AUTSSAR

Document Titl Specification of Bit Handling
€ Library

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 399

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release * No content change
Management
AUTOSAR
2023-11-23 R23-11 Release * No content change
Management
* New Functions added: SWS_Bfx_
91002, SWS_Bfx_00134, SWS_Bfx
AUTOSAR ’ — = ’ —= 7=
00135, SWS_Bfx_91003, SWS_Bfx
-11- - Release ’ — ’ —=
2022-11-24 | R22-11 Management 00137, SWS_Bfx_91004, SWS_Bfx_
00139, SWS_Bfx_91005 and SWS_Bfx_
00141.
» No content changes (only converted to
AUTOSAR LaTex)
2021-11-25 | R21-11 Release
Management * Artifact inclusion based on
ArtifactAnalysis corrected
AUTOSAR
2020-11-30 | R20-11 Release » Chapter 7.1 Error sections updated
Management
AUTOSAR « Editorial Changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management

published

AUTSSAR

AUTOSAR
2018-10-31 4.4.0 Release « Addition of 64bit handling requirement
Management
AUTOSAR . f\dc‘i‘ition on mnemonic for boolean as
2017-12-08 | 4.3.1 Release u8
Management « Editorial changes
» Removal of the requirement SWS_Bfx_
00204
AUTOSAR * Updation of MISRA violation comment
2016-11-30 | 4.3.0 Release format
Management » Updation of unspecified value range for
BitPn, BitStartPn, BitLn and ShiftCnt
» Clarifications
» Updated SWS_Bfx_00017 for the return
type of Bfx_GetBit function from 1 and 0
to TRUE and FALSE
» Updated chapter 8.1 for the definition of
bit addressing and updated the
examples of Bfx_SetBit, Bfx_CIrBit, Bfx_
GetBit, Bfx_SetBits, Bfx_CopyBit, Bfx_
PutBits, Bfx_PutBit
» Updated SWS_Bfx_00017 for the return
AUTOSAR type of Bfx_GetBit function from 1 and 0
2015-07-31 | 4.2.2 Release to TRUE and FALSE without changing
Management the formula
» Updated SWS_Bfx_00011 and SWS_
Bfx_00022 for the review comments
provided for the examples
* In Table 2, replaced Boolean with
boolean
* In SWS_Bfx_00029, in example
re-placed BFX_GetBits_u16u8u8_u16
with Bfx_GetBits_u16u8u8_u16
AUTOSAR » Correct usage of const in function
2014-10-31 | 4.2.1 Release declarations
Management - Editoral changes

AUTSSAR

AUTOSAR
2014-03-31 41.3 Release « Editorial Changes
Management
* Improve description of how to map
functions to C-files
AUTOSAR
2013-10-31 41.2 Release * Improve the definition of error
Management classification
« Editorial changes
» Change return value of Test Bit API to
boolean.
AUTOSAR

2013-03-15 | 4.11 Administration

* Improve memory map handling

» Change number of parameter in Put Bit
Api.

AUTOSAR

2011-12-22 | 4.0.3 Administration

* Requirements described with more
clarity for ‘Bit Shift and Rotate’
operations

» Table correction for PutBit routines
» ‘Copy Bit routine* interfaces corrected

* Error classification support and definition
removed as DET call not supported by
library

» Configuration parameter description /
support removed for XXX_
GetVersionlInfo routine

* Renaming of the term DET in the
abbreviation to “Default Error Trace*

AUTOSAR

2009-12-18 | 4.0.1 Administration

« Signature for necessary Bit handling
functions optimized for easy usage

+ Bit handling on all signed variables
eliminated

* Additional bit handling functions
introduced

AUTOSAR

2010-02-02 | 3.1.4 Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

5 Dependencies to other modules
51 Filestructure
6 Requirements Tracing

7 Functional specification

7.1 Initialization and shutdown
7.2 Using Library APl o
7.3 Library implementation o
7.4 Error Classification
7.4.1 DevelopmentErrors
7.4.2 RuntimeErrors
7.4.3 Production Errors
7.4.4 Extended ProductionErrors

8 API specification

8.1 Importedtypes
8.2 Type definitions
8.3 Comment about functions optimized fortarget
8.4 Bit functions definitions L Lo o
8.4.1 Bfx_SetBit
842 Bfx CIrBit
8.4.3 Bfx GetBit
844 Bfx SetBits
845 Bfx GetBits
8.4.6 Bfx SetBitMask o
8.4.7 Bfx CIrBitMask
8.4.8 Bfx TstBitMask.o
8.4.9 Bfx TstBitLnMask
8.4.10 Bfx_TstParityEven
8.4.11Bfx_ToggleBits
8.4.12Bfx_ToggleBitMask

© o © (o]

10
10

11
11
12

AUTSSAR

8.413Bfx_ShiftBitRt.
8.4.14Bfx_ShiftBitLt
8.4.15Bfx_RotBitRt L
8.4.16Bfx_RotBitLt
8.4.17Bfx_CopyBit
8.4.18Bfx PutBits
8.4.19Bfx PutBitsMask
8.420Bfx PutBit
8.4.21Bfx_ShiftBitSat L
8.4.22 Bfx_CountLeadingOnes
8.4.23 Bfx_CountLeadingSigns oL
8.4.24 Bfx_CountLeadingZeros o
8.4.25Bfx_GetVersioninfo Lo L.
8.5 Callback notifications
8.6 Scheduled functions
8.7 Expectedinterfaces
8.7.1 Mandatory interfaces
8.7.2 Optionalinterfaces oL
8.7.3 Configurableinterfaces
8.8 Servicelnterfaces

9 Sequence diagrams

10 Configuration specification

10.1How toread thischapter
10.2Containers and configuration parameters
10.3Published Information o

A Not applicable requirements

B History of Specification Iltems

50

B.1 Specification Item History of this document compared to AUTOSAR R24-11 50

B.1.1 Added Specification ltemsin R25-11
B.1.2 Changed Specification ltems in R25-11
B.1.3 Deleted Specification temsin R25-11

50

51

B.2 Specification Item History of this document compared to AUTOSAR R23-11 52

B.2.1 Added Specification ltemsinR24-11
B.2.2 Changed Specification ltemsin R24-11
B.2.3 Deleted Specification ltemsin R24-11

52

52

B.3 Specification Item History of this document compared to AUTOSAR R22-11 52

B.3.1 Added Specification ltemsin R23-11
B.3.2 Changed Specification Itemsin R23-11
B.3.3 Deleted Specification ltemsin R23-11

52

AUTSSAR

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
and below figure shows position of AUTOSAR library in layered architecture.

ArnOo4CP

W—-r

Figure 1.1: Layered Architecture

Bfx routines specification specifies the functionality and API of the AUTOSAR library
for bit functionality dedicated to fixed-point arithmetic routines.

All Bfx routines are re-entrant and can handle several simultaneous requests from dif-
ferent users.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Bfx Library
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Bfx Short name for Bitfield functions for fixed point

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] ISO/IEC 9899:1990 Programming Language - C
https://www.iso.org

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[4] Requirements on Libraries
AUTOSAR_CP_RS_Libraries

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[6] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for Bfx Library.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Bfx Library.

https://www.iso.org

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions

AUTSSAR

5 Dependencies to other modules

The Bfx Library has no dependency to other modules.

5.1 File structure

An implementation of the Bfx Library shall follow the naming rules for files outined in
[3, SWS BSW General].

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4, RS Libraries] and [5,

RS BSWGeneral] and links to the fulfillment of these.

Requirement

Description

Satisfied by

[SRS_LIBS_00005]

Each library shall provide one header
file with its public interface

[SWS_Bfx_00135] [SWS_Bfx_00137]
[SWS_Bfx_00139] [SWS_Bfx_00141]

[SRS_LIBS_00009]

All library functions shall be re-entrant

[SWS_Bfx_00135] [SWS_Bfx_00137]
[SWS_Bfx_00139] [SWS_Bfx_00141]

[SRS_LIBS_00011]

All function names and type names
shall start with "Library short name_'

[SWS_Bfx_00135] [SWS_Bfx_00137]
[SWS_Bfx_00139] [SWS_Bfx_00141]

[SRS_LIBS_00015]

It shall be possible to configure the
microcontroller so that the library
code is shared between all callers

[SWS_Bfx_00206]

[SRS_LIBS_00017]

Usage of macros should be avoided

[SWS_Bfx_00207]

[SRS_LIBS_00018]

A library function may only call library
functions

[SWS_Bfx_00208]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Initialization and shutdown

The Bfx Library does not provide a Init () function nor requires an initialization phase.

A function of the Bfx library may be called at the very first step of ECU initialization,
e.g. even by the OS or EcuM, thus the library shall be ready. The only assumption of
the Bfx Library regarding their context is that it assumes a completed C startup.

Also the Bfx Library does not require a shutdown operation phase.

7.2 Using Library API

The Bfx Library functions (APIs) can be directly called from BSW modules or SWC.

Using a library should be documented. If a BSW module or a SWC uses the Bfx Library,
the developer should add an Implementation-DependencyOnAtrtifact in the BSW/SWC
template.

7.3 Library implementation

[SWS_Bfx_00206]

Upstream requirements: SRS_LIBS_00015
[The Bfx library shall be implemented in a way that the code can be shared among
callers in different memory partitions. |

[SWS_Bfx_00207]
Upstream requirements: SRS_LIBS_00017

[Usage of C macros shall be avoided in the context of Bfx Library. The library functions
shall be declared as function or as inline function. |
This means that the routine shall not be realized as C macro (i.e. not using a #define).

[SWS_Bfx_00208]
Upstream requirements: SRS_LIBS 00018

[A Bfx Library function shall not call any BSW module functions, e.g. the DET. A library
function can call any other library functions since all library functions are re-entrant. |

[SWS_Bfx_00214] [All Bfx Library functions shall avoid handling user faults and val-
ues outside specified range. Providing input values which are outside the specified
range results in undefined behavior. |

AUTSSAR

Note: Example of such undefined behavior is calling Bfx_SetBit_u8u8 with a value
of 8 (or higher) as bit position argument.

7.4 Error Classification

Chapter [3, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of four error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.4.1 Development Errors

There are no development errors.

7.4.2 Runtime Errors

There are no runtime errors

7.4.3 Production Errors

There are no production errors.

7.4.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types

[SWS_Bfx_91001] Definition of imported datatypes of module Bfx |

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType

]

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between CPU architectures and their compilers.

Thus, in order to improve the portability of the software, the types are defined in [6,
SWS PlatformTypes] are used. The following mnemonic(s) are used in the library
routine names to express the variablity.

Note: The naming convention for the API's with boolean return type/parameter type is
given as _u8 which shall be interpreted as boolean. If there is no boolean data type
present in the return type/parameter type then _u8 shall be interpreted as _uint8 only.

Size Platform Type Mnemonic
unsigned 8-Bit boolean u8

signed 8-Bit sint8 s8

signed 16-Bit sint16 s16
signed 32-Bit sint32 s32

signed 64-Bit sint64 s64
unsigned 8-Bit uint8 u8
unsigned 16-Bit uint16 ulé
unsigned 32-Bit uint32 u3d2
unsigned 64-Bit uint64 ub4

Table 8.1: Base types and their mnemonics

The ranges of these types can be found in [6, SWS PlatformTypes].
As a convention in the rest of the document:

* Mnemonics from table 8.1 will be used in the APl names of the routines (using
<TypeMn>)

» The real type will be used in the description of the prototypes of the routines using
<Type>.

The bit addressing for the document is defined as following:
» The bit position of the lowest significant bit is defined as 0 (zero).

» The bit field length is defined as the number of bits.

AUTSSAR

8.2 Type definitions

None

8.3 Comment about functions optimized for target

The functions described in this library may be realized as regular functions or as inline
functions

AUTSSAR

8.4 Bit functions definitions

8.4.1 Bfx_SetBit

[SWS_Bfx_00001] Definition of API function Bfx_SetBit_<TypeMn>u8 |

Service Name

Bfx_SetBit_<TypeMn>u8

Syntax void Bfx_SetBit_<TypeMn>u8 (

<Type>=* Data,

uint8 BitPn

)

Service ID [hex] 0x01 to 0x04 (see SWS_Bfx_00008)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitPn Bit position
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description

This function shall set the logical status of input data as '1’ at the requested bit position.

Available via

Bfx.h

]

Expected functionality:

1 *Data = *Data | (0x01 << BitPn)
Example:

1 Data 10001010b;

2 Bfx_SetBit_u8u8 (&Data, 2);

The Data will be updated to 10001110b

[SWS_Bfx_00008] List of Bfx_SetBit functions |

Service ID[hex]

Function prototype Valid values for parameter BitPn

0x01 void Bfx_SetBit_u8u8(uint8*, uint8) 0,1.2,.,7

0x02 void Bfx_SetBit_u16u8(uint16*, uint8) 0,1,2,..,15
0x03 void Bfx_SetBit_u32u8(uint32*, uint8) 0,1,2,..,31
0x04 void Bfx_SetBit_u64u8(uint64*, uint8) 0,1,2,..,63

AUTSSAR

8.4.2 Bfx_ClIrBit

[SWS_Bfx_00010] Definition of API function Bfx_CIrBit_<TypeMn>u8 |

Service Name

Bfx_CIrBit_<TypeMn>u8

Syntax void Bfx_ClrBit_<TypeMn>u8 (

<Type>=* Data,

uint8 BitPn

)

Service ID [hex] 0x06 to 0x09 (see SWS_Bfx_00015)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitPn Bit position
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description

This function shall clear the logical status of the input data to ’0’ at the requested bit position.

Available via

Bfx.h

]

Expected functionality:

1 xData = (*xData & ~(0x01l << BitPn))
Example:

1 Data = 10001010b;

2 Bfx_ClrBit_u8u8 (&Data, 1);

The Data will be updated to 10001000b

[SWS_Bfx_00015] List of Bfx_C1rBit functions |

Service ID[hex] Function prototype Valid values for parameter BitPn
0x06 void Bfx_CIrBit_u8u8(uint8*, uint8) 0,1,2,.,7

0x07 void Bfx_CIrBit_u16u8(uint16*, uint8) 0,1,2,..,15

0x08 void Bfx_CIrBit_u32u8(uint32*, uint8) 0,1,2,..,31

0x09 void Bfx_CIrBit_u64u8(uint64*, uint8) 0,1,2,..,63

AUTSSAR

8.4.3 Bfx_GetBit

[SWS_Bfx_00016] Definition of API function Bfx_GetBit_<TypeMn>u8_u8 |

Service Name Bfx_GetBit_<TypeMn>u8_u8
Syntax boolean Bfx_GetBit_<TypeMn>u8_u8 (
<Type> Data,
uint8 BitPn
)
Service ID [hex] 0x0A to 0x0D (see SWS_Bfx_00020)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
BitPn Bit position
Parameters (inout) None
Parameters (out) None
Return value boolean Bit Status
Description This function shall return the logical status of the input data for the requested bit position.
Available via Bfx.h

]

Expected functionality:

1+ 1if ((Data & (0x01 << BitPn)) != 0)
2 return TRUE;

3 else

4 return FALSE;

Example:
1 result = Bfx_GetBit_u8u8(10001010b, 1);

The result will be TRUE.

[SWS_Bfx_00020] List of Bfx_GetBit functions |

Service ID[hex] Function prototype Valid values for parameter BitPn
0x0A boolean Bfx_GetBit_u8u8_ 0,1,2,...,7
u8(uint8,uint8)
0x0B boolean Bfx_GetBit_u16u8_ 0,1,2,..,15
u8(uint16,uint8)
0x0C boolean Bfx_GetBit_u32u8__ 0,1,2,..,31
u8(uint32,uint8)
0x0D boolean Bfx_GetBit_u64u8__ 0,1,2,..,63
u8(uint64,uint8)

AUTSSAR

8.4.4 Bfx_SetBits

[SWS_Bfx_00021] Definition of API function Bfx_SetBits_<TypeMn>u8u8u8 |

Service Name Bfx_SetBits_<TypeMn>u8u8u8
Syntax void Bfx_SetBits_<TypeMn>u8u8u8 (
<Type>=* Data,
uint8 BitStartPn,
uint8 BitLn,
uint8 Status
)
Service ID [hex] 0x20 to 0x23 (see SWS_Bfx_00025)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitStartPn Start bit position
BitLn Bit field length
Status Status value, valid values are 0 and 1.
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None
Description This function shall set the input data as 1’ or '0’ as per 'Status’ value starting from 'BitStartPn’
for the length 'BitLn’.
Available via Bfx.h
Example:

1 Data = 1110100000000111b;
2 Bfx_SetBits_ul6u8u8u8 (&Data, 5, 5, 1);

Before the Bfx_SetBits_ uléu8u8u8 function call Data contains this value:

Position| 15 | 14 | 13 [12 [11 | 10 | 9 | 8 | 7 [6 | 5
Mawe | 1 [1 [1 [o [1] o[o [o o] o o]

[4 | 3] 2] 1]°0o
o | o | 1

[o [+] 1 [1]

Figure 8.1: Data before Bfx_SetBits_ul6u8u8u8 call

The yellow fields mark those area which will be updated by the call (starting at bit
position 5 and containing 5 bits). After the call the bata contains 1110101111100111b.

Position] 15 [14 [13 [12 [11 [10 [9 [8 [7 [e [5 [a [3 [2 [1] o |
Vawe | 1 [1 [1 [o [1+ 1 o 1+ 1+ 1] 1] 1o [o[1] 1] 1]

Figure 8.2: After Bfx_SetBits_uléu8u8us call

Another example setting bits to '0’:

1 Value = 1110100000000111b;
2 Bfx_SetBits_ul6u8u8u8 (&Value, 0, 8, 0);
3 /* Value 1s now 1110100000000000 =*/

AUTSSAR

[SWS_Bfx_00025] List of Bfx_SetBits functions |

Service ID[hex]

Function prototype

Valid values for

Valid values for

Maximum value for

parameter BitLn parameter BitStartPn +
BitStartPn BitLn
0x20 void Bfx_SetBits_ 1,2,..,8 0,1,2,..,7 8
u8u8u8u8(uint8*,
uint8, uint8, uint8)
0x21 void Bfx_SetBits_ 1,2,..,16 0,1,2,..,15 16
u16u8u8u8(uint16*,
uint8, uint8, uint8)
0x22 void Bfx_SetBits_ 1,2,..,32 0,1,2,..,31 32
u32u8u8u8(uint32*,
uint8, uint8, uint8)
0x23 void Bfx_SetBits_ 1,2,..,64 0,1,2,..,63 64

u64u8u8u8(uint64*,
uint8, uint8, uint8)

AUTSSAR

8.4.5 Bfx_GetBits

[SWS_Bfx_00028] Definition of API function Bfx_GetBits_<TypeMn>u8u8_<Type
Mn> |

Service Name Bfx_GetBits_<TypeMn>u8u8_<TypeMn>
Syntax <Type> Bfx_GetBits_<TypeMn>u8u8_<TypeMn> (
<Type> Data,
uint8 BitStartPn,
uint8 BitLn
)
Service ID [hex] 0x26 to 0x29 (see SWS_Bfx_00034)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
BitStartPn Start bit position
BitLn Bit field length
Parameters (inout) None
Parameters (out) None
Return value <Type> Bit field sequence
Description 'Il_'his function shall return the Bits of the input data starting from 'BitStartPn’ for the length of 'Bit
n.
Available via Bfx.h

]

Example:
1 result = Bfx_GetBits_ulou8u8_ule6(1110100000000111b, 9, 5);

The result will be 0000000000010100b.

[SWS_Bfx_00034] List of Bfx_GetBits functions |

Service ID[hex] Function prototype Valid values for Valid values for Maximum value for
parameter BitLn parameter BitStartPn +
BitStartPn BitLn
0x26 uint8 Bfx_GetBits_ 1,2,..,8 0,1,2,...,7 8
u8u8u8_
u8(uint8,uint8,uint8)
0x27 uint16 Bfx_GetBits_ 1,2,..,16 0,1,2,..,15 16
ul6u8u8
u16(uint16,uint8,uint8)
0x28 uint32 Bfx_GetBits_ 1,2,..,32 0,1,2,..,31 32
u32u8u8_
u32(uint32,uint8,uint8)
0x29 uint64 Bfx_GetBits_ 1,2,..,64 0,1,2,..,63 64
u64u8u8_
u64(uint64,uint8,uint8)

AUTSSAR

8.4.6 Bfx_SetBitMask

[SWS_Bfx_00035] Definition of APl function Bfx_SetBitMask_ <TypeMn><Type
Mn> |

Service Name Bfx_SetBitMask_<TypeMn><TypeMn>

Syntax void Bfx_SetBitMask_<TypeMn><TypeMn> (
<Type>x Data,
<Type> Mask

)

Service ID [hex] 0x2A to 0x2D (see SWS_Bfx_00038)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Mask Mask used to set bits

Parameters (inout) Data Pointer to data

Parameters (out) None

Return value None

Description This function shall set the data to logical status "1’ as per the corresponding Mask bits when set

to value 1 and remaining bits will retain their original values.

Available via Bfx.h

]

Expected functionality:

1 xData = *Data | Mask

[SWS_Bfx_00038] List of Bfx_SetBitMask functions |

Service ID[hex] Function prototype

0x2A void Bfx_SetBitMask_u8u8(uint8*, uint8)
0x2B void Bfx_SetBitMask_u16u16(uint16*, uint16)
0x2C void Bfx_SetBitMask_u32u32(uint32*, uint32)
0x2D void Bfx_SetBitMask_u64u64(uint64*, uint64)

AUTSSAR

8.4.7 Bfx_ClIrBitMask

[SWS_Bfx_00039]
Mn> |

Definition of API function Bfx_ClIrBitMask_<TypeMn><Type

Service Name

Bfx_ClrBitMask_<TypeMn><TypeMn>

Syntax void Bfx_ClrBitMask_<TypeMn><TypeMn> (

<Type>x Data,

<Type> Mask

)

Service ID [hex] 0x30 to 0x33 (see SWS_Bfx_00045)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Mask Mask value
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description

This function shall clear the logical status to '0’ for the input data for all the bit positions as per
the mask.

Available via

Bfx.h

]

[SWS_Bfx_00040] [This function shall clear the data to logical status ‘0’ as per the
corresponding mask bits value when set to 1. The remaining bits shall retain their

original values. |

Expected functionality:

1 xData = *Data & ~Mask

[SWS_Bfx_00045] List of Bfx_ClrBitMask functions |

Service ID[hex]

Function prototype

0x30 void Bfx_CIrBitMask_u8u8(uint8*, uint8)

0x31 void Bfx_CIrBitMask_u16u16(uint16*, uint16)
0x32 void Bfx_ClrBitMask_u32u32(uint32*, uint32)
0x33 void Bfx_CIrBitMask_u64u64(uint64*, uint64)

AUTSSAR

8.4.8 Bfx TstBitMask

[SWS_Bfx_00046]
Mn>_u8 |

Definition of API function Bfx_TstBitMask_ <TypeMn><Type

Service Name

Bfx_TstBitMask_<TypeMn><TypeMn>_u8

Syntax boolean Bfx_TstBitMask_<TypeMn><TypeMn>_u8 (
<Type> Data,
<Type> Mask
)
Service ID [hex] 0x36 to 0x39 (see SWS_Bfx_00050)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
Mask Mask value
Parameters (inout) None
Parameters (out) None
Return value boolean Value

Description

This function shall return TRUE, if all bits defined in Mask value are set in the input Data value.
In all other cases this function shall return FALSE.

Available via

Bfx.h

]

Expected functionality:

1+ 1f ((Data & Mask) == Mask)
2 return TRUE;

3 else

4 return FALSE;

Example:

1 result = Bfx_TstBitMask_u8u8_u8(10010011b,10010000b);

The result will be TRUE.

[SWS_Bfx_00050] List of Bfx_TstBitMask functions |

Service ID[hex]

Function prototype

0x36 boolean Bfx_TstBitMask_u8u8_u8(uint8,uint8)

0x37 boolean Bfx_TstBitMask_u16u16_u8(uint16,uint16)
0x38 boolean Bfx_TstBitMask_u32u32_u8(uint32,uint32)
0x39 boolean Bfx_TstBitMask_u64u64_u8(uint64,uint64)

AUTSSAR

8.4.9 Bfx_TstBitLnMask

[SWS_Bfx_00051] Definition of API function Bfx_TstBitLnMask_<TypeMn><Type
Mn>_u8 |

Service Name Bfx_TstBitLnMask_<TypeMn><TypeMn>_u8

Syntax boolean Bfx_TstBitLnMask_ <TypeMn><TypeMn>_u8 (
<Type> Data,
<Type> Mask

)

Service ID [hex] 0x3A to 0x3D (see SWS_Bfx_00055)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
Mask Mask value
Parameters (inout) None
Parameters (out) None
Return value boolean Data
Description This function makes a test on the input data and if at least one bit is set amongst the bits set in
the mask, then the function shall return TRUE, otherwise it shall return FALSE.
Available via Bfx.h
J
Example:

1 result = Bfx_TstBitLnMask_u8u8_u8(10010011b,10000111b);

The result will be TRUE.

[SWS_Bfx_00055] List of Bfx_TstBitLnMask functions |

Service ID[hex] Function prototype

0x3A boolean Bfx_TstBitLnMask_u8u8_u8(uint8,uint8)
0x3B boolean Bfx_TstBitLnMask_u16u16_u8(uint16,uint16)
0x3C boolean Bfx_TstBitLnMask_u32u32_u8(uint32,uint32)
0x3D boolean Bfx_TstBitLnMask_u64u64_u8(uint64,uint64)

AUTSSAR

8.4.10 Bfx_TstParityEven

[SWS_Bfx_00056] Definition of API function Bfx_TstParityEven_<TypeMn>_u8 |

Service Name Bfx_TstParityEven_<TypeMn>_u8
Syntax boolean Bfx_TstParityEven_<TypeMn>_u8 (
<Type> Data

)

Service ID [hex] 0x40 to 0x43 (see SWS_Bfx_00060)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Data | Input Data

Parameters (inout) None

Parameters (out) None

Return value boolean | Status

Description This function tests the number of bits set to 1. If this number is even, it shall return TRUE,
otherwise it returns FALSE.

Available via Bfx.h

]

Examples when Bfx_TstParityEven returns TRUE:

1 result_a = Bfx_TstParityEven_u8_u8(10010011b);
2 result_b = Bfx_TstParityEven_ul6_u8(0);
3 /* result_a == result_b == TRUE =/

The following example calls return FALSE:

1 result_c = Bfx_TstParityEven_u8_u8(11100011b);

2 result_d = Bfx_TstParityEven_ul6_u8(1l);

3 result_e = Bfx_TstParityEven_ul6_u8(1001111100101010b);
4 /% result _c == result_d == result_e == FALSE «/

[SWS_Bfx_00060] List of Bfx_TstParityEven functions |

Service ID[hex] Function prototype

0x40 boolean Bfx_TstParityEven_u8_u8(uint8)
0x41 boolean Bfx_TstParityEven_u16_u8(uint16)
0x42 boolean Bfx_TstParityEven_u32_u8(uint32)
0x43 boolean Bfx_TstParityEven_u64_u8(uint64)

AUTSSAR

8.4.11 Bfx_ToggleBits

[SWS_Bfx_00061] Definition of API function Bfx_ToggleBits_<TypeMn> |

Service Name Bfx_ToggleBits_<TypeMn>
Syntax void Bfx_ToggleBits_<TypeMn> (
<Type>* Data
)
Service ID [hex] 0x46 to 0x49 (see SWS_Bfx_00065)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None
Description This function toggles all the bits of data (1’'s Complement Data).
Available via Bfx.h

]

Example:

1 data = 10010011b;
2 Bfx_ToggleBits_u8 (&data);

The data will be 01101100b.

[SWS_Bfx_00065] List of Bfx ToggleBits functions |

Service ID[hex] Function prototype

0x46 void Bfx_ToggleBits_u8(uint8*)
0x47 void Bfx_ToggleBits_u16(uint16*)
0x48 void Bfx_ToggleBits_u32(uint32*)
0x49 void Bfx_ToggleBits_u64(uint64*)

AUTSSAR

8.4.12 Bfx_ToggleBitMask

[SWS_Bfx_00066] Definition of APl function Bfx_ToggleBitMask_<Type
Mn><TypeMn> |

Service Name Bfx_ToggleBitMask_<TypeMn><TypeMn>
Syntax void Bfx_ToggleBitMask_<TypeMn><TypeMn> (
<Type>x Data,
<Type> Mask
)
Service ID [hex] 0x4A to 0x4D (see SWS_Bfx_00069)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Mask Mask
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None
Description This function toggles the bits of data when the corresponding bit of the mask is enabled and set
to 1.
Available via Bfx.h

]

Example:

1 data = 11110000b;
2 Bfx_ToggleBitMask_u8u8 (&data, 00111100b);

The data will be 11001100b.

[SWS_Bfx_00069] List of Bfx ToggleBitMask functions |

Service ID[hex] Function prototype

0x4A void Bfx_ToggleBitMask_u8u8(uint8*, uint8)
0x4B void Bfx_ToggleBitMask_u16u16(uint16*, uint16)
0x4C void Bfx_ToggleBitMask_u32u32(uint32*, uint32)
0x4D void Bfx_ToggleBitMask_u64u64(uint64*, uint64)

AUTSSAR

8.4.13 Bfx_ShiftBitRt

[SWS_Bfx_00070] Definition of API function Bfx_ShiftBitRt_<TypeMn>u8 |

Service Name

Bfx_ShiftBitRt_<TypeMn>u8

Syntax void Bfx_ShiftBitRt_<TypeMn>u8 (

<Type>=* Data,

uint8 ShiftCnt

)

Service ID [hex] 0x50 to 0x53 (see SWS_Bfx_00075)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift right count
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description

This function shall shift data to the right by ShiftCnt. The most significant bit (left-most bit) is
replaced by a '0’ bit and the least significant bit (right-most bit) is discarded for every single bit
shift cycle.

Available via

Bfx.h

]

Example:

1 data = 10010011b;
2 Bfx_ShiftBitRt_u8u8 (&data, 3);

The data will be 00010010b.

[SWS_Bfx_00075] List of Bfx_sShiftBitRt functions |

Service ID[hex] Function prototype Maximum value of ShiftCnt
0x50 void Bfx_ShiftBitRt_u8u8(uint8*, uint8) 7
0x51 void Bfx_ShiftBitRt_u16u8(uint16*, 15
uint8)
0x52 void Bfx_ShiftBitRt_u32u8(uint32*, 31
uint8)
0x53 void Bfx_ShiftBitRt_u64u8(uint64*, 63
uint8)

AUTSSAR

8.4.14 Bfx_ShiftBitLt

[SWS_Bfx_00076] Definition of APl function Bfx_ShiftBitLt_<TypeMn>u8 |

Service Name

Bfx_ShiftBitLt_<TypeMn>u8

Syntax void Bfx_ShiftBitLt_<TypeMn>u8 (

<Type>=* Data,

uint8 ShiftCnt

)

Service ID [hex] 0x56 to 0x59 (see SWS_Bfx_00080)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift left count
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description

This function shall shift data to the left by ShiftCnt. The least significant bit (right-most bit) is
replaced by a '0’ bit and the most significant bit (left-most bit) is discarded for every single bit
shift cycle.

Available via

Bfx.h

]

Example:

1 data = 10010011b;
2 Bfx_ShiftBitLt_u8u8 (&data, 3);

The data will be 10011000b.

[SWS_Bfx_00080] List of Bfx_ShiftBitLt functions |

Service ID[hex] Function prototype Maximum value of ShiftCnt
0x56 void Bfx_ShiftBitLt_u8u8(uint8*, uint8) 7
0x57 void Bfx_ShiftBitLt_u16u8(uint16*, 15
uint8)
0x58 void Bfx_ShiftBitLt_u32u8(uint32*, 31
uint8)
0x59 void Bfx_ShiftBitLt_u64u8(uint64*, 63
uint8)

AUTSSAR

8.4.15 Bfx_RotBitRt

[SWS_Bfx_00086] Definition of APl function Bfx_RotBitRt_<TypeMn>u8 |

Service Name

Bfx_RotBitRt_<TypeMn>u8

Syntax void Bfx_RotBitRt_<TypeMn>u8 (

<Type>=* Data,

uint8 ShiftCnt

)

Service ID [hex] 0x5A to 0x5D (see SWS_Bfx_00090)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift count
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description This function shall rotate data to the right by ShiftCnt. The least significant bit is rotated to the
most significant bit location for every single bit shift cycle.
Available via Bfx.h
Examples:
1 data_a = 00010111b;

2 Bfx_RotBitRt_u8u8 (&data,l);

3 data_b =

00010111b;

4+ Bfx_RotBitRt_u8u8 (&data, 3);

The data_a will be 10001011b and data_b will be 11100010b.

[SWS_Bfx_00090] List of Bfx_RotBitRt functions |

Service ID[hex] Function prototype Maximum value of ShiftCnt
0x5A void Bfx_RotBitRt_u8u8(uint8*, uint8) 7
0x5B void Bfx_RotBitRt_u16u8(uint16*, 15
uint8)
0x5C void Bfx_RotBitRt_u32u8(uint32*, 31
uint8)
0x5D void Bfx_RotBitRt_u64u8(uint64*, 63
uint8)

AUTSSAR

8.4.16 Bfx_RotBitLt

[SWS_Bfx_00095] Definition of API function Bfx_RotBitLt_<TypeMn>u8 |

Service Name

Bfx_RotBitLt_<TypeMn>u8

Syntax void Bfx_RotBitLt_<TypeMn>u8 (

<Type>=* Data,

uint8 ShiftCnt

)

Service ID [hex] 0x60 to 0x63 (see SWS_Bfx_00098)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift count
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description This function shall rotate data to the left by ShiftCnt. The most significant bit is rotated to the
least significant bit location for every single bit shift cycle.
Available via Bfx.h
Examples:
1+ data_a = 10110111b;

2 Bfx_RotBitLt_u8u8 (&data,l);

3 data_b =

10110111b;

4+ Bfx_RotBitLt_u8u8 (&data, 3);

The data_a willbe 01101111b and data_b willbe 10111101b.

[SWS_Bfx_00098] List of Bfx_RotBitLt functions |

Sevice ID[hex] Function prototype Maximum value of ShiftCnt
0x60 void Bfx_RotBitLt_u8u8(uint8*, uint8) 7
0x61 void Bfx_RotBitLt_u16u8(uint16*, 15
uint8)
0x62 void Bfx_RotBitLt_u32u8(uint32*, 31
uint8)
0x63 void Bfx_RotBitLt_u64u8(uint64*, 63
uint8)

AUTSSAR

8.4.17 Bfx_CopyBit

[SWS_Bfx_00101]
Mn>u8 |

Service Name

Definition of API function Bfx_CopyBit_<TypeMn>u8<Type

Bfx_CopyBit_<TypeMn>u8<TypeMn>u8

Syntax void Bfx_CopyBit_<TypeMn>u8<TypeMn>u8 (
<Type>* DestinationData,
uint8 DestinationPosition,
<Type> SourceData,
uint8 SourcePosition
)
Service ID [hex] 0x66 to 0x69 (see SWS_Bfx_00108)
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

DestinationPosition

Destination position

SourceData

Source data

SourcePosition

Source position

Parameters (inout)

DestinationData

Pointer to destination data

Parameters (out)

None

Return value

None

Description This function shall copy a bit from source data from bit position to destination data at bit
position.
Available via Bfx.h

]

Example:

1+ DestinationData =

10100001b;

2 Bfx_CopyBit_u8u8u8u8 (&DestinationData, 6,

The DestinationData will have 11100001b.

[SWS_Bfx_00108] List of Bfx_CopyBit functions |

11011010, 1);

Service ID[hex] Function prototype Maximum value for SourcePosition and
DestinationPosition
0x66 void Bfx_CopyBit_u8u8u8u8(uint8*, 7
uint8, uint8, uint8)
0x67 void Bfx_CopyBit_u16u8ui6u8(uint16*, | 15
uint8, uint16, uint8)
0x68 void Bfx_CopyBit_u32u8u32u8(uint32*, | 31
uint8, uint32, uint8)
0x69 void Bfx_CopyBit_u64u8u64u8(uint64*, | 63
uint8, uint64, uint8)

AUTSSAR

8.4.18 Bfx_PutBits

[SWS_Bfx_00110] Definition of API function Bfx_PutBits_<TypeMn>u8u8<Type

Mn> |

Service Name

Bfx_PutBits_<TypeMn>u8u8<TypeMn>

Syntax void Bfx_PutBits_<TypeMn>u8u8<TypeMn> (
<Type>x Data,
uint8 BitStartPn,
uint8 Bitln,
<Type> Pattern
)
Service ID [hex] 0x70 to 0x73 (see SWS_Bfx_00112)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitStartPn Start bit position
BitLn Bit field length
Pattern Pattern to be set
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description This function shall put bits as mentioned in Pattern to the input Data from the specified bit
position.
Available via Bfx.h
Example:
1 Data = 11110000b;

2 Bfx_PutBits_u8u8u8u8 (&Data, 1, 3,

The Data will have 11110110b.

00000011b) ;

[SWS_Bfx_00112] List of Bfx_PutBits functions |

Service ID[hex]

Function prototype

Maximum value of Bit
Ln

Maximum value of Bit
StartPn

Maximum value for
BitStartPn + BitLn

0x70

void Bfx_PutBits_
u8u8u8u8(uint8*,
uint8, uint8, uint8)

8

7

8

0x71

void Bfx_PutBits_
u16u8u8u16(uint16*,
uint8, uint8, uint16)

16

0x72

void Bfx_PutBits_
u32u8u8ud2(uint32*,
uint8, uint8, uint32)

32

31

32

0x73

void Bfx_PutBits_
u64u8u8ub4(uint64*,
uint8, uint8, uint64)

64

63

64

AUTSSAR

8.4.19 Bfx_PutBitsMask

[SWS_Bfx_00120] Definition of API function Bfx_PutBitsMask_ <TypeMn><Type
Mn><TypeMn> |

Service Name Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn>

Syntax void Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn> (
<Type>x Data,
<Type> Pattern,
<Type> Mask

)

Service ID [hex] 0x80 to 0x83 (see SWS_Bfx_00124)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Pattern Pattern to be set
Mask Mask value
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None
Description This function shall put all bits defined in Pattern and for which the corresponding Mask bit is set
to 1 in the input Data.
Available via Bfx.h
]
Example:

1+ data = 11100000b;
2 Bfx_PutBitsMask_u8u8u8 (&data, 11001101b, 00001111b);

The data will contain 11101101b.

[SWS_Bfx_00124] List of Bfx_PutBitsMask functions [

Service ID[hex] Function prototype

0x80 void Bfx_PutBitsMask_u8u8u8(uint8*, uint8, uint8)

0x81 void Bfx_PutBitsMask_u16u16u16(uint16*, uint16, uint16)
0x82 void Bfx_PutBitsMask_u32u32u32(uint32*, uint32, uint32)
0x83 void Bfx_PutBitsMask_u64u64u64(uint64*, uint64, uint64)

AUTSSAR

8.4.20 Bfx_PutBit

[SWS_Bfx_00130] Definition of API function Bfx_PutBit_<TypeMn>u8u8 |

Service Name

Bfx_PutBit_<TypeMn>u8u8

Syntax void Bfx_PutBit_<TypeMn>u8u8 (
<Type>=* Data,
uint8 BitPn,
boolean Status
)
Service ID [hex] 0x85 to 0x88 (see SWS_Bfx_00132)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitPn Bit position
Status Status value
Parameters (inout) Data Pointer to data
Parameters (out) None
Return value None

Description

This function shall update the bit specified by BitPn of input data as ’1’ or '0’ as per 'Status
value.

Available via Bfx.h
Example:
1 InputData 11100111b;

2 Bfx_PutBit_u8u8u8 (&InputData, 4, TRUE);

Then InputbData willbe 11110111b.

[SWS_Bfx_00132] List of Bfx_PutBit functions |

Service ID[hex] Function prototype Maximum value of BitPn
0x85 void Bfx_PutBit_u8u8u8(uint8*, uint8, 7
boolean)
0x86 void Bfx_PutBit_u16u8u8(uint16*, 15
uint8, boolean)
0x87 void Bfx_PutBit_u32u8u8(uint32*, 31
uint8, boolean)
0x88 void Bfx_PutBit_u64u8u8(uint64*, 63
uint8, boolean)

AUTSSAR

8.4.21 Bfx_ShiftBitSat

[SWS_Bfx_91002] Definition of API function Bfx_ShiftBitSat_<TypeMn>s8 <Type
Mn> |

Service Name Bfx_ShiftBitSat_<TypeMn>s8_<TypeMn>
Syntax <Type> Bfx_ShiftBitSat_<TypeMn>s8_<TypeMn> (
sint8 ShiftCnt,
<Type> Data
)
Service ID [hex] 0xE1 to OxE8 (see SWS_Bfx_00135)
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) ShiftCnt Shift count (-<MaxShiftRight> ... -1: right, 1 ... <MaxShiftLeft>:
left)
Data Input value
Parameters (inout) None
Parameters (out) None
Return value <Type> Shifted and saturated bit pattern.
Description Arithmetic shift with saturation
Available via Bfx.h
]

[SWS_Bfx_00134] [If the shift count is greater than zero, then shift the value in Data
by the amount specified by shift count to left.

If shift count is zero Data is returned.

For signed data an arithmetic shift is performed. The vacated bits are filled with zeros
and the result is saturated if its sign bit differs from the sign bits that are shifted out.

For unsigned data a logical shift is performed. In this case the result is saturated, if the
leading one bit is shifted out.

If the shift count is less than zero, right-shift the value in Data by the absolute value of
the shift count. The vacated bits are filled with the sign-bit (the most significant bit) and
bits shifted out are discarded.

Note that a shift right by the word width leaves all zeros or all ones in the result, de-
pending on the sign-bit. |

Example of 32 bit signed integer: The range for shift count is -32 to +31, allowing a
shift left up to 31 bit positions and a shift right up to 32 bit positions (a shift right by 32
bits leaves all zeros or all ones in the result, depending on the sign bit).

Here is a listing with some examples using unsigned data (uint16). The saturation of
unsigned data is either zero or the maxium value of the type (here UINT16_MAX):

1 uintl6 udata, uresult;
2
3 udata = 0x8F57;
4
5

uresult = Bfx ShiftBitSat_ul6s8_ul6 (—4,udata);

AUTSSAR

/+ uresult is now 0x08F5: A logical right shift is done
new leftmost bits are filled with 0 =/

uresult = Bfx_ShiftBitSat_ul6s8_ul6 (8,udata);

/* uresult is now OxFFFF: A logical left shift is done.
One of the "outshifted" bits was 1, indicating that
an overflow happend. Here it was the first bit.
Result 1s saturated to UINT1l6_MAX. %/

udata = 0x3856;

uresult = Bfx ShiftBitSat_ul6s8_ulo6 (4,udata);

/+ uresult is now OxFFFF: A logical left shift is done.
One of the "outshifted" bits was 1, indicating that
an overflow happend. Here it was the third bit.
Result 1s saturated to UINT1l6_MAX. %/

Here are examples for signed data (using sint16). The saturation of signed data de-
pends on the sign of the value. Neagtive values are saturated to SINT16_MIN value
or -1. Positive values are saturated to SINT16_MAX or 0.

21
22
23
24
25
26
27
28
29

30

sintl6 sdata, sresult;
sdata = -200; /* == O0xFF38 x/

sresult = Bfx_ShiftBitSat_sl6s8_sl16(-4,sdata);

/* sresult is now -13 (== OxFFF3): An arithmetic
right shift is done, the new leftmost bits are
filled with 1. =%/

sresult = Bfx ShiftBitSat_sl16s8_sl1l6(-10,sdata);

/* sresult 1s now -1 (== OxFFFF): An arithmetic
right shift is done, the new leftmost bits are
filled with 1 and the value saturates at -1.

*/

sresult = Bfx_ShiftBitSat_sl1l6s8_s16(10,sdata);

/* sresult is now SINT16_MIN (== 0x8000): An arithmetic
left shift is done. One of the "outshifted" bits
was 0 and indicates a negative overflow.
So sresult is saturated to SINT16_MIN.

*/

sdata = 127; /* == 0x007F =*/

sresult = Bfx_ ShiftBitSat_sl1l6s8_sl6(-4,sdata);
/* sresult is now 7 (== 0x0007) =%/

sresult = Bfx ShiftBitSat_sl16s8_sl16(-10,sdata);
/* sresult is now 0 (== 0x0000) =*/

AUTSSAR

31 sresult = Bfx_ShiftBitSat_s16s8_s16(10,sdata);
32 /* sresult is now SINT16_MAX (== Ox7FFF) =/

[SWS_Bfx_00135] List of Bfx_sShiftBitSat functions
Upstream requirements: SRS_LIBS 00005, SRS_LIBS 00009, SRS _LIBS 00011

Service ID[hex] Function prototype Max Shift Left Max Shift Right
OxE1 Bfx_ShiftBitSat_s8s8 s8 7 8

OxE2 Bfx_ShiftBitSat_u8s8_u8 8 8

OxE3 Bfx_ShiftBitSat_s16s8_s16 15 16

OxE4 Bfx_ShiftBitSat_u16s8_u16 16 16

OxE5 Bfx_ShiftBitSat_s32s8_s32 31 32

OxE6 Bfx_ShiftBitSat_u32s8_u32 32 32

OxE7 Bfx_ShiftBitSat_s64s8_s64 63 64

OxE8 Bfx_ShiftBitSat_u64s8_u64 64 64

AUTSSAR

8.4.22 Bfx_CountLeadingOnes

[SWS_Bfx_91003] Definition of API function Bfx_CountLeadingOnes_<TypeMn>

[

Service Name Bfx_CountLeadingOnes_<TypeMn>
Syntax uint8 Bfx_CountLeadingOnes_<TypeMn> (
<Type> Data

)

Service ID [hex] 0xFO to 0xF3 (see SWS_Bfx_00137)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Data | Input data

Parameters (inout) None

Parameters (out) None

Return value uint8 ‘ Number of leading "1"s

Description Count the number of consecutive ones in Data starting with the most significant bit and return
the result.

Available via Bfx.h

]

[SWS_Bfx_00137] List of Bfx_CountLeadingOnes functions
Upstream requirements: SRS_LIBS 00005, SRS _LIBS 00009, SRS_LIBS_00011

[

Service ID[hex] Function prototype Maximum return value
0xFO uint8 Bfx_CountLeadingOnes_u8 8
(uint8)
OxF1 uint8 Bfx_CountLeadingOnes_u16 16
(uint16)
0xF2 uint8 Bfx_CountLeadingOnes_u32 32
(uint32)
0xF3 uint8 Bfx_CountLeadingOnes_u64 64
(uint64)

AUTSSAR

8.4.23 Bfx_CountLeadingSigns

[SWS_Bfx_91004] Definition of API function Bfx_CountLeadingSigns_<TypeMn>

[

Service Name

Bfx_CountLeadingSigns_<TypeMn>

Syntax uint8 Bfx_CountLeadingSigns_<TypeMn> (
<Type> Data
)
Service ID [hex] 0xF4 to 0xF7 (see SWS_Bfx_00139)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data | Input data
Parameters (inout) None
Parameters (out) None
Return value uint8 ‘ Count of leading signs

Description

Count and return the number of consecutive bits which have the same value as most significant

bit in Data, starting with bit at position msb minus one.

Available via

Bfx.h

]

Here are some examples using Bfx_CountLeadingSigns and their results:

1+ sintl6 data;

2 uint8 result;

4 data = 0;

6 result =
7 /% result

/* 0x0000 =*/

Bfx_CountLeadingSigns_sl6 (data);
= 15: The sign bit is 0,

8 all other 15 bits are 0. */

10 data = -200;

12 result =

14 followed by 7 bits which are also 1.

16 data = 31000;

18 result =
19 /x result

/* OxFF38 */

Bfx_CountLeadingSigns_sl16 (data);

13 /* result == 7: The sign bit is 1 and

*/

/* 0x7918 «/

Bfx_CountLeadingSigns_sl6 (data);
= 0: The sign bit is 0, but

20 the next bit is already different. =/

AUTSSAR

[SWS_Bfx_00139] List of Bfx_CountLeadingSigns functions
Upstream requirements: SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011

Service ID[hex]

Function prototype

Maximum return value

0xF4

uint8 Bfx_CountLeadingSigns_s8
(sint8)

7

(sint64)

0xF5 uint8 Bfx_CountLeadingSigns_s16 15
(sint16)

OxF6 uint8 Bfx_CountLeadingSigns_s32 31
(sint32)

0xF7 uint8 Bfx_CountLeadingSigns_s64 63

AUTSSAR

8.4.24 Bfx_CountLeadingZeros

[SWS_Bfx_91005] Definition of API function Bfx_CountLeadingZeros_<TypeMn>

[

Service Name Bfx_CountLeadingZeros_<TypeMn>
Syntax uint8 Bfx_CountLeadingZeros_<TypeMn> (
<Type> Data

)

Service ID [hex] 0xF8 to 0xFB (see SWS_Bfx_00141)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Data | Input data

Parameters (inout) None

Parameters (out) None

Return value uint8 ‘ Number of leading "0"s

Description Count the number of consecutive zeros in Data starting with the most significant bit and return
the result.

Available via Bfx.h

]

[SWS_Bfx_00141] List of Bfx_CountLeadingZeros functions
Upstream requirements: SRS_LIBS 00005, SRS_LIBS 00009, SRS_LIBS_00011

Service ID[hex] Function prototype Maximum return value
0xF8 uint8 Bfx_CountLeadingZeros_u8 8
(uint8)
0xF9 uint8 Bfx_CountLeadingZeros_u16 16
(uint16)
OxFA uint8 Bfx_CountLeadingZeros_u32 32
(uint32)
0xFB uint8 Bfx_CountLeadingZeros_u64 64
(uint64)

8.4.25 Bfx_GetVersioninfo

[SWS_Bfx_00301] Definition of API function Bfx_GetVersioninfo |

Service Name Bfx_GetVersionInfo
Syntax void Bfx_GetVersionInfo (
Std_VersionInfoType* Versioninfo
)
Service ID [hex] OxFF
Sync/Async Synchronous
Reentrancy Reentrant

AUTSSAR

JAN

Parameters (in) None

Parameters (inout) None

Parameters (out) Versioninfo Pointer to where to store the version information of this module.

For details see also SWS_BSW_00162

Return value None

Description Returns the version information of this library.

Available via Bfx.h

AUTSSAR

8.5 Callback notifications

None

8.6 Scheduled functions

The Bfx library does not have scheduled functions.

8.7 Expected interfaces

None

8.7.1 Mandatory interfaces

None

8.7.2 Optional interfaces

None

8.7.3 Configurable interfaces

None

8.8 Service Interfaces

The library functions are directly usable by SWCs. This means that there is no port
definition available nor required.

AUTSSAR

9 Sequence diagrams

Not applicable

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Bfx.

Chapter 10.3 specifies published information of the module Bfx.

10.1 How to read this chapter

For details refer to [3] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The Bfx Library has no standardized configuration options.

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

10.3 Published Information

For details refer to [3] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

[SWS_Bfx_NA_00001] Library is different from a BSW module

Upstream requirements: SRS_BSW_00101, SRS_BSW_00159, SRS_BSW_00323, SRS_BSW _
00336, SRS_BSW_00375, SRS_BSW_00406, SRS_BSW_00416,
SRS_BSW_00419, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW _
00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428,
SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00450, SRS_BSW_
00478

[Bfx Library is a library and different to a basic software module, e.g. it has no main
function or reports wake-up reasons. |

[SWS_Bfx_NA_00002] Bfx Library has no configuration

Upstream requirements: SRS_BSW_00167, SRS_BSW_00171, SRS_BSW_00344, SRS _BSW __
00345, SRS_BSW 00380, SRS _BSW 00383, SRS BSW_00386,
SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW _
00392, SRS_BSW_00393, SRS_BSW_00395, SRS_BSW_00396,
SRS_BSW_00397, SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_
00400, SRS BSW 00403, SRS_BSW_00404, SRS BSW 00405,
SRS _BSW_00438

[Bfx Library has no configuration. |

[SWS_Bfx_NA_00003] No usage of other BSW modules
Upstream requirements: SRS_BSW_00337, SRS_BSW_00384, SRS_BSW_00385, SRS _BSW _
00409, SRS_BSW 00417, SRS BSW_00452, SRS _BSW_00458,
SRS _BSW_00461, SRS BSW_00466, SRS _BSW 00467, SRS_BSW _
00469, SRS _BSW 00470, SRS BSW 00471, SRS BSW 00472,
SRS BSW 00488, SRS BSW 00489, SRS BSW_00490, SRS _BSW _
00491, SRS_BSW _00492, SRS _BSW_00493, SRS_BSW 00339

[Bfx Library does not use nor call other BSW modules. This includes e.g. error report-
ing to Det or Dem and also reporting and handling of security events. |

[SWS_Bfx_NA_00999]

Upstream requirements: SRS_BSW_00004, SRS_BSW_00168, SRS_BSW_00170, SRS_BSW _
00369, SRS _BSW 00402, SRS _BSW 00422, SRS BSW_00429,
SRS_BSW_00451, SRS_BSW_00437

[These requirements are not applicable to this specification. |

AUTSSAR

B History of Specification ltems

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Specification Iltem History of this document compared to
AUTOSAR R24-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

Number

Heading

[SWS_Bfx_00001]

Definition of API function Bfx_SetBit_<TypeMn>u8

[SWS_Bfx_00008]

List of Bfx_SetBit functions

[SWS_Bfx_00010]

Definition of API function Bfx_CIrBit_<TypeMn>u8

[SWS_Bfx_00015]

List of Bfx_ClrBit functions

[SWS_Bfx_00016]

Definition of API function Bfx_GetBit_<TypeMn>u8_u8

[SWS_Bfx_00020]

List of Bfx_GetBit functions

[SWS_Bfx_00021]

Definition of API function Bfx_SetBits_<TypeMn>u8u8u8

[SWS_Bfx_00025]

List of Bfx_SetBits functions

[SWS_Bfx_00028]

Definition of API function Bfx_GetBits_<TypeMn>u8u8_<TypeMn>

[SWS_Bfx_00034]

List of Bfx_GetBits functions

[SWS_Bfx_00035]

Definition of API function Bfx_SetBitMask_<TypeMn><TypeMn>

[SWS_Bfx_00038]

List of Bfx_SetBitMask functions

[SWS_Bfx_00039]

Definition of API function Bfx_CIrBitMask_<TypeMn><TypeMn>

[SWS_Bfx_00045]

List of Bfx_ClrBitMask functions

[SWS_Bfx_00046]

Definition of API function Bfx_TstBitMask_<TypeMn><TypeMn>_u8

[SWS_Bfx_00050]

List of Bfx_TstBitMask functions

[SWS_Bfx_00051]

Definition of API function Bfx_TstBitLnMask_<TypeMn><TypeMn>_u8

[SWS_Bfx_00055]

List of Bfx_ TstBitLnMask functions

[SWS_Bfx_00056]

Definition of API function Bfx_TstParityEven_<TypeMn>_u8

[SWS_Bfx_00060]

List of Bfx_TstParityEven functions

[SWS_Bfx_00061]

Definition of API function Bfx_ToggleBits_<TypeMn>

[SWS_Bfx_00065]

List of Bfx_ToggleBits functions

\Y

AUTSSAR

A

Number

Heading

[SWS_Bfx_00066]

Definition of API function Bfx_ToggleBitMask_<TypeMn><TypeMn>

[SWS_Bfx_00069]

List of Bfx_ToggleBitMask functions

[SWS_Bfx_00070]

Definition of API function Bfx_ShiftBitRt_<TypeMn>u8

[SWS_Bfx_00075]

List of Bfx_shiftBitRt functions

[SWS_Bfx_00076]

Definition of API function Bfx_ShiftBitLt <TypeMn>u8

[SWS_Bfx_00080]

List of Bfx_ShiftBitLt functions

[SWS_Bfx_00086]

Definition of API function Bfx_RotBitRt_<TypeMn>u8

[SWS_Bfx_00090]

List of Bfx_RotBitRt functions

[SWS_Bfx_00095]

Definition of API function Bfx_RotBitLt_<TypeMn>u8

[SWS_Bfx_00098]

List of Bfx_RotBitLt functions

[SWS_Bfx_00101]

Definition of API function Bfx_CopyBit_<TypeMn>u8<TypeMn>u8

[SWS_Bfx_00108]

List of Bfx_CopyBit functions

[SWS_Bfx_00110]

Definition of API function Bfx_PutBits_<TypeMn>u8u8<TypeMn>

[SWS_Bfx_00112]

List of Bfx_PutBits functions

[SWS_Bfx_00120]

Definition of API function Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn>

[SWS_Bfx_00124]

List of Bfx_PutBitsMask functions

[SWS_Bfx_00130]

Definition of API function Bfx_PutBit_<TypeMn>u8u8

[SWS_Bfx_00132]

List of Bfx_PutBit functions

[SWS_Bfx_00135]

List of Bfx_shiftBitSat functions

[SWS_Bfx_00137]

List of Bfx_CountLeadingOnes functions

[SWS_Bfx_00139]

List of Bfx_CountLeadingSigns functions

[SWS_Bfx_00141]

List of Bfx_CountLeadingZeros functions

[SWS_Bfx_91002]

Definition of API function Bfx_ShiftBitSat_<TypeMn>s8_<TypeMn>

[SWS_Bfx_91003]

Definition of API function Bfx_CountLeadingOnes_<TypeMn>

[SWS_Bfx_91004]

Definition of API function Bfx_CountLeadingSigns_<TypeMn>

[SWS_Bfx_91005]

Definition of API function Bfx_CountLeadingZeros_<TypeMn>

Table B.1: Changed Specification Items in R25-11

B.1.3 Deleted Specification Items in R25-11

Number

Heading

[SWS_Bfx_00002]

[SWS_Bfx_00011]

[SWS_Bfx_00017]

[SWS_Bfx_00022]

[SWS_Bfx_00029]

AUTSSAR

Number Heading

[SWS_Bfx_00036]

[SWS_Bfx_00047]

[SWS_Bfx_00200]

[SWS_Bfx_00201]

[SWS_Bfx_00203]

[SWS_Bfx_00205]

[SWS_Bfx_00209]

[SWS_Bfx_00212]

[SWS_Bfx_00213]

[SWS_Bfx_00220]

[SWS_Bfx_00222]

[SWS_Bfx_00223]

[SWS_Bfx_00302]

[SWS_Bfx_00314]

[SWS_Bfx_00999]

Table B.2: Deleted Specification Items in R25-11

B.2 Specification Item History of this document compared to
AUTOSAR R23-11

B.2.1 Added Specification Iltems in R24-11

none

B.2.2 Changed Specification ltems in R24-11

none

B.2.3 Deleted Specification Items in R24-11

none

B.3 Specification Item History of this document compared to
AUTOSAR R22-11

B.3.1 Added Specification Items in R23-11

none

AUTSSAR

B.3.2 Changed Specification ltems in R23-11

Number Heading

[SWS_Bfx_00008]

[SWS_Bfx_00015]

[SWS_Bfx_00016] Definition of API function Bfx_GetBit_<InTypeMn>u8_u8

[SWS_Bfx_00020]

[SWS_Bfx_00025]

[SWS_Bfx_00034]

[SWS_Bfx_00038]

[SWS_Bfx_00045]

[SWS_Bfx_00046] Definition of API function Bfx_TstBitMask_<InTypeMn><InTypeMn>_u8
[SWS_Bfx_00050]

[SWS_Bfx_00051] Definition of API function Bfx_TstBitLnMask_<InTypeMn><InTypeMn>_u8
[SWS_Bfx_00055]

[SWS_Bfx_00056] Definition of API function Bfx_TstParityEven_<InTypeMn>_u8

[SWS_Bfx_00060]

[SWS_Bfx_00065]

[SWS_Bfx_00069]

[SWS_Bfx_00075]

[SWS_Bfx_00080]

[SWS_Bfx_00090]

[SWS_Bfx_00098]

[SWS_Bfx_00108]

[SWS_Bfx_00112]

[SWS_Bfx_00124]

[SWS_Bfx_00132]

[SWS_Bfx_00135]

[SWS_Bfx_00137]

[SWS_Bfx_00139]

[SWS_Bfx_00141]

[SWS_Bfx_91001] Definition of imported datatypes of module Bfx

[SWS_Bfx_91003] Definition of API function Bfx_CountLeadingOnes_<TypeMn>
[SWS_Bfx_91004] Definition of API function Bfx_CountLeadingSigns_<TypeMn>
[SWS_Bfx_91005] Definition of API function Bfx_CountLeadingZeros_<TypeMn>

Table B.3: Changed Specification Items in R23-11

B.3.3 Deleted Specification Items in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Initialization and shutdown
	7.2 Using Library API
	7.3 Library implementation
	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about functions optimized for target
	8.4 Bit functions definitions
	8.4.1 Bfx_SetBit
	8.4.2 Bfx_ClrBit
	8.4.3 Bfx_GetBit
	8.4.4 Bfx_SetBits
	8.4.5 Bfx_GetBits
	8.4.6 Bfx_SetBitMask
	8.4.7 Bfx_ClrBitMask
	8.4.8 Bfx_TstBitMask
	8.4.9 Bfx_TstBitLnMask
	8.4.10 Bfx_TstParityEven
	8.4.11 Bfx_ToggleBits
	8.4.12 Bfx_ToggleBitMask
	8.4.13 Bfx_ShiftBitRt
	8.4.14 Bfx_ShiftBitLt
	8.4.15 Bfx_RotBitRt
	8.4.16 Bfx_RotBitLt
	8.4.17 Bfx_CopyBit
	8.4.18 Bfx_PutBits
	8.4.19 Bfx_PutBitsMask
	8.4.20 Bfx_PutBit
	8.4.21 Bfx_ShiftBitSat
	8.4.22 Bfx_CountLeadingOnes
	8.4.23 Bfx_CountLeadingSigns
	8.4.24 Bfx_CountLeadingZeros
	8.4.25 Bfx_GetVersionInfo

	8.5 Callback notifications
	8.6 Scheduled functions
	8.7 Expected interfaces
	8.7.1 Mandatory interfaces
	8.7.2 Optional interfaces
	8.7.3 Configurable interfaces

	8.8 Service Interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements
	B History of Specification Items
	B.1 Specification Item History of this document compared to AUTOSAR R24-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Specification Item History of this document compared to AUTOSAR R23-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Specification Item History of this document compared to AUTOSAR R22-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11

