However, in the
case of extended addressing format, the same FC N-PDU identifier can be used for
several N-SDU identifiers. The distinction is made by means of the N_TA value (first
data byte of FC frames).

Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency withAuto = true

AUTSSAR

[ECUC_CanTp_00272] Definition of EcucReferenceDef CanTpRxFcNPduRef |

Parameter Name

CanTpRxFcNPduRef

Parent Container

CanTpRxFcNPdu

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.13 CanTpNTa

[ECUC_CanTp_00139] Definition of EcucParamConfContainerDef CanTpNTa |

Container Name

CanTpNTa

Parent Container

CanTpRxNSdu, CanTpTxNSdu

Description

This container is required for each RxNSdu and TxNSdu with AddressingFormat
CANTP_EXTENDED. When DynldSupport is enabled, this container is also required
for each RxNSdu with AddressingFormat CANTP_NORMALFIXED or CANTP_
MIXED29BIT. When DynldSupport is enabled and GenericConnectionSupport is not
enabled, this container is also required for each TxNSdu with AddressingFormat
CANTP_NORMALFIXED or CANTP_MIXED29BIT.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

CanTpNTa

1 [ECUC_CanTp_00255]

No Included Containers

]

[ECUC_CanTp_00255] Definition of EcucintegerParamDef CanTpNTa |

Parameter Name

CanTpNTa

Parent Container

CanTpNTa

Description This parameter contains the transport protocol target address value.
Multiplicity 1

Type EcuclntegerParamDef

Range 0. 255 |

Default value -

Post-Build Variant Value false

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

10.2.14 CanTpNSa

[ECUC_CanTp_00253] Definition of EcucParamConfContainerDef CanTpNSa |

Container Name

CanTpNSa

Parent Container

CanTpRxNSdu, CanTpTxNSdu

Description

This container is required for each RxNSdu and TxNSdu with RxTaType CANTP_
PHYSICAL and CanTpAddressingFormat CANTP_EXTENDED. When DynldSupport is
enabled, this container is also required for each TxNSdu with AddressingFormat
CANTP_NORMALFIXED or CANTP_MIXED29BIT. When DynldSupport is enabled
and GenericConnectionSupport is not enabled, this container is also required for each
RxNSdu with AddressingFormat CANTP_NORMALFIXED or CANTP_MIXED29BIT.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

CanTpNSa

1 [ECUC_CanTp_00254]

| No Included Containers

]

[ECUC_CanTp_00254] Definition of EcucintegerParamDef CanTpNSa |

Parameter Name

CanTpNSa

Parent Container

CanTpNSa

Description This parameter contains the transport protocol source address value.
Multiplicity 1
Type EcuclntegerParamDef
Range 0..255
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

10.2.15 CanTpNAe

[ECUC_CanTp_00284] Definition of EcucParamConfContainerDef CanTpNAe [

Container Name

CanTpNAe

Parent Container

CanTpRxNSdu, CanTpTxNSdu

Description This container is required for each RxNSdu and TxNSdu with AddressingFormat
CANTP_MIXED or CANTP_MIXED29BIT.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

CanTpNAe

1

[ECUC_CanTp_00285]

No Included Containers

]

[ECUC_CanTp_00285] Definition of EcuclntegerParamDef CanTpNAe |

Parameter Name

CanTpNAe

Parent Container

CanTpNAe

Description This parameter contains the transport protocol address extension value.
Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

CanTpRxNSdu: EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer +subContainer +subContainer
CanTpNTa: CanTpNAe: CanTpNSa:
EcucParamConfContainerDef| EcucParamConfContainerDef EcucParamConfContainerDef|
upperMultiplicity = 1 upperMultiplicity = 1 upperMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 0 lowerMultiplicity = 0
+subContainer +subContainer +subContainer
+parameter +parameter +parameter
CanTpNTa: CanTpNAe: CanTpNSa:
EcucintegerParamDef EcucintegerParamDef EcucintegerParamDef
min =0 min =0 min =0
max = 255 max = 255 max = 255

]]]

CanTpTxNSdu: EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.9: CanTpNTa, CanTpNSa and CanTpNAe configuration overview

10.3 Published Information

For details refer to [4] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_CanTp_NA_00327]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_
00170, SRS_BSW_00419, SRS_BSW_00383, SRS_BSW_00397,
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_
00375, SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423,
SRS _BSW_00427, SRS _BSW_00428, SRS _BSW_00429, SRS BSW_
00432, SRS_BSW 00433, SRS_BSW_00422, SRS _BSW_00417,
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00415, SRS_BSW_
00325, SRS_BSW_00342, SRS_BSW_00413, SRS_BSW_00347,
SRS_BSW_00307, SRS_BSW_00314, SRS_BSW_00328, SRS_BSW_
00378, SRS BSW 00172, SRS BSW_00010, SRS BSW 00321,
SRS_BSW_00341

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R23-11

B.1.1 Added Specification Iltems in R23-11

[SWS_CanTp_00361] [SWS_CanTp_00362] [SWS_CanTp_00363] [SWS_CanTp_-
00364] [SWS_CanTp_00365] [SWS_CanTp_00366] [SWS_CanTp_00367] [SWS_-
CanTp_00368] [SWS_CanTp_00369] [SWS_CanTp_00370]

B.1.2 Changed Specification Items in R23-11
[SWS_CanTp_00328]

B.1.3 Deleted Specification Iltems in R23-11

none

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11

[ECUC_CanTp_00318] [ECUC_CanTp_00319] [ECUC_CanTp_00320] [ECUC_
CanTp_00321] [ECUC_CanTp_ 00322] [ECUC_CanTp_00323] [ECUC CanTp_
00324] [ECUC_CanTp_00325] [ECUC_CanTp_00326] [ECUC_CanTp_00327]
[ECUC_CanTp_00328] [ECUC_CanTp_00329] [SWS_CanTp_00371] [SWS_CanTp_
00372] [SWS_CanTp_00373] [SWS_CanTp_00374] [SWS_CanTp_00375] [SWS_
CanTp_00376] [SWS_CanTp_00377] [SWS_CanTp_00378] [SWS_CanTp_00379]
[SWS_CanTp_00380] [SWS_CanTp_00381] [SWS_CanTp_00382] [SWS_CanTp_
00383]

AUTSSAR

B.2.2 Changed Specification Items in R24-11

[ECUC_CanTp_00278] [ECUC_CanTp_00286] [ECUC_CanTp_00287] [SWS_-
CanTp_00031] [SWS_CanTp_00166] [SWS_CanTp_00209] [SWS_CanTp_00216]
[SWS_CanTp_00217] [SWS_CanTp_00332] [SWS_CanTp_00335] [SWS_CanTp_
00342] [SWS_CanTp_00343] [SWS_CanTp_00348] [SWS_CanTp_00351]

B.2.3 Deleted Specification Items in R24-11
[SWS_CanTp_00176]

B.3 Traceable item history of this document according to
AUTOSAR Release R25-11

B.3.1 Added Specification Items in R25-11

[ECUC_CanTp_00330] [SWS_CanTp_00384] [SWS_CanTp_00385] [SWS_CanTp._-
00386] [SWS_CanTp_00387] [SWS_CanTp_00388] [SWS_CanTp_00389]

B.3.2 Changed Specification ltems in R25-11
[ECUC_CanTp_00278]

B.3.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability in automotive domain

	5 Dependencies to other modules
	5.1 AUTOSAR architecture basic concepts
	5.1.1 CAN Transport Layer connection(s)
	5.1.2 CAN Transport Layer interactions
	5.1.3 Processing mode
	5.1.4 Data consistency
	5.1.5 Static configuration
	5.1.6 PDU Router services
	5.1.7 L-SDU Router services

	5.2 File structure
	5.2.1 Code file structure
	5.2.2 Header file structure
	5.2.3 Version check
	5.2.4 Design Rules

	6 Requirements Tracing
	7 Functional specification
	7.1 Services provided to upper layer
	7.1.1 Initialization and shutdown
	7.1.2 Transmit request
	7.1.3 Transmit cancellation

	7.2 Services provided to the lower layer
	7.2.1 Transmit confirmation
	7.2.2 Reception indication
	7.2.3 Pending Tx N-SDUs

	7.3 Internal behavior
	7.3.1 N-SDU Reception
	7.3.2 N-SDU Transmission
	7.3.3 Buffer strategy
	7.3.4 Protocol parameter setting services
	7.3.5 Tx and Rx data flow
	7.3.6 Relationship between CAN NSduId and CAN LSduId
	7.3.7 Concurrent connection
	7.3.8 N-PDU padding
	7.3.9 Handling of unexpected N-PDU arrival

	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors

	7.5 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanTp_ConfigType

	8.3 Function definitions
	8.3.1 CanTp_Init
	8.3.2 CanTp_ GetVersionInfo
	8.3.3 CanTp_Shutdown
	8.3.4 CanTp_Transmit
	8.3.5 CanTp_CancelTransmit
	8.3.6 CanTp_CancelReceive
	8.3.7 CanTp_ChangeParameter
	8.3.8 CanTp_ReadParameter
	8.3.9 Main Function

	8.4 Callback notifications
	8.4.1 CanTp_RxIndication
	8.4.2 CanTp_TxConfirmation

	8.5 Expected interfaces
	8.5.1 Mandatory Interfaces
	8.5.2 Optional Interfaces

	9 Sequence diagrams
	9.1 SF N-SDU received and no buffer available.
	9.1.1 Assumptions
	9.1.2 Sequence diagram
	9.1.3 Transition description

	9.2 Successful SF N-PDU reception
	9.2.1 Assumptions
	9.2.2 Sequence diagram
	9.2.3 Transition description

	9.3 Transmit request of SF N-SDU
	9.3.1 Assumptions
	9.3.2 Sequence diagram
	9.3.3 Transition description

	9.4 Transmit request of larger N-SDU
	9.4.1 Assumptions
	9.4.2 Sequence diagram
	9.4.3 Transition description

	9.5 Large N-SDU Reception
	9.5.1 Assumptions
	9.5.2 Sequence diagram
	9.5.3 Transition description

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanTp
	10.2.2 CanTpConfig
	10.2.3 CanTpGeneral
	10.2.4 CanTpDemEventParameterRefs
	10.2.5 CanTpEnableSecurityEventRefs
	10.2.6 CanTpChannel
	10.2.7 CanTpRxNSdu
	10.2.8 CanTpTxFcNPdu
	10.2.9 CanTpRxNPdu
	10.2.10 CanTpTxNSdu
	10.2.11 CanTpTxNPdu
	10.2.12 CanTpRxFcNPdu
	10.2.13 CanTpNTa
	10.2.14 CanTpNSa
	10.2.15 CanTpNAe

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R25-11
	B.3.1 Added Specification Items in R25-11
	B.3.2 Changed Specification Items in R25-11
	B.3.3 Deleted Specification Items in R25-11

