AUTSSAR

Document Title Specification of CAN Network
u Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 13

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description

AUTOSAR * Harmonization with FO PRS Network
2025-11-27 | R25-11 | Release Management

Management « Editorial changes

AUTOSAR + adapted interaction with lower layer to
2024-11-27 | R24-11 | Release LSduR

Management « Editorial changes

AUTOSAR « Editorial changes
2023-11-23 R23-11 Release

Management * Improvements and harmonization

AUTOSAR * Fixes for Partial Networking and PNC
2022-11-24 | R22-11 | Release Shutdown

Management « Improved traceability

AUTOSAR « Rework of Partial Networking
2021-11-25 | R21-11 Release

Management * Fixes for Partial Networking extensions

AUTOSAR « Harmonizing error sections
2020-11-30 | R20-11 Release

Management » Partial Networking extensions introduced

* Clarification for CAN FD usage

AUTOSAR : :
2019-11-28 | R19-11 Release Extended Wait Bus Sleep Handling

Management » Changed Document Status from Final to

published

AUTSSAR

* Header File Cleanup

AUTOSAR
2018-10-31 | 4.4.0 Release « Removed obsolete elements
Management .
* Fixed documentation structure
AUTOSAR * Node Detection Configuration per
2017-12-08 | 4.3.1 Release channel
Management * Runtime Errors introduced
* APl Harmonizations
* Improved post-build parameter support
AUTOSAR and dependencies
2016-11-30 | 4.3.0 Release * Transmission of additional NM message
Management on NM Coordinator Ready Sleep Bit
change
* Introduction of Reliable TX Confirmation
* Clarification NM message transmission
start
AUTOSAR « Clarificati ¢ confi i
5015-07-31 420 Release y ari r|1<;|a |r<])rl1 of configuration
Management ependencies
* Clarification NM timers while
communication is disabled
* Removed obsolete configuration
AUTOSAR parameters
2014-10-31 | 4.2.1 Release « Partial Network Handling Improvements
Management
» Const usage in APIs reworked
* Rewording and improving Partial
Networking Algorithm Requirements
AUTOSAR L ,
5014-03-31 | 41.3 Release . E:r?;(ﬁ’;]e ilsﬁgggﬂcatlon Timeout
Management 9
* Network Release handling during
communication control clarified
* Fixed Message Cycle Time Offset
Handling
AUTOSAR » Corrected Active Wakeup Handling
2013-10-31 412 Release
Management « Editorial changes

» Removed chapter(s) on change
documentation

AUTSSAR

« Partial Network Handling corrected

5013-03-15 | 4.1.1 ﬁg;(i?ﬂss,?rzﬁon Coordinator Support improved
« Start-up Handling from Prepare-Bus
Sleep clarified
* Support for Partial Networking
*» Support for Car Wakeup
AUTOSAR
2011-12-22 4.0.3 Administration * Immediate Transmission of NM-PDUs
 Support of a coordinated shutdown with
multiple connected gateways
» Changed Signature of RxIndication and
2009-12-18 | 4.0.1 AUTOSAR TriggerTransmit
Administration
» Faster NM wakeup
* Nm User Data accessible through PduR
» Changed PDU handle ID exchange with
Canlf
2010-02-02 | 3.1.4 AUTQSAR ,
Administration « No more instance specific CanNm
MainFunction() APls
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTQ.SAR . * Legal disclaimer revised
Administration
* Merge CAN NM and Generic NM
2008-02-01 3.0.2 AUTQ.SAR , * Document meta information extended
Administration
» Small layout adaptations made
* Post build and link-time configuration
variant introduced
 Configurable NMPDU format introduced
AUTOSAR * Passive mode introduced
2007-01-24 1 21.15 Administration « Legal disclaimer revised
* Release Notes added
* “Advice for users” revised
* “Revision Information” added
2005-05-31 1.0 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 9
Acronyms and Abbreviations 10
Related documentation 11
3.1 Input documents & related standardsandnorms 11
3.2 Related specification 12
Constraints and assumptions 13
4.1 Limitations 13
4.2 Applicability to cardomains L. 13
Dependencies to other modules 14
51 FileStructure 14
5.1.1 Code File Structure 14
5.1.2 Header File Structure, 14
5.2 Protocol layer dependencies 15
Requirements Tracing 16
Functional specification 21
7.1 Coordination algorithm 21
7.2 OperationalModes 21
7.21 NetworkMode 22
7.2.1.1 RepeatMessageState 23
7.2.1.2 Normal OperationState 24
7.21.3 ReadySleepState L. 25
7.2.2 Prepare Bus-SleepMode 26
7.2.3 Bus-SleepMode 27
7.3 Networkstates 29
7.4 Initialization 29
7.5 Execution 31
7.5.1 Processorarchitecture 31
7.5.2 Timingparameterso 31
7.6 Network Management PDU Structure 31
7.7 Communication Scheduling 33
7.7.1 Transmission e e e e 33
7.7.2 Reception 36
7.8 Bus Load Reduction Mechanism 36
7.9 Additionalfeatures 38
7.9.1 Detection of Remote Sleep Indication 38
792 UserData. e 39

7921 COMUserData 39

AUTSSAR

7.9.3 Passive Mode 40
7.9.4 Network Management PDU Rx Indication 40
7.9.5 State change notification 41
7.9.6 Communication Control 41
7.9.7 Coordinator Synchronization Support 42
710CarWakeup e 42
7101 RxPath 42
7102TxPath e 43
711Partial Networking o 43
7111 RxHandlingof NMPDUs 43
711.2Tx Handlingof NMPDUs 46
7.11.3 Handling of Internal Requested Partial Network Clusters 47
7.11.4 Spontaneous Transmission of NM PDUs via CanNm_NetworkRe—
QUESE « v vt e e e e e e e e e e e e e e 48
7.12Transmission Error Handling oL 48
7.13Functional requirements on CanNm APl 49
714Error Classification 50
7.14.1 DevelopmentErrorso 50
7142Runtime Errors 51
7143 TransientFaults 51
7.14.4 Production Errors 51
7.14.5 Extended Production Errors L o oo 51
7.15Scheduling of the main function 51
716Applicationnotes L. 52
7.16.1 Wakeup notification oL 52
7.16.2 Coordination of coupled networks 52
7.17Summary of CanNm Timing Requirements 52
7.18UML State chartdiagram 52
8 API specification 54
8.1 Importedtypes 55
8.2 Typedefinitions 55
8.2.1 CanNm_ConfigTypPe . « v v v v v v vt e e e e e e e e 55
8.3 Function definitions 56
8.3.1 CanNm_Init v v i v e e e e e e 56
8.3.2 CanNm_DeInit o v v i i e e e e e 56
8.3.3 CanNm_PassiveStartUp o v v i i v v i it e i it e 57
8.3.4 CanNm_NetworkRequest v v v v v i v i i 58
8.3.5 CanNm NetworkRelease v v v v v v v v i i i e 58
8.3.6 CanNm_DisableCommunication u.... 59
8.3.7 CanNm_EnableCommunication 60
8.3.8 CanNm_SetUserData v v v v v v e e e e e 61
8.3.9 CanNm_GetUserData . . v v v v v v v vt e e e e e e e e e 61

8.3.10 CanNm_Transmit o v v v it e e e e e e e e e 62

AUTSSAR

10

8.3.11 CanNm_GetNodeIdentifier
8.3.12 CanNm_GetLocalNodeIdentifier
8.3.13 CanNm_RepeatMessageRequest v v v v v v v v v v v o
8.3.14 CanNm_GetPduData . . « v v v v v v v e e e e e e e e e e e
8.3.15CanNm_GetState e e e e e e e e e e
8.3.16 CanNm_GetVersionInfo v v v v v i v v it e e e
8.3.17 CanNm_RequestBusSynchronization.
8.3.18 CanNm_CheckRemoteSleepIndication
8.3.19 CanNm_SetSleepReadyBit v v v v v v v i v vt e
8.3.20 CanNm_PnLearningRequest v v v v v v v v v v v i e e e
8.3.21 CanNm_ActivateTxPnShutdownMsg« v v« o . ..
8.3.22 CanNm_DeactivateTxPnShutdownMsg« v v
8.4 Callback notifications
8.4.1 CanNm_TxConfirmation & i v i v v v ...
8.4.2 CanNm_RxIndication. i v v v v i v i it
8.4.3 CanNm_ConfirmPnAvailability
8.4.4 CanNm_TriggerTransmit« v v v v v i v
8.5 Scheduled functions
8.5.1 CanNm_MainFunction.« .« v v v v v i i it e e e e
8.6 Expectedinterfaces
8.6.1 Mandatoryinterfaces,
8.6.2 Optionalinterfaces
8.6.3 Configurable interfaces
8.6.4 Job End Notification
8.7 Servicelnterfaces

Sequence diagrams

9.1 CanNm Transmission
9.2 CanNmReception.
9.3 Nm Coordination

Configuration specification

10.1How toread thischapter
10.2Containers and configuration parameters
10.2.1CanNm o e e e e e e e e e e e e e e
10.2.2 CanNmGlobalConfig . . . v v v v i v v i i e e e e e e e
10.2.3 CanNmChannelConfig« v v v v v vt v i e e e e e e e
10.24 CanNmRXPAU .+« + v v v v e e e e e e e e e e e e e e e e
10.25CanNmTxPdu
10.2.6 CanNmUserDataTxPdu
10.3Published Information o,

Examples

A.1 Example of periodic transmission mode with bus load reduction
A.2 Example timing behavior for Network Management PDUs

AUTSSAR

B Change history of AUTOSAR traceable items 117
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 117
B.1.1 Added Specification ltemsin R25-11 117
B.1.2 Changed Specification ltemsin R25-11 117
B.1.3 Deleted Specification Itemsin R25-11 117
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 118
B.2.1 Added Specification ltemsin R24-11 118
B.2.2 Changed Specification ltemsin R24-11 118
B.2.3 Deleted Specification temsin R24-11 118

C Not applicable requirements 119

AUTSSAR

1 Introduction and functional overview

This document describes the concept, core functionality, configurable features, inter-
faces and configuration issues of the AUTOSAR CAN Network Management (CanNm).

The AUTOSAR CAN Network Management is a hardware independent protocol that
can only be used on CAN ' (for limitations refer to Chapter 4.1). Its main purpose
is to coordinate the transition between normal operation and bus-sleep mode of the
network.

In addition to the core functionality configurable features are provided e.g. to implement
a service to detect all present nodes or to detect if all other nodes are ready to sleep.

For a general understanding of the AUTOSAR Network Management functionality
please refer to [1, Specification of the AUTOSAR Network Management Protocol] and
[2, SWS Network Management Interface].

This includes all in AUTOSAR specified CAN protocols like CAN 2.0 or CAN FD.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CanNm mod-
ule that are not included in the [3, AUTOSAR glossary].

Acronym/abbreviation: Description:

Canlf Abbreviation for the CAN Interface
CanNm Abbreviation for CAN Network Management
CBV Control Bit Vector

Cwu Car Wakeup

ERA External Request Array

EIRA External and Internal Request Array
LSduR Linklayer SDU Router

NM Network Management

PNC Partial Network Cluster

PNI Partial Network Information

PNL Partial Network Learning

SNI Source Node Identifier

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Term Description:

PDU transmission ability is disabled This means that the Network Management PDU
transmission has been disabled by the service CanNm_
DisableCommunication.

Repeat Message Request Bit Indication CanNm_RxIndication finds the RptMsgRequest set in the
Control Bit Vector of a received Network Management PDU.

Top-level PNC coordinator An ECU acts as top-level PNC coordinator for those PNCs
which are actively coordinated on all assigned channels.
This ECU has the PNC gateway functionality enabled. The
top-level PNC coordinator triggers for those PNCs a
synchronized PNC shutdown, if no other ECU in the network
requests them and if the synchronized PNC shutdown is
enabled.

Intermediate PNC coordinator An ECU acts as intermediate PNC coordinator for those
PNCs which are passively coordinated on at least one
channel. This ECU has the PNC gateway functionality
enabled. The intermediate PNC coordinator forwards a
synchronized PNC shutdown to active coordinated channels
for PNCs which are passively coordinated, if the
synchronized PNC shutdown is enabled.

PNC leaf node A PNC leaf node is an ECU that acts not as a PNC
coordinator at all in the network. It processes PN shutdown
message as usual NM messages.

PN shutdown message A top-level PNC coordinator transmit PN shutdown
messages to indicate a synchronized PNC shutdown across
the PN topology. A PN shutdown message is as NM
message which has PNSR bit in the control bit vector and all
PNCs which are indicated for a synchronized shutdown set
to ‘1.

Immediate Transmission Confirmation Every NM PDU transmission request is directly seen as
confirmed by the bus and no timeout handling is required.
This mechanism can be used on bus systems where the bus
traffic is designed in a way that every transmit will always be
sent on the bus.

Table 2.2: Definitions used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Specification of the AUTOSAR Network Management Protocol
AUTOSAR_FO_PRS_NetworkManagementProtocol

[2] Specification of Network Management Interface
AUTOSAR_CP_SWS_NetworkManagementinterface

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[5] Specification of Linklayer Sdu Routing Module
AUTOSAR_CP_SWS_ LSduRouter

[6] Specification of CAN Interface
AUTOSAR_CP_SWS_CANiInterface

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on AUTOSAR Network Management
AUTOSAR_FO_RS_NetworkManagement

[9] Specification of Communication Manager
AUTOSAR_CP_SWS_COMManager

[10] System Template
AUTOSAR_CP_TPS_SystemTemplate

[11] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[12] Guide to Mode Management
AUTOSAR_CP_EXP_ModeManagementGuide

[13] Specification of CAN State Manager
AUTOSAR_CP_SWS_CANStateManager

[14] Specification of Communication Stack Types
AUTOSAR_CP_SWS_CommunicationStackTypes

[15] Specification of Standard Types
AUTOSAR_CP_SWS_StandardTypes

AUTSSAR

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [4, SWS BSW
General], which is also valid for CAN Network Management.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN Network Management.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

1. One channel of CanNm is associated with only one network management cluster
in one network. One network management cluster can have only one channel of
CanNm in one node.

2. One channel of CanNm is associated with only one network within the same ECU.
3. CanNm is only applicable for CAN ' systems.

The Figure 4.1 presents an AUTOSAR Network Management stack within an example
ECU that contains at least one CanNm cluster.

«module» El
:Nm
«module» El
:CanNm
«module» El
LSduR
«module» El
:Canlf

Figure 4.1: AUTOSAR NM Stack on CAN

4.2 Applicability to car domains

The CanNm module can be applied to any car domain under limitations provided
above.

This includes all in AUTOSAR specified CAN protocols like CAN 2.0 or CAN FD.

AUTSSAR

5 Dependencies to other modules

CAN Network Management (CanNm) mainly uses services of Linklayer SDU Router
(LSduR [5]) to address a lower layer (e.g CAN Interface: Canlf [6]) and provides ser-
vices to the Network Management Interface (Nm [2]).

«derived_generic_interface» «derived_generic_interface»
«derived_generic_interface» PduR_CanNmTxConfirmation PduR_CanNmRxIndication Det_ReportError
CanNm_Transmit «derived_generic_interface» f \

|
PduR_CanNmTriggerTransmit | | |
I | I
I
I

|
CanNm_Types | INm_PrepareBusSleepMode

CanNm Nm_Types Nm_CarWakeUpIndication |

«derived_generic_interfajce» | «optional» X «optional»
- _ Nin_NetworkStartindicatioh I «optional» /| 1 |
LSduR_CanNmTransmjt K | | | | 1 |
«optional» | I I | | I |
«realize» ! |
I
|

«realize» «realize» | «mandatory» | «mandatory» | «<mandatory» «optional»
| I | | I | I
| | | | | | I

«module» gl

CanNm

I
«optional»
1

Figure 5.1: Dependencies to other modules

5.1 File Structure

5.1.1 Code File Structure

Please refer to [4] Chapter 5.1.6 “Code file structure”.

5.1.2 Header File Structure
Please refer to [4] Chapter 5.1.7 “Header file structure”.

[SWS_CanNm_00305]
Upstream requirements: SRS_BSW_00348, SRS_BSW_ 00353, SRS_BSW_00301
[ComStack_Types.h shall be included.
Note: The following header files are indirectly included by ComStack_Types.h
» Std_Types.h (for AUTOSAR standard types)

 Platform_Types.h (for platform specific types)

]

[SWS _CanNm_00308]
Upstream requirements: SRS_BSW_00301

[Det.h shall be included for interfacing the Default Error Tracer. |

AUTSSAR

[SWS_CanNm_00309]
Upstream requirements: SRS_BSW_00301

[NmStack_Types.h shall be included for common network management types. |
[SWS _CanNm_00312]

Upstream requirements: SRS_BSW_00301
[LSduR_CanNm.h shall be included for interfacing the LSduR. |
[SWS_CanNm_00326]

Upstream requirements: SRS_BSW_00301
[PduR_CanNm.h shall be included if COM user data support is enabled. |

5.2 Protocol layer dependencies

The CAN Network Management is based on the protocol mentioned in [1] Chapter 5
“Protocol specification”.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [7], and [8], and links to
the fulfillment of these. Requirements that are not fulfilled by this document are linked

to [SWS_CanNm_NA_00000] to [SWS_CanNm_NA_00008].

Requirement

Description

Satisfied by

[RS_Nm_00045]

Nm shall provide services to
coordinate shutdown of Nm-clusters
independently of each other

[SWS_CanNm_00104] [SWS_CanNm_00105]

[RS_Nm_00046]

It shall be possible to trigger the
startup of all Nodes at any Point in
Time

[SWS_CanNm_00129]

[RS_Nm_00047]

Nm shall provide a service to request
to keep the bus awake and a service
to cancel this request.

[SWS_CanNm_00103] [SWS_CanNm_00104]
[SWS_CanNm_00105] [SWS_CanNm_00106]
[SWS_CanNm_00110] [SWS_CanNm_00118]

[RS_Nm_00050]

The Nm shall provide the current
state of Nm

[SWS_CanNm_00091]

[RS_Nm_00051]

Nm shall inform application when Nm
state changes occur.

[SWS_CanNm_00097] [SWS_CanNm_00114]
[SWS_CanNm_00126] [SWS_CanNm_00166]

[RS_Nm_00052]

The Nm interface shall signal to the
application that all other ECUs are
ready to sleep.

[SWS_CanNm_00150] [SWS_CanNm_00153]

[RS_Nm_00054]

There shall be a deterministic time
from the point where all nodes agree
to go to bus sleep to the point where
bus is switched off.

[SWS_CanNm_00088]

[RS_Nm_00137]

Nm shall perform communication
system error handling for errors that
have impact on the Nm behavior.

[SWS_CanNm_00064] [SWS_CanNm_00065]
[SWS_CanNm_00066] [SWS_CanNm_00193]
[SWS_CanNm_00194] [SWS_CanNm_00446]

[RS_Nm_00142]

Nm shall provide a mechanism to
limit its bus load.

[SWS_CanNm_00052] [SWS_CanNm_00069]
[SWS_CanNm_00071] [SWS_CanNm_00156]
[SWS_CanNm_00157]

[RS_Nm_00149]

The timing of Nm shall be
configurable.

[SWS_CanNm_00088]

[RS_Nm_00151]

The Network Management algorithm
shall allow any node to integrate into
an already running Nm cluster

[SWS_CanNm_00099] [SWS_CanNm_00124]
[SWS_CanNm_00127]

[RS_Nm_00153]

The Network Management shall
optionally provide a possibility to
detect present nodes

[SWS_CanNm_00014] [SWS_CanNm_00111]
[SWS_CanNm_00112] [SWS_CanNm_00113]
[SWS_CanNm_00119] [SWS_CanNm_00120]
[SWS_CanNm_00121]

[RS_Nm_02503]

The Nm API shall optionally give the
possibility to send user data

[SWS_CanNm_00013] [SWS_CanNm_00159]
[SWS_CanNm_00328] [SWS_CanNm_00351]
[SWS_CanNm_00510]

[RS_Nm_02504]

The Nm API shall optionally give the
possibility to get user data

[SWS_CanNm_00160]

[RS_Nm_02505]

The Nm shall optionally set the local
node identifier to the Nm-message

[SWS_CanNm_00074]

[RS_Nm_02506]

The Nm API shall give the possibility
to read the source node identifier of
the sender

[SWS_CanNm_00132]

[RS_Nm_02508]

Every node shall have a node
identifier associated with it that is
unique in the Nm-cluster.

[SWS_CanNm_00133]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_Nm_02509]

The Nm interface shall signal to the
application that at least one ECU is
not ready to sleep anymore.

[SWS_CanNm_00151] [SWS_CanNm_00152]
[SWS_CanNm_00153]

[RS_Nm_02511]

It shall be possible to configure the
Network Management of a node so
that it does not contribute to the
cluster shutdown decision.

[SWS_CanNm_00161]

[RS_Nm_02512]

The Nm shall give the possibility to
enable or disable the network
management related communication
configured for an active Nm node

[SWS_CanNm_00170] [SWS_CanNm_00173]
[SWS_CanNm_00176] [SWS_CanNm_00178]

[RS_Nm_02513]

Nm shall provide functionality which
enables upper layers to control the
sleep mode.

[SWS_CanNm_00104] [SWS_CanNm_00105]

[RS_Nm_02516]

All AUTOSAR Nm instances shall
support the Nm Coordinator
functionality including Bus
synchronization on demand

[SWS_CanNm_00130] [SWS_CanNm_00187]
[SWS_CanNm_00226] [SWS_CanNm_00280]

[RS_Nm_02517]

CanNm shall support Partial
Networking on CAN

[SWS_CanNm_00409] [SWS_CanNm_00410]
[SWS_CanNm_00411] [SWS_CanNm_00413]
[SWS_CanNm_00414] [SWS_CanNm_00502]
[SWS_CanNm_00503] [SWS_CanNm_00511]
[SWS_CanNm_00518]

[RS_Nm_02519]

The Nm Control Bit Vector shall
contain a PNI (Partial Network
Information) bit.

[SWS_CanNm_00413] [SWS_CanNm_00414]
[SWS_CanNm_00511] [SWS_CanNm_00518]

[RS_Nm_02527]

Nm shall implement a filter algorithm
dropping all Nm messages that are
not relevant for the ECU

[SWS_CanNm_00333] [SWS_CanNm_00410]
[SWS_CanNm_00411] [SWS_CanNm_00502]
[SWS_CanNm_00503]

[RS_Nm_02536]

Nm shall provide functionality to
start-up without requesting the
network.

[SWS_CanNm_00128]

[RS_Nm_02540]

Nm Control Bit Vector Containing PN
Shutdown Request

[SWS_CanNm_00519]

[RS_Nm_02541]

Nm shall define a common layout of
Nm messages.

[SWS_CanNm_00074] [SWS_CanNm_00075]
[SWS_CanNm_00501]

[RS_Nm_02542]

The <Bus>Nm of the top-level PNC
coordinator shall set the PN
shutdown request bit if a least one
PNC is released

[SWS_CanNm_00521]

[RS_Nm_02544]

Nm Forwarding PN Shutdown
Message Indication

[SWS_CanNm_00461]

[RS_Nm_02547]

<Bus>Nm Propagation and
Evaluation for Partial Networking
Learning

[SWS_CanNm_00380] [SWS_CanNm_00381]

[RS_Nm_02548]

<Bus>Nm PNC shutdown
Propagation and Evaluation

[SWS_CanNm_00519]

[RS_Nm_02549]

Nm Interfaces for Repeat Message
Request

SWS_CanNm_00111] [SWS_CanNm_00112]
SWS_CanNm_00113] [SWS_CanNm_00119]
SWS_CanNm_00120] [SWS_CanNm_00121]

[RS_Nm_02565]

<Bus>Nm shall communicate EIRA
and ERA requests to the upper layers
using dedicated APIs

SWS_CanNm_00502]

[RS_Nm_02571]

Nm shall handle requests for
synchronized PNC shutdown

[SWS_CanNm_00515] [SWS_CanNm_00516]
[SWS_CanNm_00517]

Y

AUTSSAR

A
Requirement Description Satisfied by
[RS_Nm_02572] <Bus>Nm shall transmit requests for [SWS_CanNm_00513] [SWS_CanNm_00519]
synchronized PNC shutdown as [SWS_CanNm_00520] [SWS_CanNm_00521]
NM-PDU [SWS_CanNm_00522] [SWS_CanNm_00523]
[SWS_CanNm_91005] [SWS_CanNm_91006]
[RS_Nm_02573] <Bus>Nm shall handle [SWS_CanNm_00514]
retransmission of NM-PDUs
[SRS_BSW_00301] All AUTOSAR Basic Software [SWS_CanNm_00305] [SWS_CanNm_00308]
Modules shall only import the [SWS_CanNm_00309] [SWS_CanNm_00312]
necessary information [SWS_CanNm_00326]
[SRS_BSW_00310] APl naming convention [SWS_CanNm_00208] [SWS_CanNm_00211]
[SWS_CanNm_00213] [SWS_CanNm_00214]
[SWS_CanNm_00215] [SWS_CanNm_00216]
[SWS_CanNm_00217] [SWS_CanNm_00218]
[SWS_CanNm_00219] [SWS_CanNm_00220]
[SWS_CanNm_00221] [SWS_CanNm_00222]
[SWS_CanNm_00223] [SWS_CanNm_00224]
[SWS_CanNm_00226] [SWS_CanNm_00227]
[SWS_CanNm_00228] [SWS_CanNm_00231]
[SWS_CanNm_00331] [SWS_CanNm_00338]
[SWS_CanNm_91001] [SWS_CanNm_91002]
[SWS_CanNm_91004] [SWS_CanNm_91005]
[SWS_CanNm_91006]
[SRS_BSW_00323] All AUTOSAR Basic Software [SWS_CanNm_00244]
Modules shall check passed API
parameters for validity
[SRS_BSW_00336] Basic SW module shall be able to [SWS_CanNm_91002]
shutdown
[SRS_BSW_00348] All AUTOSAR standard types and [SWS_CanNm_00305]

constants shall be placed and
organized in a standard type header
file

[SRS_BSW_00350] All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_CanNm_00192] [SWS_CanNm_00195]
[SWS_CanNm_00352] [SWS_CanNm_00507]

[SRS_BSW_00353] All integer type definitions of target
and compiler specific scope shall be
placed and organized in a single type
header

[SWS_CanNm_00305]

[SRS_BSW_00358] The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_CanNm_00208]

[SRS_BSW_00369] All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_CanNm_00352]

[SRS_BSW_00385] List possible error notifications

[SWS_CanNm_00316] [SWS_CanNm_00317]

[SRS_BSW_00452] Classification of runtime errors

[SWS_CanNm_00317]

V

AUTSSAR

A

Requirement Description

Satisfied by

[SRS_BSW_00459] It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_CanNm_00211] [SWS_CanNm_00213]
[SWS_CanNm_00214] [SWS_CanNm_00215]
[SWS_CanNm_00216] [SWS_CanNm_00217]
[SWS_CanNm_00218] [SWS_CanNm_00219]
[SWS_CanNm_00220] [SWS_CanNm_00221]
[SWS_CanNm_00222] [SWS_CanNm_00223]
[SWS_CanNm_00224] [SWS_CanNm_00227]
[SWS_CanNm_00228] [SWS_CanNm_00231]
[SWS_CanNm_00234] [SWS_CanNm_00331]
[SWS_CanNm_00338] [SWS_CanNm_00344]
[SWS_CanNm_91001] [SWS_CanNm_91004]
[SWS_CanNm_91005] [SWS_CanNm_91006]

[SRS_BSW_00460] Reentrancy Levels

[SWS_CanNm_00208] [SWS_CanNm_00211]
[SWS_CanNm_00213] [SWS_CanNm_00214]
[SWS_CanNm_00215] [SWS_CanNm_00216]
[SWS_CanNm_00217] [SWS_CanNm_00218]
[SWS_CanNm_00219] [SWS_CanNm_00220]
[SWS_CanNm_00221] [SWS_CanNm_00222]
[SWS_CanNm_00223] [SWS_CanNm_00224]
[SWS_CanNm_00226] [SWS_CanNm_00227]
[SWS_CanNm_00228] [SWS_CanNm_00231]
[SWS_CanNm_00331] [SWS_CanNm_00338]
[SWS_CanNm_91001] [SWS_CanNm_91002]
[SWS_CanNm_91004] [SWS_CanNm_91005]
[SWS_CanNm_91006]

[SRS_BSW_00461] Modules called by generic modules
shall satisfy all interfaces requested
by the generic module

[SWS_CanNm_00211] [SWS_CanNm_00213]
[SWS_CanNm_00214] [SWS_CanNm_00215]
[SWS_CanNm_00216] [SWS_CanNm_00217]
[SWS_CanNm_00218] [SWS_CanNm_00219]
[SWS_CanNm_00220] [SWS_CanNm_00221]
[SWS_CanNm_00222] [SWS_CanNm_00223]
[SWS_CanNm_00226] [SWS_CanNm_00227]
[SWS_CanNm_00331] [SWS_CanNm_00338]
[SWS_CanNm_91004] [SWS_CanNm_91005]
[SWS_CanNm_91006]

[SRS_BSW_00480] Null pointer errors shall follow a [SWS_CanNm_00316]
naming rule
[SRS_BSW_00481] Invalid configuration set selection [SWS_CanNm_00316]
errors shall follow a naming rule
[SRS_BSW_00482] Get version information function shall [SWS_CanNm_00224]
follow a naming rule
[SRS_BSW_00483] BSW Modules shall handle buffer [SWS_CanNm_00035] [SWS_CanNm_00091]

alignments internally

[SWS_CanNm_00132] [SWS_CanNm_00133]
[SWS_CanNm_00138] [SWS_CanNm_00153]
[SWS_CanNm_00159] [SWS_CanNm_00160]
[SWS_CanNm_00333] [SWS_CanNm_00351]
[SWS_CanNm_00510]

[SRS_BSW_00484] Input parameters of scalar and enum
types shall be passed as a value.

[SWS_CanNm_00211] [SWS_CanNm_00213]
[SWS_CanNm_00214] [SWS_CanNm_00215]
[SWS_CanNm_00216] [SWS_CanNm_00217]
[SWS_CanNm_00218] [SWS_CanNm_00219]
[SWS_CanNm_00220] [SWS_CanNm_00221]
[SWS_CanNm_00222] [SWS_CanNm_00223]
[SWS_CanNm_00226] [SWS_CanNm_00227]
[SWS_CanNm_00228] [SWS_CanNm_00231]
[SWS_CanNm_00331] [SWS_CanNm_00338]
[SWS_CanNm_91001] [SWS_CanNm_91004]
[SWS_CanNm_91005] [SWS_CanNm_91006]

AUTSSAR

AN
Requirement Description Satisfied by
[SRS_BSW_00485] Input parameters of structure type [SWS_CanNm_00208] [SWS_CanNm_00231]
shall be passed as a reference to a [SWS_CanNm_00331]
constant structure
[SRS_BSW_00486] Input parameters of array type shall [SWS_CanNm_00217]

be passed as a reference to the
constant array base type

[SRS_BSW_004387] Errors for module initialization shall [SWS_CanNm_00316]
follow a naming rule

Table 6.1: Requirements Tracing

Details about the SRS Requirements can be found in AUTOSAR General Require-
ments on Basic Software Modules [7] and Requirements on AUTOSAR Network Man-
agement [8].

AUTSSAR

7 Functional specification

7.1 Coordination algorithm

The AUTOSAR CanNm is based on decentralized direct network management strat-
egy, which means that every network node performs activities self-sufficient depending
on the Network Management PDUs only that are received or transmitted within the
communication system.

The AUTOSAR CanNm algorithm is based on periodic Network Management PDUs,
which are received by all nodes in the cluster via broadcast transmission. Reception
of Network Management PDUs indicates that sending nodes want to keep the network
management cluster awake. If any node is ready to go to the Bus-Sleep Mode, it stops
sending Network Management PDUs, but as long as Network Management PDUs from
other nodes are received, it postpones transition to the Bus-Sleep Mode. Finally, if a
dedicated timer elapses because no Network Management PDUs are received any-
more, every node initiates transition to the Bus-Sleep Mode.

If any node in the network management cluster requires bus-communication, it can
wake-up the network management cluster from the Bus-Sleep Mode by transmitting
Network Management PDUs. For more details concerning wakeup procedure itself
please refer to the AUTOSAR SWS ComM [9].

The overall state machine of the AUTOSAR CanNm algorithm can be defined as fol-
lows:

[SWS_CanNm_00089] [The AUTOSAR CanNm state machine shall contain states,
transitions and triggers required for the AUTOSAR CanNm algorithm seen from point
of view of one single node in the network management cluster. |

Note: State transitions have to be performed latest within the next main function.

Note: An UML state chart of the AUTOSAR CanNm state machine from point of view
of one single node in the network management cluster can be found in detail in the API
specification chapter 8).

7.2 Operational Modes

In the following chapter operational modes of the AUTOSAR CanNm algorithm are
described in detail.

[SWS_CanNm_00092] [The AUTOSAR CanNm shall contain three operational modes
visible at the module’s interface:

* Network Mode
* Prepare Bus-Sleep Mode

AUTSSAR

* Bus-Sleep Mode

]

[SWS_CanNm_00093] [Changes of the AUTOSAR CanNm operational modes shall
be notified to the upper layer by means of callback functions. |

[SWS _CanNm_00091]
Upstream requirements: RS_Nm_00050, SRS _BSW 00483

[When CanNm_GetState is called CanNm shall return the current NM state and
mode. |

7.2.1 Network Mode

[SWS_CanNm_00094] [The Network Mode shall consist of three internal states:
* Repeat Message State
* Normal Operation State

* Ready Sleep State

]

[SWS_CanNm_00314] [When the Network Mode is entered from Bus-Sleep, by de-
fault, the CanNm module shall enter the Repeat Message State. |

[SWS_CanNm_00315] [When the Network Mode is entered from Prepare Bus-Sleep
Mode, by default, the CanNm module shall enter the Repeat Message State. |

[SWS_CanNm_00096] [When the Network Mode is entered, the CanNm module shall
start the NM-Timeout Timer. |

[SWS_CanNm_00097]

Upstream requirements: RS_Nm_00051

[When the Network Mode is entered, CanNm shall notify the upper layer of the new
current operational mode by calling the callback function Nm_NetworkMode. |

[SWS_CanNm_00098] [At successful reception of a Network Management PDU (call
of CanNm_RxIndication) in the Network Mode, the CanNm module shall restart the
NM-Timeout Timer if PDU transmission ability is enabled. |

[SWS_CanNm_00099]
Upstream requirements: RS_Nm_00151
[At successful transmission of a Network Management PDU (call of CanNm_TxCon-

firmation with E_OK) in the Network Mode, the CanNm module shall restart the
NM-Timeout Timer. |

AUTSSAR

Note: If CanNmImmediateTxconfEnabled is enabled it is assumed that each Net-
work Management PDU transmission request results in a successful Network Manage-
ment PDU transmission.

[SWS_CanNm_00206] [The CanNm module shall reset the NM-Timeout Timer every
time it is started or restarted. |

[SWS_CanNm_00147] [If CanNm_PassiveStartUp is called in the Network Mode,
the CanNm module shall not execute this service and shall return E_NOT_OX. |

[SWS_CanNm_00380]
Upstream requirements: RS_Nm_02547

[If function CanNm_PnLearningRequest is called on a channel where CanNmDy-
namicPncToChannelMappingEnabled is set to TRUE and CanNm is in the Net-
work Mode the CanNm module shall set the Repeat Message Bit and the Partial Net-
work Learning Bit in the CBV to 1 on this channel and change to or restart the Repeat
Message State. |

[SWS_CanNm_00381]
Upstream requirements: RS_Nm_02547

[If the bits Partial Network Learning and Repeat Message Request both are received
with value 1 on a channel where CanNmDynamicPncToChannelMappingEnabled
is set to TRUE and CanNm is in the Network Mode, then CanNm shall set the Partial
Network Learning Bit in the CBV to 1 on this channel and change to or restart the
Repeat Message State. |

Note: Restart in [SWS_CanNm_00380] or [SWS_CanNm_00381] means that CanNm
is already in Repeat Message State and then a complete re-entry of the Repeat Mes-
sage State has to be performed once.

7.2.1.1 Repeat Message State

For nodes that are not in passive mode (refer to Chapter 7.9.3) the Repeat Message
State ensures, that any transition from Bus-Sleep or Prepare Bus-Sleep to the Network
Mode becomes visible to the other nodes on the network. Additionally, it ensures that
any node stays active for a minimum amount of time. It can be used for detection of
present nodes.

[SWS_CanNm_00100] [When the Repeat Message State is entered the CanNm mod-
ule shall (re-)start transmission of Network Management PDUs unless passive mode
is enabled and/or communication is disabled. |

[SWS_CanNm_00101] [When the NM-Timeout Timer expires in the Repeat Message
State, the CanNm module shall (re-)start the NM-Timeout Timer. |

AUTSSAR

[SWS_CanNm_00193]

Upstream requirements: RS_Nm_00137

[When the NM-Timeout Timer expires in the Repeat Message State the CanNm mod-
ule shall report CANNM_E_NETWORK_TIMEOUT to the DET. |

[SWS_CanNm_00102] [The network management state machine shall stay in the Re-
peat Message State for a configurable amount of time determined by the CanNmRe-
peatMessageTime (configuration parameter); after that time the CanNm module shall
leave the Repeat Message State. |

[SWS_CanNm_00103]
Upstream requirements: RS_Nm_00047

[When Repeat Message State is left and if the network has been requested (see
[SWS_CanNm_00104]), the CanNm module shall enter the Normal Operation State. |

[SWS_CanNm_00106]
Upstream requirements: RS_Nm_00047

[When Repeat Message State is left and if the network has been released (see
[SWS_CanNm_00105]), the CanNm module shall enter the Ready Sleep State. |

[SWS_CanNm_00107] [If CanNmNodeDetectionEnabled is set to TRUE CanNm
shall clear the Repeat Message Bit when leaving the Repeat Message State. |

[SWS_CanNm_00137] [If the service CanNm_RepeatMessageRequest is called in
Repeat Message State, Prepare Bus-Sleep Mode or Bus-Sleep Mode, the CanNm
module shall not execute the service and return E_NOT_OX. |

[SWS_CanNm_00382] [If CanNmDynamicPncToChannelMappingEnabled is set
to TRUE CanNm shall clear the Partial Network Learning Bit when leaving the Repeat
Message State. |

7.2.1.2 Normal Operation State

The Normal Operation State ensures that any node can keep the network management
cluster awake as long as the network is requested.

[SWS_CanNm_00116] [When the Normal Operation State is entered from Ready
Sleep State, the CanNm module shall start transmission of Network Management
PDUs. |

Note: If passive mode is enabled or the Network Management PDU transmission ability
has been disabled no NM PDUs are transmitted, therefore no action is required.

[SWS_CanNm_00117] [When the NM-Timeout Timer expires in the Normal Operation
State, the CanNm module shall (re-)start the NM-Timeout Timer. |

AUTSSAR

[SWS_CanNm_00194]
Upstream requirements: RS_Nm_00137

[When the NM-Timeout Timer expires in the Normal Operation State the CanNm mod-
ule shall report CANNM_E_NETWORK_TIMEOUT to the DET. |

[SWS_CanNm_00118]
Upstream requirements: RS_Nm_00047

[When the network is released and the current state is Normal Operation State, the
CanNm module shall enter the Ready Sleep state (refer to [SWS_CanNm_00105]). |

[SWS_CanNm_00119]
Upstream requirements: RS_Nm_00153, RS_Nm_02549

[If CanNmNodeDetectionEnabled is setto TRUE and Repeat Message Request Bit
is received in the Normal Operation State, the CanNm module shall enter the Repeat
Message State. |

[SWS_CanNm_00120]
Upstream requirements: RS_Nm_00153, RS_Nm_02549

[If CanNmNodeDetectionEnabled is set to TRUE and function CanNm_Re-
peatMessageRequest is called in the Normal Operation State, the CanNm module
shall enter the Repeat Message State. |

[SWS_CanNm_00121]
Upstream requirements: RS_Nm_00153, RS_Nm_02549

[If CanNmNodeDetectionEnabled is set to TRUE and function CanNm_Re-
peatMessageRequest is called in the Normal Operation State the CanNm module
shall set the Repeat Message Bit. |

7.2.1.3 Ready Sleep State

The Ready Sleep State ensures that any node in the network management cluster
waits with transition to the Prepare Bus-Sleep Mode as long as any other node keeps
the network management cluster awake.

[SWS_CanNm_00108] [When the Ready Sleep State is entered from Repeat Mes-
sage State or Normal Operation State, the CanNm module shall stop transmission of
Network Management PDUs. |

Note: If passive mode is enabled no NM PDUs are transmitted, therefore no action is
required.

Note: If passive mode is disabled in some cases NM PDUs have to be transmit-
ted in Ready Sleep State to grant a synchronized shutdown in the network, e.g. re-
transmission of PN shutdown messages.

AUTSSAR

[SWS_CanNm_00109] [When the NM-Timeout Timer expires in the Ready Sleep
State, the CanNm module shall enter the Prepare Bus-Sleep Mode. |

[SWS_CanNm_00110]
Upstream requirements: RS_Nm_00047

[When the network is requested and the current state is the Ready Sleep State, the
CanNm module shall enter Normal Operation State (refer to [SWS_CanNm_00104]). |

[SWS_CanNm_00111]
Upstream requirements: RS_Nm_00153, RS_Nm_02549

[If CanNmNodeDetectionEnabled is set to TRUE and Repeat Message Request
Bit is received in the Ready Sleep State, the CanNm module shall enter the Repeat
Message State. |

[SWS_CanNm_00112]
Upstream requirements: RS_Nm_00153, RS_Nm_02549

[If CanNmNodeDetectionEnabled is set to TRUE and function CanNm_Re-
peatMessageRequest is called in the Ready Sleep State, the CanNm module shall
enter the Repeat Message State. |

[SWS_CanNm_00113]
Upstream requirements: RS_Nm_00153, RS_Nm_02549

[If CanNmNodeDetectionEnabled is set to TRUE and function CanNm_Re-
peatMessageRequest is called in Ready Sleep State the CanNm module shall set
the Repeat Message Bit. |

7.2.2 Prepare Bus-Sleep Mode

The purpose of the Prepare Bus-Sleep Mode is to ensure that all nodes have time to
stop their network activity before the Bus-Sleep Mode is entered. In Prepare Bus-Sleep
Mode the bus activity is calmed down (i.e. queued messages are transmitted in order
to make all Tx-buffers empty) and finally there is no activity on the bus in the Prepare
Bus-Sleep Mode.

[SWS_CanNm_00114]
Upstream requirements: RS_Nm_00051

[When Prepare Bus-Sleep Mode is entered, the CanNm module shall notify the upper
layer by calling Nm_PrepareBusSleepMode. |

AUTSSAR

[SWS_CanNm_00088]
Upstream requirements: RS_Nm_00054, RS_Nm_00149

[The parameter CanNmStayInPbsEnabled shall match parameter NmStaylnPbsEn-
abled from the PRS_Nm_00506 specification ([1, Specification of the AUTOSAR Net-
work Management Protocol)). |

Note: PRS_Nm_00506 implicitly contains that if CanNmStayInPbsEnabled is en-
abled CanNm will never be left due to a timeout, i.e. CanNm will stay in Prepare
Bus-Sleep Mode until either ECU goes to Power Off or any restart reason applies.

[SWS_CanNm_00124]

Upstream requirements: RS_Nm_00151

[At successful reception of a Network Management PDU in the Prepare Bus-Sleep
Mode, the CanNm Module shall enter the Network Mode; by default the CanNm Module
shall enter the Repeat Message State (refer to [SWS_CanNm_00315]). |

[SWS_CanNm_00123] [When the network is requested in the Prepare Bus-Sleep
Mode, the CanNm module shall enter the Network Mode; by default the CanNm Mod-
ule shall enter the Repeat Message State (refer to [SWS_CanNm_00315]). |

[SWS_CanNm_00122] [When the network has been requested (see
[SWS_CanNm_00104]) in the Prepare Bus-Sleep Mode and the CanNm module
has entered Network Mode and if CanNmImmediateRestartEnabled (configuration
parameter) is set to TRUE, the CanNm module shall transmit a Network Management
PDU. |

Rationale: Other nodes in the cluster are still in Prepare Bus-Sleep Mode; in the ex-
ceptional situation described above transition into the Bus-Sleep Mode shall be avoided
and bus-communication shall be restored as fast as possible.

Caused by the transmission offset for Network Management PDUs in CanNm, the
transmission of the first Network Management PDU in Repeat Message State can be
delayed significantly. In order to avoid a delayed re-start of the network the transmis-
sion of a Network Management PDU can be requested immediately.

Note: If CanNmImmediateRestartEnabled is set to TRUE and a wake-up line is
used, a burst of Network Management PDUs occurs if all network nodes get a network
request in Prepare Bus-Sleep Mode.

7.2.3 Bus-Sleep Mode

The purpose of the Bus-Sleep Mode is to reduce power consumption in the node when
no messages are to be exchanged. The communication controller is switched into the
sleep mode, respective wakeup mechanisms are activated and finally power consump-
tion is reduced to the adequate level in the Bus-Sleep Mode.

AUTSSAR

If CanNmStayInPbsEnabled is disabled and a configurable amount of time deter-
mined by the CanNmTimeoutTime + CanNmWaitBusSleepTime (both configuration
parameters) is identically configured for all nodes in the network management cluster,
all nodes in the network management cluster that are coordinated with use of the AU-
TOSAR NM algorithm perform the transition into the Bus-Sleep Mode at approximately
the same time.

Note: The parameters CanNmTimeoutTime and CanNmWaitBusSleepTime should
have the same values within all network nodes of the network management cluster.

Depending on the specific implementation, transition into the Bus-Sleep Mode takes
place exactly or approximately at the same time; time jitter for this transition depends
on the following factors:

* internal clock precision (oscillator’s drift),
* NM-task cycle time (if tasks are not synchronized with a global time),

* Network Management PDU waiting time in the Tx-queue (if transmission confir-
mation is made immediately after transmit request).

In the best case only oscillator’s drift should be taken into account for a configurable
amount of time determined by the value CanNmTimeoutTime + CanNmWaitBus-—
SleepTime (both configuration parameters).

[SWS_CanNm_00126]
Upstream requirements: RS_Nm_00051

[When Bus-Sleep Mode is entered, except by default at initialization, the CanNm mod-
ule shall notify the upper layer by calling the callback function Nm_BusSleepMode. |

[SWS_CanNm_00127]

Upstream requirements: RS_Nm_00151

[When the CanNm module successfully receives a Network Management PDU (call of
CanNm_RxIndication) in the Bus-Sleep Mode, the CanNm module shall notify the
upper layer by calling the callback function Nm_NetworkStartIndication.|

Rationale: To avoid race conditions and state inconsistencies between Network and
Mode Management, CanNm will not automatically perform the transition from Bus-
Sleep Mode to Network Mode. CanNm will only inform the upper layers which have to
make the wake-up decision. Network Management PDU reception in Bus-Sleep Mode
must be handled depending on the current state of the ECU shutdown/startup process.

[SWS_CanNm_00336] [When the CanNm module successfully receives a Network
Management PDU (call of CanNm_RxIndication) in the Bus-Sleep Mode, the
CanNm module shall report the error CANNM_E_NET_START_IND to the DET. |

AUTSSAR

[SWS_CanNm_00128]
Upstream requirements: RS_Nm_02536

[If CanNm_PassiveStartUp is called in the Bus-Sleep Mode or Prepare Bus-Sleep
Mode, the CanNm module shall enter the Network Mode; by default the CanNm
module shall enter the Repeat Message State (refer to [SWS_CanNm_00314] and
[SWS_CanNm_00315]). |

Note: In the Prepare Bus-Sleep Mode and Bus-Sleep Mode is assumed that the net-
work is released, unless bus communication is explicitly requested.

[SWS_CanNm_00129]
Upstream requirements: RS_Nm_00046

[When the network is requested in Bus-Sleep Mode, the CanNm module shall enter
the Network Mode; by default the CanNm module shall enter the Repeat Message
State (refer to [SWS_CanNm_00314] and [SWS_CanNm_00104]). |

7.3 Network states

Network states (i.e. ‘requested’ and ‘released’) are two additional states of the AU-
TOSAR CanNm state machine that exist in parallel to the state machine. Network
states denote, whether the software components need to communicate on the bus (the
network state is then ‘requested’); or whether the software components don’t have to
communicate on the bus (the bus network state is then ‘released’); note that if the net-
work is released an ECU may still communicate because some other ECU still request
the network.

[SWS_CanNm_00104]
Upstream requirements: RS_Nm_00045, RS _Nm_00047, RS_Nm_02513
[The function call CanNm_NetworkRequest shall request the network. l.e. the
CanNm module shall change network state to ‘requested’. |
[SWS_CanNm_00105]
Upstream requirements: RS_Nm_00045, RS_Nm_00047, RS_Nm_02513

[The function call cCanNm_NetworkRelease shall release the network. l.e. the
CanNm module shall change network state to ‘released’. |

7.4 Initialization

[SWS_CanNm_00141] [If the initialization of the CanNm module (CanNm_1Init) is
successful, the CanNm module shall set the Network Management State to Bus-Sleep
Mode. |

AUTSSAR

Note: The CanNm module should be initialized after LSduR and the according lower
layer (e.g. Canlf) are initialized and before any other network management service is
called.

[SWS_CanNm_00143] [When initialized, by default, the CanNm module shall set the
network state to ‘released’ |

[SWS_CanNm_00144] [When initialized, by default, the CanNm module shall enter
the Bus-Sleep Mode. |

[SWS_CanNm_00060] [The function canNm_Init shall select the active configura-
tion set by means of a configuration pointer parameter being passed (see CanNm_
Init).]

[SWS_CanNm_00061] [If CanNmGlobalPnSupport is set to TRUE and CanNm is
initialized (call of CanNm_1Init) then CanNm shall stop the NM Message Tx Timeout
Timer. |

[SWS_CanNm_00023] [During initialization the CanNm module shall deactivate the
bus load reduction. |

[SWS_CanNm_00033] [After initialization the CanNm module shall stop the transmis-
sion of Network Management PDUs by stopping the Message Cycle Timer. |

Note: If CanNmPassiveModeEnabled is set to TRUE the CanNm Message Cycle is
not needed, because no Network Management PDUs are transmitted by such nodes.

[SWS_CanNm_00025] [During initialization the CanNm module shall set each byte of
the user data to OxFF. |

[SWS_CanNm_00085] [During initialization the CanNm module shall set the Control
Bit Vector to 0x00. |

[SWS_CanNm_00500] [During initialization and if CanNmPnEnabled is TRUE, the
CanNm module shall set each byte of the PNC bit vector to 0x00. |

[SWS_CanNm_00511]
Upstream requirements: RS_Nm_02517, RS_Nm_02519

[If CanNmSynchronizedPncShutdownEnabled is setto TRUE, the CanNm module
shall consider transmission of PN shutdown message as inactive after initialization . |

AUTSSAR

7.5 Execution

7.5.1 Processor architecture

[SWS_CanNm_00146] [The AUTOSAR CanNm algorithm shall be processor inde-
pendent, which means; it shall not rely on any processor specific hardware support

and thus shall be realizable on any processor architecture that is in the scope of AU-
TOSAR. |

7.5.2 Timing parameters

[SWS_CanNm_00246] [The configuration parameter CanNmTimeout Time shall de-
termine the AUTOSAR CanNm timing parameter NM-Timeout Time. |

[SWS_CanNm_00247] [The configuration parameter CanNmRepeatMessageTime
shall determine the AUTOSAR CanNm timing parameter Repeat Message Time. |

[SWS_CanNm_00248] [The configuration parameter CanNmWaitBusSleepTime
shall determine the AUTOSAR CanNm timing parameter Wait Bus-Sleep Time. |

[SWS_CanNm_00249] [The configuration parameter CanNmRemoteSleepIndTime
shall determine the AUTOSAR CanNm timing parameter Remote Sleep Indication
Time. |

7.6 Network Management PDU Structure

The figure below shows the format of the Network Management PDU for an example
with 8 bytes where Source Node Identifier (SNI) is located in the first byte and the
Control Bit Vector (CBV) at the second byte, user data is used and partial network is
enabled. User data range is located between the system bytes and the PNC bit vector:

Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit 1 | Bito
Byte 7 PNC bit vector — byte 3
Byte 6 PNC bit vector — byte 2
Byte 5 PNC bit vector — byte 1
Byte 4 PNC bit vector — byte 0
Byte 3 User data 1
Byte 2 User data 0
Byte 1 Control Bit Vector (CBV)
Byte 0 Source Node Identifier (SNI)

Table 7.1: Network Management PDU Format Example

AUTSSAR

[SWS_CanNm_00074]
Upstream requirements: RS_Nm_02505, RS_Nm_02541

[The location of the Source Node Identifier shall be configurable by means of CanNm-
PduNidPosition to Byte 0, Byte 1, or off. |

Note: Setting the CanNmPduNidPosition to off means that in the NM PDU no space
is occupied by the Source Node Identifier. Hence one more byte is available for user
data or PNC bit vector.

[SWS_CanNm_00075]
Upstream requirements: RS_Nm_02541

[The location of the Control Bit Vector shall be configurable by means of CanNmp-
duCbvPosition to Byte 0, Byte 1, or off. |

Note:

» Setting the CanNmPduCbvPosition to off means that in the NM PDU no space
is occupied by the CBV. Hence one more byte is available for user data.

» The location of the PNC bit vector is configurable by means of NmPncBitvec-—
torOffset and NmPncBitVectorLength of the corresponding NM-channel.
The location of the PNC bit vector is placed after the system bytes (CBV and
SNI) and within the PduLength of the NM-PDU.

[SWS _CanNm_00501]
Upstream requirements: RS_Nm_02541

[The remaining bytes not assigned to Nm System Bytes or PNC bit vector shall be
available for User Data. |

Note: According to [10] ([TPS_SYST_03069], [TPS_SYST_03070], [TPS_SYST_-
03071], and [TPS_SYST_03072]) the use and location of user data is configurable.
If user data is used, the user data is placed within the PduLength of the NM-PDU and
does not overlap with the range of system bytes or PNC bit vector. If partial network
functionaliy is enabled (CanNmPnEnabled is set to TRUE) and user data is used, the
user data range is exclusively located either between the system bytes and the PNC
bit vector or between the PNC bit vector and the end of the NM-PDU. The length of
user data range has to be calculated according to the following restrictions:

« If the user data range resides between the system bytes and the PNC bit vector,
then the length of the user data range is determined by the difference of the PNC
bit vector offset and the length of the system bytes.

« If the user data range resides between the PNC bit vector and the end of the
NM-PDU, then the length of the user data range is determined by the difference
of the NM-PDU length and the position/index of the last byte of the PNC bit vector
(defined by PNC bit offset + PNC bit vector length)

AUTSSAR

If partial network functionaliy is disabled (CanNmPnEnabled is set to FALSE) and user
data is used, the user data range is determined by the difference of NM-PDU length
and the length of the system bytes.

Note: The length of the Network Management PDU is defined by the PduLength
parameter in the “global” EcuC module ([ECUC_EcuC_00003], see Specification of
ECU Configuration [11]).

The figure below describes the format of the Control Bit Vector:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CcBvV Reserved Partial Partial Active NM Coor- Reserved PN Repeat
Network Network Wakeup dinator Shutdown Message
Informa- Learning Bit Sleep Request Request
tion Bit Bit Ready Bit Bit

Table 7.2: Network Management PDU - Control Bit Vector (CBV)

Note: Bits 1 and 2 were used in R3.2 as NM Coordinator ID (Low Bit)

Note: The CBV is initialized with 0x00 during initialization (also refer to
[SWS_CanNm_00085]).

[SWS _CanNm_00013]
Upstream requirements: RS_Nm_02503

[The CanNm module shall set the Source Node Identifier with the configuration pa-
rameter CanNmNodeId unless CanNmPduNidPosition is set to off. |

[SWS_CanNm_00401] [If the CanNm performs a state change from Bus Sleep Mode
or Prepare Bus Sleep Mode to Network Mode due to a call to CanNm_NetworkRe-—
quest (i.e. due to an active wakeup) and CanNmActiveWakeupBitEnabled is
TRUE, the CanNm shall set the ActiveWakeupBit in the CBV. |

[SWS_CanNm_00402] [If the CanNm module leaves the Network Mode and Can-
NmActiveWakeupBitEnabled is TRUE, the CanNm module shall clear the Active
WakeupBit in the CBV. |

7.7 Communication Scheduling

7.7.1 Transmission

The Network Management PDUs transmission ability is configurable by means of can-
NmPassiveModeEnabled (refer also to Chapter 7.9.3). The transmission mecha-
nisms described in this chapter are only relevant if CanNmPassiveModeEnabled is
FALSE.

Also the Network Management PDU transmission ability can be enabled and disabled
by communication control service (refer to Chapter 7.9.6). The transmission mech-

AUTSSAR

anisms described in this chapter are only relevant if the Network Management PDU
transmission ability is enabled.

The CanNm module provides a periodic transmission mode, see PRS_Nm_00237. In
this transmission mode the CanNm module sends Network Management PDUs peri-
odically.

[SWS_CanNm_00238] [The CanNm module shall optionally provide the periodic
transmission mode with bus load reduction. In this transmission mode the CanNm
module shall transmit Network Management PDUs due to a specific algorithm. |

The periodic transmission mode is used in “Repeat Message State” and “Normal Op-
eration State”. Periodic transmission mode with bus load reduction is only available in
“Normal Operation State”

Note: The periodic transmission mode is used in the “Repeat Message State” and
“Normal Operation State” if the bus load reduction mechanism is disabled.

The periodic transmission mode with bus load reduction is only used, in the “Normal
Operation State” if the bus load reduction mechanism is enabled.

[SWS_CanNm_00071]

Upstream requirements: RS_Nm_00142

[The immediate transmission confirmation mechanism shall be configurable by means
of the CanNmImmediateTxconfEnabled.]

Note: The immediate transmission confirmation mechanism is used for systems which
don’t want to use the actual confirmation from the lower layer (e.g. Canlf).

Rationale: If the bus access is completely regulated through an offline system design
tool, the actual transmit confirmation to inform the Nm about a successful transmission
can be regarded as redundant. Since the maximum arbitration time is known it is
acceptable to immediately raise the confirmation at the transmission request time.

Moreover, implementation of superfluous actual transmission confirmation in such a
system only for one NM message would mean a significant performance loss regarding
the execution time of the overall CAN Interface/Driver layer making the calculated time
schedule inefficient.

Transmission of NM PDU in Repeat Message State can be started either directly in
case of CanNmImmediateNmTransmissions is greater 0 (see PRS_Nm_00005) or
otherwise delayed by CanNmMsgCycleOffset (see PRS_Nm_00334).

Note: CanNmImmediateNmTransmissions has to be greater zero in
case CanNmPnHandleMultipleNetworkRequests Iis set to TRUE due to
[ECUC_CanNm_00056]. This ensures that immediate transmissions are applied
in this case.

[SWS_CanNm_00006] [If Normal Operation State is entered from Ready Sleep State
the transmission of NM PDUs shall be started immediately. |

AUTSSAR

[SWS_CanNm_00335] [If NM PDUs shall be transmitted with CanNmImmediateNm—
CycleTime, CanNm shall ensure that CanNmImmediateNmTransmissions (includ-
ing first immediate transmission) with this timing are requested succesfully. If a trans-
mission request to the lower layer (e.g. Canlf) fails (E_NOT_OK is returned), CanNm
shall retry the transmission request in the next main function. Afterwards CanNm shall
continue transmitting NM PDUs using the CanNmMsgCycleTime. |

Note: While transmitting NM PDUs using the CanNmImmediateNmCycleTime NO
other Nm PDUs shall be transmitted (i.e. the CanNmMsgCycleTime transmission cy-
cle is stopped).

[SWS_CanNm_00512] [If transmission of Network Management PDUs has been
started, the CanNm Message Cycle Timer expires and when CanNmSynchronizedP-
ncShutdownEnabled is set to either FALSE or if set to TRUE and additionally the
transmission of PN shutdown messages is inactive, then the CanNm module shall
transmit a Network Management PDU by calling LSduR_CanNmTransmit. |

[SWS_CanNm_00513]
Upstream requirements: RS_Nm_02572

[If transmission of Network Management PDUs has been started, the CanNm Mes-
sage Cycle Timer expires and when CanNmSynchronizedPncShutdownEnabled is
set to TRUE and the transmission of PN shutdown messages is active, the transmis-
sion of this NM PDU shall be postponed to the next CanNm_MainFunction call.|

Note:

+ NM-PDU transmitted as PN Shutdown message has to be sent immediately and
therefore processing of cylic NM-PDUs transmitted with CanNmMsgCycleTime
have to be delayed. In rare cases this could lead to a delay of more than one
main function cycle time.

* The NM timing has to consider that an NM message transmitted with canN-
mMsgCycleTime may be delayed for more than one main function cycle time.
Therefore, the following condition has to be fulfilled to tolerate multiple delays of
those NM Messages:

(NmPnResetTime — CanNmMsgCycleTime) > N * CanNmMainFunctionPe-
riod, where n denotes the number of tolerated delays before the PnResetTime
expires, if no NM message is received.

[SWS_CanNm_00514]
Upstream requirements: RS_Nm_02573

[If the CanNm module has requested a transmission of a NM-PDU, CanNmSynchro-
nizedPncShutdownEnabled is set to TRUE, the transmission of PN shutdown mes-
sages is active, CanNm_TxConfirmation is called with result E_NOT_OK or the
transmission request for this NM-PDU was not accepted (LSduR_CanNmTransmit

AUTSSAR

returned E_NOT_OK), then the CanNm module shall perform a retransmission of a
NM-PDU for this NM-Channel in the next main function call. |

Note:

» CanNm has to perform a retry transmission handling for a NM-PDU in the context
of the main function calls, if the transmission of PN shutdown messages is active
and if the transmission of this NM-PDU was not accepted or was not confirmed by
the lower layer. The retry transmission requests should cover error cases, where
the lower layer cannot transmit the Nm messages.

» The dependency to a pending transmission confirmation indicated by the lower
layer, should support reliable communication, e.g. ensure PN shutdown message
was transmitted on the bus or avoid transmissions of outdated PN shutdown mes-
sages, if for example queueing in the lower layer is configured.

[SWS_CanNm_00040] [If the CanNm Message Cycle Timer expires the CanNm mod-
ule shall restart with CanNmMsgCycleTime. |

[SWS_CanNm_00051] [If transmission of Network Management PDUs has been
stopped the CanNm module shall cancel the Message Cycle Timer. |

7.7.2 Reception

If a NM PDU has been successfully received, the lower layer (e.g. Canlf) will inform
CanNm via the function call CanNm_RxIndication.

[SWS_CanNm_00035]
Upstream requirements: SRS_BSW_00483

[On the call of the callback function CanNm_RxIndication, the CanNm module shall
copy the data of the Network Management PDU referenced in the function parameter
to an internal buffer. |

7.8 Bus Load Reduction Mechanism

The transmission period of Network Management PDUs is usually determined by the
timing parameter CanNmMsgCycleTime. This parameter has to be equal for all NM
nodes which belong to a network management cluster. Without any action this would
lead to a bus load which depends on the amount of members of the network manage-
ment cluster. Even if bursts are prevented through a node specific timing parameter
called canNmMsgCycleOffset a mechanism is necessary which reduces the bus
load independently of the size of the network management cluster.

In order to achieve that the following two aspects have to be considered:

AUTSSAR

1. If a Network Management PDU is received the CanNm Message Cycle Timer is
reloaded with the node specific timing parameter CanNmMsgReducedTime.

The node specific time CanNmMsgReducedTime should be greater than 0.5 *
CanNmMsgCycleTime and less than CanNmMsgCycleTime.

2. If a Network Management PDU is been transmitted the CanNm Message Cycle
Timer is reloaded with the network management cluster specific timing parameter
CanNmMsgCycleTime.

This leads to the following behavior:

Only the two nodes with the smallest CanNmMsgReducedTime time transmit alter-
nating Network Management PDUs on the network. If one of the nodes stops trans-
mission, the node with the next smallest CanNmMsgReducedTime time will start to
transmit Network Management PDUs. If there is only one node on the network that
requires bus communication, one Network Management PDU per CanNmMsgCycle—
Time is transmitted.

The algorithm ensures that the bus load is limited to a maximum two Network Manage-
ment PDUs per CanNmMsgCycleTime.

An example can be found in Appendix A.

[SWS_CanNm_00052]
Upstream requirements: RS_Nm_00142

[The bus load reduction mechanism shall be statically configurable by means of the
CanNmBusLoadReductionEnabled parameter. |

[SWS_CanNm_00156]
Upstream requirements: RS_Nm_00142

[When the Repeat Message State is entered from Bus-Sleep Mode, Prepare Bus-
Sleep Mode, Normal Operation or Ready Sleep State the CanNm module shall deacti-
vate the busload reduction. |

[SWS_CanNm_00157]
Upstream requirements: RS_Nm_00142

[When the Normal Operation State is entered from Repeat Message State or Ready
Sleep State and CanNmBusLoadReductionEnabled is TRUE the CanNm module
shall activate the busload reduction. |

[SWS_CanNm_00069]
Upstream requirements: RS_Nm_00142
[If the bus load reduction mechanism is globally enabled (CanNmBusLoadReductio-

nEnabled is TRUE), for a particular network activated, PDU transmission ability is en-
abled and the function CanNm_RxIndication is called for this network, the CanNm

AUTSSAR

module shall restart the CanNm Message Cycle Timer with the node specific time
CanNmMsgReducedTime. |

7.9 Additional features

7.9.1 Detection of Remote Sleep Indication

The “Remote Sleep Indication” denotes a situation, where a node in Normal Operations
States finds all other nodes in the cluster are ready to sleep (in Ready-Seep State). The
node in Normal Operation State will still keep the bus awake.

[SWS_CanNm_00149] [Detection of remote sleep indication shall be statically config-
urable with use of the CanNmRemoteSleepIndEnabled switch (configuration param-
eter). |

[SWS_CanNm_00150]
Upstream requirements: RS_Nm_00052

[If the CanNm module receives no Network Management PDUs in the Nor-
mal Operation State for a configurable amount of time determined by CanNmRe-
moteSleepIndTime (configuration parameter), the CanNm module shall call the call-
back function Nm_RemoteSleepIndication. |

With a call of Nm_RemoteSleepIndication CanNm notifies the module Nm that all
nodes in the cluster are ready to sleep (the so-called ‘Remote Sleep Indication’).

[SWS_CanNm_00151]
Upstream requirements: RS_Nm_02509

[If Remote Sleep Indication has been previously detected and if a Network Manage-
ment PDU is received in the Normal Operation State or Ready Sleep State again, the
module CanNm shall call the callback function Nm_RemoteSleepCancellation.]

[SWS_CanNm_00152]
Upstream requirements: RS_Nm_02509

[If Remote Sleep Indication has been previously detected and if Repeat Message State
is entered from Normal Operation State or Ready Sleep State, the module CanNm shall
call the callback function Nm_RemoteSleepCancellation.]

With a call of Nm_RemoteSleepCancellation CanNm notifies the module Nm that
some nodes in the cluster are not ready to sleep anymore (the so-called ‘Remote Sleep
Cancellation’).

[SWS_CanNm_00154] [When the service CanNm_CheckRemoteSleepIndica-—
tion is called and the state is Bus-Sleep Mode, Prepare Bus-Sleep Mode or Repeat

AUTSSAR

Message State the CanNm module shall not execute the service and shall return £_
NOT_OK. |

7.9.2 User Data

NM user data in CanNm can be accessed for transmission in two ways: Either by writ-
ing data within the APl CanNm_SetUserData (CanNmUserDataEnabled needs to
be TRUE) or by writing according Com signals (CanNmComUserDataSupport needs
to be TRUE). In second case the first option is not available.

Reading NM user data from received CanNm messages is only possible with the APls
CanNm_GetUserData Or CanNm_GetPduData (CanNmUserDataEnabled needs to
be TRUE).

[SWS_CanNm_00159]
Upstream requirements: RS_Nm_02503, SRS_BSW_00483

[When CanNm_SetUserData is called the CanNm module shall set the Network Man-
agement user data for the Network Management PDUs transmitted next on the bus. |

[SWS_CanNm_00160]
Upstream requirements: RS_Nm_02504, SRS_BSW_00483

[When CanNm_GetUserData is called CanNm module shall return the Network Man-
agement user data of the most recently received Network Management PDU. |

Note: If user data is configured it will be sent for sure in Repeat Message State. In
Normal Operation State it depends on the configuration of busload reduction whether
user data is sent. In Ready Sleep State user data will not be sent.

7.9.2.1 COM User Data

Alternatively to the usage of the CanNm APIs to set and get user data, CanNm may
use the COM to retrieve its user data.

[SWS_CanNm_00327] [If CanNmComUserDataSupport is enabled the API
CanNm_SetUserData shall not be available. |

[SWS_CanNm_00328]
Upstream requirements: RS_Nm_02503

[If CanNmComUserDataSupport is enabled and NM-PDU is not configured for trig-
gered transmission in the lower layer (e.g. Canlf: CanlfTxPduTriggerTransmit set to
FALSE) CanNm shall collect the NM User Data from the referenced NM I-PDU by call-
ing PduR_CanNmTriggerTransmit and combine the user data with the further NM
system bytes each time before it requests the transmission of the corresponding NM
PDU. |

AUTSSAR

Note: In case of triggered transmission no data is needed at the transmission request,
just the length is needed. The data will be collected within CanNm_TriggerTrans-—
mit.

[SWS_CanNm_00450] [If CanNmComUserDataSupport is enabled and PduR_Can-—
NmTriggerTransmit returns E_NOT_OK, the NM shall use the last transmitted value
for NmUserData. |

Note: The transmission of outdated NM data can be avoided by not stopping the IPdu
in COM used for NmUserData transmission.

[SWS_CanNm_00329] [If CanNmComUserDataSupport is enabled and CanNm_-—
TxConfirmation is called CanNm shall forward the transmission confirmation result
to PduR by calling PduR_CanNmTxConfirmation.]

[SWS_CanNm_00332] [If canNmComUserDataSupport is enabled and the number
of available user data bytes does not match to the length of the referenced I-PDU an
error shall be reported at generation time. |

7.9.3 Passive Mode

In the Passive Mode the node is only receiving Network Management PDUs but not
transmitting any Network Management PDUs.

[SWS_CanNm_00161]

Upstream requirements: RS_Nm_02511
[Passive Mode shall be statically configurable with use of the CanNmPassiveMod-
eEnabled switch (configuration parameter). |

Note: Passive Mode has to be either enabled or disabled for all NM networks within
one ECU.

7.9.4 Network Management PDU Rx Indication
[SWS_CanNm_00037] [On the call of the callback function CanNm_RxIndication,

the CanNm module shall call the Nm callback function Nm_PduRxIndication, if and
only if CanNmPduRxIndicationEnabled (configuration parameter) is set to TRUE. |

AUTSSAR

7.9.5 State change notification

[SWS_CanNm_00166]
Upstream requirements: RS_Nm_00051

[All changes of the AUTOSAR CanNm states shall be notified to the upper layer
by calling Nm_StateChangeNotification if the callback Nm_StateChangeNoti-
fication is enabled (configuration parameter CanNmStateChangeIndEnabled is
TRUE). |

7.9.6 Communication Control

Note: Communication Control is statically configurable by the configuration parameter
CanNmComControlEnabled.

[SWS_CanNm_00170]
Upstream requirements: RS_Nm_02512

[If the service CanNm_DisableCommunication is called the CanNm module shall
disable the Network Management PDU transmission ability. |

Note: This behavior shall also be applied in Repeat Message State. Communication
Control feature does not influence the duration of the Repeat Message State.

[SWS_CanNm_00173]
Upstream requirements: RS_Nm_02512

[When the Network Management PDU transmission ability is disabled, the CanNm
module shall stop the CanNm Message Cycle Timer in order to stop the transmission
of Network Management PDUs. |

[SWS_CanNm_00174] [When the Network Management PDU transmission ability is
disabled, the CanNm module shall stop the NM-Timeout Timer. |

[SWS_CanNm_00175] [When the Network Management PDU transmission ability is
disabled, the CanNm module shall stop the Remote Sleep Indication Detection. |

[SWS_CanNm_00178]

Upstream requirements: RS_Nm_02512
[When the Network Management PDU transmission ability is enabled, the transmis-
sion of NM PDUs shall be started latest within the next NM main function. |

[SWS_CanNm_00179] [When the Network Management PDU transmission ability is
enabled, the CanNm module shall restart the NM-Timeout Timer. |

AUTSSAR

[SWS_CanNm_00180] [If CanNmRemoteSleepIndEnabled is TRUE and the Net-
work Management PDU transmission ability is enabled, the CanNm module shall re-
start the Remote Sleep Indication Detection. |

[SWS_CanNm_00181] [The service CanNm_RequestBusSynchronization shall
return E_NOT_OK if the Network Management PDU transmission ability is disabled. |

7.9.7 Coordinator Synchronization Support

When having more than one coordinator connected to the same bus a special bit in
the CBYV, the NmCoordinatorSleepReady bit is used to indicate that the main coordi-
nator requests to start shutdown sequence. The main functionality of the algorithm is
described in the Nm module.

[SWS_CanNm_00341] [If CanNmCoordinatorSyncSupport is set to TRUE and
CanNm has entered Network Mode or called Nm_CoordReadyToSleepCancella-
tion before it shall notify the Nm by calling Nm_CoordReadyToSleepIndication
on the first reception of a NM PDU with the NmCoordinatorSleepReady bit (see CBV)
setto1.]

[SWS_CanNm_00348] [If CanNmCoordinatorSyncSupport is set to TRUE and
CanNm called Nm_CoordReadyToSleepIndication and is still in Network Mode it
shall notify the Nm by calling Nm_CoordReadyToSleepCancellation on the first
reception of a NM PDU with the NmCoordinatorSleepReady bit (see CBV) set to 0. |

[SWS_CanNm_00342] [If canNmCoordinatorSyncSupport is set to TRUE and
the APl CanNm_SetSleepReadyBit is called CanNm shall set the “NM Coordinator
Sleep ready Bit” to the passed value and trigger a single Network Management PDU. |

7.10 Car Wakeup

[SWS_CanNm_00405] [The position of the Car Wakeup bit in the NM-PDU is defined
by the configuration parameters CanNmCarWakeUpBytePosition and CanNmCar—
WakeUpBitPosition.]

7.10.1 Rx Path

[SWS_CanNm_00406] [If the Car Wakeup bit within any received NM-PDU is 1,
CanNmCarWakeUpRxEnabled is TRUE, and CanNmCarWakeUpFilterEnabled is
FALSE CanNm shall call Nm_CarWakeUpIndication and perform the standard Rx
indication handling. |

AUTSSAR

[SWS_CanNm_00407] [If CanNm_GetPduData is called in the context of Nm_-
CarWakeUpIndication and if CanNmNodeDetectionEnabled Of CanNmUser—
DataEnabled or CanNmNodeIdEnabled is setto TRUE CanNm shall return the PDU
data of the PDU that causes the call of Nm_CarWakeUpIndication.]

Note: This is required to enable the ECU to identify detail about the sender of the Car
Wakeup request.

[SWS_CanNm_00408] [If CanNmCarWakeUpFilterEnabled is TRUE, the Car
Wakeup bit within any received NM-PDU is 1, CanNmCarWakeUpRxEnabled is TRUE
and the Node ID in the received NM-PDU is equal to CanNmCarWakeUpFilterN-
ode1d the CanNm module shall call Nm_CarWakeUpIndication and perform the
standard Rx Indication handling. |

Note: The Car Wakeup filter is necessary to realize sub gateways that only consider
the Car Wakeup of the central Gateway to avoid wrong wakeups.

7.10.2 Tx Path

The transmission of the Car Wakeup bit shall be handled by the application using the
NM user data mechanism provided by the CanNm module.

7.11 Partial Networking

An overview regarding the partial network cluster functionality can be found in docu-
ment Guide to Mode Management [12].

7.11.1 Rx Handling of NM PDUs

[SWS_CanNm_00409]

Upstream requirements: RS_Nm_02517

[If the CanNmPnEnabled is FALSE, the CanNm shall not drop NM PDUs from further
Rx Indication handling and the partial networking extensions shall be disabled. |

[SWS_CanNm_00410]
Upstream requirements: RS_Nm_02517, RS_Nm_02527

[If canNmPnEnabled is TRUE, the PNI bit in the received NM-PDU is 0 and CanN-
mAl1NmMessagesKeepAwake is TRUE, the CanNm module shall not drop NM PDUs
from further Rx Indication handling omitting the extensions for partial networking. |

Note: This is required to enable the Gateway to stay awake on any kind of NM-PDU.

AUTSSAR

[SWS_CanNm_00411]
Upstream requirements: RS_Nm_02517, RS_Nm_02527

[If canNmPnEnabled is TRUE, the PNI bit in the received NM-PDU is 0 and CanN-
mAl1NmMessagesKeepAwake is FALSE, the CanNm module shall ignore the received
NM-PDU. |

[SWS_CanNm_00502]
Upstream requirements: RS_Nm_02517, RS_Nm_02527, RS_Nm_02565

[If CanNmPnEnabled is set to TRUE, the PNI bit in the received NM-PDU is set to 1
and one of the following pre-conditions is valid:
* CanNmSynchronizedPncShutdownEnabled is set to FALSE

* CanNmSynchronizedPncShutdownEnabled is set to TRUE and the PNSR bit
is setto 0

then the CanNm module shall extract the PNC bit vector from the received NM-PDU
according to the partial network configuration (NmPncBitVectorOffset and NmP-
ncBitVectorLength of the corresponding NM-channel) and forward the PNC bit
vector by calling Nm_PncBitVectorRxIndication.]

Note: The PNSR bit shall be evaluated only if CanNmSynchronizedPncShutdow—
nEnabled is set to TRUE.

[SWS_CanNm_00503]
Upstream requirements: RS_Nm_02517, RS_Nm_02527

[If CanNmPnEnabled is set to TRUE and Nm_PncBitVectorRxIndication was
called, a received NM PDU shall only be considered for further processing under the
following conditions:

* CanNmAllNmMessagesKeepAwake is setto TRUE OR
* CanNm_ConfirmPnAvailability has not been called yet OR

» the output value of RelevantPncRequestDetectedPtr is set to TRUE

]
Note:

* CanNmAllNmMessagesKeepAwake IS required to enable a gateway to stay
awake on any kind of NM-PDU.

« If PN availability was not confirmed by CanSM, all PNC requests are considered
as relevant and therefore the Nm restarts the NM-Timeout Timer when receiving
a NM-PDU. This is required to allow a malfunctioning partial network depending
hardware (e.g. PN capable CAN transceiver) to shut down synchronously with
the remaining network.

AUTSSAR

» As consequence of [SWS_CanNm_00503], a NM PDU is not considered for fur-
ther processing if not all messages shall keep the ECU awake and the PN avail-
ability was confirmed but no relevant PNC bit vector was detected.

Example:
* CanNmPduCbvPosition =0
* CanNmPduNidPosition = 1
* NmPncBitVectorOffset =4

* NmPncBitVectorLength =4

Calculated length of user data range = 2
Byte 2 and Byte 3 of the NM PDU contain user data and
Byte 4 to Byte 7 of the NM PDU contain the PNC bit vector:

Byte 0 Byte 1 Byte 2 | Byte 3 Byte 4 | Byte 5 | Byte 6 | Byte 7
CBvV NID User Data PNC bit vector
0x40 0x00 OXFF | OxFF 0x12 | ox8E | 0x80 | oxo1

Table 7.3: Example NM PDU containing relevant PNC bit vector

[SWS_CanNm_00461]
Upstream requirements: RS_Nm_02544

[If CanNmSynchronizedPncShutdownEnabled is set to TRUE, when a NM PDU
is received where PNI bit and PNSR bit are 1 and the corresponding ComM-
Channel configured via CanNmComMNetworkHandleRef is actively coordinated
(ComMPncGatewayType Set to COMM_GATEWAY_TYPE_ACTIVE), CanNm module
shall report the runtime error CANNM_E_ INVALID_PN_SYNC_SHUTDOWN_REQUEST to
DET, ignore the PNSR bit and handle the PDU as usual NM PDU. |

Note: The handling should support the robustness of the PN regarding a synchronized
shutdown handling, if the NM of an ECU is malfunction.

[SWS_CanNm_00504] [If canNmSynchronizedPncShutdownEnabled is TRUE,
the PNI bit in the received NM-PDU is set to 1 and the PNSR bit is set to 1, CanNm
module shall extract the PNC bit vector from the received NM-PDU according to
the partial network configuration (NmPncBitVectorOffset and NmPncBitVector—
Length of the corresponding NM-channel) and forward the PNC bit vector by calling
Nm_ForwardSynchronizedPncShutdown. |

Note: PNSR Bit set to 1 is only possible if a synchronized PNC shutdown is requested.
A synchronized PNC shutdown should be handled across the PN topology. Therefore,
it is assumed that either all coordinators have the synchronized PNC shutdown enabled
or all coordinators have the synchronized PNC shutdown disabled. A mixture of both
would lead to an unsynchronized PNC shutdown, which has to be avoided.

AUTSSAR

7.11.2 Tx Handling of NM PDUs

[SWS_CanNm_00413]
Upstream requirements: RS_Nm_02517, RS_Nm_02519

[If canNmPnEnabled is TRUE the CanNm module shall set the value of the transmit-
ted PNI bit to 1.

Note: The usage of the CBV is mandatory in case Partial Networking is used.

[SWS_CanNm_00414]
Upstream requirements: RS_Nm_02517, RS_Nm_02519

[If cCanNmPnEnabled is FALSE the CanNm module shall set the value of the transmit-
ted PNI bit always to 0. |

[SWS_CanNm_00515]
Upstream requirements: RS_Nm_02571

[If CanNmGlobalPnSupport is setto TRUE, the CanNm module shall store the latest
PNC bit vector per NM-channel everytime the PNC bit vector has been fetched from
the Nm modul via call of Nm_PncBitVectorTxIndication.|

[SWS_CanNm_00516]

Upstream requirements: RS_Nm_02571

[If canNmGlobalPnSupport is set to TRUE, a NM-PDU has been transmitted on
a NM-Channel and CanNm_TxConfirmation is called with result E_OK for this NM-
PDU, then the CanNm shall forward the confirmation to Nm by calling Nm_PncBitvec-
torTxConfirmation with the stored PNC bit vector (see [SWS_CanNm_00515]) for
this NM-channel with result set to E_OK. |

Note: The confirmation towards the Nm is always performed, independent of the rea-
son for transmission of a NM-PDU (e.g. cyclic NM-PDU transmitted with CanNmMsg-
CycleTime or NM-PDU transmitted as PN shutdown message).

[SWS_CanNm_00517]
Upstream requirements: RS_Nm_02571

[If CanNmGlobalPnSupport is set to TRUE, a NM-PDU has been transmitted on
a NM-Channel and CanNm_TxConfirmation is called with result E_NOT_OK or the
transmission request for this NM-PDU was not accepted (LSduR_CanNmTransmit
returned E_NOT_OK) for this NM-PDU, then the CanNm module shall forward the con-
firmation to Nm by calling Nm_PncBitVectorTxConfirmation with the stored PNC
bit vector (see [SWS_CanNm_00515]) for this NM-Channel with result set to E_NOT__
OK. |

Note: The call of Nm_PncBitVectorTxConfirmation with E_NOT_OK is used by
the Nm module to perform the synchronized PNC shutdown handling if PNC shutdown
handling is configured.

AUTSSAR

[SWS_CanNm_00518]
Upstream requirements: RS_Nm_02517, RS_Nm_02519

[If canNmPnEnabled is TRUE and a NM-PDU has to be transmitted (either as cylic
NM-PDU transmitted with CanNmMsgCycleTime (see [SWS_CanNm_00512]) or as
PN shutdown message), the CanNm module shall additionally fetch the PNC bit vector
by calling Nm_PncBitVectorTxIndication and copy the PNC bit vector with re-
spectto NmPncBitVectorOffset and NmPncBitVectorLength of the correspond-
ing NM-channel to the NM-PDU before requesting the transmission of the NM-PDU. |

Note:

» The transmission of a NM-PDU has to consider user data if the usage of user
data is configured. Please refer to Chapter 7.9.2 User Data.

» PNC bit vector is always fetched up front to a transmission request independent
if NM-PDU is configured for triggered transmission or not in the lower layer (e.g.
Canlf: canIfTxPduTriggerTransmit set to TRUE or FALSE). This should
ensure to re-start the PN reset timer of the affected PNC in the Nm on a trans-
mission request.

[SWS_CanNm_00519]
Upstream requirements: RS_Nm_02540, RS_Nm_02548, RS_Nm_02572

[If CanNmSynchronizedPncShutdownEnabled is set to TRUE, the transmission
of PN shutdown messages is active for this NM-Channel and no transmission con-
firmation of a previous call to transmit a NM-PDU as PN shutdown message on this
NM-Channel is pending, then the CanNm module shall request in the next main func-
tion call a transmission of a NM-PDU as PN shutdown message by calling LsduR_
CanNmTransmit.]

Note: Transmission of PNC shutdown message is processed with higher priority, due
to [SWS_CanNm_00513]. Cyclic NM messages are not transmitted in the same main
function as the synchronized PNC shutdown message. They are delayed to the next
mainfunction cycle as long as synchronized PNC shutdown requests are pending.

7.11.3 Handling of Internal Requested Partial Network Clusters

All internal PNC requests are maintained by ComM. ComM forwards the aggregated
internal PNC requests per channel as PNC bit vector to Nm. This PNC bit vector carries
the so-called “Internal Request Array”. The CanNm has to retrieve the latest IRA from
Nm every time an NM PDU is transmitted. Nm provides the IRA information to CanNm
and updates the PNC reset timer (each time a relevant PNC is transmitted, the PNC
reset timer is re-started).

Note: For all configured NM-channel where CanNmPnEnabled is set TRUE, the
CanNm will call Nm_PncBitVectorTxIndication (<NM-channel>, < buffer
to store the unfiltered PNC bit vector of aggregated inter-

AUTSSAR

nal PNC requests>) (see [SWS_CanNm_00518], [SWS_CanNm_00521] and
[SWS_CanNm_00523]) to indicate the transmission and to retrieve the current internal
PNC requests as PNC bit vector with respect to the configured NmPncBitVector-
Length. The CanNm will copy received internal PNC requests to the PNC bit vector
bytes of the NM-PDU.

7.11.4 Spontaneous Transmission of NM PDUs via CanNm_NetworkRequest

Incase CanNmPnHandleMultipleNetworkRequests is TRUE immediate transmis-
sions can be triggered by calling CanNm_NetworkRequest, see PRS_Nm_00507 for
further detalils.

Note: If CanNmPnHandleMultipleNetworkRequests is set to TRUE the CanNm
feature ‘Immediate Transmission’ is mandatory.

Note: The PNC Control Module (e.g. ComM) is responsible to call CanNm_Net -
workRequest if the PNC request bits changes.

7.12 Transmission Error Handling

Depending on configuration the CanNm will evaluate the confirmation function that
a Network Management PDU has been successfully transmitted or not. CanNm will
monitor these confirmations and alarm the upper layers if a transmission confirmation
is received with result E_NOT_OK or not received within a specific amount of time.
Timeout Monitoring is required for Partial Networking to ensure that the first message
gets acknowledged when all ECUs on the network use Partial Network transceivers.
Otherwise CanSM is informed and will restart CAN Driver (see also SWS CanSM [13]).

[SWS_CanNm_00073] [If CanNmPassiveModeEnabled is set to TRUE or
CanNmImmediateTxconfEnabled is set to TRUE CanNm shall not perform
transmission error handling and omit the requirements [SWS_CanNm_00061],
[SWS_CanNm_00064], [SWS_CanNm_00065], [SWS_CanNm_00066] and
[SWS_CanNm_00446]. |

Rationale: Transmission error handling makes only sense if a node is allowed to trans-
mit Network Management PDUs and the real confirmation from the lower layer (e.g.
Canlf) is evaluated.

[SWS_CanNm_00064]
Upstream requirements: RS_Nm_00137

[If CanNmGlobalPnSupport is setto TRUE and CanNmMsgTimeout Time is defined
and CanNm requests the transmission of a NM PDU (call of LSduR_CanNmTransmit)
then CanNm shall start the NM Message Tx Timeout Timer with CanNmMsgTimeout -
Time.]

AUTSSAR

[SWS_CanNm_00065]

Upstream requirements: RS_Nm_00137

[If CanNmGlobalPnSupport is setto TRUE and CanNmMsgTimeout Time is defined
and CanNm_TxConfirmation is called then CanNm shall stop the NM Message Tx
Timeout Timer. |

[SWS_CanNm_00066]

Upstream requirements: RS_Nm_00137

[If CanNm_TxConfirmation is called with result E_NOT_OK or if CanNmGlobalPn-
Support is setto TRUE and NM Message Tx Timeout Timer has expired then CanNm
shall call the function Nm_TxTimeoutException.]

[SWS_CanNm_00446]

Upstream requirements: RS_Nm_00137

[If CanNmGlobalPnSupport is set to TRUE and NM Message Tx Timeout Timer has
expired then CanNm shall call the function CanSM_TxTimeoutException. |

7.13 Functional requirements on CanNm API

[SWS_CanNm_00014]
Upstream requirements: RS_Nm_00153

[If CanNmRepeatMsgIndEnabled is set to TRUE and the Repeat Message Re-
quest bit is received CanNm module shall call the callout function Nm_RepeatMes—
sageIndication only the first time until Repeat Message State has been left again.
In case the Partial Network Learning Bit is also received with value 1 and CanNmDy -
namicPncToChannelMappingEnabled is setto TRUE the parameter pnLearningBit
Set shall be set to TRUE in this function call, otherwise to FALSE. |

Note: When Repeat Message Bit is received NM will enter or restart Repeat Message
State, but the bits will still be received as requestor will send until he leaves Repeat
Message State to be fault-tolerant regarding possible loss of messages. State Change
and callout are only needed once the first time the node received it.

[SWS_CanNm_00086] [If canNmUserDataEnabled is enabled but no user data
bytes are available, the CanNm module shall raise an error during configuration or
compilation time. |

AUTSSAR

7.14 Error Classification

Chapter [4, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.14.1 Development Errors

[SWS_CanNm_00316] Definition of development errors in module CanNm
Upstream requirements: SRS_BSW_00385, SRS_BSW_00480, SRS_BSW_00481, SRS_BSW_

00487

[
Type of error Related error code Error value
API service used without module initialization CANNM_E_UNINIT 0x01
API service called with wrong channel handle CANNM_E_INVALID_CHANNEL 0x02
API service called with wrong PDU-ID CANNM_E_INVALID_PDUID 0x03
CanNm initialization has failed, e.g. selected CANNM_E_INIT_FAILED 0x05
configuration set doesn’t exist.
Null pointer has been passed as an argument CANNM_E_PARAM_POINTER 0x12
Delnit API service called when not all CAN CANNM_E_NOT_IN_BUS_SLEEP 0x13
networks are in Bus Sleep mode

AUTSSAR

7.14.2 Runtime Errors

[SWS_CanNm_00317] Definition of runtime errors in module CanNm

Upstream requirements: SRS_BSW_00385, SRS_BSW_00452

Type of error

Related error code

Error value

Reception of NM PDUs in Bus-Sleep Mode.

CANNM_E_NET START_IND

0x04

NM-Timeout Timer has abnormally expired

(1) because of Bus-Off state,(2)if some ECU
requests bus communication or node detection
shortly before the NM-Timeout Timer expires so
that a Network Management PDU can not be
transmitted in time; this race condition applies to
event-triggered systems

outside of the Ready Sleep State; it may happen:

CANNM_E_NETWORK_TIMEOUT

Ox11

A NM message with PN Shutdown Request Bit
was received on a channel that is actively
coordinated by the ComM PNC Gateway.

CANNM_E_INVALID_PN_SYNC_SHUTDOWN_
REQUEST

0x20

7.14.3 Transient Faults

There are no transient faults.

7.14.4 Production Errors

There are no production errors.

7.14.5 Extended Production Errors

There are no extended production errors.

7.15 Scheduling of the main function

For details refer to [4] Chapter 8.5 “Scheduled functions”.

AUTSSAR

7.16 Application notes

7.16.1 Wakeup notification

Wakeup notification is defined in detail in the ECU State Manager specification.

7.16.2 Coordination of coupled networks

[SWS_CanNm_00185] [Support of bus synchronization on demand shall be statically
configurable with use of the CanNmBusSynchronizationEnabled switch (configu-
ration parameter). |

Note: Since the shutdown of CanNm can be done at any time, the call of the APl Nm__
SynchronizationPoint is not supported.

7.17 Summary of CanNm Timing Requirements

This section gives a summary of the CanNm timing requirements. Please note that this
chapter is a summary only and does not replace or act as requirement. Moreover this
section does not require any specific way of implementation

Type of timing Requirements

Nm timeout related [SWS_CanNm_00061] [SWS_CanNm_00096]
[SWS_CanNm_00098] [SWS_CanNm_00099]
[SWS_CanNm 00109]

00101] [SWS_CanNm_
[SWS_CanNm_00117] [SWS_CanNm_00174]
[SWS_CanNm_00179] [SWS_CanNm_00193]

[SWS_CanNm_00194] [SWS_CanNm_00206]

Tx confirmation timeout related [SWS_CanNm_00064] [SWS_CanNm_00065]
[SWS_CanNm_00066]

NmPdu transmission related [SWS_CanNm_00040] [SWS_CanNm_00051]
[SWS_CanNm_00061] [SWS_CanNm_00069]

[SWS_CanNm_00173] [SWS_CanNm_00178]
[SWS_CanNm_00512]

Remote sleep indication related [SWS_CanNm_00175] [SWS_CanNm_00180]

Table 7.4: Summary of CanNm Timing Requirements

7.18 UML State chart diagram

The following figure shows an UML state diagram with respect to the API specification.
Mode change related transitions are denoted in green, error handling related transi-
tions in red and optional node detection / Dynamic PNC-to-channel-mapping related
transitions in blue.

AUTSSAR

CanNm_Init()
/Initialization
of CanNm

PowerOn

@ PowerOff

CanNm_Delnit() PowerOff

Wait Bus-Sleep Timer has
expired
/ Nm_BusSleepMode();

Bus-Sleep Mode

1

CanNm_RxIndication();
/Nm_NetworkStartindication();

CanNm_PassiveStartup();
CanNm_NetworkRequest();

CanNm_RxIndication();
/ Start NM-Timeout
Timer;

CanNm_TxConfirmation(Result: E_OK);
/ Start NM-Timeout Timer; / Start NM-Timeout Timer;

Start Repeat Message Timer;

CanNm_RxIndication();

Network

Mode
CanNm_NetworkRequest();
/ Start NM-Timeout Timer;

Prepare Bus-Sleep Mode

CanNm_PassiveStartUp();

Start Repeat Message Timer;

Nm_NetworkMode();
NM-Timeout Timer has expired
/ Start Wait Bus-Sleep Timer;
Nm_PrepareBusSleepMode();

-

Nm_NetworkMode();
[Netwolk Mode
Partial Network Leaming + Repeat Message Bit
Received || CanNm_PnLeamingRequest;
/Start Repeat Message ';Ii/mer;

~

CanNm_NetworkRequest()
[CanNmPnHandleMultipleNetworkRequests ==
TRUE]

/Start Repeat Message Timer

/ Repeat Message State

~

NM-Timeout Timer has expired

/ Start NM-Timeout Timer: entry / Stop Bus Load Reduction

\

Tx Timeout Timer has
expired
/Nm_TxTimeoutException();

I
Repeat Message
Timer has
expired;
Repeat Mesagg Bit Received || Repeat

CanNm_RepeatMessageRequest(); Message
/Start Repeat Message Timer;

[Network Requested]

NM-Timeout Timer has Tx Timeout Timer has
expired expired /

/Start NM-Timeout Timer; /Nm_TxTimeoutException();

CanNm_NetworkRequest();

FALSE]

[Network Released]

[CanNmPnHandleMultipleNetworkRequests ==

Repeat Message Bit received ||
CanNm_RepeatMessageRequest();
/Start Repeat Message Timer;

H /7
.

Normal Operation State
entry / Start Bus Load Reduction

Ready Sleep State

CanNm_NetworkRelease();

Figure 7.1: CanNm Algorithm

AUTSSAR

8 API specification

[SWS_CanNm_00189] [The CanNm module shall not return development errors by
API functions; in case of a development error, the execution of the respective API
function shall be aborted and E_NOT_OK shall be returned, if applicable. |

[SWS_CanNm_00190] [The CanNm module shall not return production errors by API
functions; in case of a production error, the execution of the respective API function
shall be aborted and E_NOT_0K shall be returned, if applicable. |

[SWS _CanNm_00192]
Upstream requirements: SRS_BSW_00350

[When a CanNm service with an invalid network handle is called, the called function
shall not be executed and it shall return E_NOT_OK to the calling function if applicable.
If development error detection is enabled (CanNmDevErrorDetect is set to TRUE)
the corresponding error CANNM_E_ INVALID_CHANNEL shall be reported to DET. |

Note: The network handle is invalid if it is different from allowed configured values.

[SWS_CanNm_00507]
Upstream requirements: SRS_BSW_00350

[When a Null pointer has been passed to a CanNm service, the called function shall
not be executed and it shall return E_NOT_OK to the calling function if applicable. If
development error detection is enabled (CanNmbevErrorDetect is set to TRUE) the
corresponding error CANNM_E_PARAM_POINTER shall be reported to DET. |

[SWS_CanNm_00195]
Upstream requirements: SRS_BSW_00350

[When a CanNm service with an invalid PDU ID is called, the called function shall
not be executed and it shall return E_NOT_OK to the calling function if applicable. If
development error detection is enabled (CanNmbevErrorDetect is set to TRUE) the
corresponding error CANNM_E_ INVALID_PDUID shall be reported to DET. |

[SWS_CanNm_00244]
Upstream requirements: SRS_BSW_00323

[The CanNm module shall reject the execution of a service called with an invalid pa-
rameter and shall inform the DET. |

AUTOSAR CanNm API consists of services, which are CAN specific and can be called
whenever they are required; each service apart from CanNm_Init refers to one NM
channel only.

AUTSSAR

8.1 Imported types

In this chapter all types included from the following modules are listed:

[SWS_CanNm_00245] Definition of imported datatypes of module CanNm |

Module Header File Imported Type

Comtype ComStack_Types.h NetworkHandleType
ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType

Nm NmStack_types.h Nm_ModeType
NmStack_types.h Nm_StateType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

]

For further details of these types refer to the according specifications [14], [2] and [15].

8.2 Type definitions

8.2.1 CanNm_ConfigType

[SWS_CanNm_00447] Definition of datatype CanNm_ConfigType |

Name CanNm_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description This type shall contain at least all parameters that are post-build able according to chapter 10.
Available via CanNm.h

AUTSSAR

8.3 Function definitions

8.3.1

CanNm_ Init

[SWS_CanNm_00208] Definition of API function CanNm_Init

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00358, SRS_BSW_

[

00485

Service Name

CanNm_Init

Syntax void CanNm_Init (
const CanNm_ConfigTypex cannmConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) cannmConfigPtr Pointer to a selected configuration structure
Parameters (inout) None
Parameters (out) None
Return value None
Description Initialize the CanNm module.
Available via CanNm.h

]

[SWS_CanNm_00253] [Caveats of CanNm_Init: The function CanNm_Init has to
be called after initialization of the the LSduR and the according lower layer module (e.g.
Canlf). |

8.3.2 CanNm DelInit

[SWS_CanNm_91002] Definition of API function CanNm_Delnit
Upstream requirements: SRS_BSW_00336, SRS_BSW_00310, SRS_BSW_00460

[

Service Name CanNm_Delnit
Syntax void CanNm_DelInit (
void

)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

De-initializes the CanNm module.

Y%

AUTSSAR

| Available via CanNm.h

]

Note: General behavior and constraints on de-initialization functions are specified
by [SWS_BSW_00152], [SWS_BSW_00072], [SWS_BSW_00232], and [SWS_BSW_
00233].

Caveat: Caller of the canNm_DeInit function has to ensure all CAN networks are in
the Bus Sleep mode.

[SWS_CanNm_00352]
Upstream requirements: SRS_BSW_00369, SRS_BSW_00350
[If development error detection for the CanNm module is enabled: The function

CanNm_DeInit shall raise the error CANNM_E_NOT_IN_BUS_SLEEP if not all CAN
networks are in Bus Sleep mode. |

8.3.3 CanNm_PassiveStartUp

[SWS_CanNm_00211] Definition of APl function CanNm_PassiveStartUp

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW _
00484, SRS_BSW_00459

Service Name CanNm_PassiveStartUp
Syntax Std_ReturnType CanNm_PassiveStartUp (
NetworkHandleType nmChannelHandle

)
Service ID [hex] 0x01
Sync/Async Asynchronous
Reentrancy Reentrant (but not for the same NM-Channel)
Parameters (in) nmChannelHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error

E_NOT_OK: Passive startup of network management has failed

Description Passive startup of the AUTOSAR CAN NM. It triggers the transition from Bus-Sleep Mode or

Prepare Bus Sleep Mode to the Network Mode in Repeat Message State.

Caveats: CanNm is initialized correctly.
Available via CanNm.h

[SWS_CanNm_00254] [Caveats of CanNm_PassiveStartUp: The CanNm module
is initialized correctly. |

AUTSSAR

8.3.4 CanNm NetworkRequest

[SWS_CanNm_00213] Definition of API function CanNm_NetworkRequest
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_

[

00484, SRS_BSW_00459

Service Name

CanNm_NetworkRequest

Syntax Std_ReturnType CanNm_NetworkRequest (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Reentrant (but not for the same NM-channel)

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType E_OK: No error

E_NOT_OK: Requesting of network has failed

Description

Request the network, since ECU needs to communicate on the bus.

Available via

CanNm.h

]
0

[SWS_CanNm_00255] [The function CanNm_NetworkRequest shall change the

Network state to ‘requested’. |

[SWS_CanNm_00256] [Caveats of CanNm_NetworkRequest: The CanNm module

is initialized correctly. |

[SWS_CanNm_00257] [Configuration of CanNm_NetworkRequest: Optional (Only

available if CcanNmPassiveModeEnabled is not defined). |

8.3.5 CanNm NetworkRelease

[SWS_CanNm_00214] Definition of API function CanNm_NetworkRelease
Upstream requirements: SRS _BSW_ 00310, SRS_BSW 00460, SRS_BSW _00461, SRS BSW _

[

00484, SRS_BSW_00459

Service Name

CanNm_NetworkRelease

Syntax Std_ReturnType CanNm_NetworkRelease (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0x03

\Y

AUTSSAR

A

Sync/Async Asynchronous
Reentrancy Reentrant (but not for the same NM-Channel)
Parameters (in) nmChannelHandle | Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error

E_NOT_OK: Releasing of network has failed
Description Release the network, since ECU doesn’t have to communicate on the bus.
Available via CanNm.h

]

[SWS_CanNm_00259] [Caveats of CanNm_NetworkRelease: The CanNm module
is initialized correcily. |

[SWS_CanNm_00260] [Configuration of CanNm_NetworkRelease: Optional (Only
available if CanNmPassiveModeEnabled is not defined) |

8.3.6 CanNm DisableCommunication

[SWS_CanNm_00215] Definition of APl function CanNm_DisableCommunication

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW _
00484, SRS_BSW_00459

[

Service Name CanNm_DisableCommunication
Syntax Std_ReturnType CanNm_DisableCommunication (
NetworkHandleType nmChannelHandle

)
Service ID [hex] 0x0c
Sync/Async Asynchronous
Reentrancy Reentrant (but not for the same NM-channel)
Parameters (in) nmChannelHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error

E_NOT_OK: Disabling of NM PDU transmission ability has failed

Description Disable the NM PDU transmission ability due to a ISO14229 Communication Control (28hex)

service
Available via CanNm.h

]

[SWS_CanNm_00261] [Caveats of CanNm_DisableCommunication: The CanNm
module is initialized correctly. |

[SWS_CanNm_00262] [Configuration of CanNm_DisableCommunication: Op-
tional (Only available if CanNmComControlEnabled is set to TRUE) |

AUTSSAR

[SWS_CanNm_00172] [The service CanNm_DisableCommunication shall return
E_NOT_OK, if the current mode is not Network Mode. |

8.3.7 CanNm EnableCommunication

[SWS_CanNm_00216] Definition of API function CanNm_EnableCommunication

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS BSW 00459

[

Service Name

CanNm_EnableCommunication

Syntax Std_ReturnType CanNm_EnableCommunication (
NetworkHandleType nmChannelHandle
)

Service ID [hex] 0x0d
Sync/Async Asynchronous
Reentrancy Reentrant (but not for the same NM-channel)

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout)

None

Parameters (out) None
Std_ReturnType

Return value E_OK: No error

E_NOT_OK: Enabling of NM PDU transmission ability has failed

Enable the NM PDU transmission ability due to a ISO14229 Communication Control (28hex)
service

Available via CanNm.h

Description

]

[SWS_CanNm_00176]
Upstream requirements: RS_Nm_02512
[The service CanNm_EnableCommunication shall enable the Network Management

PDU transmission ability if the Network Management PDU transmission ability is dis-
abled. |

[SWS_CanNm_00177] [The service CanNm_EnableCommunication shall return
E_NOT_OK if the Network Management PDU transmission ability is enabled. |

[SWS_CanNm_00295] [The service CanNm_EnableCommunication shall return
E_NOT_OK, if the current mode is not Network Mode. |

[SWS_CanNm_00263] [Caveats of CanNm_EnableCommunication: The CanNm
module is initialized correctly. |

[SWS_CanNm_00264] [Configuration of CanNm_EnableCommunication: Optional
(Only available if CanNmComControlEnabled is set to TRUE). |

AUTSSAR

8.3.8 CanNm SetUserData

[SWS_CanNm_00217] Definition of API function CanNm_SetUserData

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS BSW 00486, SRS BSW_00459

[

Service Name CanNm_SetUserData
SynEM' Std_ReturnType CanNm_SetUserData (
NetworkHandleType nmChannelHandle,
const uint8x nmUserDataPtr
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same NM-channel)
Parameters (in) nmChannelHandle Identification of the NM-channel
nmUserDataPtr Pointer where the user data for the next transmitted NM PDU
shall be copied from
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Setting of user data has failed
Description Set user data for NM PDUs transmitted next on the bus.
Available via CanNm.h

]

[SWS_CanNm_00265] [Caveats of CanNm_SetUserData: The CanNm module is
initialized correctly. |

[SWS_CanNm_00266] [Configuration of CanNm_SetUserData: Optional (Only avail-
able if CanNmUserDataEnabled is set to TRUE and canNmPassiveModeEnabled
is not defined) |

8.3.9 CanNm GetUserData

[SWS_CanNm_00218] Definition of API function CanNm_GetUserData

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS _BSW 00459

[

Service Name CanNm_GetUserData

Synuu' Std_ReturnType CanNm_GetUserData (
NetworkHandleType nmChannelHandle,
uint8+ nmUserDataPtr

)
Service ID [hex] 0x05

Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant
Parameters (in) nmChannelHandle | Identification of the NM-channel
Parameters (inout) None
Parameters (out) nmUserDataPtr Pointer where user data out of the most recently received NM
PDU shall be copied to
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Getting of user data has failed
Description Get user data out of the most recently received NM PDU.
Available via CanNm.h

]

[SWS_CanNm_00267] [Caveats of CanNm_GetUserData: The CanNm module is
initialized correctly. |

[SWS_CanNm_00268] [Configuration of CanNm_GetUserData: Optional (Only avail-
able if CcanNmUserDataEnabled is set to TRUE). |

8.3.10 CanNm Transmit

[SWS_CanNm_00331] Definition of API function CanNm_Transmit

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW _
00484, SRS_BSW 00485, SRS_BSW_00459

[

Service Name CanNm_Transmit
Syntax Std_ReturnType CanNm_Transmit (
PduldType TxPduld,
const PdulInfoTypex PdulnfoPtr
)
Service ID [hex] 0x49
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld Identifier of the PDU to be transmitted
PdulnfoPtr Length of and pointer to the PDU data and pointer to MetaData.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Transmit request has been accepted.
E_NOT_OK: Transmit request has not been accepted.
Description Requests transmission of a PDU.
Available via CanNm.h

]

[SWS_CanNm_00330] [If CanNmComUserDataSupport Of CanNmGlobalPnSup—
port is enabled the CanNm implementation shall provide an APl CanNm_Transmit.

AUTSSAR

[SWS_CanNm_00333]
Upstream requirements: RS_Nm_02527, SRS_BSW_00483
[If CanNmComUserDataSupport is enabled and if CanNm is in RepeatMessage state

or NormalOperation state and if CanNm_Transmit () is called CanNm shall request
an additional transmission of the NM PDU with the current data. |

Note: The call of CanNm_Transmit request to transmit a NM PDU between the pe-
riodic transmissions with the current data (e.g., system bytes, user data and PNC bit
vector).

8.3.11 CanNm_GetNodeIdentifier

[SWS_CanNm_00219] Definition of API function CanNm_GetNodeldentifier

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW _
00484, SRS_BSW_00459

[

Service Name

CanNm_GetNodeldentifier

Syntax Std_ReturnType CanNm_GetNodeIdentifier (
NetworkHandleType nmChannelHandle,
uint8+ nmNodeIdPtr

)

Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

nmNodeldPtr Pointer where node identifier out of the most recently received

NM PDU shall be copied to

Return value

E_OK: No error

E_NOT_OK: Getting of the node identifier out of the most recently
received NM PDU has failed or is not configured for this network
handle.

Std_ReturnType

Description

Get node identifier out of the most recently received NM PDU.

Available via

CanNm.h

]

[SWS_CanNm_00132]

Upstream requirements: RS_Nm_02506, SRS_BSW 00483

[The service call CanNm_GetNodeIdentifier shall provide the node identifier out
of the most recently received Network Management PDU if CanNmNodeIdEnabled is
set to TRUE. |

[SWS_CanNm_00269] [Caveats of CanNm_GetNodeIdentifier: The CanNm
module is initialized correcily. |

AUTSSAR

8.3.12 CanNm GetLocalNodeIdentifier

[SWS_CanNm_00220] Definition of API function CanNm_GetLocalNodeldentifier

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS BSW 00459

[

Service Name CanNm_GetLocalNodeldentifier
SUﬂﬂaX Std_ReturnType CanNm_GetLocalNodeIdentifier (
NetworkHandleType nmChannelHandle,
uint8+ nmNodeIdPtr
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) nmChannelHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) nmNodeldPtr Pointer where node identifier of the local node shall be copied to
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Getting of the node identifier of the local node has
failed or is not configured for this network handle.
Description Get node identifier configured for the local node.
Available via CanNm.h

]

[SWS_CanNm_00133]
Upstream requirements: RS_Nm_02508, SRS _BSW 00483

[The service call CanNm_GetLocalNodeIdentifier shall provide the node identi-
fier configured for the local host node if CanNmNodeIdEnabled is set to TRUE. |

[SWS_CanNm_00271] [Caveats of CanNm_GetLocalNodeIdentifier: The
CanNm module is initialized correctly. |

8.3.13 CanNm RepeatMessageRequest

[SWS_CanNm_00221] Definition of API function CanNm_RepeatMessageRe-
quest

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW _
00484, SRS_BSW_00459

[

Service Name CanNm_RepeatMessageRequest

Syntax Std_ReturnType CanNm_RepeatMessageRequest (
NetworkHandleType nmChannelHandle
)

Service ID [hex] 0x08

\Y

AUTSSAR

A

Sync/Async

Asynchronous

Reentrancy

Reentrant (but not for the same NM-channel)

Parameters (in)

nmChannelHandle | Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

None

Return value

E_OK: No error
E_NOT_OK: Setting of Repeat Message Request Bit has failed or
is not configured for this network handle.

Std_ReturnType

Description

Set Repeat Message Request Bit for NM PDUs transmitted next on the bus.

Available via

CanNm.h

]

[SWS_CanNm_00273] [Caveats of CanNm_RepeatMessageRequest: The CanNm
module is initialized correcily. |

8.3.14 cCanNm GetPduData

[SWS_CanNm_00222] Definition of API function CanNm_GetPduData
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW _

[

00484, SRS_BSW_00459

Service Name

CanNm_GetPduData

Syntax Std_ReturnType CanNm_GetPduData (
NetworkHandleType nmChannelHandle,
uint 8+ nmPduDataPtr

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

nmPduDataPtr Pointer where NM PDU shall be copied to

Return value

E_OK: No error
E_NOT_OK: Getting of NM PDU Data has failed or is not
configured for this network handle.

Std_ReturnType

Description

Get the whole PDU data out of the most recently received NM PDU.

Available via

CanNm.h

]

[SWS_CanNm_00275] [Caveats of CanNm_GetPduData: The CanNm module is ini-

tialized correctly. |

AUTSSAR

[SWS_CanNm_00138]
Upstream requirements: SRS_BSW_00483

[The service call canNm_GetPduData shall provide whole PDU data (Node ID, Con-
trol Bit Vector and User Data) of the most recently received Network Management PDU
if CanNmNodeDetectionEnabled Or CanNmUserDataEnabled Or CanNmNodeI-

dEnabled is set to TRUE. |

8.3.15 CanNm_GetState

[SWS_CanNm_00223] Definition of API function CanNm_GetState
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_

[

00484, SRS_BSW_00459

Service Name

CanNm_GetState

Syntax Std_ReturnType CanNm_GetState (
NetworkHandleType nmChannelHandle,
Nm_StateTypex nmStatePtr,
Nm_ModeType* nmModePtr

)

Service ID [hex] 0x0b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) nmStatePtr Pointer where state of the network management shall be copied
to
nmModePtr Pointer where the mode of the network management shall be

copied to

Return value

E_OK: No error
E_NOT_OK: Getting of NM state has failed

Std_ReturnType

Description

Returns the state and the mode of the network management.

Available via

CanNm.h

]

[SWS_CanNm_00277] [Caveats of CanNm_GetState: The CanNm module is initial-

ized correctly. |

AUTSSAR

8.3.16 CanNm GetVersionInfo

[SWS_CanNm_00224] Definition of API function CanNm_GetVersioninfo
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00482, SRS_BSW_

[

00459

Service Name

CanNm_GetVersionInfo

Syntax void CanNm_GetVersionInfo (
Std_VersionInfoType* versioninfo
)
Service ID [hex] 0xf1
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module
Return value None
Description This service returns the version information of this module.
Available via CanNm.h

8.3.17 CanNm_RequestBusSynchronization

[SWS_CanNm_00226] Definition of API function CanNm_RequestBusSynchro-

nization
Upstream requirements: RS_Nm_02516, SRS_BSW_00310, SRS _BSW_00460, SRS BSW -

[

00461, SRS_BSW_00484

Service Name

CanNm_RequestBusSynchronization

Syntax Std_ReturnType CanNm_RequestBusSynchronization (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0xcO
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) nmChannelHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: No error

E_NOT_OK: Requesting of bus synchronization has failed

Description

Request bus synchronization.

Available via

CanNm.h

]

[SWS_CanNm_00279] [Caveats of CanNm_RequestBusSynchronization:

CanNm module is initialized correctly. |

The

AUTSSAR

[SWS_CanNm_00280]

Upstream requirements: RS_Nm_02516

[Configuration of CanNm_RequestBusSynchronization: Optional (Only available
if CanNmBusSynchronizationEnabled is set to TRUE) and cCanNmPassiveMod-
eEnabled is not defined. |

[SWS_CanNm_00130]

Upstream requirements: RS_Nm_02516

[The service call CanNm_RequestBusSynchronization shall trigger transmission
of a single Network Management PDU if CanNmPassiveModeEnabled (configuration
parameter) is not defined. |

Rationale: This service is typically used for supporting the NM gateway extensions.

[SWS_CanNm_00187]

Upstream requirements: RS_Nm_02516

[If CanNm_RequestBusSynchronization is called in Bus-Sleep Mode and Prepare
Bus-Sleep Mode the CanNm module shall not execute the service and shall return £_
NOT_OKX. |

8.3.18 CanNm_CheckRemoteSleepIndication

[SWS_CanNm_00227] Definition of API function CanNm_CheckRemoteSleeplin-
dication
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS _BSW 00459

Service Name CanNm_CheckRemoteSleeplindication
Syntax Std_ReturnType CanNm_CheckRemoteSleepIndication (
NetworkHandleType nmChannelHandle,
booleanx* nmRemoteSleepIndPtr
)
Service ID [hex] 0xd0
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) nmChannelHandle Identification of the NM-channel
Parameters (inout) None
Parameters (out) nmRemoteSleepindPtr Pointer where check result of remote sleep indication shall be
copied to
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Checking of remote sleep indication bits has failed
Description Check if remote sleep indication takes place or not.
Available via CanNm.h

AUTSSAR

[SWS_CanNm_00153]

Upstream requirements: RS_Nm_00052, RS_Nm_02509, SRS_BSW_00483
[Service call CanNm_CheckRemoteSleepIndication shall provide the information
about current status of Remote Sleep Indication (i.e. already detected or not). |

[SWS_CanNm_00281] [Caveats of CanNm_CheckRemoteSleepIndication: The
CanNm module is initialized correctly. |

[SWS_CanNm_00282] [Configuration of CanNm_CheckRemoteSleepIndication:
Optional (Only available if CanNmRemoteSleepIndEnabled is set to TRUE). |

8.3.19 CanNm_SetSleepReadyBit

[SWS_CanNm_00338] Definition of APl function CanNm_SetSleepReadyBit

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS _BSW_00459

[
Service Name CanNm_SetSleepReadyBit
Syntax Std_ReturnType CanNm_SetSleepReadyBit (
NetworkHandleType nmChannelHandle,
boolean nmSleepReadyBit
)
Service ID [hex] 0x17
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same NM-channel)
Parameters (in) nmChannelHandle Identification of the NM-channel
nmSleepReadyBit Value written to ReadySleep Bit in CBV
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: No error
E_NOT_OK: Writing of remote sleep indication bit has failed
Description Set the NM Coordinator Sleep Ready bit in the Control Bit Vector
Available via CanNm.h
]

[SWS_CanNm_00339] [Caveats of CanNm_SetSleepReadyBit: The CanNm mod-
ule is initialized correctly. |

[SWS_CanNm_00340] [Configuration of CanNm_SetSleepReadyBit: Optional
(Only available if canNmCoordinatorSyncSupport is set to TRUE). |

AUTSSAR

8.3.20 CanNm PnLearningRequest

[SWS_CanNm_91004] Definition of API function CanNm_PnLearningRequest

Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_
00484, SRS _BSW_00459

[

Service Name

CanNm_PnLearningRequest

Syntax Std_ReturnType CanNm_PnLearningRequest (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0xf2
Sync/Async Asynchronous
Reentrancy Reentrant (but not for the same NM-channel)

Parameters (in)

nmChannelHandle

Identification of the NM-channel

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType

E_OK: No error
E_NOT_OK: PN Learning Requesthas failed or is not configured
for this network handle.

Description

Set Repeat Message Request Bit and Partial Network Learning Bit for NM messages
transmitted next on the bus. This will force all nodes to enter the PNC Learning Phase. This is
needed for the optional Dynamic PNC-to-channel-mapping feature.

Available via

CanNm.h

]

[SWS_CanNm_00384] [If the function CanNm_PnLearningRequest is called in Pre-
pare Bus-Sleep Mode or Bus Sleep Mode no functionality shall be executed and E_
NOT_OK shall be returned. |

[SWS_CanNm_00385] [The function CanNm_PnLearningRequest shall only be
available if CanNmDynamicPncToChannelMappingSupport is set to TRUE. |

8.3.21 CanNm_ActivateTxPnShutdownMsg

[SWS_CanNm_91005] Definition of API function CanNm_ActivateTxPnShutdown

Msg

Upstream requirements: RS_Nm_02572, SRS_BSW_00310, SRS_BSW_00460, SRS BSW_-
00461, SRS_BSW_00484, SRS_BSW_00459

[

Service Name

CanNm_ActivateTxPnShutdownMsg

Syntax Std_ReturnType CanNm_ActivateTxPnShutdownMsg (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0xf4
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant for different nmChannelHandle. Non reentrant for the same nmChannelHandle.
Parameters (in) nmChannelHandle Identifier of the NM-Channel where the PNC shutdown process is
started.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK:Request has been accepted.
E_NOT_OK: Request has not been accepted.
Description NM indicate to activate the transmission of PN shutdown messages on the given NM-Channel.
This results in transmission of a NM-PDU with PNSR bit set to 1 (PN shutdown message).
Available via CanNm.h

]

[SWS_CanNm_00520]
Upstream requirements: RS_Nm_02572

[If CanNmSynchronizedPncShutdownEnabled is set to TRUE the CanNm imple-
mentation shall provide the APl CanNm_ActivateTxPnShutdownMsg. |

[SWS_CanNm_00521]
Upstream requirements: RS_Nm_02542, RS_Nm_02572

[If CanNmSynchronizedPncShutdownEnabled is set to TRUE and CanNm_Acti-
vateTxPnShutdownMsg is called with a valid NM-Channel (nmChannelHandle),
then the CanNm module shall consider the PN shutdown message transmission as
active on the given NM-channel, set PNSR bit in the CBV to 1 and return with E_OK. |

8.3.22 CanNm_DeactivateTxPnShutdownMsg

[SWS_CanNm_91006] Definition of API function CanNm_DeactivateTxPnShut-
downMsg

Upstream requirements: RS_Nm_02572, SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_-
00461, SRS_BSW 00484, SRS _BSW_00459

[

Service Name CanNm_Deactivate TxPnShutdownMsg
Syntax Std_ReturnType CanNm_DeactivateTxPnShutdownMsg (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0xf5
Sync/Async Synchronous
Reentrancy Reentrant for different nmChannelHandle. Non reentrant for the same nmChannelHandle.
Parameters (in) nmChannelHandle Identifier of the NM-Channel where the PNC shutdown process is
stopped.
Parameters (inout) None
Parameters (out) None

\Y%

AUTSSAR

A
Return value Std_ReturnType E_OK:Request has been accepted.
E_NOT_OK: Request has not been accepted.
Description NM indicate to deactive the transmission of PN shutdown messages on the given NM-Channel.
This result in transmission of a usual NM-PDUs with PNSR bit set to 0.
Available via CanNm.h

]

[SWS CanNm_00522]

Upstream requirements: RS_Nm_02572
[If CanNmSynchronizedPncShutdownEnabled is set to TRUE the CanNm imple-
mentation shall provide the APl CanNm_DeactivateTxPnShutdownMsg.]

[SWS_CanNm_00523]
Upstream requirements: RS_Nm_02572

[If CanNmSynchronizedPncShutdownEnabled is set to TRUE and CanNm_Deac-
tivateTxPnShutdownMsg is called with a valid NM-Channel (nmChannelHandle),
then the CanNm module shall consider the PN shutdown message transmission as
inactive on the given NM-channel, set PNSR bit in the CBV to 0 and return with £_0OK. |

8.4 Callback notifications

This is a list of functions provided for other modules.

8.4.1 CanNm_ TxConfirmation

[SWS_CanNm_00228] Definition of callback function CanNm_TxConfirmation
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00484, SRS_BSW_

00459
Service Name CanNm_TxConfirmation
Syntax void CanNm_TxConfirmation (
PduldType TxPduld,
Std_ReturnType result
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in) TxPduld ID of the PDU that has been transmitted.
result E_OK: The PDU was transmitted. E_NOT_OK: Transmission of
the PDU failed.
Parameters (inout) None

\Y

AUTSSAR

Parameters (out)

None

Return value

None

Description

The lower layer communication interface module confirms the transmission of a PDU, or the
failure to transmit a PDU.

Available via

CanNm.h

]

[SWS_CanNm_00283] [Caveats of CanNm_TxConfirmation:

» The call context is either on interrupt level (interrupt mode) or on task level (polling

mode). This callback service is re-entrant for multiple CAN controller usage.

» The CanNm module is initialized correctly.

]

[SWS_CanNm_00284] [Configuration of CanNm_TxConfirmation: Optional (Only
available if CanNmPassiveModeEnabled and CanNmImmediateTxconfEnabled
are set to FALSE). |

8.4.2 CanNm_ RxIndication

[SWS_CanNm_00231] Definition of callback function CanNm_RxIndication
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00484, SRS_BSW_

[

00485, SRS_BSW_00459

Service Name

CanNm_RxIndication

Syntax void CanNm_RxIndication (
PduIdType RxPduld,
const PdulnfoTypex PdulnfoPtr
)
Service ID [hex] 0x42
Sync/Async Synchronous
Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in)

RxPduld ID of the received PDU.

PdulnfoPtr Contains the length (SduLength) of the received PDU, a pointer
to a buffer (SduDataPtr) containing the PDU, and the MetaData

related to this PDU.

Parameters (inout) None
Parameters (out) None
Return value None

Description

Indication of a received PDU from a lower layer communication interface module.

Available via

CanNm.h

AUTSSAR

Note: The callback function CanNm_RxIndication called by the CAN Interface and
implemented by the CanNm module. It is called in case of a receive indication event of
the CAN Driver.

[SWS_CanNm_00285] [Caveats of CanNm_RxIndication:

« Until this service returns the CAN Interface will not access canSduPtr. The can
SduPtr is only valid and can be used by upper layers until the indication returns.
CAN Interface guarantees that the number of configured bytes for this canNm-
RxPduld is valid. The call context is either on interrupt level (interrupt mode) or
on task level (polling mode). This callback service is re-entrant for multiple CAN
controller usage.

» The CanNm module is initialized correctly.

8.4.3 CanNm ConfirmPnAvailability

[SWS_CanNm_00344] Definition of API function CanNm_ConfirmPnAvailability
Upstream requirements: SRS _BSW_00459

[

Service Name

CanNm_ConfirmPnAvailability

Syntax void CanNm_ConfirmPnAvailability (
NetworkHandleType nmChannelHandle
)
Service ID [hex] 0x16
Sync/Async Synchronous
Reentrancy Reentrant (but not for the same NM-channel)

Parameters (in)

nmChannelHandle Identification of the NM-channel

Parameters (inout) None
Parameters (out) None
Return value None

Description

Enables the PN filter functionality on the indicated NM channel. Availability: The APl is only
available if CanNmGilobalPnSupport is TRUE.

Available via

CanNm.h

]

[SWS_CanNm_00345] [Caveats of CanNm_ConfirmPnAvailability:

The

CanNm module is initialized correctly. |

[SWS_CanNm_00346] [Configuration of CanNm_ConfirmPnAvailability: Op-
tional (Only available if CanNmGlobalPnSupport is set to TRUE). |

AUTSSAR

8.4.4 CanNm_TriggerTransmit

[SWS_CanNm_91001] Definition of callback function CanNm_TriggerTransmit
Upstream requirements: SRS_BSW_00310, SRS_BSW_00460, SRS_BSW_00484, SRS_BSW_

00459
Service Name CanNm_TriggerTransmit
Syntax Std_ReturnType CanNm_TriggerTransmit (
PduldType TxPduld,
PduInfoTypex PdulnfoPtr
)

Service ID [hex] 0x41

Sync/Async Synchronous

Reentrancy Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in) TxPduld ID of the SDU that is requested to be transmitted.

Parameters (inout) PdulnfoPtr Contains a pointer to a buffer (SduDataPtr) to where the SDU

data shall be copied, and the available buffer size in SduLengh.
On return, the service will indicate the length of the copied SDU
data in SduLength.

Parameters (out) None

Return value Std_ReturnType E_OK: SDU has been copied and SduLength indicates the

number of copied bytes.

E_NOT_OK: No SDU data has been copied. PdulnfoPtr must not
be used since it may contain a NULL pointer or point to invalid
data.

Description Within this API, the upper layer module (called module) shall check whether the available data
fits into the buffer size reported by PdulnfoPtr->SduLength. If it fits, it shall copy its data into the
buffer provided by PdulnfoPtr->SduDataPtr and update the length of the actual copied data in
PdulnfoPtr->SduLength. If not, it returns E_NOT_OK without changing PdulnfoPtr.

Available via CanNm.h

]

Note: The PNC bit vector is not updated within the call of CanNm_TriggerTransmit
but upfront of each NM message transmission request (see [SWS_CanNm_00518]).
This ensures a common handling independent if the NM-PDU is configured for trig-
gered transmission or not in the lower layer (e.g. Canlf: CanIfTxPduTriggerTrans—
mit setto TRUE or FALSE).

[SWS_CanNm_00510]

Upstream requirements: RS_Nm_02503, SRS_BSW_00483
[If CanNm_TriggerTransmit is called and CanNmComUserDataSupport IS en-
abled, CanNm shall collect the NM User Data from the referenced NM I-PDU by calling

PduR_CanNmTriggerTransmit and copy the data to the user data range of the NM-
PDU. |

[SWS_CanNm_00351]
Upstream requirements: RS_Nm_02503, SRS_BSW_00483

[The function CanNm_TriggerTransmit shall copy the NM PDU data of the accord-
ing NM PDU requested by TxPduld |

AUTSSAR

Note: The function CanNm_TriggerTransmit might be called by the lower layer (e.g.
Canlf) in an interrupt context.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

8.5.1 CanNm MainFunction

[SWS_CanNm_00234] Definition of scheduled function CanNm_MainFunction
Upstream requirements: SRS_BSW_00459

Service Name CanNm_MainFunction
Syntax void CanNm_MainFunction (
void
)
Service ID [hex] 0x13
Description Main function of the CanNm which processes the algorithm describes in that document.
Available via SchM_CanNm.h

Note that as requirement [SWS_BSW_00037] specifies, CanNm_MainFunction will
return without executing any functionality if the module is not initialized.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

AUTSSAR

[SWS_CanNm_00324] Definition of mandatory interfaces required by module
CanNm |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

Nm_BusSleepMode Nm.h Notification that the network management has
entered Bus-Sleep Mode.

Nm_NetworkMode Nm.h Notification that the network management has
entered Network Mode.

Nm_NetworkStartIndication Nm.h Notification that a NM-message has been received

in the Bus-Sleep Mode, what indicates that some
nodes in the network have already entered the
Network Mode.

Nm_PrepareBusSleepMode Nm.h Notification that the network management has
entered Prepare Bus-Sleep Mode.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_CanNm_00325] Definition of optional interfaces requested by module Can
Nm |

API Function Header File Description

CanSM_TxTimeoutException CanSM_Canli.h This function shall notify the CanSM module, that
the CanNm has detected for the affected partial
CAN network a tx timeout exception, which shall be
recovered within the respective network state
machine of the CanSM module.

Det_ReportError Det.h Service to report development errors.
LSduR_CanNmTransmit (draft) LSduR_CanNm.h Requests transmission of a PDU.
Nm_CarWakeUplndication Nm.h This function is called by a <Bus>Nm to indicate
reception of a CWU request.
Nm_CoordReadyToSleepCancellation Nm.h Cancels an indication, when the NM Coordinator
Sleep Ready bit in the Control Bit Vector is set back
to 0.
Nm_CoordReadyToSleeplindication Nm.h Sets an indication, when the NM Coordinator Sleep
Ready bit in the Control Bit Vector is set
Nm_ForwardSynchronizedPnc Nm.h Notification that the network management has
Shutdown received a PN shutdown message on a particular

NM-channel. This is used to grant a nearly
synchronized PNC shutdown across the entire PN

topology.
Nm_PduRxIndication Nm.h Notification that a NM message has been received.

AUTSSAR

API Function

Header File

Description

Nm_ PncBitVectorRxIndication

Nm.h

Indication that a bus specific network management
has received a NM message on a particular
NM-channel that contain a PNC bit vector. This is
used to aggregate the external PNC requests. The
function evaluate if a relevant PNC request (PNC bit
set to '1’) is available in the given PNC bit vector. If a
relevant PNC request is available (PNC bit passes
the PNC bit vector filter), then the RelevantPnc
RequestDetectedPtr refers to a boolean with value
set to TRUE. Otherwise refer to booelan with value
set to FALSE. RelevantPncRequestDetectedPtr is
evaluated by the callee <Bus>Nm module to qualify
the further processing of the received NM-PDU.

Nm_PncBitVectorTxConfirmation

Nm.h

Function called by <Bus>Nms to confirm the state of
the transmission for the given PNC bit vector on the
given NM-Channel.

Nm_PncBitVectorTxIndication

Nm.h

Function called by <Bus>Nms to request the
aggregated internal PNC requests for transmission
within the Nm message.

Nm_RemoteSleepCancellation

Nm.h

Notification that the network management has
detected that not all other nodes on the network are
longer ready to enter Bus-Sleep Mode.

Nm_RemoteSleeplndication

Nm.h

Notification that the network management has
detected that all other nodes on the network are
ready to enter Bus-Sleep Mode.

Nm_RepeatMessagelndication

Nm.h

Service to indicate that an NM message with set
Repeat Message Re- quest Bit has been received.
This is needed for node detection and the Dynamic
PNC-to-channel-mapping feature.

Nm_StateChangeNotification

Nm.h

Notification that the state of the lower layer
<Bus>Nm has changed.

Nm_TxTimeoutException

Nm.h

Service to indicate that an attempt to send an NM
message failed.

PduR_CanNmRxIndication

PduR_CanNm.h

Indication of a received PDU from a lower layer
communication interface module.

PduR_CanNmTriggerTransmit

PduR_CanNm.h

Within this API, the upper layer module (called
module) shall check whether the available data fits
into the buffer size reported by PdulnfoPtr->Sdu
Length. If it fits, it shall copy its data into the buffer
provided by PdulnfoPtr->SduDataPtr and update the
length of the actual copied data in PdulnfoPtr->Sdu
Length. If not, it returns E_NOT_OK without
changing PdulnfoPtr.

PduR_CanNmTxConfirmation

PduR_CanNm.h

The lower layer communication interface module
confirms the transmission of a PDU, or the failure to
transmit a PDU.

8.6.3 Configurable interfaces

CanNm does not provide any configurable interfaces.

8.6.4 Job End Notification

CanNm does not provide any job end notifications.

AUTSSAR

8.7 Service Interfaces

CanNm does not provide any service interfaces.

AUTSSAR

9 Sequence diagrams

9.1 CanNm Transmission

«module» Message Cycle Message Timeout «module» «module»
CanNm Timer Timer LSduR Canlf
T T T T T
1 1 1 1 1
loop Repeated f T issi ! ! ! !
00p Repeatea tor every lransmission / | | | |
| | | | |
| TimerExpired() | | ! !
O 1 1 1
[l 1 1 1
LSduR_CanNmTransmit() | o | |
T T el Canlf_Transmit() |
| ! >
1 1
e] I A < T ‘LJ
| |
| | |
StartTimer(CANNM_MSG_CYCLE_TIME) | 1 1 |
1 1 1
] I I I
StartTimer(CANNM_MSG_TIMEOUT_TIME) 1 | |
T (] 1 1
L 1 T 1 1
I I I I LSduR_CanlfTxConfirmation() |
1 1 1
| CanNm_TxConfirmation(E_OK) | [
1 1
___________________ S
I I
StopTimer() ! |
L 1
T T T T T
Status: Proposed (CanNm 1.80), changes due
to CAN NM merge by UH9
Comments:
Figure 9.1: CanNm Transmission
-
9.2 CanNm Reception
«module» Message Cycle Message Timeout «module» «module»
CanNm Timer Timer LSduR Canlf

loop Repeated for every Reception /

<

CanNm_RxIndication(PduldType, PdulnfoType*)

T
|
1}
|
|
1
*

LSduR_CanlfRxIndication()

|
|
||‘

1
opt CANNM_BUS_LOAD_REDUCTION_ENABLED = ON/

StartTimer(CANNM_MSG_TIMEOUT_TIME)

StantTimer(CANNM_MSG_REDUCED_TIME)

CanNm;:Rxlndication()

Comments:

Status: Proposed (CanNm 1.8.0), changes due
to CAN NM merge by UH9

Figure 9.2: CanNm Reception

AUTSSAR

9.3 Nm Coordination

«module» «module» «module» «module» «module» «module»
ComM Nm FrNm CanNm FrSM CansSM

T

|

1 Network Mode
| Normal
|
|
|

Network Mode
Normal

Operation Operation

NmiNetworkReI:ease(StdiReturnType,

Netwo rldiandleﬂpeﬁ |
|

Nm_RemoteSleeplndication(NetworkHandleType)
T

I <
The NM Coordinator ECU t X
“ready to sleep” but cluster
to be coordinated is not.
Thus NM must not "release I-|-| I-|-|
bus communication” yet. | |
I |

Nm_RemoteSleeplindication(NetworkHandleType)

Repetition cycle
boundary()

Nmisyncﬁ\ronizationPoint(Networld—iandIeType?

|
|
|
| Start shutdown
I
|
|
|

T

|

|

I

|

|

|

I I

I I

| |

|

o |

I I

| |

| |

| |

I I

I I

| |

| |

| |

I I

timers() | |

—————————————— | |

| |

| | | |

T T T T

par synchronous FM shutdown / | Shutdown timer expires() | | |

FlexRa: ! ! ! !

[V] | | | |

I ! I I

| FrNm_RequestBusSynchronization(Std_RetumType, | |

| NetthJrleandleType) | |

: FrNm_ NetworkRelease (Std_RetumType, : :

1 Netwo&-iandleType) 1 1

1 | 1 B 1 1

| | Repetition cycle | |

| | boundary() | |

I I I I

I I I I

| | Network Mode 1 !

| | Ready Sleep | |

| | | |

I I I I I

! ! Last repetition ! !

! ! cycle finished() ! !

| Nm_BusSleepMode(NetworkHandleType) 4 | I

| | |

_ComM_Nm_BusSI:eepMode Bus Sleep Mode : :

NetworkHandleType)= | __|No |

| P PEEL Communication |

| FrSM_RequestComMode(ComM_ModeType,-- -~~~ "~ Py |

NetworkHandleType) T b I} |

| | I |

| | | |
"""""" e e e e e

I

I

|

|

| CanNm_RequestBusSynchronization(Std_RetumType,
| NetworkHandleType) i

: CanNm_NetworkRelease(Std_RetumnType,
1 NetworkHandleType)
I

I

|

|

|

I

|

! Timer expires

'
Nm_PrepareBusSleepMode(NetworkHandleType)
|

1
ComM_Nm_PrepareBusSleepMode

~ | Prepare Bus-Sleep Mode
NetworkHandleType)s————— |
I

D\
___________ Silent Communication

>
g

| | I
|CanSM_RequestComMode(Std_RetumType, NetworkHandleType,
IComM_ModeType) I I
I I
I

1
Nm_BusSleepMode(NetworkHandleType)

d
I

| Bus-Sleep Mode D\
____________ No Communication
- -

1
|CanSM_RequestComMode(Std_RetumType, NetworkHandleType,
IComM_ModeType)

Timer expires

I

|

|
ComM_Nm_BusSleepMode
NetworkHandleType)=

Figure 9.3: Nm Coordination

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanNm.

Chapter 10.3 specifies published information of the module CanNm.

10.1 How to read this chapter

For details refer to [4] Chapter 10.1 “Introduction to configuration specification”.

Additionally it is highly recommended to read the document Specification of ECU Con-
figuration [11]. This document describes the AUTOSAR configuration methodology
and the AUTOSAR configuration meta model in detail.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

The configuration parameters as defined in this chapter are used to create a data model
for an AUTOSAR tool chain. The realization in the code is implementation specific.

The configuration parameters are divided in parameters which are used to enable fea-
tures, parameters which affect all channels of the CanNm and parameters which affect
the respective channels of the CanNm.

10.2.1 CanNm

CanNm: EcucModuleDef CanNmGlobalConfig: CanNmChannelConfig:
+container EcucParamConfContainerDef +subContainer [EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1 upperMultiplicity = *

lowerMultiplicity = 1

Figure 10.1: CanNm top level configuration overview

AUTSSAR

[ECUC_CanNm_00087] Definition of EcucModuleDef CanNm |

Module Name

CanNm

Description

Configuration Parameters for the Can Nm module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Dependency

CanNmGilobalConfig

1

This container contains the global configuration parameter of the
CanNm. The parameters and the parameters of the sub
containers shall be mapped to the C data type CanNm_Config
Type (for parameters where it is possible) which is passed to the
CanNm_Init function.

AUTSSAR

10.2.2 CanNmGlobalConfig

CanNmGlobalConfig:

EcucParamConfContainerDef

CanNmDevErrorDetect: EcucBooleanParamDef

+p

D

defaultValue = false

+parameter

CanNmVersionInfoApi: EcucBooleanParamDef

defaultValue = false

+parameter

CanNmUserDataEnabled:
EcucBooleanParamDef

CanNmRemoteSleepindEnabled:

D

EcucBooleanParamDef

+parameter

CanNmBusSynchronizationEnabled:
EcucBooleanParamDef

CanNmGlobalPnSupport:

+p

EcucBooleanParamDef

defaultValue = false

+parameter

CanNmBusLoadReductionEnabled:
EcucBooleanParamDef

+parameter

CanNmImmediateRestartEnabled:
EcucBooleanParamDef

+parameter

CanNmPassiveModeEnabled:
EcucBooleanParamDef

+p

CanNmPduRxIndicationEnabled:

EcucBooleanParamDef

+p

CanNmStateChangelndEnabled:

D

EcucBooleanParamDef

+parameter

CanNmComControlEnabled:
EcucBooleanParamDef

+parameter

CanNmMainFunctionPeriod:

+parameter

CanNmImmediateTxconfEnabled:
EcucBooleanParamDef

+parameter

CanNmComUserDataSupport:

EcucBooleanParamDef

EcucFloatParamDef

max = INF
min =0

+parameter CanNmCoordinatorSyncSupport:

+subContainer

CanNmChannelConfig:

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

+parameter | CanNmDynamicPncToChannelMappingSupport:

EcucBooleanParamDef

EcucBooleanParamDef

Figure 10.2: Parameters of CanNm global configuration CanNmGlobalConfig

AUTSSAR

[ECUC_CanNm_00001] Definition of EcucParamConfContainerDef CanNmGilobal
Config |

Container Name CanNmGlobalConfig
Parent Container CanNm
Description This container contains the global configuration parameter of the CanNm. The

parameters and the parameters of the sub containers shall be mapped to the C data
type CanNm_ConfigType (for parameters where it is possible) which is passed to the
CanNm_Init function.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanNmBusLoadReductionEnabled 1 [ECUC_CanNm_00040]
CanNmBusSynchronizationEnabled 1 [ECUC_CanNm_00006]
CanNmComControlEnabled 1 [ECUC_CanNm_00013]
CanNmComUserDataSupport 1 [ECUC_CanNm_00044]
CanNmCoordinatorSyncSupport 1 [ECUC_CanNm_00080]
CanNmDevErrorDetect 1 [ECUC_CanNm_00002]
CanNmDynamicPncToChannelMappingSupport 1 [ECUC_CanNm_00094]
CanNmGlobalPnSupport 1 [ECUC_CanNm_00086]
CanNmImmediateRestartEnabled 1 [ECUC_CanNm_00009]
CanNmImmediateTxconfEnabled 1 [ECUC_CanNm_00041]
CanNmMainFunctionPeriod 1 [ECUC_CanNm_00032]
CanNmPassiveModeEnabled 1 [ECUC_CanNm_00010]
CanNmPduRxIndicationEnabled 1 [ECUC_CanNm_00011]
CanNmRemoteSleepindEnabled 1 [ECUC_CanNm_00055]
CanNmStateChangelndEnabled 1 [ECUC_CanNm_00012]
CanNmuUserDataEnabled 1 [ECUC_CanNm_00004]
CanNmVersionInfoApi 1 [ECUC_CanNm_00003]

Included Containers
Container Name Multiplicity Dependency

CanNmChannelConfig 1.7 This container contains the channel specific configuration
parameter of the CanNm.

]

[ECUC_CanNm_00040] Definition of EcucBooleanParamDef CanNmBusLoadRe-
ductionEnabled |

Parameter Name CanNmBusLoadReductionEnabled

Parent Container CanNmGilobalConfig

Description Pre-processor switch for enabling busload reduction support.
Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

V

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

CanNmBusLoadReductionEnabled = false if CanNmPassiveModeEnabled == true or
CanNmGlobalPnSupport == true

]

[ECUC_CanNm_00006] Definition of EcucBooleanParamDef CanNmBusSynchro-

nizationEnabled |

Parameter Name

CanNmBusSynchronizationEnabled

Parent Container

CanNmGilobalConfig

Description Pre-processor switch for enabling bus synchronization support. This feature is required
for gateway nodes only.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

calculationFormula = If (CanNmPassiveModeEnabled == False) then Equal(NmBus
SynchronizationEnabled) else Equal(False)

]

[ECUC_CanNm_00013] Definition of EcucBooleanParamDef CanNmComControl

Enabled |

Parameter Name

CanNmComControlEnabled

Parent Container

CanNmGiobalConfig

Description Pre-processor switch for enabling the Communication Control support.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

If (CanNmPassiveModeEnabled == False) then Equal(NmComControlEnabled) else
Equal(False)

AUTSSAR

[ECUC_CanNm_00044] Definition of EcucBooleanParamDef CanNmComUser
DataSupport |

Parameter Name CanNmComUserDataSupport

Parent Container CanNmGlobalConfig

Description Preprocessor switch for enabling the Tx path of Com User Data. Use case: Setting of
NMUserData via SWC.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency If CanNmPassiveModeEnabled == True OR if all bytes of the NM PDU are used for NM

System Bytes and for the PNC bit vector and no space is left for user data, then Can
NmComUserDataSupport shall be set to False.

]

[ECUC_CanNm_00080] Definition of EcucBooleanParamDef CanNmCoordinator
SyncSupport |

Parameter Name CanNmCoordinatorSyncSupport

Parent Container CanNmGilobalConfig

Description Enables/disables the coordinator synchronization support.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency CanNmCoordinatorSyncSupport has to be set to FALSE if CanNmPassiveMode

Enabled is set to TRUE.

]

[ECUC_CanNm_00002] Definition of EcucBooleanParamDef CanNmDevErrorDe-
tect |

Parameter Name CanNmDevErrorDetect
Parent Container CanNmGiobalConfig
Description Switches the development error detection and notification on or off.

« true: detection and notification is enabled.

« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_CanNm_00094] Definition of EcucBooleanParamDef CanNmDynamicPnc
ToChannelMappingSupport |

Parameter Name

CanNmDynamicPncToChannelMappingSupport

Parent Container

CanNmGilobalConfig

Description Precompile time switch to enable the dynamic PNC-to-channel-mapping handling.
False: Dynamic PNC-to-channel-mapping is disabled True: Dynamic
PNC-to-channel-mapping is enabled

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

CanNmDynamicPncToChannelMappingSupport == TRUE only allowed if CanNm
GlobalPnSupport == TRUE and CanNmPassiveModeEnabled == FALSE

]

[ECUC_CanNm_00086]
Support |

Definition of EcucBooleanParamDef CanNmGlobalPn

Parameter Name

CanNmGilobalPnSupport

Parent Container

CanNmGilobalConfig

Description Pre-processor switch for enabling partial networking support globally.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_CanNm_00009]
RestartEnabled |

Definition of EcucBooleanParamDef CanNmImmediate

Parameter Name

CanNmImmediateRestartEnabled

Parent Container

CanNmGilobalConfig

Description

Pre-processor switch for enabling the immediate transmission of a NM PDU upon
bus-communication request in Prepare-Bus-Sleep mode.

V

AUTSSAR

A
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

Must not be defined if CanNmPassiveModeEnabled==true

]

[ECUC_CanNm_00041]
TxconfEnabled |

Definition of EcucBooleanParamDef CanNmImmediate

Parameter Name

CanNmImmediateTxconfEnabled

Parent Container

CanNmGiobalConfig

Description Enable/disable the immediate tx confirmation.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

CanNmImmediateTxconfEnabled shall not be enabled if CanNmPasiveModeEnabled is
enabled.

]

[ECUC_CanNm_00032]
Period |

Definition of EcucFloatParambDef CanNmMainFunction

Parameter Name

CanNmMainFunctionPeriod

Parent Container

CanNmGilobalConfig

Description Call cycle in seconds of CanNm_MainFunction.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

AUTSSAR

[ECUC_CanNm_00010]
ModeEnabled |

Definition of EcucBooleanParamDef CanNmPassive

Parameter Name

CanNmPassiveModeEnabled

Parent Container CanNmGiobalConfig

Description Pre-processor switch for enabling support of the Passive Mode.
Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_CanNm_00011]
cationEnabled [

Definition of EcucBooleanParamDef CanNmPduRxIndi-

Parameter Name

CanNmPduRxIndicationEnabled

Parent Container

CanNmGlobalConfig

Description Pre-processor switch for enabling the PDU Rx Indication.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X

All Variants

Link time

Post-build time

Dependency

calculationFormula = Equal(NmPduRxIndicationEnabled)

]

[ECUC_CanNm_00055]
SleepindEnabled |

Definition of EcucBooleanParamDef CanNmRemote

Parameter Name

CanNmRemoteSleepindEnabled

Parent Container

CanNmGilobalConfig

Description Pre-processor switch for enabling remote sleep indication support. This feature is
required for gateway nodes only.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

AUTSSAR

A

Dependency

calculationFormula = If (CanNmPassiveModeEnabled == False) then Equal(NmRemote
SleepindEnabled) else Equal(False)

]

[ECUC_CanNm_00012] Definition of EcucBooleanParamDef CanNmStateChange

IndEnabled |

Parameter Name

CanNmStateChangelndEnabled

Parent Container

CanNmGilobalConfig

Description Pre-processor switch for enabling the CAN NM state change notification.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

calculationFormula = Equal(NmStateChangeldEnabled)

]

[ECUC_CanNm_00004] Definition of EcucBooleanParamDef CanNmUserDataEn-

abled [
Parameter Name CanNmUserDataEnabled
Parent Container CanNmGlobalConfig
Description Pre-processor switch for enabling user data support.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

CanNmUserDataEnabled shall be set to FALSE, if all bytes of the NM PDU are used for
NM System Bytes and for the PNC bit vector and no space is left for user data.
Otherwise the parameter shall be set according the following formular: calculation
Formula =Equal(NmUserDataEnabled).

]

[ECUC_CanNm_00003] Definition of EcucBooleanParamDef CanNmVersioninfo

Api |

Parameter Name

CanNmVersionInfoApi

Parent Container

CanNmGilobalConfig

Description

Pre-processor switch for enabling version info API support.

Multiplicity

1

V

AUTSSAR

A
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency
]

10.2.3 CanNmChannelConfig

[SWS_CanNm_00202] [The container CanNmChannelConfig specifies configura-
tion parameter that shall be located in a data structure of type CanNm_ConfigType. |

[SWS_CanNm_00203] [Runtime configurable parameters listed below shall be con-
figurable for each network management cluster separately. |

AUTSSAR

CanNmChannelConfig:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

[
+parameterCanNmBusLoadReductionActive:

EcucBooleanParamDef

CanNmCarWakeUpRxEnabled:
EcucBooleanParamDef

+parameter
* defaultvalue = false
| CanNmTimeoutTime:
+parameter EcucFloatParamDef
max = 65.535 CanNmCarWakeUpBitPosition:
min = 0.002 +parameter EcucintegerParamDef
> max =7
min =0
CanNmWaitBusSleepTime: lowerMultiplicity = 0
EcucFloatParamDef el =
+parar SeCUAREUR IS upperMultiplicity = 1
min =0.001
max = 65.535
lowerMultiplicity = 0
upperMultiplicity = 1
h AL +parameter | CanNmCarWakeUpBytePosition:
o EcucintegerParamDef
CanNmRepeatMessageTime: min =0
+parameter EcucFloatParamDef max=7
> — lowerMultiplicity = 0
max = 65.535 upperMultiplicity = 1
min =0
CanNmRemoteSleepindTime:
EcucFloatParamDef
+parameter—
min =0.001
max = 65.535
lowerMultiplicity = 0
upperMultiplicity = 1
CanNmMsgCycleTime:
+parameter EcucFloatParamDef
>
max = 65.535
min =0.001
———— o Hliteral CANNM_PDU_BYTE 1:
%N.ldPosmon. EcucEnumerationLiteral Def
EcucEnumerationParamDef —_——
+parameter +literal
‘— CANNM_PDU_OFF:
EcucEnumerationLiteral Def
+literal
CANNM_PDU_BYTE_O0:
EcucEnumerationLiteral Def
+literal
CanNmPduCbvPosition: CANNM_PDU_BYTE_1:
EcucEnumerationParamDef EcucEnumerationLiteral Def
+parameter)
P P Hliteral CANNM_PDU_BYTE_0:
EcucEnumerationLiteral Def
+literal
CANNM_PDU_OFF:
EcucEnumerationLiteral Def
CanNmCarWakeUpFilterNodeld:
EcuclntegerParamDef
+parameter
@—— max=255
min =0
lowerMultiplicity = 0 CanNmCarWakeUpFilterEnabled:
upperMultiplicity = 1 EcucBooleanParamDef
DS *+parameter defaultValue = false
lowerMultiplicity = 0
upperMultiplicity = 1
CanNmMsgCycleOffset:
+parameter EcucFloatParamDef
max = 65.535
min =0

Figure 10.3: CanNm Channel Configuration CanNmChannelConfig Overview (1)

AUTSSAR

CanNmChannelConfig: CanNmImmediateNmTransmissions:
EcucParamConfContainerDef +parameter EcucIntegerParamDef CanNmImmediateNmCycleTime:
o EcucFloatParamDef
upperMultiplicity = * min =0
lowerMultiplicity = 1 max = 255 min = 0.0010
+parameter max = 65.535
> lowerMultiplicity = 0
upperMultiplicity = 1
CanNmTxPdu:

+subContainer

EcucParamConfContainerDef
+reference | canNmTxPduRef: EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = 1

CanNmRxPdu:
+subContainel EcucParamConfContainerDef ference | SANNMRXPduRef: EcucReferenceDef
P o Fa—
lowerMultiplicity = 1 |0W€rMU|1I'p|IlCI‘ty =1
upperMultiplicity = * upperMultiplicity = 1

+parameter CanNmNodeDetectionEnabled:
EcucBooleanParamDef

CanNmStaylnPbsEnabled:

+parameter EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1

[
+parameter CanNmRepeatMsgindEnabled:
EcucBooleanParamDef

ComMChannel:
reference CanNmComMNetworkHandleRef: +destination EcucParamConfContainerDef
Ecuchieterence et lowerMultiplicity = 1
requiresSymbolicNameValue = true upperMultiplicity = 256
(from Com\M))
+parameter CanNmNodeldEnabled:

CanNmSynchronizedPncShutdownEnabled:
EcucBooleanParamDef

EcucBooleanParamDef

+parameter defaultValue = false
g lowerMultiplicity = 0
upperMultiplicity = 1

CanNmDynamicPncToChannelMappingEnabled:
+parameter EcucBooleanParamDef
defaultValue = false
lowerMultiplicity = 0 CanNmNodeld:
upperMultiplicity = 1 EcuclntegerParamDef
+parameter max = 255
> | min =0
CanNmMsgReducedTime:
+parameter EcucFloatParamDef
max = 65.535 CanNmActiveWakeupBitEnabled:
min = 0.001 EcucBooleanParamDef
+parameter defaultValue = false
o lowerMultiplicity = 0
upperMultiplicity = 1
CanNmMsgTimeoutTime:
EcucFloatParamDef
+parameter ——
min = 0.001
max = 65.535
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.4: CanNm Channel Configuration CanNmChannelConfig Overview (2)

AUTSSAR

CanNmChannelConfig: CanNmTxPdu: ce EcUcHSTerencenet +destination Pdu:
EcucParamConfContainerDef EcucParamConfContainerDef [lowerMultiplicity = 1 EcucParamConfContainerDef|
o N upperMultiplicity = 1
Illppel”\’;/'lll?_lﬁ[lc_':y =1 ubContainer lowerMultiplicity = 0 lowerMultiplicity = 0
owerMultiplicity = fralfstiey = upperMultiplicity = *
Pat—| ORI o § CanNmTxConfirmationPduld: 2 ARy
+parameter EcucintegerParamDef
min =0
max = 65535

withAuto = true
symbolicNameValue = true

CanNmRxPdu: CanNmRxPduRef: o
EcucParamConfContainerDef | g *®""®"®| EcucReferenceDet +destination
bContai lowerMultiplicity = 1 lowerMultiplicity = 1
+subbontainer upperMultiplicity = * upperMultiplicity = 1
+parameter CanNmRxPduld:
EcucIntegerParamDef
min =0
max = 65535
withAuto = true
symbolicNameValue = true
CanNmUserDataT xPdu: -
EcucParamConfContainerDef ¢ CanNmTxUserDataPduRef: | *4estination
trelerence EcucReferenceDef

lowerMultiplicity = 0

+subContainer upperMultiplicity = 1

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter CanNmTxUserDataPduld:
EcucintegerParamDef
min =0

max = 65535

withAuto = true
symbolicNameValue = true

+reference | GanNmComMNetworkHandleRef: L ComMChannel:
EcucReferenceDef +destination | EcycparamConfContainerDef
requiresSymbolicNameValue = true lowerMultiplicity = 1

upperMultiplicity = 256

Figure 10.5: CanNm Channel Configuration CanNmChannelConfig Overview (3) —

[ECUC_CanNm_00017] Definition of EcucParamConfContainerDef CanNmChan-
nelConfig |

Container Name CanNmChannelConfig

Parent Container CanNmGlobalConfig

Description This container contains the channel specific configuration parameter of the CanNm.
Multiplicity 1.*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE,
VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Link time -
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanNmActiveWakeupBitEnabled 0..1 [ECUC_CanNm_00084]
CanNmAIINmMessagesKeepAwake 0..1 [ECUC_CanNm_00068]
CanNmBusLoadReductionActive 1 [ECUC_CanNm_00042]

\Y%

AUTSSAR

JAN

Included Parameters

Parameter Name Multiplicity ECUC ID
CanNmCarWakeUpBitPosition 0..1 [ECUC_CanNm_00075]
CanNmCarWakeUpBytePosition 0..1 [ECUC_CanNm_00076]
CanNmCarWakeUpFilterEnabled 0..1 [ECUC_CanNm_00077]
CanNmCarWakeUpFilterNodeld 0..1 [ECUC_CanNm_00078]
CanNmCarWakeUpRxEnabled 1 [ECUC_CanNm_00074]
CanNmDynamicPncToChannelMappingEnabled 0..1 [ECUC_CanNm_00093]
CanNmImmediateNmCycleTime 0..1 [ECUC_CanNm_00057]
CanNmImmediateNmTransmissions 1 [ECUC_CanNm_00056]
CanNmMsgCycleOffset 1 [ECUC_CanNm_00029]
CanNmMsgCycleTime 1 [ECUC_CanNm_00028]
CanNmMsgReducedTime 1 [ECUC_CanNm_00043]

CanNmMsgTimeoutTime

K [ECUC_CanNm_00030]

CanNmNodeDetectionEnabled

[ECUC_CanNm_00088]

alal a2l o

CanNmNodeld [ECUC_CanNm_00031]
CanNmNodeldEnabled [ECUC_CanNm_00090]
CanNmPduCbvPosition [ECUC_CanNm_00026]
CanNmPduNidPosition 1 [ECUC_CanNm_00025]
CanNmPnEnabled 0..1 [ECUC_CanNm_00066]
CanNmPnHandleMultipleNetworkRequests 0..1 [ECUC_CanNm_00073]
CanNmRemoteSleepIndTime 0..1 [ECUC_CanNm_00023]
CanNmRepeatMessageTime 1 [ECUC_CanNm_00022]

CanNmRepeatMsglndEnabled

—_

[ECUC_CanNm_00089]

CanNmStayInPbsEnabled 1 [ECUC_CanNm_00092]

CanNmSynchronizedPncShutdownEnabled 0..1 [ECUC_CanNm_00097]

CanNmTimeoutTime 1 [ECUC_CanNm_00020]

CanNmWaitBusSleepTime 0..1 [ECUC_CanNm_00021]

CanNmComMNetworkHandleRef 1 [ECUC_CanNm_00018]

Included Containers

Container Name Multiplicity Dependency

CanNmRxPdu 1.* This container is used to configure the Rx PDU properties that
are used for the CanNm Channel.

CanNmTxPdu 0..1 This container contains the CanNmTxConfirmationPduld and the
CanNmTxPduRef.

CanNmUserDataTxPdu 0..1 This optional container is used to configure the UserNm PDU.
This container is only available if CanNmComUserDataSupport
is enabled.

AUTSSAR

[ECUC_CanNm_00084]
WakeupBitEnabled |

Definition of EcucBooleanParamDef CanNmActive

Parameter Name

CanNmActiveWakeupBitEnabled

Parent Container

CanNmChannelConfig

Description Enables/Disables the handling of the Active Wakeup Bit in the CanNm module.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

This parameter is only valid if CanNmPassiveModeEnabled is False.

]

[ECUC_CanNm_00068]
sagesKeepAwake |

Definition of EcucBooleanParamDef CanNmAIINmMes-

Parameter Name

CanNmAIINmMessagesKeepAwake

Parent Container

CanNmChannelConfig

Description Specifies if CanNm drops irrelevant NM PDUs.
false: Only NM PDUs with a PNI bit = true and containing a PN request for this ECU
triggers the standard RX indication handling true: Every NM PDU triggers the standard
RX indication handling

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

only valid if NmPnEiraCalcEnabled == true or NmPnEraCalcEnabled == true

AUTSSAR

[ECUC_CanNm_00042] Definition of EcucBooleanParamDef CanNmBusLoadRe-

ductionActive |

Parameter Name

CanNmBusLoadReductionActive

Parent Container CanNmChannelConfig

Description This parameter defines if bus load reduction for the respective NM channel is active or
not.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmBusLoadReductionActive = false if CanNmBusLoadReductionEnabled == false

]

[ECUC_CanNm_00075]
BitPosition |

Definition of EcuclntegerParamDef CanNmCarWakeUp

Parameter Name

CanNmCarWakeUpBitPosition

Parent Container CanNmChannelConfig

Description Specifies the Bit position of the CWU within the NM PDU.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..7

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

only available if CanNmCarWakeUpRxEnabled == TRUE

]

[ECUC_CanNm_00076]
BytePosition |

Definition of EcuclntegerParamDef CanNmCarWakeUp

Parameter Name

CanNmCarWakeUpBytePosition

Parent Container CanNmChannelConfig

Description Specifies the Byte position of the CWU within the NM PDU.
Multiplicity 0..1

Type EcuclntegerParamDef

V

AUTSSAR

A
Range 0.7 |
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Post-build time -
Dependency only available if CanNmCarWakeUpRxEnabled == TRUE CanNmCarWakeupByte
Position >= number of enabled system bytes (CBV, NID)

]

[ECUC_CanNm_00077] Definition of EcucBooleanParamDef CanNmCarWakeUp

FilterEnabled |

Parameter Name

CanNmCarWakeUpFilterEnabled

Parent Container

CanNmChannelConfig

Description If CWU filtering is supported, only the CWU bit within the NM PDU with source node
identifier CanNmCarWakeUpFilterNodeld is considered as CWU request. FALSE -
CWU filtering is not supported TRUE - CWU filtering is supported

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

only available if CanNmCarWakeUpRxEnabled == TRUE

]

[ECUC_CanNm_00078]
FilterNodeld |

Definition of EcuclntegerParamDef CanNmCarWakeUp

Parameter Name

CanNmCarWakeUpFilterNodeld

Parent Container

CanNmChannelConfig

Description

Source node identifier for CWU filtering. If CWU filtering is supported, only the CWU bit
within the NM PDU with source node identifier CanNmCarWakeUpFilterNodeld is
considered as CWU request.

Y%

AUTSSAR

A
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0. 255 |
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Post-build time -

Dependency

only available if CanNmCarWakeUpFilterEnabled == TRUE

]

[ECUC_CanNm_00074] Definition of EcucBooleanParamDef CanNmCarWakeUp

RxEnabled |

Parameter Name

CanNmCarWakeUpRxEnabled

Parent Container

CanNmChannelConfig

Description Enables or disables support of CarWakeUp bit evaluation in received NM PDUs.
FALSE - CarWakeUp not supported TRUE - CarWakeUp supported

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

]

[ECUC_CanNm_00093] Definition of EcucBooleanParamDef CanNmDynamicPnc

ToChannelMappingEnabled |

Parameter Name

CanNmDynamicPncToChannelMappingEnabled

Parent Container

CanNmChannelConfig

Description Channel-specific parameter to enable the dynamic PNC-to-channel-mapping feature.
False: Dynamic PNC-to-channel-mapping is disabled True: Dynamic
PNC-to-channel-mapping is enabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Y%

AUTSSAR

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

Shall only be TRUE if CanNmDynamicPncToChannelMappingSupport is TRUE

]

[ECUC_CanNm_00057]
CycleTime |

Definition of EcucFloatParamDef CanNmimmediateNm

Parameter Name

CanNmImmediateNmCycleTime

Parent Container

CanNmChannelConfig

Description Defines the immediate NM PDU cycle time in seconds which is used for CanNm
ImmediateNmTransmissions NM PDU transmissions.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 65.535]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

This parameter is only valid if CanNmImmediateNmTransmissions is greater one.

]

[ECUC_CanNm_00056] Definition of EcucintegerParamDef CanNmimmediateNm

Transmissions |

Parameter Name

CanNmImmediateNmTransmissions

Parent Container

CanNmChannelConfig

Description Defines the number of immediate NM PDUs which shall be transmitted. If the value is
zero no immediate NM PDUs are transmitted. The cycle time of immeditate NM PDUs
is defined by CanNmImmediateNmCycleTime.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTSSAR

A

Dependency If CanNmImmediateRestartEnabled = true then CanNmImmediateNmTransmissions =
0 If CanNmPnHandleMultipleNetworkRequests == True" then "CanNmImmediateNm
Transmissions > 0

]

[ECUC_CanNm_00029] Definition of EcucFloatParamDef CanNmMsgCycleOffset
[

Parameter Name CanNmMsgCycleOffset

Parent Container CanNmChannelConfig

Description Time offset in the periodic transmission node. It determines the start delay of the
transmission. Specified in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency Parameter value < CanNmMsgCycleTime This parameter is only valid if CanNm
PassiveModeEnabled is False.

]

[ECUC_CanNm_00028] Definition of EcucFloatParamDef CanNmMsgCycleTime
[

Parameter Name CanNmMsgCycleTime
Parent Container CanNmChannelConfig
Description Period of a NM PDU in seconds. It determines the periodic rate in the "periodic

transmission mode with bus load reduction" and is the basis for transmit scheduling in
the "periodic transmission mode without bus load reduction".

Multiplicity 1

Type EcucFloatParamDef

Range [0.001 .. 65.535]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -
Dependency This parameter is only valid if CanNmPassiveModeEnabled is False.

AUTSSAR

[ECUC_CanNm_00043]
Time |

Definition of EcucFloatParamDef CanNmMsgReduced

Parameter Name

CanNmMsgReducedTime

Parent Container

CanNmChannelConfig

Description Node specific bus cycle time in the periodic transmission mode with bus load reduction.
Specified in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [0.001 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

0,5 * CanNmMsgCycleTime <= CanNmMsgReducedTime < CanNmMsgCycleTime
This parameter is only valid if CanNmBusLoadReductionEnabled == True and CanNm
BusLoadReductionActive == True and CanNmPassiveModeEnabled == False
Otherwise this parameter is notused.

]

[ECUC_CanNm_00030]
Time |

Definition of EcucFloatParamDef CanNmMsgTimeout

Parameter Name

CanNmMsgTimeoutTime

Parent Container

CanNmChannelConfig

Description When using Partial Network and this timeout is defined then CanNm monitors that a
NM-PDU is transmitted successfully within this Transmission Timeout Time and
provides an error notification otherwise.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 65.535]

Default value

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmMsgTimeoutTime < CanNmMsgCycleTime This parameter is only valid if Can
NmPassiveModeEnabled and CanNmImmediateTxConfEnabled are set to FALSE and
CanNmPnEnabled is set to TRUE.

AUTSSAR

[ECUC_CanNm_00088] Definition of EcucBooleanParamDef CanNmNodeDetec-

tionEnabled |

Parameter Name

CanNmNodeDetectionEnabled

Parent Container CanNmChannelConfig

Description Precompile time switch to enable the node detection feature.
Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

Value Configuration Class

false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time

Dependency

Only valid if CanNmNodeldEnabled is set to TRUE If CanNmPassiveModeEnabled ==
True then CanNmNodeDetection = False

]

[ECUC_CanNm_00031] Definition of EcuclintegerParamDef CanNmNodeld |

Parameter Name CanNmNodeld

Parent Container CanNmChannelConfig
Description Node identifier of local node.
Multiplicity 1

Type EcuclntegerParamDef
Range 0..255

Default value

Post-Build Variant Value

Value Configuration Class

true

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

This parameter is only valid if CanNmNodeldEnabled == True

]

[ECUC_CanNm_00090]
abled |

Definition of EcucBooleanParamDef CanNmNodeldEn-

Parameter Name

CanNmNodeldEnabled

Parent Container

CanNmChannelConfig

Description Pre-processor switch for enabling the source node identifier.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

Value Configuration Class

false
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time

AUTSSAR

A

‘ Dependency

calculationFormula = Equal(NmNodeldEnabled)

]

[ECUC_CanNm_00026] Definition of EcucEnumerationParamDef CanNmPduCbv

Position |
Parameter Name CanNmPduCbvPosition
Parent Container CanNmChannelConfig

Description Defines the position of the control bit vector within the NM PDU.
The value of the parameter represents the location of the Control Bit Vector in the NM
PDU (CanNmPduByte0 means byte 0, CanNmPduByte1 means byte 1, CanNmPduOff
means source node identifier is not part of the NM PDU)
ImplementationType: CanNm_PduPositionType

Multiplicity 1

Type EcucEnumerationParamDef

Range CANNM_PDU_BYTE_O Byte 0 is used

CANNM_PDU_BYTE_1 Byte 1 is used

CANNM_PDU_OFF Control Bit Vector is not used

Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmPduNidPosition; If CanNmNodeDetectionEnabled == true then CanNmPduCbv
Position = CANNM_PDU_OFF if(CanNmPduCbvPosition != CANNM_PDU_OFF &&
CanNmPduNidPosition != CANNM_PDU_OFF) then CanNmPduCbvPosition = CanNm
PduNidPosition if(CanNmPduCbvPosition |= CANNM_PDU_OFF && CanNmPduNid
Position == CANNM_PDU_OFF) then CanNmPduChbvPosition = CANNM_PDU_BYTEOQ

]

[ECUC_CanNm_00025] Definition of EcucEnumerationParambDef CanNmPduNid

Position |
Parameter Name CanNmPduNidPosition
Parent Container CanNmChannelConfig

Description Defines the position of the source node identifier within the NM PDU.
The value of the parameter represents the location of the source node identifier in the
NM PDU (CANNM_PDU_BYTE_0 means byte 0, CANNM_PDU_BYTE_1 means byte
1, CANNM_PDU_OFF means source node identifier is not part of the NM PDU)
ImplementationType: CanNm_PduPositionType

Multiplicity 1

Type EcucEnumerationParamDef

Range CANNM_PDU_BYTE_0 Byte 0 is used

CANNM_PDU_BYTE_1 Byte 1 is used

CANNM_PDU_OFF Node Identification is not used

Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTSSAR

A

Dependency

CanNmPduCbvPosition; If CanNmNodeldEnabled == true then CanNmPduNidPosition
= CANNM_PDU_OFF if(CanNmPduNidPosition = CANNM_PDU_OFF && CanNm
PduCbvPosition |= CANNM_PDU_OFF) then CanNmPduNidPosition != CanNmPdu
CbvPosition if(CanNmPduNidPosition |= CANNM_PDU_OFF && CanNmPduCbv
Position == CANNM_PDU_OFF) then CanNmPduNidPosition = CANNM_PDU_BYTEOQ

]

[ECUC_CanNm_00066] Definition of EcucBooleanParamDef CanNmPnEnabled |

Parameter Name

CanNmPnEnabled

Parent Container

CanNmChannelConfig

Description Enables or disables support of partial networking.
false: Partial networking Range not supported true: Partial networking supported
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

only valid if CanNmGilobalPnSupport == true

]

[ECUC_CanNm_00073] Definition of EcucBooleanParamDef CanNmPnHandle
MultipleNetworkRequests |

Parameter Name

CanNmPnHandleMultipleNetworkRequests

Parent Container

CanNmChannelConfig

Description Specifies if CanNm performs an additional transition from Network Mode to Repeat
Message State (true) or not (false).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

only valid if CanNmGlobalPnSupport == true

AUTSSAR

[ECUC_CanNm_00023]

IndTime |

Definition of EcucFloatParamDef CanNmRemoteSleep

Parameter Name

CanNmRemoteSleeplndTime

Parent Container

CanNmChannelConfig

Description Timeout for Remote Sleep Indication. It defines the time in seconds how long it shall
take to recognize that all other nodes are ready to sleep.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 65.535]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmRemoteSleeplndTime >= CanNmMsgCycleTime CanNmRemoteSleepindTime
is only required if CanNmRemoteSleeplndEnabled = true

]

[ECUC_CanNm_00022] Definition of EcucFloatParamDef CanNmRepeatMessage

Time |

Parameter Name

CanNmRepeatMessageTime

Parent Container

CanNmChannelConfig

Description Timeout for Repeat Message State. It defines the time in seconds how long the NM
shall stay in the Repeat Message State.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmRepeatMessageTime = n * CanNmMsgCycleTime; CanNmRepeatMessage
Time > CanNmImmediateNmTransmissions * CanNmImmediateNmCycleTime
Typically it should be equal to: n * CanNmMsgCycleTime, where n denotes the number
of NM PDUs that are normally sent in the Repeat Message State. The value of n
decremented by one determines the amount of lost NM PDUs that can be tolerated by
the node detection procedure. The value 0 denotes that no Repeat Message State is
configured. It means that Repeat Message State is transient what implicates that it is
left immediately after entrance and in result no start-up stability is guaranteed and no
node detection procedure is possible.

AUTSSAR

[ECUC_CanNm_00089] Definition of EcucBooleanParamDef CanNmRepeatMsg

IndEnabled |

Parameter Name

CanNmRepeatMsglIndEnabled

Parent Container

CanNmChannelConfig

Description Enable/disable the notification that a RepeatMessageRequest bit has been received.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmRepeatMsglndEnabled = FALSE if CanNmPassiveModeEnabled == TRUE or
(CanNmNodeDetectionEnabled == FALSE && CanNmDynamicPncToChannelMapping
Enabled == FALSE). CanNmRepeatMsgIndEnabled = TRUE if CanNmDynamicPncTo
ChannelMappingEnabled == TRUE.

]

[ECUC_CanNm_00092]
Enabled |

Definition of EcucBooleanParamDef CanNmStaylnPbs

Parameter Name

CanNmStayInPbsEnabled

Parent Container

CanNmChannelConfig

Description If this parameter is disabled Prepare Bus-Sleep Mode is left after CanNmWaitBusSleep
Time. If this parameter is enabled Prepare Bus-Sleep Mode can only be left if ECU is
powered off or any restart reason applies.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

]
[ECUC_CanNm_00097]

Definition of EcucBooleanParamDef CanNmSynchro-

nizedPncShutdownEnabled |

Parameter Name

CanNmSynchronizedPncShutdownEnabled

Parent Container

CanNmChannelConfig

Description

Specifies if CanNm handle PN shutdown messages to support a synchronized PNC
shutdown across a PN topology. This is only used for ECUs in the role of a top-level
PNC coordinator or intermediate PNC coordinator. Thus, the PNC gateway
functionality is enabled and therefore ERA calculation is used.

FALSE: synchronized PNC shutdown is disabled

TRUE: synchronized PNC shutdown is enabled

Multiplicity

0..1

Y%

AUTSSAR

A

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

Only available if CanNmPnEnabled == TRUE and NmPnEraCalcEnabled == TRUE.

]

[ECUC_CanNm_00020] Definition of EcucFloatParamDef CanNmTimeoutTime |

Parameter Name

CanNmTimeoutTime

Parent Container CanNmChannelConfig

Description If NM is in Ready Sleep State it denotes the time in seconds how long after the last NM
PDU transmission or reception state transition into the Prepare Bus-Sleep Mode is
initiated. If NM is in Repeat Message or Normal Operation state and no NM PDU can
be transmitted or received within this time, a run-time error is raised.

Multiplicity 1

Type EcucFloatParamDef

Range [0.002 .. 65.535]

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

CanNmTimeoutTime > CanNmMsgCycleTime It shall be equal for all nodes in the
cluster. It shall be greater than CanNmMsgCycleTime.

]

[ECUC_CanNm_00021]
Time |

Definition of EcucFloatParamDef CanNmWaitBusSleep

Parameter Name CanNmWaitBusSleepTime

Parent Container CanNmChannelConfig

Description Timeout for bus calm down phase. It denotes the time in seconds how long the NM
shall stay in the Prepare Bus-Sleep Mode before transition into Bus-Sleep Mode shall
take place.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 65.535] \

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time ‘ X ‘ VARIANT-PRE-COMPILE

\Y%

AUTSSAR

Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time —

Dependency

It shall be equal for all nodes in the cluster. It shall be long enough to make all Tx-buffer
empty. In case CanNmStaylnPbsEnabled is disabled this parameter shall be
mandatory.

]

[ECUC_CanNm_00018]
HandleRef |

Definition of EcucReferenceDef CanNmComMNetwork

Parameter Name

CanNmComMNetworkHandleRef

Parent Container CanNmChannelConfig

Description This reference points to the unique channel defined by the ComMChannel and
provides access to the unique channel index value in ComMChannelld.

Multiplicity 1

Type Symbolic name reference to ComMChannel

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Dependency

10.2.4 CanNmRxPdu

[ECUC_CanNm_00038] Definition of EcucParamConfContainerDef CanNmRxPdu

[

Container Name CanNmRxPdu

Parent Container CanNmChannelConfig

Description This container is used to configure the Rx PDU properties that are used for the CanNm
Channel.

Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanNmRxPduld 1 [ECUC_CanNm_00054]
CanNmRxPduRef 1 [ECUC_CanNm_00039]

No Included Containers

AUTSSAR

[ECUC_CanNm_00054] Definition of EcucintegerParambDef CanNmRxPduld |

Parameter Name

CanNmRxPduld

Parent Container

CanNmRxPdu

Description This parameter defines the Rx PDU ID of the Canlf L-PDU range that is associated with
this CanNm channel.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_CanNm_00039] Definition of EcucReferenceDef CanNmRxPduRef |

Parameter Name

CanNmRxPduRef

Parent Container

CanNmRxPdu

Description Reference to the global PDU that is used by this CanNm channel.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.5 CanNmTxPdu

[ECUC_CanNm_00036] Definition of EcucParamConfContainerDef CanNmTxPdu

[

Container Name

CanNmTxPdu

Parent Container

CanNmChannelConfig

Description

This container contains the CanNmTxConfirmationPduld and the CanNmTxPduRef.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanNmTxConfirmationPduld 1 [ECUC_CanNm_00048]
CanNmTxPduRef 1 [ECUC_CanNm_00037]

No Included Containers

AUTSSAR

]

[ECUC_CanNm_00048] Definition of EcucintegerParamDef CanNmTxConfirma-

tionPduld |

Parameter Name

CanNmTxConfirmationPduld

Parent Container

CanNmTxPdu

Description Handle Id to be used by the Lower Layer to confirm the transmission of the CanNmTx
Pdu to the LowerLayer.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

withAuto = true

]

[ECUC_CanNm_00037] Definition of EcucReferenceDef CanNmTxPduRef |

Parameter Name

CanNmTxPduRef

Parent Container

CanNmTxPdu

Description The reference to the common PDU structure.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.6 CanNmUserDataTxPdu

[ECUC_CanNm_00045]

DataTxPdu |

Definition of EcucParamConfContainerDef CanNmUser

Container Name

CanNmUserDataTxPdu

Parent Container

CanNmChannelConfig

Description This optional container is used to configure the UserNm PDU. This container is only
available if CanNmComUserDataSupport is enabled.
Multiplicity 0..1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name

Multiplicity

ECUC ID

CanNmTxUserDataPduld

1

[ECUC_CanNm_00047]

CanNmTxUserDataPduRef

1

[ECUC_CanNm_00046]

| No Included Containers

]

[ECUC_CanNm_00047]
Pduld |

Definition of EcuclntegerParamDef CanNmTxUserData

Parameter Name

CanNmTxUserDataPduld

Parent Container

CanNmUserDataTxPdu

Description This parameter defines the Handle ID of the NM User Data I-PDU.
Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

withAuto = true

]

[ECUC_CanNm_00046]
Ref |

Definition of EcucReferenceDef CanNmTxUserDataPdu

Parameter Name

CanNmTxUserDataPduRef

Parent Container CanNmUserDataTxPdu

Description Reference to the NM User Data I-PDU in the global PDU collection.
Multiplicity 1

Type Reference to Pdu

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

10.3 Published Information

For details refer to [4] Chapter 10.3 “Published Information”.

AUTSSAR

A Examples

A.1 Example of periodic transmission mode with bus load reduc-
tion

Three nodes are connected to the bus and are in “normal operation” state. The nodes
(Node 1 and Node 2) with the smallest CanNmMsgReducedTime are sending alternat-
ing their Network Management PDUs. After a while node 1 goes into “ready sleep”
state. Now node 2 and node 3 are sending alternating Network Management PDU.
After a while also node 2 goes into “ready sleep” state. Since node 3 is the last node
on the bus only node 3 is sending messages with CanNmMsgCycleTime.

Stop

Traremizsion
Mode 1
T & fims MNas 65 0
i i ! i
Mode 1 1 1 |
[i 1 o
p e 2op I time fms]
' |
H i Traremiski on
1 | i ! Hode 2 |
Tiwer | Sps dws Soks Tk F Sk s Fifrs |
Mode 2 -
fms | o ms 8 me time fns]
1
= 1
Twer | G0 fes gokis Goks Bl s T Blrs s i 5 ks
i I
Mode 3 ! i
G0 me G0ms= TOme TOme .
—_— f + time nz]
| Traremission of 3 M Meszage CAMM_5G_CYCLE_TME 70 me

CANMM_MSG_REDUCED_TIME HNede 1: 40 ms
CANMM_WSG_REDUCED_TIME HNede 2: 50 ms
CANMM_WSG_REDUCED TIME HNede 3: 60 ms

Figure A.1: Example for Bus Load Reduction

A.2 Example timing behavior for Network Management PDUs

Assume an example network of three nodes 1, 2, 3 (see also Figure A.2). Nodes
specific cycle offsets are equal respectively to t1 <12 <13 < T. NM cycle time is equal
to T (see Figure A.3).

Network Management PDUs sent on the bus within the Repeat Message State are
presented in the Figure A.4, and within the Normal Operation / Ready Sleep State in
Figure A.5. Each dot in Figure A.5 denotes restart of the NM-Timeout Timer.

AUTSSAR

Figure A.2: Example for 3 ECUs connected to a network

1 —

1 -t 1

—
[

time

[

01,237
Mm_Start
Tran=mizsion);

Figure A.3: Example for NM Transmission Start of different ECUs

AUTSSAR

Stop
Traremizsion
Mode 1
T & fims MNas 65 |
i i ! i
Node 1 1 1 |
[i 1 o
p e 2op I time fms]
' |
! i Trarsmizfi
1 | i ! Hode 2 |
Tiwer | Sps dws Soks Tk F Sk s Fifrs |
Mode 2 -
fms | o ms 8 me time fns]
1
= 1
Tiwer | G0fs aoks Goks Blfis 7l s Bk 7l 5 i 5 Flkis
i I
Mode 3 ! i
G0 me= G0m= TFOmes TFOmes i
—_— f + time nz]
Traremission of 3 M Meszage CAMM_5G_CYCLE_TME 70 me

CANMM_MSG_REDUCED_TIME HNede 1: 40 ms
CANMM_WSG_REDUCED_TIME HNede 2: 50 ms
CANMM_WSG_REDUCED_TIME HNede 3: 60 ms

Figure A.4: Example for NM Transmission Handling of multiple ECUs

- 0 - - } RS Nut-Timeo ut—e

O &—}Rs—0 o N-Timeo ut-

O Cr O < M- Timeo ut—»

—p 2 NG T ———— ,
d o d sme

X [y i >
* .. < < o
~EB? a5 a5 a5
“5 58 ~& 4 =8 0 =5 8
2w 3 TEE O E T E
”5@3 = g = % = %
(S = =

Figure A.5: Example for NM Timeout Handling

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

Number Heading

[SWS_CanNm_
00328]

[SWS_CanNm_
00333]

[SWS_CanNm_
00335]

Table B.1: Changed Specification Items in R25-11

B.1.3 Deleted Specification Iltems in R25-11

Number Heading

[SWS_CanNm_
00005]

[SWS_CanNm_
00237]

[SWS_CanNm_
00334]

[SWS_CanNm_
00444]

[SWS_CanNm_
00454]

Table B.2: Deleted Specification Items in R25-11

AUTSSAR

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

B.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_CanNm_
00064]

[SWS_CanNm_
00253]

[SWS_CanNm_
00312]

[SWS_CanNm_

00325] Definition of optional interfaces requested by module CanNm

[SWS_CanNm_
00328]

[SWS_CanNm_
00335]

[SWS_CanNm_
00512]

[SWS_CanNm_
00514]

[SWS_CanNm_
00517]

[SWS_CanNm_
00519]

Table B.3: Changed Specification Items in R24-11

B.2.3 Deleted Specification Items in R24-11

none

AUTSSAR

C Not applicable requirements

[SWS_CanNm_NA_00000]
Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00423

[This specification item references requirements that are not applicable, because
CanNm has no interdepencies to SW Components. |

[SWS_CanNm_NA _00001]
Upstream requirements: SRS_BSW_00375, SRS_BSW_00424, SRS _BSW_00429
[This specification item references requirements that are not applicable, because

CanNm does not implement any interrupts, is not a driver or MCAL abstraction layer or
has any direct access to OS. |

[SWS_CanNm_NA _00002]

Upstream requirements: SRS_BSW_00488, SRS_BSW_00489, SRS_BSW_00490, SRS_BSW_
00491, SRS _BSW 00493

[This specification item references requirements that are not applicable, because
CanNm does not report any security events. |

[SWS_CanNm_NA_00003]
Upstream requirements: SRS_BSW_00425, SRS_BSW_00427

[This specification item references requirements that are not applicable, because BSW
module description template is not part of the CanNm SWS. |

[SWS_CanNm_NA_00004]
Upstream requirements: SRS_BSW_00426

[This specification item references requirements that are not applicable, because
CanNm does not share any data with other BSW. |

[SWS_CanNm_NA_00005]
Upstream requirements: SRS_BSW_00432

[This specification item references requirements that are not applicable, because
CanNm does not propagate data through different layers. |

[SWS CanNm_NA _00007]

Upstream requirements: SRS_BSW_00417, SRS_BSW_00386, SRS_BSW_00458, SRS_BSW _
00466, SRS_BSW_00469, SRS_BSW_00470, SRS_BSW_00471,
SRS_BSW_00472

[This specification item references requirements that are not applicable, because
CanNm does not report any DEM errors |

AUTSSAR

[SWS_CanNm_NA_00008]
Upstream requirements: RS_Nm_00043, RS _Nm_00044, RS_Nm_00048, RS Nm 00144, RS
Nm_00145, RS_Nm_00146, RS_Nm_00150, RS Nm_00152, RS_
Nm_00154, RS_Nm_ 02514, RS _Nm_02515, RS_Nm_ 02535, RS_
Nm_02537, RS _Nm_02546, RS _Nm_02550, RS Nm 02561, RS _
Nm_02562, RS_Nm_02563, RS_Nm_02564, RS _Nm_02566, RS Nm__
02567, RS _Nm_02574, SRS BSW 00345, SRS BSW 00383, SRS
BSW_00384, SRS _BSW _00388, SRS_BSW 00389, SRS _BSW_00390,
SRS _BSW_00392, SRS _BSW_00393, SRS _BSW_00395, SRS BSW __
00396, SRS BSW 00399, SRS BSW 00402, SRS BSW_00406,
SRS BSW 00416, SRS BSW 00419, SRS BSW_ 00422, SRS BSW _
00478

[This specification item references requirements that are not applicable, because it is
no requirement against CanNm SWS or only against ECUC elements. |

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File Structure
	5.1.1 Code File Structure
	5.1.2 Header File Structure

	5.2 Protocol layer dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 Coordination algorithm
	7.2 Operational Modes
	7.2.1 Network Mode
	7.2.1.1 Repeat Message State
	7.2.1.2 Normal Operation State
	7.2.1.3 Ready Sleep State

	7.2.2 Prepare Bus-Sleep Mode
	7.2.3 Bus-Sleep Mode

	7.3 Network states
	7.4 Initialization
	7.5 Execution
	7.5.1 Processor architecture
	7.5.2 Timing parameters

	7.6 Network Management PDU Structure
	7.7 Communication Scheduling
	7.7.1 Transmission
	7.7.2 Reception

	7.8 Bus Load Reduction Mechanism
	7.9 Additional features
	7.9.1 Detection of Remote Sleep Indication
	7.9.2 User Data
	7.9.2.1 COM User Data

	7.9.3 Passive Mode
	7.9.4 Network Management PDU Rx Indication
	7.9.5 State change notification
	7.9.6 Communication Control
	7.9.7 Coordinator Synchronization Support

	7.10 Car Wakeup
	7.10.1 Rx Path
	7.10.2 Tx Path

	7.11 Partial Networking
	7.11.1 Rx Handling of NM PDUs
	7.11.2 Tx Handling of NM PDUs
	7.11.3 Handling of Internal Requested Partial Network Clusters
	7.11.4 Spontaneous Transmission of NM PDUs via CanNm_NetworkRequest

	7.12 Transmission Error Handling
	7.13 Functional requirements on CanNm API
	7.14 Error Classification
	7.14.1 Development Errors
	7.14.2 Runtime Errors
	7.14.3 Transient Faults
	7.14.4 Production Errors
	7.14.5 Extended Production Errors

	7.15 Scheduling of the main function
	7.16 Application notes
	7.16.1 Wakeup notification
	7.16.2 Coordination of coupled networks

	7.17 Summary of CanNm Timing Requirements
	7.18 UML State chart diagram

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanNm_ConfigType

	8.3 Function definitions
	8.3.1 CanNm_Init
	8.3.2 CanNm_DeInit
	8.3.3 CanNm_PassiveStartUp
	8.3.4 CanNm_NetworkRequest
	8.3.5 CanNm_NetworkRelease
	8.3.6 CanNm_DisableCommunication
	8.3.7 CanNm_EnableCommunication
	8.3.8 CanNm_SetUserData
	8.3.9 CanNm_GetUserData
	8.3.10 CanNm_Transmit
	8.3.11 CanNm_GetNodeIdentifier
	8.3.12 CanNm_GetLocalNodeIdentifier
	8.3.13 CanNm_RepeatMessageRequest
	8.3.14 CanNm_GetPduData
	8.3.15 CanNm_GetState
	8.3.16 CanNm_GetVersionInfo
	8.3.17 CanNm_RequestBusSynchronization
	8.3.18 CanNm_CheckRemoteSleepIndication
	8.3.19 CanNm_SetSleepReadyBit
	8.3.20 CanNm_PnLearningRequest
	8.3.21 CanNm_ActivateTxPnShutdownMsg
	8.3.22 CanNm_DeactivateTxPnShutdownMsg

	8.4 Callback notifications
	8.4.1 CanNm_TxConfirmation
	8.4.2 CanNm_RxIndication
	8.4.3 CanNm_ConfirmPnAvailability
	8.4.4 CanNm_TriggerTransmit

	8.5 Scheduled functions
	8.5.1 CanNm_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.4 Job End Notification

	8.7 Service Interfaces

	9 Sequence diagrams
	9.1 CanNm Transmission
	9.2 CanNm Reception
	9.3 Nm Coordination

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanNm
	10.2.2 CanNmGlobalConfig
	10.2.3 CanNmChannelConfig
	10.2.4 CanNmRxPdu
	10.2.5 CanNmTxPdu
	10.2.6 CanNmUserDataTxPdu

	10.3 Published Information

	A Examples
	A.1 Example of periodic transmission mode with bus load reduction
	A.2 Example timing behavior for Network Management PDUs

	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	C Not applicable requirements

