AUTSSAR

Document Title Specification of CAN State
Manager

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 253

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* APl Harmonization
AUTOSAR :
2025-11-27 R25-11 Release Bus-Off delay adaption for SAE
J1939-81
Management
« Editorial changes
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
* Support for selective WakeUp via
CAN-Controller
AUTOSAR . Clarification ?f "Available via:
2023-11-23 | R23-11 | Release Configurable
Management « Added SWS IDs for "mandatory
interfaces" & "optional interfaces
« Editorial changes
AUTOSAR . .
5022-11-24 | R22-11 Release . C.c;?gng_dcla\;lﬂrge_llf’lerlo;ngc;or replaced
Management with ComTxModeTimePerio
* Note added for
CanSM_TransceiverModelndication()
AUTOSAR « Communication mode notification to
2021-11-25 | R21-11 Release ComM after initialization clarified
Management ) )
* Clean-up in CANSM_BSM regarding
REPEAT_MAX / No Never-Give-Up
Strategy




AUTSSAR

AUTOSAR « Pretended Networking removed
2020-11-30 | R20-11 Release o
Management « Editorial changes
* Fixed Change_Baudrate-Statemachine
for NoCom
» Added GetPduMode-Interface to list
AUTOSAR
2019-11-28 R19-11 Release * Inconsistent behavior due to
Management REPEAT_MAX / No Never-Give-Up
Strategy fixed
» Changed Document Status from Final to
published
AUTOSAR « Reclassification of some errors
2018-30-31 4.4.0 Release
Management « Editorial Changes
AUTOSAR * Moved
2017-12-08 | 4.3.1 Release CANSM_E_MODE_REQUEST_TIMEOUT
Management to Runtime Error
* Provide Delnit-API
AUTOSAR
2016-11-30 | 4.3.0 Release * ECU passive mode clarified and fixed
Management o
« Editorial changes
» Development Error Tracer replaced with
Default Error Tracer
AUTOSAR * Bus-off recovery time dependencies
2015-07-31 422 Release o )
specified more precisely
Management
+ Optional interface to check and to
change baudrate removed
 API for ECU passive mode activation
» Baudrate change without reinitialisation,
2014-10-31 | 4.2.1 Release « Interface handling to Canlf module
Management

improved

* Interface handling to ComM module
improved




AUTSSAR

2014-03-31

AUTOSAR
Release
Management

* Introduction of random delays
* Re-Request of ComMode

» WakeupValidation to avoid race
conditions

 Adapt Bus Off Recovery and NM state
synchronization

2013-10-31

AUTOSAR
Release
Management

* Dependency to DCM module removed

* Mileading timing row removed in
CanSM_MainFunction

« Editorial changes

* Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

» Support Pretended Networking mode
handling

» Changed concept to setup baudrate

* Initialization Sequence between ComM
and CanSM

* Do not send WUF as First Message on
the Bus after BusOff

» CanSm_TxTimeoutExeption in case of
BusOff

2011-12-22

4.0.3

AUTOSAR
Administration

» Added new handling to support partial
networking

» Changed handling for bus deinitialisation
according to AR3.x behaviour

* New API and handling to change the
baudrate of a CAN network

» Changed handling for bus-off recovery
and related production error report

» Comprehensive revision of all state
machine diagrams and SWS-ID-items

» Changed classification of production
errors and development errors

* Solve conflicts of SWS-ID items with the
conformance test specification




AUTSSAR

2009-12-18

4.0.1

AUTOSAR
Administration

« Configurable Bus-Off revovery with CAN
TX confirmation instead of time based
recovery

* Control of PDU channel modes
completely shifted from Canlf to CanSM
module

2010-02-02

AUTOSAR
Administration

* VMM/AMM Concept related changes
(PDU group control shifted to BswM)

» Asynchronous handling of CAN network
mode transitions (consideration of CAN
Transceiver and CAN controller mode
notifications)

* Solution of Document Improvement
issues reported by TO (e. g. split up of
non atomic software requirements,
textual requirements instead of only a
state diagram)

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

+ Initial Release




AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.



AUTSSAR

Table of Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation
3.1 Input documents & related standardsandnorms . . . . . ... ... ...
3.2 Related specification . . . .. .. ... ... .

Constraints and assumptions

4.1 Limitations . . . . . . . .
4.2 Applicabilitytocardomains . . . . . ... ... o oo

Dependencies to other modules

5.1 ECU State Manager (EcuM) . . . . . . . ... ... ... ... .. ....
5.2 BSW Scheduler (SchM, partof RTE) . . . . . ... ... ... ... ...
5.3 Communication Manager (ComM) . . . . . ... ... ... ... .....
5.4 CAN Interface (Canlf) . . . . . . . . . ..
5.5 Diagnostic Event Manager (DEM) . . . . . . ... .. ... ...
5.6 Basic Software Mode Manager (BswM) . . . . . ... ... ... .....
5.7 CAN Network Management (CanNm) . . . . . ... ... ... ......
5.8 Default Error Tracer (DET) . . . . . . . . .. .. . o .
59 Filestructure . . . . . . . .

5.9.1 Codefilestructure . . . . . ... ... . ... ..

5.9.2 Headerfilestructure . . . . ... ... ... ... ...

59.3 Versioncheck . . ... .. ... . ... ...

Requirements Tracing

Functional specification

7.1 Generalrequirements . . . . . . . . . ..
7.2 State machine foreach CANnetwork . . . . . ... ... ... ......
7.2.1 Trigger: PowerOn . . . . . . . . ..
7.2.2 Trigger: CanSM_lInit . . . . . ... ... ...
7.2.3 Trigger: CanSM_Delnit . . . .. ... ... .. . o Lo
7.2.4 Trigger: T_START _WAKEUP_SOURCE . . . .. ... ... .....
7.2.5 Trigger: T_STOP_WAKEUP_SOURCE ... .............
7.2.6 Trigger: T_FULL_ COM_MODE_REQUEST . ... ... ... ....
7.2.7 Trigger: T_SILENT_COM_MODE_REQUEST .. ..........
7.2.8 Trigger: T_NO_COM_MODE_REQUEST .. .............
7.2.9 Trigger: T_BUS_OFF . . . ... . ... . .. ... . . ... . ....
7.2.10 Guarding condition: G_FULL_COM_MODE_REQUESTED . . . ..
7.2.11 Guarding condition: G_SILENT_COM_MODE_REQUESTED . . . .
7.2.12 Effect: E PRE_NOCOM . . . . . . . .. .. ... . . ... .....
7.213 Effect: E_ZNOCOM . . . . . . . . .. .



AUTSSAR

7.214 Effect: E_FULL_ COM . . . . . . .. .. ... . . . . 28
7.2.15 Effect: E_FULL_TO_SILENT_COM . ... ... ... .. ...... 29
7.2.16 Effect: E_.BR_END FULL COM . . .. ... ... ... ....... 30
7.2.17 Effect: E_.BR_END _SILENT_ COM . . . ... ... ... ....... 30
7.2.18 Effect: E_SILENT _TO FULL COM . ... ... ........... 30
7.2.19 Sub state machine CANSM_BSM_WUVALIDATION . . ... .. .. 31
7.2.20 Sub state machine: CANSM_BSM_S PRE_NOCOM . .. ... .. 35
7.2.21 Sub state machine: CANSM_BSM_S_SILENTCOM_BOR . . . . . . 50
7.2.22 Sub state machine: CANSM_BSM_S_PRE_FULLCOM . . . .. .. 52
7.2.23 Sub state machine CANSM_BSM_S_FULLCOM . . . . ... .. .. 56
7.2.24 Sub state machine: CANSM_BSM_S_CHANGE_BAUDRATE . . .. 65
7.3 Error Classification . . ... .. .. .. ... .. .. . .. .. .. ..., 69
7.3.1 DevelopmentErrors . . . . . . . ... .. 69
7.3.2 RuntimeErrors . . . . . . . ..o 70
7.3.3 ProductionErrors . . . .. ... 70
7.3.4 Extended ProductionErrors . . . . .. .. ... o oL 70
7.4 ECU online active /passivemode . . . . .. ... ... ... ....... 71
7.5 Non-functional designrules . . . ... ... ... ... .. ........ 71
8 API specification 72
8.1 Importedtypes . . . .. . . . . . 72
8.2 Typedefinitions . . . . . .. . .. ... 72
8.2.1 CanSM_ConfigType . . . . . . . . . . 72
8.2.2 CanSM_BswMCurrentStateType . . . . . . .. . ... .. ... ... 73
8.2.3 Definition of symbol CANSM_BUSOFF_CONFIGURED . . ... .. 73
8.3 Functiondefinitions . . . . . .. .. ... . 73
831 CanSM Init . . . . . . . ... 74
8.3.2 CanSM Delnit . . . . ... ... .. . 74
8.3.3 CanSM_RequestComMode . . . . .. ... ... ... .. ...... 75
8.3.4 CanSM_GetCurrentComMode . . . . .. ... ... .. ... .... 76
8.3.5 CanSM_StartWakeupSource . . . .. ... ... ... .. .. .... 78
8.3.6 CanSM_StopWakeupSource . . ... ... ... . ... .. ..... 79
8.3.7 Optional . . . . ... ... .. . e 81
8.4 Call-back notifications. . . . . . .. .. ... ... .. ... ... ... 83
8.4.1 CanSM ControllerBusOff . . . . .. . .. ... ... ... ...... 84
8.4.2 CanSM_ControllerModelndication . . .. ... .. ... ....... 85
8.4.3 CanSM_TransceiverModelndication . .. ... .. ... ... .... 86
8.4.4 CanSM_TxTimeoutException . . . . . . .. ... . ... ... .... 87
8.4.5 CanSM_ClearTrcvWufFlagindication . . . . . .. ... ... ... .. 88
8.4.6 CanSM_CheckTransceiverWakeFlagindication . . ... ... .. .. 89
8.4.7 CanSM_ConfirmPnAvailability . . .. .. ... ... ... ...... 90
8.4.8 CanSM_ConfirmCtrIPnAvailability . . .. ... ... ... ...... 91
8.5 Scheduled functions . . . ... ... .. ... . 92

8.5.1 CanSM_MainFunction . . . . . . . . . .. .. .. ... ... 92



AUTSSAR

8.6 Expectedinterfaces . . . . . . . . ... 92
8.6.1 Mandatory Interfaces . . . . . . .. ... .. ... ... . 92
8.6.2 OptionalInterfaces . . . . . . . . ... .. .. ... ... ... ..., 93
8.6.3 Configurable Interfaces . . . .. ... ... .. .. ... ....... 94

9 Sequence diagrams 95
9.1 Sequence diagram CanSm_StartCanController . . . . . ... ... ... 95
9.2 Sequence diagram CanSm_StopCanController . . . . . ... ... ... 96

10 Configuration specification 97

10.1Howtoread thischapter . . . . . . . . ... .. ... ... ... .. 97

10.2Containers and configuration parameters . . . . . . . ... ... ... .. 97
10.2.1CanSM . . . . .. e 97
10.2.2 CanSMConfiguration. . . . . . . . . . . ... .. 97
10.2.3CanSMGeneral . . . . . . . .. 99
10.2.4 CanSMManagerNetwork . . . . . . . . . ... ..o 103
10.2.5 CanSMDemEventParameterRefs . . . . . . . .. ... ... ... .. 108

10.3Published Information. . . . . . . .. .. ... ... L L 109

A Not applicable requirements 110

B Change history of AUTOSAR traceable items 113
B.1 Traceable item history of this document according to AUTOSAR Release

R25-11 . . . e 113
B.1.1 Added Specification Itemsin R25-11 . . . . .. ... ... ... ... 113
B.1.2 Changed Specification ltemsin R25-11 . . . . ... ... ... ... 113
B.1.3 Deleted Specification ltemsin R25-11 . . . . . ... ... ... ... 113

B.2 Traceable item history of this document according to AUTOSAR Release

R24-11 . . . e 113
B.2.1 Added Specification ltemsinR24-11 . . . . . . ... ... ... ... 113
B.2.2 Changed Specification ltemsin R24-11 . . . . ... ... ... ... 114

B.2.3 Deleted Specification ItemsinR24-11 . . . . . ... ... ... ... 114



AUTSSAR Specification of CAN State Manager

AUTOSAR CP R25-11

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Basic Software module CAN State Manager.

The AUTOSAR BSW stack specifies for each communication bus a bus specific state
manager. This module shall implement the control flow for the respective bus. Like
shown in the figure below, the CAN State Manager (CanSM) is a member of the Com-
munication Service Layer. It interacts with the Communication Hardware Abstraction
Layer and the System Service Layer.

Genenc
Interface /NM

AUTOSAR
COM

PDU Router

Figure 1.1: Layered Software Architecture from CanSM point of view

90of 114 Document ID 253: AUTOSAR_CP_SWS_CANStateManager



AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN State
Manager module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Canlf CAN Interface

CanSM CAN State Manager

ComM Communication Manager
EcuM ECU State Manager

RX Receive

X Transmit

SchM BSW Scheduler

BswM Basic Software Mode Manager

Table 2.1: Acronyms and abbreviations used in the scope of this Document



AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[4] Specification of RTE Software
AUTOSAR_CP_SWS RTE

[5] Specification of Communication Manager
AUTOSAR_CP_SWS COMManager

[6] Specification of CAN Interface
AUTOSAR_CP_SWS_CANiInterface

[7] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[8] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS_BSWModeManager

[9] Specification of CAN Network Management
AUTOSAR_CP_SWS_CANNetworkManagement

[10] Specification of Default Error Tracer
AUTOSAR_CP_SWS_ DefaultErrorTracer

[11] Specification of CAN Transceiver Driver
AUTOSAR_CP_SWS_ CANTransceiverDriver

[12] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for CAN State Manager.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN State Manager.



AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The CanSM module can be used for CAN communication only. lts task is to operate
with the Canlf module to control one or multiple underlying CAN Controllers and CAN
Transceiver Drivers. Other protocols than CAN (i.e. LIN or FlexRay) are not supported.

The configured DEM event CANSM_E_MODE_REQUEST_TIMEOUT is outdated.

4.2 Applicability to car domains

The CAN State Manager module can be used for all domain applications whenever the
CAN protocol is used.



AUTSSAR

5 Dependencies to other modules

The next sections give a brief description of configuration information and services the
CanSM module requires from other modules.

«module» El «module» El «module» El «module» El «module» El «module» El

ComM EcuM BswM Dem Det

T T
«realize» «mandatory» :
|
: . «realize»
1 «realize»

CanSM_EcuMWakeUpValidation

ComM_<Bus>SM_Modelndication «ufe" «realize»
| |
|

Dem_SetEventStatus

|

|
|

| |
|

|

|

! CanSM_ComM CanSM_lInit CanSM BswM_CanSM_CurrentState \ Det_ReportError
«mand,alon/» | «realize» : mandatory» :
I «realize» | : !
| «realize» «realize» «manc:atow» | «Op\ilonaI»
| | | !
«module» El
CanSM
! |
! |
«mandatory» «realize» «mandatory» «realize»
! |
! I
! |
! |
: CanSM_Cbk : CanSM_TxTimeoutException

Canlf??anSm «opt‘\:onal» CanNm_ConfirmPnAvailability
A |
«realize» : «reallize» «optional»
1
«module» El «module» El
Canlf CanNm

Figure 5.1: Module dependencies of the CanSM module

5.1 ECU State Manager (EcuM)

The EcuM module initializes the CanSM module and interacts with the CanSM module
for the CAN wakeup validation (refer to [3, Specification of ECU State Manager] for a
detailed specification of this module).

5.2 BSW Scheduler (SchM, part of RTE)

The BSW Scheduler module calls the main function of the CanSM module, which is
necessary for the cyclic processes of the CanSM module. Refer to [4, Specification of
RTE Software] for a detailed specification of this module.



AUTSSAR

5.3 Communication Manager (ComM)

The ComM module uses the API of the CanSM module to request communication
modes of CAN networks, which are identified with unique network handles (refer to [5,
Specification of Communication Manager] for a detailed specification of this module).

The CanSM module notifies the current communication mode of its CAN networks to
the ComM module.

5.4 CAN Interface (Canilf)

The CanSM module uses the API of the Canlf module to control the operating modes
of the CAN controllers and CAN transceivers assigned to the CAN networks (refer to
[6, Specification of CAN Interface] for a detailed specification of this module).

The Canlf module notifies the CanSM module about peripheral events.

5.5 Diagnostic Event Manager (DEM)

The CanSM module reports bus specific production errors to the DEM module (refer
to [7, Specification of Diagnostic Event Manager] for a detailed specification of this
module).

5.6 Basic Software Mode Manager (BswM)

The CanSM need to notify bus specific mode changes to the BswM module (refer to
[8, Specification of Basic Software Mode Manager] for a detailed specification of this
module).

5.7 CAN Network Management (CanNm)

The CanSM module needs to notify the partial network availability to the CanNm mod-
ule and shall handle notified CanNm timeout exceptions in case of partial networking
(refer to [9, Specification of CAN Network Management] for a detailed specification of
this module).

5.8 Default Error Tracer (DET)

The CanSM module reports development and runtime errors to the DET module.
Development Errors are only reported if development error handling is switched on by



AUTSSAR

configuration (refer to [10, Specification of Default Error Tracer] for a detailed specifi-
cation of this module).

5.9 File structure

5.9.1 Code file structure

For details refer to [2] Chapter 5.1.6 “Code file structure”.

5.9.2 Header file structure

[SWS_CanSM_00008]
Upstream requirements: SRS_BSW_00447

[The header file cansM. h shall export CanSM module specific types and the APIs
CanSM_GetVersionInfo and CanSM_Init.]

5.9.3 Version check

For details refer to [2] Chapter 5.1.8 “Veersion check”.



AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in <CITA-
TIONS_OF _CONTRIBUTED DOCUMENTS> and links to the fulfilment of these.
Please note that if column “Satisfied by” is empty for a specific requirement this means
that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_CanSM_00024] [SWS_CanSM_00374]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_CanSM_00023]

[SRS_BSW_00333]

For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_CanSM_00064] [SWS_CanSM_00189]
[SWS_CanSM_00190] [SWS_CanSM_00235]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_CanSM_91001]

[SRS_BSW_00337]

Classification of development errors

[SWS_CanSM_00654]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_CanSM_00023]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_CanSM_00064] [SWS_CanSM_00189]
[SWS_CanSM_00190] [SWS_CanSM_00235]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_CanSM_00660]

[SRS_BSW_00400]

Parameter shall be selected from
multiple sets of parameters after code
has been loaded and started

[SWS_CanSM_00023] [SWS_CanSM_00597]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_CanSM_00023]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_CanSM_00023]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_CanSM_00023] [SWS_CanSM_00184]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_CanSM_00024] [SWS_CanSM_00374]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_CanSM_00023]

[SRS_BSW_00422]

Pre-de-bouncing of error status
information is done within the Dem

[SWS_CanSM_00498] [SWS_CanSM_00522]
[SWS_CanSM_00605]

[SRS_BSW_00424]

BSW module main processing
functions shall not be allowed to enter
a wait state

[SWS_CanSM_00065] [SWS_CanSM_00167]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_CanSM_00065] [SWS_CanSM_00167]

[SRS_BSW_00438]

Configuration data shall be defined in
a structure

[SWS_CanSM_00023] [SWS_CanSM_00597]

Y4



AUTSSAR

A

Requirement Description Satisfied by
[SRS_BSW_00447] Standardizing Include file structure of | [SWS_CanSM_00008]

BSW Modules Implementing Autosar

Service
[SRS_BSW_00458] Classification of production errors [SWS_CanSM_00666]
[SRS_BSW_00466] Classification of extended production [SWS_CanSM_00664]

errors
[SRS_Can_01142] The CAN State Manager shall offer a [SWS_CanSM_00062] [SWS_CanSM_00065]

network abstract API to upper layer

[SWS_CanSM_00167] [SWS_CanSM_00182]
[SWS_CanSM_00183] [SWS_CanSM_00186]
[SWS_CanSM_00187] [SWS_CanSM_00188]
[SWS_CanSM_00266] [SWS_CanSM_00278]
[SWS_CanSM_00282] [SWS_CanSM_00284]
[SWS_CanSM_00360] [SWS_CanSM_00369]
[SWS_CanSM_00370] [SWS_CanSM_00371]
[SWS_CanSM_00372] [SWS_CanSM_00385]
[SWS_CanSM_00399] [SWS_CanSM_00410]
[SWS_CanSM_00422] [SWS_CanSM_00423]
[SWS_CanSM_00425] [SWS_CanSM_00426]
[SWS_CanSM_00427] [SWS_CanSM_00428]
[SWS_CanSM_00429] [SWS_CanSM_00430]
[SWS_CanSM_00431] [SWS_CanSM_00432]
[SWS_CanSM_00433] [SWS_CanSM_00434]
[SWS_CanSM_00436] [SWS_CanSM_00437]
[SWS_CanSM_00438] [SWS_CanSM_00439]
[SWS_CanSM_00440] [SWS_CanSM_00441]
[SWS_CanSM_00442] [SWS_CanSM_00443]
[SWS_CanSM_00444] [SWS_CanSM_00445]
[SWS_CanSM_00446] [SWS_CanSM_00447]
[SWS_CanSM_00448] [SWS_CanSM_00449]
[SWS_CanSM_00450] [SWS_CanSM_00451]
[SWS_CanSM_00452] [SWS_CanSM_00453]
[SWS_CanSM_00454] [SWS_CanSM_00455]
[SWS_CanSM_00456] [SWS_CanSM_00457]
[SWS_CanSM_00458] [SWS_CanSM_00459]
[SWS_CanSM_00460] [SWS_CanSM_00461]
[SWS_CanSM_00462] [SWS_CanSM_00464]
[SWS_CanSM_00465] [SWS_CanSM_00466]
[SWS_CanSM_00467] [SWS_CanSM_00468]
[SWS_CanSM_00469] [SWS_CanSM_00470]
[SWS_CanSM_00471] [SWS_CanSM_00472]
[SWS_CanSM_00473] [SWS_CanSM_00474]
[SWS_CanSM_00475] [SWS_CanSM_00476]
[SWS_CanSM_00477] [SWS_CanSM_00478]
[SWS_CanSM_00479] [SWS_CanSM_00483]
[SWS_CanSM_00484] [SWS_CanSM_00485]
[SWS_CanSM_00486] [SWS_CanSM_00487]
[SWS_CanSM_00488] [SWS_CanSM_00489]
[SWS_CanSM_00490] [SWS_CanSM_00491]
[SWS_CanSM_00492] [SWS_CanSM_00493]
[SWS_CanSM_00494] [SWS_CanSM_00496]
[SWS_CanSM_00497] [SWS_CanSM_00499]
[SWS_CanSM_00500] [SWS_CanSM_00502]
[SWS_CanSM_00503] [SWS_CanSM_00504]
[SWS_CanSM_00505] [SWS_CanSM_00506]
[SWS_CanSM_00507] [SWS_CanSM_00508]
[SWS_CanSM_00509] [SWS_CanSM_00510]
[SWS_CanSM_00511] [SWS_CanSM_00512]
[SWS_CanSM_00514] [SWS_CanSM_00515]
[SWS_CanSM_00517] [SWS_CanSM_00518]
[SWS_CanSM_00521] [SWS_CanSM_00524]
[SWS_CanSM_00525] [SWS_CanSM_00526]
[SWS_CanSM_00527] [SWS_CanSM_00528]
v




AUTSSAR

Requirement

Description

Satisfied by

A
[SWS_CanSM_00529] [SWS_CanSM_00530]
[SWS_CanSM_00531] [SWS_CanSM_00532]
[SWS_CanSM_00533] [SWS_CanSM_00534]
[SWS_CanSM_00535] [SWS_CanSM_00538]
[SWS_CanSM_00540] [SWS_CanSM_00541]
[SWS_CanSM_00542] [SWS_CanSM_00543]
[SWS_CanSM_00550] [SWS_CanSM_00555]
[SWS_CanSM_00556] [SWS_CanSM_00557]
[SWS_CanSM_00558] [SWS_CanSM_00561]
[SWS_CanSM_00569] [SWS_CanSM_00570]
[SWS_CanSM_00576] [SWS_CanSM_00577]
[SWS_CanSM_00578] [SWS_CanSM_00579]
[SWS_CanSM_00580] [SWS_CanSM_00581]
[SWS_CanSM_00582] [SWS_CanSM_00584]
[SWS_CanSM_00600] [SWS_CanSM_00602]
[SWS_CanSM_00603] [SWS_CanSM_00604]
[SWS_CanSM_00607] [SWS_CanSM_00608]
[SWS_CanSM_00623] [SWS_CanSM_00624]
[SWS_CanSM_00625] [SWS_CanSM_00626]
[SWS_CanSM_00627] [SWS_CanSM_00628]
[SWS_CanSM_00629] [SWS_CanSM_00630]
[SWS_CanSM_00631] [SWS_CanSM_00632]
[SWS_CanSM_00633] [SWS_CanSM_00634]
[SWS_CanSM_00635] [SWS_CanSM_00636]
[SWS_CanSM_00639] [SWS_CanSM_00641]
[SWS_CanSM_00642] [SWS_CanSM_00651]
[SWS_CanSM_00653] [SWS_CanSM_00667]

[SRS_Can_01144]

The CAN State Manager shall
implement an interface for
initialization.

[SWS_CanSM_00600] [SWS_CanSM_00602]
[SWS_CanSM_00603] [SWS_CanSM_00604]
[SWS_CanSM_00606] [SWS_CanSM_00637]

[SRS_Can_01145]

The CAN State Manager shall control
the assigned CAN Devices

[SWS_CanSM_00062] [SWS_CanSM_00065]
[SWS_CanSM_00167] [SWS_CanSM_00182]
[SWS_CanSM_00183] [SWS_CanSM_00369]
[SWS_CanSM_00370] [SWS_CanSM_00396]
[SWS_CanSM_00397] [SWS_CanSM_00398]
[SWS_CanSM_00399] [SWS_CanSM_00400]
[SWS_CanSM_00401] [SWS_CanSM_00410]
[SWS_CanSM_00411] [SWS_CanSM_00412]
[SWS_CanSM_00413] [SWS_CanSM_00414]
[SWS_CanSM_00415] [SWS_CanSM_00416]
[SWS_CanSM_00417] [SWS_CanSM_00418]
[SWS_CanSM_00419] [SWS_CanSM_00420]
[SWS_CanSM_00421] [SWS_CanSM_00423]
[SWS_CanSM_00425] [SWS_CanSM_00426]
[SWS_CanSM_00427] [SWS_CanSM_00428]
[SWS_CanSM_00429] [SWS_CanSM_00430]
[SWS_CanSM_00431] [SWS_CanSM_00432]
[SWS_CanSM_00433] [SWS_CanSM_00434]
[SWS_CanSM_00436] [SWS_CanSM_00437]
[SWS_CanSM_00438] [SWS_CanSM_00439]
[SWS_CanSM_00440] [SWS_CanSM_00441]
[SWS_CanSM_00442] [SWS_CanSM_00443]
[SWS_CanSM_00444] [SWS_CanSM_00445]
[SWS_CanSM_00446] [SWS_CanSM_00447]
[SWS_CanSM_00448] [SWS_CanSM_00449]
[SWS_CanSM_00450] [SWS_CanSM_00451]
[SWS_CanSM_00452] [SWS_CanSM_00453]
[SWS_CanSM_00454] [SWS_CanSM_00455]
[SWS_CanSM_00456] [SWS_CanSM_00457]
[SWS_CanSM_00458] [SWS_CanSM_00459]
[SWS_CanSM_00460] [SWS_CanSM_00461]
[SWS_CanSM_00462] [SWS_CanSM_00464]
v




AUTSSAR

Requirement

Description

Satisfied by

A
[SWS_CanSM_00465] [SWS_CanSM_00466]
[SWS_CanSM_00467] [SWS_CanSM_00468]
[SWS_CanSM_00469] [SWS_CanSM_00470]
[SWS_CanSM_00471] [SWS_CanSM_00472]
[SWS_CanSM_00473] [SWS_CanSM_00474]
[SWS_CanSM_00475] [SWS_CanSM_00476]
[SWS_CanSM_00477] [SWS_CanSM_00478]
[SWS_CanSM_00479] [SWS_CanSM_00483]
[SWS_CanSM_00484] [SWS_CanSM_00485]
[SWS_CanSM_00486] [SWS_CanSM_00487]
[SWS_CanSM_00488] [SWS_CanSM_00489]
[SWS_CanSM_00490] [SWS_CanSM_00491]
[SWS_CanSM_00492] [SWS_CanSM_00493]
[SWS_CanSM_00494] [SWS_CanSM_00496]
[SWS_CanSM_00497] [SWS_CanSM_00499]
[SWS_CanSM_00500] [SWS_CanSM_00507]
[SWS_CanSM_00508] [SWS_CanSM_00509]
[SWS_CanSM_00510] [SWS_CanSM_00511]
[SWS_CanSM_00512] [SWS_CanSM_00514]
[SWS_CanSM_00515] [SWS_CanSM_00517]
[SWS_CanSM_00518] [SWS_CanSM_00521]
[SWS_CanSM_00524] [SWS_CanSM_00525]
[SWS_CanSM_00526] [SWS_CanSM_00527]
[SWS_CanSM_00528] [SWS_CanSM_00529]
[SWS_CanSM_00531] [SWS_CanSM_00532]
[SWS_CanSM_00533] [SWS_CanSM_00534]
[SWS_CanSM_00535] [SWS_CanSM_00538]
[SWS_CanSM_00540] [SWS_CanSM_00541]
[SWS_CanSM_00542] [SWS_CanSM_00543]
[SWS_CanSM_00546] [SWS_CanSM_00550]
[SWS_CanSM_00555] [SWS_CanSM_00556]
[SWS_CanSM_00557] [SWS_CanSM_00558]
[SWS_CanSM_00560] [SWS_CanSM_00576]
[SWS_CanSM_00577] [SWS_CanSM_00578]
[SWS_CanSM_00579] [SWS_CanSM_00580]
[SWS_CanSM_00581] [SWS_CanSM_00582]
[SWS_CanSM_00584] [SWS_CanSM_00600]
[SWS_CanSM_00602] [SWS_CanSM_00603]
[SWS_CanSM_00604] [SWS_CanSM_00607]
[SWS_CanSM_00608] [SWS_CanSM_00609]
[SWS_CanSM_00610] [SWS_CanSM_00611]
[SWS_CanSM_00612] [SWS_CanSM_00613]
[SWS_CanSM_00616] [SWS_CanSM_00617]
[SWS_CanSM_00618] [SWS_CanSM_00619]
[SWS_CanSM_00620] [SWS_CanSM_00621]
[SWS_CanSM_00622] [SWS_CanSM_00623]
[SWS_CanSM_00624] [SWS_CanSM_00625]
[SWS_CanSM_00626] [SWS_CanSM_00627]
[SWS_CanSM_00628] [SWS_CanSM_00629]
[SWS_CanSM_00630] [SWS_CanSM_00631]
[SWS_CanSM_00632] [SWS_CanSM_00633]
[SWS_CanSM_00634] [SWS_CanSM_00636]
[SWS_CanSM_00638] [SWS_CanSM_00639]
[SWS_CanSM_00641] [SWS_CanSM_00642]
[SWS_CanSM_00651] [SWS_CanSM_00653]
[SWS_CanSM_00668] [SWS_CanSM_00669]
[SWS_CanSM_00670] [SWS_CanSM_91004]

[SRS_Can_01146]

The CAN State Manager shall contain
a CAN BusOff recovery algorithm for
each used CAN Controller

[SWS_CanSM_00599] [SWS_CanSM_00600]
[SWS_CanSM_00602] [SWS_CanSM_00603]
[SWS_CanSM_00604] [SWS_CanSM_00606]
[SWS_CanSM_00637]

Y




AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Can_01158]

The CAN stack shall provide a TX
offline active mode for ECU passive
mode

[SWS_CanSM_00435] [SWS_CanSM_00516]
[SWS_CanSM_00539] [SWS_CanSM_00644]
[SWS_CanSM_00645] [SWS_CanSM_00646]
[SWS_CanSM_00647] [SWS_CanSM_00648]
[SWS_CanSM_00649] [SWS_CanSM_00650]
[SWS_CanSM_00656]

[SRS_Can_01164]

The CAN State Manager shall
implement an interface for
de-initialization.

[SWS_CanSM_00658] [SWS_CanSM_91001]

[SRS_ModeMgm_
09084]

The Communication Manager shall
provide an API which allows
application to query the current
communication mode

[SWS_CanSM_00063]

[SRS_ModeMgm_
09251]

PNC communication state shall be
forwarded to the BswM

[SWS_CanSM_00598]

Table 6.1: Requirements Tracing




AUTSSAR

7 Functional specification

This chapter specifies the different functions of the CanSM module in the AUTOSAR
BSW architecture.

An ECU can have different communication networks. Each network has to be identified
with an unique network handle. The ComM module requests communication modes
from the networks. It knows by its configuration, which handle is assigned to what kind
of network. In case of CAN, it uses the CanSM module.

The CanSM module is responsible for the control flow abstraction of CAN networks:

It changes the communication modes of the configured CAN networks depending on
the mode requests from the ComM module.

Therefore the CanSM module uses the API of the Canlf module. The Canlf module
is responsible for the control flow abstraction of the configured CAN Controllers and
CAN Transceivers (the data flow abstraction of the Canlf module is not relevant for
the CanSM module). Any change of the CAN Controller modes and CAN Transceiver
modes will be notified by the Canlf module to the CanSM module. Depending on this
notifications and state of the CAN network state machine, which the CanSM module
shall implement for each configured CAN network, the CanSM module notifies the
ComM and the BswM (ref. to chapter 7.2 for details).

Note:

CanSM module will not notify ComM about its communication mode after initialization,
unless a communication mode has explicitly been requested by ComM.



AUTSSAR

7.1

General requirements

CANSM_BSM_S_FULLCOM

ExitPoin
CHANGH_BR
oo
T_NO_COM_MODE_REQUEST
JE_PRE_NOCOM
[G_FULL_COM_MODE_REQUESTED]
/E_FULL_COM /E_BR_END_FULL_COM
T_SILENT_COM_MODE_REQUEST
JE_FULL_TO_SILENT_COM
CANSM_BSM_S_PRE_FULLCOM
® e CANSM_BSM_S_CHANGE_BAUDRATE N
ExitPoint To
FULLGOM T_FULL_COM_MODE_REQUEST
JE_SILENT_TO_FULL_COM
ExitPoint
FULL_OR_SILENT_COM
ExitPoint
\wooom B/
[G_SILENT_COM_MODE_REQUESTED]
/E_BR_END_SILENT_COM
T_FULL_COM_MODE_REQUEST CANSM_BSM_S_SILENTCOM
T_FULL_COM_MODE_REQUEST
/E_PRE_NOCOM
CANSM_BSM_WUVALIDATION
T_BUS_OFF

o0,

T_STOP_WAKEUP_SOURCE

ANSM_BSM_S_SILENTCOM_BO

T_NO_COM_MODE_REQUEST

o0, /E_PRE_NOCOM

|
T_NO_COM_MODE_REQUEST
/E_PRE_NO_COM

T_START_WAKEUP_SOURCE

CANSM_BSM_S_PRE_NOCOM

T_START_WAKEUP_SOURCE

CANSM_BSM_S_NOCOM ™\

/E_NOCOM

CanSM_|

CanSM_Init

PowerOn

CANSM_BSM_S_NOT_INITIALIZED
Delnit

- /

PowerOff

N

Figure 7.1: CANSM_BSM, state machine diagram for one CAN network



AUTSSAR

[SWS_CanSM_00266]
Upstream requirements: SRS_Can_01142

[The CanSM module shall store the current network mode for each configured CAN
network internally (ref. to [ECUC_CanSM_00126])). |

[SWS_CanSM_00284]
Upstream requirements: SRS_Can_01142

[The internally stored network modes of the CanSM module can have
the  values  COMM_NO_COMMUNICATION, COMM_SILENT_COMMUNICATION,
COMM_FULL_COMMUNICATION. |

[SWS_CanSM_00428]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[All effects of the CanSM state machine cCANSM_BsSM shall be operated in the context
of the CanSM main function (ref. to [SWS_CanSM_00065]). |

[SWS_CanSM_00278]
Upstream requirements: SRS_Can_01142

[If the CanSM state machine caNsM BSM is in the state
CANSM_BSM_S_NOT_INITIALIZED, it shall deny network mode requests from
the ComM module (ref. to [SWS_CanSM_00062)). |

[SWS_CanSM_00385]
Upstream requirements: SRS_Can_01142

[If CanSM has repeated one of the Canlf APl calls CanIf_SetControllerMode (ref.
to [SWS_CanSM_91002]), canIf_SetTrcvMode (ref. to [SWS_CanSM_91002]),
CanIf_ClearTrcvWufFlag (ref. [SWS_CanSM_91002]) or CanIf_Check-
TrcvWakeFlag (ref. [SWS_CanSM_91002]) more often than CansMMod-
eRequestRepetitionMax (ref. to [ECUC_CanSM_00335]) without getting
the return value E_OK or without getting the corresponding mode indi-
cation callbacks CansM_ControllerModeIndication, CanSM_Transceiver-—
ModeIndication, CanSM_ClearTrcvWufFlagIndication Or CanSM_Check-
TransceiverWakeFlagIndication, CanSM shall call the function Det_Re-
portRuntimeError (ref. to [SWS_CanSM_91002]) with ErrorId parameter
CANSM_E_MODE_REQUEST_TIMEOUT.J

[SWS_CanSM_00422]
Upstream requirements: SRS_Can_01142

[If the Canlf module notifies PN availability for a configured CAN Transceiver to the
CanSM module with the callback function cCanSM_ConfirmPnAvailability (ref.
to [SWS_CanSM_00419]), then the CanSM module shall call the APl CanNm_Con-
firmPnAvailability (ref. to [SWS_CanSM_91002]) with the related CAN network
as channel to confirm the PN availability to the CanNm module. |



AUTSSAR

[SWS_CanSM_00667]
Status: DRAFT
Upstream requirements: SRS_Can_01142

[If the Canlf module notifies PN availability for a configured CAN Controller to the
CanSM module with the callback function CanSM_ConfirmCtrlPnAvailability
(ref. to [SWS_CanSM_91004]), then the CanSM module shall call the APl CanNm_
ConfirmPnAvailability (ref. to [SWS_CanSM_91002]) with the related CAN net-
work as channel to confirm the PN availability to the CanNm module. |

[SWS_CanSM_00560]
Upstream requirements: SRS_Can_01145

[If no CanSMTransceiverId (ref. to [ECUC_CanSM_00137]) is configured for a
CAN Network, then the CanSM module shall bypass all specified canIf_SetTrcv-
Mode (ref. to [SWS_CanSM_91002]) (e.g. [SWS_CanSM_00446]) calls for the CAN
Network and proceed in the different state transitions as if it has got the supposed
CanSM_TransceiverModeIndication already (e.g. [SWS_CanSM_00448)). |

[SWS_CanSM_00635]
Upstream requirements: SRS_Can_01142

[The CanSM module shall store for each configured CAN network (ref. to
[ECUC_CanSM_00126]) the latest communication mode request, which has been
accepted by returning E_0K in the API request CanSM_RequestComMode (ref. to
[SWS_CanSM_00062], [SWS_CanSM_00182]) and use it as trigger for the state
machine of the related CAN network, [SWS_CanSM_00427], [SWS_CanSM_00429],
[SWS_CanSM_00499], [SWS_CanSM_00542], [SWS_CanSM_00543],
[SWS_CanSM_00425], [SWS_CanSM_00426)). |

[SWS_CanSM_00638]
Upstream requirements: SRS_Can_01145
[The CanSM module shall store after every successful CAN controller mode change

(ref. to [SWS_CanSM_00396]) or bus-off conditioned change to CAN_CS_STOPPED
(ref. to [SWS_CanSM_00064]), the changed mode internally for each CAN controller. |

7.2 State machine for each CAN network

The diagram (ref. to Figure 7.1) specifies the behavioral state machine of the CanSM
module, which shall be implemented for each configured CAN network (ref. to
[ECUC_CanSM_00126])



AUTSSAR

7.2.1 Trigger: PowerOn

[SWS_CanSM_00424] [After PowerOn the CanSM state machines shall be in the
state CANSM_BSM_NOT_INITIALIZED.|

7.2.2 Trigger: CanSM_Init

[SWS_CanSM_00423]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If the CanSM module is requested with the function CansM_Init, this shall
trigger the CanSM state machines for all configured CAN Networks (ref. to
[ECUC_CanSM_00126]) with the trigger CanSM_1Init.|

7.2.3 Trigger: CanSM_Delnit

[SWS_CanSM_00658]
Upstream requirements: SRS_Can_01164

[If the CanSM module is requested with the function CansM _DeInit, this shall
trigger the CanSM state machines for all configured CAN Networks (ref. to
[ECUC_CanSM_00126]) with the trigger CanSM_DeInit. |

Note: Caller of the cansM_DeInit function has to ensure all CAN networks are in the
state CANSM_NO_COMMUNICATION

7.2.4 Trigger: T_START _WAKEUP_SOURCE

[SWS_CanSM _00607]
Upstream requirements: SRS_Can_01142, SRS_Can_01145
[If the APl request CanSM_StartWakeupSource (ref. to [SWS_CanSM_00609])

returns E_OK (ref. to [SWS_CanSM_00616]), it shall trigger the state machine with
T_START_WAKEUP_SOURCE. |



AUTSSAR

7.2.5 Trigger: T_STOP_WAKEUP_SOURCE

[SWS_CanSM_00608]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If the APl request CansM_StopWakeupSource (ref. to [SWS_CanSM_00610]) re-
turns E_OK (ref. to [SWS_CanSM_00622]), it shall trigger the state machine with
T_STOP_WAKEUP_SOURCE. |

7.2.6 Trigger: T_FULL_COM_MODE_REQUEST

[SWS_CanSM_00425]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The API request CansM_RequestComMode (ref. to [SWS_CanSM_00635]) with
the parameter mode equal to COMM_FULL_COMMUNICATION shall trigger the state
machine with T_FULL_COM_MODE_REQUEST, if the function parameter network
matches the configuration parameter CansSMComMNetworkHandleRef (ref. to
[ECUC_CanSM_00161]). ]

7.2.7 Trigger: T_SILENT_COM_MODE_REQUEST

[SWS_CanSM_00499]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The API request CansM_RequestComMode (ref. to [SWS_CanSM_00635]) with the
parameter mode equal to COMM_SILENT_COMMUNICATION shall trigger the sub state
machine CANSM_BSM_S_FULLCOM with T_SILENT_COM_MODE_REQUEST, which cor-
responds to the function parameter network and the configuration parameter CansM-
ComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]). |

Rationale: Regular use case for the transition of the CanNm Network mode to the
CanNm Prepare Bus-Sleep mode.

7.2.8 Trigger: T_ NO_COM_MODE_REQUEST

[SWS_CanSM_00426]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The API request CansM_RequestComMode (ref. to [SWS_CanSM_00635]) with
the parameter mode equal to CcoMM_NO_COMMUNICATION shall trigger the state
machine with T_NO_COM_MODE_REQUEST, if the function parameter network
matches the configuration parameter CanSMComMNetworkHandleRef) (ref. to
[ECUC_CanSM_00161]). ]



AUTSSAR

Remark: Depending on the ComM configuration, the ComM module will re-
quest COMM_SILENT_COMMUNICATION first and then COMM_NO_COMMUNICATION Or
COMM_NO_COMMUNICATION directly (ComMNmVariant=LIGHT)".

7.2.9 Trigger: T_BUS_OFF

[SWS_CanSM_00606]
Upstream requirements: SRS_Can_01144, SRS_Can_01146

[The callback function CansM_ControllerBusOff (ref. to [SWS_CanSM_00064])
shall trigger the state machine cansm_BsM for the CAN network with T_BUS_OFF, if
one of its configured CAN controllers matches to the function parameter Control-
lerId of the callback function CansM_ControllerBusOff. |

7.2.10 Guarding condition: G_FULL_COM_MODE_REQUESTED

[SWS_CanSM_00427]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_FULL_COM_MODE_REQUESTED of the canSM_BsSM state
machine shall evaluate, if the latest accepted communication mode request with
CansSM_RequestComMode (ref. to [SWS_CanSM_00635]) for the respective net-
work oOf the state machine has been called with the parameter mode equal to
COMM_FULL_COMMUNICATION. ]

7.2.11 Guarding condition: G_SILENT_COM_MODE_REQUESTED

[SWS_CanSM_00429]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[ The guarding condition G_SILENT_COM_MODE_REQUESTED of the CansSM_BsSM state
machine shall evaluate, if the latest accepted communication mode request with
CanSM_RequestComMode (ref. to [SWS_CanSM_00635]) for the respective net-
work of the state machine has been called with the parameter mode equal to
COMM_SILENT_COMMUNICATION. |



AUTSSAR

7.2.12 Effect: E_PRE_NOCOM

[SWS_CanSM_00431]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_PRE_NoOCOM of the CansSM_BSM state machine shall call for the
corresponding CAN network the APl BswM_CanSM_CurrentState (ref. to
[SWS_CanSM_91002]) with the parameters Network := CanSMComMNetworkHan-—
dleRef and CurrentState = CANSM_BSWM_NO_COMMUNICATION.

7.2.13 Effect: E. NOCOM

[SWS_CanSM_00430]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_NocoM of the cansM_BsSM state machine shall change the internally
stored network mode (ref. to [SWS_CanSM_00266]) of the addressed CAN network
to COMM_NO_COMMUNICATION. ]

[SWS_CanSM_00651]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If a communication mode request for the network is present already (ref.
to [SWS_CanSM_00635]) and the stored communication mode request is
COMM_NO_COMMUNICATION, then the effect E_NocoMm of the CanSM_BSM
state machine shall call the APl ComM_BusSM_ModeIndication (ref.
to [SWS_CanSM_91002]) with the parameters Channel = CanSMComM-
NetworkHandleRef (ref. to [ECUC_CanSM_00161]) and ComMode :=
COMM_NO_ COMMUNICATION. ]

7.2.14 Effect: E_FULL_COM

[SWS_CanSM_00539]
Upstream requirements: SRS_Can_01158

[If ECU passive is FALSE (ref. to [SWS_CanSM_00646]), then the effect
E_FULL_COM of the cansM_BSM state machine shall call at 1%t place for each con-
figured CAN controller of the CAN network the APl CanIf_SetPduMode (ref. to
[SWS_CanSM_91002]) with the parameters ControllerId := CanSMControl-
lerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest = CANIF_ONLINE. ]

[SWS_CanSM_00647]
Upstream requirements: SRS_Can_01158

[If ECU passive is TRUE (ref. to [SWS_CanSM_00646]), then the effect
E_FULL_coM of the CansM_BsM state machine shall call at 1%t place for



AUTSSAR

each configured CAN controller of the CAN network the APl CanIf_SetPdu-
Mode (ref. to [SWS_CanSM_91002]) with the parameters ControllerId :=
CansMControllerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest =
CANIF_TX_OFFLINE_ACTIVE.]

[SWS_CanSM_00435]
Upstream requirements: SRS_Can_01158

[After considering [SWS_CanSM_00539] and [SWS_CanSM_00647] in context of
the effect E_FULL_coM of the cansM_BsM state machine, the CanSM module
shall call the APl comM_BusSM_ModeIndication (ref. to [SWS_CanSM_91002])
for the corresponding CAN network with the parameters Channel := CanSM-
ComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]) and ComMode :=
COMM_FULIL_COMMUNICATION. |

[SWS_CanSM_00540]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[ After considering [SWS_CanSM_00435] in context of the effect E_FULL_coM of the
CansM_BSM state machine, the CanSM module shall call the APl BswM_CanSM_Cur-
rentState (ref. to [SWS_CanSM_91002]) for the corresponding CAN network with
the parameters Network = CanSMComMNetworkHandleRef and CurrentState =
CANSM_BSWM_FULL_COMMUNICATION. |

7.2.15 Effect: E_FULL_TO_SILENT_COM

[SWS_CanSM_00434]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_FULL_TO_SILENT_COM of the CanSM_BsSM state machine shall call at
13t place for the corresponding CAN network the APl BswM_CanSM_CurrentState
(ref. to [SWS_CanSM_91002]) with the parameters Network = CanSMComMNet—
workHandleRef and CurrentState = CANSM_BSWM_SILENT_COMMUNICATION. |

[SWS_CanSM_00541]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_FULL_TO_SILENT_COM of the CanSM_BSM state machine shall call at
2"d place for each configured CAN controller of the CAN network the APl canIf_ -
SetPduMode (ref. to [SWS_CanSM_91002]) with the parameters ControllerId
= CanSMControllerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest =
CANIF_TX_ OFFLINE.]

[SWS_CanSM_00538]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_FULL_TO_SILENT_COM of the cansM_BSM state machine shall call
at 3" place for the corresponding CAN network the API ComM_BusSM_Mod-



AUTSSAR

eIndication (ref. to [SWS_CanSM_91002]) with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]) and ComMode :=
COMM_SILENT_COMMUNICATION.]

7.2.16 Effect: E BR_END_FULL_COM

[SWS_CanSM_00432]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_BR_END_FULL_COM of the CansM_BSM state machine shall be the same
as E_FULL_COM. |

7.2.17 Effect: E_ BR_END_SILENT_COM

[SWS_CanSM_00433]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_BR_END_SILENT_COM of the CansM_BsSM state machine shall be the
same as E_FULL_TO_SILENT_COM.]

7.2.18 Effect: E_SILENT_TO_FULL_COM

[SWS_CanSM_00550]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The effect E_SILENT_TO_FULL_COM of the CansM_BsM state machine shall be the
same as E_FULL_COM. |



AUTSSAR

7.2.19 Sub state machine CANSM_BSM_WUVALIDATION

Ve CANSM_BSM_WUVALIDATION N\

/ S_TRCV_NORMAL N [G_TRCV_NORMAL_E_OK]

do /DO_SET_TRCV_MODE_NORMAL
EntryPoint
/7~ S_TRCV_NORMAL_WAIT
| /]\ T_TRCV_NORMAL_TIMEOUT
TiTRCV7NORMAL7IND\Il(/)ATED

T_TRCV_NORMAL_INDICATED
S_CC_STOPPED \<———— [G_CC_STOPPED_E_OK]
\

@ /DO_SET_CC_MODE_STOPPED )

T_CC_STOPPED_TIMEOUT

S_CC_STOPPED_WAIT

T_CC_STOPPED_INDICATED

T_CC_STOPPED_INDICATED

S_CC_STARTED \

do /DO_SET_CC_MODE_STARTED
Q - - - ) [G_CC_STARTED_E_OK]

T_CC_STARTED_TIMEOUT ( BLC SARIERRT ]

CVAITWUVALIDATIONLEAV%
T_CC_STARTED_INDICATED
o %
Figure 7.2: CANSM_BSM_WUVALIDATION, sub state machine of CANSM_BSM

T_CC_STARTED_INDICATED

7.2.19.1 State operation to do in: S_ TRCV_NORMAL

[SWS_CanSM_00623]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If for the CAN network a CAN Transceiver is configured (ref.
to [ECUC_CanSM_00137]), then as long the sub state machine
CANSM_BSM_WUVALIDATION is in the state S_TRCV_NORMAL, the CanSM mod-
ule shall operate the do action DO_SET_TRCV_MODE_NORMAL and therefore repeat for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
the APl request CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) with
TransceiverMode equal to CANTRCV_TRCVMODE_NORMAL. |



AUTSSAR

7.2.19.2 Guarding condition G_TRCV_NORMAL_E_OK

[SWS_CanSM_00624]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_TRCV_NORMAL_E_OK of the sub state machine
CANSM_BSM_WUVALIDATION shall be passed, if the API call of [SWS_CanSM_00483]
has returned E_OX. |

7.2.19.3 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00625]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode indication (ref. to
[SWS_CanSM_00399]) for the configured CAN Transceiver of the CAN network (ref. to
[ECUC_CanSM_00137]) after the respective request (ref. to [SWS_CanSM_00623]),
this shall trigger the sub state machine machine CANSM_BSM_WUVALIDATION of the
CAN network with T_TRCV_NORMAL_INDICATED. |

7.2.19.4 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00626]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the supposed transceiver normal indication (ref. to [SWS_CanSM_00625]), this
condition shall trigger the sub state machine CANSM_BSM_WUVALIDATION of the re-
spective network with T_TRCV_NORMAL_TIMEOUT. |

7.2.19.5 State operation to do in: S_CC_STOPPED

[SWS_CanSM_00627]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM_WUVALIDATION is in the
state s_cc_stTopPED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |



AUTSSAR

7.2.19.6 Guarding condition: G_CC_STOPPED_OK

[SWS_CanSM_00628]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_cc_sTopPED_OK of the sub state machine
CANSM_BSM_WUVALIDATION shall be passed, if all API calls of [SWS_CanSM_00627]
have returned E_OK. |

7.2.19.7 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00629]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If the CanSM module has got all mode indications (ref. to [SWS_CanSM_00396])
for the configured CAN controllers of the CAN network (ref. to
[ECUC_CanSM_00141]) after the respective requests to stop the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00627]), this shall trigger
the sub state machine caNsSM_BsM_WUVALIDATION of the CAN network with
T_CC_STOPPED_INDICATED.]

7.2.19.8 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00630]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336))
for all supposed controller stopped mode indications (ref. to [SWS_CanSM_00629]),
this condition shall trigger the sub state machine CANSM_BSM_WUVALIDATION of the
respective network with T_CC_STOPPED_TIMEOUT. |

7.2.19.9 State operation to do in: S_CC_STARTED

[SWS_CanSM _00631]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM_WUVALIDATION is in the
state s_cc_STARTED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN con-
trollers of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_
SetControllerMode with ControllerMode equal to CAN_CS_STARTED, if the
current CAN controller mode (ref. to [SWS_CanSM_00638]) is different. |



AUTSSAR

7.2.19.10 Guarding condition: G_CC_STARTED_E_OK

[SWS_CanSM _00632]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_cC_STARTED_OK of the sub state machine
CANSM_BSM_WUVALIDATION shall be passed, if all API calls of [SWS_CanSM_00631]
have returned E_OK. |

7.2.19.11 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00633]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396])
for the configured CAN controllers of the CAN network (ref. to
[ECUC_CanSM_00141]) after the respective requests to start the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00631]), this shall trigger
the sub state machine caNsSM_BsM_WUVALIDATION of the CAN network with
T_CC_STARTED_INDICATED.]

7.2.19.12 Trigger: T_CC_STARTED_TIMEOUT

[SWS_CanSM _00634]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336))
for all supposed controller started mode indications (ref. to[SWS_CanSM_00633]),
this condition shall trigger the sub state machine CANSM_BSM_WUVALIDATION of the
respective network with T_CC_STARTED_TIMEOUT. |



AUTSSAR

7.2.20 Sub state machine: CANSM_BSM_S_PRE_NOCOM

Ve CANSM_BSM_S_PRE_NOCOM N\

()

EntryPoint
[CANSM_BSM_G_PN_NOT_SUPPORTED] [CANSM_BSM_G_PN_SUPPORTED]

CANSM_BSM_DeinitPnNotSupported CANSM_BSM_DeinitPnSupported
O, OO,

ExitPoint

- J
Figure 7.3: CANSM_BSM_S_PRE_NOCOM, sub state machine of CANSM_BSM

7.2.20.1 Guarding condition: CANSM_BSM_G_PN_NOT_SUPPORTED

[SWS_CanSM _00436]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition CANSM_BSM_G_PN_NOT_SUPPORTED of the sub state ma-
chine CANSM_BSM_S_PRE_NO_COM shall evaluate, if the configuration parameter
CanTrcvPnEnabled (ref. to [11, ECUC_CanTrcv_00172]) is FALSE, which is avail-
able via the reference CanSMTransceiverid (ref. to [ECUC_CanSM_00137]) or if
no CanSMTransceiverId is configured at all. |

7.2.20.2 Guarding condition: CANSM_BSM_G_PN_SUPPORTED

[SWS_CanSM_00437]
Upstream requirements: SRS_Can_01142, SRS _Can_01145

[The guarding condition CANSM_BSM_G_PN_SUPPORTED of the sub state machine
CANSM_BSM_S_PRE_NO_COM shall evaluate, if a CanSMTransceiverId (ref. to
[ECUC_CanSM_00137]) is configured and if the configuration parameter CanTrcvP-
nEnabled (ref. to [11, ECUC_CanTrcv_00172]) is TRUE, which is available via the
reference CanSMTransceiverId (ref. to [ECUC_CanSM_00137]).]



AUTSSAR

7.2.20.3 Sub state machine: CANSM_BSM_DeinitPnSupported

/ CANSM_BSM_DeinitPnSupported

e CANSM_BSM_DeinitPnSupportedProceed

[ S_PN_CLEAR_WUF

Qo /DO_CLEAR_TRCV_WUF

N %

T
[G_PN_CLEAR_WUF_E_OK]

T_CLEAR_WUF_INDICATED T_GLEAR WUF_TIMEOUT

( S_PN_CLEAR_WUF_WAIT )

T_CLEAR_WUF_INDICATED

[ S_CC_STOPPED \

Qo /DO_SET_CC_MODE_STOPPED )
I T
T_CC_STOPPED_INDICATED [G_CC_STOPPED_E_OK]

( S_CC_STOPPED_WAIT )

1
T_CC_STOPPED_INDICATED

T _CC_STOPPED_TIMEOUT

[ S_TRCV_NORMAL
Qo /DO_SET_TRCV_MODE_NORMAL )
.
T T||:§CV NORMAL_INDICATED [G_TRCV_NORMAL_E_OK] T_TRCV_NORMAL_TIMEOUT
( S_TRCV_NORMAL_WAIT )

T
T_TRCV_NORMAL_INDICATED

T_TRCV_STANDBY_TIMOUT

S_TRCV_STANDBY \
Qo /DO_SET_TRCV_MODE_STANDBY J
T
T_TRCV_STANDBY_INDICATED [G_TRCV_STANDBY_E_OK]
( S_TRCV_STANDBY_WAIT

T_TRCV_STANDBY_INDICATED

/ S_CC_SLEEP \

QO /DO_SET_CC_MODE_SLEEP )

T
[G_CC_SLEEP_E_OK]

T_CC_SLEEP_INDICATED.

T_CHECK_WFLAG_INDICATED

S_CC_SLEEP_WAIT

T_CC_SLEEP_INDICATED

CANSM_BSM_T_CC_SLEEP_TIMEOUT

/ S_CHECK_WFLAG_IN_NOT_CC_SLEEP \

do / DO_GHECK_WFLAG
[ S_CHECK_WFLAG_IN_CC_SLEEP \

J

T
Q" URORCLECISEAE ) [G_CHECK_WFLAG_E_OK]

I
[G_CHECK_WFLAG_E_OK]

T_CHECK_WFLAG_TIMEOUT

T_CHECK_WFLAG_INDICATED (

S_CHECK_WUF_IN_NOT_CC_SLEEP_WAIT )

T_CHECK_WFLAG_TII}AEOUT

T_CHECK_WFLAG_INDICATED

( S_CHECK_WUF_IN_CC_SLEEP_WAIT )
\ Junction /
(E ;) T_CHECK_WFLAG_INDICATED
\ ExitPoint /
Figure 7.4: CANSM_BSM_DeinitPnSupported, sub state machine

CANSM_BSM_S_PRE_NOCOM

of



AUTSSAR

7.2.20.3.1 State operation to do in: S_PN_CLEAR_WUF

[SWS_CanSM_00438]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM_DeinitPnSupported is in the state
S_PN_CLEAR_WUF, the CanSM module operate the do action DO_CLEAR_TRCV_WUF
and therefore repeat the APl request CanIf_ClearTrcvWufFlag and use the con-
figured Transceiver (ref. to [ECUC_CanSM_00137]) as API function parameter. |

7.2.20.3.2 Guarding condition: G_PN_CLEAR_WUF_E_OK

[SWS_CanSM_00439]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_PN_CLEAR WUF_E_OK of the sub state ma-
chine CANSM_BSM_DeinitPnSupported shall be passed, if the APl call of
[SWS_CanSM_00438] has returned E_OX. |

7.2.20.3.3 Trigger: T_CLEAR_WUF_INDICATED

[SWS_CanSM_00440]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The callback function CanSM_ClearTrcvWufFlagIndication
(ref. to [SWS_CanSM _00413]) shall trigger the sub state ma-
chine  CANSM_BSM_DeinitPnSupported of the CAN network  with
T_CLEAR_WUF_INDICATED, if the function parameter Transceiver of CansM_ -
ClearTrcvWufFlagIndication matches to the configured CAN Transceiver (ref.
to [ECUC_CanSM_00137]) of the CAN network. |

7.2.20.3.4 Trigger: T_CLEAR_WUF_TIMEOUT

[SWS_CanSM_00443]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the callback function CanSM_ClearTrcvWufFlagIndication  (ref.
to [SWS_CanSM_00440]), this condition shall trigger the sub state ma-
chine CANSM_BSM_DeinitPnSupported of the respective network with
T_CLEAR_WUF_TIMEOUT. |



AUTSSAR

7.2.20.3.5 State operation to do in: S_CC_STOPPED

[SWS_CanSM_00441]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM _DeinitPnSupported is in
the state s_cc_stoppED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode With ControllerMode equal to CAN_CS_STOPPED, if the current
CAN controller mode (ref. to [SWS_CanSM_00638]) is different. |

7.2.20.3.6 Guarding condition: G_CC_STOPPED_E_OK

[SWS_CanSM_00442]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_cc_sTOPPED_E_OK of the sub state machine
CANSM_BSM_DeinitPnSupported shall be passed, if all APl calls of
[SWS_CanSM_00441] have returned E_OKX. |

7.2.20.3.7 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM _00444]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for the
configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to stop the CAN controllers of the CAN net-
work  (ref. to [SWS_CanSM_00442]), this shall trigger the sub state
machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_CC_STOPPED_INDICATED.]

7.2.20.3.8 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00445]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller stopped mode indications (ref. to [SWS_CanSM_00444]),
this condition shall trigger the sub state machine CANSM_BSM_DeinitPnSupported
of the respective network with T_CC_STOPPED_TIMEOUT. |



AUTSSAR

7.2.20.3.9 State operation to do in: S_TRCV_NORMAL

[SWS_CanSM_00446]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM _DeinitPnSupported is in
the state S_TRCV_NORMAL, the CanSM module shall operate the do ac-
tion DO_SET_TRCV_MODE_NORMAL and therefore repeat for the configured CAN
Transceiver of the CAN network (ref. to [ECUC_CanSM_00137]) the API request
CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal
to CANTRCV_TRCVMODE_NORMAL. |

7.2.20.3.10 Guarding condition: G_TRCV_NORMAL_E_OK

[SWS_CanSM_00447]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_TRCV_NORMAL_E_OK of the sub state ma-
chine CANSM_BSM_DeinitPnSupported shall be passed, if the APl call of
[SWS_CanSM_00446] has returned E_OK. |

7.2.20.3.11 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM _00448]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode indication (ref. to
[SWS_CanSM_00399]) for the configured CAN Transceiver of the CAN network (ref. to
[ECUC_CanSM_00137]) after the respective request (ref. to [SWS_CanSM_00446]),
this shall trigger the sub state machine CANSM_BSM_DeinitPnSupported of the
CAN network with T_TRCV_NORMAL_INDICATED. |

7.2.20.3.12 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00449]
Upstream requirements: SRS_Can_01142, SRS _Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the supposed transceiver normal indication (ref. to [SWS_CanSM_00448]), this
condition shall trigger the sub state machine CANSM_BSM_DeinitPnSupported of
the respective network with T_TRCV_NORMAL_TIMEOUT. |



AUTSSAR

7.2.20.3.13 State operation to do in: S_TRCV_STANDBY

[SWS_CanSM_00450]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM_DeinitPnSupported is in the
state S_TRCV_STANDBY, the CanSM module shall operate the do action
DO_SET_TRCV_STANDBY and therefore repeat for the configured CAN Transceiver
of the CAN network (ref. to [ECUC_CanSM_00137]) the API request CanIf_-
SetTrcvMode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal to
CANTRCV_TRCVMODE_STANDBY. |

7.2.20.3.14 Guarding condition: G_TRCV_STANDBY_E_OK

[SWS_CanSM_00451]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_TRCV_STANDBY_E_OK of the sub state ma-
chine CANSM_BSM_DeinitPnSupported shall be passed, if the APl call of
[SWS_CanSM_00450] has returned E_OK. |

7.2.20.3.15 Trigger: T_TRCV_STANDBY_INDICATED

[SWS_CanSM _00452]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If the CanSM module has got the CANTRCV_TRCVMODE_STANDBY mode in-
dication (ref. to [SWS_CanSM_00399]) for the configured CAN Transceiver
of the CAN network (ref. to [ECUC_CanSM_00137]) after the respec-
tive request (ref. to [SWS_CanSM_00450]), this shall trigger the sub
state  machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_TRCV_STANDBY_INDICATED.]

7.2.20.3.16 Trigger: T_TRCV_STANDBY_TIMEOUT

[SWS_CanSM_00454]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the supposed transceiver standby indication (ref. to [SWS_CanSM_00452]), this
condition shall trigger the sub state machine CANSM_BSM_DeinitPnSupported of
the respective network with T_TRCV_STANDBY_TIMEOUT. |



AUTSSAR

7.2.20.3.17 State operation todo in: S_CC_SLEEP

[SWS_CanSM_00453]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM _DeinitPnSupported is in
the state s_cc_siLeep, the CanSM module shall operate the do action
DO_SET_CC_MODE_SLEEP and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_SLEEP, if the current CAN controller mode (ref. to [SWS_CanSM_00638]) is
different. |

7.2.20.3.18 Guarding condition: G_CC_SLEEP_E_OK

[SWS_CanSM_00455]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_cc_SLEEP_E_OK of the sub state machine
CANSM_BSM_DeinitPnSupported shall be passed, if all APl calls of
[SWS_CanSM_00453] have returned E_OK. |

7.2.20.3.19 Trigger: T_CC_SLEEP_INDICATED

[SWS_CanSM_00456]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for
the configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to set the CAN controllers of the CAN net-
work to sleep mode (ref. to [SWS_CanSM_00453]), this shall trigger the
sub state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_CC_SLEEP_INDICATED.|

7.2.20.3.20 Trigger: CANSM_BSM_T_CC_SLEEP_TIMEOUT

[SWS_CanSM_00457]
Upstream requirements: SRS_Can_01142, SRS_Can_01145
[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])

for all supposed controller sleep mode indications (ref. to [SWS_CanSM_00456]),
this condition shall trigger the sub state machine CANSM_BSM_DeinitPnSupported



AUTSSAR

(ref. to Figure 7-4Figure 7-4) of the respective network with
CANSM_BSM_T_CC_SLEEP_TIMEOUT. |

7.2.20.3.21 State operation to do in: S_CHECK_WFLAG_IN_CC_SLEEP

[SWS_CanSM_00458]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM DeinitPnSupported is in the
state S_CHECK_WFLAG_IN_CC_SLEEP, the CanSM module operate the do action
DO_CHECK_WFLAG and therefore repeat the API request CanIf_CheckTrcviWake-
Flag (ref. [SWS_CanSM_91002]) and use the configured CAN Transceiver of the
related Network (ref. to [ECUC_CanSM_00137]) as Transceiver parameter. |

7.2.20.3.22 Guarding condition: G_CHECK_WFLAG_E_OK

[SWS_CanSM_00459]
Upstream requirements: SRS_Can_01142, SRS_Can_01145
[The guarding condition G_CHECK WFLAG_E_OK of the sub state ma-

chine CANSM_BSM_DeinitPnSupported shall be passed, if the API call of
[SWS_CanSM_00458] or [SWS_CanSM_00462] has returned E_OK. |

7.2.20.3.23 Trigger: T_CHECK_WFLAG_INDICATED

[SWS_CanSM_00460]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The callback function CanSM_CheckTransceiverWakeFlagIndica-—
tion (ref. to [SWS_CanSM_00416]) shall trigger the sub state ma-
chine  CANSM_BSM_DeinitPnSupported of the CAN network  with
T_CHECK_WFLAG_INDICATED, if the function parameter Transceiver of
CanSM_CheckTransceiverWakeFlagIndication matches to the configured
CAN Transceiver (ref. to [ECUC_CanSM_00137]) of the CAN network. |

7.2.20.3.24 Trigger: T_CHECK_WFLAG_TIMEOUT

[SWS_CanSM_00461]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the callback function CanSM_CheckTransceiverWakeFlagIndication



AUTSSAR

(ref. to [SWS_CanSM_00460]), this condition shall trigger the sub state
machine CANSM_BSM_DeinitPnSupported of the respective network with
T_CHECK_WFLAG_TIMEOUT. |

7.2.20.3.25 State operation to do in: S_CHECK_WFLAG_IN_NOT_CC_SLEEP

[SWS_CanSM_00462]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM_DeinitPnSupported is in the state
S_CHECK_WFLAG_IN_NOT_CC_SLEEP, the CanSM module operate the do action
DO_CHECK_WFLAG and therefore repeat the API request CanIf_CheckTrcviWake-
Flag (ref. [SWS_CanSM_91002]) and use the configured CAN Transceiver of the
related Network (ref. to [ECUC_CanSM_00137]) as Transceiver parameter. |



AUTSSAR

7.2.20.4 Sub state machine: CANSM_BSM_DeinitPnNotSupported

-

.

CANSM_BSM_DeinitPnNotSupported

/ CANSM_BSM_DeinitPnNotSupportedProceed

[ S_CC_STOPPED

Qo /DO_SET_CC_MODE_STOPPED

\__//

T
[CANSM_BSM_G_CC_STOPPED_E_OK]

T_CC_STOPPED_INDICATED
TiccisTOPPEDiTIIMEOUT

( S_CC_STOPPED_WAIT

|
T_CC_STOPPED_INDICATED

[ S_CC_SLEEP
Qo /DO_SET_CC_MODE_SLEEP )

I
T_CC_SLEEP_INDICATED
[G_CC_SLEEP_E_OK]

\l/ T7007|SLEEP7TIMEOUT

( S_CC_SLEEP_WAIT )

|
T_CC_SLEEP_INDICATED

[ S_TRCV_NORMAL
Qo /DO_SET_TRGV_MODE_NORMAL

L/

|
[G_TRCV_NORMAL_E_OK]

T_TRCV_NORMAL_INDICATED
T_TRCV_NORMAL_TIMEOUT

( S_TRCV_NORMAL_WAIT

T_TRCV_NORMAL_INDICATED

/ S_TRCV_STANDBY \
Qo /DO_SET_TRCV_MODE_STANDBY )

[
[G_TRCV_STANDBY_E_OK]

CANSM_BSM_T_TRCV_STANDBY_TIMOUT
T_TRCV_STANDBY_INDICATED

( S_TRCV_STANDBY_WAIT

T_TRCV_STANDBY_INDICATED
ExitPoint

/

Figure

7.5:

CANSM_BSM_DeinitPnNotSupported, sub state

CANSM_BSM_S_PRE_NOCOM

machine

of



AUTSSAR

7.2.20.4.1 State operation to do in: S_CC_STOPPED

[SWS_CanSM_00464]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM_DeinitPnNotSupported is in
the state s_cc_stoppED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.20.4.2 Guarding condition: CANSM_BSM_G_CC_STOPPED_OK

[SWS_CanSM_00465]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition CANSM_BSM__CC_STOPPED_OK of the sub state ma-
chine CANSM_BSM_DeinitPnNotSupported shall be passed, if all APl calls of
[SWS_CanSM_00464] have returned E_OK. |

7.2.20.4.3 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00466]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for the
configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to stop the CAN controllers of the CAN net-
work  (ref. to [SWS_CanSM_00464]), this shall trigger the sub state ma-
chine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_CC_STOPPED_INDICATED.]

7.2.20.4.4 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00467]
Upstream requirements: SRS_Can_01142, SRS_Can_01145
[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])

for all supposed controller stopped mode indications (ref. to
[SWS_CanSM_00466]), this condition shall trigger the sub state machine



AUTSSAR

CANSM_BSM_DeinitPnNotSupported of the respective network  with
T_CC_STOPPED_TIMEOUT. |

7.2.20.4.5 State operationtodoin: S_CC_SLEEP

[SWS_CanSM_00468]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[As long the sub state machine CANSM_BSM DeinitPnNotSupported is in
the state s_cc_siLeEep, the CanSM module shall operate the do action
DO_SET_CC_MODE_SLEEP and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_SLEEP, if the current CAN controller mode (ref. to [SWS_CanSM_00638]) is
different. |

7.2.20.4.6 Guarding condition: G_CC_SLEEP_E_OK

[SWS_CanSM_00469]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_cc_SLEEP_E_OK of the sub state machine
CANSM_BSM_DeinitPnNotSupported shall be passed, if all API calls of
[SWS_CanSM_00468] have returned E_OKX. |

7.2.20.4.7 Trigger: T_CC_SLEEP_INDICATED

[SWS_CanSM _00470]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for
the configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to set the CAN controllers of the CAN net-
work to sleep mode (ref. to [SWS_CanSM_00468]), this shall trigger the sub
state machine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_CC_SLEEP_INDICATED.|



AUTSSAR

7.2.20.4.8 Trigger: T_CC_SLEEP_TIMEOUT

[SWS_CanSM_00471]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336))
for all supposed controller sleep mode indications (ref. to [SWS_CanSM_00470]), this
condition shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported
of the respective network with T_CC_SLEEP_TIMEOUT. |

7.2.20.4.9 State operation to do in: S_TRCV_NORMAL

[SWS_CanSM_00472]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If for the CAN network a CAN Transceiver is configured (ref.
to [ECUC_CanSM_00137]), then as long the sub state machine
CANSM_BSM_DeinitPnNotSupported is in the state S_TRCV_NORMAL, the
CanSM module shall operate the do action DO_SET_TRCV_MODE_NORMAL
and therefore repeat for the configured CAN Transceiver of the CAN net-
work  (ref. to [ECUC_CanSM_00137]) the API request CanIf_SetTrcv-
Mode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal to
CANTRCV_TRCVMODE_NORMAL. |

7.2.20.4.10 Guarding condition: G_TRCV_NORMAL_E_OK

[SWS_CanSM_00473]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[The guarding condition G_TRCV_NORMAL_E_OK of the sub state machine
CANSM_BSM_DeinitPnNotSupported shall be passed, if the APl call of
[SWS_CanSM_00472] has returned E_OX. |

7.2.20.4.11 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00474]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode indication (ref. to
[SWS_CanSM_00399]) for the configured CAN Transceiver of the CAN network (ref. to
[ECUC_CanSM_00137]) after the respective request (ref. to [SWS_CanSM_00472]),
this shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported of the
CAN network with T_TRCV_NORMAL_INDICATED. |



AUTSSAR

[SWS_CanSM_00556]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If no CAN Transceiver is configured for the CAN network, then this shall trigger the
sub state machine CANSM_BSM_DeinitPnNotSupported of the CAN network in the
state S_TRCV_NORMAL with T_TRCV_NORMAL_INDICATED. |

7.2.20.4.12 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00475]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the supposed transceiver normal indication (ref. to [SWS_CanSM_00474]), this
condition shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported
of the respective network with T_TRCV_NORMAL_TIMEOUT.

7.2.20.4.13 State operation to do in: S_TRCV_STANDBY

[SWS_CanSM_00476]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If for the CAN network a CAN Transceiver is configured (ref.
to [ECUC_CanSM_00137]), then as long the sub state machine
CANSM_BSM_DeinitPnNotSupported is in the state S_TRCV_STANDBY, the
CanSM module shall operate the do action DO_SET_TRCV_MODE_STANDBY
and therefore repeat for the configured CAN Transceiver of the CAN net-
work (ref. to [ECUC_CanSM_00137]) the API request CanIf_SetTrcv-
Mode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal to
CANTRCV_TRCVMODE_STANDBY. |

7.2.20.4.14 Guarding condition: G_TRCV_STANDBY_E_OK

[SWS_CanSM_00477]
Upstream requirements: SRS_Can_01142, SRS_Can_01145
[The guarding condition G_TRCV_STANDBY_E_OK of the sub state machine

CANSM_BSM_DeinitPnNotSupported shall be passed, if the API call of
[SWS_CanSM_00476] has returned E_OX. |



AUTSSAR

7.2.20.4.15 Trigger: T_TRCV_STANDBY_INDICATED

[SWS_CanSM_00478]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If CanSM module has got the CANTRCV_TRCVMODE_STANDBY mode indi-
cation (ref. to [SWS_CanSM_00399]) for the configured CAN Transceiver
of the CAN network (ref. to [ECUC_CanSM_00137]) after the respec-
tive request (ref. to [SWS_CanSM_00476]), this shall trigger the sub
state machine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_TRCV_STANDBY_INDICATED.|

[SWS_CanSM_00557]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[If no CAN Transceiver is configured for the CAN network (ref. to
[ECUC_CanSM_00137]), then this shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported of the CAN network in the state
S_TRCV_STANDBY with T_TRCV_STANDBY_INDICATED.]

7.2.20.4.16 Trigger: CANSM_BSM_T_TRCV_STANDBY_TIMEOUT

[SWS_CanSM_00479]
Upstream requirements: SRS_Can_01142, SRS_Can_01145

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the supposed transceiver standby indication (ref. to [SWS_CanSM_00478]), this
condition shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported
of the respective network with CANSM_BSM_T_TRCV_STANDBY_TIMEOUT. |



AUTSSAR

7.2.21 Sub state machine: CANSM_BSM_S_SILENTCOM_BOR

Ve CANSM_BSM_S_SILENTCOM_BOR N\

S_RESTART_CC \

/E_BUS_OFF, /
do/DO_SET_CC_MODE_STARTED
EntryPoint

[G_RESTART_CC_E_OK]

T_RESTART_CC_TIMEOUT

T_RESTART_CG_INDICATED /E_TX_OFF
( CANSM_BSM_S_RESTART_CC_WAIT )

T_RESTART_CC_INDICATED /E_TX_OFF

ExitPoint

- J
Figure 7.6: CANSM_BSM_S_SILENTCOM_BOR, sub state machine of CANSM_BSM

7.2.21.1 Effect: E_BUS_OFF

[SWS_CanSM_00605]
Upstream requirements: SRS_BSW_00422

[The effect E_BUS_OFF of the sub state machine CANSM BSM_S_FULLCOM
CANSM_BSM_S_SILENTCOM_BOR shall invocate Dem_sSetEventStatus (ref. to
[SWS_CanSM_91002]) with the parameters EventId := CANSM_E_BUS_OFF (ref. to
[ECUC_CanSM_00070]) and EventStatus :=DEM_EVENT_STATUS_PRE_FAILED. ]

7.2.21.2 State operation: S_ RESTART_CC

[SWS_CanSM_00604]
Upstream requirements: SRS_Can_01142, SRS Can_01145, SRS_Can_01144, SRS _Can_-
01146

[As long the sub state machine CANSM_BSM_S_SILENTCOM_BOR is in
the state s_RESTART_ccC, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STARTED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |



AUTSSAR

7.2.21.3 G_RESTART CC_E_OK

[SWS_CanSM_00603]

Upstream requirements: SRS_Can_01142, SRS_Can_01145, SRS_Can_01144, SRS_Can_-
01146

[The guarding condition G_RESTART_CC_OK of the sub state machine
CANSM_BSM_S_SILENTCOM_BOR shall be passed, if all APl calls of
[SWS_CanSM_00604] have returned E_OKX. |

7.2.21.4 Trigger: T_RESTART_CC_INDICATED

[SWS_CanSM_00600]
Upstream requirements: SRS_Can_01142, SRS_Can_01145, SRS_Can_01144, SRS_Can_-

01146
[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396])
for the configured CAN controllers of the CAN network (ref. to

[ECUC_CanSM_00141]) after the respective requests to start the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00604]), this shall trig-
ger the sub state CANSM_BSM_S_SILENTCOM_BOR of the CAN network with
T_RESTART_CC_INDICATED. ]

7.2.21.5 T_RESTART_CC_TIMEOUT

[SWS_CanSM_00602]
Upstream requirements: SRS_Can_01142, SRS_Can_01145, SRS_Can_01144, SRS_Can_-
01146
[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller started mode indications (ref. to [SWS_CanSM_00600]),
this condition shall trigger the sub state machine CANSM_BSM_S_SILENTCOM_BOR of
the respective network with T_RESTART_CC_TIMEOUT. |

7.2.21.6 Effect: E_TX_OFF

The effect E_Tx_OFF shall do nothing (default PDU mode after restart of CAN con-
troller is already TX OFF, ref. to Canlf SWS).



AUTSSAR

7.2.22 Sub state machine: CANSM_BSM_S_PRE_FULLCOM

Ve CANSM_BSM_S_PRE_FULLCOM N\

—_— G_TRGV_NORMAL_E_OK
EntryPoint / S_TRCV_NORMAL \ [CRIECAE SENCL!

@ /DO_SET_TRCV_MODE_NORMAL J T TRCV_NORMAL_TIMEOUT

T_TRCV_NORMAL_INDICATED ( S_TRCV_NORMAL_WAIT )

\; T_TRCV_NORMAL_INDICATED

/ S_CC_STOPPED \
|

@ /DO_SET_CC_MODE_STOPPED

[G_CC_STOPPED_E_OK]

T_CC_STOPPED_INDICATED IBCORSIIORREDAIIMECE]

( S_CC_STOPPED_WAIT )
T_CC_STOPPED_INDICATED
S_CC_STARTED \
[G_CC_STARTED_E_OK]

do /DO_SET_CC_MODE_STARTED
J T_CC_STARTED_TIMEOUT

= 1

( S_CC_STARTED_WAIT )

T_CC_STARTED_INDICATED

T_CC_STARTED_INDICATED

ExitPoint
To
FULLCOM

- J
Figure 7.7: CANSM_BSM_S_PRE_FULLCOM, sub state machine of CANSM_BSM

7.2.22.1 State operation to do in: S_TRCV_NORMAL

[SWS_CanSM_00483]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If for the CAN network a CAN Transceiver is configured (ref.
to [ECUC_CanSM_00137]), then as long the sub state machine
CANSM_BSM_S_PRE_FULLCOM is in the state S_TRCV_NORMAL, the CanSM module
shall operate the do action DO_SET_TRCV_MODE_NORMAL and therefore repeat for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
the APl request CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) with
TransceiverMode equal to CANTRCV_TRCVMODE_NORMAL. |



AUTSSAR

7.2.22.2 Guarding condition: G_TRCV_NORMAL_E_OK

[SWS_CanSM_00484]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[The guarding condition G_TRCV_NORMAL_E_OK of the sub state ma-
chine CANSM_BSM_S_PRE_FULLCOM shall be passed, if the API call of
[SWS_CanSM_00483] has returned E_OX. |

7.2.22.3 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00485]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode indication (ref. to
[SWS_CanSM_00399]) for the configured CAN Transceiver of the CAN network (ref. to
[ECUC_CanSM_00137]) after the respective request (ref. to [SWS_CanSM_00483]),
this shall trigger the sub state machine cansM_BsM_S_PRE_FULLCOM of the CAN
network with T_TRCV_NORMAL_INDICATED. |

[SWS_CanSM_00558]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If no CAN Transceiver is configured for the CAN network (ref. to
[ECUC_CanSM_00137]), then this shall trigger the sub state machine
CANSM_BSM_S_PRE_FULLCOM of the CAN network in the state S_TRCV_NORMAL with
T_TRCV_NORMAL_INDICATED. |

7.2.22.4 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00486]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for the supposed transceiver normal indication (ref. to [SWS_CanSM_00485]), this
condition shall trigger the sub state machine CANSM_BSM_S_PRE_FULLCOM of the re-
spective network with T_TRCV_NORMAL_TIMEOUT. |



AUTSSAR

7.2.22.5 State operationtodoin: S_CC_STOPPED

[SWS_CanSM_00487]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[As long the sub state machine CANSM_BSM_S_PRE_FULLCOM is in the
state s_cc_stopPED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.22.6 Guarding condition: G_CC_STOPPED_OK

[SWS_CanSM_00488]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_cc_sTopPED_OK of the sub state ma-
chine CANSM_BSM_S_PRE_FULLCOM shall be passed, if all API calls of
[SWS_CanSM_00487] have returned E_OK. |

7.2.22.7 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00489]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396])
for the configured CAN controllers of the CAN network (ref. to
[ECUC_CanSM_00141]) after the respective requests to stop the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00487]), this shall trigger
the sub state machine caNSM_BsSM_sS_PRE_FULLCOM of the CAN network with
T_CC_STOPPED_INDICATED.]

7.2.22.8 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00490]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller stopped mode indications (ref. to [SWS_CanSM_00489]),
this condition shall trigger the sub state machine CANSM_BSM_S_PRE_FULLCOM of the
respective network with T_CC_STOPPED_TIMEOUT. |



AUTSSAR

7.2.22.9 State operation to doin: S_CC_STARTED

[SWS_CanSM_00491]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[As long the sub state machine CANSM_BSM_S_PRE_FULLCOM is in the
state Ss_cc_STARTED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STARTED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.22.10 Guarding condition: G_CC_STARTED_OK

[SWS_CanSM_00492]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_cCc_STARTED_OK of the sub state ma-
chine CANSM_BSM_S_PRE_FULLCOM shall be passed, if all API calls of
[SWS_CanSM_00491] have returned E_OK. |

7.2.22.11 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00493]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396])
for the configured CAN controllers of the CAN network (ref. to
[ECUC_CanSM_00141]) after the respective requests to start the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00491]), this shall trigger
the sub state machine caNSM_BsSM_sS_PRE_FULLCOM of the CAN network with
T_CC_STARTED_INDICATED.]

7.2.22.12 Trigger: T_CC_STARTED_TIMEOUT

[SWS_CanSM_00494]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller started mode indications (ref. to [SWS_CanSM_00493]),
this condition shall trigger the sub state machine CANSM_BSM_S_PRE_FULLCOM of the
respective network with T_CC_STARTED_TIMEOUT. |



AUTSSAR

7.2.23 Sub state machine CANSM_BSM S FULLCOM

e CANSM_BSM_S_FULLCOM N\

( S_BUS_OFF_CHECK \ EntryPoint

[G_BUS_OFF_PASSIVE]
[G_TX_ON]/E_TX_ON /E_BUS_OFF_PASSIVE

[ S_TX_OFF :

T_RESTART_CC_INDICATED /E_TX_OFF

T_BUS_OFF /E_BUS_OFF
S_NO_BUS_OFF

T_CHANGE_BR_REQUEST
/E_CHANGE_BR_BSWM_MODE

T_TX_TIMEOUT_EXCEPTION

ANSM_BSI1_S_TX_TIMEOUT_EXCEPTIO
T_RESTART_CC_INDICATED /E_TX_OFF

GANSM7BSM787HESTART70C7WAIj xS TxTimeout

T_BUS_OFF /E_BUS_OFF
oo
T_RESTART_CC_TIMEOUT
[G_RESTART_CC_E_OK]
S_RESTART_CC \
do / DO_SET_CC_MODE_STARTED AT
CHANGE_BR

Figure 7.8: CANSM_BSM_S_ FULLCOM, sub state machine of CANSM_BSM

7.2.23.1 Guarding condition: G_BUS_OFF_PASSIVE

[SWS_CanSM_00496]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_BUS_OFF_PASSIVE of the sub
state machine CANSM_BSM_S_FULLCOM shall be passed, if
CANSM_BOR_TX_CONFIRMATION_POLLING is disabled (ref. to

[ECUC_CanSM_00339]) and the time duration since the effect E_Tx_ON is greater
or equal the configuration parameter CANSM_BOR_TIME_TX_ENSURED (ref. to
[ECUC_CanSM_00130]). |



AUTSSAR

[SWS_CanSM_00497]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_BUS_OFF_PASSIVE of the sub
state machine CANSM_BSM_S_FULLCOM shall be passed, if
CANSM_BOR_TX_CONFIRMATION_POLLING is enabled (ref. to

[ECUC_CanSM_00339]) and the APl CanIf_GetTxConfirmationState (ref.
to [SWS_CanSM_91002]) returns CANIF_TX_RX_NOTIFICATION for all configured
CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141]). |

7.2.23.2 Effect: E BUS_OFF_PASSIVE

[SWS_CanSM_00498]
Upstream requirements: SRS _BSW_00422

[The effect E_BUS_OFF_PASSIVE of the sub state machine CANSM_BSM_S_FULLCOM
shall invocate Dem_SetEventStatus (ref. to [SWS_CanSM_91002]) with the pa-
rameters EventId := CANSM_E_BUS_OFF (ref. to [ECUC_CanSM_00070]) and
EventStatus = DEM_EVENT_STATUS_PASSED. |

7.2.23.3 Trigger: T_CHANGE_BR_REQUEST

[SWS_CanSM_00507]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If no condition is present to deny the CansM_SetBaudrate request (ref. to
[SWS_CanSM_00503]), this shall trigger the state machine CANSM_BSM_S_FULLCOM
and respectively the parent state machine CansM_BSM with T_CHANGE_BR_REQUEST
(causes either a direct baud rate change if possible via CanIf_SetBaudrate (ref. to
[SWS_CanSM_910083])) or the start of the required asynchronous process to do that |

7.2.23.4 Effect: E_CHANGE_BR_BSWM_MODE

[SWS_CanSM_00528]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The effect E_CHANGE_BR BswM_MODE of the sub state machine
CANSM_BSM_S_FULLCOM shall call for the corresponding CAN network the API
BswM_CanSM_CurrentState (ref. to [SWS_CanSM_91002]) with the pa-
rameters Network := CanSMComMNetworkHandleRef and CurrentState =
CANSM_BSWM_CHANGE_BAUDRATE. |



AUTSSAR

7.2.23.5 Trigger: T_BUS_OFF

[SWS_CanSM_00500]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[The callback function CansM_ControllerBusOff (ref. to [SWS_CanSM_00064])
shall trigger the sub state machine cansM_BsM_s_FULLCOM for the CAN network with
T_BUS_OFF, if one of its configured CAN controllers matches to the function parameter
ControllerId of the callback function CansM_ControllerBusOff.]

[SWS_CanSM_00653]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[If more than one CAN controller belongs to one CAN network and for one of its con-
trollers a bus-off is indicated with CcansM_ControllerBusOff, then the CanSM shall
stop in context of the effect E_BUS_OFF the other CAN contoller(s) of the CAN network,
too. |

7.2.23.6 Effect: E BUS_OFF

[SWS_CanSM_00508]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The effect E_BUS_OFF of the sub state machine caNsM_BsM_S_FULLCOM shall call
at 1%t place for the corresponding CAN network the APl BswM_CanSM_CurrentState
(ref. to [SWS_CanSM_91002]) with the parameters Network := CanSMComMNet—
workHandleRef and CurrentState := CANSM_BSWM_BUS_OFF. |

[SWS_CanSM_00521]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The effect E_BUS_OFF of the sub state machine CaANSM_BSM_S_FULLCOM shall
call at 2" place for the corresponding CAN network the APl ComM_BusSM_Mod-
eIndication (ref. to [SWS_CanSM_91002]) with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]) and ComMode :=
COMM_SILENT_COMMUNICATION.]

[SWS_CanSM _00522]
Upstream requirements: SRS_BSW_00422

[The effect E_BUS_OFF of the sub state machine cANSM_BsSM_s_FuLLcoM shall in-
vocate Dem_SetEventStatus (ref. to [SWS_CanSM_91002]) with the parameters
EventId := CANSM_E_BUS_OFF (ref. to [ECUC_CanSM_00070]) and EventStatus
= DEM_EVENT_STATUS_PRE_FAILED. |



AUTSSAR

7.2.23.7 State operation to do in: S_RESTART_CC

[SWS_CanSM_00509]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[As long the sub state machine CANSM_BSM_S_FULLCOM is in the
state S_RESTART_ccC, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STARTED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.23.8 Guarding condition: G_RESTART_CC_OK

[SWS_CanSM_00510]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_RESTART_CC_OK of the sub state machine
CANSM_BSM_S_FULLCOM shall be passed, if all API calls of [SWS_CanSM_00509]
have returned E_OK. |

7.2.23.9 Trigger: T_RESTART_CC_INDICATED

[SWS_CanSM_00511]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for
the configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to start the CAN controllers of the CAN network (ref. to
[SWS_CanSM_00509]), this shall trigger the sub state CANSM_BSM_S_ FULLCOM of the
CAN network with T_RESTART_CC_INDICATED. |

7.2.23.10 Trigger: T_RESTART_CC_TIMEOUT

[SWS_CanSM_00512]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller started mode indications (ref. to [SWS_CanSM_00511]),
this condition shall trigger the sub state machine cCANSM_BsSM_S_FULLCOM of the re-
spective network with T_RESTART_CC_TIMEOUT. |



AUTSSAR

7.2.23.11 Effect: E_TX_OFF

The effect E_TX_OFF shall do nothing.

7.2.23.12 Guarding condition: G_TX_ON

[SWS_CanSM_00514]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSMEnableBusOffDelay is FALSE, then guarding condition G_Tx_ON of the
sub state machine caNSM_BsSM_S_FULLCOM shall be passed after a time duration of
CanSMBorTimeLl (ref. to [ECUC_CanSM_00128]) related to the last T_BUS_OFF,
if the count of bus-off recovery retries with E_BUS_OFF without passing the guarding
condition G_BUS_OFF_PASSIVE is lower than CanSMBorCounterL1ToL2 (ref. to
[ECUC_CanSM_00131]). ]

[SWS_CanSM_00515]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSMEnableBusOffDelay is FALSE, then the guarding condition G_Tx_ON of
the sub state machine caNsSM_BsSM_S_FULLCOM shall be passed after a time duration
of CanSMBorTimeL2 (ref. to [ECUC_CanSM_00129]) related to the last T_BUS_OFF, if
the count of bus-off recovery retries with E_BUS_OFF without passing the guarding con-
dition G_BUS_OFF_PASSIVE is greater than or equal to CanSMBorCounterL1ToL2
(ref. to [ECUC_CanSM_00131]). |

[SWS_CanSM_00636]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSMEnableBusOffDelay is TRUE, then the guarding conditions of
[SWS_CanSM_00514] and [SWS_CanSM_00515] shall be passed after the delay
value, which shall be requested after the bus-off event with the configured call out
function <User_GetBusOffDelay> (APl name defined by CanSMGetBusOffDe-
layFunction).|

7.2.23.13 Effect: E_TX_ON

[SWS_CanSM_00516]
Upstream requirements: SRS_Can_01158

[If ECU passive is FALSE (ref. to [SWS_CanSM_00646]), then the effect E_Tx_0oN of
the sub state machine cansM_BSM_S_FULLCOM shall call at 1%t place for the config-
ured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141]) the API
function CcanIf_sSetPduMode (ref. to [SWS_CanSM_91002]) with the parameters
ControllerId :=CanSMControllerId (ref. to [ECUC_CanSM_00141]) and Pdu-
ModeRequest = CANIF_ONLINE. |



AUTSSAR

[SWS_CanSM_00648]
Upstream requirements: SRS_Can_01158

[If ECU passive is TRUE (ref. to [SWS_CanSM_00646]), then the effect E_TX_oN of
the sub state machine cansM_BsM_S_FULLCOM shall call at 1t place for the config-
ured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141]) the API
function canIf_sSetPduMode (ref. to [SWS_CanSM_91002]) with the parameters
ControllerId :=CanSMControllerId (ref. to [ECUC_CanSM_00141]) and Pdu-
ModeRequest = CANIF_TX_OFFLINE_ACTIVE.]

[SWS_CanSM_00517]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[ The effect E_TX_ON of the sub state machine caNsM_BsM_S_FULLCOM shall call at
2"d place for the corresponding CAN network the APl BswM_CanSM_CurrentState
(ref. to [SWS_CanSM_91002]) with the parameters Network := CanSMComMNet -
workHandleRef and CurrentState := CANSM_BSWM_FULL_COMMUNICATION. |

[SWS_CanSM_00518]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The effect E_TX_ON of the sub state machine CANSM_BSM_S_FULLCOM shall call at
3" place the APl comM_BusSM_ModeIndication (ref. to [SWS_CanSM_91002])
with the parameters Channel := CanSMComMNetworkHandleRef (ref. to
[ECUC_CanSM_00161]) and ComMode := COMM_FULL_COMMUNICATION. |

7.2.23.14 Trigger: T_TX_TIMEOUT EXCEPTION

[SWS_CanSM_00584]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The callback function CanSM_TxTimeoutException  (ref. to
[SWS_CanSM_00410]) shall trigger the sub state machine CANSM_BSM_S_FULLCOM
with T_TX_TIMEOUT_EXCEPTION. ]

7.2.23.15 Notes

In the state s_NO_BUS_OFF no state operation is required for the CanSM module.



AUTSSAR

7.2.23.16 Sub state machine: CANSM_BSM_S_TX_TIMEOUT_EXCEPTION

Ve CANSM_BSM_S_TX_TIMEOUT_EXCEPTION N\

e S_TX_TIMEOUT_EXCEPTION_PROCEED N\

ntryPoint
S_CC_STOPPED \ RCCRSIORREDATIMEOT] [ SCCSTOPPEDWAj

do /DO_SET_CC_MODE_STOPPED()

I [G_CC_STOPPED_E_OK]

T_CC_STOPPED_INDICATED T_CC_STOPPED_INDICATED
S_CC_STARTED \
do / DO_SET_CC_MODE_STARTED() J

[G_CC_STARTED_E_OK]
T_CC_STARTED_TIMEOUT

T_CC_STARTED_INDICATED
S_CC_STARTED_WAI

T_CC_STARTED_INDICATED /

ExitPoint TxTimeout

- J
Figure 7.9: CANSM_BSM S TX TIMEOUT_EXCEPTION, sub state machine of
CANSM_BSM_S_FULLCOM

7.2.23.16.1 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00576]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller stopped mode indications (ref. to
[SWS_CanSM_00579]), this condition shall trigger the sub state machine
CANSM_BSM_S_TX_ TIMEOUT_EXCEPTION of the respective network with
T_CC_STOPPED_TIMEOUT. |



AUTSSAR

7.2.23.16.2 Guarding condition: G_CC_STOPPED_E_OK

[SWS_CanSM_00577]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[The guarding condition G_cC_sTOPPED_E_OK of the sub state machine
CANSM_BSM_S_TX_TIMEOUT_EXCEPTION shall be passed, if all APl calls of
[SWS_CanSM_00578] have returned E_OK. |

7.2.23.16.3 State operation: DO_SET_CC_MODE_STOPPED ()

[SWS_CanSM_00578]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[As long the sub state machine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION is
in the state s_cc_sToppED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.23.16.4 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00579]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for the
configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to stop the CAN controllers of the CAN net-
work  (ref. to [SWS_CanSM_00524]), this shall trigger the sub state ma-
chine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION of the CAN network with
T_CC_STOPPED_INDICATED.]

7.2.23.16.5 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00580]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for
the configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to start the CAN controllers of the CAN
network (ref. to [SWS_CanSM_00582]), this shall trigger the sub state



AUTSSAR

machine CANSM BSM S TX TIMEOUT EXCEPTION of the CAN network with
T_CC_STARTED_INDICATED.|

7.2.23.16.6 Guarding condition: G_CC_STARTED_E_OK

[SWS_CanSM _00581]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_CC_STARTED_E_OK of the sub state machine
CANSM_BSM_S_TX_TIMEOUT_EXCEPTION shall be passed, if all APl calls of
[SWS_CanSM_00582] have returned E_OK. |

7.2.23.16.7 State operation: DO_SET_CC_MODE_STARTED

[SWS_CanSM _00582]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[As long the sub state machine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION is
in the state s_cc_STARTED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STARTED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.23.16.8 ExitPoint: TxTimeout

[SWS_CanSM_00655] [1f the sub state machine
CANSM_BSM_S_TX_TIMEOUT_EXCEPTION is triggered with
T_CC_STARTED_INDICATED, the APl cCanIf_SetPduMode (ref. to

[SWS_CanSM_91002]) shall be called with CANIF_ONLINE. |



AUTSSAR

7.2.24 Sub state machine: CANSM_BSM_S_CHANGE_BAUDRATE

Ve CANSM_BSM_S_CHANGE_BAUDRATE ™\

e CANSM_BSM_CHANGE_BR_SYNC N\

entry / DO_SET_BAUDRATE_DIRECT

- /

T
[G_SET_BAUDRATE_DIRECT_OK [G_SET_BAUDRATE_DIRECT_NOT_OK] [G_SET_BAUDRATE_DIRECT_OK
G_NO_COM_MODE_REQUESTED] G_NO_COM_MODE_NOT_REQUESTED]

e CANSM_BSM_S_CHANGE_BAUDRATE_PROCEED N\

EntryPoint

/ S_CG_STOPPED T_CC_STOPPED_TIMEOUT

\ S_CC_STOPPED_WAIT
@/DOfSEchchODEfsTOPPED | [G_CC_STOPPED_E OK]

T_CC_STOPPED_INDICATED T_CC_STOPPED_INDICATED

/E_CHANGE_BAUDRATE /E_CHANGE_BAUDRATE

f S_CC_STARTED \

@ / DO_SET_CC_MODE_STARTED

| |
T_CC_STARTED_INDICATED T_CC_STARTED_INDICATED
[G_NO_COM_MODE_REQUESTED] [G_NO_COM_MODE_NOT_REQUESTED]

[G_CC_STARTED_E_OK] T_CC_STARTED_TIMEOUT

[ S_CC_STARTED_WAIT )

T_CC_STARTED_INDICATED T_CC_STARTED_INDICATED
[G_NO_COM_MODE_REQUESTED] [G_NO_COM_MODE_NOT_REQUESTED]

ExitPoint ExitPoint
NO_COM FULL_OR_SILENT_COM

Figure 7.10: CANSM_BSM_S_CHANGE_BAUDRATE, sub state machine of CANSM_BSM

7.2.24.1 State operation to do on entry: DO_SET_BAUDRATE_DIRECT

[SWS_CanSM_00639]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[ The state operation DO_SET_BAUDRATE_DIRECT shall call the APl request CanIf_
SetBaudrate (ref. to [SWS_CanSM_91003])) for all configured CAN controllers of
the CAN network (ref. to [ECUC_CanSM_00141] with the respective ControllerId
parameter. It shall use as BaudRateConfigID parameter the respective function
parameter BaudRateConfigID from the call CanSM_SetBaudrate. |



AUTSSAR

7.2.24.2 Guarding condition: G_SET_BAUDRATE_DIRECT_OK

[SWS_CanSM_00641]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[If all canIf_SetBaudrate (ref. to [SWS_CanSM_91003])) (ref. to
[SWS_CanSM_00639]) requests returned with E_OK, the guarding condition
G_SET_BAUDRATE_DIRECT_OK shall be passed. |

7.2.24.3 Guarding conditions: G_SET_BAUDRATE_DIRECT_NOT_OK

[SWS_CanSM_00642]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If any of the CanIf_ SetBaudrate (ref. to [SWS_CanSM_91003])) (ref. to
[SWS_CanSM_00639]) requests did return with E_NOT_OK, the guarding condition
G_SET_BAUDRATE_NOT_OK of the state CANSM_BSM_CHANGE_BR_SYNC shall be
passed. |

7.2.24.4 State operation to do in: S_CC_STOPPED

[SWS_CanSM_00524]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[As long the sub state machine CANSM _BSM_S_CHANGE_BAUDRATE is in
the state s_cc_sToppeED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.24.5 Guarding condition: G_CC_STOPPED_OK

[SWS_CanSM_00525]
Upstream requirements: SRS_Can_01145, SRS _Can_01142
[The guarding condition G_cc_sTopPED_OK of the sub state machine

CANSM_BSM_S_CHANGE_BAUDRATE shall be passed, if all APl calls of
[SWS_CanSM_00524] have returned E_OK. |



AUTSSAR

7.2.24.6 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00526]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for the
configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to stop the CAN controllers of the CAN net-
work  (ref. to [SWS_CanSM_00524]), this shall trigger the sub state
machine CANSM_BSM_S_CHANGE_BAUDRATE of the CAN network with
T_CC_STOPPED_INDICATED.]

7.2.24.7 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00527]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller stopped mode indications (ref. to [SWS_CanSM_00526]),
this condition shall trigger the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE
of the respective network with T_CC_STOPPED_TIMEOUT.

7.2.24.8 Effect: E_CHANGE_BAUDRATE

[SWS_CanSM_00529]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The  effect E_CHANGE_BAUDRATE of the sub  state  machine
CANSM_BSM_S_CHANGE_BAUDRATE shall call at 1% place for the corresponding CAN
network the APl ComM_BusSM_ModeIndication (ref. to [SWS_CanSM_91002])
with the parameters Channel := CanSMComMNetworkHandleRef (ref. to
[ECUC_CanSM_00161]) and ComMode = COMM_NO_COMMUNICATION. |

[SWS_CanSM_00531]
Upstream requirements: SRS _Can_01145, SRS _Can_01142

[The  effect E_CHANGE_BAUDRATE of the sub  state  machine
CANSM_BSM_S_CHANGE_BAUDRATE shall call at 2" place for all configured CAN
controllers of the CAN network (ref. to [ECUC_CanSM_00141]) the API request
CanIf_SetBaudrate (ref. to [SWS_CanSM_91003])) with the respective Control-
lerId parameter and shall use as BaudRateConfigID parameter the remembered
BaudRateConfigID from the call CansSM_SetBaudrate. |



AUTSSAR

7.2.24.9 State operation to do in: S_CC_STARTED

[SWS_CanSM _00532]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[As long the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE is in
the state s_cc_sTARTED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STARTED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different. |

7.2.24.10 Guarding condition: G_CC_STARTED_OK

[SWS_CanSM_00533]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The guarding condition G_cC_STARTED_OK of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE shall be passed, if all APl calls of
[SWS_CanSM_00532] have returned E_OK. |

7.2.24.11 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00534]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[If CanSM module has got all mode indications (ref. to [SWS_CanSM_00396]) for the
configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
after the respective requests to start the CAN controllers of the CAN
network (ref. to [SWS_CanSM_00532]), this shall trigger the sub state
machine CANSM_BSM_S_CHANGE_BAUDRATE of the CAN network with
T_CC_STARTED_INDICATED.]

7.2.24.12 Trigger: T_CC_STARTED_TIMEOUT

[SWS_CanSM_00535]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to [ECUC_CanSM_00336])
for all supposed controller started mode indications (ref. to[SWS_CanSM_00534]),
this condition shall trigger the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE
of the respective network with T_CC_STARTED_TIMEOUT. |



AUTSSAR

7.2.24.13 Guarding condition: G_NO_COM_MODE_REQUESTED

[SWS_CanSM_00542]
Upstream requirements: SRS_Can_01145, SRS _Can_01142

[The sub state machine CANSM_BSM_S_CHANGE_BAUDRATE shall pass the guarding
condition G_NO_COM_MODE_REQUESTED, if the latest accepted communication mode
request with CansM_RequestComMode (ref. to [SWS_CanSM_00635]) for the respec-
tive network of the state machine has been called with the parameter mode equal to
COMM_NO_COMMUNICATION. |

7.2.24.14 Guarding condition: G_NO_COM_MODE_NOT_REQUESTED

[SWS_CanSM_00543]

Upstream requirements: SRS_Can_01145, SRS_Can_01142
[ The sub state machine CANSM_BSM_S_CHANGE_BAUDRATE shall pass the guarding
condition G_NO_COM_MODE_NOT_REQUESTED, if the latest accepted communication
mode request with CanSM_RequestComMode (ref. to [SWS_CanSM_00635]) for the

respective network of the state machine has been called with the parameter mode
equal to COMM_SILENT_COMMUNICATION Of COMM_FULL_COMMUNICATION. |

7.3 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.3.1 Development Errors

[SWS_CanSM_00654] Definition of development errors in module CanSM
Upstream requirements: SRS_BSW_00337

[
Type of error Related error code Error value
API service used without module initialization CANSM_E_UNINIT 0x01
API service called with wrong pointer CANSM_E_PARAM_POINTER 0x02
API service called with wrong parameter CANSM_E_INVALID_NETWORK_HANDLE 0x03

Y%



AUTSSAR

JAN
Type of error Related error code Error value
API service called with wrong parameter CANSM_E_PARAM_CONTROLLER 0x04
API service called with wrong parameter CANSM_E_PARAM_TRANSCEIVER 0x05
Delnit API service called when not all CAN CANSM_E_NOT_IN_NO_COM 0x0B
networks are in state CANSM_NO _
COMMUNICATION

7.3.2 Runtime Errors

[SWS_CanSM_00664] Definition of runtime errors in module CanSM
Upstream requirements: SRS_BSW_00466

[

Type of error

Related error code Error value

allowed by configuration

Mode request for a network failed more often than | CANSM_E_MODE_REQUEST_TIMEOUT 0x0A

7.3.3 Production Errors

There are no production errors.

7.3.4 Extended Production Errors

7.3.4.1 CANSM_E_BUS_OFF

[SWS CanSM_00666] Bus-off detection
Upstream requirements: SRS_BSW_00458

[

Diagnostic Event (Error Name) CANSM_E_BUS _OFF

Description The bus-off recovery state machine of a CAN network has detected a certain amount
of sequential bus-offs without successful recovery.

Failed condition PRE_FAILED when CanSM_ControllerBusOff is called (T_BUS_OFF/E_BUS_OFF),
debouncing to be defined by OEM in DEM.

Passed condition After successful transmission of a CAN frame (G_BUS_OFF_PASSIVE/E_BUS_OFF_
PASSIVE).




AUTSSAR

7.4 ECU online active / passive mode

[SWS_CanSM_00646]
Upstream requirements: SRS_Can_01158

[ The CanSM module shall store the state of the requested ECU passive mode (ref. to
[SWS_CanSM_00644)). |

[SWS_CanSM_00649]
Upstream requirements: SRS_Can_01158

[When cCansSM_SetEcuPassive is called with CansSM _Passive=true; (ref.
to [SWS_CanSM_00644]), then the CanSM shall change all PDU modes
of the configured CAN controllers, which are CANIF_ONLINE at the mo-
ment to CANIF_TX_OFFLINE_ACTIVE by calling the APl CanIf_ SetPduMode
(ref. to [SWS_CanSM_91002]) with the parameters ControllerId := CanSM-
ControllerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest :=
CANIF_TX_OFFLINE_ACTIVE.]

[SWS_CanSM_00650]
Upstream requirements: SRS_Can_01158

[If CansSM_SetEcuPassive called with CanSM_Passive=false; (ref. to
[SWS_CanSM_00644]), then the CanSM shall change all PDU modes of the
configured CAN controllers, which are CANIF_TX_OFFLINE_ACTIVE at the mo-
ment to CANIF_ONLINE by calling the APl canIf_SetPduMode (ref. to
[SWS_CanSM_91002]) with the parameters ControllerId := CanSMControl-
lerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest = CANIF_ONLINE. ]

[SWS_CanSM_00656]
Upstream requirements: SRS_Can_01158

[If the CanSM module needs informations about the actual PduMode, the CanSM shall
call the APl CanIf_GetPduMode (ref. to [SWS_CanSM_91002]) to get the current
Pdu Mode of the Canlf. |

7.5 Non-functional design rules

The CanSM shall cover the software module design requirements of the [12, General
Requirements on Basic Software Modules].



AUTSSAR

8 API specification

8.1 Imported types
In this chapter all types included from the following modules are listed:

[SWS_CanSM_00243] Definition of imported datatypes of module CanSM |

Module Header File Imported Type
Can Can_GeneralTypes.h Can_ControllerStateType
Canlf Canlf.h Canlf_NotifStatusType
Canlf.h Canlf_PduModeType
CanTrcv Can_GeneralTypes.h CanTrcv_TrcvModeType
ComM Rte_ComM_Type.h ComM_ModeType
Comtype ComStack_Types.h NetworkHandleType
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

The following tables contain the type definitions of the CanSM module.

8.2.1 CanSM_ConfigType

[SWS_CanSM_00597] Definition of datatype CanSM_ConfigType
Upstream requirements: SRS_BSW_00400, SRS _BSW_00438

[

Name CanSM_ConfigType

Kind Structure

Elements
Type -

Comment -

Description This type defines a data structure for the post build parameters of the CanSM. At initialization the
CanSM gets a pointer to a structure of this type to get access to its configuration data, which is
necessary for initialization.

Available via CanSM.h




AUTSSAR

8.2.2 CanSM_BswMCurrentStateType

[SWS_CanSM_00598] Definition of datatype CanSM_BswMCurrentStateType
Upstream requirements: SRS_ModeMgm_09251

Name CanSM_BswMCurrentState Type

Kind Enumeration

Range CANSM_BSWM_NO_ - -
COMMUNICATION

CANSM_BSWM_SILENT_ - -
COMMUNICATION

CANSM_BSWM_FULL_ - -
COMMUNICATION

CANSM_BSWM_BUS_OFF | — -

CANSM_BSWM_ - -
CHANGE_BAUDRATE

Description Can specific communication modes / states notified to the BswM module

Available via CanSM.h

8.2.3 Definition of symbol CANSM_BUSOFF_CONFIGURED

[SWS_CanSM_00599] Definition of symbol CANSM_BUSOFF_CONFIGURED
Upstream requirements: SRS_Can_01146

[
Name CANSM_BUSOFF_CONFIGURED
Kind Symbol
Base Type NetworkHandleType
Value 255
Description Requests configured bus-off timing when returned from <User_GetBusOffDelay>.
Available via CanSM.h
]

8.3 Function definitions

The following sections specify the provided API functions of the CanSM module.



AUTSSAR

8.3.1 CanSM_lInit

[SWS_CanSM_00023] Definition of API function CanSM_ Init
Upstream requirements: SRS_BSW_00405, SRS_BSW_00101, SRS_BSW_00406, SRS_BSW_

[

00358, SRS_BSW_00414, SRS_BSW_00404, SRS_BSW_00400,
SRS_BSW_00438

Service Name

CanSM_Init

Syntax void CanSM_Init (
const CanSM_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr gointer to init structure for the post build parameters of the Can
M
Parameters (inout) None
Parameters (out) None
Return value None
Description This service initializes the CanSM module
Available via CanSM.h

8.3.2 CanSM_Delnit

[SWS_CanSM_91001] Definition of API function CanSM_Delnit
Upstream requirements: SRS_Can_01164, SRS_BSW_00336

[

Service Name CanSM_Delnit
Syntax void CanSM_DelInit (
void
)
Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This service de-initializes the CanSM module.
Available via CanSM.h

]

Note: General behavior and constraints on de-initialization functions are specified by
[SWS_BSW_00152], [SWS_BSW_00072], [SWS_BSW_00232], [SWS_BSW_00233].




AUTSSAR

Caveat: Caller of the cansM_DeInit function has to ensure all CAN networks are in
the state CANSM_NO_COMMUNICATION.

[SWS_CanSM_00660]
Upstream requirements: SRS_BSW_00369

[If development error detection for the CanSM module is enabled: The function
CansSM_DeInit shall raise the error CANSM_E_NOT_IN_NO_cOM if not all CAN net-
works are in state CANSM_NO_COMMUNICATION. |

8.3.3 CanSM_RequestComMode

[SWS_CanSM_00062] Definition of API function CanSM_RequestComMode
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[
Service Name CanSM_RequestComMode
Syntax Std_ReturnType CanSM_RequestComMode (
NetworkHandleType network,
ComM_ModeType mode
)
Service ID [hex] 0x40
Sync/Async Asynchronous
Reentrancy Reentrant for different networks. Non reentrant for the same network.
Parameters (in) network Handle of the communication network
mode Requested communication mode
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request not accepted
Description Request of a new communication mode.
Available via CanSM.h
|

Remark: Please refer to [5, Specification of Communication Manager] for a detailed
description of the communication modes.

[SWS_CanSM _00369]
Upstream requirements: SRS_Can_01145, SRS_Can_01142
[ The function cansM_RequestComMode shall accept its request, if the network pa-

rameter of the request is a handle contained in the configuration of the CanSM module
(ref. to [ECUC_CanSM_00161]). |



AUTSSAR

[SWS_CanSM_00370]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The function CansM_RequestComMode shall deny its request, if the network pa-
rameter of the request is not a handle contained in the configuration of the CanSM
module (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00555]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[ The CanSM module shall deny the APl requestCanSM_RequestComMode, if the ini-
tial transition for the requested CAN network is not finished yet after the cansM_1Init
request (ref. to [SWS_CanSM_00423], [SWS_CanSM_00430]). |

[SWS_CanSM_00183]
Upstream requirements: SRS_Can_01145, SRS_Can_01142

[The function canSM_RequestComMode shall call the function Det_ReportEr-
ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_INVALID_
NETWORK_HANDLE, if it does not accept the network of the request. |

[SWS_CanSM_00182]

Upstream requirements: SRS_Can_01145, SRS_Can_01142
[If the function canSM_RequestComMode accepts the request, the request shall be
considered by the CanSM state machine (ref. to [SWS_CanSM_00635]). |
[SWS_CanSM_00184]

Upstream requirements: SRS_BSW_00406

[If the CanSM module is not initialized, when the function CanSM_RequestCom-
Mode is called, then this function shall call the function Det_ReportError (ref. to
[SWS_CanSM_91003]) with ErrorId parameter CANSM_E_UNINIT.]

8.3.4 CanSM_GetCurrentComMode

[SWS_CanSM_00063] Definition of API function CanSM_GetCurrentComMode
Upstream requirements: SRS_ModeMgm_09084

Service Name CanSM_GetCurrentComMode
Syntax Std_ReturnType CanSM_GetCurrentComMode (
NetworkHandleType network,
ComM_ModeType* mode
)
Service ID [hex] 0x41
Sync/Async Synchronous




AUTSSAR

A
Reentrancy Reentrant for different networks. Non reentrant for the same network.
Parameters (in) network | Handle of the communication channel
Parameters (inout) None
Parameters (out) mode Pointer to the memory location where the current communication
mode shall be stored
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request not accepted
Description Query the current communication mode.
Available via CanSM.h
]

[SWS_CanSM_00282]
Upstream requirements: SRS_Can_01142
[The CanSM module shall return E_NOT_OK for the APl request CansM_-

GetCurrentComMode until the call of the provided APl canSM_Init (ref. to
[SWS_CanSM_00023]). |

[SWS_CanSM_00371]
Upstream requirements: SRS_Can_01142
[ The function CanSM_GetCurrentComMode shall accept its request, if the network

parameter of the request is a handle contained in the configuration of the CanSM
module (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00372]
Upstream requirements: SRS_Can_01142
[The function CanSM_GetCurrentComMode shall deny its request, if the network

parameter of the request is not a handle contained in the configuration of the CanSM
module (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00187]
Upstream requirements: SRS_Can_01142
[The function CanSM_GetCurrentComMode shall call the function Det_ReportEr-

ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_FE_INVALID_
NETWORK_HANDLE, if it does not accept the network of the request. |

[SWS_CanSM_00186]
Upstream requirements: SRS_Can_01142
[The function CanSM_GetCurrentComMode shall put out the current communication

mode for the network (ref. to [SWS_CanSM_00266]) to the designated pointer of
type mode, if it accepts the request. |



AUTSSAR

[SWS_CanSM_00188]
Upstream requirements: SRS_Can_01142

[If the CanSM module is not initialized (ref. to [SWS_CanSM_00282]), when the
function CansM_GetCurrentComMode is called, then this function shall call the func-
tion Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter
CANSM_E_UNINIT.|

[SWS_CanSM_00360]
Upstream requirements: SRS_Can_01142

[The function CansM_GetCurrentComMode shall report the development error
CANSM_E_PARAM_POINTER to the DET, if the user of this function hands over a NULL-
pointer as mode. |

8.3.5 CanSM_StartWakeupSource

[SWS_CanSM_00609] Definition of API function CanSM_StartWakeupSource
Upstream requirements: SRS_Can_01145

[
Service Name CanSM_StartWakeupSource
Syntax Std_ReturnType CanSM_StartWakeupSource (
NetworkHandleType network
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) network Affected CAN network
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request denied
Description This function shall be called by EcuM when a wakeup source shall be started.
Available via CanSM.h
]

[SWS_CanSM_00611]
Upstream requirements: SRS_Can_01145

[The APl function CanSM_StartWakeupSource shall return E_NOT_OK,
if the CanSM module is not initialized yet with CansM_Init (ref. to
[SWS_CanSM_00023]). |

[SWS_CanSM_00617]
Upstream requirements: SRS_Can_01145

[The function CansM_StartWakeupSource shall call the function Det_Re-
portError (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_ -



AUTSSAR

UNINIT, if the CanSM module is not initialized yet with cansM_Init (ref. to
[SWS_CanSM_00023]). |

[SWS_CanSM_00612]
Upstream requirements: SRS_Can_01145

[The function CanSM_sStartWakeupSource shall return E_NOT_OK, if the CanSM
module is initialized and the network parameter of the request is not a handle contained
in the configuration of the CanSM module (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00613]
Upstream requirements: SRS_Can_01145

[ The function CansM_StartWakeupSource shall call the function Det_ReportEr-
ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_FE_INVALID_
NETWORK_HANDLE, if the CanSM module is initialized and the requested handle is
invalid concerning the CanSM configuration (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00616]
Upstream requirements: SRS_Can_01145

[The function CansM_sStartWakeupSource shall return E_OK and it shall be con-
sidered as trigger (ref. to [SWS_CanSM_00607]) for the state machine of the related
network, if the CanSM module is initialized and the requested handle is valid concern-
ing the CanSM configuration (ref. to [ECUC_CanSM_00161]). |

8.3.6 CanSM_StopWakeupSource

[SWS_CanSM_00610] Definition of API function CanSM_StopWakeupSource
Upstream requirements: SRS_Can_01145

[
Service Name CanSM_StopWakeupSource
Syntax Std_ReturnType CanSM_StopWakeupSource (
NetworkHandleType network
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) network Affected CAN network
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request denied
Description This function shall be called by EcuM when a wakeup source shall be stopped.

\Y



AUTSSAR

| Available via CanSM.h

]

[SWS_CanSM_00618]
Upstream requirements: SRS_Can_01145

[The API function CanSM_StopWakeupSource shall return E_NOT_OK, if the CanSM
module is not initialized yet with cansM_1nit (ref. to [SWS_CanSM_00023]). |

[SWS_CanSM_00619]
Upstream requirements: SRS_Can_01145

[The function cansM_StopWakeupSource shall call the function Det_ReportEr-
ror (ref. to [SWS_CanSM _91003]) with ErrorId parameter CANSM_E_-
UNINIT, if the CanSM module is not initialized yet with cansM_Init (ref. to
[SWS_CanSM_00023]). |

[SWS_CanSM_00620]
Upstream requirements: SRS_Can_01145

[The function CansM_StopWakeupSource shall return E_NOT_OK, if the CanSM
module is initialized and the network parameter of the request is not a handle con-
tained in the configuration of the CanSM module (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00621]
Upstream requirements: SRS_Can_01145

[The function cansM_StopWakeupSource shall call the function Det_ReportEr-
ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_FE_INVALID_
NETWORK_HANDLE, if the CanSM module is initialized and the requested handle is
invalid concerning the CanSM configuration (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00622]
Upstream requirements: SRS_Can_01145

[ The function CansM_StopWakeupSource shall return E_OK and it shall be consid-
ered as trigger (ref. to [SWS_CanSM_00608]) for the state machine of the related
network, if the CanSM module is initialized and the requested handle is valid concern-
ing the CanSM configuration (ref. to [ECUC_CanSM_00161]). |



AUTSSAR

8.3.7 Optional

8.3.7.1 CanSM_GetVersioninfo

[SWS_CanSM_00024] Definition of API function CanSM_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003

[

Service Name

CanSM_GetVersioninfo

Syntax void CanSM_GetVersionInfo (
Std_VersionInfoType* VersionInfo

)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) VersionInfo Pointer to where to store the version information of this module.
Return value None

Description

This service puts out the version information of this module (module ID, vendor ID, vendor
specific version numbers related to BSW00407)

Available via

CanSM.h

]

[SWS_CanSM_00374]
Upstream requirements: SRS_BSW_00407, SRS_BSW_00003

[The function CansM_GetVersionInfo shall report the development error CANSM
E_PARAM_POINTER to the DET, if the user of this function hands over a NULL-pointer
as VersionInfo.|

8.3.7.2 CanSM_SetBaudrate

[SWS_CanSM_00561] Definition of API function CanSM_SetBaudrate
Upstream requirements: SRS_Can_01142

[

Service Name

CanSM_SetBaudrate

Syntax Std_ReturnType CanSM_SetBaudrate (
NetworkHandleType Network,
uintl6 BaudRateConfigID

)

Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Reentrant for different Networks. Non reentrant for the same Network.

Parameters (in) Network | Handle of the addressed CAN network for the baud rate change

Y%




AUTSSAR

A
BaudRateConfigID references a baud rate configuration by ID (see CanController
BaudRateConfigID)
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Service request accepted, setting of (new) baud rate
started
E_NOT_OK: Service request not accepted
Description This service shall start an asynchronous process to change the baud rate for the configured

CAN controllers of a certain CAN network. Depending on necessary baud rate modifications
the controllers might have to reset.

Available via CanSM.h

]

[SWS_CanSM _00569]

Upstream requirements: SRS_Can_01142
[The CanSM module shall provide the API function CansM_sSetBaudrate, if the
CanSMSetBaudrateApi parameter is configured with the value TRUE. |

[SWS_CanSM_00570]

Upstream requirements: SRS_Can_01142
[ The CanSM module shall not provide the API function CansM_SetBaudrate, if the
CanSMSetBaudrateApi is configured with the value FALSE. |

[SWS_CanSM_00502]
Upstream requirements: SRS_Can_01142

[The CanSM module shall deny the cCansSM_SetBaudrate API request, if the Net -
workHandle parameter does not match to the configured Network handles of the
CanSM module (ref. to [ECUC_CanSM_00161]). |

[SWS_CanSM_00504]
Upstream requirements: SRS_Can_01142

[The function CanSM_SetBaudrate shall call the function Det_ReportError (ref.
to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_INVALID_NETWORK_
HANDLE, if it does not accept the network handle of the request. |

[SWS_CanSM_00505]

Upstream requirements: SRS_Can_01142
[ The function cansM_setBaudrate shall deny its request, if the requested CAN net-
work is not in the communication mode COMM_FULL_COMMUNICATION.

[SWS_CanSM_00530]
Upstream requirements: SRS_Can_01142

[ The CanSM module shall deny the cansM_setBaudrate APl request, if the CanSM
module is not initialized. |



AUTSSAR

[SWS_CanSM_00506]
Upstream requirements: SRS_Can_01142

[If the function CansM_SetBaudrate is called and the CanSM module is not
initialized, then this function shall call the function Det_ReportError (ref. to
[SWS_CanSM_91003]) with ErrorId parameter CANSM_E_UNINIT. ]

[SWS_CanSM_00503]
Upstream requirements: SRS_Can_01142

[1If no condition is present to deny the CansM_SetBaudrate request according to
[SWS_CanSM_00502] and [SWS_CanSM_00505], [SWS_CanSM_00530], then the
CanSM module shall return £_OK and operate the process for the requested baud rate
change as specified with [SWS_CanSM_00507]. |

8.3.7.3 CanSM_SetEcuPassive

[SWS_CanSM_00644] Definition of API function CanSM_SetEcuPassive
Upstream requirements: SRS_Can_01158

[
Service Name CanSM_SetEcuPassive
Syntax Std_ReturnType CanSM_SetEcuPassive (
boolean CanSM_Passive
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) CanSM_Passive TRUE: set all CanSM channels to passive, i.e. receive only
FALSE: set all CanSM channels back to non-passive
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request not accepted
Description This function can be used to set all CanSM channels of the ECU to a receive only mode.
Available via CanSM.h
J

[SWS_CanSM_00645]
Upstream requirements: SRS_Can_01158

[The CanSM module shall provide the API function CanSM_SetEcuPassive, if the
CanSMTxOfflineActiveSupport parameter is configured with the value TRUE. |

8.4 Call-back notifications

This is a list of functions provided for other modules.



AUTSSAR

8.4.1 CanSM_ControllerBusOff

[SWS_CanSM_00064] Definition of callback function CanSM_ControllerBusOff
Upstream requirements: SRS_BSW_00359, SRS_BSW_00333

[
Service Name CanSM_ControllerBusOff
Syntax void CanSM_ControllerBusOff (
uint8 ControllerId
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant (only for different CanControllers)
Parameters (in) Controllerld CAN controller, which detected a bus-off event
Parameters (inout) None
Parameters (out) None
Return value None
Description This callback function notifies the CanSM about a bus-off event on a certain CAN controller,
which needs to be considered with the specified bus-off recovery handling for the impacted
CAN network.
Available via CanSM_Canlf.h
]

[SWS_CanSM_00189]
Upstream requirements: SRS_BSW_00359, SRS_BSW_00333

[If the function CanSM_ControllerBusOff gets a Controller, which is not configured
as CanSMControllerId in the configuration of the CanSM module, it shall call the
function Det_ReportError (ref. to [SWS_CanSM_91003]) with Error1d parameter
CANSM_E_PARAM_CONTROLLER. |

[SWS_CanSM_00190]
Upstream requirements: SRS_BSW_00359, SRS_BSW_00333

[If the CanSM module is not initialized, when the function CanSM_ControllerBu-
sOff is called, then the function cansM_ControllerBusOff shall call the func-
tion Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter
CANSM_E_UNINIT.|

[SWS_CanSM_00235]

Upstream requirements: SRS_BSW_00359, SRS_BSW_00333
[If the CanSM module is initialized and the input parameter Controller is one
of the CAN controllers configured with the parameter CanSMControllerId, this

bus-off event shall be considered by the CAN Network state machine (ref. to
[SWS_CanSM_00500]). |

Additional remarks:

1.) The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).



AUTSSAR
2.) Reentrancy is necessary for multiple CAN controller usage.

8.4.2 CanSM_ControllerModelndication

[SWS CanSM _00396] Definition of callback function CanSM_ControllerModeln-
dication

Upstream requirements: SRS_Can_01145

[
Service Name CanSM_ControllerModelndication
Syntax void CanSM_ControllerModeIndication (
uint8 ControllerId,
Can_ControllerStateType ControllerMode
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant (only for different CAN controllers)
Parameters (in) Controllerld CAN controller, whose mode has changed
ControllerMode Notified CAN controller mode
Parameters (inout) None
Parameters (out) None
Return value None
Description This callback shall notify the CanSM module about a CAN controller mode change.
Available via CanSM_Canlf.h
|

[SWS_CanSM_00397]
Upstream requirements: SRS_Can_01145

[If the function CanSM_ControllerModeIndicationgetsaControllerId, which
is not configured as CanSMControllerId inthe configuration of the CanSM module,
it shall call the function Det_ReportError (ref. to [SWS_CanSM_91003]) with Er—
rorId parameter CANSM_E_PARAM_CONTROLLER. ]

[SWS_CanSM_00398]
Upstream requirements: SRS_Can_01145

[If the CanSM module is not initialized, when the function CansM_ControllerMod-
eIndication is called, then the function CanSM_ControllerModeIndication
shall call the function Det_ReportError (ref. to [SWS_CanSM_91003]) with Er-
rorId parameter CANSM_E_UNINIT.]



AUTSSAR

8.4.3 CanSM_TransceiverModelndication

[SWS_CanSM_00399] Definition of callback function CanSM_TransceiverMode
Indication

Upstream requirements: SRS_Can_01145, SRS _Can_01142

[
Service Name CanSM_TransceiverModelndication
Syntax void CanSM_TransceiverModeIndication (
uint8 Transceiverld,
CanTrcv_TrcvModeType TransceiverMode
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant for different CAN Transceivers
Parameters (in) Transceiverld CAN transceiver, whose mode has changed
TransceiverMode Notified CAN transceiver mode
Parameters (inout) None
Parameters (out) None
Return value None
Description This callback shall notify the CanSM module about a CAN transceiver mode change.
Available via CanSM_Canlf.h
]

Note: CANTRCV_TRCVMODE_SLEEP state can be requested to Can_Trcv module only
by integration code and not by CanSM module. Hence when CanSM_Transceiver—
ModeIndication() is invoked for CANTRCV_TRCVMODE_SLEEP, CanSM module
should ignore this request.

[SWS_CanSM_00400]
Upstream requirements: SRS_Can_01145

[If the function CanSM_TransceiverModeIndication gets a Transceiverld,
which is not configured as CanSMTransceiverId in the configuration of the CanSM
module, it shall call the function Det_ReportError (ref. to [SWS_CanSM_91003])
with ErrorId parameter CANSM_E_PARAM_TRANSCEIVER. ]

[SWS_CanSM_00401]
Upstream requirements: SRS_Can_01145

[If the CanSM module is not initialized, when the function CansM_TransceiverMod-
eIndication is called, then the function CanSM_TransceiverModeIndication
shall call the function Det_ReportError (ref. to [SWS_CanSM_91003]) with Er-
rorId parameter CANSM_E_UNINIT.]



AUTSSAR

8.4.4 CanSM_TxTimeoutException

[SWS_CanSM_00410] Definition of callback function CanSM_TxTimeoutExcep-

tion

Upstream requirements: SRS_Can_01142, SRS_Can_01145

[

Service Name

CanSM_TxTimeoutException

Syntax void CanSM_TxTimeoutException (
NetworkHandleType Channel
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Channel Affected CAN network
Parameters (inout) None
Parameters (out) None
Return value None

Description

This function shall notify the CanSM module, that the CanNm has detected for the affected
partial CAN network a tx timeout exception, which shall be recovered within the respective
network state machine of the CanSM module.

Available via

CanSM_Canlf.h

]

[SWS_CanSM_00411]
Upstream requirements: SRS_Can_01145

[The function CansM_TxTimeoutException shall report CANSM_E_UNINIT to the

DET, if the CanSM module is not initialized yet. |

[SWS_CanSM_00412]
Upstream requirements: SRS_Can_01145

[If the function CanSM_TxTimeoutException is referenced with a Channel, which
is not configured as CanSMNetworkHandle in the CanSM configuration, it shall report

CANSM_E_INVALID_NETWORK_HANDLE to the DET. |

Remarks: Reentrancy is necessary for different Channels.




AUTSSAR

8.4.5 CanSM_ClearTrcvWufFlagindication

[SWS_CanSM_00413] Definition of callback function CanSM_ClearTrcvWufFlag
Indication

Upstream requirements: SRS_Can_01145

[
Service Name CanSM_ClearTrcvWufFlagindication
Syntax void CanSM_ClearTrcvWufFlagIndication (
uint8 Transceiver
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant for different CAN Transceivers
Parameters (in) Transceiver Requested Transceiver
Parameters (inout) None
Parameters (out) None
Return value None
Description This callback function shall indicate the Canlf_ClearTrcvWufFlag API process end for the
notified CAN Transceiver.
Available via CanSM_Canlf.h
J

[SWS _CanSM _00414]
Upstream requirements: SRS_Can_01145

[The function CanSM_ClearTrcvWufFlagIndication shall report CANSM_E_-
UNINIT to the DET, if the CanSM module is not initialized yet. |

[SWS_CanSM_00415]
Upstream requirements: SRS_Can_01145

[If the function CanSM_ClearTrcviWufFlagIndication gets a TransceiverId,
which is not configured (ref. to [ECUC_CanSM_00137]) in the configuration
of the CanSM module, it shall call the function Det_ReportError (ref. to
[SWS_CanSM_91003]) with ErrorId parameter CANSM_E_PARAM_TRANSCEIVER.



AUTSSAR

8.4.6 CanSM_CheckTransceiverWakeFlagindication

[SWS_CanSM _00416] Definition of callback function CanSM_CheckTransceiver
WakeFlagindication

Upstream requirements: SRS_Can_01145

[
Service Name CanSM_CheckTransceiverWakeFlagIndication
Syntax void CanSM_CheckTransceiverWakeFlagIndication (
uint8 Transceiver

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant for different CAN Transceivers

Parameters (in) Transceiver Requested Transceiver

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function indicates the Canlf_CheckTrcvWakeFlag API process end for the notified
CAN Transceiver.

Available via CanSM_Canlf.h

]

[SWS _CanSM _00417]
Upstream requirements: SRS_Can_01145

[The function CanSM_CheckTransceiverWakeFlagIndication shall report
CANSM_E_UNINIT to the DET, if the CanSM module is not initialized yet. |

[SWS_CanSM_00418]
Upstream requirements: SRS_Can_01145

[If the function CanSM_CheckTransceiverWakeFlagIndication gets a
TransceiverId, which is not configured (ref. to [ECUC_CanSM_00137]) in
the configuration of the CanSM module, it shall call the function Det_ReportEr-
ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_PARAM
TRANSCEIVER. ]



AUTSSAR

8.4.7 CanSM_ConfirmPnAvailability

[SWS_CanSM _00419] Definition of callback function CanSM_ConfirmPnAvail-
ability
Upstream requirements: SRS_Can_01145

[
Service Name CanSM_ConfirmPnAuvailability
Syntax void CanSM_ConfirmPnAvailability (
uint8 TransceiverId
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Transceiverld CAN transceiver, which was checked for PN availability
Parameters (inout) None
Parameters (out) None
Return value None
Description This callback function indicates that the transceiver is running in PN communication mode.
Available via CanSM_Canlf.h
|

[SWS_CanSM_00546]
Upstream requirements: SRS_Can_01145

[The function CansM_ConfirmPnAvailability shall notify the Can_Nm module
(ref. to [SWS_CanSM _00422)), if it is called with a configured Transceiver as input
parameter (ref. to [ECUC_CanSM_00137]). |

[SWS_CanSM_00420]
Upstream requirements: SRS_Can_01145

[The function CanSM_ConfirmPnAvailability shall report CANSM_E_UNINIT to
the DET, if the CanSM module is not initialized yet. |

[SWS_CanSM_00421]
Upstream requirements: SRS_Can_01145

[If the function CanSM_ConfirmPnAvailability gets a TransceiverId, which
is not configured (ref. to [ECUC_CanSM_00137]) in the configuration of the CanSM
module, it shall call the function Det_ReportError (ref. to [SWS_CanSM_91003])
with ErrorId parameter CANSM_E_PARAM_TRANSCEIVER. |



AUTSSAR

8.4.8 CanSM_ConfirmCtrIPnAvailability

[SWS _CanSM 91004] Definition of callback function CanSM_ConfirmCtrIPn

Availability
Status: DRAFT
Upstream requirements: SRS_Can_01145
[

Service Name CanSM_ConfirmCtrIPnAvailability (draft)

Syntax void CanSM_ConfirmCtrlPnAvailability (
uint8 ControllerId
)

Service ID [hex] 0x15

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Controllerld CAN controller, which was checked for PN availability
Parameters (inout) None

Parameters (out) None

Return value None

Description

This callback function indicates that the controller is running in PN communication mode.
Tags: atp.Status=draft

Available via

CanSM_Canlf.h

]

[SWS_CanSM_00668]
Status: DRAFT
Upstream requirements: SRS_Can_01145

[The function CanSM_ConfirmCtrlPnAvailability shall notify the CanNm mod-
ule (ref. to [SWS_CanSM_00667]), if it is called with a configured Controller as input
parameter (ref. to [ECUC_CanSM_00141]). |

[SWS_CanSM_00669]
Status: DRAFT
Upstream requirements: SRS_Can_01145

[The function CanSM_ConfirmCtrlPnAvailability shall report CANSM E_-
UNINIT to the DET, if the CanSM module is not initialized yet. |

[SWS_CanSM_00670]
Status: DRAFT
Upstream requirements: SRS_Can_01145

[If the function CansM_ConfirmCtrlPnAvailability gets a Controllerld, which
is not configured (ref. to [ECUC_CanSM_00141]) in the configuration of the CanSM
module, it shall call the function Det_ReportError (ref. to [SWS_CanSM_91003])
with ErrorId parameter CANSM_E_PARAM_CONTROLLER. |



AUTSSAR

8.5 Scheduled functions

For details refer to [2] Chapter 8.5 “Scheduled functions”.

8.5.1 CanSM_MainFunction

[SWS_CanSM_00065] Definition of scheduled function CanSM_MainFunction
Upstream requirements: SRS_BSW_00424, SRS_BSW_00425, SRS_Can_01145, SRS_Can_-

01142
Service Name CanSM_MainFunction
Syntax void CanSM_MainFunction (
void
)
Service ID [hex] 0x05
Description Scheduled function of the CanSM
Available via SchM_CanSM.h

[SWS_CanSM_00167]

Upstream requirements: SRS_BSW_00424, SRS_BSW_00425, SRS_Can_01145, SRS_Can_-
01142

[ The main function of the CanSM module shall operate the effects of the CanSM state
machine, which the CanSM module shall implement for each configured CAN Net-
work. |

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_CanSM_91002] Definition of mandatory interfaces required by module Can
SM [

API Function Header File Description

BswM_CanSM_CurrentState BswM_CanSM.h Function called by CanSM to indicate its current
state.

Canlf_CheckTrcvWakeFlag Canlf.h Requests the Canlf module to check the Wake flag
of the designated CAN transceiver.




AUTSSAR

API Function

Header File

Description

Canlf_ClearTrcvWufFlag

Canlf.h

Requests the Canlf module to clear the WUF flag of
the designated CAN transceiver.

Canlf_GetPduMode

Canlf.h

This service reports the current mode of a
requested PDU channel.

Canlf_GetTxConfirmationState

Canlf.h

This service reports, if any TX confirmation has
been done for the whole CAN controller since the
last CAN controller start.

Canlf_SetControllerMode

Canlf.h

This service calls the corresponding CAN Driver
service for changing of the CAN controller mode.

Canlf_SetPduMode

Canlf.h

This service sets the requested mode at the L-PDUs
of a predefined logical PDU channel.

Canlf_SetTrcvMode

Canlf.h

This service changes the operation mode of the
tansceiver Transceiverld, via calling the
corresponding CAN Transceiver Driver service.

CanNm_ConfirmPnAvailability

CanNm.h

Enables the PN filter functionality on the indicated
NM channel. Availability: The APl is only available if
CanNmGlobalPnSupport is TRUE.

ComM_<Bus>SM_Modelndication

ComM.h

Indication of the actual bus mode by the
corresponding Bus State Manager. ComM shall
propagate the indicated state to the users with
means of the RTE and BswM.

Dem_SetEventStatus

Dem.h

Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportRuntimeError

Det.h

Service to report runtime errors. If a callout has
been configured then this callout shall be called.

8.6.1.1 Remark: Usage of Canlf_SetPduMode

Although the Canlf module provides more requestable PDU modes, the CanSM mod-
ule only uses the parameters CANIF_ONLINE, CANIF_TX_ OFFLINE_ACTIVE and
CANIF_TX_OFFLINE for the call of the API Canlf_SetPduMode.

The CANIF_OFFLINE mode is assumed automatically by Canlf and needs not to be

set by CanSM.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality

of the module.




AUTSSAR

[SWS_CanSM_91003] Definition of optional interfaces requested by module Can

SM [
API Function Header File Description
Canlf_SetBaudrate Canlf.h This service shall set the baud rate configuration of

the CAN controller. Depending on necessary baud
rate modifications the controller might have to reset.

Det_ReportError

Det.h Service to report development errors.

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target functions could be configured.
The target function is usually a callback function. The names of these kind of interfaces
is not fixed because they are configurable.

8.6.3.1 <User_GetBusOffDelay>

[SWS_CanSM_00637] Definition of configurable interface <User_GetBusOffDe-

lay>

Upstream requirements: SRS_Can_01144, SRS _Can_01146

[

Service Name

<User_GetBusOffDelay>

Syntax void <User_GetBusOffDelay> (

NetworkHandleType network,

uint8+ delayCyclesPtr

)

Sync/Async Synchronous
Reentrancy Reentrant for different networks
Parameters (in) network CAN network where a BusOff occurred.
Parameters (inout) None
Parameters (out) delayCyclesPtr Number of CanSM base cycles to wait after a BusOff occurred. In

case the returned value is CANSM_BUSOFF_CONFIGURED,
use configured L1/L2 timing.

Return value

None

Description

This callout function returns the number of CanSM base cycles to wait after a BusOff occurred.

Available via

Configuration parameter CanSM/CanSMGeneral/CanSMGetBusOffDelayHeader




AUTSSAR

9 Sequence diagrams

All interactions of the CanSM module with the depending modules Canlf, ComM, Bsw
M, Dem and CanNm are specified in the state machine diagrams (ref. to Figure 7-1-
Figure 7-10). Therefore the CanSM SWS provides only some exemplary sequences
for the use case to start and to stop the CAN controller(s) of a CAN network.

Remark: For the special use case of CAN network deinitialization with partial network
support please refer to chapter 9 of [11, Specification of CAN Transceiver Driver].

9.1 Sequence diagram CanSm_StartCanController

«module» «module»
CanSM Canlf Limitations: This sequence diagram
shows the main aspects of the
interaction between the CanSM and
the Canlf to start the CAN controllers
of a CAN Network. The error handling
for the case, that the Canlf API returns
E_NOT_OK or the CanSM detects a

T

|

I

| Pt

1 Canlf indication timeout are not
[CAN controller mode charige performed synchronously] \ considered here.

|

|

1

|

|

alt CanSmetartCanControIIerVariants/

1
loop CanSm_StartCanControllerLoop1 /

[Do for every configured CAN controller of the CAN network] I
| |

| Canlf_SetControllerMode(return, Controllerld, ControllerMode:

=CAN_CS_STARTEDY

CanSM_ControllerModelndication(Controllerld,
[ ControllerMode:=CAN_CS_STARTED)
———————————————————————— =

[CAN controller mode chgnge performed asynchronously]

[Do for every configured CAN controller of the CAN network]

Canlf_SetControllerMode(Std_ReturnType, uint8,
—Can_ControllerState Type) L
:E_OK
SR R lj
loop CanSm StanCanControIIerLoopa/ |

[Wait for CANLCS STARTED indication for all CAN controllers of the CAN network]
I I
| CanSM_ControllerModelndication(Controllerld, :
ControllerMode:=CAN_CS_STARTED)

Ll
4
I
|
g
loop CanSmistanCanControllerLoopZ/ |
I
I
|
|
|

-—

__________________________>.

- —H

L]
]
]
|
|

Figure 9.1: CanSm_StartCanController



AUTSSAR

9.2 Sequence diagram CanSm_StopCanController

«module» «module»
CanSM Canlf

alt CanSm_StopCanContmIIerVariants/

[CAN con

[CAN controller mode charige performed synchronously]

Limitations: This sequence diagram
shows the main aspects of the
interaction between the CanSM and
the Canlf to stop the CAN controllers
of a CAN Network. The error handling
for the case, that the Canlf API returns
E_NOT_OK or the CanSM detects a
Canlf indication timeout are not
considered here.

I
loop CanSm_StopCanControllerLoop1 /

[Do for every configured CAN controller of the CAN network]

Canlf_SetControllerMode(return, Controllerld, ControllerMode:=CAN_CS_STOPPED)
>

P

CanSM_ControllerModelndication(Controllerld, ControllerMode:=CAN_CS_STOPPED)

troller mode chgnge performed asynchronously]

I
|
loop CanSm_StopCanControllerLoop2 / i
[Do for every configured CAN controller of the CAN network] :

|

Canlf_SetControllerMode(Std_RetumType, uint8, Canicomrollerstate:Type)
[

=

L

loop CanSm_StopCanControlIerLoop3/ |
T |

[Wait for CAN; CS_STOPPED indication for all CAN controllers of the CAN nejwork]

I I
CanSM_ControllerModelndication(Controllerld, ControllerMode:=CAN_CS_STOPPED)
i

Figure 9.2: CanSm_StopCanController



AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanSM.

Chapter 10.3 specifies published information of the module CanSM.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters of the CanSM module.
The detailed meanings of the parameters is described in chapter 7 and chapter 8.

10.2.1 CanSM

[ECUC_CanSM_00351] Definition of EcucModuleDef CanSM |

Module Name CanSM

Description Configuration of the CanSM module

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

CanSMConfiguration 1 This container contains the global parameters of the CanSM and
sub containers, which are for the CAN network specific
configuration.

CanSMGeneral 1 Container for general pre-compile parameters of the CanSM
module

10.2.2 CanSMConfiguration

[ECUC_CanSM _00123] Definition of EcucParamConfContainerDef CanSMCon-
figuration |



AUTSSAR

Container Name CanSMConfiguration

Parent Container CanSM

Description This container contains the global parameters of the CanSM and sub containers, which
are for the CAN network specific configuration.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanSMModeRequestRepetitionMax 1 [ECUC_CanSM_00335]

CanSMModeRequestRepetitionTime 1 [ECUC_CanSM_00336]

Included Containers

Container Name Multiplicity Dependency

CanSMManagerNetwork 1.* This container contains the CAN network specific parameters of
each CAN network

]

[ECUC_CanSM_00335] Definition of EcucintegerParamDef CanSMModeRequest

RepetitionMax |

Parameter Name

CanSMModeRequestRepetitionMax

Parent Container

CanSMConfiguration

Description Specifies the maximal amount of mode request repetitions without a respective mode
indication from the Canlf module until the CanSM module reports a Development Error
to the Det.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanSM_00336]
RepetitionTime |

Definition of EcucFloatParamDef CanSMModeRequest

Parameter Name

CanSMModeRequestRepetitionTime

Parent Container CanSMConfiguration

Description Specifies in which time duration the CanSM module shall repeat mode change
requests by using the API of the Canlf module.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535] |




AUTSSAR

A
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency

10.2.3 CanSMGeneral

[ECUC_CanSM_00314] Definition of EcucParamConfContainerDef CanSMGen-
eral |

Container Name CanSMGeneral

Parent Container CanSM

Description Container for general pre-compile parameters of the CanSM module
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanSMDevErrorDetect 1 [ECUC_CanSM_00133]
CanSMGetBusOffDelayFunction 0..1 [ECUC_CanSM_00347]
CanSMGetBusOffDelayHeader 0..1 [ECUC_CanSM_00348]
CanSMMainFunctionTimePeriod 1 [ECUC_CanSM_00312]
CanSMPncSupport 0..1 [ECUC_CanSM_00344]
CanSMSetBaudrateApi 0..1 [ECUC_CanSM_00343]
CanSMTxOfflineActiveSupport 0..1 [ECUC_CanSM_00349]
CanSMVersionInfoApi 1 [ECUC_CanSM_00311]

‘ No Included Containers

]

[ECUC_CanSM_00133] Definition of EcucBooleanParamDef CanSMDevErrorDe-
tect |

Parameter Name CanSMDevErrorDetect
Parent Container CanSMGeneral
Description Switches the development error detection and notification on or off.

« true: detection and notification is enabled.

« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Y%




AUTSSAR

A
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_CanSM_00347]
DelayFunction |

Definition of EcucFunctionNameDef CanSMGetBusOff

Parameter Name CanSMGetBusOffDelayFunction

Parent Container CanSMGeneral

Description This parameter configures the name of the <User_GetBusOffDelay> callout function,
which is used by CanSM to acquire the bus-off delay time. This function is only called
for channels where CanSMEnableBusOffDelay is enabled.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_CanSM_00348] Definition of EcucStringParamDef CanSMGetBusOffDe-

layHeader |

Parameter Name

CanSMGetBusOffDelayHeader

Parent Container

CanSMGeneral

Description This parameter configures the header file containing the prototype of the <User_Get
BusOffDelay> callout function.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -

Post-build time -




AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_CanSM_00312]
TimePeriod |

Definition of EcucFloatParamDef CanSMMainFunction

Parameter Name

CanSMMainFunctionTimePeriod

Parent Container

CanSMGeneral

Description This parameter defines the cycle time of the function CanSM_MainFunction in seconds
Multiplicity 1
Type EcucFloatParamDef
Range 10... INF[
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_CanSM_00344] Definition of EcucBooleanParamDef CanSMPncSupport

[

Parameter Name

CanSMPncSupport

Parent Container

CanSMGeneral

Description Enables or disables support of partial networking. False: Partial Networking is disabled
True: Partial Networking is enabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

This parameter shall be available only if ComMPncSupport is enabled in ComM




AUTSSAR

[ECUC_CanSM_00343] Definition of EcucBooleanParamDef CanSMSetBaudrate
Api |

Parameter Name CanSMSetBaudrateApi

Parent Container CanSMGeneral

Description The support of the Can_SetBaudrate APl is optional. If this parameter is set to true the
Can_SetBaudrate API shall be supported. Otherwise the API is not supported.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —

Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_CanSM_00349] Definition of EcucBooleanParamDef CanSMTxOfflineAc-
tiveSupport |

Parameter Name CanSMTxOfflineActiveSupport

Parent Container CanSMGeneral

Description Determines whether the ECU passive feature is supported by CanSM. True: Enabled
False: Disabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency CanlfTxOfflineActiveSupport




AUTSSAR

[ECUC_CanSM_00311] Definition of EcucBooleanParamDef CanSMVersioninfo

Api |

Parameter Name

CanSMVersionInfoApi

Parent Container

CanSMGeneral

Description Activate/Deactivate the version information APl (CanSM_GetVersionlInfo).
true: version information API activated false: version information API deactivated
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

10.2.4 CanSMManagerNetwork

[ECUC_CanSM_00338] Definition of EcucParamConfContainerDef CanSMCon-

troller |

Container Name

CanSMController

Parent Container

CanSMManagerNetwork

Description

This container contains the controller IDs assigned to a CAN network.

Multiplicity

1.7

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

CanSMControllerld

1 [ECUC_CanSM_00141]

No Included Containers

]

[ECUC_CanSM_00141] Definition of EcucReferenceDef CanSMControllerld |

Parameter Name

CanSMControllerld

Parent Container

CanSMController

Description Unique handle to identify one certain CAN controller. Reference to one of the CAN
controllers managed by the Canlf module.

Multiplicity 1

Type Symbolic name reference to CanlfCtrICfg

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME




AUTSSAR

Post-build time | X | VARIANT-POSTBUILD

Dependency

Canlf

]

[ECUC_CanSM_00126] Definition of EcucParamConfContainerDef CanSMMan-

agerNetwork [

Container Name

CanSMManagerNetwork

Parent Container

CanSMConfiguration

Description

This container contains the CAN network specific parameters of each CAN network

Multiplicity

1.7

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanSMBorCounterL1ToL2 1 [ECUC_CanSM_00131]

CanSMBorTimeL1 1 [ECUC_CanSM_00128]

CanSMBorTimelL2 1 [ECUC_CanSM_00129]

CanSMBorTimeTxEnsured 1 [ECUC_CanSM_00130]

CanSMBorTxConfirmationPolling 1 [ECUC_CanSM_00339]

CanSMEnableBusOffDelay 0..1 [ECUC_CanSM_00346]

CanSMComMNetworkHandleRef 1 [ECUC_CanSM_00161]

CanSMTransceiverld 0..1 [ECUC_CanSM_00137]

Included Containers

Container Name Multiplicity Dependency

CanSMController 1.7 This container contains the controller IDs assigned to a CAN
network.

CanSMDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements

which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter’s DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

]

[ECUC_CanSM_00131] Definition of EcuclntegerParamDef CanSMBorCounterL1

TolL2 |

Parameter Name

CanSMBorCounterL1ToL2

Parent Container

CanSMManagerNetwork

Description This threshold defines the count of bus-offs after which the bus-off recovery switches
from level 1 (short recovery time) to level 2 (long recovery time).

Multiplicity 1

Type EcuclntegerParamDef

Range 0. 255 |

Default value




AUTSSAR

Post-Build Variant Value

Value Configuration Class

A
true
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanSM_00128] Definition of EcucFloatParamDef CanSMBorTimeL1 |

Parameter Name

CanSMBorTimelL1

Parent Container

CanSMManagerNetwork

Description This time parameter defines in seconds the duration of the bus-off recovery time in
level 1 (short recovery time).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_CanSM_00129] Definition of EcucFloatParamDef CanSMBorTimelL2 |

Parameter Name CanSMBorTimelL2

Parent Container CanSMManagerNetwork

Description This time parameter defines in seconds the duration of the bus-off recovery time in
level 2 (long recovery time).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency




AUTSSAR

[ECUC_CanSM_00130] Definition of EcucFloatParamDef CanSMBorTimeTxEn-

sured |
Parameter Name CanSMBorTimeTxEnsured
Parent Container CanSMManagerNetwork

Description This parameter defines in seconds the duration of the bus-off event check. This check
assesses, if the recovery has been successful after the recovery reenables the transmit
path. If a new bus-off occurs during this time period, the CanSM assesses this bus-off
as sequential bus-off without successful recovery. Because a bus-off only can be
detected, when PDUs are transmitted, the time has to be great enough to ensure that
PDUs are transmitted again (e. g. time period of the fastest cyclic transmitted PDU of
the COM module, ComTxModeTimePeriod).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535] |

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

CANSM_BOR_TX_CONFIRMATION_POLLING disabled

]

[ECUC_CanSM_00339] Definition of EcucBooleanParamDef CanSMBorTxConfir-

mationPolling |

Parameter Name

CanSMBorTxConfirmationPolling

Parent Container

CanSMManagerNetwork

Description This parameter shall configure, if the CanSM polls the Canlf_GetTxConfirmationState
API to decide the bus-off state to be recovered instead of using the CanSMBorTimeTx
Ensured parameter for this decision.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_CanSM_00346]
OffDelay [

Definition of EcucBooleanParamDef CanSMEnableBus

Parameter Name

CanSMEnableBusOffDelay

Parent Container

CanSMManagerNetwork

Description This parameter defines if the <User_GetBusOffDelay> shall be called for this network.
Multiplicity 0..1
Type EcucBooleanParamDef

Default value

false

V



AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_CanSM_00161]
HandleRef |

Definition of EcucReferenceDef CanSMComMNetwork

Parameter Name

CanSMComMNetworkHandleRef

Parent Container

CanSMManagerNetwork

Description Unique handle to identify one certain CAN network. Reference to one of the network
handles configured for the ComM.

Multiplicity 1

Type Symbolic name reference to ComMChannel

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency ComM

]

[ECUC_CanSM_00137] Definition of EcucReferenceDef CanSMTransceiverld |

Parameter Name

CanSMTransceiverld

Parent Container

CanSMManagerNetwork

Description ID of the CAN transceiver assigned to the configured network handle. Reference to
one of the transceivers managed by the Canlf module.

Multiplicity 0..1

Type Symbolic name reference to CanlfTrcvCfg

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency Canlf




AUTSSAR

10.2.5 CanSMDemEventParameterRefs

[ECUC_CanSM_00127]
EventParameterRefs |

Definition of EcucParamConfContainerDef CanSMDem

Container Name

CanSMDemEventParameterRefs

Parent Container

CanSMManagerNetwork

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CANSM_E_BUS_OFF 0..1 [ECUC_CanSM_00070]
CANSM_E_MODE_REQUEST_TIMEOUT 0..1 [ECUC_CanSM_00352]

No Included Containers

]

[ECUC_CanSM_00070] Definition of EcucReferenceDef CANSM_E_BUS_OFF |

Parameter Name

CANSM_E_BUS_OFF

Parent Container

CanSMDemEventParameterRefs

Description Reference to configured DEM event to report bus off errors for this CAN network.
Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency Dem

]

[ECUC_CanSM_00352]
QUEST_TIMEOUT |

Definition of EcucReferenceDef CANSM_E_MODE_RE-

Parameter Name

CANSM_E_MODE_REQUEST_TIMEOUT

Parent Container

CanSMDemEventParameterRefs

Description

Reference to configured DEM event to report bus off errors for this CAN network.

Multiplicity

0..1

V



AUTSSAR

A
Type Symbolic name reference to DemEventParameter
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Dependency Dem

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.




AUTSSAR

A Not applicable requirements

[SWS_CanSM_NA_00001]

Upstream requirements: SRS_BSW_00170, SRS_BSW_00375, SRS_BSW_00395, SRS_BSW _
00416, SRS_BSW_00437, SRS_BSW_00168, SRS_BSW_00423,
SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_
00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00004,
SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00323, SRS_BSW_
00339, SRS_BSW_00380, SRS_BSW_00383, SRS_BSW_00384,
SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00388, SRS_BSW_
00389, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00396, SRS_BSW_00397, SRS_BSW_00398, SRS_BSW_
00399, SRS_BSW_00402, SRS_BSW_00409, SRS_BSW_00419,
SRS_BSW_00450, SRS_BSW_00451, SRS_BSW_00452, SRS_BSW_
00461, SRS_BSW_00467, SRS_BSW_00469, SRS_BSW_00470,
SRS_BSW_00471, SRS_BSW_00472

[ The following requirements are not applicable to this specification, because they are
either general BSW requirements, which apply to all BSW modules and not only espe-
cially to the CanSM module or they are not applicable at all. |



AUTSSAR

[SWS_CanSM_NA_00002]

Upstream requirements: SRS _Can_01004, SRS Can 01005, SRS Can 01006, SRS Can_-
01007, SRS_Can_01008, SRS _Can_01009, SRS _Can_01011, SRS _-
Can_01013, SRS Can 01014, SRS _Can_01015, SRS _Can_ 01016,
SRS Can_ 01018, SRS _Can 01020, SRS Can 01021, SRS Can_-
01022, SRS _Can_01023, SRS Can 01027, SRS _Can 01028, SRS -
Can_01029, SRS Can 01032, SRS _Can 01033, SRS_Can 01034,
SRS Can_01035, SRS_Can 01036, SRS Can 01037, SRS Can_-
01038, SRS_Can_01039, SRS_Can_01041, SRS_Can_01042, SRS -
Can_01043, SRS _Can 01045, SRS Can 01049, SRS _Can 01051,
SRS _Can_ 01053, SRS Can 01054, SRS Can 01055, SRS Can -
01058, SRS Can 01059, SRS Can 01060, SRS Can 01061, SRS -
Can_01062, SRS _Can_ 01065, SRS _Can_01066, SRS_Can_01068,
SRS Can_01069, SRS _Can 01071, SRS _Can 01073, SRS Can_-
01074, SRS_Can_01075, SRS_Can_01076, SRS_Can_01078, SRS _-
Can_01079, SRS _Can 01081, SRS Can 01082, SRS _Can 01086,
SRS Can_01090, SRS _Can 01091, SRS Can 01095, SRS Can_-
01096, SRS _Can 01097, SRS Can 01098, SRS Can 01099, SRS -
Can_01100, SRS _Can 01101, SRS _Can_ 01103, SRS_Can 01107,
SRS _Can_01108, SRS Can 01109, SRS Can 01110, SRS _Can -
01112, SRS_Can 01114, SRS _Can 01115, SRS _Can_01116, SRS _-
Can_01121, SRS Can 01122, SRS Can 01125, SRS Can 01126,
SRS Can_01129, SRS _Can 01130, SRS Can 01131, SRS Can_-
01132, SRS _Can_01134, SRS _Can_01135, SRS _Can_01136, SRS _-
Can_01138, SRS Can 01139, SRS Can_01140, SRS _Can_01141,
SRS Can_01143, SRS _Can 01147, SRS Can 01148, SRS Can_-
01149, SRS _Can_01151, SRS _Can 01153, SRS Can 01154, SRS -
Can_01155, SRS Can 01156, SRS _Can 01157, SRS_Can 01159,
SRS Can_01160, SRS _Can 01161, SRS Can 01162, SRS Can_-
01163

[ The following requirements are not applicable to this specification, because they are
either general BSW requirements, which apply to all BSW modules and not only espe-
cially to the CanSM module or they are not applicable at all. |



AUTSSAR

[SWS_CanSM_NA_00003]

Upstream requirements: SRS_ModeMgm_00049, SRS_ModeMgm_09028, SRS_ModeMgm_
09071, SRS_ModeMgm_09078, SRS _ModeMgm_09080, SRS -
ModeMgm_09081, SRS_ModeMgm_09083, SRS_ModeMgm_09085,
SRS_ModeMgm_09087, SRS_ModeMgm_09089, SRS_ModeMgm_
09090, SRS_ModeMgm_09106, SRS_ModeMgm_09107, SRS -
ModeMgm_09109, SRS_ModeMgm_09110, SRS_ModeMgm_09112,
SRS_ModeMgm_09125, SRS_ModeMgm_09132, SRS_ModeMgm_
09133, SRS _ModeMgm_09141, SRS_ModeMgm_09143, SRS -
ModeMgm_09149, SRS_ModeMgm_09155, SRS_ModeMgm_09156,
SRS_ModeMgm_09157, SRS_ModeMgm_09158, SRS_ModeMgm_
09159, SRS_ModeMgm_09160, SRS_ModeMgm_09161, SRS -
ModeMgm_09162, SRS_ModeMgm_09163, SRS_ModeMgm_09168,
SRS_ModeMgm_09169, SRS ModeMgm_09172, SRS_ModeMgm_
09207, SRS_ModeMgm_09220, SRS_ModeMgm_09221, SRS -
ModeMgm_09222, SRS_ModeMgm_09223, SRS_ModeMgm_09225,
SRS_ModeMgm_09226, SRS_ModeMgm_09231, SRS_ModeMgm_
09232, SRS_ModeMgm_09243, SRS_ModeMgm_09244, SRS -
ModeMgm_09245, SRS_ModeMgm_09246, SRS_ModeMgm_ 09247,
SRS _ModeMgm_09248, SRS_ModeMgm_09249, SRS_ModeMgm_
09250, SRS_ModeMgm_09256

[ The following requirements are not applicable to this specification, because they are
either general BSW requirements, which apply to all BSW modules and not only espe-
cially to the CanSM module or they are not applicable at all. |



AUTSSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

Number Heading

[SWS_CanSM_

00599] Definition of symbol CANSM_BUSOFF_CONFIGURED

Table B.1: Added Specification Iltems in R25-11

B.1.2 Changed Specification Items in R25-11

Number Heading

E)SO%VGSZ_]C&”SM— Definition of API function CanSM_RequestComMode

E)SO\SV;_]C%SM— Definition of API function CanSM_GetCurrentComMode

[SWS_CanSM_

00636]

E)SO\(ISV;_]CanSM_ Definition of configurable interface <User_GetBusOffDelay>
W M

E)SO66S6_]CanS - Bus-off detection

Table B.2: Changed Specification Items in R25-11

B.1.3 Deleted Specification Iltems in R25-11

none

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11

none



AUTSSAR

B.2.2 Changed Specification Items in R24-11

none

B.2.3 Deleted Specification ltems in R24-11

Number Heading

[SWS_CanSM_
00652]

Table B.3: Deleted Specification Items in R24-11



	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 ECU State Manager (EcuM)
	5.2 BSW Scheduler (SchM, part of RTE)
	5.3 Communication Manager (ComM)
	5.4 CAN Interface (CanIf)
	5.5 Diagnostic Event Manager (DEM)
	5.6 Basic Software Mode Manager (BswM)
	5.7 CAN Network Management (CanNm)
	5.8 Default Error Tracer (DET)
	5.9 File structure
	5.9.1 Code file structure
	5.9.2 Header file structure
	5.9.3 Version check


	6 Requirements Tracing
	7 Functional specification
	7.1 General requirements
	7.2 State machine for each CAN network
	7.2.1 Trigger: PowerOn
	7.2.2 Trigger: CanSM_Init
	7.2.3 Trigger: CanSM_DeInit
	7.2.4 Trigger: T_START_WAKEUP_SOURCE
	7.2.5 Trigger: T_STOP_WAKEUP_SOURCE
	7.2.6 Trigger: T_FULL_COM_MODE_REQUEST
	7.2.7 Trigger: T_SILENT_COM_MODE_REQUEST
	7.2.8 Trigger: T_NO_COM_MODE_REQUEST
	7.2.9 Trigger: T_BUS_OFF
	7.2.10 Guarding condition: G_FULL_COM_MODE_REQUESTED
	7.2.11 Guarding condition: G_SILENT_COM_MODE_REQUESTED
	7.2.12 Effect: E_PRE_NOCOM
	7.2.13 Effect: E_NOCOM
	7.2.14 Effect: E_FULL_COM
	7.2.15 Effect: E_FULL_TO_SILENT_COM
	7.2.16 Effect: E_BR_END_FULL_COM
	7.2.17 Effect: E_BR_END_SILENT_COM
	7.2.18 Effect: E_SILENT_TO_FULL_COM
	7.2.19 Sub state machine CANSM_BSM_WUVALIDATION
	7.2.20 Sub state machine: CANSM_BSM_S_PRE_NOCOM
	7.2.21 Sub state machine: CANSM_BSM_S_SILENTCOM_BOR
	7.2.22 Sub state machine: CANSM_BSM_S_PRE_FULLCOM
	7.2.23 Sub state machine CANSM_BSM_S_FULLCOM
	7.2.24 Sub state machine: CANSM_BSM_S_CHANGE_BAUDRATE

	7.3 Error Classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Production Errors
	7.3.4 Extended Production Errors

	7.4 ECU online active / passive mode
	7.5 Non-functional design rules

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanSM_ConfigType
	8.2.2 CanSM_BswMCurrentStateType
	8.2.3 Definition of symbol CANSM_BUSOFF_CONFIGURED

	8.3 Function definitions
	8.3.1 CanSM_Init
	8.3.2 CanSM_DeInit
	8.3.3 CanSM_RequestComMode
	8.3.4 CanSM_GetCurrentComMode
	8.3.5 CanSM_StartWakeupSource
	8.3.6 CanSM_StopWakeupSource
	8.3.7 Optional

	8.4 Call-back notifications
	8.4.1 CanSM_ControllerBusOff
	8.4.2 CanSM_ControllerModeIndication
	8.4.3 CanSM_TransceiverModeIndication
	8.4.4 CanSM_TxTimeoutException
	8.4.5 CanSM_ClearTrcvWufFlagIndication
	8.4.6 CanSM_CheckTransceiverWakeFlagIndication
	8.4.7 CanSM_ConfirmPnAvailability
	8.4.8 CanSM_ConfirmCtrlPnAvailability

	8.5 Scheduled functions
	8.5.1 CanSM_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces


	9 Sequence diagrams
	9.1 Sequence diagram CanSm_StartCanController
	9.2 Sequence diagram CanSm_StopCanController

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanSM
	10.2.2 CanSMConfiguration
	10.2.3 CanSMGeneral
	10.2.4 CanSMManagerNetwork
	10.2.5 CanSMDemEventParameterRefs

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11



