AUTSSAR

Document Title Specification of CAN Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 11

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by

Description

AUTOSAR
Release
Management

2025-11-27 | R25-11

» Add Dynamic bitmask for CAN Driver
wakeup Can_
SetCanPnFrameDataMask and
[SWS_Can_00604], [SWS_Can_00605],
[SWS_Can_00606], [SWS_Can_00608],
[ECUC_Can_00538]

Remove of the TTCan Support

Removed Chapters 10.2.12
CanTTController and 10.2.13
CanTTHardwareObjectTrigger

Removed ECUC_Can_00430,
ECUC_Can_00001, ECUC_Can_00139,
ECUC_Can 00138, ECUC_Can_00136,
ECUC_Can_00135, ECUC_Can_00134,
ECUC_Can_00128, ECUC_Can_00140,
ECUC Can 00131 ECUC _Can_00141,
ECUC_Can_00127, ECUC_Can_00132,
ECUC _Can 00129, ECUC_Can_00130,
ECUC_Can_00133, ECUC_Can_00137,
ECUC_Can 00158, ECUC _Can_00157,
ECUC_Can_00142, ECUC_Can_00493
ECUC_Can_00002 ECUC_Can_00147
ECUC_Can_00148, ECUC_Can_00146,
ECUC_Can_00155, ECUC_Can_00145

Modified items by remove of TTCan
References [ECUC_Can_00497],
[ECUC_Can_00354], [ECUC_Can_
00324]

AUTSSAR

» Minor corrections / clarifications /
editorial changes
AUTOSAR » Added Ch.ange history of AUTOSAR
2024-11-27 | R24-11 | Release traceable items
Management - Removed SWS_Can_CONSTR_00508
» Change the Header file name [SWS_
Can_00234], [SWS_Can_00235]
 Support for selective WakeUp via
CAN-Controller
AUTOSAR . SDha”nged document name to include
2023-11-23 | R23-11 | Release CP
Management « Added information about automatic
handle IDs to configuration
» Converted to IATEX
AUTOSAR » CanXL requirements were added
2022-11-24 | R22-11 Release « Minor corrections / clarifications /
Management editorial changes
 Timestamp requirements were added
* Removed [SWS_Can_00485] and
2021-11-25 | R21-11 | Release « Changed the scope of Canindex from
Management local to ECU global
» Minor corrections / clarifications /
editorial changes
* Removed Pretended Networking
« CanDrv_CONSTR 00512 was added
» Updated ECUC_Can_00471 descripton
AUTOSAR » Add new parameter:
2020-11-30 | R20-11 | Release CanObjectPayloadLength
Management « A note was added to [SWS_Can_00403]
* [SWS_Can_00222] was changed
» Minor corrections / clarifications /
editorial changes
v

AUTSSAR

A
» Added Reporting of CAN Error Types

chapter. Requirement [SWS_Can_
91021] was added.

» CanEnableSecurityEventReporting
container was added

AUTOSAR

2019-11-28 R19-11 Release
Management

« Minor corrections / clarifications /
editorial changes;

» Changed Document Status from Final to
published

AUTOSAR

2018-10-31 440 Release
Management

* MCALMulticoreDistribution (CONC_639)
as DRAFT

* BusMirroring (CONC_634)
* Header file cleanup

* Replaced Channelld with ShortName for
multiple main functions ([SWS_Can_
00441] and [SWS_Can_00442])

» Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

AUTOSAR

2017-12-08 | 4.3.1 Release
Management

» Added Support to Tx/RxProcessing per
Controller

* Incompatible return types are corrected
to E_ NOT _OK and E_ OK

» Can_StateTransitionType is removed

* Runtime error is added and Rephrased
from "default error" to "development
error"

* [SWS_Can_00504] and [SWS_Can_
00416] is modified

AUTSSAR

2016-11-30

4.3.0

AUTOSAR
Release
Management

» Added API’s
Can_GetControllerErrorState
Can_Delnit, Can_GetControllerMode,
Types Can_ControllerState Type,
Can_ErrorStateType and new
requirements Can_91002 to [SWS_
Can_91018].

Modified minimum range of
MainFunctionPeriod parameters and
replaced Word "DLC" by "Data Length".

* Removed unresolved BSW SRS
references, definition of the
"configuration variants”,
Can_StateTransitionType, WAKEUP
related, Can_ChangeBaudrate API
support, MISRA references,
requirements related to module
initialization check for scheduled
functions.

» Small improvements and minor
bug-fixes.

2015-07-31

422

AUTOSAR
Release
Management

» CanHwObjectCount parameter
multiplicity is changed to 1

* Error Classification has changed

* Improved 8.4.2 Enabling/Disabling
wakeup notification

« DET has been renamed from
"Development Error Tracer" to "Default
Error Tracer

» Small improvements and minor bug-fixes

2014-10-31

421

AUTOSAR
Release
Management

* Full CAN FD Support (incl. Trigger
Transmit)

* Removed Canlf_CancelTxConfirmation
* Time-out and wake up event handling

» Small improvements and minor bug-fixes

AUTSSAR

AUTOSAR
Release
Management

2014-03-31 4.1.3

» Added new regirements [SWS_Can_
00497], [SWS_Can_00498], [SWS_
Can_00499], and [SWS_Can_00496]

» Modified reqgirements
ECUC_Can_00445, [SWS_Can_00487],
[SWS_Can_00469], [SWS_Can_00475],
and [SWS_Can_00479]

* Removed reqgirements [SWS_Can_
00476], and [SWS_Can_00414]

AUTOSAR
Release
Management

2013-10-31 41.2

* Removed the "Timing’ row from the API
table(s) of chapter 'Scheduled Functions’

» Modified range of Can_IdType and
CAN_CHANGE_BAUDRATE_SUPPORT
to CAN_CHANGE_BAUDRATE_API

« Editorial changes

* Removed chapter(s) on change
documentation

AUTOSAR

2013-03-15 | 4.11 Administration

» Added support for Pretended
Networking

* Add DET error CAN_E_PARAM _
BAUDRATE to the error classification
table

» Corrected the sequence for
EcuM_SetWakeupEvent in section 7.7

» Updated Can_CheckWakeup as
Configurable API

» Added support to have more than one
CanMailbox per HRH in order to receive
back to back messages

» Can_ChangeBaudrate and
Can_CheckBaudrate APl are
deprecated and will be replaced by
Can_SetBaudrate API

AUTSSAR

2011-12-22

4.0.3

AUTOSAR
Administration

» Added [SWS_Can_00461] to capture -
Detection of Power ON of controller due
to CAN communication

» Changed Can_InitController to
Can_ChangeBaudrate

» Added Can_CheckBaudrate

» Added sub container
CanMainFunctionRWPeriods to
CanGeneral

» Changed CanHardwareObject container

» Updated description of
ECUC_Can_00321

* Changed Can_SetControllerMode in
[SWS_Can_00370] to
Can_Mainfunction_Mode

» Added CanControllerDefaultBaudrate
parameter

» Updated description of [SWS_Can_
00279]

» Updated description of CAN321

» Added [SWS_Can_00445], [SWS_Can_
00446] and [SWS_Can_00447] to
capture Possible loss of CAN Wakeup

» Changed "Module Short Name"
(MODULENAME) to "Module
Abbreviation" (MAB)

AUTSSAR

2009-12-18

4.0.1

AUTOSAR
Administration

» Modified [SWS_Can_00111] to correct
the "Version Checking" information

» Added new requirements [SWS_Can_
00435] to [SWS_Can_00440] to
introduce Can_GeneralTypes.h.

» Added new requirements [SWS_Can_
00441] and [SWS_Can_00442] to
introduce multiple poll cycles

» Added new requirements [SWS_Can_
00443] and [SWS_Can_00444] to
provide an optional callback on every
reception of a LPDU

2010-02-02

3.1.4

AUTOSAR
Administration

» General improvements of requirements
in preparation of CT-development.

» Can_MainFunctio_Mode added to
support asynchronous controller state
change

* Limited number of supported message
objects removed

* Description of CAN controller state
transitions improved

» Debbuging concept added

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2008-02-01

3.0.2

AUTOSAR
Administration

* Table formatting corrected

2007-12-21

3.0.1

AUTOSAR
Administration

* Tables generated from UML-models,

» General improvements of requirements
in preparation of CT-development.

 Functions Can_MainFunction_Write,
Can_MainFunction_Read,
Can_MainFunction_BusOff and
Can_MainFunction_WakeUp changed to
scheduled functions

* Cycle Parameters added for new
scheduled functions
v

AUTSSAR

A
» Wakeup concept added (Chapter REF

_Ref395085489 \r \h) and addition of
function Can_Cbk_CheckWakeup

« Document meta information extended

« Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

* File structure reworked (chapter REF
_Ref158085666 \r \h)

» Removed return value CAN_WAKEUP in
function Can_SetControllerMode

* Replaced by CAN_NOT_OK

» Renamed Canlf_ControllerWakeup to
Canlf_SetWakeupEvent

» Reworked development errors (chapter
REF _Ref182101189 \r\h)

* Removed implementation specific
description in Can_Write

» Changed timing of cyclic functions to
"fixed cyclic"

* Reworked "Scope" for all configuration
variables (chapter REF _Ref104709655
\r\h)

* Legal disclaimer revised
* Release notes added
« "Advice for users" revised

« "Revision Information" added

AUTSSAR

2006-05-16

2.0

AUTOSAR
Administration

» Document structure adapted to common
Release 2.0 SWS Template

« clarified development and production
error handling and function abortion

» multiplexed transmission and TX
cancellation

« version check

« configuration description according
template

« individual main functions for RX TX and
status

2005-05-31

1.0

AUTOSAR
Administration

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional Overview 15
2 Acronyms and Abbreviations 16
2.1 Priority Inversion 17
22 CANHardware Unit 19

3 Related Documentation 20
3.1 Related specification o L. 20

4 Constraints and assumptions 21
4.1 Limitations e 21
4.2 Applicability to cardomains oo 21

5 Dependencies to other modules 22
5.1 Static Configuration 22
5.2 Driver Services e e e 22
5.3 System Services e 23
54 Canmodule Users i 23
5.5 File Structure 23

6 Requirements Tracing 24
7 Functional Specification 28
7.1 DriverScope 28
7.2 Driver State Machine 29
7.3 CAN Controller State Machine 30
7.3.1 CAN Controller State Description 31
7.3.2 CAN Controller State Transitions 32
7.3.3 State transition caused by function Can_Init 32
7.3.4 State transition caused by function Can_SetBaudrate 33
7.3.5 State transition caused by function Can_SetControllerMode 33
7.3.6 State transition caused by Hardware Events 35
7.3.7 State transition caused by function Can_Delnit 37

7.4 Can module/Controller Initialization 37
7.5 L-PDU transmission e 39
7.5.1 Priority Inversion L 40
7.5.2 Transmit Data Consistency 41

7.6 L-PDUreception. 42
7.6.1 Receive Data Consistency 42

7.7 Wakeup Concept 44
7.8 CAN Controller with selective wakeup functionality 44
7.9 Notificationconcept 45
7.10Reentrancy issues 46

7.11Hardware Timestamping 46

AUTSSAR

8

712Errorclassification. 47
7.12.1 Development Errors 47
7122Runtime Errors L 48
7123 Production Errors L 48
7.12.4 Extended ProductionErrors oo oo 48
7125ReturnValue L 48

7A3CAN FD Support 49

7.14CAN XL Extension 49

7.15Reporting of CAN Error Types oo 50

API Specification 51

8.1 Imported Types e 51

8.2 Type definitions 51
8.2.1 Can_ConfigType 51
8.22 Can PduType e 52
823 Can_IdType. e 52
8.24 Can_HwHandleType 53
8.25 Can_HwType e 53
8.2.6 Extensionto Std_ReturnType L. 54
8.2.7 Can_ErrorStateType 54
8.2.8 Can_ControllerStateType 54
8.2.9 Can_ErrorType 55
8.2.10 Can_TimeStampType 55

8.3 Function Definitions 56
8.3.1 Services affecting the complete hardware unit 56

83.1.1 Can_Inito 56
8.3.1.2 Can _GetVersioninfo 57
83.1.3 Can Delnit 57
8.3.2 Services affecting one single CAN Controller 58
8321 Can SetBaudrate 58
8.3.2.2 Can_SetControllerMode 59
8.3.2.3 Can_DisableControllerinterrupts 61
8.3.2.4 Can_EnableControllerinterrupts 62
8.3.25 Can CheckWakeup. 63
8.3.2.6 Can_GetControllerErrorState 64
8.3.2.7 Can_GetControllerMode 65
8.3.2.8 Can_GetControllerRxErrorCounter 66
8.3.2.9 Can_GetControllerTxErrorCounter 67
8.3.2.10 Can_GetCurrentTime 68
8.3.2.11 Can_EnableEgressTimeStamp 69
8.3.2.12 Can_GetEgressTimeStamp 70
8.3.2.13 Can_GetIngressTimeStamp 72
8.3.2.14 Can_SetCanPnFrameDataMask 73

8.3.3 Services affectinga HardwareHandle 74

AUTSSAR

8.33.1 Can Writeo 74

8.4 Call-back notifications 76
8.4.1 Call-outfunction 77
8.4.2 Enabling/Disabling wakeup notification 77
8.5 Scheduled functions 78
8. 5.1 e 78
8.5.1.1 Can_MainFunction Write 78
8.5.1.2 Can_MainFunction Read 79
8.5.1.3 Can_MainFunction BusOff 79
8.5.1.4 Can_MainFunction_Wakeup 80
8.5.1.5 Can_MainFunction Mode 80

8.6 ExpectedInterfaces 81
8.6.1 Mandatory Interfaces oL 81
8.6.2 OptionalInterfaces oL 81
8.6.3 Configurable Interfaces 82

9 Sequence diagrams 83
9.1 Interaction between Can and Canlfmodule 83
9.2 Wakeup SeqUeNCe o i e e 83
10 Configuration specification 84
10.1Howtoread thischapter 84
10.2Containers and configuration parameters 84
10.2.1Can e e 92
10.2.2CanGeneral 92
10.2.3CanController. 98
10.2.4 CanControllerBaudrateConfig 105
10.2.5 CanControllerFdBaudrateConfig 107
10.2.6 CanPartialNetwork L 111
10.2.7 CanPnFrameDataMaskSpec L. 113
10.2.8 CanHardwareObject 115
10.2.9CanHwkFilter 120
10.2.10 CanConfigSet 121
10.2.11 CanMainFunctionRWPeriods 122
10.2.12 CanXLGeneral 123
10.2.13 CanXLController 124
10.2.14 CanXLHardwareObject 126
10.2.15 CanXLHwFilter 127
10.2.16 CanXLBaudrateConfig 128
10.2.17 CanXLEthEgressFifo oL 133
10.2.18 CanXLEthingressFifo, 134

11 Not applicable requirements 137

AUTSSAR

A Change history of AUTOSAR traceable items 138
A.1 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 138
A.1.1 Added Constraintsin R24-11 138
A.1.2 Changed Constraintsin R24-11 138
A.1.3 Deleted Constraintsin R24-11 138
A.1.4 Added Specification ltemsin R24-11 138
A.1.5 Changed Specification ltemsin R24-11 138
A.1.6 Deleted Specification ItemsinR24-11 138
A.2 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 139
A.2.1 Added Constraintsin R25-11 139
A.2.2 Changed Constraintsin R25-11 139
A.2.3 Deleted ConstraintsinR25-11 139
A.2.4 Added Specification ItemsinR25-11 139
A.2.5 Changed Specification Itemsin R25-11 139
A.2.6 Deleted Specification ltemsin R25-11 140

AUTSSAR

1 Introduction and functional Overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module CAN Driver (called "Can module” in this document).

The Can module is part of the lowest layer, performs the hardware access and offers
a hardware independent API to the upper layer.

The only upper layer that has access to the Can module is the Canlf module (see also
[SRS_SPAL_12092)).

The Can module provides services for initiating transmissions and calls the callback
functions of the Canlf module for notifying events, independently from the hardware.
Furthermore, it provides services to control the behavior and state of the CAN con-
trollers that are belonging to the same CAN Hardware Unit.

Several CAN controllers can be controlled by a single Can module as long as they be-
long to the same CAN Hardware Unit.

For a closer description of CAN controller and CAN Hardware Unit see chapter
Acronyms and abbreviations and a diagram in [1].

AUTSSAR

2 Acronyms and Abbreviations

Abbreviation / | Description:

Acronym:

CAN controller A CAN controller serves exactly one physical channel.

CAN Hardware | A CAN Hardware Unit may consists of one or multiple CAN controllers of the

Unit same type and one or multiple CAN RAM areas. The CAN Hardware Unit is
either on-chip, or an external device. The CAN Hardware Unit is represented
by one CAN driver.

CAN L-PDU Data Link Layer Protocol Data Unit. Consists of Identifier, Data Length and
Data (SDU). (see[2])

CAN L-SDU Data Link Layer Service Data Unit. Data that is transported inside the L-PDU.
(see[2])

DLC Data Length Code (part of CAN message describes the SDU length)

Hardware Object

A CAN hardware object is defined as a PDU buffer inside the CAN RAM of the
CAN hardware unit / CAN controller. A Hardware Object is defined as L-PDU
buffer inside the CAN RAM of the CAN Hardware Unit.

Hardware Receive
Handle (HRH)

The Hardware Receive Handle (HRH) is defined and provided by the CAN
Driver. Each HRH typically represents just one hardware object. The HRH
can be used to optimize software filtering.

Hardware Transmit
Handle (HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the CAN
Driver. Each HTH typically represents just one or multiple hardware objects
that are configured as hardware transmit buffer pool.

Inner Priority Inver-
sion

Transmission of a high-priority L-PDU is prevented by the presence of a pend-
ing low-priority L-PDU in the same transmit hardware object.

ISR Interrupt Service Routine

L-PDU Handle The L-PDU handle is defined and placed inside the Canlf module layer. Typ-
ically each handle represents an L-PDU, which is a constant structure with
information for Tx/Rx processing.

MCAL Microcontroller Abstraction Layer

Outer Priority In-
version

A time gap occurs between two consecutive transmit L-PDUs.

In this case a lower priority L-PDU from another node can prevent sending the
own higher priority L-PDU. Here the higher priority L-PDU cannot participate
in arbitration during network access because the lower priority L-PDU already
won the arbitration.

Physical Channel

A physical channel represents an interface from a CAN controller to the CAN
Network. Different physical channels of the CAN hardware unit may access
different networks.

Priority The Priority of a CAN L-PDU is represented by the CAN Identifier. The lower
the numerical value of the identifier, the higher the priority.

SFR Special Function Register. Hardware register that controls the controller be-
havior.

SPAL Standard Peripheral Abstraction Layer

Table 2.1: Acronyms and Abbreviations

AUTSSAR

2.1 Priority Inversion

S
-
s
—
=
a3
%
S
=

Status and Control Lines

+ Low-Prior Message ‘

not transmitted because of
higher-prior message traffic

li

CPU Interface

Protocol Controller

Hardware
—* Acceptance® Receive Buffer(s)

Filter

© Cin

Figure 2.1: Inner Priority Inversion

"If only a single transmit buffer is used inner priority inversion may occur. Because
of low priority a message stored in the buffer waits until the "traffic on the bus calms
down”. During the waiting time this message could prevent a message of higher priority
generated by the same microcontroller from being transmitted over the bus."

Picture and text by CiA (CAN in Automation)

AUTSSAR

Node A

Node & | g | [hign]

v

time

bus |

© cin

Figure 2.2: Outer Priority Inversion

"The problem of outer priority inversion may occur in some CAN implementations. Let
us assume that a CAN node wishes to transmit a package of consecutive messages
with high priority, which are stored in different message buffers. If the interframe space
between these messages on the CAN network is longer than the minimum space de-
fined by the CAN standard, a second node is able to start the transmission of a lower
priority message. The minimum interframe space is determined by the Intermission
field, which consists of 3 recessive bits. A message, pending during the transmission
of another message, is started during the Bus Idle period, at the earliest in the bit fol-
lowing the Intermission field. The exception is that a node with a waiting transmission
message will interpret a dominant bit at the third bit of Intermission as Start-of-Frame
bit and starts transmission with the first identifier bit without first transmitting an SOF
bit. The internal processing time of a CAN module has to be short enough to send out
consecutive messages with the minimum interframe space to avoid the outer priority
inversion under all the scenarios mentioned."?

2Text and image by CiA (CAN in Automation)

AUTSSAR

2.2 CAN Hardware Unit

The CAN Hardware Unit combines one or several CAN controllers, which may be
located on-chip or as external standalone devices of the same type, with common or
separate Hardware Objects.

Following figure shows a CAN Hardware Unit consisting of

two CAN controllers connected to two Physical Channels:
CAN Controller A
—TTxA - CAN ™ caN
Transceiver Bus A Physical Channel A
<rRxA — A - us
Message Object
Mailbox A
"\
CAN Controller B
—TxB —» _ CAN >
Transceiver CAN Physical Channel B
- RxB — B - Bus B
Message Object
Mailbox B \
CAN Hardware Unit CAN Controllers with Mailboxes

Figure 2.3: Physical Controller

AUTSSAR

3 Related Documentation

[1] Specification of CAN Interface
AUTOSAR_CP_SWS CANiInterface

[2] IEC: The Basic Model, IEC Norm

[38] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[4] Specification of MCU Driver
AUTOSAR_CP_SWS_ MCUDriver

[5] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[6] General Requirements on SPAL
AUTOSAR_CP_RS SPALGeneral

[7] CiA 610-1 version 1.0.0 (DSP) - CAN XL specifications and test plans - Part 1:
Data link layer and physical coding sub-layer requirements
http://www.can-cia.org

[8] CiA 611-1 version 1.0.0 (DSP) - CAN XL higher layer functions - Part 1: Definition
of service data unit types
http://www.can-cia.org

3.1 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3] (SWS BSW
General), which is also valid for CAN Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN Driver.

http://www.can-cia.org
http://www.can-cia.org

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

A CAN controller always corresponds to one physical channel. It is allowed to connect
physical channels on bus side. Regardless the Canlf module will treat the concerned
CAN controllers separately.

A few CAN hardware units support the possibility to combine several CAN controllers
by using the CAN RAM, to extend the number of message objects for one CAN con-
troller. These combined CAN controller are handled as one controller by the Can mod-
ule.

The Can module does not support CAN remote frames.

[SWS_Can_00237]
Upstream requirements: SRS_Can_01147
[The Can module shall not transmit messages triggered by remote transmission re-
quests. |
[SWS_Can_00236]
Upstream requirements: SRS_Can_01147

[The Can module shall initialize the CAN HW to ignore any remote transmission re-
quests. |

4.2 Applicability to car domains

The Can module can be used for any application, where the CAN protocol is used.

AUTSSAR

5 Dependencies to other modules

5.1 Static Configuration

The configuration elements described in Chapter 10 can be referenced by other BSW
modules for their configuration.

5.2 Driver Services

[SWS_Can_00238]
Upstream requirements: SRS_BSW_00005

[If the CAN controller is on-chip, the Can module shall not use any service of other
drivers. |

[SWS_Can_00239]
Upstream requirements: SRS_BSW_00377

[The function Can_Init shall initialize all on-chip hardware resources that are used by
the CAN controller. The only exception to this is the digital I/O pin configuration (of pins
used by CAN), which is done by the port driver. |

[SWS_Can_00240] [The Mcu module (SPAL see [4]) shall configure register settings
that are 'shared’ with other modules. |

Implementation hint: The Mcu module shall be initialized before initializing the Can
module.

[SWS_Can_00242]
Upstream requirements: SRS_BSW_00005

[If an off-chip CAN controller is used®, the Can module shall use services of other
MCAL drivers (e.g. SPI). |

Implementation hint: If the Can module uses services of other MCAL drivers (e.qg.
SPI), it must be ensured that these drivers are up and running before initializing the
Can module.

The sequence of initialization of different drivers is partly specified in [5].

[SWS_Can_00244] [The Can module shall use the synchronous APIs of the under-
lying MCAL drivers and shall not provide callback functions that can be called by the
MCAL drivers. |

Thus the type of connection between uC and CAN Hardware Unit has only impact on
implementation and not on the API.

3In this case the CAN driver is not any more part of the uC abstraction layer but put part of the ECU
abstraction layer. Therefore it is (theoretically) allowed to use any puC abstraction layer driver it needs.

AUTSSAR

5.3 System Services

[SWS_Can_00280] [In special hardware cases, the Can module shall poll for events
of the hardware. |

[SWS_Can_00281] [The Can module shall use the OsCounter provided by the system
service for timeout detection in case the hardware does not react in the expected time
(hardware malfunction) to prevent endless loops. |

Implementation hint: The blocking time of the Can module function that is wait-
ing for hardware reaction shall be shorter than the CAN main function (i.e.
Can_MainFunction_Read) trigger period, because the CAN main functions can’t be
used for that purpose.

5.4 Can module Users

[SWS_Can_00058]

Upstream requirements: SRS_SPAL_12092
[The Can module interacts among other modules (eg. Default Error Tracer (DET), Ecu
State Manager (ECUM)) with the Canlf module in a direct way. This document never

specifies the actual origin of a request or the actual destination of a notification. The
driver only sees the Canlf module as origin and destination. |

5.5 File Structure

[SWS_Can_00436] [Can_GeneralTypes.h shall contain all types and constants that
are shared among the AUTOSAR CAN modules Can, Canlf and CanTrcv. |

AUTSSAR

6 Requirements Tracing

Requirement

Description

Satisfied by

[RS_Ids_00810]

Basic SW security events

[SWS_Can_91022] [SWS_Can_91023]
[SWS_Can_91024]

[SRS_BSW_00005]

Modules of the 4C Abstraction Layer
(MCAL) may not have hard coded
horizontal interfaces

[SWS_Can_00238] [SWS_Can_00242]

[SRS_BSW_00007]

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_Can_00079]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Can_00250]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_Can_00022]

[SRS_BSW_00164]

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_Can_00033]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Can_00024]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Can_00079]

[SRS_BSW_00308]

AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

[SWS_Can_00079]

[SRS_BSW_00309]

All AUTOSAR Basic Software
Modules shall indicate all global data
with read-only purposes by explicitly
assigning the const keyword

[SWS_Can_00079]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_Can_00214] [SWS_Can_00231]
[SWS_Can_00232] [SWS_Can_00233]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Can_00026] [SWS_Can_00513]
[SWS_Can_00514] [SWS_Can_00518]
[SWS_Can_00519] [SWS_Can_91006]
[SWS_Can_91007] [SWS_Can_91017]
[SWS_Can_91018]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

[SWS_Can_00079]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Can_00039] [SWS_Can_00104]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Can_91002]

[SRS_BSW_00337]

Classification of development errors

[SWS_Can_00026] [SWS_Can_00104]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Can_00021]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_Can_00077]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_Can_00506]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_Can_00223]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Can_00089] [SWS_Can_00506]
[SWS_Can_91011] [SWS_Can_91012]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_Can_00031]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_Can_00271] [SWS_Can_00364]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_Can_00239]

[SRS_BSW_00385]

List possible error notifications

[SWS_Can_00104]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Can_00089]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Can_00021]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Can_00021]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Can_00103] [SWS_Can_00512]
[SWS_Can_00517] [SWS_Can_91005]
[SWS_Can_91016]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Can_00223]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_Can_91005] [SWS_Can_91016]

[SRS_BSW_00428]

A BSW module shall state if its main
processing function(s) has to be
executed in a specific order or
sequence

[SWS_Can_00110]

[SRS_BSW_00432]

Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_Can_00031] [SWS_Can_00108]
[SWS_Can_00109] [SWS_Can_00112]

[SRS_BSW_00438]

Configuration data shall be defined in
a structure

[SWS_Can_00291]

[SRS_BSW_00449]

BSW Service APIs used by Autosar
Application Software shall return a
Std_ReturnType

[SWS_Can_00506]

[SRS_Can_01005]

The CAN Interface shall perform a
check for correct DLC of received
PDUs

[SWS_Can_00218]

[SRS_Can_01041]

The CAN Driver shall implement an
interface for initialization

[SWS_Can_00245] [SWS_Can_00246]

[SRS_Can_01042]

The CAN Driver shall support
dynamic selection of configuration
sets

[SWS_Can_00062]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Can_01043]

The CAN Diriver shall provide a
service to enable/disable interrupts of
the CAN Controller.

[SWS_Can_00049] [SWS_Can_00050]

[SRS_Can_01045]

The CAN Driver shall offer a
reception indication service.

[SWS_Can_00279] [SWS_Can_00396]

[SRS_Can_01049]

The CAN Driver shall provide a
dynamic transmission request service

[SWS_Can_00212] [SWS_Can_00213]
[SWS_Can_00214]

[SRS_Can_01051]

The CAN Driver shall provide a
transmission confirmation service

[SWS_Can_00016]

[SRS_Can_01053]

The CAN Driver shall provide a
service to change the CAN controller
mode.

[SWS_Can_00017] [SWS_Can_91010]

[SRS_Can_01054]

The CAN Driver shall provide a
notification for controller wake-up
events

[SWS_Can_00235] [SWS_Can_00271]
[SWS_Can_00364]

[SRS_Can_01055]

CAN Diriver shall provide a
notification for bus-off state

[SWS_Can_00020] [SWS_Can_00234]

[SRS_Can_01059]

The CAN Driver shall guarantee data
consistency of received L-PDUs

[SWS_Can_00011] [SWS_Can_00012]

[SRS_Can_01060]

The CAN driver shall not recover from
bus-off automatically

[SWS_Can_00272] [SWS_Can_00273]
[SWS_Can_00274]

[SRS_Can_01062]

Each event for each CAN Controller
shall be configurable to be detected
by polling or by an interrupt

[SWS_Can_00007]

[SRS_Can_01122]

The CAN driver shall support the
situation where a wakeup by bus
occurs during the same time the
transition to standby/sleep is in
progress

[SWS_Can_00048]

[SRS_Can_01130]

Receive Status Interface of CAN
Interface

[SWS_Can_00506]

[SRS_Can_01132]

The CAN driver shall be able to
detect notification events message
object specific by CAN-Interrupt and
polling

[SWS_Can_00099]

[SRS_Can_01134]

The CAN Driver shall support
multiplexed transmission

[SWS_Can_00277] [SWS_Can_00401]
[SWS_Can_00402] [SWS_Can_00403]

[SRS_Can_01135]

It shall be possible to configure one
or several TX Hardware Objects

[SWS_Can_00100]

[SRS_Can_01139]

The CAN Interface and Driver shall
offer a CAN Controller specific
interface for initialization

[SWS_Can_00062]

[SRS_Can_01147]

The CAN Driver shall not support
remote frames

[SWS_Can_00236] [SWS_Can_00237]

[SRS_Can_01160]

Padding of bytes due to discrete CAN
FD DLC

[SWS_Can_00502]

[SRS_Can_01162]

CAN Interface shall support classic
CAN and CAN FD frames

[SWS_Can_00501]

[SRS_Can_01166]

The CAN Driver shall implement an
interface for de-initialization

[SWS_Can_91002] [SWS_Can_91009]
[SWS_Can_91010]

[SRS_Can_01167]

The CAN Driver shall provide a
function to return the current CAN

[SWS_Can_91008]

controller error state

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Can_01170]

The CAN Diriver shall provide a
function to return the current CAN
controller Rx and Tx error counters

[SWS_Can_00515] [SWS_Can_00520]

[SRS_Can_01181]

If partial networking is used, the ECU
shall secure that the first message on
the bus is the wakeup frame.

[SWS_CAN_91025] [SWS_CAN_91026]
[SWS_CAN_91027] [SWS_CAN_91028]
[SWS_CAN_91029]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Can_00026] [SWS_Can_00031]
[SWS_Can_00108] [SWS_Can_00109]
[SWS_Can_00112]

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_Can_00235]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Can_00245] [SWS_Can_00246]

[SRS_SPAL_12063]

All driver modules shall only support
raw value mode

[SWS_Can_00059] [SWS_Can_00060]

[SRS_SPAL_12067]

All driver modules shall set their
wake-up conditions depending on the
selected operation mode

[SWS_Can_00257]

[SRS_SPAL_12069]

All drivers of the SPAL that wake up
from a wake-up interrupt shall report
the wake-up reason

[SWS_Can_00271] [SWS_Can_00364]

[SRS_SPAL_12075]

All drivers with random streaming
capabilities shall use application
buffers

[SWS_Can_00011]

[SRS_SPAL_12077]

All drivers shall provide a non
blocking implementation

[SWS_Can_00372]

[SRS_SPAL_12092]

The driver’s API shall be accessed by
its handler or manager

[SWS_Can_00058]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Can_00053]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_Can_00033]

[SRS_SPAL_12169]

All driver modules that provide
different operation modes shall
provide a service for mode selection

[SWS_Can_00017]

[SRS_SPAL_12263]

The implementation of all driver
modules shall allow the configuration
of specific module parameter types at
link time

[SWS_Can_00021]

[SRS_SPAL_12265]

Configuration data shall be kept
constant

[SWS_Can_00021]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_Can_00089] [SWS_Can_00091]

[SRS_SPAL_12461]

Specific rules regarding initialization
of controller registers shall apply to all
driver implementations

[SWS_Can_00407]

[SRS_SPAL_12463]

The register initialization settings
shall be combined and forwarded

[SWS_Can_00024]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional Specification

On L-PDU transmission, the Can module writes the L-PDU in an appropriate buffer
inside the CAN controller hardware.

See chapter 7.5 for closer description of L-PDU transmission.

On L-PDU reception, the Can module calls the RX indication callback function with D,
Data Length and pointer to L-SDU as parameter.

See chapter 7.6 for closer description of L-PDU reception.

The Can module provides an interface that serves as periodical processing function,
and which must be called by the Basic Software Scheduler module periodically.
Furthermore, the Can module provides services to control the state of the CAN con-
trollers. Bus-off and Wake-up events are notified by means of callback functions.

The Can module is a Basic Software Module that accesses hardware resources.
Therefore, it is designed to fulfill the requirements for Basic Software Modules specified
in AUTOSAR_SRS_SPAL (see [6]).

[SWS_Can_00033]

Upstream requirements: SRS_BSW_00164, SRS_SPAL_12129
[The Can module shall implement the interrupt service routines for all CAN Hardware
Unit interrupts that are needed. |

[SWS_Can_00419] [The Can module shall disable all unused interrupts in the CAN
controller. |

[SWS_Can_00420] [The Can module shall reset the interrupt flag at the end of the
ISR (if not done automatically by hardware). |

Implementation hint: The Can module shall not set the configuration (i.e. priority) of
the vector table entry.

[SWS_Can_00079]

Upstream requirements: SRS_BSW_00007, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW _
00309, SRS_BSW_00330

[The Can module shall fulfill all design and implementation guidelines described in

[6].]

7.1 Driver Scope

One Can module provides access to one CAN Hardware Unit that may consist of sev-
eral CAN controllers.

AUTSSAR

[SWS_Can_00077]
Upstream requirements: SRS_BSW_00347

[For CAN Hardware Units of different type, different Can modules shall be imple-
mented. |

[SWS_Can_00284] [In case several CAN Hardware Units (of same or different vendor)
are implemented in one ECU the function names, and global variables of the Can
modules shall be implemented such that no two functions with the same name are
generated. |

The naming convention is as follows:

<Can module name>_<vendorID>_<Vendor specific API name><driver abbreviation> ()

[SRS_BSW_00347] specifies the naming convention.

[SWS_Can_00385] [The naming conventions shall be used only in that case, if multi-
ple different CAN controller types on one ECU have to be supported. |

[SWS_Can_00386] [If only one controller type is used, the original naming conven-
tions without any driver abbreviation extensions are sufficient. |

See [1] for description how several Can modules are handled by the Canlf module.

7.2 Driver State Machine

The Can module has a very simple state machine, with the two states CAN_UNINIT
and CAN_READY. 7.1 shows the state machine.

[SWS_Can_00103]
Upstream requirements: SRS _BSW_00406

[After power-up/reset, the Can module shall be in the state CAN_UNINIT. |

CAN_UNINIT
Initial

Can_Init() Can_Delnit()

: CAN_READY :

Figure 7.1: Driver State

AUTSSAR

[SWS_Can_00246]
Upstream requirements: SRS_SPAL_12057, SRS_Can_01041

[The function can_1Init shall change the module state to CAN_READY, after initializ-
ing all controllers inside the HW Unit. |

[SWS_Can_00245]
Upstream requirements: SRS_SPAL_12057, SRS_Can_01041

[The function can_1Init shall initialize all CAN controllers according to their configu-
ration. |

Each CAN controller must then be started separately by calling the function can_-
SetControllerMode(CAN_CS_STARTED).

Implementation hint:

Hardware register settings that have impact on all CAN controllers inside the HW Unit
can only be set in the function Can_TInit.

Implementation hint:

The ECU State Manager module shall call can_1Init at most once during runtime.

[SWS_Can_91009]
Upstream requirements: SRS_Can_01166

[The function can_DeInit shall change the module state to CAN_UNINIT before de-
initializing all controllers inside the HW unit |

Refer to [SWS_Can_91010].

7.3 CAN Controller State Machine

Each CAN controller has complex state machines implemented in hardware. For sim-
plification, the number of states is reduced to the following four basic states in this
description: UNINIT, STOPPED, STARTED and SLEEP.

Any CAN hardware access is encapsulated by functions of the Can module, but the
Can module does not memorize the state changes.

The Can module offers the services Can_Init, Can_SetBaudrate and Can_Set-
ControllerMode. These services perform the necessary register settings that cause
the required change of the hardware CAN controller state.

There are two possibilities for triggering state changes by external events:

» Bus-off event
+ HW wakeup event

These events are indicated either by an interrupt or by a status bit that is polled in the
Can_MainFunction_BusOff Or Can_MainFunction_Wakeup.

The Can module does the register settings that are necessary to fulfill the required
behavior (i.e. no hardware recovery in case of bus off).

AUTSSAR

Then it notifies the Canlf module with the corresponding callback function. The soft-
ware state is then changed inside this callback function.

In case development errors are enabled and there is a not allowed transition requested
by the upper layer, the Can module shall rise the development error CAN_E_TRANSI-
TION.

The Can module does not check the actual state before it performs can_Wwrite or
raises callbacks.

7.3.1 CAN Controller State Description

This chapter describes the required hardware behavior for the different controller
states.

CAN controller state UNINIT

The CAN controller is not initialized. All registers belonging to the CAN module are in
reset state, CAN interrupts are disabled. The CAN Controller is not participating on the
CAN bus.

CAN controller state STOPPED

In this state the CAN Controller is initialized but does not participate on the bus. In
addition, error frames and acknowledges must not be sent.

(Example: For many controllers entering an ’initialization’-mode causes the controller
to be stopped.)

CAN controller state STARTED

The controller is in a normal operation mode with complete functionality, which means
it participates in the network. For many controllers leaving the ’initialization’-mode
causes the controller to be started.

CAN controller state SLEEP

The hardware settings only differ from state STOPPED for CAN hardware that support
a sleep mode (wake-up over CAN bus directly supported by CAN hardware).

[SWS_Can_00257]
Upstream requirements: SRS_SPAL_12067

[When the CAN hardware supports sleep mode and is triggered to transition into
SLEEP state, the Can module shall set the controller to the SLEEP state from which
the hardware can be woken over CAN Bus. |

[SWS_Can_00258] [When the CAN hardware does not support sleep mode and is
triggered to transition into SLEEP state, the Can module shall emulate a logical SLEEP
state from which it returns only, when it is triggered by software to transition into
STOPPED state. |

AUTSSAR

[SWS_Can_00404] [The CAN hardware shall remain in state STOPPED, while the
logical SLEEP state is active. |

7.3.2 CAN Controller State Transitions

A state transition is triggered by software with the function Can_sSetController—
Mode with the required transition as parameter. A successful state transition triggered
by software is notified by the callback function (Canlf_ControllerModelndication). The
monitoring whether the requested state is achieved is part of an upper layer module
and is not part of the Can module.

Some transitions are triggered by events on the bus (hardware). These transitions
cause a notification by means of a callback function.

The behavior for invalid transitions in production code is undefined. 7.2 shows all valid
state transitions.

PowerOff

PowerON reset

UNINIT

Can_Delnit()
Can_Delnit()

/ STOPPED \ SLEEP

: STARTED :

Figure 7.2: Controller State Machine

/

7.3.3 State transition caused by function Can_Init

* UNINIT -> STOPPED (for all controllers in HW unit)
+ software triggered by the function call Can_Tnit
» does configuration for all CAN controllers inside HW Unit

All control registers are set according to the static configuration.

[SWS_Can_00259] [The function can_1Init shall set all CAN controllers in the state
STOPPED. |

AUTSSAR

When the function can_1Init is entered and the Can module is not in state
CAN_UNINIT or the CAN controllers are not in state UNINIT, it shall raise the error
CAN_E_TRANSITION (Compare to [SWS_Can_00174] and [SWS_Can_00408]).

7.3.4 State transition caused by function Can_SetBaudrate

- STOPPED -> STOPPED; SLEEP -> SLEEP; STARTED -> STARTED
- software triggered by the function call Can_SetBaudrate
- changes the CAN controller configuration

CAN controller registers are set according to the static configurations.

[SWS_Can_00256] [If the call of Can_sSetBaudrate() would cause a re-initialization
of the CAN Controller and the CAN Controller is not in state STOPPED, it shall return
E_NOT_OK.|

[SWS_Can_00260] [If re-initialization is necessary the function Can_SetBaudrate
shall maintain the CAN controller in the state STOPPED. |

[SWS_Can_00422] [If re-initialization is necessary the function Can_SetBaudrate
shall ensure that any settings that will cause the CAN controller to participate in the
network are not set. |

7.3.5 State transition caused by function Can_SetControllerMode

The software can trigger a CAN controller state transition with the function can_Set-
ControllerMode. Depending on the CAN hardware, a change of a register setting
to transition to a new CAN controller state may take over only after a delay. The Can
module notifies the upper layer (Canlf_ControllerModelndication) after a successful
state transition about the new state. The monitoring whether the requested state is
achieved is part of an upper layer module and is not part of the Can module.

[SWS_Can_00370] [The function Can_MainFunction_Wakeup shall poll a flag of
the CAN status register until the flag signals that the change takes effect and notify
the upper layer with function Canlf_ControllerModelndication about a successful state
transition referring to the corresponding CAN controller with the abstract Canlf Control-
lerld. |

[SWS_Can_00398] [The function Can_sSetControllerMode shall use the system
service GetCounterValue for timeout monitoring to avoid blocking functions. |

AUTSSAR

[SWS_Can_00372]
Upstream requirements: SRS_SPAL_12077

[In case the flag signals that the change takes no effect and the maximum time can-
TimeoutDuration is elapsed, the function Can_SetControllerMode shall be left
and the function Can_MainFunction_Wakeup shall continue to poll the flag. |

[SWS_Can_00373] [The function Can_MainFunction_Wakeup shall call the func-
tion Canlf_ControllerModelndication to notify the upper layer about a successful state
transition of the corresponding CAN controller referred by abstract Canlf Controllerld,
in case the state transition was triggered by function Can_sSetControllerMode. |

State transition caused by function Can_SetControllerMode
(CAN_CS_STARTED)

« STOPPED -> STARTED

* software triggered

[SWS_Can_00261] [The function Can_SetControllerMode(CAN_CS_STARTED)
shall set the hardware registers in a way that makes the CAN controller participating
on the network. |

[SWS_Can_00262] [The function Can_SetControllerMode(CAN_CS_STARTED)
shall wait for limited time until the CAN controller is fully operational. Compare to
[SWS_Can_00398]. |

Transmit requests that are initiated before the CAN controller is operational get lost.
The only indicator for operability is the reception of TX confirmations or RX indications.
The sending entities might get a confirmation timeout and need to be able to cope with
that.

[SWS_Can_00409] [When the function Can_SetControllerMode
(CAN_CS_STARTED) is entered and the CAN controller is not in state STOPPED it
shall detect a invalid state transition (Compare to [SWS_Can_00200]). |

State transition caused by function Can_SetControllerMode
(CAN_CS_STOPPED)

« STARTED -> STOPPED
« SLEEP -> STOPPED

* software triggered

[SWS_Can_00263] [The function Can_sSetControllerMode(CAN_CS_STOPPED)
shall set the bits inside the CAN hardware such that the CAN controller stops partici-
pating on the network. |

AUTSSAR

[SWS_Can_00264] [The function Can_SetControllerMode(CAN_CS_STOPPED)
shall wait for a limited time until the CAN controller is really switched off. Compare to
[SWS_Can_00398]. |

[SWS_Can_00267] [If the CAN HW does not support a sleep mode, the transition
from SLEEP to STOPPED shall return from the logical sleep mode, but have no effect
to the CAN controller state (as the controller is already in stopped state). |

[SWS_Can_00268] [The function Can_sSetControllerMode(CAN_CS_STOPPED)
shall wait for a limited time until the CAN controller is in STOPPED state. Compare to
[SWS_Can_00398]. |

[SWS_Can_00282] [The function Can_SetControllerMode(CAN_CS_STOPPED)
shall cancel pending messages. |

State transition caused by function Can_SetControllerMode(CAN_CS_SLEEP)
« STOPPED -> SLEEP

* software triggered

[SWS_Can_00265] [The function Can_SetControllerMode(CAN_CS_SLEEP)
shall set the controller into sleep mode. |

[SWS_Can_00266] [If the CAN HW does support a sleep mode, the function can__
SetControllerMode(CAN_CS_SLEEP) shall wait for a limited time until the CAN
controller is in SLEEP state and it is assured that the CAN hardware is wake able.
Compare to [SWS_Can_00398]. |

[SWS_Can_00290] [If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_CS_SLEEP) shall set the CAN controller to the log-
ical sleep mode. |

[SWS_Can_00405] [This logical sleep mode shall left only, if function Can_SetCon-
trollerMode(CAN_CS_STOPPED) is called. |

[SWS_Can_00411] [When the function Can_SetController-
Mode(CAN_CS_SLEEP) is entered and the CAN controller is neither in state
STOPPED nor in state SLEEP, it shall detect a invalid state transition (Compare to
[SWS_Can_00200]). |

7.3.6 State transition caused by Hardware Events

State transition caused by Hardware Wakeup (triggered by wake-up event from
CAN bus)

« SLEEP -> STOPPED

AUTSSAR

« triggered by incoming L-PDUs
» The ECU Statemanager module is notified with the function EcuM_CheckWakeup

This state transition will only occur when sleep mode is supported by hardware.

[SWS_Can_00270] [On hardware wakeup (triggered by a wake-up event from CAN
bus), the CAN controller shall transition into the state STOPPED. |

[SWS_Can_00271]
Upstream requirements: SRS_BSW_00375, SRS_SPAL_12069, SRS_Can_01054

[On hardware wakeup (triggered by a wake-up event from CAN bus), the Can module
shall call the function EcuM_CheckWakeup either in interrupt context or in the context
of Can_MainFunction_Wakeup.|

[SWS_Can_00269] [The Can module shall not further process the L-PDU that caused
a wake-up. |

[SWS_Can_00048]
Upstream requirements: SRS_Can_01122
[In case of a CAN bus wake-up during sleep transition, the function can_setCon-
trollerMode(CAN_CS_STOPPED) shall return E_NOT_OK. |
State transition caused by Bus-Off (triggered by state change of CAN controller)

[SWS_Can_00020]
Upstream requirements: SRS_Can_01055

[
« STARTED -> STOPPED
» triggered by hardware if the CAN controller reaches bus-off state
« The Canlf module is notified with the function Canlf ControllerBusOff after
STOPPED state is reached referring to the corresponding CAN controller with
the abstract Canlf Controllerld.
]

[SWS_Can_00272]
Upstream requirements: SRS_Can_01060
[After bus-off detection, the CAN controller shall transition to the state STOPPED and

the Can module shall ensure that the CAN controller doesn’t participate on the network
anymore. |

AUTSSAR

[SWS_Can_00273]
Upstream requirements: SRS_Can_01060

[After bus-off detection, the Can module shall cancel still pending messages. |
[SWS_Can_00274]

Upstream requirements: SRS_Can_01060
[The Can module shall disable or suppress automatic bus-off recovery. |

7.3.7 State transition caused by function Can_Delnit

- STOPPED -> UNINIT; SLEEP -> UNINIT (for all controllers in HW unit)
- software triggered by the function call Can_DeInit

- prepares all CAN controllers inside HW Unit to be re-configured
[SWS Can_91010]
Upstream requirements: SRS_Can_01166, SRS_Can_01053
[The function can_DeInit shall set all CAN controllers in the state UNINIT |
When the function can_DeInit is entered and the Can module is not in state

CAN_READY or any of the CAN controllers is in state STARTED, it shall raise the
error CAN_E_TRANSITION (Referto [SWS_Can_91011] and [SWS_Can_91012]).

7.4 Can module/Controller Initialization

The ECU State Manager module shall initialize the Can module during startup phase
by calling the function can_Tnit before using any other functions of the Can module.

[SWS_Can_00250]
Upstream requirements: SRS_BSW_00101

[The function can_1Init shall initialize: static variables, including flags, Common set-
ting for the complete CAN HW unit, CAN controller specific settings for each CAN
controller|

[SWS_Can_00053]
Upstream requirements: SRS_SPAL_12125

[can_Init shall not change registers of CAN controller Hardware resources that are
not used. |

The Can module shall apply the following rules regarding initialization of controller
registers:

AUTSSAR

[SWS_Can_00407]
Upstream requirements: SRS_SPAL_12461

[

« If the hardware allows for only one usage of the register, the Can module imple-
menting that functionality is responsible initializing the register.

« If the register can affect several hardware modules and if it is an I/O register it
shall be initialized by the PORT driver.

« If the register can affect several hardware modules and if it is not an I/O register
it shall be initialized by the MCU driver.

» One-time writable registers that require initialization directly after reset shall be
initialized by the startup code.

« All other registers shall be initialized by the startup code.

]

[SWS_Can_00056] [Post-Build configuration elements that are marked as 'multiple’
(M’ or ’x’) in chapter 10 can be selected by passing the pointer 'Config’ to the init
function of the module. |

[SWS_Can_00062]
Upstream requirements: SRS_Can_01139, SRS_Can_01042

[If can_setBaudrate determines that the aimed configuration change requires a re-
initialization and the CAN Controller is in STOPPED, the function Can_sSetBaudrate
shall re-initialize the CAN controller and the controller specific settings. |

If re-initialization is necessary, the CAN Controller has to be switched to STOPPED
before Can_setBaudrate() can be executed and the new baud rate configuration
can be applied.

[SWS_Can_00255] [The function can_setBaudrate shall only affect register areas
that contain specific configuration for a single CAN controller. |

[SWS_Can_00021]

Upstream requirements: SRS_BSW_00344, SRS_BSW 00404, SRS_BSW_00405, SRS_SPAL _
12263, SRS _SPAL 12265

[The desired CAN controller configuration can be selected with the parameter Config. |

[SWS_Can_00291]
Upstream requirements: SRS_BSW_00438
[Config is a pointer into an array of implementation specific data structure stored

in ROM. The different controller configuration sets are located as data structures in
ROM. |

AUTSSAR

The possible values for Config are provided by the configuration description (see chap-
ter 10).

The Can module configuration defines the global CAN HW Unit settings and references
to the default CAN controller configuration sets.

7.5 L-PDU transmission

On L-PDU transmission, the Can module converts the L-PDU contents ID and Data
Length to a hardware specific format (if necessary) and triggers the transmission.

[SWS_Can_00059]
Upstream requirements: SRS_SPAL_12063
[Data mapping by CAN to memory is defined in a way that the CAN data byte which

is sent out first is array element 0, the CAN data byte which is sent out last is array
element 7 or 63 in case of CAN FD. |

[SWS_Can_00427] [If the presentation inside the CAN Hardware buffer differs from
AUTOSAR definition, the Can module must provide an adapted SDU-Buffer for the
upper layers. |

[SWS_Can_00100]
Upstream requirements: SRS_Can_01135

[Several TX hardware objects with unique HTHs may be configured. The Canlf mod-
ule provides the HTH as parameter of the TX request. See Figure 7.3 for a possible
configuration. |

Message Objects of CAN Hardware

"\
/ AN
HRH=0 — ID DLC SDU
HRH=1 —— ID DLC SDU
unused ——— ID DLC SDU
HRH=2 ——— ID DLC SDuU
HRH=3 —— ID DLC SDU
unused ——— ID DLC SDU
HTH=4 ——— ID DLC SDuU
HTH=5 —— ID DLC SDU

Figure 7.3: Example of assignment of HTHs and HRHs to the Hardware Objects. The
numbering of HTHs and HRHs are implementation specific. The chosen numbering is
only an example.

AUTSSAR

[SWS_Can_00276] |[The function cCan_write shall store the swPduHandle
that is given inside the parameter Pdulnfo until the Can module calls the
Canlf_TxConfirmation for this request where the swPduHandle is given as parame-
ter. |

The feature of [SWS_Can_00276] is used to reduce time for searching in the Canlf
module implementation.

[SWS_Can_00016]
Upstream requirements: SRS_Can_01051

[The Can module shall call Canlf_TxConfirmation to indicate a successful transmis-
sion. It shall either called by the TX-interrupt service routine of the corresponding HW
resource or inside the Can_MainFunction_Write in case of polling mode. |

7.5.1 Priority Inversion

Multiplexed transmission can be used to avoid outer/inner priority inversion (see chap-
ter 2.1).

[SWS_Can_00277]

Upstream requirements: SRS_Can_01134
[The Can module shall allow that the functionality "Multiplexed Transmission” is stati-
cally configurable (ON | OFF) at pre-compile time. |

[SWS_Can_00401]
Upstream requirements: SRS_Can_01134

[Several transmit hardware objects (defined by "CanHwObjectCount”) shall be as-
signed by one HTH to represent one transmit entity to the upper layer. |

[SWS_Can_00402]
Upstream requirements: SRS_Can_01134

[The Can module shall support multiplexed transmission mechanisms for devices
where either

» Multiple transmit hardware objects, which are grouped to a transmit entity can be
filled over the same register set, and the microcontroller stores the L-PDU into a
free buffer autonomously, or

» The Hardware provides registers or functions to identify a free transmit hardware
object within a transmit entity.

AUTSSAR

[SWS_Can_00403]
Upstream requirements: SRS_Can_01134

[The Can module shall support multiplexed transmission for devices, which send L-
PDUs in order of L-PDU priority. |

Note: Ordering of L-PDUs by priority avoids inner priority inversion of the L-PDUs
assigned to a Basic-CAN configured for multiplexed transmission. Another possibility to
avoid inner priority inversion is the configuration of all HTHs to be Full-CAN if the CAN
hardware is able to prioritize upon transmission using the CAN ID or related priority
field.

Note: Software emulation of priority handling should be avoided, because the overhead
would void the advantage of the multiplexed transmission.

IMessage Objects of CAN Hardware

/ N
HEH=0 —— ID DLC sD1
HEH=1 —— ID DLC sDT
unused ———— ID DLC sDU
HEH=1 —— ID DLC sDU
HRH=3 ———— ID DLC =D
ID DLC sDhu
HTH =4 ID DLC sDu
ID DLC sDU

Figure 7.4: Example of assignment of HTHs and HRHs to the Hardware Objects with mul-
tiplexed transmission. The numbering of HTHs and HRHs are implementation specific.
The chosen numbering is only an example.

[SWS _Can_00011]
Upstream requirements: SRS_SPAL_12075, SRS_Can_01059

[The Can module shall directly copy the data from the upper layer buffers. It is the
responsibility of the upper layer to keep the buffer consistent until return of function call
(Can_write).]

7.5.2 Transmit Data Consistency

No content.

AUTSSAR

7.6 L-PDU reception

[SWS_Can_00279]
Upstream requirements: SRS_Can_01045

[On L-PDU reception, the Can module shall call the RX indication callback function
Canlf_RxIndication with ID, Hoh, abstract Canlf Controllerld in parameter Mailbox, and
the Data Length and pointer to the L-SDU buffer in parameter PdulnfoPtr. |

[SWS_Can_00423] [In case of an Extended CAN frame, the Can module shall convert
the ID to a standardized format since the Upper layer (CANIF) does not know whether
the received CAN frame is a Standard CAN frame or Extended CAN frame. In case of
an Extended CAN frame, MSB of a received CAN frame ID needs to be made as ’1’ to
mark the received CAN frame as Extended. |

[SWS_Can_00396]
Upstream requirements: SRS_Can_01045

[The RX-interrupt service routine of the corresponding HW resource or the function
Can_MainFunction_Read in case of polling mode shall call the callback function
Canlf_RxIndication. |

[SWS_Can_00060]
Upstream requirements: SRS_SPAL_12063

[Data mapping by CAN to memory is defined in a way that the CAN data byte which
is received first is array element 0, the CAN data byte which is received last is array
element 7 or 63 in case of CAN FD. If the presentation inside the CAN Hardware buffer
differs from AUTOSAR definition, the Can module must provide an adapted SDU-Buffer
for the upper layers. |

[SWS_Can_00501]
Upstream requirements: SRS_Can_01162

[CanDrv shall indicate whether the received message is a conventional CAN frame or
a CAN FD frame as described in Can_IdType. |

7.6.1 Receive Data Consistency

To prevent loss of received messages, some controllers support a FIFO built from a
set of hardware objects, while on other controllers it is possible to configure another
hardware object with the same properties that works as a shadow buffer and steps in
when the main object is busy.

[SWS_Can_00489] [The CAN driver shall support controllers which implement a hard-
ware FIFO. The size of the FIFO is configured via "CanHwObjectCount". |

AUTSSAR

[SWS_Can_00490] [Controllers that do not support a hardware FIFO often provide
the capabilities to implement a shadow buffer mechanism, where additional hardware
objects take over when the primary hardware object is busy. The number of hardware
objects is configured via "CanHwODbjectCount". |

Ilessage Ohjects of CAN Hardwrate

o g
;// ID DLC = AN
HEH =1 :: I DL bl |
| D DL spU
HEH = 1 | m DLE spu
HRH=2 ———— D DLC sy
;// I Ll STl
HRH-3 —— | I DL sDU
i—,__ I DLC bl A

Figure 7.5: Example of assignment of same HRHs to multiple Hardware Objects The
chosen numbering is only an example.

[SWS_Can_00299] [The Can module shall copy the L-SDU in a shadow buffer after
reception, if the RX buffer cannot be protected (locked) by CAN Hardware against
overwriting by a newly received message. |

[SWS_Can_00300] [The Can module shall copy the L-SDU in a shadow buffer, if the
CAN Hardware is not globally accessible. |

The complete RX processing (including copying to destination layer, e.g. COM) is done
in the context of the RX interrupt or in the context of the Can_MainFunction_Read.

[SWS_Can_00012]
Upstream requirements: SRS_Can_01059

[The Can module shall guarantee that neither the ISRs nor the function Can_-
MainFunction_Read can be interrupted by itself. The CAN hardware (or shadow)
buffer is always consistent, because it is written and read in sequence in exactly one
function that is never interrupted by itself. |

If the CAN hardware cannot be configured to lock the RX hardware object after recep-
tion (hardware feature), it could happen that the hardware buffer is overwritten by a
newly arrived message. In this case, the CAN controller detects an "overwrite” event,
if supported by hardware.

If the CAN hardware can be configured to lock the RX hardware object after recep-

AUTSSAR

tion, it could happen that the newly arrived message cannot be stored to the hardware
buffer. In this case, the CAN controller detects an "overrun” event, if supported by
hardware.

[SWS_Can_00395] [Can module shall raise the runtime error CAN_E_DATALOST in
case of “overwrite” or "overrun” event detection. |

Implementation Hint:
The system designer shall assure that the runtime for message reception (interrupt
driven or polling) correlates with the fasted possible reception in the system.

7.7 Wakeup Concept

The Can module handles wakeups that can be detected by the Can controller itself and
not via the Can transceiver. There are two possible scenarios: wakeup by interrupt and
wakeup by polling.

For wakeup by interrupt, an ISR of the Can module is called when the hardware detects
the wakeup.

[SWS_Can_00364]
Upstream requirements: SRS_BSW_00375, SRS_SPAL_12069, SRS_Can_01054

[If the ISR for wakeup events is called, it shall call EcuM_CheckWakeup in turn. The
parameter passed to EcuM_CheckWakeup shall be the ID of the wakeup source refer-
enced by the CanWakeupSourceRef configuration parameter. |

The ECU State Manager will then set up the MCU and call the Can module back via
the Can Interface, resulting in a call to Can_CheckWakeup.

When wakeup events are detected by polling, the ECU State Manager will cycli-
cally call can_CheckWakeup via the Can Interface as before. In both cases,
Can_CheckWakeup will check if there was a wakeup detected by a Can controller
and return the result. The CAN driver will then inform the ECU State Manager of the
wakeup event via EcuM_SetWakeupEvent.

The wakeup validation to prevent false wakeup events, will be done by the ECU State
Manager and the Can Interface afterwards and without any help from the Can module.
For a general description of the wakeup mechanisms and wakeup sequence diagrams
refer to Specification of ECU State Manager [5].

7.8 CAN Controller with selective wakeup functionality

This section describes requirements for CAN controller with selective wakeup function-
ality.

Partial Networking is a state in a CAN system where some nodes are in low power
mode while other nodes are communicating. This reduces the power consumption by
the entire network. Nodes in the low-power modes are woken up by predefined wakeup

AUTSSAR

frames.
CAN Controller which support selective wakeup can be woken up by predefined
wakeup frames.

[SWS_Can_00601] [If selective wakeup is supported by the CAN controller hardware,
it shall be indicated with the configuration parameter CanHwPnSupport. |

[SWS_Can_00602] [If selective wakeup is supported, CAN controller shall be config-
ured to wake up on a particular CAN frame or a group of CAN frames using the param-
eters CanPnFrameCanld, CanPnFrameCanldMask and CanPnFrameDataMask. |

[SWS_Can_00608] For APl Can_SetCanPnFrameDataMask [If selective wakeup
is supported, Can_SetCanPnFrameDataMask [SWS_Can_00604] is called and
Length parameter matches configuration parameter CanPnFrameDlc, CAN controller
shall be re-configured to wake up on a accordingly configured CAN frames (see
[SWS_Can_00602]) and data mask provided with DataMaskArrayPtr. |

If the CAN Controller is configured with CanPnEnabled = TRUE, the data mask used to
decide if the CAN Controller must wake up is the one configured in the CanPnFrame-
DataMaskSpec parameter of the CanPartialNetwork of the corresponding CanCon-
troller. If CAN controller is configured also with CanDynamicPnFrameDataMaskEn-
abled = TRUE, then the relevant data mask is the one provided in the argument
DataMaskArrayPtr of the APl Can_SetCanPnFrameDataMask. The value provided
in the argument DataMaskArrayPtr overrides the configured value of CanPnFrame-
DataMaskSpec.

7.9 Notification concept

The Can module offers only an event triggered notification interface to the Canlf mod-
ule. Each notification is represented by a callback function.

[SWS_Can_00099]
Upstream requirements: SRS_Can_01132

[The hardware events may be detected by an interrupt or by polling status flags of
the hardware objects. The configuration possibilities regarding polling is hardware de-
pendent (i.e. which events can be polled, which events need to be polled), and not
restricted by this standard. |

[SWS_Can_00007]
Upstream requirements: SRS_Can_01062

[It shall be possible to configure the driver such that no interrupts at all are used (com-
plete polling). |

The configuration of what is and is not polled by the Can module is internal to the
driver, and not visible outside the module. The polling is done inside the CAN main

AUTSSAR

functions (Can_MainFunction_xxx). Also the polled events are notified by the appropri-
ate callback function. Then the call context is not the ISR but the CAN main function.
The implementation of all callback functions shall be done as if the call context was the
ISR.

For further details see also description of the CAN main functions Can_-
MainFunction_Read, Can_MainFunction Write, Can_MainFunction_ Bu-
sOff and Can_MainFunction_Wakeup.

7.10 Reentrancy issues

A routine must satisfy the following conditions to be reentrant:

* It uses all shared variables in an atomic way, unless each is allocated to a specific
instance of the function.

« It does not call non-reentrant functions.
* It does not use the hardware in a non-atomic way.

Transmit requests are simply forwarded by the Canlf module inside the function
Canlf_Transmit.

The function Canlf _Transmit is re-entrant. Therefore the function can_wWrite needs
to be implemented thread-safe (for example by using mutexes):

Further (preemptive) calls will return with CAN_BUSY when the write can’t be per-
formed re-entrant. (example: write to different hardware TX Handles allowed, write to
same TX Handles not allowed)

In case of CAN_BUSY the Canlf module queues that request. (same behavior as if all
hardware objects are busy).

Can_EnableCanlnterrupts and Can_DisableCanlinterrupts may be called inside re-
entrant functions. Therefore these functions also need to be reentrant.

All other services don’t need to be implemented as reentrant functions.

The CAN main functions (i.e. Can_MainFunction_Read) shall not be interrupted by
themselves. Therefore these CAN main functions are not reentrant.

7.11 Hardware Timestamping

Hardware-based timestamping, if supported by the CAN controller, can be used e.g. to
enhance the precision of a synchronized time-base on CAN. The following CAN driver
APIls are provided, if hardware-based timestamping is supported:

* Can_GetCurrentTime
* Can_EnableEgressTimeStamp
* Can_GetEgressTimeStamp

* Can_GetIngressTimeStamp

AUTSSAR

Those APIs need to be enabled by the configuration parameter CanGlobalTimeSup-
port.

The hardware-based timestamping function of a CAN controller shall provide a free-
running counter that is used to take the timestamps of CAN message reception and
transmission. A free-running counter is a counter that counts up and overflows to zero
after reaching its specified maximum value. It is specified in the CiA 603 standard that
the free-running counter counts clock cycles; the resolution shall be at least 1 pus and
at most 1 ns. It is highly recommended to provide 32-bit time-stamp registers and a
32-bit counter.

The timestamp for transmitted and received CAN messages is captured when the CAN
frame is considered valid. Details are given in the CiA 603 standard.

7.12 Error classification

Chapter [3, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

[SWS_Can_00104]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00331

[The Can module shall be able to detect the following errors and exceptions depending
on its configuration (default/production) |

7.12.1 Development Errors

[SWS_Can_91019] Definition of development errors in module Can |

Type of error Related error code Error value
API Service called with wrong parameter CAN_E_PARAM_POINTER 0x01
API Service called with wrong parameter CAN_E_PARAM_HANDLE 0x02
API Service called with wrong parameter CAN_E_PARAM_DATA_LENGTH 0x03
API Service called with wrong parameter CAN_E_PARAM_CONTROLLER 0x04
API Service used without initialization CAN_E_UNINIT 0x05
Invalid transition for the current mode CAN_E_TRANSITION 0x06
Parameter Baudrate has an invalid value CAN_E PARAM_BAUDRATE 0x07
Invalid configuration set selection CAN_E_INIT_FAILED 0x09
API service called with invalid PDU ID CAN_E_PARAM_LPDU 0x0A

AUTSSAR

7.12.2 Runtime Errors

[SWS_Can_91020] Definition of runtime errors in module Can |

Type of error Related error code Error value
Received CAN message is lost CAN_E_DATALOST 0x01

|
[SWS_Can_00026]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00323, SRS_SPAL_00157

[The Can module shall indicate errors that are caused by erroneous usage of the Can
module API. This covers AP| parameter checks and call sequence errors. |

[SWS_Can_00091]
Upstream requirements: SRS_SPAL_12448

[After return of the DET the Can module’s function that raised the development error
shall return immediately. |

[SWS_Can_00089]
Upstream requirements: SRS_BSW_00369, SRS BSW 00386, SRS _SPAL 12448

[The Can module’s environment shall indicate development errors only in the return
values of a function of the Can module when DET is switched on and the function
provides a return value. The returned value is E_NOT_OK. |

7.12.3 Production Errors

There are no productions errors.

7.12.4 Extended Production Errors

There are no extended production errors.

7.12.5 Return Value

CAN_BUSY is reported via return value of the function can_write. The Canlf module
reacts according the sequence diagrams specified for the Canlf module. E_NOT_OK
is reported via return value in case of a wakeup during transition to sleep mode.Bus-off
and Wake-up events are forwarded via notification callback functions.

AUTSSAR

7.13 CAN FD Support

For performance reasons some CAN controllers allow to use a Flexible Data-Rate fea-
ture called CAN FD (see "CAN with Flexible Data-Rate” specification). Indicated during
the arbitration phase it is possible to switch to a higher baud rate during payload and
CRC. This second baud rate has to be configured by extending CanControllerBau-
drateConfig with CanControllerFdBaudrateConfig. If a baud rate is active which has a
CAN FD configuration (see CanControllerFdBaudrateConfig 10.2.5) the CAN FD fea-
ture is enabled for this controller. The specified second baud rate is needed to support
reception of CAN FD frames with bit rate switch (BRS). Whether the second baudrate
is used for transmission or not depends on configuration parameter CanControllerTxBi-
tRateSwitch (see CanControllerFdBaudrateConfig 10.2.5).

However, there may be cases where conventional CAN 2.0 messages need to be
transmitted in networks supporting CAN-FD messages for example to facilitate CAN
selective wakeup. In these cases it is necessary to support transmitting interleaved
conventional CAN messages with CAN-FD messages. This can be achieved on
frame level by using the two most significant bits of the Canld (see Can_ldType8.2.3,
[SWS_Can_00416]) passed during can_Write to indicate which kind of frame shall
be used.

CAN FD also supports an extended payload which allows the transmission of up to 64
bytes. This feature also depends on the CAN FD configuration (see CanControllerFd-
BaudrateConfig 10.2.5). Therefore, if the CAN Controller is in CAN FD mode (valid
CanControllerFdBaudrateConfig) and the CAN FD flag is set in Canld passed to Can__
Write(), CanDrv supports the transmission of PDUs with a length up to 64 bytes. If
there is a request to transmit a CAN FD frame and the CAN Controller is not in CAN
FD mode (no CanControllerFdBaudrateConfig) the frame is sent as conventional CAN
frame as long as the PDU length <= 8 bytes.

7.14 CAN XL Extension

CAN/CAN-FD are proven in use, affordable and well distributed communication proto-
cols with the respective communication stacks already specified within AUTOSAR.
Within the automotive industry there is a constant trend to increase communication
bandwidth to cope with the complexity of modern E/E architectures. Having a lowcost,
robust bus system that also follows this trend is clearly seen as a beneficial addition to
the AUTOSAR standard. Therefore, CAN XL is introduced (see [7],[8]).

The goal is that CAN XL will help bridge the gap between current CAN implementations
and current 100 Mbit Ethernet solutions. On the same network segment, both CAN
2.0/FD/XL and Ethernet traffic can coexist. Baudrate is not fixed to 10 Mbit like at
10BASE-T1S but can be adjusted flexible up to 20 Mbit/s. In addition, a payload up to
2048 bytes is possible.

CAN XL has a minimal impact on existing AUTOSAR Modules but still brings benefit of
new properties.

AUTSSAR

Using the newly introduced CAN XL Driver it is still possible to send CAN 2.0 and CAN
FD Frames without any changes.

As CAN XL Driver is implemented as an extension for the existing CAN Driver (with
new document AUTOSAR_CP_SWS_CANXLDriver.pdf), non CAN XL hardware will
still use basic CAN Driver implementation.

The CAN XL Driver is an extension of CAN Driver and introduces an ad-
ditional APl to support CAN XL Frames and Ethernet communication (see
AUTOSAR_CP_SWS_CANXLDriver.pdf for further details).

7.15 Reporting of CAN Error Types

[SWS_Can_91022]
Upstream requirements: RS_lds_00810

[If the CanEnableSecurityEventReporting true and CanDrv detects a CanErrorType in
the range of 0x1-0xB, then CanDrv shall call Canlf_ErrorNotification with the Control-
lerld and the CanError as parameters. |

[SWS_Can_91024]
Upstream requirements: RS_lds_00810

[If no of the predefined Can_ErrorType values matches to the error provided by the
CAN hardware, the CAN driver shall not report the error to the Canlf. |

[SWS_Can_91023]
Upstream requirements: RS_lds_00810
[If the CanEnableSecurityEventReporting true and CanDrv detects a transition to er-

ror state passive, then CanDrv shall call Canlf_ControllerErrorStatePassive with the
Controllerld and the values for the Rx and Tx error counters. |

AUTSSAR

8 API Specification

The prefix of the function names may be changed in an implementation with several
Can modules as described in [SWS_Can_00284].

8.1 Imported Types
In this chapter all types included from the following modules are listed:

[SWS_Can_00222] Definition of imported datatypes of module Can |

Module Header File Imported Type
Comtype ComStack_Types.h PduldType
ComStack_Types.h PdulnfoType
ComStack_Types.h PduLengthType
EcuM EcuM.h EcuM_WakeupSourceType
lcu Icu.h Icu_ChannelType
Os Os.h CounterType
Os.h StatusType
Os.h TickRefType
Os.h TickType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Can_ConfigType

[SWS_Can_00413] Definition of datatype Can_ConfigType |

Name Can_ConfigType
Kind Structure
Description This is the type of the external data structure containing the overall initialization data for the CAN

driver and SFR settings affecting all controllers. Furthermore it contains pointers to controller
configuration structures. The contents of the initialization data structure are CAN hardware
specific.

Available via Can.h

AUTSSAR

8.2.2 Can_PduType

[SWS_Can_00415] Definition of datatype Can_PduType |

Name

Can_PduType

Kind

Structure

Elements

swPduHandle

Type PduldType

Comment -

length

Type uint8

Comment -

id

Type Can_IdType

Comment —

sdu

Type uint8*

Comment -

Description

This type unites Pduld (swPduHandle), SduLength (length), SduData (sdu), and Canld (id) for any
CAN L-SDU.

Available via

Can_GeneralTypes.h

8.2.3 Can_IdType

[SWS_Can_00416] Definition of ImplementationDataType Can_IdType |

Name Can_IdType

Kind Type

Derived from uint32

Range Standard32Bit 0..0x400007FF 0..0x400007FF
Extended32Bit 0..0xDFFFFFFF 0..0xDFFFFFFF

Description Represents the Identifier of an L-PDU. The two most significant bits specify the frame type: 00
CAN message with Standard CAN ID 01 CAN FD frame with Standard CAN ID 10 CAN message
with Extended CAN ID 11 CAN FD frame with Extended CAN ID

Variation -

Available via Can_GeneralTypes.h

AUTSSAR

8.2.4 Can_HwHandleType

[SWS_Can_00429] Definition of datatype Can_HwHandleType |

Name Can_HwHandleType
Kind Type
Derived from Basetype Variation
uint16 -
uint8 -
Range Standard 0..0xOFF 0..0xOFF
Extended 0..0xFFFF 0..0xFFFF
Description Represents the hardware object handles of a CAN hardware unit. For CAN hardware units with

more than 255 HW objects use extended range.

Available via

Can_GeneralTypes.h

8.2.5 Can_HwType

[SWS_CAN_00496] Definition of datatype Can_HwType |

Name Can_HwType
Kind Structure
Elements Canld
Type Can_|dType
Comment Standard/Extended CAN ID of CAN L-PDU
Hoh
Type Can_HwHandleType
Comment ID of the corresponding Hardware Object Range
Controllerld
Type uint8
Comment Controllerld provided by Canlf clearly identify the corresponding
controller
Description This type defines a data structure which clearly provides an Hardware Object Handle including its
corresponding CAN Controller and therefore CanDrv as well as the specific Canld.
Available via Can_GeneralTypes.h

AUTSSAR

8.2.6 Extension to Std_ReturnType

[SWS_Can_00039] Definition of Std_ReturnType-extension for module Can
Upstream requirements: SRS_BSW_00331

[

Range CAN_BUSY 0x02 transmit request could not be
processed because no transmit
object was available

Description Overlayed return value of Std_ReturnType for CAN driver APl Can_Write()

Available via Can_GeneralTypes.h

8.2.7 Can_ErrorStateType

[SWS_Can_91003] Definition of datatype Can_ErrorStateType |

Name Can_ErrorStateType

Kind Enumeration

Range CAN_ERRORSTATE_ - The CAN controller takes fully part in
ACTIVE communication.
CAN_ERRORSTATE_ - The CAN controller takes part in
PASSIVE communication, but does not send active

error frames.

CAN_ERRORSTATE_ - The CAN controller does not take part in
BUSOFF communication.

Description Error states of a CAN controller.

Available via

Can_GeneralTypes.h

8.2.8 Can_ControllerStateType

[SWS_Can_91013] Definition of datatype Can_ControllerStateType |

Name Can_ControllerStateType

Kind Enumeration

Range CAN_CS_UNINIT 0x00 CAN controller state UNINIT.
CAN_CS_STARTED 0x01 CAN controller state STARTED.
CAN_CS_STOPPED 0x02 CAN controller state STOPPED.
CAN_CS_SLEEP 0x03 CAN controller state SLEEP.

Description States that are used by the several ControllerMode functions.

Available via

Can_GeneralTypes.h

AUTSSAR

8.2.9 Can_ErrorType

[SWS_Can_91021] Definition of datatype Can_ErrorType |

Name Can_ErrorType
Kind Enumeration
Ranae CAN_ERROR_BIT _ 0x01 A 0 was transmitted and a 1 was read back
9 MONITORING1
CAN_ERROR_BIT_ 0x02 A 1 was transmitted and a 0 was read back
MONITORINGO
CAN_ERROR_BIT 0x03 The HW reports a CAN bit error but cannot
report distinguish between CAN_ERROR_
BIT_MONITORING1 and CAN_ERROR_
BIT_MONITORINGO
CAN_ERROR_CHECK _ 0x04 Acknowledgement check failed
ACK_FAILED
CAN_ERROR_ACK_ 0x05 Acknowledgement delimiter check failed
DELIMITER
CAN_ERROR_ 0x06 The sender lost in arbitration.
ARBITRATION_LOST
CAN_ERROR_OVERLOAD 0x07 CAN overload detected via an overload
frame. Indicates that the receive buffers of a
receiver are full.
CAN_ERROR_CHECK_ 0x08 Violations of the fixed frame format
FORM_FAILED
CAN_ERROR_CHECK _ 0x09 Stuffing bits not as expected
STUFFING_FAILED
CAN_ERROR_CHECK _ 0xA CRC failed
CRC_FAILED
CAN_ERROR_BUS LOCK 0xB Bus lock (Bus is stuck to dominant level)
Description The enumeration represents a superset of CAN Error Types which typical CAN HW is able to
report. That means not all CAN HW will be able to support the complete set.
Available via Can_GeneralTypes.h

8.2.10 Can_TimeStampType

[SWS_CAN_91029] Definition of datatype Can_TimeStampType

Status:

DRAFT

Upstream requirements: SRS_Can_01181

[

Name Can_TimeStampType (draft)
Kind Structure
Elements nanoseconds
Type uint32
Comment Nanoseconds part of the time
seconds
Type ‘ uint32

\Y%

AUTSSAR

A

Comment ‘ Seconds part of the time

Description

Tags: atp.Status=draft

Variables of this type are used to express time stamps based on relative time.
Value range: * Seconds: 0 .. 4.294.967.295 s (circa 136 years) * Nanoseconds: 0 .. 999.999.999
ns

Available via

Can_GeneralTypes.h

8.3 Function Definitions

8.3.1 Services affecting the complete hardware unit

8.3.1.1

Can_lInit

[SWS_Can_00223] Definition of API function Can_Init
Upstream requirements: SRS_BSW_00358, SRS BSW_00414

[

Service Name

Can_lInit

Syntax void Can_Init (
const Can_ConfigTypex Config
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Config Pointer to driver configuration.
Parameters (inout) None
Parameters (out) None
Return value None
Description This function initializes the module.
Available via Can.h

]

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

[SWS_Can_00174] [If development error detection for the Can module is enabled:
The function can_Init shall raise the error CAN_E_TRANSITION if the driver is not in
state CAN_UNINIT. |

[SWS_Can_00408] [If development error detection for the Can module is enabled:
The function can_1nit shall raise the error CAN_E_TRANSITION if the CAN con-
trollers are not in state UNINIT. |

AUTSSAR

8.3.1.2 Can_GetVersioninfo

[SWS_Can_00224] Definition of API function Can_GetVersioninfo |

Service Name

Can_GetVersioninfo

Syntax void Can_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None
Description This function returns the version information of this module.
Available via Can.h

]

[SWS_Can_00177] [If development error detection for the Can module is enabled:
The function Can_GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if

the parameter versioninfo is a null pointer. |

8.3.1.3 Can_Delnit

[SWS_Can_91002] Definition of API function Can_Delnit
Upstream requirements: SRS_Can_01166, SRS_BSW_00336

[

Service Name

Can_Delnit

Syntax void Can_DelInit (
void
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This function de-initializes the module.
Available via Can.h

]

Note: General behavior and constraints on de-initialization functions are specified by
[SWS_BSW_00152], [SWS_BSW_00072], [SWS_BSW_00232], [SWS_BSW_00233]

AUTSSAR

Caveat: Caller of the can_DeInit function has to be sure no CAN controller is in the
state STARTED

[SWS _Can_91011]
Upstream requirements: SRS_BSW_00369

[If development error detection for the Can module is enabled: The function
Can_DeInit shall raise the error CAN_E_TRANSITION if the driver is not in state
CAN_READY. |

[SWS _Can_91012]
Upstream requirements: SRS_BSW_00369

[If development error detection for the Can module is enabled: The function Can_-
DeInit shall raise the error CAN_E_TRANSITION if any of the CAN controllers is in
state STARTED. |

8.3.2 Services affecting one single CAN Controller

8.3.2.1 Can_SetBaudrate

[SWS_CAN_00491] Definition of API function Can_SetBaudrate |

Service Name Can_SetBaudrate
Syntax Std_ReturnType Can_SetBaudrate (
uint8 Controller,
uintl6 BaudRateConfigID
)
Service ID [hex] 0xOf
Sync/Async Synchronous
Reentrancy Reentrant for different Controllers. Non reentrant for the same Controller.
Parameters (in) Controller CAN controller, whose baud rate shall be set
BaudRateConfigID references a baud rate configuration by ID (see CanController
BaudRateConfigID)
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Service request accepted, setting of (new) baud rate
started
E_NOT_OK: Service request not accepted
Description This service shall set the baud rate configuration of the CAN controller. Depending on
necessary baud rate modifications the controller might have to reset.
Available via Can.h

]

There might be several baud rate configurations available. The function Can_SetBau-
drate can be used to switch between different configurations.

Depending on the old and new baud rate configuration only a subset of parameters
may be changed during runtime and a re-initialization of the CAN Controller might be
avoidable.

AUTSSAR

If the call of cCan_sSetBaudrate will cause a re-initialization of the CAN Controller
the CAN controller must be in state STOPPED when this function is called (see
[SWS_Can_00256] and [SWS_Can_00260]).

The CAN controller is in state STOPPED after
[SWS_Can_00259]).

(re-)initialization (see

[SWS_Can_00492] [If development error detection for the Can module is enabled:
The function Can_SetBaudrate shall raise the error CAN_E_UNINIT and return
E_NOT_OK if the driver is not yet initialized. |

[SWS_Can_00493] [If development error detection for the Can module is enabled:
The function Can_sSetBaudrate shall raise the error CAN_E_PARAM_BAUDRATE and
return E_NOT_OK if the parameter BaudRateConfigID has an invalid value. |

[SWS_Can_00494] [If development error detection for the Can module is enabled the
function can_SetBaudrate shall raise the error CAN_E_PARAM_CONTROLLER and
return E_NOT_OK if the parameter Controller is out of range. |

[SWS_Can_00500] [If the requested baud rate change can not performed without a
re-initialization of the CAN Controller E_NO_OK shall be returned. |

8.3.2.2 Can_SetControllerMode

[SWS_Can_00230] Definition of API function Can_SetControllerMode |

Can_SetControllerMode

Service Name

Syntax Std_ReturnType Can_SetControllerMode (
uint8 Controller,
Can_ControllerStateType Transition
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) Controller CAN controller for which the status shall be changed
Transition Transition value to request new CAN controller state
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: request accepted
E_NOT_OK: request not accepted, a development error occurred

Description

This function performs software triggered state transitions of the CAN controller State machine.

Available via

Can.h

J
[SWS_Can_00017]

Upstream requirements: SRS_SPAL_12169, SRS_Can_01053

[The function can_SetControllerMode shall perform software triggered state tran-
sitions of the CAN controller State machine. See also [SRS_SPAL_12169]|

AUTSSAR

[SWS_Can_00384] [Each time the CAN controller state machine is triggered with the
state transition value CAN_CS_STARTED, the function Can_SetControllerMode
shall re-initialize the CAN controller with the same controller configuration set previ-
ously used by functions Can_SetBaudrate Or Can_Init.|

Refer to [SWS_Can_00048] for the case of a wakeup event from CAN bus occurred
during sleep transition.

[SWS_Can_00294] [The function Can_SetControllerMode shall disable the wake-
up interrupt, while checking the wake-up status. |

[SWS_Can_00196] [The function Can_SetControllerMode shall enable interrupts
that are needed in the new state. |

[SWS_Can_00425] [Enabling of CAN interrupts shall not be executed, when CAN
interrupts have been disabled by function Can_DisableControllerInterrupts.]

[SWS_Can_00197] [The function Can_SetControllerMode shall disable interrupts
that are not allowed in the new state. |

[SWS_Can_00426] [Disabling of CAN interrupts shall not be executed, when CAN
interrupts have been disabled by function Can_DisableControllerInterrupts.]

[SWS_Can_00198] [If development error detection for the Can module is enabled: if
the module is not yet initialized, the function Can_sSetControllerMode shall raise
development error CAN_E_UNINIT and return E_NOT_OK. |

[SWS_Can_00199] [If development error detection for the Can module is enabled: if
the parameter is out of range, the function Can_SetControllerMode shall raise
development error CAN_E_PARAM_CONTROLLER and return E_NOT_OK. |

[SWS_Can_00200] [If development error detection for the Can module is enabled:
if an invalid transition has been requested, the function Can_SetControllerMode
shall raise the error CAN_E_TRANSITION and return E_NOT_OK. |

[SWS_Can_00603] [If selective wakeup is supported by hardware and the requested
mode is CAN_CS_ STARTED,CAN controller shall call the APl canIf_ConfirmC-
trlPnAvailability() for the corresponding abstract Canlf Controllerld. CanIf_
ConfirmCtrlPnAvailability informs CanNm (through Canlf and CanSm) that
selective wakeup is enabled. |

AUTSSAR

8.3.2.3 Can_DisableControllerinterrupts

[SWS_Can_00231] Definition of API function Can_DisableControllerinterrupts
Upstream requirements: SRS_BSW_00312

[
Service Name Can_DisableControllerInterrupts
Syntax void Can_DisableControllerInterrupts (
uint8 Controller
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Controller CAN controller for which interrupts shall be disabled.
Parameters (inout) None
Parameters (out) None
Return value None
Description This function disables all interrupts for this CAN controller.
Available via Can.h
J

[SWS_Can_00049]
Upstream requirements: SRS_Can_01043

[The function Can_DisableControllerInterrupts shall access the CAN con-
troller registers to disable all interrupts for that CAN controller only, if interrupts for that
CAN Controller are enabled. |

[SWS_Can_00202] [When Can_DisableControllerInterrupts has been
called several times, Can_EnableControllerInterrupts must be called as many
times before the interrupts are re-enabled. |

Implementation note:

The function Can_DisableControllerInterrupts can increase a counter on ev-
ery execution that indicates how many Can_FEnableControllerInterrupts need
to be called before the interrupts will be enabled (incremental disable).

[SWS_Can_00204] [The Can module shall track all individual enabling and disabling
of interrupts in other functions (i.e. Can_SetControllerMode) , so that the correct
interrupt enable state can be restored. |

Implementation example:

* in’interrupts enabled mode’: For each interrupt state change does not only modify
the interrupt enable bit, but also a software flag.

* in’interrupts disabled mode’: only the software flag is modified.

AUTSSAR

* Can_DisableControllerInterrupts and Can_EnableControllerIn-
terrupts do not modify the software flags.

* Can_EnableControllerInterrupts reads the software flags to re-enable
the correct interrupts.

[SWS_Can_00205] [If development error detection for the Can module is enabled:
The function Can_DisableControllerInterrupts shall raise the error CAN_E_
UNINIT if the driver not yet initialized. |

[SWS_Can_00206] [If development error detection for the Can module is enabled:
The function Can_DisableControllerInterrupts shall raise the error CAN_E_
PARAM_CONTROLLER if the parameter Controller is out of range. |

8.3.2.4 Can_EnableControllerinterrupts

[SWS_Can_00232] Definition of APl function Can_EnableControllerinterrupts
Upstream requirements: SRS_BSW_00312

[
Service Name Can_EnableControllerinterrupts
Syntax void Can_EnableControllerInterrupts (
uint8 Controller
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Controller CAN controller for which interrupts shall be re-enabled
Parameters (inout) None
Parameters (out) None
Return value None
Description This function enables all allowed interrupts.
Available via Can.h
]

[SWS_Can_00050]
Upstream requirements: SRS_Can_01043

[The function Can_EnableControllerInterrupts shall enable all interrupts that
must be enabled according the current software status. |

[SWS_Can_00202] applies to this function.

[SWS_Can_00208] [The function Can_EnableControllerInterrupts shall per-
form no action when Can_DisableControllerInterrupts has not been called
before. |

See also implementation example for “Can_DisableControllerinterrupts”.

AUTSSAR

[SWS_Can_00209] [If development error detection for the Can module is enabled:
The function Can_EnableControllerInterrupts shall raise the error CAN_E_-—
UNINIT if the driver not yet initialized. |

[SWS_Can_00210] [If development error detection for the Can module is enabled:

The function Can_EnableControllerInterrupts shall raise the error CAN_E_ -
PARAM_CONTROLLER if the parameter Controller is out of range. |

8.3.2.5 Can_CheckWakeup

[SWS_Can_00360] Definition of API function Can_CheckWakeup |

Service Name Can_CheckWakeup
Syntax Std_ReturnType Can_CheckWakeup (
uint8 Controller
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Controller Controller to be checked for a wakeup.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted
Description This function checks if a wakeup has occurred for the given controller.
Available via Can.h
]

[SWS_Can_00361] [The function Can_CheckWakeup shall check if the requested
CAN controller has detected a wakeup. If a wakeup event was successfully detected,
reporting shall be done to EcuM via APl EcuM_SetWakeupEvent. |

[SWS_Can_00362] [If development error detection for the Can module is enabled:
The function Can_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is
not yet initialized. |

[SWS_Can_00363] [If development error detection for the Can module is enabled:
The function Can_CheckWakeup shall raise the error CAN_E_PARAM_CONTROLLER if
the parameter Controller is out of range. |

AUTSSAR

8.3.2.6 Can_GetControllerErrorState

[SWS_Can_91004] Definition of API function Can_GetControllerErrorState |

Service Name Can_GetControllerErrorState
Syntax Std_ReturnType Can_GetControllerErrorState (
uint8 ControllerId,
Can_ErrorStateType*x ErrorStatePtr
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Non Reentrant for the same Controllerld
Parameters (in) Controllerld Abstracted Canlf Controllerld which is assigned to a CAN
controller, which is requested for ErrorState.
Parameters (inout) None
Parameters (out) ErrorStatePtr Pointer to a memory location, where the error state of the CAN
controller will be stored.
Return value Std_ReturnType E_OK: Error state request has been accepted.
E_NOT_OK: Error state request has not been accepted.
Description This service obtains the error state of the CAN controller.
Available via Can.h

]

[SWS_Can_91005]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00416
[If development error detection for the Can module is enabled: if the module is not yet

initialized, the function Can_GetControllerErrorState shall raise development
error CAN_E_UNINIT and return E_NOT_OK. |

[SWS_Can_91006]
Upstream requirements: SRS_BSW_00323
[If development error detection for the Can module is enabled: if the parameter Con-

trollerld is out of range, the function Can_GetControllerErrorState shall raise
development error CAN_E_PARAM_CONTROLLER and return E_NOT_OK. |

[SWS_Can_91007]
Upstream requirements: SRS_BSW_00323
[If development error detection for the Can module is enabled: if the parameter Er-

rorStatePtr is a null pointer, the function Can_GetControllerErrorState shall
raise development error CAN_E_PARAM_POINTER and return E_NOT_OK.]

[SWS_Can_91008]
Upstream requirements: SRS_Can_01167
[When the API Can_GetControllerErrorState() is called with Controller Id as

input parameter then Can driver shall read the error state register of Can Controller
and shall return the error status to upper layer. |

AUTSSAR

8.3.2.7 Can_GetControllerMode

[SWS_Can_91014] Definition of API function Can_GetControllerMode |

Service Name Can_GetControllerMode
Syntax Std_ReturnType Can_GetControllerMode (
uint8 Controller,
Can_ControllerStateTypex ControllerModePtr
)

Service ID [hex] 0x12

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Controller CAN controller for which the status shall be requested.

Parameters (inout) None

Parameters (out) ControllerModePtr Pointer to a memory location, where the current mode of the CAN
controller will be stored.

Return value Std_ReturnType E_OK: Controller mode request has been accepted.
E_NOT_OK: Controller mode request has not been
accepted.

Description This service reports about the current status of the requested CAN controller.

Available via Can.h

]

[SWS_Can_91015] [The service Can_GetControllerMode shall return the mode
of the requested CAN controller. |

[SWS_Can_91016]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00416
[If development error detection for the Can module is enabled: The function Can_-

GetControllerMode shall raise the error CAN_E_UNINIT and return E_NOT_OK if
the driver is not yet initialized. |

[SWS _Can_91017]
Upstream requirements: SRS_BSW_00323
[If parameter Controller of Can_GetControllerMode() has an invalid value, the

CanDrv shall report development error code CAN_E_PARAM_CONTROLLER to the
Det_ReportError service of the DET. |

[SWS_Can_91018]
Upstream requirements: SRS_BSW_00323
[If parameter ControllerModePtr of Can_GetControllerMode() has an null pointer,

the CanDrv shall report development error code CAN_E_PARAM_POINTER to the
Det_ReportError service of the DET. |

AUTSSAR

8.3.2.8 Can_GetControllerRxErrorCounter

[SWS_Can_00511] Definition of API function Can_GetControllerRxErrorCounter
[

Service Name Can_GetControllerRxErrorCounter

Syntax Std_ReturnType Can_GetControllerRxErrorCounter (
uint8 ControllerId,
uint8* RxErrorCounterPtr

)

Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Non Reentrant for the same Controllerld
Parameters (in) Controllerld CAN controller, whose current Rx error counter shall be acquired.
Parameters (inout) None
Parameters (out) RxErrorCounterPtr Pointer to a memory location, where the current Rx error counter
of the CAN controller will be stored.
Return value Std_ReturnType E_OK: Rx error counter available.
E_NOT_OK: Wrong Controllerld, or Rx error counter not available.
Description Returns the Rx error counter for a CAN controller. This value might not be available for all CAN

controllers, in which case E_NOT_OK would be returned.

Please note that the value of the counter might not be correct at the moment the API returns it,
because the Rx counter is handled asynchronously in hardware. Applications should not trust
this value for any assumption about the current bus state.

Available via Can.h

]

[SWS_Can_00512]
Upstream requirements: SRS_BSW_00406
[If development error detection for the Can module is enabled: if the module is not

yet initialized, the function Can_GetControllerRxErrorCounter shall raise development
error CAN_E_UNINIT and return E_NOT_OK. |

[SWS_Can_00513]
Upstream requirements: SRS_BSW_00323
[If development error detection for the Can module is enabled: if the parameter Con-

trollerld is out of range, the function Can_GetControllerRxErrorCounter shall raise de-
velopment error CAN_E_PARAM_CONTROLLER and return E_NOT_OK. |

[SWS_Can_00514]
Upstream requirements: SRS_BSW_00323
[If development error detection for the Can module is enabled: if the parameter Rx-

ErrorCounterPtr is a null pointer, the function Can_GetControllerRxErrorCounter shall
raise development error CAN_E_PARAM_POINTER and return E_NOT_OK.]

AUTSSAR

[SWS_Can_00515]

Upstream requirements: SRS_Can_01170

[When the APl Can_GetControllerRxErrorCounter is called with Controller Id as input
parameter then Can driver shall read the Rx error counter register of Can Controller
and shall return the Rx error count to upper layer. |

8.3.2.9 Can_GetControllerTxErrorCounter

[SWS_Can_00516]
[

Definition of API function Can_GetControllerTxErrorCounter

Service Name

Can_GetControllerTxErrorCounter

Syntax Std_ReturnType Can_GetControllerTxErrorCounter (
uint8 ControllerId,
uint8+ TxErrorCounterPtr
)
Service ID [hex] 0x31
Sync/Async Synchronous
Reentrancy Non Reentrant for the same Controllerld
Parameters (in) Controllerld CAN controller, whose current Tx error counter shall be acquired.
Parameters (inout) None
Parameters (out) TxErrorCounterPtr Pointer to a memory location, where the current Tx error counter
of the CAN controller will be stored.
Return value Std_ReturnType E_OK: Tx error counter available.
E_NOT_OK: Wrong Controllerld, or Tx error counter not available.

Description

Returns the Tx error counter for a CAN controller. This value might not be available for all CAN
controllers, in which case E_NOT_OK would be returned.

Please note that the value of the counter might not be correct at the moment the API returns it,
because the Tx counter is handled asynchronously in hardware. Applications should not trust
this value for any assumption about the current bus state.

Available via

Can.h

J
[SWS _Can_00517]

Upstream requirements: SRS_BSW_00406

[If development error detection for the Can module is enabled: if the module is not yet
initialized, the function Can_GetControllerTxErrorCounter shall raise develop-
ment error CAN_E_UNINIT and return E_NOT_OK. |

[SWS_Can_00518]

Upstream requirements: SRS_BSW_00323

[If development error detection for the Can module is enabled: if the parameter Con-
trollerld is out of range, the function Can_GetControllerTxErrorCounter shall
raise development error CAN_E_PARAM_CONTROLLER and return E_NOT_OK |

AUTSSAR

[SWS_Can_00519]
Upstream requirements: SRS_BSW_00323
[If development error detection for the Can module is enabled: if the parameter TxEr-

rorCounterPtr is a null pointer, the function Can_GetControllerTxErrorCounter
shall raise development error CAN_E_PARAM_POINTER and return E_NOT_OK.]

[SWS_Can_00520]
Upstream requirements: SRS_Can_01170
[When the APl Can_GetControllerTxErrorCounter is called with Controller Id

as input parameter then Can driver shall read the Tx error counter register of Can
Controller and shall return the Tx error count to upper layer. |

8.3.2.10 Can_GetCurrentTime

[SWS_CAN_91026] Definition of API function Can_GetCurrentTime
Status: DRAFT
Upstream requirements: SRS_Can_01181

Service Name Can_GetCurrentTime (draft)
Syntax Std_ReturnType Can_GetCurrentTime (
uint8 ControllerId,
Can_TimeStampType* timeStampPtr
)
Service ID [hex] 0x32
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Controllerld Index of the addresses CAN controller.
Parameters (inout) None
Parameters (out) timeStampPtr current time stamp
Return value Std_ReturnType E_OK: successful
E_NOT_OK: failed
Description Returns a time value out of the HW registers according to the capability of the HW
Important Note: Can_GetCurrentTime may be called within an exclusive area.
Tags: atp.Status=draft
Available via Can.h

[SWS_Can_00521]
Status: DRAFT

[If development error detection is enabled: the function shall check that the service
Can_Init was previously called. If the check fails, the function shall raise the devel-
opment error CAN_E_UNINIT.]

AUTSSAR

[SWS_Can_00522]
Status: DRAFT

[If development error detection is enabled: the function shall check the parameter
Controllerld for being valid. If the check fails, the function shall raise the development
error CAN_E_PARAM _CONTROLLER. |

[SWS_Can_00523]
Status: DRAFT

[If development error detection is enabled: the function shall check the parameter
timeStampPtr for being valid. If the check fails, the function shall raise the development
error CAN_E_PARAM_POINTER. |

[SWS_Can_00524]
Status: DRAFT

[The function shall be pre-compile time configurable On/Off by the configuration pa-
rameter: CanGlobalTimeSupport. |

8.3.2.11 Can_EnableEgressTimeStamp

[SWS_CAN_91025] Definition of API function Can_EnableEgressTimeStamp
Status: DRAFT
Upstream requirements: SRS_Can_01181

[

Service Name

Can_EnableEgressTimeStamp (draft)

Syntax void Can_EnableEgressTimeStamp (
Can_HwHandleType Hth
)

Service ID [hex] 0x33

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Hth information which HW-transmit handle shall be used for enabling
the time stamp.
Note: This is the smallest granularity which can be added for
enabling the timestamp, at HTH level, without affecting the
performance.

Parameters (inout) None

Parameters (out) None

Return value None

Description

Activates egress time stamping on a dedicated HTH.

Some HW does store once the egress time stamp marker and some HW needs it always before
transmission. There will be no "disable" functionality, due to the fact, that the message type is
always "time stamped" by network design.

Tags: atp.Status=draft

Available via

Can.h

AUTSSAR

[SWS_Can_00525]
Status: DRAFT

[If development error detection is enabled: the function shall check that the service

Can_Init was previously called. If the check fails, the function shall raise the devel-

opment error CAN_E_UNINTIT. |

[SWS_Can_00526]
Status: DRAFT

[If development error detection for the Can module is enabled: The function can_-
Write shall raise the error CAN_E_PARAM_HANDLE and shall return E_NOT_OK if the

parameter Hth is not a configured Hardware Transmit Handle. |

[SWS_Can_00527]
Status: DRAFT
[The function shall be pre compile time configurable On/Off by the configuration pa-

rameter: CanGlobalTimeSupport. |

[SWS_Can_00528]
Status: DRAFT

[Caveat: The function requires previous controller initialization (Can_Init).|

8.3.2.12 Can_GetEgressTimeStamp

[SWS_CAN_91027] Definition of API function Can_GetEgressTimeStamp

Status:

DRAFT

Upstream requirements: SRS_Can_01181

[

Service Name

Can_GetEgressTimeStamp (draft)

Syntax Std_ReturnType Can_GetEgressTimeStamp (
PduldType TxPduld,
Can_HwHandleType Hth,
Can_TimeStampType* timeStampPtr
)
Service ID [hex] 0x34
Sync/Async Synchronous
Reentrancy Non Reentrant for the same TxPduld.
Parameters (in) TxPduld L-PDU handle of CAN L-PDU for which the time stamp shall be
returned.
Hth HW-transmit handle for which the egress timestamp shall be
retrieved
Parameters (inout) None
Parameters (out) timeStampPtr ‘ current time stamp

Y%

AUTSSAR

A

Return value Std_ReturnType E_OK: success
E_NOT_OK: failed to read time stamp.

Description Reads back the egress time stamp on a dedicated message object. It needs to be called within
the TxConfirmation() function.
Tags: atp.Status=draft

Available via Can.h

]

[SWS_Can_00529]
Status: DRAFT

[If development error detection is enabled: the function shall check that the service
Can_Init was previously called. If the check fails, the function shall raise the devel-
opment error CAN_E_UNINIT. |

[SWS_Can_00530]
Status: DRAFT

[If development error detection is enabled: the function shall check the parameter
TxPduld for being valid. If the check fails, the function shall raise the development
error CAN_E_PARAM_LPDU. |

[SWS_Can_00531]
Status: DRAFT

[If development error detection for the Can module is enabled: The function can_-
GetEgressTimeStamp shall raise the error CAN_E_PARAM_HANDLE and shall return
E_NOT_OK if the parameter Hth is not a configured Hardware Transmit Handle. |

[SWS_Can_00532]
Status: DRAFT

[If development error detection is enabled: the function shall check the parameter
timeStampPtr for being valid. If the check fails, the function shall raise the development
error CAN_E_PARAM_POINTER. |

[SWS_Can_00533]

Status: DRAFT
[The function shall be pre-compile time configurable On/Off by the configuration pa-
rameter: CanGlobalTimeSupport. |

[SWS_Can_00534]
Status: DRAFT
[Caveat: The function requires previous controller initialization (Can_Init).|

AUTSSAR

8.3.2.13 Can_GetIngressTimeStamp

[SWS_CAN_91028] Definition of API function Can_GetingressTimeStamp
Status: DRAFT
Upstream requirements: SRS_Can_01181

Service Name Can_GetlngressTimeStamp (draft)
Syntax Std_ReturnType Can_GetIngressTimeStamp (
Can_HwHandleType Hrh,
Can_TimeStampTypex timeStampPtr
)
Service ID [hex] 0x35
Sync/Async Synchronous
Reentrancy Non Reentrant for the same Hrh, Reentrant for different Hrh
Parameters (in) Hrh HW-receive handle for which the ingress timestamp shall be
retrieved
Parameters (inout) None
Parameters (out) timeStampPtr current time stamp
Return value Std_ReturnType E_OK: success
E_NOT_OK: failed to read time stamp.
Description Reads back the ingress time stamp on a dedicated message object. It needs to be called within
the RxIndication() function.
Tags: atp.Status=draft
Available via Can.h

[SWS_Can_00535]
Status: DRAFT

[If development error detection is enabled: the function shall check that the service
Can_Init was previously called. If the check fails, the function shall raise the devel-
opment error CAN_E_UNINIT. |

[SWS_Can_00536]
Status: DRAFT

[If development error detection for the Can module is enabled: The function
Can_GetIingressTimeStamp shall raise the error CAN_E_PARAM_HANDLE and shall re-
turn E_NOT_OK if the parameter Hrh is not a configured Hardware Receive Handle. |

[SWS_Can_00537]
Status: DRAFT

[If development error detection is enabled: the function shall check the parameter
timeStampPtr for being valid. If the check fails, the function shall raise the development
error CAN_E_PARAM_POINTER. |

AUTSSAR

[SWS_Can_00538]
Status: DRAFT
[The function shall be pre-compile time configurable On/Off by the configuration pa-
rameter: CanGlobalTimeSupport. |
[SWS_Can_00539]
Status: DRAFT
[Caveat: The function requires previous controller initialization (Can_Init).|

8.3.2.14 Can_SetCanPnFrameDataMask

[SWS_Can_00604] Definition of API function Can_SetCanPnFrameDataMask |

Service Name Can_SetCanPnFrameDataMask

Syntax Std_ReturnType Can_SetCanPnFrameDataMask (
uint8 Controller,
uint8x DataMaskArrayPtr,
uint8 Length

)

Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant for different Controllers. Non reentrant for the same Controller.
Parameters (in) Controller CAN controller, whose DataMaskArray shall be updated
DataMaskArrayPtr DataMaskArray used in the selective activation to decide if the
CAN controller has to be activated.
Length Length of the DataMaskArray
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Service request accepted .
E_NOT_OK: Service request not accepted.
Description This service sets the PN frame data mask used in the selective activation of the CAN controller

during run-time. Note that a change of the PN frame data mask only gets active when CAN
controller is currently in sleep or next time it transits to sleep.

Available via Can.h

]

[SWS_Can_00605] For APl Can_SetCanPnFrameDataMask
Status: DRAFT

[Function Can_SetCanPnFrameDataMask shall be only available if CanDynamicPn-
FrameDataMaskEnabled is set to TRUE for any CanPartialNetwork. |

[SWS_Can_00606] For APl Can_SetCanPnFrameDataMask
Status: DRAFT

[If selective wakeup is supported, Can_SetCanPnFrameDataMask is called, and
Length parameter does not match configuration parameter CanPnFrameD1c the func-
tion call shall return E_NOT_OK. If development error detection for the CAN module is
enabled it shall raise the DET error CAN_E_PARAM DATA_LENGTH. |

AUTSSAR

8.3.3 Services affecting a Hardware Handle

8.3.3.1 Can_Write

[SWS_Can_00233] Definition of API function Can_Write

Upstream requirements: SRS_BSW_00312

[

Service Name

Can_Write

Syntax Std_ReturnType Can_Write (
Can_HwHandleType Hth,
const Can_PduTypex Pdulnfo

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant (thread-safe)

Parameters (in)

Hth

information which HW-transmit handle shall be used for transmit.
Implicitly this is also the information about the controller to use
because the Hth numbers are unique inside one hardware unit.

Pdulnfo Pointer to SDU user memory, Data Length and Identifier.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

caN_BUSY: No TX hardware buffer available or pre-emptive call
of Can_Write that can’t be implemented re-entrant (see Can_
ReturnType)

Description

This function is called by Canlf to pass a CAN message to CanDrv for transmission.

Available via

Can.h

]

The function can_write first checks if the hardware transmit object that is identified
by the HTH is free and if another can_write is ongoing for the same HTH.

[SWS_Can_00212]
Upstream requirements: SRS_Can_01049

[The function can_write shall perform following actions if the hardware transmit ob-

ject is free:

» The mutex for that HTH is set to 'signaled’

The ID, Data Length and SDU are put in a format appropriate for the hardware (if

necessary) and copied in the appropriate hardware registers/buffers.

The mutex for that HTH is released

The function returns with E_ OK

All necessary control operations to initiate the transmit are done

AUTSSAR

[SWS_Can_00213]
Upstream requirements: SRS_Can_01049

[The function can_write shall perform no actions if the hardware transmit object is
busy with another transmit request for an L-PDU:

1. The transmission of the other L-PDU shall not be cancelled and the function
Can_Write is left without any actions.

2. The function can_write shall return CAN_BUSY.

]

[SWS_Can_00214]
Upstream requirements: SRS_BSW_00312, SRS_Can_01049

[The function can_write shall return CAN_BUSY if a preemptive call of Can_twirite
has been issued, that could not be handled reentrant (i.e. a call with the same HTH). |

[SWS_Can_00275] [The function cCan_write shall be non-blocking. |

[SWS_Can_00216] [If development error detection for the Can module is enabled:
The function can_write shall raise the error CAN_E_UNINIT and shall return
E_NOT_OK if the driver is not yet initialized. |

[SWS_Can_00217] [If development error detection for the Can module is enabled:
The function can_wWrite shall raise the error CAN_E_PARAM_HANDLE and shall return
E_NOT_OK if the parameter Hth is not a configured Hardware Transmit Handle. |

[SWS_Can_00218]
Upstream requirements: SRS_Can_01005

[The function can_write shall return E_NOT_OK and if development error detection
for the CAN module is enabled shall raise the error CAN_E_PARAM DATA_ LENGTH:

« If the length is more than 64 byte.

« If the length is more than 8 byte and the CAN controller is not in CAN FD mode
(no CanControllerFdBaudrateConfig).

« If the length is more than 8 byte and the CAN controller is in CAN FD mode (valid
CanControllerFdBaudrateConfig), but the CAN FD flag in Can_PduType->id is
not set (refer to Chapter 8.2.3).

]

[SWS_Can_00219] [If development error detection for CanDrv is enabled: Can_-
Write() shall raise CAN_E_PARAM_POINTER and shall return E_NOT_OK if the param-
eter PduInfo is a null pointer. |

AUTSSAR

[SWS_Can_00503] [can_write() shall accept a null pointer as SDU
(Can_PduType.Can_SduPtrType NULL) if the trigger transmit APl is enabled
for this hardware object (CanTriggerTransmitEnable TRUE). |

[SWS_Can_00504] [If the trigger transmit API is enabled for the hardware object,
can_Write() shall interpret a null pointer as SDU (Can_PduType.Can_SduPtrType
NULL) as request for using the trigger transmit interface. If so and the hardware object
is free, can_write() shall call Canlf_TriggerTransmit() with the maximum size of the
message buffer to acquire the PDU’s data. |

Note: Using the message buffer size allows for late changes of the PDU size, e.g. if a
container PDU receives another contained PDU between the call to can_write() and
the call of Canlf_TriggerTransmit().

[SWS_Can_00505] [If development error detection for CanDrv is enabled: Ccan_-
Write() shall raise CAN_E_PARAM_POINTER and shall return E_NOT_OK if the trigger
transmit APl is disabled for this hardware object (CanTriggerTransmitEnable = FALSE)
and the SDU pointer inside PduInfo is a null pointer. |

[SWS_Can_00506]
Upstream requirements: SRS_BSW_00449, SRS_BSW_00357, SRS_BSW_00369, SRS_Can_-
01130
[Can_Write() shall return E_NOT_OK if the trigger transmit API
(CanIf_TriggerTransmit ())returns E_NOT_OK. |

[SWS_Can_00486] [The CAN Frame has to be sent according to the two most sig-
nificant bits of Can_PduType->id. The CAN FD frame bit is only evaluated if CAN
Controller is in CAN FD mode (valid CanControllerFdBaudrateConfig). |

[SWS_Can_00502]
Upstream requirements: SRS_Can_01160

[If Pdulnfo->SduLength does not match possible DLC values CanDrv shall use the
next higher valid DLC for transmission with initialization of unused bytes to the value of
the corresponding CanFdPaddingValue (see [ECUC_Can_00485]). |

8.4 Call-back notifications

This chapter lists all functions provided by the Can module to lower layer modules. The
lower layer module of Can module is the SPI module. The SPI module, which is part
of the MCAL, may used to exchange data between the microcontroller and an external
CAN controller.

The Can module does not provide callback functions. Only synchronous MCAL API
may used to access external CAN controllers.

AUTSSAR

8.4.1 Call-out function

The AUTOSAR CAN module supports optional L-PDU callouts on every reception of a
L-PDU.

[SWS_Can_00443] Definition of configurable interface <LPDU_CalloutName> |

<LPDU_CalloutName>

Service Name

uint8 Hrh,
Can_IdType CanId,
uint8 CanDatalegth,

const uint8x CanSduPtr

)

Syntax boolean <LPDU_CalloutName> (

Service ID [hex] 0x20

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) Hrh
Canld -
CanDatalegth -
CanSduPtr -

Parameters (inout) None

Parameters (out) None

Return value boolean -

Description -

Available via Can_Externals.h

]

where <LPDU_CalloutName> has to be substituted with the concrete L-PDU callout
name which is configurable, see [ECUC_Can_00434].

[SWS_Can_00444] [If the L-PDU callout returns false, the L-PDU shall not be pro-
cessed any further. |

8.4.2 Enabling/Disabling wakeup notification

[SWS_Can_00445] [Can driver shall use the following APIs provided by Icu driver, to
enable and disable the wakeup event notification:

e Tcu_EnableNotification

e Tcu DisableNotification

]

[SWS_Can_00446] [Icu_EnableNotification shall be called when “external’
Can controllers have been transitioned to SLEEP state. |

[SWS_Can_00447] [Icu_DisableNotification shall be called when “external”
Can controllers have been transitioned to STOPPED state. |

AUTSSAR

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non-reentrant.

[SWS_Can_00110]
Upstream requirements: SRS_BSW_00428

[There is no requirement regarding the execution order of the CAN main processing
functions. |

8.5.1

8.5.1.1 Can_MainFunction_Write

[SWS_Can_00225] Definition of scheduled function Can_MainFunction_Write |

Service Name Can_MainFunction_Write
Syntax void Can_MainFunction_Write (
void
)
Service ID [hex] 0x01
Description This function performs the polling of TX confirmation when CAN_TX_PROCESSING is set to
POLLING.
Available via SchM_Can.h

[SWS_Can_00031]
Upstream requirements: SRS_BSW_00432, SRS_BSW_00373, SRS_SPAL_00157

[The function Can_MainFunction_Write shall perform the polling of TX confirma-
tion when CanTxProcessing is set to POLLING or MIXED. In case of MIXED process-
ing only the hardware objects for which CanHardwareObjectUsesPolling is set to TRUE
shall be polled. |

[SWS_Can_00178] [The Can module may implement the function can_-
MainFunction Write as empty define in case no polling at all is used. |

[SWS_Can_00441] [If more than one main function period is configured by
CanMainFunctionRWPeriods (see ECUC_Can_00437), the name of the can_-
MainFunction_Write() functions shall be

* Can_MainFunction_Write_<CanMainFunctionRWPeriods.ShortName>() for
each CanMainFunctionRWPeriods that is referenced by at least one TRANSMIT
CanHardwareObject (see ECUC_Can_00438).

AUTSSAR

8.5.1.2 Can_MainFunction_Read

[SWS_Can_00226] Definition of scheduled function Can_MainFunction_Read |

Service Name Can_MainFunction_Read
Syntax void Can_MainFunction_Read (
void
)
Service ID [hex] 0x08
Description This function performs the polling of RX indications when CAN_RX_PROCESSING is set to
POLLING.
Available via SchM_Can.h

[SWS_Can_00108]

Upstream requirements: SRS_BSW_00432, SRS_SPAL_00157
[The function Can_MainFunction_Read shall perform the polling of RX indications
when CanRxProcessing is set to POLLING or MIXED. In case of MIXED processing

only the hardware objects for which CanHardwareObjectUsesPolling is set to TRUE
shall be polled. |

[SWS_Can_00180] [The Can module may implement the function Ccan_-
MainFunction_Read as empty define in case no polling at all is used. |

[SWS_Can_00442] [If more than one main function period is configured by
CanMainFunctionRWPeriods (see ECUC_Can_00437), the name of the can_-
MainFunction_Read() functions shall be

* Can_MainFunction_Read_<CanMainFunctionRWPeriods.ShortName>() for
each CanMainFunctionRWPeriods that is referenced by at least one RECEIVE
CanHardwareObiject (see ECUC_Can_00438).

8.5.1.3 Can_MainFunction_BusOff

[SWS_Can_00227] Definition of scheduled function Can_MainFunction_BusOff |

Service Name

Can_MainFunction_BusOff

Syntax void Can_MainFunction_BusOff (
void
)
Service ID [hex] 0x09
Description This function performs the polling of bus-off events that are configured statically as 'to be

polled’.

Available via

SchM_Can.h

AUTSSAR

[SWS_Can_00109]
Upstream requirements: SRS_BSW_00432, SRS_SPAL_00157

[The function Can_MainFunction_BusOff shall perform the polling of bus-off
events that are configured statically as 'to be polled'. |

[SWS_Can_00183] [The Can module may implement the function can_-
MainFunction_BusOff as empty define in case no polling at all is used. |

8.5.1.4 Can_MainFunction_Wakeup

[SWS_Can_00228] Definition of scheduled function Can_MainFunction_Wakeup
[

Service Name

Can_MainFunction_Wakeup

Syntax void Can_MainFunction_Wakeup (
void
)
Service ID [hex] 0x0a
Description This function performs the polling of wake-up events that are configured statically as 'to be

polled’.

Available via

SchM_Can.h

]

[SWS _Can_00112]
Upstream requirements: SRS_BSW_00432, SRS_SPAL_00157

[The function Can_MainFunction_Wakeup shall perform the polling of wake-up
events that are configured statically as 'to be polled'. |

[SWS_Can_00185] [The Can module may implement the function can_-
MainFunction_Wakeup as empty define in case no polling at all is used. |

8.5.1.5 Can_MainFunction_Mode

[SWS_Can_00368] Definition of scheduled function Can_MainFunction_Mode |

Service Name Can_MainFunction_Mode
Syntax void Can_MainFunction_Mode (
void
)
Service ID [hex] 0x0c
Description This function performs the polling of CAN controller mode transitions.
Available via SchM_Can.h

AUTSSAR

[SWS_Can_00369] [The function Can_MainFunction_Wakeup shall implement the
polling of CAN status register flags to detect transition of CAN Controller state. Com-

pare to Chapter 7.3.2. |

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module. All callback functions that are called by the Can module are implemented

in the Canlf module. These callback functions are not configurable.

[SWS_Can_00234] Definition of mandatory interfaces required by module Can

Upstream requirements: SRS_Can_01055

[

API Function Header File

Description

Canlf_ControllerBusOff Canlf.h

This service indicates a Controller BusOff event
referring to the corresponding CAN Controller with
the abstract Canlf Controllerld.

Canlf_ControllerModelndication Canlf.h

This service indicates a controller state transition
referring to the corresponding CAN controller with
the abstract Canlf Controllerld.

Canlf_RxIndication Canlf.h

This service indicates a successful reception of a
received CAN Rx L-PDU to the Canlf after passing
all filters and validation checks.

Canlf_TxConfirmation Canlf.h

This service confirms a previously successfully
processed transmission of a CAN TxPDU.

Det_ReportRuntimeError Det.h

Service to report runtime errors. If a callout has
been configured then this callout shall be called.

GetCounterValue Os.h

This service reads the current count value of a
counter (returning either the hardware timer ticks if
counter is driven by hardware or the software ticks
when user drives counter).

8.6.2 Optional Interfaces

This chapter defines all interfaces that are required to fulfill an optional functionality of

the module.

AUTSSAR

[SWS_Can_00235] Definition of optional interfaces requested by module Can
Upstream requirements: SRS_SPAL_12056, SRS_Can_01054

API Function Header File Description

Canlf_ConfirmCtrIPnAvailability (draft) Canlf.h This service indicates that the controller is running
in PN communication mode referring to the
corresponding CAN controller with the abstract Can
If Controllerld.

Tags: atp.Status=draft

Canlf_ControllerErrorStatePassive Canlf.h The function derives the ErrorCounterTreshold from
RxErrorCounter/ TxErrorCounter values and reports
it to the IdsM as security event SEV_CAN_
ERRORSTATE_PASSIVE to the IdsM. It also
prepares the context data for the respective security
event.

Canlf_ErrorNotification Canlf.h The function shall derive the bus error source rx or
tx from the parameter CanError and report the bus
error as security event SEV_CAN_TX_ERROR_
DETECTED or SEV_CAN_RX_ERROR_
DETECTED. It also prepares the context data for the
respective security event.

Canlf_TriggerTransmit Canlf.h Within this API, the upper layer module (called
module) shall check whether the available data fits
into the buffer size reported by PdulnfoPtr->Sdu
Length. If it fits, it shall copy its data into the buffer
provided by PdulnfoPtr->SduDataPtr and update the
length of the actual copied data in PdulnfoPtr->Sdu
Length. If not, it returns E_NOT_OK without
changing PdulnfoPtr.

Det_ReportError Det.h Service to report development errors.

EcuM_CheckWakeup EcuM.h This function can be called to check the given
wakeup sources. It will pass the argument to the
integrator function EcuM_CheckWakeupHook. It can
also be called by the ISR of a wakeup source to set
up the PLL and check other wakeup sources that
may be connected to the same interrupt.

EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.

Icu_DisableNotification Icu.h This function disables the notification of a channel.

Icu_EnableNotification lcu.h This function enables the notification on the given
channel.

8.6.3 Configurable Interfaces

There is no configurable target for the Can module. The Can module always reports to
Canlf module.

AUTSSAR

9 Sequence diagrams

9.1 Interaction between Can and Canlf module

For sequence diagrams see the Canlf module Specification [1].
There are described the sequences for Transmission, Reception and Error Handling.

9.2 Wakeup sequence

For Wakeup sequence diagrams refer to Specification of ECU State Manager [5].

AUTSSAR

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification Chapter 10.1 describes fundamentals. It also speci-
fies a template (table) you shall use for the parameter specification. We intend to leave
Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the Can mod-
ule.

Chapter 10.3 specifies published information of the Can module.

10.1 How to read this chapter

For details refer to [3] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapters 7 and Chapter 8.
The described parameters are input for the Can module configurator.

[SWS_Can_00022]
Upstream requirements: SRS_BSW_00159

[The code configuration of the Can module is CAN controller specific. If the CAN
controller is sited on-chip, the code generation tool for the Can module is pController
specific. If the CAN controller is an external device, the generation tool must not be
pController specific. |

[SWS_Can_00024]
Upstream requirements: SRS_BSW_00167, SRS_SPAL_12463

[The valid values that can be configured are hardware dependent. Therefore the rules
and constraints can’t be given in the standard. The configuration tool is responsible to
do a static configuration checking, also regarding dependencies between modules (i.e.
Port driver, MCU driver etc.) |

[SWS_Can_00507] [The Can Driver module shall reject configurations with partition
mappings which are not supported by the implementation. |

AUTSSAR

Can: EcuchaduleDef

upperbdultiplicity =+
lowwerhdultiplicity = 0

¢

+container

CanConfigSet: EcucParamConfContainerDef

+container

CanGeneral:

+subContainer

+subCaontainer

EcucFaramConfContainerbef

upperhdultiplicity = 1
loverbdultiplicity = 1

CanController:
I —— inati CanControllerRef:
EcucParamConfContainerbef | *destination | ANGOURRSMER | +reference

CanHardwareObject:

EcucParamConfContainerlef

EcucReferencebef | g

upperbdultiplicity = *
lowerhdultiplicity = 1

upperhiultiplicity = *
lawverhdultiplicity = 1

+subContainer

CanControllerBaudrate Config:

EcucParamConfContainerbef

upperhfultiplicity
lavwerhAultiplizity

Figure 10.1: Can Module Configuration Layout

AUT<

Can: EcuchdoduleDef

SSAR

CanConfigSet EcucParamConfContainerDef

+destination

EcuhiilfakeupSource

EcucParamConfContainerDef

+destination

lowerhd ultiplicity = 1
uppemdultiplicity = 32

MeuClockReferenceFoint:
EcucFaramConfContainerbef

uppatultiplicity = = >
|owa M ultiplicity =
+subContainer
CanCantrallerd, EonEenEln
EcuclntegeParamDet
o £ . N EcucParamCanfCantainerDaf CaniiiskeupSourceRet
upp e ultiplicity = 1 T EcucReferenceDef
HNITTRIAL S 1 lowerhdultiplicity = 1 - Touerhultiplicity = 0
symbolicNameValue = fue e A
min =0 . . _
ety requiresSymbolichamevalue = tue
CanC: : +p 1
EcucBooleanParamb ef +retarence CanCpuClockRef:
- Ecush Det
] CanContralleBaudrateConfia:
(Ean Eontrollerbasenddie =N +subContainer| EcucParamConiCentaineiDef
EcuclntegerP arambaf +parameter -
— uppehdultiplicity
oo =@ Jowne rht ultiplicity = 1
ma = 4204067205
+deslination/P
Can'iiah it + 1
EeuoBeoleanP arambef terano | GanCentrallerd efaultBaudiate:
—_ o EcucReferenceDef
-
CaniWsksupFunctionalityAPl | y
EcucBooleanF aramDef parametet
defaultifaluz = falsz
+paramatar CanTxProcessing:
> EcudEnumerationP arambet
- ScucEnumerationt aramber
+paramater LanRxProcessing:
- 3 EcusEnumerationP arambef
-
T paramater CanBussttProcessing
> EcucEnumerationP arambaf
-
+parameter Cariakeup Pracessing:
- aramDef
CanContrallerEoucP aditionRef,
+refarence [————————————|
> EcucReferenceDef
-
Jowe tdultiplicity = 0
uppedultiplicity = 1

upperhiultiplici
Towue hfu Hiplicity = 1

+literal

""" |

+literal

EcucEnumerationLiteralDef

+literal

INTERRUFPT

+literal

literal | EcucEnumerationLiteralDef

+literal POLLING:
+literal

+literal

+literal

-
Rl

EcucEnumerationLiteralD ef

+destination

EcucParamConfContainerDaf

EcucPartition:

lowierultiplicity = 0
uppemhiultiplicity =~

Figure 10.2: Can Controller Configuration Layout

AUTSSAR

CanController:
EcucParamConfContainerDef

CanHwPnSupport:
upperMultiplicity = * +parameter EcucBooleanParamDef
lowerMultiplicity = 1

defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1

+subContainer

CanPartialNetwork:
EcucParamConfContainerDef CanPnEnabled:

EcucBooleanParamDef
lowerMultiplicity = 0 +parameter | ECUCB00I€anarambet
upperMultiplicity = 1

defaultValue = false
lowerMultiplicity
upperMultiplicity = 1

CanPnFrameCanld:

EcuclntegerParamDef
+parameter

min =0

max = 4294967295
lowerMultiplicity = 1
upperMultiplicity = 1

ICanPnFrameCanldMask:

EcuclntegerParamDef
+parameter

min =0

max = 4294967295
lowerMultiplicity = 1
upperMultiplicity = 1

CanPnFrameDlc:
EcucIntegerParamDef
o min =0
max =8
lowerMultiplicity
upperMultiplicity =

CanDynamicPnFrameDataMaskEnabled:
+parameter EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1
upperMultiplicity = 1

+subContainer

CanPnFrameDataMaskSpec: i
EcucParamConfContainerDef CanPnFrameDataMask:

EcuclntegerParamDef

lowerMultiplicity = 0 +parameter - S
upperMultiplicity = 8 @——— min=

’° plety max = 255
lowerMultiplicity = 1
upperMultiplicity = 1

CanPnFrameDataMaskindex:

EcuclntegerParamDef
+parameter

min =0
max =7
lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.3: Can Controller Partial Network Configuration

AUTSSAR

CanControllerBaudrate Config:

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

+parameter

CanControllerBaudRate:
EcucFloatParamDef

+parameter

min =0
max = 2000

CanControllerPropSeg:
EcuclntegerParamDef

+parameter

min=0
max = 384

CanControllerSeg1l:
EcuclntegerParamDef

+parameter

min=0
max = 255

CanControllerSeg2:
EcuclntegerParamDef

+parameter

min=0
max = 255

CanControllerSyncJumpWidth:
EcuclntegerParamDef

+parameter

min=0
max = 255

CanControllerBaudRateConfigID:

EcuclntegerParamDef

+subContainer

min =0
max = 65535
defaultValue =0

CanControllerFdBaudrateConfig:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.4: Can Controller Baud Rate Configuration Layout

AUTSSAR

Can: EcuchoduleDef

upperhultiplicity = *
lowerhdultiplicity = 0

[}

+container
CanDevErrorletect: +parameter CanGeneral: . + Canlndex: EcuclntegerParamDef
EcucBooleanParamDef EcucParamConfContainerbef paramaiar
min=0
defaulfifalue = false upperhdultiplicity max =265
lowerhAultip licity =
Canhultiplexed Transmission: +paramater . .
EcucBooleanParambDef +parameter CanVersionlnfofpi:
- EcucBooleanParambef
defaultalue = false
CanTimeoutDuration:
EcucFloatParambef +parameter CanMainFunction RUWP eriods: CanmainFunctionPeriod:
EcucParamConfConta EcucFloatParamb ef
min = 0.000001 +parameter
max = 65535 +subContainer lowerhdultiplicity = 0 min=0
- upperhdultiplicity = * max = INF
CanmainFunctionake upPeriod:
EcucFloatFaramDef
— +parameter
IOWE[M”“'P“_C'_W =0 CanOsCounterRef: OsCounter:
uppertdultiplicty = 1 +reference EcucReferenceDef +destination EcucFaramConfContainerhef
min =10 >
max = [NF lowerhdultiplicity = 0 lomerhdultiplicity = 0
upperhdultiplicity = 1 upperhdultiplicity = *
CanMainFunctiontoedePeried:
EcucfloatParamDef +parameter CanLPduReceiveCalloutFunction:
S —— +parameter EcucFunctionMameDef
- al o
max = INF upperhdultiplicity = 1
lowerhdultiplicity = 0
CanhainFunctionBusoffPeriod:
EcucFloatP aramDef iti b
_— . N CanEcucPartitionRef: EcucPartition:
Vewue b tiplicity = 0 v +reference EcucReferencebef +destination | EgycParamConfContainerDef
tultiplicity = 1 i licity =
”mpiEZD” ey lemeiiuipliaiy e @ lowwe thultiplicity = 0
e O upperhdultiplicity = upperhultiplicity = *
CanSetBaudratedni CanEnableSecurityEventReporting:
e EcucBooleanParambef
EcucBooleanParambef . N +parameter e ——
P el i - defaultvalue = falze
efaultValue = False <
lowwerhdultiplicity = 0
tlultiplicity = 1
uppetultiplisity +parameter CanGlobalTimeSupport:
o EcucBooleanParambef

Figure 10.5: Can General Configuration Layout

AUTSSAR

CanControllerFdBaudrateConfig:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

CanControllerFdBaudRate:
EcucFloatParamDef
+parameter —
min =0
max = 16000
rameter CanControllerTxBitRateSwitch:
+paramete EcucBooleanParamDef
defaultValue = true
CanControllerPropSeg:
+parameter EcuclntegerParamDef
min =0
max = 255
CanControllerSeg1:
+parameter EcuclintegerParamDef
min =0
max = 255
CanControllerSeg2:
+parameter EcuclntegerParamDef
min =0
max = 255
CanControllerSyncJumpWidth:
+parameter EcuclntegerParamDef
min =0
max = 255
CanControllerSspOffset:
EcuclntegerParamDef
+parameter

Figure 10.6: CanControllerFdBaudrateConfig

min =0

max = 255
lowerMultiplicity = 0
upperMultiplicity = 1

AUTSSAR

BASIC:
EcucEnumerationLiteralDef

FULL:
EcucEnumerationLiteralDef

+literal

EcucEnumerationLiteralDef

TRANSMIT :

EcucEnumerationLiteral Def

RECEIVE:

+literal

+literal

CanFdPaddingValue:

EcuclintegerParamDef

CanObijectld:

EcuclntegerParamDef

+literal

CanHandleType:

EcucEnumerationParamDef

min =0
max = 255
defaultValue = 0

min =0

max = 65535
lowerMultiplicity = 1
upperMultiplicity = 1

CanObjectType:
EcucEnumerationParamDef

: lowerMultiplicity = 0 withAuto = true :
+parameter Slicity = = +parameter
TSRy = 1 symbolicNameValue = true
+parameter‘ +parameter‘
CanHardwareObject: EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
+reference +parameter
+reference i .
+subGontainer CanControllerRef: Ganidilypes
]]] EclicReferenceDef EcucEnumerationParamDef
CanMainFunctionRWPeriodRef: CanHwFilter: [Ecliciieierencellel
EcucReferenceDef EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0 +Iitera? ’
upperMultiplicity = 1 upperMultiplicity = *
+destination STANDARD:
- \]/ EcucEnumerationLiteral Def
+destination
CanController:
CanMainFunctionRWPeriods: EcleRaImGoN bantEine ! +literal
EcucParamConfContainerDef inlicity = *
owortiplaty ~ EXTENDED:
lowerMultiplicity = 0 plicity = EcucEnumerationLiteral Def
upperMultiplicity = *
+parameter| +parameter +parameter +literal
CanHwFilterMask: CanhiwFilterCode: CanHardwareObjectUsesPolling: RADCET:
EcuclIntegerParamDef EcuclntegerParamDef EchcBoolcanEaamber EcucEnumerationLiteralDef
min =0 min=0 defaultValue = false
[Maxile29c9672d5 lowerMultiplicity = 0 +parameter

max = 4294967295

+parameter

upperMultiplicity = 1

CanObjectPayloadLength: EcucEnumerationParamDef

+parameter

lowerMultiplicity = 0
upperMultiplicity = 1

CanHwObjectCount:
EcuclntegerParamDef

+literal

¢ ¢

CAN_OBJECT_PL_8:
EcucEnumerationLiteralDef

+literal

CAN_OBJECT _PL_12:
EcucEnumerationLiteralDef

+literal

CAN_OBJECT_PL_16:
EcucEnumerationLiteral Def

+literal

¢ ¢

min =1
max = 65535
defaultValue = 1

+literal

CAN_OBJECT_PL_64:
EcucEnumerationLiteralDef

+literal

CAN_OBJECT_PL_48:
EcucEnumerationLiteral Def

+literal

CAN_OBJECT_PL_32:
EcucEnumerationLiteral Def

+literal

CAN_OBJECT PL_20:

CAN_OBJECT PL_24:

EcucEnumerationLiteralDef

EcucEnumerationLiteral Def

Figure 10.7: Can Hardware Object Configuration Layout

CanTriggerTransmitEnable:
EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = false

AUTSSAR

10.2.1 Can

[ECUC_Can_00489] Definition of EcucModuleDef Can |

Module Name

Can

Description

This container holds the configuration of a single CAN Driver.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

CanConfigSet 1 This container contains the configuration parameters and sub
containers of the AUTOSAR Can module.

CanGeneral 1 This container contains the parameters related each CAN Driver
Unit.

10.2.2 CanGeneral

[ECUC_Can_00497] Definition of EcucParamConfContainerDef CanGeneral |

Container Name

CanGeneral

Parent Container

Can

Description

This container contains the parameters related each CAN Driver Unit.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanDevErrorDetect 1 [ECUC_Can_00064]
CanEnableSecurityEventReporting 1 [ECUC_Can_00496]
CanGilobalTimeSupport 1 [ECUC_Can_00498]
Canindex 1 [ECUC_Can_00320]
CanLPduReceiveCalloutFunction 0..1 [ECUC_Can_00434]
CanMainFunctionBusoffPeriod 0..1 [ECUC_Can_00355]
CanMainFunctionModePeriod 1 [ECUC_Can_00376]
CanMainFunctionWakeupPeriod 0..1 [ECUC_Can_00357]
CanMultiplexedTransmission [ECUC_Can_00095]
CanSetBaudrateApi 0..1 [ECUC_Can_00482]
CanTimeoutDuration 1 [ECUC_Can_00113]
CanVersionInfoApi 1 [ECUC_Can_00106]
CanEcucPartitionRef x [ECUC_Can_00491]
CanOsCounterRef .1 [ECUC_Can_00431]

AUTSSAR

Included Containers
Container Name Multiplicity Dependency

CanMainFunctionRWPeriods 0..” This container contains the parameter for configuring the period
for cyclic call to Can_MainFunction_Read or Can_Main
Function_Write depending on the referring item.

CanXLGeneral 0..1 This container is specified in the SWS CAN XL Driver and
contains global parameters of the CAN XL Driver.

]
[ECUC_Can_00064] Definition of EcucBooleanParamDef CanDevErrorDetect |

Parameter Name CanDevErrorDetect
Parent Container CanGeneral
Description Switches the development error detection and notification on or off.

« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Can_00496] Definition of EcucBooleanParamDef CanEnableSecurity
EventReporting

Status: DRAFT

Parameter Name CanEnableSecurityEventReporting
Parent Container CanGeneral
Description Switches the reporting of security events to the IdsM: - true: reporting is enabled. -

false: reporting is disabled.
Tags: atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

AUTSSAR

[ECUC_Can_00498] Definition of EcucBooleanParamDef CanGlobalTimeSupport

Status: DRAFT

Parameter Name CanGilobalTimeSupport

Parent Container CanGeneral

Description Enables/Disables the Global Time APIs used when hardware timestamping is
supported by CAN controller.
Tags: atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Can_00320] Definition of EcuclntegerParamDef Canindex |

Parameter Name

Canlindex

Parent Container

CanGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Can_00434] Definition of EcucFunctionNameDef CanLPduReceiveCall-

outFunction |

Parameter Name

CanLPduReceiveCalloutFunction

Parent Container

CanGeneral

Description This parameter defines the existence and the name of a callout function that is called
after a successful reception of a received CAN Rx L-PDU. If this parameter is omitted
no callout shall take place.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

AUTSSAR

A
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Can_00355] Definition of EcucFloatParamDef CanMainFunctionBusoff

Period |

Parameter Name

CanMainFunctionBusoffPeriod

Parent Container

CanGeneral

Description This parameter describes the period for cyclic call to Can_MainFunction_Busoff. Unit is
seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10... INF[

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time Al Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Can_00376] Definition of EcucFloatParamDef CanMainFunctionModePe-

riod |

Parameter Name

CanMainFunctionModePeriod

Parent Container

CanGeneral

Description This parameter describes the period for cyclic call to Can_MainFunction_Mode. Unit is
seconds.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

AUTSSAR

Dependency

]

[ECUC_Can_00357] Definition of EcucFloatParamDef CanMainFunctionWakeup
Period |

Parameter Name

CanMainFunctionWakeupPeriod

Parent Container

CanGeneral

Description This parameter describes the period for cyclic call to Can_MainFunction_Wakeup. Unit
is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Can_00095] Definition of EcucBooleanParamDef CanMultiplexedTrans-
mission |

Parameter Name

CanMultiplexedTransmission

Parent Container

CanGeneral

Description Specifies if multiplexed transmission shall be supported.ON or OFF
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

CAN Hardware Unit supports multiplexed transmission

AUTSSAR

[ECUC_Can_00482] Definition of EcucBooleanParamDef CanSetBaudrateApi |

Parameter Name

CanSetBaudrateApi

Parent Container

CanGeneral

Description The support of the Can_SetBaudrate API is optional. If this parameter is set to true the
Can_SetBaudrate API shall be supported. Otherwise the APl is not supported.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Can_00113] Definition of EcucFloatParamDef CanTimeoutDuration |

Parameter Name

CanTimeoutDuration

Parent Container

CanGeneral

Description Specifies the maximum time for blocking function until a timeout is detected. Unit is
seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-6 .. 65.535]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Can_00106] Definition of EcucBooleanParamDef CanVersioninfoApi |

Parameter Name

CanVersionInfoApi

Parent Container

CanGeneral

Description Switches the Can_GetVersioninfo() APl ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

| Dependency

J
[ECUC_Can_00491] Definition of EcucReferenceDef CanEcucPartitionRef |

Parameter Name CanEcucPartitionRef

Parent Container CanGeneral

Description Maps the CAN driver to zero or multiple ECUC partitions to make the modules API
available in this partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

J
[ECUC_Can_00431] Definition of EcucReferenceDef CanOsCounterRef |

Parameter Name CanOsCounterRef

Parent Container CanGeneral

Description This parameter contains a reference to the OsCounter, which is used by the CAN driver.
Multiplicity 0..1

Type Reference to OsCounter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

10.2.3 CanController

[ECUC_Can_00354] Definition of EcucParamConfContainerDef CanController |

AUTSSAR

Container Name

CanController

Parent Container CanConfigSet
Description This container contains the configuration parameters of the CAN controller(s).
Multiplicity 1.*
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanBusoffProcessing 1 [ECUC_Can_00314]
CanControllerActivation 1 [ECUC_Can_00315]
CanControllerBaseAddress 1 [ECUC_Can_00382]
CanControllerld 1 [ECUC_Can_00316]
CanHwPnSupport 1 [ECUC_Can_00529]
CanRxProcessing 1 [ECUC_Can_00317]
CanTxProcessing 1 [ECUC_Can_00318]
CanWakeupProcessing 1 [ECUC_Can_00319]
CanWakeupSupport 1 [ECUC_Can_00330]
CanControllerDefaultBaudrate 1 [ECUC_Can_00435]
CanControllerEcucPartitionRef 0..1 [ECUC_Can_00492]
CanCpuClockRef 1 [ECUC_Can_00313]
CanWakeupSourceRef 0..1 [ECUC_Can_00359]
Included Containers
Container Name Multiplicity Dependency
CanControllerBaudrateConfig 1.* This container contains bit timing related configuration
parameters of the CAN controller(s).
CanPartialNetwork 0..1 Container gives CAN Controller driver information about the
configuration of Partial Networking functionality.
CanXLController 0..1 This container is specified in the SWS CAN XL Driver and
represents a CAN XL channel. If this container is present, the
CAN driver will provide the extended CanXL API.

]

[ECUC_Can_00314]
cessing |

Definition of EcucEnumerationParamDef CanBusoffPro-

Parameter Name

CanBusoffProcessing

Parent Container

CanController

Description Enables / disables APl Can_MainFunction_BusOff() for handling busoff events in
polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT | Interrupt Mode of operation.

\Y%

AUTSSAR

POLLING

‘ Polling Mode of operation.

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Can_00315] Definition of EcucBooleanParamDef CanControllerActiva-

tion [

Parameter Name

CanControllerActivation

Parent Container

CanController

Description Defines if a CAN controller is used in the configuration.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Can_00382] Definition of EcuclntegerParamDef CanControllerBaseAd-

dress |

Parameter Name

CanControllerBaseAddress

Parent Container

CanController

Description Specifies the CAN controller base address.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

AUTSSAR

[ECUC_Can_00316] Definition of EcuclntegerParamDef CanControllerid |

Parameter Name

CanControllerld

Parent Container

CanController

Description This parameter provides the controller ID which is unique in a given CAN Driver. The
value for this parameter starts with 0 and continue without any gaps.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Dependency

withAuto = true

]

[ECUC_Can_00529] Definition of EcucBooleanParamDef CanHwPnSupport |

Parameter Name

CanHwPnSupport

Parent Container

CanController

Description Indicates whether the HW supports the selective wakeup function. TRUE = Selective
wakeup feature is supported by the CAN controller. FALSE = Selective wakeup
functionality is not available in the CAN controller.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency CanWakeupSupport

]

[ECUC_Can_00317] Definition of EcucEnumerationParamDef CanRxProcessing

[

Parameter Name

CanRxProcessing

Parent Container

CanController

Description Enables / disables APl Can_MainFunction_Read() for handling PDU reception events
in polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.
MIXED Mixed Mode of operation
POLLING Polling Mode of operation.

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

X All Variants

Link time

AUTSSAR

Post-build time B

Dependency

]

[ECUC_Can_00318] Definition of EcucEnumerationParamDef CanTxProcessing

[

Parameter Name

CanTxProcessing

Parent Container

CanController

Description Enables / disables APl Can_MainFunction_Write() for handling PDU transmission
events in polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.
MIXED Mixed Mode of operation
POLLING Polling Mode of operation.

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Can_00319] Definition of EcucEnumerationParamDef CanWakeupPro-

cessing |

Parameter Name

CanWakeupProcessing

Parent Container

CanController

Description Enables / disables APl Can_MainFunction_Wakeup() for handling wakeup events in
polling mode.
Multiplicity 1
Type EcucEnumerationParamDef
Range INTERRUPT Interrupt Mode of operation.
POLLING Polling Mode of operation.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Can_00330] Definition of EcucBooleanParamDef CanWakeupSupport |

Parameter Name

CanWakeupSupport

Parent Container

CanController

Description

CAN driver support for wakeup over CAN Bus.

Y%

AUTSSAR

A
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Can_00435] Definition of EcucReferenceDef CanControllerDefaultBau-

drate |

Parameter Name

CanControllerDefaultBaudrate

Parent Container

CanController

Description Reference to baudrate configuration container configured for the Can Controller.
Multiplicity 1
Type Reference to CanControllerBaudrateConfig
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00492] Definition of EcucReferenceDef CanControllerEcucPartition

Ref |

Parameter Name

CanControllerEcucPartitionRef

Parent Container

CanController

Description Maps the CAN controller to zero or one ECUC partitions. The ECUC partition
referenced is a subset of the ECUC partitions where the CAN driver is mapped to.
Multiplicity 0..1
Type Reference to EcucPartition
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Can_00313] Definition of EcucReferenceDef CanCpuClockRef |

Parameter Name

CanCpuClockRef

Parent Container

CanController

Description Reference to the CPU clock configuration, which is set in the MCU driver configuration
Multiplicity 1
Type Reference to McuClockReferencePoint
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Can_00359] Definition of EcucReferenceDef CanWakeupSourceRef |

Parameter Name

CanWakeupSourceRef

Parent Container

CanController

Description This parameter contains a reference to the Wakeup Source for this controller as
defined in the ECU State Manager.
Implementation Type: reference to EcuM_WakeupSourceType

Multiplicity 0..1

Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[SWS_Can_CONSTR_00509] [The ECUC partitions referenced by CanControllerE-
cucPartitionRef shall be a subset of the ECUC partitions referenced by CanEcucParti-

tionRef. |

[SWS_Can_CONSTR_00510] [CanController and CanTrcvChannel of one communi-
cation channel shall all reference the same ECUC partition. |

[SWS_Can_CONSTR_00511] [If CanEcucPartitionRef references one or more ECUC
partitions, CanControllerEcucPartitionRef shall have a multiplicity of one and reference
one of these ECUC partitions as well. |

AUTSSAR

10.2.4 CanControllerBaudrateConfig

[ECUC_Can_00387] Definition of EcucParamConfContainerDef CanController

BaudrateConfig |

Container Name

CanControllerBaudrateConfig

Parent Container

CanController

Description

This container contains bit timing related configuration parameters of the CAN

controller(s).

Multiplicity

1.*

Post-Build Variant Multiplicity

true

Multiplicity Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanControllerBaudRate 1 [ECUC_Can_00005]

CanControllerBaudRateConfigID 1 [ECUC_Can_00471]

CanControllerPropSeg 1 [ECUC_Can_00073]

CanControllerSeg1 1 [ECUC_Can_00074]

CanControllerSeg2 1 [ECUC_Can_00075]

CanControllerSyncJumpWidth 1 [ECUC_Can_00383]

Included Containers

Container Name Multiplicity Dependency

CanControllerFdBaudrateConfig 0..1 This optional container contains bit timing related configuration
parameters of the CAN controller(s) for payload and CRC of a
CAN FD frame. If this container exists the controller supports
CAN FD frames.

CanXLBaudrateConfig 0..1 This container is specified in the SWS CAN XL Driver and
contains bit timing related configuration parameters of the CAN
controller(s) for payload and CRC of a CAN XL frame.

]
[ECUC_Can_00005] Definition of EcucFloatParamDef CanControllerBaudRate |

Parameter Name

CanControllerBaudRate
CanControllerBaudrateConfig

Parent Container

Description Specifies the baudrate of the controller in kbps.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 2000]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

| Dependency

]

[ECUC_Can_00471] Definition of EcucintegerParamDef CanControllerBaudRate

ConfigID |

Parameter Name

CanControllerBaudRateConfigIlD

Parent Container

CanControllerBaudrateConfig

Description This ID is used by SetBaudrate APl and uniquely identifies a specific baud rate
configuration within a controller configuration.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency CanSetBaudrateApi

]

[ECUC_Can_00073] Definition of EcuclntegerParamDef CanControllerPropSeg |

Parameter Name

CanControllerPropSeg

Parent Container

CanControllerBaudrateConfig

Description Specifies propagation delay in time quantas.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..384

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00074] Definition of EcucintegerParamDef CanControllerSeg1 |

Parameter Name

CanControllerSeg1

Parent Container

CanControllerBaudrateConfig

Description Specifies phase segment 1 in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0. 255 |

Y4

AUTSSAR

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00075] Definition of EcucintegerParamDef CanControllerSeg2 |

Parameter Name

CanControllerSeg2

Parent Container

CanControllerBaudrateConfig

Description Specifies phase segment 2 in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00383] Definition of EcuclntegerParamDef CanControllerSyncJump

Width |

Parameter Name

CanControllerSyncJumpWidth

Parent Container

CanControllerBaudrateConfig

Description Specifies the synchronization jump width for the controller in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

10.2.5 CanControllerFdBaudrateConfig

[ECUC_Can_00473] Definition of EcucParamConfContainerDef CanControllerFd

BaudrateConfig |

AUTSSAR

Container Name

CanControllerFdBaudrateConfig

Parent Container

CanControllerBaudrateConfig

Description This optional container contains bit timing related configuration parameters of the CAN
controller(s) for payload and CRC of a CAN FD frame. If this container exists the
controller supports CAN FD frames.

Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanControllerFdBaudRate 1 [ECUC_Can_00481]
CanControllerPropSeg 1 [ECUC_Can_00476]
CanControllerSeg1 1 [ECUC_Can_00477]
CanControllerSeg2 1 [ECUC_Can_00478]
CanControllerSspOffset 0..1 [ECUC_Can_00494]
CanControllerSyncJumpWidth 1 [ECUC_Can_00479]
CanControllerTxBitRateSwitch 1 [ECUC_Can_00475]

No Included Containers

]

[ECUC_Can_00481] Definition of EcucFloatParamDef CanControllerFdBaudRate

[

Parameter Name

CanControllerFdBaudRate

Parent Container

CanControllerFdBaudrateConfig

Description Specifies the data segment baud rate of the controller in kbps.

Multiplicity 1

Type EcucFloatParamDef

Range [0.. 16000]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00476] Definition of EcucintegerParamDef CanControllerPropSeg |

Parameter Name

CanControllerPropSeg

Parent Container

CanControllerFdBaudrateConfig

Description Specifies propagation delay in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

V

AUTSSAR

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00477] Definition of EcucintegerParamDef CanControllerSeg1 |

Parameter Name

CanControllerSeg1

Parent Container

CanControllerFdBaudrateConfig

Description Specifies phase segment 1 in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00478] Definition of EcucintegerParamDef CanControllerSeg2 |

Parameter Name

CanControllerSeg2

Parent Container

CanControllerFdBaudrateConfig

Description Specifies phase segment 2 in time quantas.
Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Can_00494] Definition of EcuclntegerParamDef CanControllerSspOffset
[

Parameter Name CanControllerSspOffset
Parent Container CanControllerFdBaudrateConfig
Description Specifies the Transmitter Delay Compensation Offset in minimum time quanta (see

[17]). Transmitter Delay Compensation Offset is used to adjust the position of the
Secondary Sample Point (SSP), relative to the beginning of the received bit. If this
parameter is configured, the Transmitter Delay Compensation is done by measurement
of the CAN controller. If not specified, Transmitter Delay Compensation is disabled.
Note: MTQ == Minimum Time Quanta in seconds == 1/(frequency of the CAN controller
clock) Secondary Sample Point Offset in seconds = CanControllerSspOffset * MTQ
Example: CAN controller clock frequency = 20MHz => MTQ = 1/20 * 107(-6) s = 0,05
us = 50ns Baud rate = 1MBit/s => BitTime = 1/(1 * 10°6) s/Bit = 1 * 107(-6) = 1us/Bit
SSP = 75% => SSP in seconds = 0,75 * 1us = 750 ns CanControllerSspOffset in MTQ
=750ns /50ns =15

Note: Please consider the minimum range (0..63) stated in [17] and the range definition
(0..127) used as per [19].

Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..255

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00479] Definition of EcuclntegerParamDef CanControllerSyncJump
Width |

Parameter Name CanControllerSyncJumpWidth
Parent Container CanControllerFdBaudrateConfig
Description Specifies the synchronization jump width for the controller in time quantas.
Multiplicity 1
Type EcuclntegerParamDef
Range 0..255
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

AUTSSAR

[ECUC_Can_00475] Definition of EcucBooleanParamDef CanControllerTxBitRate

Switch |

Parameter Name

CanControllerTxBitRateSwitch

Parent Container

CanControllerFdBaudrateConfig

Description Specifies if the bit rate switching shall be used for transmissions. If FALSE: CAN FD
frames shall be sent without bit rate switching.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

10.2.6 CanPartialNetwork

[ECUC_Can_00530] Definition of EcucParamConfContainerDef CanPartialNet-

work [
Container Name CanPartialNetwork
Parent Container CanController
Description Container gives CAN Controller driver information about the configuration of Partial
Networking functionality.
Multiplicity 0..1
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanDynamicPnFrameDataMaskEnabled 1 [ECUC_Can_00538]
CanPnEnabled 1 [ECUC_Can_00531]
CanPnFrameCanld 1 [ECUC_Can_00532]
CanPnFrameCanldMask 1 [ECUC_Can_00533]
CanPnFrameDlc 1 [ECUC_Can_00535]
Included Containers
Container Name Multiplicity Dependency
CanPnFrameDataMaskSpec 0..8 Defines data payload mask to be used on the received payload
in order to determine if the controller must be woken up by the
received Wake-up Frame (WUF).

AUTSSAR

[ECUC_Can_00538] Definition of EcucBooleanParamDef CanDynamicPnFrame
DataMaskEnabled |

Parameter Name CanDynamicPnFrameDataMaskEnabled
Parent Container CanPartialNetwork
Description Indicates if the data payload mask to be used on the received payload in order to

determine if the controller must be woken up by the received Wake-up Frame (WUF)
can be updated during runtime.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]
[ECUC_Can_00531] Definition of EcucBooleanParamDef CanPnEnabled |

Parameter Name CanPnEnabled

Parent Container CanPartialNetwork

Description Indicates whether the selective wake-up function is enabled or disabled in HW. TRUE =
Selective wakeup feature is enabled in the controller hardware FALSE = Selective
wakeup feature is disabled in the controller hardware

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

J
[ECUC_Can_00532] Definition of EcucintegerParamDef CanPnFrameCanid |

Parameter Name CanPnFrameCanld

Parent Container CanPartialNetwork

Description CAN ID of the Wake-up Frame (WUF).

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Can_00533] Definition of EcucintegerParambDef CanPnFrameCanldMask

[

Parameter Name

CanPnFrameCanldMask

Parent Container

CanPartialNetwork

Description ID Mask for the selective activation of the CAN controller. It is used to enableFrame
Wake-up (WUF) on a group of IDs.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00535] Definition of EcuclntegerParamDef CanPnFrameDic |

Parameter Name

CanPnFrameDlc

Parent Container

CanPartialNetwork

Description Data Length of the Wake-up Frame (WUF).

Multiplicity 1

Type EcucintegerParamDef

Range 0..8

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.7 CanPnFrameDataMaskSpec

[ECUC_Can_00534] Definition of EcucParamConfContainerDef CanPnFrameData

MaskSpec |

Container Name

CanPnFrameDataMaskSpec

Parent Container

CanPartialNetwork

Description Defines data payload mask to be used on the received payload in order to determine if
the controller must be woken up by the received Wake-up Frame (WUF).

Multiplicity 0.8

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time | X | All Variants

\Y%

AUTSSAR

A

Link time -

Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanPnFrameDataMask 1 [ECUC_Can_00536]
CanPnFrameDataMaskIndex 1 [ECUC_Can_00537]

| No Included Containers

]

[ECUC_Can_00536] Definition of EcucintegerParamDef CanPnFrameDataMask |

Parameter Name

CanPnFrameDataMask

Parent Container

CanPnFrameDataMaskSpec

Description Defines the n byte (Byte0O = LSB) of the data payload mask to be used on the received
payload in order to determine if the controller must be woken up by the received
Wake-up Frame (WUF).

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00537] Definition of EcucintegerParamDef CanPnFrameDataMask

Index |

Parameter Name

CanPnFrameDataMaskindex

Parent Container

CanPnFrameDataMaskSpec

Description Holds the position n in frame of the mask-part

Multiplicity 1

Type EcuclntegerParamDef

Range 0.7

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

10.2.8 CanHardwareObiject

[ECUC_Can_00324] Definition of EcucParamConfContainerDef CanHardwareOb-
ject [

Container Name

CanHardwareObject

Parent Container

CanConfigSet

Description This container contains the configuration (parameters) of CAN Hardware Objects.
Multiplicity 0..”
Post-Build Variant Multiplicity true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanFdPaddingValue 0..1 [ECUC_Can_00485]
CanHandleType 1 [ECUC_Can_00323]
CanHardwareObjectUsesPolling 0..1 [ECUC_Can_00490]
CanHwObjectCount 1 [ECUC_Can_00467]
CanldType 1 [ECUC_Can_00065]
CanObjectld 1 [ECUC_Can_00326]
CanObjectPayloadLength 0..1 [ECUC_Can_00495]
CanObjectType 1 [ECUC_Can_00327]
CanTriggerTransmitEnable 0..1 [ECUC_Can_00486]
CanControllerRef 1 [ECUC_Can_00322]
CanMainFunctionRWPeriodRef 0..1 [ECUC_Can_00438]
Included Containers
Container Name Multiplicity Dependency
CanHwFilter 0..” This container is only valid for HRHs and contains the
configuration (parameters) of one hardware filter.

[ECUC_Can_00485] Definition of EcucintegerParamDef CanFdPaddingValue |

Parameter Name

CanFdPaddingValue

Parent Container

CanHardwareObject

Description

Specifies the value which is used to pad unspecified data in CAN FD frames > 8 bytes
for transmission. This is necessary due to the discrete possible values of the DLC if > 8
bytes.

If the length of a PDU which was requested to be sent does not match the allowed DLC
values, the remaining bytes up to the next possible value shall be padded with this
value.

Multiplicity

0..1

Type

EcuclntegerParamDef

Range

0. 255 |

\Y%

AUTSSAR

A
Default value 0
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

J
[ECUC_Can_00323] Definition of EcucEnumerationParamDef CanHandleType |

Parameter Name CanHandleType
Parent Container CanHardwareObject
Description Specifies the type (Full-CAN or Basic-CAN) of a hardware object.
Multiplicity 1
Type EcucEnumerationParamDef
Range BASIC For several L-PDUs are hadled by the hardware
object
FULL For only one L-PDU (identifier) is handled by the
hardware object
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency This configuration element is used as information for the CAN Interface only. The
relevant CAN driver configuration is done with the filter mask and identifier.

]

[ECUC_Can_00490] Definition of EcucBooleanParamDef CanHardwareObiject
UsesPolling |

Parameter Name CanHardwareObjectUsesPolling

Parent Container CanHardwareObject

Description Enables polling of this hardware object.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Dependency This parameter shall exist if CanRxProcessing/CanTxProcessing is set to Mixed.

AUTSSAR

[ECUC_Can_00467] Definition of EcuclntegerParamDef CanHwObjectCount |

Parameter Name CanHwObjectCount

Parent Container CanHardwareObject

Description Number of hardware objects used to implement one HOH. In case of a HRH this
parameter defines the number of elements in the hardware FIFO or the number of
shadow buffers, in case of a HTH it defines the number of hardware objects used for
multiplexed transmission or for a hardware FIFO used by a FullCAN HTH.

Multiplicity 1

Type EcuclntegerParamDef
Range 1.. 65535

Default value 1

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_Can_00065] Definition of EcucEnumerationParamDef CanldType [

Parameter Name CanldType
Parent Container CanHardwareObject
Description Specifies whether the IdValue is of type standard identifier, extended identifier or mixed
mwossﬁ”lentationType: Can_IdType
Multiplicity 1
Type EcucEnumerationParamDef
Range EXTENDED All the CANIDs are of type extended only (29 bit).
MIXED The type of CANIDs can be both Standard or
Extended.
STANDARD All the CANIDs are of type standard only (11bit).
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

AUTSSAR

[ECUC_Can_00326] Definition of EcuclntegerParamDef CanObjectld |

Parameter Name

CanObjectld

Parent Container

CanHardwareObject

Description Holds the handle ID of HRH or HTH. The value of this parameter is unique in a given
CAN Diriver, and it should start with 0 and continue without any gaps.
The HRH and HTH Ids share a common ID range.
Example: HRHO0-0, HRH1-1, HTHO0-2, HTH1-3

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

withAuto = true

]

[ECUC_Can_00495] Definition of EcucEnumerationParamDef CanObjectPayload

Length |

Parameter Name

CanObjectPayloadLength

Parent Container

CanHardwareObject

Description Specifies the maximum L-PDU payload length in bytes the hardware object can store.
If the parameter is not provided, Can driver configuration generators have to assume
the maximum length of the underlying CAN derivate, e.g. 8 bytes for CAN, 64 bytes for
CAN-FD.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_OBJECT_PL_12 Payload length of 12 Bytes

CAN_OBJECT_PL_16

Payload length of 16 Bytes

CAN_OBJECT_PL_20

Payload length of 20 Bytes

CAN_OBJECT PL 24

Payload length of 24 Bytes

CAN_OBJECT_PL_32

Payload length of 32 Bytes

CAN_OBJECT_PL_48

Payload length of 48 Bytes

CAN_OBJECT_PL_64

Payload length of 64 Bytes

CAN_OBJECT PL_8

Payload length of 8 Bytes

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Can_00327] Definition of EcucEnumerationParamDef CanObjectType |

Parameter Name

CanObjectType

Parent Container

CanHardwareObject, CanXLHardwareObject

Description Specifies if the HardwareObject is used as Transmit or as Receive object
Multiplicity 1
Type EcucEnumerationParamDef
Range RECEIVE Receive HOH
TRANSMIT Transmit HOH
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00486] Definition of EcucBooleanParamDef CanTriggerTransmitEn-

able |

Parameter Name

CanTriggerTransmitEnable

Parent Container

CanHardwareObject

Description This parameter defines if or if not Can supports the trigger-transmit API for this handle.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Can_00322] Definition of EcucReferenceDef CanControllerRef |

Parameter Name

CanControllerRef

Parent Container

CanHardwareObject, CanXLHardwareObject

Description Reference to CAN Controller to which the HOH is associated to.
Multiplicity 1
Type Reference to CanController
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

The referenced CanController has to contain a CanXLController.

AUTSSAR

[ECUC_Can_00438] Definition of EcucReferenceDef CanMainFunctionRWPeriod
Ref |

Parameter Name CanMainFunctionRWPeriodRef
Parent Container CanHardwareObject, CanXLHardwareObject
Description Reference to CanMainFunctionPeriod. If configured, this hardware object will be polled.
Multiplicity 0..1
Type Reference to CanMainFunctionRWPeriods
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency
|

[SWS_Can_CONSTR_00512] [If the optional parameter CanObjectPayloadLength is
configured, the length shall be set that every PDU received or sent via that HOH "fits"
into it. Therefore, if set, CanObjectPayloadLength shall be equal or greater than the
maximum PdulLength of all affected Pdus of the EcuCPduCollection. |

Note: For A HOH that has CanObjectPayloadLength configured and
any PDU it sends/receives, A PDU Of A HOH the condition Can/-
CanConfigSet/A_HOH/CanObjectPayloadLength >= EcuC/EcuCPduCollec-
tion/A_PDU_Of A HOH/PduLength must hold.

10.2.9 CanHwfFilter

[ECUC_Can_00468] Definition of EcucParamConfContainerDef CanHwFilter |

Container Name CanHwFilter

Parent Container CanHardwareObject

Description This container is only valid for HRHs and contains the configuration (parameters) of
one hardware filter.

Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
CanHwFilterCode 1 [ECUC_Can_00469]
CanHwrFilterMask 1 [ECUC_Can_00470]

No Included Containers

AUTSSAR

[ECUC_Can_00469] Definition of EcuclntegerParamDef CanHwFilterCode |

Parameter Name

CanHweFilterCode

Parent Container

CanHweFilter

Description Specifies (together with the filter mask) the identifiers range that passes the hardware
filter.

Multiplicity 1

Type EcuclintegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00470] Definition of EcuclntegerParamDef CanHwFilterMask |

Parameter Name

CanHwFilterMask

Parent Container

CanHweFilter

Description Describes a mask for hardware-based filtering of CAN identifiers. The CAN identifiers
of incoming messages are masked with the appropriate CanFilterMaskValue. Bits
holding a 0 mean don’t care, i.e. do not compare the message’s identifier in the
respective bit position.

The mask shall be build by filling with leading 0. In case of CanldType EXTENDED or
MIXED a 29 bit mask shall be build. In case of CanldType STANDARD a 11 bit mask
shall be build

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

The filter mask settings must be known by the Canlf configuration for optimization of
the SW filters.

10.2.10 CanConfigSet

[ECUC_Can_00343] Definition of EcucParamConfContainerDef CanConfigSet |

Container Name

CanConfigSet

Parent Container

Can

Description

This container contains the configuration parameters and sub containers of the
AUTOSAR Can module.

Multiplicity

1

Configuration Parameters

AUTSSAR

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

CanController 1.* This container contains the configuration parameters of the CAN
controller(s).

CanHardwareObject 0..* This container contains the configuration (parameters) of CAN
Hardware Objects.

CanXLHardwareObject 0..* This container is specified in the SWS CAN XL Driver and
contains the configuration (parameters) of CAN XL Hardware
Objects.

10.2.11 CanMainFunctionRWPeriods

[ECUC_Can_00437] Definition of EcucParamConfContainerDef CanMainFunc-
tionRWPeriods |

Container Name CanMainFunctionRWPeriods

Parent Container CanGeneral

Description This container contains the parameter for configuring the period for cyclic call to Can_
MainFunction_Read or Can_MainFunction_Write depending on the referring item.

Multiplicity 0..*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

CanMainFunctionPeriod 1 [ECUC_Can_00484]

No Included Containers

]
[ECUC_Can_00484] Definition of EcucFloatParamDef CanMainFunctionPeriod [

Parameter Name CanMainFunctionPeriod
Parent Container CanMainFunctionRWPeriods
Description This parameter describes the period for cyclic call to Can_MainFunction_Read or Can_

MainFunction_Write depending on the referring item. Unit is seconds. Different
poll-cycles will be configurable if more than one CanMainFunctionPeriod is configured.
In this case multiple Can_MainFunction_Read() or Can_MainFunction_Write() will be
provided by the CAN Driver module.

Multiplicity 1

Y%

AUTSSAR

A
Type EcucFloatParamDef
Range 10 .. INF[|
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.12 CanXLGeneral

[ECUC_Can_00524] Definition of EcucParamConfContainerDef CanXLGeneral |

Container Name

CanXLGeneral

Parent Container

CanGeneral

Description This container is specified in the SWS CAN XL Driver and contains global parameters
of the CAN XL Driver.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

CanXLEthGlobalTimeSupport

1 [ECUC_Can 00525

| No Included Containers

]

[ECUC_Can_00525] Definition of EcucBooleanParamDef CanXLEthGlobalTime

Support |

Parameter Name

CanXLEthGlobalTimeSupport

Parent Container

CanXLGeneral

Description Enables/Disables the Global Time APIs for the Ethernet Interface used when hardware
timestamping is supported by CAN controller.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time | X | All Variants

\Y

AUTSSAR

Link time -

Post-build time -

Dependency

10.2.13 CanXLController

[ECUC_Can_00499] Definition of EcucParamConfContainerDef CanXLController

[

Container Name

CanXLController

Parent Container

CanController

Description This container is specified in the SWS CAN XL Driver and represents a CAN XL
channel. If this container is present, the CAN driver will provide the extended CanXL
API.
Multiplicity 0..1
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanXLCtrIEthDefaultPriority 0..1 [ECUC_Can_00500]
CanXLEthDefaultQueue 0..1 [ECUC_Can_00501]
CanXLEthPhysAddress 0..1 [ECUC_Can_00506]
CanXLEthEcucPartitionRef 0..1 [ECUC_Can_00511]
Included Containers
Container Name Multiplicity Dependency
CanXLEthEgressFifo 0..” Represents a Fifo at the egress side.
CanXLEthIngressFifo 0..* Represents a Fifo at the ingress side.

]

[ECUC_Can_00500] Definition of EcucintegerParamDef CanXLCtrlEthDefaultPri-

ority [

Parameter Name

CanXLCtrlEthDefaultPriority

Parent Container

CanXLController

Description Defines the default CAN XL Priority ID to be used for outgoing tunneled Ethernet
frames.

Multiplicity 0..1

Type EcuclntegerParamDef

\Y%

AUTSSAR

A
Range 0 .. 2047 |
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00501] Definition of EcucintegerParamDef CanXLEthDefaultQueue

[

Parameter Name

CanXLEthDefaultQueue

Parent Container

CanXLController

Description Defines the default CAN XL Queue to be used for outgoing tunneled Ethernet frames.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..255
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00506] Definition of EcucStringParamDef CanXLEthPhysAddress |

Parameter Name

CanXLEthPhysAddress

Parent Container

CanXLController

Description Specifies the unique 48-bit physical address (MAC address) of the controller in network
byte order.

Multiplicity 0..1

Type EcucStringParamDef

Default value -

Length 17-17

Regular Expression ([0-9a-fA-F]{2}:){5}[0-9a-fA-F]{2}

Post-Build Variant Multiplicity false

V

AUTSSAR

Post-Build Variant Value

true

Multiplicity Configuration Class

Pre-compile time X

All Variants

Link time -

Post-build time -

Value Configuration Class

Pre-compile time X

VARIANT-PRE-COMPILE

Link time -

Post-build time X

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00511] Definition of EcucReferenceDef CanXLEthEcucPartitionRef

[

Parameter Name

CanXLEthEcucPartitionRef

Parent Container

CanXLController

Description Maps the Ethernet Interface access to the CAN XL controller to zero or one ECUC
partitions.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

10.2.14 CanXLHardwareObject

[ECUC_Can_00526] Definition of EcucParamConfContainerDef CanXLHardware

Object |
Container Name CanXLHardwareObject
Parent Container CanConfigSet

Description This container is specified in the SWS CAN XL Driver and contains the configuration
(parameters) of CAN XL Hardware Objects.

Multiplicity 0..”

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

A
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
CanObjectType 1 [ECUC_Can_00327]
CanXLObjectld 1 [ECUC_Can_00527]
CanControllerRef 1 [ECUC_Can_00322]
CanMainFunctionRWPeriodRef 0..1 [ECUC_Can_00438]
Included Containers
Container Name Multiplicity Dependency
CanXLHwFilter 0..* This container is only valid for CAN XL HRHs and contains the
configuration (parameters) of one hardware filter.
This container is intentionally left empty, because the parameters
are very hardware specific and shall be filled in by the VSMD.

]

For parameter table [ECUC_Can_00327] CanObjectType, see definition below con-
tainer CanHardwareObject.

[ECUC_Can_00527] Definition of EcucintegerParamDef CanXLObjectld |

Parameter Name CanXLObjectld

Parent Container CanXLHardwareObject

Description Holds the handle ID of CAN XL HRH or HTH.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

For parameter table [ECUC_Can_00322] CanControllerRef, see definition below con-
tainer CanHardwareObject.

For parameter table [ECUC_Can_00438] CanMainFunctionRWPeriodRef, see defini-
tion below container CanHardwareObject.

10.2.15 CanXLHwfFilter

[ECUC_Can_00528] Definition of EcucParamConfContainerDef CanXLHwFilter |

AUTSSAR

Container Name CanXLHwFilter
Parent Container CanXLHardwareObject
Description This container is only valid for CAN XL HRHs and contains the configuration

(parameters) of one hardware filter.
This container is intentionally left empty, because the parameters are very hardware
specific and shall be filled in by the VSMD.

Multiplicity 0.x

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

No Included Parameters |

No Included Containers |

10.2.16 CanXLBaudrateConfig

[ECUC_Can_00512] Definition of EcucParamConfContainerDef CanXLBaudrate
Config [

Container Name CanXLBaudrateConfig

Parent Container CanControllerBaudrateConfig

Description This container is specified in the SWS CAN XL Driver and contains bit timing related
configuration parameters of the CAN controller(s) for payload and CRC of a CAN XL
frame.

Multiplicity 0..1

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanXLBaudRate 1 [ECUC_Can_00513]
CanXLErrorSignaling 1 [ECUC_Can_00523]
CanXLPropSeg 1 [ECUC_Can_00517]
CanXLPwmL 1 [ECUC_Can_00514]
CanXLPwmO 1 [ECUC_Can_00516]
CanXLPwmS 1 [ECUC_Can_00515]
CanXLSeg1 1 [ECUC_Can_00518]
CanXLSeg2 1 [ECUC_Can_00519]

AUTSSAR

JAN
Included Parameters
Parameter Name Multiplicity ECUC ID
CanXLSspOffset 0..1 [ECUC_Can_00521]
CanXLSyncJumpWidth 1 [ECUC_Can_00520]
CanXLTrcvPwmMode 1 [ECUC_Can_00522]

| No Included Containers

]
[ECUC_Can_00513] Definition of EcucFloatParamDef CanXLBaudRate |

Parameter Name CanXLBaudRate

Parent Container CanXLBaudrateConfig

Description Specifies the data segment baud rate of the controller in kbps.
Note: The CAN XL baudrate should be at least twice the nominal bitrate so that an
error flag can safely destroy a CAN XL frame.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 20000]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency Has to be at least twice as high as CanControllerBaudRate.

|
[ECUC_Can_00523] Definition of EcucBooleanParamDef CanXLErrorSignaling |

Parameter Name CanXLErrorSignaling

Parent Container CanXLBaudrateConfig

Description Specifies if error signaling shall be enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency Only relevant if CanXLTrcvPwmMode is disabled.

AUTSSAR

[ECUC_Can_00517] Definition of EcuclntegerParamDef CanXLPropSeg |

Parameter Name

CanXLPropSeg

Parent Container

CanXLBaudrateConfig

Description Specifies propagation delay in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00514] Definition of EcuclntegerParamDef CanXLPwmL |

Parameter Name

CanXLPwmL

Parent Container

CanXLBaudrateConfig

Description Specifies the PWM long phase length.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00516] Definition of EcuclntegerParamDef CanXLPwmO |

Parameter Name

CanXLPwmO

Parent Container

CanXLBaudrateConfig

Description Specifies the PWM time offset.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Can_00515] Definition of EcuclntegerParamDef CanXLPwmS |

Parameter Name

CanXLPwmS

Parent Container

CanXLBaudrateConfig

Description Specifies the PWM short phase length.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00518] Definition of EcucintegerParamDef CanXLSeg1 |

Parameter Name

CanXLSeg1

Parent Container

CanXLBaudrateConfig

Description Specifies phase segment 1 in time quantas.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00519] Definition of EcucintegerParamDef CanXLSeg2 |

Parameter Name

CanXLSeg2

Parent Container

CanXLBaudrateConfig

Description Specifies phase segment 2 in time quantas.
Multiplicity 1

Type EcuclintegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_Can_00521] Definition of EcuclntegerParamDef CanXLSspOffset |

Parameter Name CanXLSspOffset

Parent Container CanXLBaudrateConfig

Description Specifies the Transmitter Delay Compensation Offset in minimum time quanta. If this
parameter is configured, the Transmitter Delay Compensation is done by measurement
of the CAN controller. If not specified, Transmitter Delay Compensation is disabled.
See ECUC_Can_00494 for details.

Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..255

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_Can_00520] Definition of EcuclntegerParamDef CanXLSyncJumpWidth |

Parameter Name CanXLSyncJumpWidth
Parent Container CanXLBaudrateConfig
Description Specifies the synchronization jump width for the controller in time quantas.
Multiplicity 1
Type EcuclntegerParamDef
Range 0..255
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_Can_00522] Definition of EcucBooleanParamDef CanXLTrcvPwmMode |

Parameter Name CanXLTrcvPwmMode

Parent Container CanXLBaudrateConfig

Description Specifies if the transceiver shall be set to the PWM mode.
Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value true

V

AUTSSAR

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

10.2.17 CanXLEthEgressFifo

[ECUC_Can_00502] Definition of EcucParamConfContainerDef CanXLEthEgress

Fifo [

Container Name

CanXLEthEgressFifo

Parent Container

CanXLController

Description Represents a Fifo at the egress side.

Multiplicity 0..*

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanXLEthEgressFifoCanXLPriority 1 [ECUC_Can_00503]
CanXLEthEgressFifoCanXLQueue 1 [ECUC_Can_00504]
CanXLEthEgressFifoldx 1 [ECUC_Can_00505]

| No Included Containers

]

[ECUC_Can_00503] Definition of EcuclntegerParamDef CanXLEthEgressFifoCan

XLPriority |

Parameter Name

CanXLEthEgressFifoCanXLPriority

Parent Container

CanXLEthEgressFifo

Description Defines the CAN XL Priority ID to be used for outgoing tunneled Ethernet frames using
this FIFO.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 2047 |

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time \ X \ VARIANT-PRE-COMPILE

V

AUTSSAR

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00504] Definition of EcuclntegerParamDef CanXLEthEgressFifoCan

XLQueue [

Parameter Name

CanXLEthEgressFifoCanXLQueue

Parent Container CanXLEthEgressFifo

Description Defines the CAN XL Queue to be used for outgoing tunneled Ethernet frames using
this FIFO.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

Post-build time

VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00505] Definition of EcucintegerParamDef CanXLEthEgressFifoldx

[

Parameter Name

CanXLEthEgressFifoldx

Parent Container

CanXLEthEgressFifo

Description Egress Fifo index.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

withAuto = true

10.2.18 CanXLEthingressFifo

[ECUC_Can_00507] Definition of EcucParamConfContainerDef CanXLEthingress
Fifo [

AUTSSAR

Container Name

CanXLEthIngressFifo

Parent Container

CanXLController

Description Represents a Fifo at the ingress side.

Multiplicity 0.~

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

CanXLEthIngressFifoCanXLQueue 1 [ECUC_Can_00509]
CanXLEthIngressFifoldx 1 [ECUC_Can_00508]
CanXLEthIngressFifoVcid 0..* [ECUC_Can_00510]

No Included Containers

]

[ECUC_Can_00509] Definition of EcuclntegerParamDef CanXLEthingressFifo

CanXLQueue |

Parameter Name

CanXLEthIngressFifoCanXLQueue

Parent Container

CanXLEthIngressFifo

Description Defines the CAN XL Queue to be used for incoming tunneled Ethernet frames using
this FIFO.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Can_00508] Definition of EcucintegerParamDef CanXLEthingressFifoldx

[

Parameter Name

CanXLEthIngressFifoldx

Parent Container

CanXLEthIngressFifo

Description Ingress Fifo index.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0. 255 |

\Y%

AUTSSAR

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time -

Post-build time —
withAuto = true

Dependency

]

[ECUC_Can_00510] Definition of EcuclntegerParamDef CanXLEthingressFifo
Veid |

Parameter Name

CanXLEthIngressFifoVcid
CanXLEthIngressFifo

Parent Container

Description Configures a VCID to be accepted by this FIFO. If not present, all VCIDs shall be
accepted.

Multiplicity 0..”

Type EcucintegerParamDef

Range 0..255

Default value -
Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

11 Not applicable requirements

[SWS_Can_NA]

Upstream requirements: SRS_BSW_00162, SRS_BSW_00168, SRS_BSW_00170, SRS_BSW _

00307, SRS_BSW_00325, SRS_BSW_00336, SRS_BSW_00342,
SRS_BSW_00353, SRS_BSW_00359, SRS_BSW_00378, SRS_BSW_
00383, SRS_BSW_00395, SRS_BSW_00397, SRS_BSW_00398,
SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00409, SRS_BSW_
00413, SRS_BSW_00415, SRS_BSW_00417, SRS_BSW_00422,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_
00426, SRS_BSW_00427, SRS_BSW_00429, SRS_BSW_00433,
SRS_BSW_00439, SRS_BSW_00440, SRS_BSW_00447, SRS_BSW_
00449, SRS_BSW_00453, SRS_Can_01125, SRS_Can_01126, SRS_
SPAL_12064, SRS_SPAL_12068, SRS_SPAL_12163, SRS_SPAL_
12462

[These requirements are not applicable to this specification. |

AUTSSAR

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to
AUTOSAR Release R24-11

A.1.1 Added Constraints in R24-11

none

A.1.2 Changed Constraints in R24-11

none

A.1.3 Deleted Constraints in R24-11

Number Heading

[SWS_Can_
CONSTR_
00508]

Table A.1: Deleted Constraints in R24-11

A.1.4 Added Specification ltems in R24-11

none

A.1.5 Changed Specification Iltems in R24-11

Number Heading

[ECUC_Can_00491] Definition of EcucReferenceDef CanEcucPartitionRef

[SWS_Can_00222] Definition of imported datatypes of module Can

[SWS_Can_00234] Definition of mandatory interfaces required by module Can

[SWS_Can_00235] Definition of optional interfaces requested by module Can

Table A.2: Changed Specification Iltems in R24-11

A.1.6 Deleted Specification Iltems in R24-11

none

AUTSSAR

A.2 Traceable item history of this document according to
AUTOSAR Release R25-11

A.2.1 Added Constraints in R25-11

none

A.2.2 Changed Constraints in R25-11

none

A.2.3 Deleted Constraints in R25-11

none

A.2.4 Added Specification Items in R25-11

Number Heading

[ECUC_Can_00538] Definition of EcucBooleanParamDef CanDynamicPnFrameDataMask
Enabled

[SWS_Can_00604] Definition of API function Can_SetCanPnFrameDataMask

[SWS_Can_00605] For APl Can_SetCanPnFrameDataMask

[SWS_Can_00606] For APl Can_SetCanPnFrameDataMask

[SWS_Can_00608] For APl Can_SetCanPnFrameDataMask

Table A.3: Added Specification Iltems in R25-11

A.2.5 Changed Specification ltems in R25-11

Number Heading

[ECUC_Can_00324] Definition of EcucParamConfContainerDef CanHardwareObject

[ECUC_Can_00354] Definition of EcucParamConfContainerDef CanController

[ECUC_Can_00497] Definition of EcucParamConfContainerDef CanGeneral

[ECUC_Can_00526] Definition of EcucParamConfContainerDef CanXLHardwareObject

Table A.4: Changed Specification Items in R25-11

AUTSSAR

A.2.6 Deleted Specification Iltems in R25-11

Number

Heading

[ECUC_Can_00001]

Definition of EcucParamConfContainerDef CanTTController

[ECUC_Can_00002]

Definition of EcucParamConfContainerDef CanTTHardwareObjectTrigger

[ECUC_Can_00127]

Definition of EcucEnumerationParamDef CanTTControllerOperationMode

[ECUC_Can_00128]

Definition of EcuclintegerParamDef CanTTControllerInitialRefOffset

[ECUC_Can_00129]

Definition of EcucBooleanParamDef CanTTControllerTimeMaster

[ECUC_Can_00130]

Definition of EcuclntegerParamDef CanTTControllerTimeMasterPriority

[ECUC_Can_00131]

Definition of EcucBooleanParamDef CanTTControllerLevel2

[ECUC_Can_00132]

Definition of EcucFloatParamDef CanTTControllerSyncDeviation

[ECUC_Can 00133]

Definition of EcucBooleanParamDef CanTTControllerTURRestore

[ECUC_Can_00134]

Definition of EcucBooleanParamDef CanTTControllerGlobalTimeFiltering

[ECUC_Can_00135]

Definition of EcucBooleanParamDef CanTTControllerExternalClock
Synchronisation

[ECUC_Can_00136]

Definition of EcucintegerParamDef CanTTControllerExpectedTxTrigger

[ECUC_Can 00137]

Definition of EcuclintegerParamDef CanTTControllerTxEnableWindowLength

[ECUC_Can_00138]

Definition of EcuclntegerParamDef CanTTControllerCycleCountMax

[ECUC_Can_00139]

Definition of EcucintegerParamDef CanTTControllerApplWatchdogLimit

[ECUC_Can_00140]

Definition of EcuclntegerParamDef CanTTControllerinterruptEnable

[ECUC_Can_00141]

Definition of EcucFloatParamDef CanTTControllerNTUConfig

[ECUC_Can 00142

Definition of EcucEnumerationParamDef CanTTIRQProcessing

[ECUC_Can_00145]

Definition of EcucEnumerationParamDef CanT THardwareObjectTriggerType

[ECUC_Can_00146]

Definition of EcuclntegerParamDef CanTTHardwareObjectTimeMark

[ECUC_Can_00147]

Definition of EcuclintegerParamDef CanTTHardwareObjectBaseCycle

[ECUC_Can_00148]

Definition of EcuclintegerParamDef CanTTHardwareObjectCycleRepetition

[ECUC_Can_00155]

Definition of EcucintegerParamDef CanTTHardwareObjectTriggerld

[ECUC_Can 00157]

Definition of EcucintegerParamDef CanTTControllerWatchTriggerTimeMark

[ECUC_Can_00158]

Definition of EcucintegerParamDef CanTTControllerWatchTriggerGapTime
Mark

[ECUC_Can_00430]

Definition of EcucReferenceDef CanSupportTTCANRef

[ECUC_Can_00493]

Definition of EcucReferenceDef CanTTControllerEcucPartitionRef

Table A.5: Deleted Specification Items in R25-11

	1 Introduction and functional Overview
	2 Acronyms and Abbreviations
	2.1 Priority Inversion
	2.2 CAN Hardware Unit

	3 Related Documentation
	3.1 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Static Configuration
	5.2 Driver Services
	5.3 System Services
	5.4 Can module Users
	5.5 File Structure

	6 Requirements Tracing
	7 Functional Specification
	7.1 Driver Scope
	7.2 Driver State Machine
	7.3 CAN Controller State Machine
	7.3.1 CAN Controller State Description
	7.3.2 CAN Controller State Transitions
	7.3.3 State transition caused by function Can_Init
	7.3.4 State transition caused by function Can_SetBaudrate
	7.3.5 State transition caused by function Can_SetControllerMode
	7.3.6 State transition caused by Hardware Events
	7.3.7 State transition caused by function Can_DeInit

	7.4 Can module/Controller Initialization
	7.5 L-PDU transmission
	7.5.1 Priority Inversion
	7.5.2 Transmit Data Consistency

	7.6 L-PDU reception
	7.6.1 Receive Data Consistency

	7.7 Wakeup Concept
	7.8 CAN Controller with selective wakeup functionality
	7.9 Notification concept
	7.10 Reentrancy issues
	7.11 Hardware Timestamping
	7.12 Error classification
	7.12.1 Development Errors
	7.12.2 Runtime Errors
	7.12.3 Production Errors
	7.12.4 Extended Production Errors
	7.12.5 Return Value

	7.13 CAN FD Support
	7.14 CAN XL Extension
	7.15 Reporting of CAN Error Types

	8 API Specification
	8.1 Imported Types
	8.2 Type definitions
	8.2.1 Can_ConfigType
	8.2.2 Can_PduType
	8.2.3 Can_IdType
	8.2.4 Can_HwHandleType
	8.2.5 Can_HwType
	8.2.6 Extension to Std_ReturnType
	8.2.7 Can_ErrorStateType
	8.2.8 Can_ControllerStateType
	8.2.9 Can_ErrorType
	8.2.10 Can_TimeStampType

	8.3 Function Definitions
	8.3.1 Services affecting the complete hardware unit
	8.3.1.1 Can_Init
	8.3.1.2 Can_GetVersionInfo
	8.3.1.3 Can_DeInit

	8.3.2 Services affecting one single CAN Controller
	8.3.2.1 Can_SetBaudrate
	8.3.2.2 Can_SetControllerMode
	8.3.2.3 Can_DisableControllerInterrupts
	8.3.2.4 Can_EnableControllerInterrupts
	8.3.2.5 Can_CheckWakeup
	8.3.2.6 Can_GetControllerErrorState
	8.3.2.7 Can_GetControllerMode
	8.3.2.8 Can_GetControllerRxErrorCounter
	8.3.2.9 Can_GetControllerTxErrorCounter
	8.3.2.10 Can_GetCurrentTime
	8.3.2.11 Can_EnableEgressTimeStamp
	8.3.2.12 Can_GetEgressTimeStamp
	8.3.2.13 Can_GetIngressTimeStamp
	8.3.2.14 Can_SetCanPnFrameDataMask

	8.3.3 Services affecting a Hardware Handle
	8.3.3.1 Can_Write

	8.4 Call-back notifications
	8.4.1 Call-out function
	8.4.2 Enabling/Disabling wakeup notification

	8.5 Scheduled functions
	8.5.1
	8.5.1.1 Can_MainFunction_Write
	8.5.1.2 Can_MainFunction_Read
	8.5.1.3 Can_MainFunction_BusOff
	8.5.1.4 Can_MainFunction_Wakeup
	8.5.1.5 Can_MainFunction_Mode

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	9 Sequence diagrams
	9.1 Interaction between Can and CanIf module
	9.2 Wakeup sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Can
	10.2.2 CanGeneral
	10.2.3 CanController
	10.2.4 CanControllerBaudrateConfig
	10.2.5 CanControllerFdBaudrateConfig
	10.2.6 CanPartialNetwork
	10.2.7 CanPnFrameDataMaskSpec
	10.2.8 CanHardwareObject
	10.2.9 CanHwFilter
	10.2.10 CanConfigSet
	10.2.11 CanMainFunctionRWPeriods
	10.2.12 CanXLGeneral
	10.2.13 CanXLController
	10.2.14 CanXLHardwareObject
	10.2.15 CanXLHwFilter
	10.2.16 CanXLBaudrateConfig
	10.2.17 CanXLEthEgressFifo
	10.2.18 CanXLEthIngressFifo

	11 Not applicable requirements
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R24-11
	A.1.1 Added Constraints in R24-11
	A.1.2 Changed Constraints in R24-11
	A.1.3 Deleted Constraints in R24-11
	A.1.4 Added Specification Items in R24-11
	A.1.5 Changed Specification Items in R24-11
	A.1.6 Deleted Specification Items in R24-11

	A.2 Traceable item history of this document according to AUTOSAR Release R25-11
	A.2.1 Added Constraints in R25-11
	A.2.2 Changed Constraints in R25-11
	A.2.3 Deleted Constraints in R25-11
	A.2.4 Added Specification Items in R25-11
	A.2.5 Changed Specification Items in R25-11
	A.2.6 Deleted Specification Items in R25-11

