AUTSSAR

Document Title Spemf!catlon of AUTOSAR
Run-Time Interface

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 923

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
» Added ARTI description for schedule
AUTOSAR tables and spinlocks
2024-11-27 | R24-11 Release
Management * Changed handling of Artiin RTE
generation
» Extended stopwatch to allow nesting
AUTOSAR
2023-11-23 | R23-11 Release » Added imported types
Management o
« Editorial changes
» Corrected Error Classification
* Introduced ARTI macro with several
AUTOSAR event parameters
2022-11-24 | R22-11 'I?Aelease ‘ » Introduced ARTI class for tracing RTE
anagemen APl and BSW AP
* Splitted “arti.h” in module depending
header files
* Introduced SWS items into specification
AUTOSAR * Overall review and clarification
2021-11-25 | R21-11 Release
Management » ARTlI introduced as BSW Module "Arti"

* New ARTI APl and Errors

AUTSSAR

* Merged EcuC ArtiXxx containers into
one Arti container

AUTOSAR
2020-11-30 R20-11 Release » Added ARTI for RTE
Management
» Changed document status from draft to
valid
» Added expression syntax
» Corrected trace macros and ARTI class
names
2019-11-28 R19-11 QELSS:R » Added and extended several
o i configuration parameters
Management
» Corrected SWS item references
» Changed Document Status from Final to
published
AUTOSAR
2018-10-31 R4.4.0 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 7
Acronyms and Abbreviations 9
Related documentation 10
3.1 Input documents & related standardsandnorms 10
3.2 Related specification 10
Constraints and assumptions 11
4.1 Limitations 11
Dependencies to other modules 12
Requirements Tracing 13
Functional specification 14
7.1 ARTI Module Description 14
7.2 ARTI Hook Implementation 15
7.3 ARTIOS Implementation 17
7.4 ARTIRTEVFB TraceClient 17
7.4.1 RTE VFB Trace Client Configuration 17
7.5 Error Classification 22
7.5.1 DevelopmentErrors 22
752 Runtime Errors 22
7.5.3 Production Errors 22
7.5.4 Extended Production Errors 22
API specification 23
8.1 Importedtypes 23
8.2 Type definitions 23
8.3 Symbol definitions 23
8.3.1 ARTI_STOPWATCH_FLAT, ARTI_STOPWATCH_NESTED 23
8.4 Functiondefinitions Lo 24
8.4.1 Arti_Init 24
8.4.2 Arti_ GetVersioninfo 24
8.5 Callback notifications 25
8.6 Scheduled functions 25
8.7 Expectedinterfaceso 25
8.7.1 Mandatoryinterfaces 25
8.7.1.1 ARTITracingMacro. 25
8.7.1.2 ARTI Tracing Macro with Multiple Parameters 28
8.7.2 Optionalinterfaces 30
8.7.2.1 ARTI Generic Stopwatch 30
8.7.2.2 ARTI Generic Dataflow Stopwatch 32

8.7.2.3 ARTI Generic Datapoint 33

AUTSSAR

8.7.2.4 ARTICategory 1 Interrupts 35
8.7.25 ARTIRTEVFBTraceClient 37
8.7.2.6 ARTIBSW Module Interface 43
8.7.3 Configurable interfaces 45
8.8 Servicelnterfaceso 45
9 Sequence diagrams 46
10 Configuration specification 47
10.1How toread thischapter 47
10.2ARTI Parameterso 47
10.3ARTI Generic Container, 48
10.3.1 ArtiGenericComponentClass 50
10.3.2 ArtiGenericComponentinstance 54
10.4ARTI Hardware Container 58
10.5ARTIOs Container it 59
10.6ARTI Rte Container 60
10.6.1 ArtiRteRunnableClass 61
10.6.2 ArtiRteRunnablelnstance 63
10.6.3 ArtiRteSchedulableClass 65
10.6.4 ArtiRteSchedulablelnstance 66
10.6.5 ArtiRteVfbTraceHooks 68
10.7ARTI Values Container 69
10.7.1 ArtiConstanto 71
10.7.2 ArtiExpression 72
10.7.3 ArtiHook 73
10.7.4 ArtiObjectClassParameter 78
10.7.5 ArtiObjectinstanceParameter 80
10.7.6 ArtiParameterTypeMapo oL 82
10.7.7 ArtiStates 87
10.8Published Information. 91
A Not applicable requirements 92
B Example 93
B.1 ARTI Instrumentation 93
B.1.1 ARTI Tool Binding (Arti.h) 93
B.1.2 ARTIOS Instrumentation 96
B.1.3 ARTIUserCode it 97
B.2 ARXML Representation of Instrumentation 98
C Expression Syntax 103
D Change history of AUTOSAR traceable items 104
D.1 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . 104

D.1.1 Added Specification ItemsinR22-11 104

AUTSSAR

D.1.2 Changed Specification ltemsin R22-11 104
D.1.3 Deleted Specification Itemsin R22-11 104
D.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . . 105
D.2.1 Added Specification Itemsin R23-11 105
D.2.2 Changed Specification ltemsin R23-11 105
D.2.3 Deleted Specification Itemsin R23-11 105
D.3 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 105
D.3.1 Added Specification ltemsinR24-11 105
D.3.2 Changed Specification ltemsin R24-11 106
D.3.3 Deleted Specification ltemsin R24-11 106
D.4 Traceable item history of this document according to AUTOSAR Release
R25-11 e 106
D.4.1 Added Specification ltemsinR25-11 106
D.4.2 Changed Specification Itemsin R25-11 106

D.4.3 Deleted Specification ltemsin R25-11 106

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Run-Time Interface (“ARTI”) for debugging and tracing AUTOSAR modules.

ARTI defines an interface between build tools and debugging/tracing tools. The debug-
ging/tracing tools shall then forward tracing information to trace/timing analysis tools.
The interface shall ease and speed up the debugging, tracing and verification of system
behavior as well as round-trip engineering.

Debugging and tracing enables efficient development, integration, optimization and ver-
ification of ECU software. For analyzing several aspects - especially timing aspects - it
becomes essential to link the debugging and tracing data to the scheduling of an ECU.
Knowledge about tasks, interrupts and runnables, in other words: awareness of the
operating system (“OS awareness”), is required.

A good interaction of the tool chain provides complete round-trip engineering from
model down to hardware and back - covering several software levels and several
phases of the V-model.

ARTI shall especially provide

» Support of “OS Awareness”, for example examination of OS specific tasks,
threads etc.

Support of distributes systems and multi-core
» Support of other AUTOSAR modules (e.g. RTE in CP or ARA in AP)
» Support of instrumentation-based tracing and measurement solutions

Support of TIMEX

The data flow of the tools and the interfaces of ARTI are depicted in figure 1.1.

Trace/Timing

ARTI Analysis Tool
................ e
configures H fonfio™ 1
' " ~ ™
e ——]
ARTI ECU 1 Event Trace Profiling
AUTOSAR Description ' Description Data Data
Generator 1 ~_ !
[] o .
: T %Ures
creates ' ' exports
~
v ! ~a N /

accesééE R jiéhds trace data

ECU

Figure 1.1: ARTI data flow

For some important definitions please read also chapter 1 of
RS_FoundationDebugTraceProfile.

AUTSSAR

To implement the features, ARTI uses a similar approach that the former OSEK-ORTI
had, but extends this to current requirements. The tools that generate AUTOSAR mod-
ules (e.g. OS, RTE, etc.) have to extend the ECU configuration with internal information
about this module and emit the extended configuration as a separate file (“ARTI file”).
The information therein shall allow to debug and trace the behavior of this module.
Additional tools will collect all ARTI files of an ECU and allow selecting specific items
to trace and create tracing hook files for a specific trace channel (e.g. internal buffer,
hardware trace buffers, etc.). The build environment creates the final application, which
then can be used in the ECU. Debugging and tracing tools can read in the ARTI files
and are “AUTOSAR aware”, giving additional debugging and tracing features to the de-
veloper. These tools can export a trace file, which in turn can be used in trace analysis
tools for extended timing analysis, time measurements and optimization runs.

Using the standardized work flow allows interchanging the tools as necessary, and use
the tool that fits best for each solution without the need of adapting the work flow.

The work flow of the ARTI file generation and usage is depicted in figure 1.2. ARTI
shall only define interfaces within the build process of an AUTOSAR application (i.e. the
export of the generators, and the hooks within the AUTOSAR modules). The interfaces
for tool communication are post-build and not subject to this specification.

AUTOSAR,

ARTI Selector and export trace file

1instrument, add instrumented -
Tracing Tool

' event Ids evaluations to ARTI file;
1 generate hook implementations

AL
ARTI trace file

] &

v Ana yze trace file / stream Trace & Timing
' Analysis Tool
'

Figure 1.2: ARTI work flow

|]
, AUTOSAR '
L} . 1
' System Configuration m S :
i A elect modules and items to
: Description (= : : instrument, add instrumented AR-I.I—.I Select_lt_ar Tnd
. [: event |ds evaluations to ARTI file; racing loo
! te hook I tati
' Extract ECU System Configuration ; : generate hook implementations
: specific info Generator -
' o
' 't
'
' v 1 ARTI hock implementations
! ECU Extract P
' S Generated
: ! sources
' System Configuration ' -
' Configure ECU Extractor : ' Application
1 —
" '
') ' 1 Compile application Build Tool
1 ECU Configuration H
! Description !
" p P
) P """"-».,_, 1| e s s === » bl el
! i : oot ETEEEEEEEES e [S
1
1 Generate RTE MCAL : :
' modules and Generator Generator Generator, 1 ' Project AR arti
v ARTI files " vl =
' | S
1 Moedules H sources H sources H sources . .) elf
1 . v Application executabls
: ARTI module | Os_arti.arxml Rte_arti.arxml Mecal_arti.arxml ! \
1 description ' : !
[: '
: e | 7 [|
~. o 1 5
' ~— | 7 v+ Debug application Debugging .
' R P ' . Tool
1 race application an Tool
: Select modules and items to 1 : o0
: 1
M]
.t
1 L}
, !
' 1
M]

sources

[

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the ARTI module
that are not included in the [1, AUTOSAR glossary].

Abbreviation/Acronym Description

ORTI "OSEK Run Time Interface", an OSEK specification (in its
version 2.2) that defines how debuggers can access OSEK
OS internal information.

Table 2.1: Abbreviations and Acronyms

Term Description

Debugging "Debugging" refers to halting a system, either as a whole
or in parts, for the purpose of
« inspecting the contents of the system in a frozen state

* single stepping, setting breakpoints, starting and
stopping in C or Assembly code

Tracing "Tracing" refers to collecting run-time information over a
certain period of time
* either as a pure software solution, or with hardware
assistance

» may include processor instruction trace, OS scheduling
trace, and/or pure data trace

* including time-stamping for further timing analysis

Timing Measurement "Timing Measurement" refers to capturing of timing
information
* by instrumentation, e.g. via Pre-/PostTaskHooks or
other hooks or callouts or

* by dedicated hardware support, e.g. hardware
performance counters

* does not stop execution

Profiling "Profiling" refers to the process of gaining timing
parameters/timing statistics
« of functions, tasks, runnables, modules etc.

* possibly with minimum/maximum/average statistics
* possibly with worst case analysis

» possibly calculated out of trace data, repeated
snapshots or Timing Measurement

Table 2.2: Terms

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Operating System
AUTOSAR_CP_SWS_OS

[3] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

3.2 Related specification

Not applicable yet.

AUTSSAR

4 Constraints and assumptions

The ARTI concept expects to get an own ARTI module description from each module
to be debugged, traced or profiled, e.g. OS and RTE. This allows mixing modules with
ARTI support with those without ARTI support. However, as ARTI contains internal
information, the implementers of the modules have to provide the ARTI file.

4.1 Limitations

ARTI is supposed to work with debug information created by the compilers. This means
each module that supports ARTI needs to be compiled with debug information, and the
ARTI file has to use the symbol names created by the compiler.

ARTI introduces new hooks. In order to use them, they shall be incorporated into
the module’s C code. Either they are put therein statically, or they are put therein
dynamically by a generator as configured.

Tracing internal events is very time critical. ARTI focuses on the solutions with the
least impact on timing (in some cases with no timing overhead at all), but this depends
on the hardware capabilities of the ECU and the tools. ARTI provides examples that
describe the possibilities for tracing, depending on the available hardware and software
capabilities (see Appendix B).

AUTSSAR

5 Dependencies to other modules

ARTI depends on OS and RTE module, which refine the ARTI description and hooks
for their purposes.

AUTSSAR

6 Requirements Tracing

The following table references the requirements specified in
RS_ClassicPlatformDebugTraceProfile and links to the fulfilment of these. Please
note that if column “Satisfied by” is empty for a specific requirement this means that
this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_ARTIFO_00014]

ARTI Hooks shall be implemented
with minimal intrusion

[SWS_Arti_00017]

[RS_ARTIFO_00015]

ARTI Hooks shall follow a fixed
format

[SWS_Arti_00018] [SWS_Arti_00019]

[RS_Arti_00035]

AUTOSAR shall support tracing of
arbitrary intervals between a start
and a stop event

[SWS_Arti_00001] [SWS_Arti_00002]
[SWS_Arti_91000]

[RS_Arti_00036]

AUTOSAR shall support tracing of
arbitrary intervals between a start
and several stop events

[SWS_Arti_00003] [SWS_Arti_00004]

[RS_Arti_00037]

AUTOSAR shall support tracing of
arbitrary values

[SWS_Arti_00005] [SWS_Arti_00006]

[RS_Arti_00038]

AUTOSAR shall support tracing of
category 1 interrupts.

[SWS_Arti_00007] [SWS_Arti_00008]

[RS_Arti_00039]

AUTOSAR shall support recording
timing events of runnable entities.

[SWS_Arti_00011] [SWS_Arti_00012]
[SWS_Arti_00014]

[RS_Arti_00040]

AUTOSAR shall support recording
timing events of schedulable entities.

[SWS_Arti_00011] [SWS_Arti_00013]
[SWS_Arti_00015]

[RS_Arti_00041]

AUTOSAR shall support recording
events from the standardized VFB
tracing interface.

[SWS_Arti_00020] [SWS_Arti_00021]

[RS_Arti_00042]

AUTOSAR shall support tracing of
entries and exits of BSW modules.

[SWS_Arti_00022] [SWS_Arti_00023]

[RS_LT_00061]

Tracing shall be configurable at
compile time

[SWS_Arti_00016]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Arti_91004]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_Arti_91006]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Arti_00010]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

[SWS_Arti_00017]

[SRS_BSW_00337]

Classification of development errors

[SWS_Arti_00009] [SWS_Arti_91002]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_Arti_00009]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Arti_91005]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

ARTI consists of these functional elements:
* ARTI module description
* ARTI hook implementations

The “ARTIl Module Description” is intended to be emitted as an ARXML file. Additional
files, such as the “project ARTI file” or “ARTI trace file” may be stored in another file
format, whereas this format is beyond AUTOSAR and defined elsewhere.

ARTI is not a traditional software module that creates code and changes the system
behavior. Instead ARTI is explicitly designed to not affect the overall system behav-
ior. Especially the generation and export of the ARTI module description is intended
to not influence the module that generates the ARTI export; ARTI should export in-
formation that is already internally available. The exported information will then be
post-processed and used by further debugging and tracing tools. However, it might
be necessary to introduce some special variables or functions to be able to generate
requested information. While this causes some slight impact to the code, it is again
the intention not to change the overall behavior of the module using ARTI. The same
applies to the hooks: while the hooks itself may have some slight impact on the code
base and while the hook implementation (done by the tools consuming ARTI) may have
some impact on the timing and on the program flow, it is the intention of ARTI to change
the module behavior as little as possible — ideally not at all. Depending on the hook
implementation, the behavior may differ. It is the responsibility of the tool vendor to
minimize the impact to the behavior of the system.

ARTI shall be defined in a way that it is applicable on the road. If ARTI hooks are
implemented, this obviously comes with high safety requirements regarding the imple-
mentation of the hooks since e.g. some of the ARTI hooks will be executed in the
context of the OS. Special care has to be taken in a multi-core context.

If the implementation of the hooks cannot guarantee safe execution, the ECU must not
be used “on the road”. “On the road” here refers to situations where the operation or
malfunction might cause danger to persons or property.

7.1 ARTI Module Description

An "ARTI Module Description" is an ARXML file that contains detailed information
about a specific module (e.g. OS, RTE, etc.). In particular, this is:

+ Constants
A Constant defines a constant value that is specific to this application or environ-
ment. E.g. the number of CPUs used in an ECU could be defined as a constant.
Constants are used by a debugger to know about the configuration, or to display
the value in a convenient way.
Constants are referred to by an object information (see "Object Information" be-

AUTSSAR

low). and are only meaningful in the context of an object.
A Constant is represented by the container ArtiConstant (see chapter 10.7.1).

» Expressions
An Expression defines how a specific value can be accessed on the target by
a debugger to display the current state of the application. Expressions are like
C expressions but limited so that they can be evaluated statically. Hence, Ex-
pressions allow only accesses to global variables, and only unary, binary and
ternary operators are allowed. Especially accesses to local variables and calls
to functions are not allowed. See Appendix C for a full syntax specification of
Expressions.
Expressions are referred to by an object information (see "Object Information”
below) and are used to define the evaluation of parameter values therein.
An Expression is represented by the container ArtiExpression (see chap-
ter 10.7.2).

» Hook definitions
Hook definitions contain information about which hooks are present in the mod-
ule and how they look like. These hook definitions are used to create the hook
implementation and to trace the information defined by the hook.
A Hook definition is represented by the container ArtiHook (see chapter 10.7.3).

* Object information
Objects within a module (e.g. an “OsTask”) get an own representation in the ARTI
module description. The object information contains references to the original
object as well as references to the expressions and hooks used for this object.
All objects of a specific kind are collected in a container. The detailed layout of
an object within a specific module is defined in the according SWS.

» Generic components
ARTl is able to define objects that should show up in a debugger or when tracing,
even if those are not standard AUTOSAR objects (e.g. user defined, or additional
OS features like semaphores). See chapter 10.3.

7.2 ARTI Hook Implementation

The ARTI hook implementations are generated by a tool that consumes the ARTI de-
scription files. They are mainly represented by these files:

* Arti.h
This file contains the ARTI_TRACE macro implementation. The ARTI_TRACE
macro implementation may expand to a module dependent macro.

» <Mip>_Arti.h This file contains all module dependent macros that are used in
the modules supporting ARTI to instrument certain events. It may also contain
the implementation of the macro, or may refer to an implementation in Arti.c.
<Mip>_Arti.h shall include Arti.h in front of any module specific macro definitions.

AUTSSAR

* Arti.c
This file contains the implementation of the APl (see chapter 8) and the ac-
tual implementation of each macro, if it is not empty or not implemented in the
<Mip>_Atrti.h file.

All events that are not active will be mapped to an empty macro definition. All events
that are active will be expanded to the implementation of the instrumentation. The
actual implementation depends on the hardware and software capabilities of the tracing
tool. Thus, it depends on the used tracing tool, how the macros are implemented.

Example for the OS module:

The OS source code will include the Os_Arti.h file and use the ARTI_TRACE macro.

1 #include "Os_Arti.h"
2 ARTI_TRACE (NOSUSP, AR_CP_0S, Os, GetCoreld(), OsTask_Activate,
GetTaskId (MyTask));

Listing 7.1: Example: Os_Source.c

The Os_Arti.h file (created by the tool vendor) will include Arti.h and implement the
module specific macro.

1 #include "Arti.h"

2 extern volatile uint32_t arti_os_trace;

3 #define ARTI_TRACE_AR_CP_OS_TASK OsTask_Activate (Coreld, TaskId) \
4 arti_os_trace = (TaskId<<16) | (ARTI_VALID_ O0S_SIGNALING<<8) | \
5 (ARTI_OSTASK_ACTIVATE<<8) | Coreld ;

Listing 7.2: Example: Os_Arti.h

The Arti.h file (created by the tool vendor) will implement the ARTI_TRACE macro and
expand it to the module specific macro.

#define ARTI_TRACE (_contextName, _className, _instanceName, \

1

2 instanceParameter, _eventName, eventParameter) \
3 ARTI_TRACE ## _ ## _className ## _ ## \

4 _eventName ((instanceParameter), (eventParameter))

Listing 7.3: Example: Arti.h

The Arti.c file will implement the Arti APl (arti_Init () andArti_GetVersionInfo())
and any further code necessary to implement the tracing.

volatile uint32_t arti_os_trace;

void Arti_TInit (void) {

1
2
3 arti_os_trace = 0;
4

}
Listing 7.4: Example: Arti.c

AUTSSAR

7.3 ARTI OS Implementation

ARTI support for OS is specified in [2] Chapter 7.16 “ARTI/ Debug Information” and
[2] Chapter 7.17 “ARTI Hook Macros”. It is related to the application note described in
[2] Chapter 12.7 “Debug support”.

7.4 ARTI RTE VFB Trace Client

The ARTI RTE VFB trace client is designed to adapt the VFB tracing mechanism to
the ARTI trace. The VFB tracing mechanism provides hooks including parameters
for tracing while ARTI trace focuses on minimal intrusive trace using the ARTI_TRACE
macro.

The ARTI basic software module implements a trace client of the VFB tracing (see
[3] Chapter 5.11 “VFB Tracing Reference”).

It configures the RTE to generate the hooks for the trace client. These hooks will be
mapped to the ArTT_TrRACE macro with dedicated ARTI trace classes and events.

This mapping is defined in 8.7.2.5.

Restriction: ARTI supports only a subset of the RTE VFB trace client hooks. Thus
the [RS_Arti_00041] "AUTOSAR shall support recording events from the standardized
VFB tracing interface" is not completely fulfilled and specified. ARTI only supports:

* Rte Arti Runnable <cts> <reName>_ Start

* Rte Arti_Runnable <cts> <reName> Return

* Rte_Arti_<api>Hook_<cts>_<ap>_Start

* Rte_Arti_<api>Hook_<cts>_<ap>_Return

* SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Start

* SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Return

7.4.1 RTE VFB Trace Client Configuration

The RTE VFB trace client configuration is done in several steps where RTE genera-
tor and ARTI module are interacting. Configuration parameters are exchanged in the
EcuC.

1. RTE configuration provides /AUTOSAR/EcucDefs/Rte/RteSwComponentin-
stance after RTE configuration

2. ARTI creates an own VFB trace client called "Arti" and provides the configuration
for the trace client using its own /AUTOSAR/EcucDefs/Rte/RteGeneration/RteVi-
bTraceClient. Within this container all the /AUTOSAR/EcucDefs/Rte/RteGenera-
tion/RteVfbTraceClient/RteVfbTraceFunction (see AUTOSAR_SWS_RTE RteVf-

AUTSSAR

bTraceFunction) are listed for which the ARTI module requests the hooks to be
generated. Here ARTI fills out the value and thus generates a 'wishlist’ of tracing
a certain hook function. Examples:

» Enable trace of all schedulable entity hooks: Rte_ Arti_SchM
» Enable trace of all runnable hooks: Rte_Arti_Runnable

« Enable trace of all runnable hooks of a certain component:
Rte_Arti_Runnable_MyComponentType where MyComponentType is
taken from /AUTOSAR/EcucDefs/Rte/RteSwComponentType

* Enable trace of a runnable hooks of a certain runnable within a cer-
tain component: Rte_Arti_ Runnable_MyComponentType_MyRunnable
where MyRunnable is taken from /AUTOSAR/SoftwareTypes/Component-
Types/<ApplicationSwComponentType>/<SwcinternalBehavior>/<RunnableEntity>

Within the RteVfbTraceClient container, add an RteVfbTraceHooksRef with an
URI pointing to the Art iRteVfbTraceHooks container of the ARTI trace client.

3. Based on this configuration the RTE generator creates the source files containing
the trace hooks. The generated hooks are BSW-MODULE-ENTRY where the
FUNCTION-PROTOTYPE-EMITTER is “Arti”.

4. ARTI generator creates the final trace client based on the BSW-MODULE-
ENTRY’s for the ARTI trace client.

* It generates the header file for the mapping of the VFB trace hooks to
ARTI_TRACE macro. All unused generated hooks are mapped to (void).
As part of the mapping, the ARTI module needs to provide a Runnable to
Runnableld mapping (see 8.7.2.5, idOf(<reName>)).

* It updates the the Arti's BSWMD with the missing information:

— It extends the BswinternalBehavior of the RTE with each arti hook as
function marked with SW-ADDR-METHOD-REF CODE.

— |t extends the BSW-MODULE-ENTRY of each hook with the correct SW-
SERVICE-IMPL-POLICY (MACRO, INLINE or STANDARD).

— It adds the REQUIRED-ARTIFACTS that implement the hooks to the
BSW-IMPLEMENTATION.

— It specifies the RESOURCE-CONSUMPTION by adding ARTI
MEMORY-SECTION that holds the EXECUTABLE-ENTITY-REFS of all
hooks and add the SECTION-NAME-PREFIX for the required artifacts.

5. Compile RTE

AUTSSAR

Example 7.1
1. RTE provides /AUTOSAR/EcucDefs/Rte/RteSwComponentinstance

<ECUC-CONTAINER-VALUE UUID="cd307£8d-8496-421b-a9%e8-571463b08250
">
<SHORT-NAME>ConsumerComponent </SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Rte/RteSwComponentInstance
</DEFINITION-REF>

</ECUC-CONTAINER-VALUE>

2. ARTI creates VFB trace client

<ECUC-CONTAINER-VALUE UUID="6deObbd4e-clff-4c6c-ael9-3a0f536e7e9%e
">
<SHORT-NAME>Art i </SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Rte/RteGeneration/RteVibTraceClient
</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-FUNCTION-NAME-DEF">
/AUTOSAR/EcucDefs/Rte/RteGeneration/
RteVfbTraceClient/RteVfbTraceFunction
</DEFINITION-REF>
<VALUE>Rte_Arti_Runnable_ConsumerComponent</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>

</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

3. Based on this configuration the RTE generator creates the source

<BSW-MODULE-ENTRY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_RE2_Return
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-EMITTER
>
<CALL-TYPE>CALLBACK</CALL-TYPE>
</BSW-MODULE-ENTRY>
<BSW-MODULE—-ENTRY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_ RE2_Start
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-EMITTER
>
<CALL-TYPE>CALLBACK</CALL-TYPE>
</BSW-MODULE-ENTRY>

4. ARTI generator updates the RTE’s BSWMD with the missing information

AUTSSAR

» extends the BswinternalBehavior of the RTE with each arti hook

<BSW-CALLED-ENTITY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_RE2_Start
</SHORT-NAME>
<MINIMUM-START-INTERVAL>0 .0</MINIMUM-START-INTERVAL>
<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">
/AUTOSAR_MemMap/SwAddrMethods/CODE
</SW-ADDR-METHOD-REF>
<IMPLEMENTED-ENTRY-REF DEST="BSW-MODULE-ENTRY"
BASE="Rte_BSWMD_BswModuleEntrys">
Rte_Arti_Runnable_ConsumerComponent_REZ2_Start
</IMPLEMENTED-ENTRY-REF>
</BSW-CALLED-ENTITY>
<BSW-CALLED-ENTITY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_REZ2_Return
</SHORT-NAME>
<MINIMUM-START-INTERVAL>(.0</MINIMUM-START-INTERVAL>
<IMPLEMENTED-ENTRY-REF DEST="BSW-MODULE-ENTRY"
BASE="Rte_BSWMD_BswModuleEntrys">
Rte_Arti_Runnable_ ConsumerComponent_RE2_Return
</IMPLEMENTED-ENTRY-REF>
</BSW-CALLED-ENTITY>

» extends the BSW-MODULE-ENTRY

<BSW-MODULE—-ENTRY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_RE2_Return
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-
EMITTER>
<CALL-TYPE>CALLBACK</CALL-TYPE>
<SW-SERVICE-IMPL-POLICY>INLINE</SW-SERVICE-IMPL-POLICY>
</BSW-MODULE-ENTRY>
<BSW-MODULE-ENTRY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_RE2_Start
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-
EMITTER>
<CALL-TYPE>CALLBACK</CALL-TYPE>
<SW-SERVICE-IMPL-POLICY>INLINE</SW-SERVICE-IMPL-POLICY>
</BSW-MODULE-ENTRY>

+ add the REQUIRED-ARTIFACTS

<BSW-IMPLEMENTATION>
<SHORT-NAME>Rte</SHORT-NAME>
<PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>
<REQUIRED—-ARTIFACTS>

AUTSSAR

<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>Rte_Hook_Arti.h</SHORT-NAME>
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>
<SHORT-LABEL>Rte_Hook_Arti.h</SHORT-LABEL>
<CATEGORY>SWHDR</CATEGORY>
</ARTIFACT-DESCRIPTOR>
<USAGES>
<USAGE>COMPILE</USAGE>
</USAGES>
</DEPENDENCY-ON-ARTIFACT>

</REQUIRED-ARTIFACTS>

</BSW-IMPLEMENTATION>

+ specify the RESOURCE-CONSUMPTION

<RESOURCE-CONSUMPTION>

<MEMORY-SECTION>
<SHORT-NAME>RTE_Arti_CODE</SHORT-NAME>
<EXECUTABLE-ENTITY-REFS>
<EXECUTABLE-ENTITY-REF DEST="BSW-CALLED-ENTITY"
BASE="Rte_BSWMD_BswModuleDescriptions">
Rte/RtelInternalBehavior/
Rte_Arti_Runnable_ConsumerComponent_RE2_Return

</EXECUTABLE-ENTITY-REF>
<EXECUTABLE-ENTITY-REF DEST="BSW-CALLED-ENTITY"
BASE="Rte_BSWMD_BswModuleDescriptions">
Rte/RtelInternalBehavior/
Rte_Arti_Runnable_ConsumerComponent_REZ2_Start

</EXECUTABLE-ENTITY-REF>
</EXECUTABLE-ENTITY-REFS>
<PREFIX-REF DEST="SECTION-NAME-PREFIX"
BASE="Rte_BSWMD_BswImplementations">
Rte/ResConsumption/RTE_Arti
</PREFIX-REF>
<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">
/AUTOSAR_MemMap/SwAddrMethods/CODE
</SW-ADDRMETHOD-REF>
<SYMBOL>CODE</SYMBOL>
</MEMORY-SECTION>

</RESOURCE-CONSUMPTION>

AUTSSAR

7.5 Error Classification

Chapter [4, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.5.1 Development Errors

[SWS_Arti_91002] Definition of development errors in module Arti
Upstream requirements: SRS_BSW_00337

Type of error Related error code Error value
Initialization of ARTI module failed ARTI_E_INIT_FAILED 0x01
API parameter checking: invalid pointer ARTI_E_PARAM_POINTER 0x02

7.5.2 Runtime Errors

There are no runtime errors.

7.5.3 Production Errors

There are no production errors.

7.5.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter all types included from the following modules are listed:

[SWS_Arti_91006] Definition of imported datatypes of module Arti
Upstream requirements: SRS_BSW_00301

[

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType

8.2 Type definitions
ARTI does not add any type definitions.

8.3 Symbol definitions

8.3.1 ARTI_STOPWATCH_FLAT, ARTI_STOPWATCH_NESTED

[SWS_Arti_91000] Definition of datatype ARTI_STOPWATCH_FLAT, ARTI_STOP-
WATCH_NESTED

Upstream requirements: RS_Arti_00035

[

Name ARTI_STOPWATCH_FLAT, ARTI_STOPWATCH_NESTED

Kind Enumeration

Range ARTI_STOPWATCH_FLAT 0x00u The stopwatch ignores nesting.
ARTI_STOPWATCH_ 0x01u The stopwatch considers nesting.
NESTED

Description This value defines how the start and stop event of a stopwatch is evaluated.
The symbols ARTI_STOPWATCH_FLAT and ARTI_STOPWATCH_NESTED shall be defined as
follows:

1. define ARTI_STOPWATCH_FLAT 0x00u

2. define ARTI_STOPWATCH_NESTED 0x01u
Available via Arti.h

AUTSSAR

8.4 Function definitions

8.4.1 Arti_Init

[SWS_Arti_91004] Definition of API function Arti_Init
Upstream requirements: SRS_BSW_00101

[
Service Name Arti_Init
Syntax void Arti_Init (
void
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to initialize the ARTI module
Available via Arti.h
]

The implementation of arti_1nit shall be provided by the tool vendor, that implements
ARTI hooks.

[SWS_Arti_00009]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00339

[If the initialization fails, the function arti_1init shall raise the error
ARTI_E_INIT_FAILED. |

See [SWS_Arti_ 91002].

8.4.2 Arti_GetVersioninfo

[SWS_Arti_91005] Definition of API function Arti_GetVersioninfo
Upstream requirements: SRS_BSW_00407

Service Name Arti_GetVersioninfo
Syntax void Arti_GetVersionInfo (
Std_VersionInfoTypex VersionInfoPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous

AUTSSAR

A
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) VersionInfoPtr Pointer to where to store the version information of this module
Return value None
Description Returns the version information of this module.
Available via Arti.h
]

The implementation of arti_GetversionInfo shall be provided by the tool vendor,
that implements ARTI hooks.

[SWS_Arti_00010]
Upstream requirements: SRS _BSW_00323

[If the parameter versionInfortr is a null pointer, the function
Arti_GetVersionInfo shall raise the error ARTI_E_PARAM POINTER. |

See [SWS_Arti_91002].

8.5 Callback notifications

ARTI does not provide any callback notifications.

8.6 Scheduled functions

ARTI does not have any functions directly called by Basic Software Scheduler.

8.7 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.7.1 Mandatory interfaces

8.7.1.1 ARTI Tracing Macro

[SWS_Arti_00017] ARTI Tracing Macro Parameters
Upstream requirements: RS_ARTIFO_00014, SRS_BSW_00330

[ARTI tracing macros shall accept a set of parameters that define the semantics of the
macros. |

AUTSSAR

The ARTI tracing macros are used by all modules with ARTI trace capabilities, therefore
ARTI based instrumentation can easily be disabled on a global level.

[SWS_Arti_00018] ARTI Tracing Macro Format (single event)
Upstream requirements: RS_ARTIFO_00015

[If the event to trace accepts one single event parameter, then ARTI shall use a single
event parameter version. |

ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter)

If there are more event parameters specified, then use the multiple event parameter
version specified in chapter 8.7.1.2.

Note: While MISRA-C rules may advise to not to use function-like macros, the usage
of a macro is intentionally specified here to improve runtime behavior. See also [SRS_
BSW_00330].

Note: The ARTI tracing macros should not contain any BSW module API as parameter
within the macro invocation, as the macro expansion does not guarantee a proper
evaluation of API calls. Within the implementation of an ARTI macro, special care shall
be taken about nesting and possible recursions if it calls BSW module APIs.

Some of the parameters come as tokens (literal text) rather than as symbolic identifiers.
This allows a macro definition to concatenate these parameters to more specific and
efficient macros. Passing and evaluating all parameters as symbolic identifiers at run-
time would be very costly especially by means of run-time consumption.

Here is a possible implementation of the generic ARTI_TRACE macro:

1 #define ARTI_TRACE (_contextName, _className, _instanceName, \

2 instanceParameter, _eventName, eventParameter) \
3 ARTI_TRACE ## _ ## _className ## _ ## _instanceName \

4 ## _ ## _eventName ## _ ## _contextName \

5 ((instanceParameter), (eventParameter))

Listing 8.1: Example implementation of ARTI_TRACE macro

Such an implementation will generate one hook for all the possible combinations of
_contextName, _className, _instanceName and _eventName and pass parameters
instanceParameter and eventParameter at run-time only. The parameters’ mean-
ings are described in the following.

_contextName Token, literal text, name of the context. One of the following:

NosusP indicating that the hook gets called in a context where interrupts are
disabled

SPRVSR indicating that the called hook may disable interrupts during this call. The
OS functions must not be used for disabling interrupts. Disabling Interrupts
can influence the runtime behavior.

AUTSSAR

USER indicating the called hook cannot disable interrupts by itself. If it is nec-
essary to disable interrupts, the appropriate OS functions have to be used.
Disabling Interrupts can influence the runtime behavior.

_className Token, literal text, name of the class of macros. Classes can be one of
the predefined classes (e.g. ArR_cp_o0s_TASK) or user defined. The predefined
classes are specified in the SWS of the according BSW module (e.g. SWS_OS).

_instanceName Name of an instance

instanceParameter Index [uint32] 0..4294967295 of the instance of a particular
_className and _instanceName, the index should start with 0 and be consecu-
tive per _instanceName.

_eventName Token, literal text, name of the event as defined for a particular class (e.g.
OsTask_Start).

eventParameter A [uint32] 0..4294967295 value as an argument to an event (e.g.
Task Index).

All modules which shall support ARTI tracing shall add calls to this macro with the
module specific parameters.

The parameters that are marked as foken, literal text can’t be:
* C macros
 Variables
» Constants
* Enumerations

These parameters are meant to be subject of token concatenation by the C prepro-
cessor or the trace tool provider (provider of <Mip>_Arti.h and Arti.h) chooses to map
these tokens to symbols within <Mip>_Arti.h depending on the trace tool.

Examples:

Examples for _className AR_CP_OS_TASK where _instanceParameter specifies
Core ID and _eventParameter specifies Task ID:

1 OS on 2 cores the OS short name is OsA, the OS manages three physical CPU
cores.

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* 0S OsA start of Task with index 0 on its own Core 0 =%/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 1, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on its own Core 1 x/

2 OSs on 1 physical core the OS short names are OsA and OsB, both run on the
same physical CPU core (e.g. Hypervisor)

AUTSSAR

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on its own Core 0 =/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 0, OsTask_Start, 0);
/* 0OS OsB start of Task with index 0 on its own Core 0 x/

2 OSs on 4 cores the OS short names are OsA and OsB each OS manages two
physical CPU cores.

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* 0S OsA start of Task with index 0 on its own Core 0 =%/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 1, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on its own Core 1 x/

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 0, OsTask_Start, 0);
/* OS OsB start of Task with index 0 on its own Core 0 =/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 1, OsTask_Start, 0);
/* 0OS OsB start of Task with index 0 on its own Core 1 x/

2 OSs, 2 virtual cores each and 3 physical cores the OS short names are OsA and
OsB each OS manages two virtual CPU cores (e.g. Hypervisor manages the
three physical CPU cores).

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* 0S OsA start of Task with index 0 on its own Core 0 =%/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 1, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on its own Core 1 x/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 0, OsTask_Start, 0);
/* 0OS OsB start of Task with index 0 on its own Core 0 =/

* ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 1, OsTask_Start, 0);
/* 0OS OsB start of Task with index 0 on its own Core 1 x/

AMODULE, a user defined class with a single instance called aModulel.

* ARTI_TRACE (SPRVSR, AMODULE, AModulel, 0, Thing_Start, 123);

8.7.1.2 ARTI Tracing Macro with Multiple Parameters

If an events accepts more than one parameter, all the specifications in chapter 8.7.1.1
apply, except the following items.

[SWS_Arti_00019] ARTI Tracing Macro Format (multiple events)
Upstream requirements: RS_ARTIFO_00015

[If the event to trace accepts more than one parameters, then ARTI shall use the
multiple event parameter version. |

AUTSSAR

ARTI_TRACE_N(_contextName, _className, _instanceName,

instanceParameter, _eventName, numEventParameters, ...)

The event parameters’ meaning are described in the following.

numEventParameters An integer value that defines how many parameters are given

.. .(ellipsis) A comma separated list of event parameters. The event parameters are
specified in the ArtiHook configuration container by referencing to an appropriate

The macro layout allows a macro definition to concatenate the macro parameters to
more specific and efficient macros. Here is a possible implementation of the generic

in the eventParameterList.

BswModuleEntry (see chapter 10.7.3).

ARTI_TRACE_N mMacro.

1
2
3
4
5
6
7
8
9

10
11
12

\

#define ARTI_TRACE_N(_contextName, _className, _instanceName, \
instanceParameter, _eventName, \
_enventParameterCount, ...) \

ARTI_TRACE_ ## _enventParameterCount (_contextName, _className,
_instanceName, instanceParameter, _eventName,
__VA_ARGS_)
#define ARTI_TRACE_2 (_contextName, _className, _instanceName, \

instanceParameter, _eventName, \
eventParameterl, eventParameter2) \
ARTI_TRACE ## _ ## _className ## _ ## _instanceName \
_ ## _eventName ## _2 (instanceParameter,
eventParameterl, eventParameter?2)

Listing 8.2: Example implementation of ARTI_TRACE_N macro

Examples using the above macro expansion:

© 00 N o 0o »~A W N =

#define ARTI_TRACE_AR_CP_RTE_API_SoAd_IfTransmit_Start_2 \
(coreld, portId, data) \
arti_rteapi_trace = (portId << 16) | (1 << 8) | coreld;
#define ARTI_TRACE_AR CP_RTE_API_ SoAd_IfTransmit_Return_2 \
(coreId, portId, data) \
arti_rteapi_trace = (portId << 16) | (2 << 8) | coreld;

void Rte_ReadHook_SoAd_Portl_TIfTransmit_Start (int data) {
ARTI_TRACE_N (USER, AR _CP_RTE_API, SoAd, coreld,
IfTransmit_Start, 2, 1, data);
}
void Rte_ReadHook_SoAd_Port2_TIfTransmit_Return (int data) {
ARTI_TRACE_N(USER, AR_CP_RTE_API, SoAd, coreld,
IfTransmit_Return, 2, 1, data);

Listing 8.3: Example usage of ARTI_TRACE_N macro

\

\

AUTSSAR

8.7.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

8.7.2.1 ARTI Generic Stopwatch

[SWS_Arti_00001] Define USER_STOPWATCH
Upstream requirements: RS_Arti_00035

[ARTI shall define a trace class for tracing of arbitrary intervals between a start and a
stop event called USER_STOPWATCH. |

A stopwatch can be used to time between two user defined points in an applica-
tion. The user can put the corresponding arTI_TRACE macro calls of the class
USER_STOPWATCH anywhere in the code. An arbitrary number of stopwatches are sup-
ported by using different instance names (_instanceName). Please note that the trace
tool provider might put limits on the number of active stopwatches.

The generic stopwatch provides a flat tracing (ignoring recurrent start/stop events and
the task context) and a nested tracing (considering nested start/stop events and the
task context).

Nested Stopwatch:

A trace tool tracing a stopwatch shall consider nesting, if the instanceParameter is
set to ARTI_STOPWATCH_NESTED. Timing shall be measured between Start and Stop
events belonging to the same nesting level and the same task that emits this event.
The task context shall be derived by tracing the OS tasks and Cat2lsrs as defined in
the chapter "ARTI Hook Macros" in the SWS_OS. Please note that a started nested
stopwatch cannot be stopped in another task.

A typical use case of a nested stopwatch is a function trace.
Flat Stopwatch:

A trace tool shall ignore nesting, if the instanceParameter is set to
ARTI_STOPWATCH_FLAT. The trace tool shall at least consider the time between the first
Start event and the first Stop event in a given sequence and doesn’t need to consider
nested Start and Stop events. E.g.

1. Start
2. start (ignored, already started)

3. stop

4. stop (ignored, no matching sTART)
5

. Start

AUTSSAR

6. Stop
Only events in bold are considered, time is calculated between 7 and 3 and 5 and 6.

Note: It is not defined if a stopwatch considers cores. It is implementation dependent,
if a stopwatch can cross cores or is bound to a specific core.

[SWS_Arti_00002] Macro USER_STOPWATCH

Upstream requirements: RS_Arti_00035
[ARTI macros of the class user_stopwatcH shall compile one of the following tem-
plates:

ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter);

ARTI_TRACE_N(_contextName, _className, _instanceName,
instanceParameter, _eventName, numEventParameters, ...);
Parameter Type Description
_contextName Token, literal text | see 8.7.1.1
_className Token, literal text | USER_STOPWATCH
_instanceName Token, literal text | value that identifies the instance of the
stopwatch
instanceParameter uint32 ARTI_STOPWATCH_FLAT, if nesting is ignored.
ARTI_STOPWATCH_NESTED, if nesting is
considered.
_eventName Token, literal text | value that identifies the event of the timer, one
of Start or Stop
numEventParameter uint32 number of given event parameters
eventParameter Of - arbitrary event parameters

Table 8.1: Macro parameters of USER_STOPWATCH

A generic stopwatch can be associated with a C function by providing the function
name and file name in the ArtiHookAssociatedFunction and ArtiHookFileName at-
tributes of the ArtiHook container.

Example 8.1

flat stopwatch

1 ARTI_TRACE (USER, USER_STOPWATCH, myStopwatch, ARTI_STOPWATCH_FLAT,
Start, 0);
2 ARTI_TRACE (USER, USER_STOPWATCH, myStopwatch, ARTI_STOPWATCH_FLAT, Stop
0);
14 14

Listing 8.4: Example usage of USER_STOPWATCH as flat stopwatch

AUTSSAR

Example 8.2
nested stopwatch

static int myFunction (int parl)

1

2 |

3 int ret;

4 ARTI_TRACE_N(USER, USER_STOPWATCH, myArbFunctionl,
ARTI_STOPWATCH_NESTED, Start, 1, parl);

5 do_something_1();

6 ARTI_TRACE_N(USER, USER_STOPWATCH, myArbStopWatchl,
ARTI_STOPWATCH_NESTED, Start, 1, myVar);

7 ret = do_something_2();

8 ARTI_TRACE_N(USER, USER_STOPWATCH, myArbStopWatchl,
ARTI_STOPWATCH_NESTED, Stop, 1, myVar);

9 do_something_3();

10 ARTI_TRACE_N(USER, USER_STOPWATCH, myArbFunctionl,

ARTI_STOPWATCH_NESTED, Stop, 1, ret);
11 return ret;

Listing 8.5: Example usage of USER_STOPWATCH as nested stopwatch

8.7.2.2 ARTI Generic Dataflow Stopwatch

[SWS_Arti_00003] Define USER_DATAFLOW_STOPWATCH
Upstream requirements: RS_Arti_00036

[ARTI shall define a trace class for tracing of arbitrary intervals between a start
and several stop events, with the aim to provide insides to a dataflow, called
USER_DATAFLOW_STOPWATCH. |

A dataflow stopwatch can be used to time between write and read accesses to a given
variable. The user can put the corresponding ARTI_TRACE macro calls of the class
USER_DATAFLOW_STOPWATCH anywhere in the code. An arbitrary number of dataflow
stopwatches are supported by using different instance names (_instanceName).
Please note that the trace tool provider might put limits on the number of active dataflow
stopwatches.

The trace tool shall at least consider the time between the last write event, the first
read and the last rRead event in a given sequence and doesn’t need to consider nested
Write and Read events. E.Q.

1. write (ignored as it gets overwritten in 2)
2. Write
3. Read
4. Write
5

. Read (min)

AUTSSAR

6. Read (ignored, if only consider min and max)
7. Read (Max)

Only events in bold are considered, time is calculated between 2 and 3 and 4 and 5/7.
The time between 4 and the 5 yields the min data age time, likewise the time between
4 and 7 yields the max data age time for the second sequence.

[SWS_Arti_00004] Macro USER_DATAFLOW_STOPWATCH

Upstream requirements: RS_Arti_00036
[ARTI macros of the class user_baTarrow_sTopwaTcH shall compile the following
template: |

ARTI_TRACE (_contextName, _className, _instanceName, instanceParame-—
ter, _eventName, eventParameter);

Parameter Type Description

_contextName Token, literal text | see 8.7.1.1

_className Token, literal text | USER_DATAFLOW_STOPWATCH

_instanceName Token, literal text | value that identifies the instance of the
dataflow stopwatch

instanceParameter uint32 Not used, should be setto 0

_eventName Token, literal text | value that identifies the event of the timer, one
of Write or Read

eventParameter uint32 Not used, should be setto 0

Table 8.2: Macro parameters of USER_DATAFLOW_STOPWATCH

Example 8.3

1 ARTI_TRACE (USER, USER_DATAFLOW_STOPWATCH, myDataflowStopwatch, 0, Write
, 0)3;
myVariable = 1;

uint32 temp = myVariable;
ARTI_TRACE (USER, USER_DATAFLOW_STOPWATCH, myDataFlowStopwatch, 0, Read,
0)7

LS I N v

Listing 8.6: Example usage of USER_DATAFLOW_STOPWATCH

8.7.2.3 ARTI Generic Datapoint

[SWS_ Arti_00005] Define USER_DATAPOINT
Upstream requirements: RS_Arti_00037

[ARTI shall define a trace class for tracing of arbitrary values, called
USER_DATAPOINT. |

AUTSSAR

A datapoint provides the possibility to record different values at user defined locations
in the code. The user can put the corresponding ARTI_TRACE macro calls of the class
USER_DATAPOINT anywhere in the code. An arbitrary number of data points are sup-
ported by using different instance names (_instanceName). Please note that the trace
tool provider might put limits on the number of active data points. There are prede-
fined event names (_eventName) for different data types as defined by AUTOSAR (see
AUTOSAR_SWS_PlatformTypes, e.g. uinT32) this information might be used by the
trace tool for optimized storage and visualization.

[SWS_Arti_00006] Macro USER_DATAPOINT
Upstream requirements: RS_Arti_00037

[ARTI macros of the class user_paTapoINT shall compile the following template: |

ARTI_TRACE (_contextName, _className, _instanceName, instanceParame-

ter, _eventName, eventParameter);

Parameter

Type

Description

_contextName

Token, literal text

see 8.7.1.1

_className

Token, literal text

USER_DATAPOINT

_instanceName

Token, literal text

value that identifies the instance of the data
point

instanceParameter

uint32

Not used, should be setto 0

_eventName

Token, literal text

Value that identifies the type of the datapoint.
The type is a hint for the tool vendor how to
interpret the eventParameter, which is always
32bit wide. Shall be one of the following:

« BOOLEAN

* UINT8

* UINT16
* UINT32
+ SINT8

* SINT16

+ SINT32

+ FLOAT32

eventParameter

uint32

Value that shall be recorded by the event (up to
32-bits)

Table 8.3: Macro parameters of USER_DATAPOINT

Example 8.4

1 ARTI_TRACE (USER, USER_DATAPOINT, myDatapointO, 0, UINT32, 2ul);

AUTSSAR

2 ARTI_TRACE (USER, USER_DATAPOINT, myDatapointl, 0, SINT8, s8_Data);
Listing 8.7: Example usage of USER_DATAPOINT

8.7.2.4 ARTI Category 1 Interrupts

[SWS_Arti_00007] Define AR_CP_ARTI_CAT1ISR
Upstream requirements: RS_Arti_00038

[ARTI shall define a trace class for tracing of category 1 interrupts, called
AR_CP_ARTI_CAT1ISR.|

ARTI needs to trace all states of category 1 interrupts and all its state transitions.
For some timing parameters (e.g. the interrupt pending time), the simple interrupt
start/stop is not enough. Tools evaluating the timings need to reconstruct a more com-
plex state diagram by calculating the transitions from history. To be compatible to
standard software, AR_cp_ARTI_CAT1ISR refers to this state model, knowing that tools
need to postprocess the event flow to get all relevant information. However, if an OS
implementation can provide a more detailed state diagram, ARTI allows to define more
events that won’t need postprocessing and allow earlier synchronization of the trace if
it is truncated (limited trace buffers). This state diagram is then handled with the class
AR_CP_ARTIEXT_CATI1ISR. If possible, the second state machine is to be preferred.

AR_CP_ARTI_CAT1ISR :

The class ArR_cp_ARTI_CAT1ISR contains events allowing the tracing of category
1 interrupts.

The following state diagram shows the states and transitions:

Running
ﬂ
Start T)
Inactive

Figure 8.1: ARTI CAT1ISR state machine

Transitions used by ARTI for class AR_CP_ARTI_CAT1ISR:

Name Transition Event Name
Start Inactive -> Running OsCatlIsr_Start
Stop Running -> Inactive OsCatlIsr_Stop

Table 8.4: Transitions of AR CP_ARTI CAT1ISR

AR_CP_ARTIEXT_CAT1ISR :

AUTSSAR

The class ArR_CP_ARTIEXT_CAT1ISR contains events allowing the tracing of cate-
gory 1 interrupts with an enhanced state model.

The following state diagram shows the state machine as used by ARTI:

Resume— Running
Stop
I 4 \
~~ Start

- -

PTcEv_ate

Figure 8.2: ARTI EXT CAT1ISR state machine

States used by ARTI for class AR_CP_ARTIEXT_CATI1ISR:

ARTI oS

Inactive Inactive
Activated Inactive
Running Running
Preempted Running

Table 8.5: States of AR CP_ ARTIEXT CAT1ISR

Transitions used by ARTI for class AR_CP_ARTIEXT_CAT1ISR:

Name Transition Event Name
Activate Inactive -> Activated Os-

CatlIsr Activate
Start Activated -> Running OsCatlIsr_Start
Preempt Running -> Preempted | OsCatlIsr_Preempt
Resume Preempted -> Running | OsCat1lIsr_Resume
Stop Running -> Inactive OsCatlIsr_Stop

Table 8.6: Transitions of AR CP_ ARTIEXT CAT1ISR

[SWS_Arti_00008] Macro AR_CP_ARTI_CAT1ISR
Upstream requirements: RS_Arti_00038

[ARTI macros of the classes AR_CP_ARTI_CAT1ISR and AR _CP_ARTIEXT_ CAT1ISR
shall compile the following template: |

1 ARTI_TRACE (_contextName, AR_CP_ARTI_CAT1ISR, <OS Short Name>, <Core
Index>, <Event Name>, <CatlIsr Index>)

AUTSSAR

2 ARTI_TRACE (_contextName, AR _CP_ARTIEXT_CATI1ISR, <OS Short Name>, <Core
Index>, <Event Name>, <CatlIsr Index>)

The <Core Index> for any event shall represent the core index where the corresponding
Cat1lsr is scheduled on.
The <Event Name> should follow the transition table above.

The <Cat1lsr Index> shall be a numeric identifier of the Cat1lsr.

8.7.2.5 ARTI RTE VFB Trace Client

[SWS_Arti_ 00011] Generate RTE VFB Trace Client
Upstream requirements: RS_Arti_00039, RS _Arti_00040

[The ARTI module shall generate an RTE VFB trace client that implements the
Runnable Entity Trace Events [3] Chapter 5.11.5.6.1 “Runnable Entity Invocation” and
BSW Schedulable Entities Trace Events [3] Chapter 5.11.5.7 “BSW Schedulable Enti-
ties Trace Events”. |

[SWS_Arti_00012] Define AR_CP_RTE_RUNNABLE
Upstream requirements: RS_Arti_00039

[The Runnable Entity Trace Events shall be mapped to the ARTI Trace Class
AR_CP_RTE_RUNNABLE.J

[SWS_Arti_00020] Define AR_CP_RTE_API
Upstream requirements: RS_Arti_00041

[The RTE APl Trace Events shall be mapped to the ARTI Trace Class
AR_CP_RTE_API. |

[SWS_Arti_00013] Define AR_CP_SCHM_SCHEDULABLE
Upstream requirements: RS_Arti_00040

[The BSW Schedulable Entity Trace Events shall be mapped to the ARTI Trace Class
AR_CP_SCHM_SCHEDULABLE. |

Runnable Entity Trace Events: AR_CP_RTE_RUNNABLE
* Rte Arti Runnable <cts> <reName>_ Start
* Rte Arti Runnable <cts> <reName> Return
RTE API Trace Events: AR_CP_RTE_API
* Rte_Arti_<api>Hook_<cts>_<ap>_Start
* Rte_Arti_<api>Hook_<cts>_<ap>_Return

* Rte_Arti_<api>Hook_<cts>_<ap>_Terminate

AUTSSAR

BSW Schedulable Entities Trace Events: AR_CP_SCHM_SCHEDULABLE
* SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Start

* SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Return

8.7.2.5.1 Trace Class - AR_CP_RTE_RUNNABLE

[SWS_Arti_00014] Macro AR_CP_RTE_RUNNABLE
Upstream requirements: RS_Arti_00039

[ARTI macros of the class Ar_cp_RTE_RUNNABLE shall compile the following template: |

Runnable Entity Invocation

1 #define Rte_Arti_Runnable_<cts> <reName>_Start (\
2 [const_Rte_CDS_<cts>_ptr]) \

3 ARTI_TRACE (_contextName, \

4 AR_CP_RTE_RUNNABLE, \

5 shortNameOf (<cts>), \

6 [const_Rte_CDS_<cts>_ptr] |0, \

7 RteRunnable_Start, idOf (<reName>))

Listing 8.8: Template of AR_CP_RTE_RUNNABLE invocation

Runnable Entity Termination

1 #define Rte_Arti_Runnable_<cts>_<reName>_Return(\
2 [const_Rte_CDS_<cts>_ptr]) \

3 ARTI_TRACE (_contextName, \

4 AR_CP_RTE_RUNNABLE, \

5 shortNameOf (<cts>), \

6 [const_Rte_CDS_<cts>_ptr] |0, \

7 RteRunnable_Return, 1dOf (<reName>))

Listing 8.9: Template of AR_CP_RTE_RUNNABLE termination
<cts> Specifies the component type that is emitted by the RTE. For each component
type the mapping is created.
<reName> is the name of the runnable entity. For each name the mapping is created.

shortNameOf() is a hint of the ARTI module the extract use the short name of the
element in question.

idOf() is a function of the ARTI module to create an 32-bit ID out of an element. This
mapping will also be stored in a type map within ArtiValues and will be referenced
by the hook descriptions.

[1 are optional parameters issued by the RTE. If they do exist then they have to be
used. If they do not exist they will be replaced by 0 in the ArRTI_TRACE macro.

AUTSSAR

Parameter Type Description

_contextName Token, literal text | see 8.7.1.1, usually this is USER for runnables.
_className Token, literal text | AR_CP_RTE_RUNNABLE

_instanceName Token, literal text | Is the short name of the <ct s>, the

component type symbol of the
AtomicSwComponentType

instanceParameter

uint32

Is used in case of multiple instantiation. In this
case the instance handle as specified in the
RTE VFB trace client is used. If single
instantiation is used this parameter is 0.

_eventName Token, literal text | value that identifies the event type of the
Runnable Entity
* RteRunnable_Start
* RteRunnable_Return

eventParameter uint32 represents the ID of the <reName>, the ID of

the runnable entity which is generated by the
ARTI module.

Table 8.7: Macro parameters of AR_CP_RTE_RUNNABLE

8.7.2.5.2 Trace Class - AR_CP_SCHM_SCHEDULABLE

[SWS_Arti_00015] Macro AR_CP_SCHM_SCHEDULABLE
Upstream requirements: RS_Arti_00040

[ARTI macros of the class Ar_cp_scuM_scHEDULABLE shall compile the following tem-

plate: |

BSW Schedulable Entities Invocation

1 #define SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>

_Start ()
ARTI_TRACE (_contextName,

N o a0 A~ WwN

\

\

AR_CP_SCHM_SCHEDULABLE, \

<bsnp>, \

idOf ([<vi>_<ai>]) 10, \
SchMSchedulable_Start, \
1dOf (<entityName>))

Listing 8.10: Template of AR CP_SCHM SCHEDULABLE invocation

BSW Schedulable Entities Termination

1 #define SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>

_Return()
2 ARTI_TRACE (_contextName,

\

\

AR_CP_SCHM_SCHEDULABLE, \

AUTSSAR

e S

<bsnp>, \

1dOf ([<vi>_<ai>]) |10, \
SchMSchedulable_ Return, \
1dOf (<entityName>))

Listing 8.11: Template of AR_CP_SCHM_SCHEDULABLE termination

As defined in the RTE specification:

<bsnp> specifies the Basic Software Name Prefix

<Vvi> is the Vendor ID of the basic software module

<ai> is the Vendor API infix of the basic software module

<entityName> is the name of the BSW Schedulable Entity or Callable Entity

idOf() is a function of the ARTI module to create an 32-bit ID out of an element. This
mapping will also be stored in a type map within ArtiValues and will be referenced
by the hook descriptions.

[1 are optional parameters issued by the RTE. If they do exist then they have to be
used. If they do not exist they will be replaced by 0 in the ARTI_TRACE macro.

Parameter Type Description

_contextName Token, literal text | see 8.7.1.1 usually this is NOSUSP for
schedulables.

_className Token, literal text | AR_CP_SCHM_SCHEDULABLE

_instanceName Token, literal text | The <bsnp>, the BSW Scheduler Name Prefix

of the basic software module.

instanceParameter

uint32

Is used when vendorld and vendorApilnfix of
the BSW module are specified. In this case the
ARTI module generated an ID for the used pair
of vendorlp and vendorApilnfix. If vendorld and
vendorApilnfix is not given this parameter is 0.

_eventName Token, literal text | value that identifies the event type of the
Schedulable Entity
» SchmSchedulable_Start
« SchmSchedulable Return
eventParameter uint32 represents the ID of the <entityName>, the

ID of the schedulable entity which is generated
by the ARTI module.

Table 8.8: Macro parameters of AR_CP_SCHM SCHEDULABLE

AUTSSAR

8.7.2.5.3 Trace Class - AR_CP_RTE_API

[SWS_Arti_00021] Macro AR_CP_RTE_API
Upstream requirements: RS_Arti_00041

[ARTI macros of the class ar_cp_RTE_aPT shall compile the following template: |

RTE API Start

1 #define Rte_Arti_<api>Hook_<cts>_<ap>_Start (\

2 [const_Rte_CDS_<cts> x instance_ptr], param...) \
3 ARTI_TRACE_N (USER, \

4 AR_CP_RTE_API, \

5 shortNameOf (<cts>), \

6 <instance_ptr|0>, \

7 <api>_Start, \

8 numberOf (param...) + 1, \

9 idof (<ap>), \

10 <param...>)

Listing 8.12: Template of AR_CP_RTE_API start

RTE API Return

1 #define Rte_Arti_<api>Hook_<cts>_<ap>_Return(\

2 [const_Rte_CDS_<cts> * instance_ptr], param...) \
3 ARTI_TRACE_N (USER, \

4 AR _CP_RTE_API, \

5 shortNameOf (<cts>), \

6 <instance_ptr]|0>, \

7 <api>_Return, \

8 numberOf (param...) + 1, \

9 idof (<ap>), \

10 <param...>)

Listing 8.13: Template of AR_CP_RTE_API return

RTE API Terminate

#define Rte_Arti_<api>Hook_<cts>_<ap>_Terminate (\
[const_Rte_CDS_<cts> % instance_ptr], param...) \
ARTI_TRACE_N (USER, \

AR_CP_RTE_API, \
shortNameOf (<cts>), \
<instance_ptr|0>, \
<api>_Terminate, \
numberOf (param...) + 1, \
idof (<ap>), \

<param...>)

© 0o N o o »~A W N =

o

Listing 8.14: Template of AR_CP_RTE_API terminate

As defined in the RTE specification:
<api> Specifies the name of the function this hook relates to.

<cts> Specifies the component type symbol of the AtomicSwComponentType.

AUTSSAR

<ap> Specifies the access point name (e.g. port and data element or operation name,
exclusive area name, etc.).

shortNameOf() is a hint of the ARTI module the extract use the short name of the

element in question.

idOf() is a function of the ARTI module to create an 32-bit ID out of an element. This
mapping will also be stored in a type map within ArtiValues and will be referenced
by the hook descriptions.

numberOf(params...) is the number of parameters of the related RTE trace hook.
This number can be determined by the referenced BswModuleEntry.arguments.

[1 are parameters issued by the RTE as defined by BswModuleEntry.arguments. If
they do exist then they have to be used. If they do not exist they will be replaced
by 0 in the ARTI_TRACE macro.

Parameter Type Description

_contextName Token, literal text | see 8.7.1.1 usually this is USER.
_className Token, literal text | AR_CP_RTE_API
_instanceName Token, literal text | Is the short name of the <cts>, the

component type symbol of the
AtomicSwComponentType

instanceParameter

uint32

Is used in case of multiple instantiation. In this
case the instance handle as specified in the
RTE VFB trace client is used. If single
instantiation is used this parameter is 0.

_eventName

Token, literal text

value that identifies the event type of the API
* <api>_Start

* <api>_Return

* <api>_Terminate

numEventParameter

uint32

the number of parameters plus one for the ID
of the access port

. . . (ellipsis)

First argument is uint32 which represents the
ID of the access port which is generated by the
ARTI module. Additional arguments are the
parameters of the related RTE hook.

Table 8.9: Macro parameters of AR_CP_RTE_API

AUTSSAR

8.7.2.5.4 Trace Class - AR_CP_VOID

[SWS_Arti_00016] Macro AR_CP_VOID
Upstream requirements: RS_LT 00061

[ARTI shall provide a macro of the class ar_cp_vo1Dp that compiles to nothing. |
AR_CP_voO1D is used to map VFB tracing hooks that are not used by ARTI. Expanding

ARTI_TRACE with trace class ar_cp_vo1b should result in empty statement that results
in no code at all.

Parameter Type Description

_contextName Token, literal text | see 8.7.1.1 this should be USER for
AR_CP_VOID.

_className Token, literal text | AR_CP_VOID

_instanceName Token, literal text | Not used, set to “”

instanceParameter uint32 Not used, should be setto 0

_eventName Token, literal text | Not used, set to “”

eventParameter uint32 Not used, should be setto 0

Table 8.10: Macro parameters of AR_CP_VOID

8.7.2.6 ARTI BSW Module Interface

[SWS_Arti_00022] Define AR_CP_BSW_API
Upstream requirements: RS_Arti_00042

[ARTI shall define a trace class for tracing entries and exits of BSW modules, called
AR_CP_BSW_API.|

To allow tracing of BSW modules, the entry and exit points of BSW modules should be
populated with ARTI_TRACE macros.

[SWS_Arti_00023] Macro AR_CP_BSW_API
Upstream requirements: RS_Arti_00042

[ARTI macros of the class Ar_cp_gsw_ap1 shall compile the following template: |

1 ARTI_TRACE_N(_contextName, \

2 AR_CP_BSW_API, \

3 <moduleImplementationPrefix>, \
4 0, \

5 Bsw_<Start |Return>, \

6 numberOf (param...) + 1, \

7 1dOf (<service>), \

8 <param...>)

Listing 8.15: Template of AR_CP_BSW_API

AUTSSAR

<modulelmplementationPrefix> represents a module, formed as specified in
[4] Chapter 5.1.1 “Module implementation prefix” [SWS_BSW_00102].

numberOf(params...) specifies the number of parameters following in the paran-
theses. This number can be determined by the referenced BswModuleEn-
try.arguments.

idOf(<service) represents the service ID as specified in the function definition of the
BSW module.

<param...> is a comma separated list of parameters that are passed to the service
(in/inout) or returned by the service (return/out/inout) as defined by BswMod-
uleEntry.arguments.

Parameter Type Description

_contextName Token, literal text | see 8.7.1.1.

_className Token, literal text | AR_CP_BSW_API

_instanceName Token, literal text | Is the module implementation prefix of the
module being called

instanceParameter uint32 Reserved. Set to 0.

_eventName Token, literal text | value that identifies the event type of the API

* Bsw_Start

* Bsw_Return

numEventParameter uint32 the number of parameters plus one for the ID
of the service
. . . (ellipsis) First argument is uint32 which represents the

ID of the service. Additional arguments are the
parameters of the related BSW hook.

Table 8.11: Macro parameters of AR_CP_BSW_API

For example:
1 Std_ReturnType SoAd_IfTransmit (PduldType TxPduld, const PdulnfoTypex*
PduInfoPtr)

2 {

3 Std_ReturnType ret = E_OK;

4 ARTI_TRACE_N(USER, AR_CP_BSW_API, SoAd_42_ArbitraryApiInfix, O,
Bsw_Start, 3, 0x49, TxPduld, PdulnfoPtr);

5 // do SoAd_IfTransmit actions

6 ARTI_TRACE_N(USER, AR_CP_BSW_API, SoAd_42_ArbitraryApiInfix, O,
Bsw_Return, 2, 0x49, ret);

7 return ret;

Listing 8.16: Example usage of AR_CP_BSW_API

The BSW Module has to provide an BswModuleEntry description defining the argu-
ments and return value of the BSW API. The generated ArtiHook description shall
refer to this BswModuleEntry. (See chapter 10.7.3 "ArtiHook").

AUTSSAR

8.7.3 Configurable interfaces

ARTI does not define configurable interfaces.

8.8 Service Interfaces

ARTI does not provide any service interfaces.

AUTSSAR

9 Sequence diagrams

Not applicable yet.

AUTSSAR

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers.

Containers and parameters that are related to the OS module are specified in [2] Chap-
ter 10.2 “Containers and configuration parameters”.

10.1 How to read this chapter

For details refer to the [4] Chapter 10.1 “Introduction to configuration specification”.

10.2 ARTI Parameters

Arti: EcucModuleDef . ArtiValues:
+container | EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *

. ArtiGeneric:
+container | gcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

. ArtiHardware:
+container| EcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

) ArtiOs:
+container | gcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiRte:
EcucParamConfContainerDef

+container

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1: Arti Ecuc Module Definition Class Diagram

[ECUC_Arti_00001] Definition of EcucModuleDef Arti |

Module Name Arti

Description The Arti Module serves as a superordinate container collecting all information
and parameters concerning ARTI.

Post-Build Variant Support true
Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

AUTSSAR

Included Containers

Container Name Multiplicity Dependency

ArtiGeneric 0..1 The ArtiGeneric container contains definitions for generic
objects, i.e. not belonging to a standard AUTOSAR module.

ArtiHardware 0..1 The ArtiHardware container contains ARTI extensions to the
EcucHardware module.

ArtiOs 0..1 The ArtiOs container contains ARTI extensions to the EcucDefs/
Os module.

ArtiRte 0..1 The ArtiRte Container contains all parameters for ARTI that are

filled by the generators RTE.

ArtiValues 0..” The ArtiValues container collects all parameter values for ARTI
that are filled by the generators (OS, RTE, ...)

10.3 ARTI Generic Container

ArtiGeneric:) ArtiGenericComponentClass:

EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

ArtiGenericComponentinstance:

+subContainer| ~EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.2: ArtiGeneric Ecuc Module Definition Class Diagram

[ECUC_Arti_00042] Definition of EcucParamConfContainerDef ArtiGeneric |

Container Name ArtiGeneric

Parent Container Arti

Description The ArtiGeneric container contains definitions for generic objects, i.e. not belonging to
a standard AUTOSAR module.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

ArtiGenericComponentClass 0..” The class definition describes the layout of the object (similar to
a "class" definition in C++).

ArtiGenericComponentinstance 0..* The instance definition describes a specific instantiated object.

AUTSSAR

Example 10.1
Exemplary Values of the ArtiGeneric Container

<AUTOSAR>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>Vendorl</SHORT-NAME>
<ELEMENTS>
<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArtiGeneric</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiGeneric</DEFINITION-REF>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_AMODULE</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_RteWiperSwc</SHORT-NAME
>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_VendorlTask</SHORT-NAME
>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_AModulel</SHORT-NAME
>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_TaskHighPriority</
SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_Wiper</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR
/EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance</
DEFINITION-REF>

AUTSSAR

<...>

</ECUC-CONTAINER-VALUE>

</CONTAINERS>

</ECUC-MODULE-CONFIGURATION-VALUES>

<...>

10.3.1

[ECUC_Arti_00043] Definition of EcucParamConfContainerDef ArtiGenericCom-

ponentClass |

ArtiGenericComponentClass

Container Name

ArtiGenericComponentClass

Parent Container

ArtiGeneric

Description The class definition describes the layout of the object (similar to a "class" definition in
C++).
Multiplicity 0..*
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiGenericComponentClassName 1 [ECUC_Arti_00044]
Included Containers
Container Name Multiplicity Dependency
ArtiGenericComponentClass 0..* Parameter definition of a class.
Parameter

]

[ECUC_Arti_00044] Definition of EcucStringParamDef ArtiGenericComponent

ClassName |

Parameter Name

ArtiGenericComponentClassName

Parent Container

ArtiGenericComponentClass

Description Name of the class.
Multiplicity 1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

AUTSSAR

| Dependency

]

[ECUC_Arti_00045] Definition of EcucParamConfContainerDef ArtiGenericCom-

ponentClassParameter |

Container Name

ArtiGenericComponentClassParameter

Parent Container

ArtiGenericComponentClass

Description Parameter definition of a class.
Multiplicity 0..*
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiGenericComponentClassParameterName 1 [ECUC_Arti_00046]
ArtiGenericComponentClassParameterTypeMapRef 0..1 [ECUC_Arti_00053]

No Included Containers

]

[ECUC_Arti_00046] Definition of EcucStringParamDef ArtiGenericComponent

ClassParameterName |

Parameter Name

ArtiGenericComponentClassParameterName

Parent Container

ArtiGenericComponentClassParameter

Description Name of the parameter.
Multiplicity 1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00053] Definition of EcucReferenceDef ArtiGenericComponent
ClassParameterTypeMapRef |

Parameter Name ArtiGenericComponentClassParameterTypeMapRef
Parent Container ArtiGenericComponentClassParameter
Description Refers to a parameter type to interpret the parameter value.
Multiplicity 0..1
Type Reference to ArtiParameterTypeMap
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

Example 10.2
Exemplary Value of an ArtiGenericComponentClass Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_AMODULE</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassName</DEFINITION-REF>
<VALUE>AMODULE</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>AMODULE_RUNNINGTHING</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</DEFINITION-
REF>
<VALUE>Running Thing</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>

AUTSSAR

<VALUE>RUNNINGTHING</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterTypeMapRef</DEFINITION-REF
>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_RunningThing</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>AMOULE_THINGSTART</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</DEFINITION-
REF>
<VALUE>Thing start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>
<VALUE>THING_START</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterTypeMapRef</DEFINITION-REF
>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_ThingStart</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

AUTSSAR

10.3.2 ArtiGenericComponentinstance

[ECUC_Arti_00049] Definition of EcucParamConfContainerDef ArtiGenericCom-
ponentinstance |

Container Name ArtiGenericComponentinstance

Parent Container ArtiGeneric

Description The instance definition describes a specific instantiated object.

Multiplicity 0..*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiGenericComponentinstanceName 1 [ECUC_Arti_00050]
ArtiGenericComponentinstanceClassRef 1 [ECUC_Arti_00048]

Included Containers

Container Name Multiplicity Dependency
ArtiGenericComponentinstance 0..* Parameter definition of an instance.
Parameter

]

[ECUC_Arti_00050] Definition of EcucStringParamDef ArtiGenericComponentin-
stanceName |

Parameter Name ArtiGenericComponentinstanceName
Parent Container ArtiGenericComponentinstance
Description Name of the instance.

Multiplicity 1

Type EcucStringParamDef

Default value -
Regular Expression -

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

[ECUC_Arti_00048] Definition of EcucReferenceDef ArtiGenericComponentin-
stanceClassRef |

Parameter Name ArtiGenericComponentinstanceClassRef

Parent Container ArtiGenericComponentinstance

Description Refers to a ArtGenericClass of which this object is instantiated.

Multiplicity 1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00051] Definition of EcucParamConfContainerDef ArtiGenericCom-
ponentinstanceParameter |

Container Name ArtiGenericComponentinstanceParameter

Parent Container ArtiGenericComponentinstance

Description Parameter definition of an instance.

Multiplicity 0..*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiGenericComponentinstanceParameterClassParameter | 0..* [ECUC_Arti_00047]
Ref

ArtiGenericComponentinstanceParameterConstantRef 0..1 [ECUC_Arti_00040]
ArtiGenericComponentinstanceParameterExpressionRef 0..1 [ECUC_Arti_00041]
ArtiGenericComponentinstanceParameterHookRef 0..1 [ECUC_Arti_00052]

No Included Containers

]

[ECUC_Arti_00047] Definition of EcucReferenceDef ArtiGenericComponentin-
stanceParameterClassParameterRef |

Parameter Name ArtiGenericComponentinstanceParameterClassParameterRef

Parent Container ArtiGenericComponentinstanceParameter

Description Refers to an ArtiGenericComponentClassParameter that defines this parameter.
Multiplicity 0..*

Type Reference to ArtiGenericComponentClassParameter

Y%

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Arti_00040] Definition of EcucReferenceDef ArtiGenericComponentin-
stanceParameterConstantRef |

Parameter Name ArtiGenericComponentinstanceParameterConstantRef

Parent Container ArtiGenericComponentinstanceParameter

Description Refers to an ArtiConstant that represents the value of this parameter.
Multiplicity 0..1

Type Reference to ArtiConstant

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time —
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00041] Definition of EcucReferenceDef ArtiGenericComponentin-
stanceParameterExpressionRef [

Parameter Name ArtiGenericComponentinstanceParameterExpressionRef

Parent Container ArtiGenericComponentInstanceParameter

Description Refers to an ArtiExpression that evaluates the value of this parameter.
Multiplicity 0..1

Type Reference to ArtiExpression

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

| Dependency

]

[ECUC_Arti_00052] Definition of EcucReferenceDef ArtiGenericComponentin-
stanceParameterHookRef |

Parameter Name ArtiGenericComponentinstanceParameterHookRef

Parent Container ArtiGenericComponentinstanceParameter

Description Refers to a hook that records this parameter.

Multiplicity 0..1

Type Reference to ArtiHook

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

Example 10.3
Exemplary Value of an ArtiGenericComponentinstance Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_AModulel</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceName</DEFINITION-REF>
<VALUE>AModulel</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceClassRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArtiGeneric/
ArtiGenericComponentClass_AMODULE</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>AModulel_RUNNINGTHING</SHORT-NAME>

AUTSSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterExpressionRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiExpression_ArtiGeneric_AModulel_RunningThing</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterClassParameterRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/
VendorlArtiGeneric/ArtiGenericComponentClass_AMODULE/
AMODULE_RUNNINGTHING</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

10.4 ARTI Hardware Container

ArtiHardwareCoreClass:

ArtiHardware: . A
P ConfConia +subContainer(EcucParamConfContainerDef

EcucParamConfContainerDef

lowerMultiplicity = 0

lowerMultiplicity = 0 NI,
upperMultiplicity = 1

upperMultiplicity = 1

ArtiHardwareCorelnstance:

+subContainer| £gucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.3: ArtiHardware Ecuc Module Definition Class Diagram

The ArtiHardware container is specified in SWS_OS.

AriOs:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

AUTSSAR

10.5 ARTI Os Container

+subContainer

ArtiOsClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

+subContainer

ArtiOsTaskClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOslsrClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsT askinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsAlarmClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOslsrinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsContextClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsAlarmInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsMessageContainerClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsContextInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsResourceClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsMessageContainerinstance:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsStackClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsResourcelnstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsStackinstance:
EcucParamConfContainerDef

+reference

+subContainer

ArtiOsGenericComponentRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

+destination

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsScheduleTableClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiGenericComponentClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from ArtiGeneric)

ArtiOsScheduleTablelnstance:
EcucParamConfContainerDef

+subContainer

ArtiOsSpinlockClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsSpinlockinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.4: ArtiOs Ecuc Module Definition Class Diagram

AUTSSAR

The ArtiOs container is specified in SWS_OS.

10.6 ARTI Rte Container

Arti: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

+containe$

ArtiRte:

lowerMultiplicity = 0
upperMultiplicity = 1

EcucParamConfContainerDef +reference +destination| gcucParamConfContainerDef

+subContainer| gcycParamConfContainerDef

+subContainer | gcucParamConfContainerDef

+subContainer| EcycParamConfContainerDef

+subContainer ArtiRteVfbTraceHooks: +subContainer

ArtiRteHookRef: EcucReferenceDef ArtiHook

lowerMultiplicity = 0
upperMultiplicity = * lowerMultiplicity = 0
upperMultiplicity = *

ArtiRteRunnableClass:

lowerMultiplicity = 0
upperMultiplicity = 1

RteVfbTraceUriDefSet:
EcucDestinationUriDefSet

ArtiRteRunnablelnstance:

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer| cucparamConfContainerDef
+deainali0nUriDe$

RteVfbTraceHooksClient:
EcucDestinationUriDef

ArtiRteSchedulableClass:

lowerMultiplicity = 0

upperMultiplicity = 1 +destinationUri
+destinationUriPolicy
ArtiRteSchedulablelnstance: :EcucDestinationUriPolicy

destinationUriNestingContract = targetContainer

lowerMultiplicity = 0

upperMultiplicity = 1
+container

RteVibTraceHooks:

EcucParamConfContainerDef o
EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1 lowerMultiplicity = 1

upperMultiplicity = 1

+subContai nex

RteVibTraceHook
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.5: ArtiRte Ecuc Module Definition Class Diagram

[ECUC_Arti_00158] Definition of EcucParamConfContainerDef ArtiRte |

Container Name

ArtiRte

Parent Container

Arti

Description The ArtiRte Container contains all parameters for ARTI that are filled by the generators
RTE.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time | X | VARIANT-PRE-COMPILE

\Y

AUTSSAR

A
Link time X VARIANT-LINK-TIME
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiRteHookRef 0.* [ECUC_Arti_00159]
Included Containers
Container Name Multiplicity Dependency
ArtiRteRunnableClass 0..1 Contains the layout of an ArtiRteRunnable object.
ArtiRteRunnablelnstance 0..1 Represents an instance of an ArtiRteRunnable object, extending
the BswM RunnableEntity.
ArtiRteSchedulableClass 0..1 Contains the layout of an ArtiRteSchedulable object.
ArtiRteSchedulablelnstance 0..1 Represents an instance of an ArtiRteSchedulable object,
extending the Rte Schedulable Entity.
ArtiRteVfbTraceHooks 1 This container defines the parent container to which all trace
hook containers are added.

J
[ECUC_Arti_00159] Definition of EcucReferenceDef ArtiRteHookRef |

Parameter Name ArtiRteHookRef

Parent Container ArtiRte

Description Refers to an arti hook which is called by the RTE.

Multiplicity 0..*

Type Reference to ArtiHook

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.6.1 ArtiRteRunnableClass

[ECUC_Arti_00160] Definition of EcucParamConfContainerDef ArtiRteRunnable
Class |

AUTSSAR

Container Name ArtiRteRunnableClass

Parent Container ArtiRte

Description Contains the layout of an ArtiRteRunnable object.
Multiplicity 0..1

Post-Build Variant Multiplicity false

VARIANT-PRE-COMPILE
VARIANT-LINK-TIME

Pre-compile time X

Link time X
Post-build time

Multiplicity Configuration Class

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiRteRunnableClassGenericComponentClassRef 0..1 [ECUC_Arti_00164]
ArtiRteRunnableldRef 1 [ECUC_Arti_00165]

No Included Containers

]

[ECUC_Arti_00164] Definition of EcucReferenceDef ArtiRteRunnableClass
GenericComponentClassRef |

Parameter Name ArtiRteRunnableClassGenericComponentClassRef

Parent Container ArtiRteRunnableClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiRteRunnableClass.
Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -
Pre-compile time

VARIANT-PRE-COMPILE
VARIANT-LINK-TIME

Value Configuration Class

x| X

Link time

Post-build time -

Dependency

J
[ECUC_Arti_00165] Definition of EcucReferenceDef ArtiRteRunnableldRef |

Parameter Name

ArtiRteRunnableldRef

Parent Container

ArtiRteRunnableClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiRteRunnableld
Ref in ArtiRteRunnableEntitylnstances. This attribute specifies the idOf(reName)
mapping.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value

false

\Y

AUTSSAR

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time -

Dependency

10.6.2 ArtiRteRunnablelnstance

[ECUC_Arti_00161] Definition of EcucParamConfContainerDef ArtiRteRunnable

Instance |

Container Name

ArtiRteRunnablelnstance

Parent Container

ArtiRte

Description Represents an instance of an ArtiRteRunnable object, extending the BswM Runnable
Entity.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiRteRunnablelnstanceSymbol 0..1 [ECUC_Arti_00166]
ArtiRteRunnablelnstanceBswRef 0..1 [ECUC_Arti_00167]
ArtiRteRunnablelnstanceGenericComponentinstanceRef 0..1 [ECUC_Arti_00168]

No Included Containers

]

[ECUC_Arti_00166] Definition of EcucStringParamDef ArtiRteRunnablelnstance

Symbol |

Parameter Name

ArtiRteRunnablelnstanceSymbol

Parent Container

ArtiRteRunnablelnstance

Description Specifies the symbol / function name that implements the runnable.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity

false

Post-Build Variant Value

false

AUTSSAR

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Dependency

]

[ECUC_Arti_00167] Definition of EcucForeignReferenceDef ArtiRteRunnableln-

stanceBswRef |

Parameter Name

ArtiRteRunnablelnstanceBswRef

Parent Container

ArtiRteRunnablelnstance

Description Refers to an Rte Runnable that is beeing extended.

Multiplicity 0..1

Type Foreign reference to RUNNABLE-ENTITY

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00168] Definition of EcucReferenceDef ArtiRteRunnablelnstance

GenericComponentinstanceRef |

Parameter Name

ArtiRteRunnablelnstanceGenericComponentinstanceRef

Parent Container

ArtiRteRunnablelnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiRteRunnable
Instance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

10.6.3 ArtiRteSchedulableClass

[ECUC_Arti_00162] Definition of EcucParamConfContainerDef ArtiRteSchedula-
bleClass |

Container Name ArtiRteSchedulableClass

Parent Container ArtiRte

Description Contains the layout of an ArtiRteSchedulable object.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiRteSchedulableClassGenericComponentClassRef 0..1 [ECUC_Arti_00169]
ArtiRteSchedulableldRef 1 [ECUC_Arti_00170]

No Included Containers

]

[ECUC_Arti_00169] Definition of EcucReferenceDef ArtiRteSchedulableClass
GenericComponentClassRef |

Parameter Name ArtiRteSchedulableClassGenericComponentClassRef

Parent Container ArtiRteSchedulableClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiRteSchedulableClass.
Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00170] Definition of EcucReferenceDef ArtiRteSchedulableldRef |

Parameter Name ArtiRteSchedulableldRef

Parent Container ArtiRteSchedulableClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiRteSchmEntityld
Ref in ArtiRteSchedulablelnstances. This attribute specifies the idOf(entityName)
mapping.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.6.4 ArtiRteSchedulablelnstance

[ECUC_Arti_00163] Definition of EcucParamConfContainerDef ArtiRteSchedula-
bleinstance |

Container Name ArtiRteSchedulablelnstance

Parent Container ArtiRte

Description Represents an instance of an ArtiRteSchedulable object, extending the Rte
Schedulable Entity.

Multiplicity 0..1

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
ArtiRteSchedulablelnstanceSymbol 0..1 [ECUC_Arti_00171]
ArtiRteSchedulablelnstanceBswRef 0..1 [ECUC_Arti_00172]
ArtiRteSchedulablelnstanceGenericComponentinstance 0..1 [ECUC_Arti_00173]
Ref

No Included Containers

AUTSSAR

[ECUC_Arti_00171] Definition of EcucStringParamDef ArtiRteSchedulableln-

stanceSymbol |

Parameter Name

ArtiRteSchedulablelnstanceSymbol

Parent Container

ArtiRteSchedulablelnstance

Description Specifies the symbol / function name that implements the schedulable.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00172] Definition of EcucForeignReferenceDef ArtiRteSchedulable

InstanceBswRef |

Parameter Name

ArtiRteSchedulablelnstanceBswRef

Parent Container

ArtiRteSchedulablelnstance

Description Refers to an Rte Schedulable that is beeing extended.

Multiplicity 0..1

Type Foreign reference to BSW-SCHEDULABLE-ENITIY

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

]

[ECUC_Arti_00173] Definition of EcucReferenceDef ArtiRteSchedulablelnstance

GenericComponentinstanceRef |

Parameter Name

ArtiRteSchedulablelnstanceGenericComponentinstanceRef

Parent Container

ArtiRteSchedulablelnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiRteSchedulable
Instance.
Multiplicity 0..1

V

AUTSSAR

A

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Dependency

10.6.5 ArtiRteVibTraceHooks

[ECUC_Arti_00177] Definition of EcucParamConfContainerDef ArtiRteVfbTrace
Hooks |

Container Name ArtiRteVfbTraceHooks

Parent Container ArtiRte

Description This container defines the parent container to which all trace hook containers are
added.

Multiplicity 1

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

RteVfbTraceHooks 1 This container defines the parent container to which all trace
hook containers are added.

AUTSSAR

10.7 ARTI Values Container

AriValues:
EcucParam ConfContainerDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = *

ArtiConstant:
EcucParamConfContainerDef

+parameter ArtiConstantString:

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiExpression:

EcucParamConfContainerDef

EcucStringParamDef

+parameter ArtiExpressionString:

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiHook:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiObjectClassParameter:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiObjectinstanceParameter:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiParameterTypeMap:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiStates:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

EcucStringParamDef

Figure 10.6: ArtiValues Ecuc Module Definition Class Diagram

[ECUC_Arti_00002] Definition of EcucParamConfContainerDef ArtiValues |

Container Name

ArtiValues

Parent Container

Arti

Description The ArtiValues container collects all parameter values for ARTI that are filled by the
generators (OS, RTE, ...)

Multiplicity 0..”

Post-Build Variant Multiplicity false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Configuration Parameters

No Included Parameters

AUTSSAR

Included Containers

Container Name Multiplicity Dependency

ArtiConstant 0..” This container holds a constant value.

ArtiExpression 0..” This container holds a C like expression that a debugger can
evaluate. This is similar to what is already done in ORTI.

ArtiHook 0..* This container represents an ARTI hook that is present in the
module.

ArtiObjectClassParameter 0..” This container represents a parameter of an Arti object class
definition

ArtiObjectInstanceParameter N This container represents a parameter of an Arti object instance.

ArtiParameterTypeMap > A map of key/value pairs to map a parameter value to a display
string and/or an Arti or EcuC object.

ArtiStates 0..* This container contains all states of tasks, isrs... that the EcuC

uses.

]

Example 10.4

Exemplary Values of the ArtiValues Container

<ECUC-MODULE-CONF IGURATION-VALUES>

<SHORT-NAME>VendorlArti</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti/

ArtivValues</DEFINITION-REF>

<CONTAINERS>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiConstant_ArtiSwc_WiperLocation_Front</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiConstant</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiExpression_ArtiHwCore_CurrentTaskOnCore(O</SHORT-

NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiExpression</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ ArtiOs_TaskStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectClassParameter_ ArtiHwCore_CurrentApplication<

/ SHORT-NAME. >

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiObjectClassParameter</DEFINITION-

REF>
<...>

</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectInstanceParameter_CurrentApplicationOnCoreO</

SHORT-NAME>

AUTSSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/

EcucDefs/Arti/ArtivValues/ArtiObjectInstanceParameter</DEFINITION

—REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_Core</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>
<...>

10.7.1 ArtiConstant

[ECUC_Arti_00006] Definition of EcucParamConfContainerDef ArtiConstant |

Container Name ArtiConstant

Parent Container ArtiValues

Description This container holds a constant value.

Multiplicity 0.*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiConstantString 1 [ECUC_Arti_00008]

No Included Containers

J
[ECUC_Arti_00008] Definition of EcucStringParamDef ArtiConstantString |

Parameter Name ArtiConstantString

Parent Container ArtiConstant

Description This is the constant value for a specific parameter.
Multiplicity 1

Type EcucStringParamDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

Example 10.5
Exemplary Value of an ArtiConstant Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiConstant_ArtiSwc_WiperLocation_Front</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiConstant</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiConstant/ArtiConstantString</DEFINITION-REF>
<VALUE>Front</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

10.7.2 ArtiExpression

[ECUC_Arti_00009] Definition of EcucParamConfContainerDef ArtiExpression |

Container Name ArtiExpression

Parent Container ArtiValues

Description This container holds a C like expression that a debugger can evaluate. This is similar to
what is already done in ORTI.

Multiplicity 0.*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

ArtiExpressionString 1 [ECUC_Arti_00011]

No Included Containers

AUTSSAR

[ECUC_Arti_00011] Definition of EcucStringParamDef ArtiExpressionString |

Parameter Name

ArtiExpressionString

Parent Container

ArtiExpression

Description This string represents a C like expression that a debugger can evaluate.
Multiplicity 1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

Example 10.6

Exemplary Value of an ArtiExpression Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiExpression_ArtiHwCore_CurrentTaskOnCore(</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiExpression</DEFINITION-REF>

<PARAMETER-VALUES>

<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtivValues/ArtiExpression/ArtiExpressionString</DEFINITION-REF>
<VALUE>Os_ControlledCoreInfo[0U] .RunningTask</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>

</PARAMETER-VALUES>

</ECUC-CONTAINER-VALUE>

10.7.3 ArtiHook

[ECUC_Arti_00012] Definition of EcucParamConfContainerDef ArtiHook |

Container Name ArtiHook

Parent Container ArtiValues

Description This container represents an ARTI hook that is present in the module.
Multiplicity 0.x

Post-Build Variant Multiplicity false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiHookAssociatedFunction 0..1 [ECUC_Arti_00180]
ArtiHookClass 1 [ECUC_Arti_00013]
ArtiHookContext 1 [ECUC_Arti_00014]
ArtiHookEventName 1 [ECUC_Arti_00015]
ArtiHookFileName 0..1 [ECUC_Arti_00181]
ArtiHookInstance 1 [ECUC_Arti_00017]
ArtiHookEntryRef 0..1 [ECUC_Arti_00179]
ArtiHookEventParameterTypeRef 0..1 [ECUC_Arti_00016]
ArtiHookInstanceParameterTypeRef 0..1 [ECUC_Arti_00018]

No Included Containers

]

[ECUC_Arti_00180] Definition of EcucFunctionNameDef ArtiHookAssociated

Function |

Parameter Name

ArtiHookAssociatedFunction

Parent Container

ArtiHook

Description Name of the C function that is associated with this hook.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Arti_00013] Definition of EcucStringParamDef ArtiHookClass |

Parameter Name

ArtiHookClass

Parent Container

ArtiHook

Description Name of the (schedule) class of macros. Classes can be one of the predefined classes
or user defined.

Multiplicity 1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value

false

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Arti_00014] Definition of EcucStringParamDef ArtiHookContext |

Parameter Name ArtiHookContext

Parent Container ArtiHook

Description Name of the execution context. One of NOSUSP, SPRVSR, or USER.
See also chapter "ARTI Tracing Macro".

Multiplicity 1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00015] Definition of EcucStringParamDef ArtiHookEventName |

Parameter Name

ArtiHookEventName

Parent Container

ArtiHook

Description The name of the event as defined for a particular class, or an arbitrary name for
generic classes.

Multiplicity 1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00181] Definition of EcucStringParamDef ArtiHookFileName |

Parameter Name

ArtiHookFileName

Parent Container

ArtiHook

Description File name (possibly with path) where this ArtiHook is implemented.
Multiplicity 0..1
Type EcucStringParamDef

V

AUTSSAR

A
Default value -
Regular Expression -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00017] Definition of EcucStringParamDef ArtiHooklInstance |

Parameter Name

ArtiHookInstance

Parent Container

ArtiHook

Description Name of an instance of the (schedule) class.
Multiplicity 1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Arti_00179] Definition of EcucForeignReferenceDef ArtiHookEntryRef |

Parameter Name

ArtiHookEntryRef

Parent Container

ArtiHook

Description Reference to the BswModuleEntry that describes the parameters of this hook.

Multiplicity 0..1

Type Foreign reference to BSW-MODULE-ENTRY

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00016] Definition of EcucReferenceDef ArtiHookEventParameter
TypeRef |

Parameter Name

ArtiHookEventParameterTypeRef
ArtiHook

Parent Container

Description Refers to a parameter type to interpret the hook event number.

Multiplicity 0..1

Type Reference to ArtiParameterTypeMap

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00018] Definition of EcucReferenceDef ArtiHooklnstanceParameter
TypeRef |

Parameter Name

ArtiHookInstanceParameterTypeRef

Parent Container ArtiHook

Description Refers to a parameter type to interpret the hook instance number.

Multiplicity 0..1

Type Reference to ArtiParameterTypeMap

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

Example 10.7
Exemplary Value of an ArtiHook Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ ArtiOs_TaskStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>AR_CP_0OS_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>

AUTSSAR

<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookContext</DEFINITION-REF>
<VALUE>NOSUSP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>Vendor1OsCore</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues/ArtiHook/ArtiHookEventParameterTypeRef</DEFINITION-
REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_TaskId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues/ArtiHook/ArtiHookInstanceParameterTypeRef</DEFINITION
—REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_Core</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

10.7.4 ArtiObjectClassParameter

[ECUC_Arti_00020] Definition of EcucParamConfContainerDef ArtiObjectClass
Parameter |

Container Name ArtiObjectClassParameter
Parent Container ArtiValues
Description This container represents a parameter of an Arti object class definition.
Multiplicity 0..”
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

AUTSSAR

Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiObjectClassParameterTypeMapRef 0..1 [ECUC_Arti_00028]

| No Included Containers

]

[ECUC_Arti_00028] Definition of EcucReferenceDef ArtiObjectClassParameter
TypeMapRef |

Parameter Name ArtiObjectClassParameterTypeMapRef

Parent Container ArtiObjectClassParameter

Description Refers to a parameter type to interpret the instance parameter value.

Multiplicity 0..1

Type Reference to ArtiParameterTypeMap

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

Example 10.8
Exemplary Value of an ArtiObjectClassParameter Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectClassParameter_ ArtiHwCore_CurrentTask</SHORT-NAME
>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiObjectClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiObjectClassParameter/
ArtiObjectClassParameterDescription</DEFINITION-REF>
<VALUE>Current Running AUTOSAR Task</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues/ArtiObjectClassParameter/
ArtiObjectClassParameterTypeMapRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_TaskExpr</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>

AUTSSAR

</ECUC-CONTAINER-VALUE>

10.7.5 ArtiObjectinstanceParameter

[ECUC_Arti_00021] Definition of EcucParamConfContainerDef ArtiObjectin-
stanceParameter |

Container Name ArtiObjectinstanceParameter
Parent Container ArtiValues
Description This container represents a parameter of an Arti object instance.
Multiplicity 0.~
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiObjectInstanceParameterConstantRef 0..1 [ECUC_Arti_00007]
ArtiObjectinstanceParameterExpressionRef 0..1 [ECUC_Arti_00010]
ArtiObjectInstanceParameterHookRef 0..1 [ECUC_Arti_00019]

No Included Containers

]

[ECUC_Arti_00007] Definition of EcucReferenceDef ArtiObjectinstanceParame-
terConstantRef |

Parameter Name ArtiObjectinstanceParameterConstantRef

Parent Container ArtiObjectinstanceParameter

Description Refers to a constant representing the value of this parameter.
Multiplicity 0..1

Type Reference to ArtiConstant

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Dependency

AUTSSAR

[ECUC_Arti_00010] Definition of EcucReferenceDef ArtiObjectinstanceParame-
terExpressionRef |

Parameter Name ArtiObjectInstanceParameterExpressionRef

Parent Container ArtiObjectinstanceParameter

Description Refers to an expression that evaluates the value of this parameter.
Multiplicity 0..1
Type Reference to ArtiExpression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X
Link time -
Post-build time -
Pre-compile time X

All Variants

Value Configuration Class All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Arti_00019] Definition of EcucReferenceDef ArtiObjectinstanceParame-
terHookRef |

Parameter Name

ArtiObjectinstanceParameterHookRef

Parent Container ArtiObjectinstanceParameter

Description Refers to a hook that records this parameter.

Multiplicity 0..1

Type Reference to ArtiHook

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

Example 10.9
Exemplary Value of an ArtiObjectinstanceParameter Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectInstanceParameter_CurrentTaskOnCore(0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiObjectInstanceParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues/ArtiObjectInstanceParameter/
ArtiObjectInstanceParameterExpressionRef</DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiExpression_ArtiHwCore_CurrentTaskOnCore(0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

10.7.6 ArtiParameterTypeMap

[ECUC_Arti_00022] Definition of EcucParamConfContainerDef ArtiParameter

TypeMap [

Container Name ArtiParameterTypeMap

Parent Container ArtiValues

Description A map of key/value pairs to map a parameter value to a display string and/or an Arti or
EcuC object.

Multiplicity 0.x

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

ArtiParameterTypeMapPair 1.7 A key/value pair to map a parameter value to a display string

and/or an Arti or EcuC object.

]

[ECUC_Arti_00023] Definition of EcucParamConfContainerDef ArtiParameter

TypeMapPair |

Container Name

ArtiParameterTypeMapPair

Parent Container ArtiParameterTypeMap

Description A key/value pair to map a parameter value to a display string and/or an Arti or EcuC
object.

Multiplicity 1.*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

ArtiParameterTypeMapPairlnput 0..1 [ECUC_Arti_00024]
ArtiParameterTypeMapPairOutput 0..1 [ECUC_Arti_00026]
ArtiParameterTypeMapPairlnputExpressionRef 0..1 [ECUC_Arti_00025]
ArtiParameterTypeMapPairOutputRef 0..1 [ECUC_Arti_00027]

No Included Containers

]

[ECUC_Arti_00024] Definition of EcuclntegerParamDef ArtiParameterTypeMap
Pairlnput |

Parameter Name

ArtiParameterTypeMapPairlnput

Parent Container

ArtiParameterTypeMapPair

Description The numerical value given by a parameter to translate.
When used with ArtiHooks, this parameter is mandatory (multiplicity 1) and its value is
limited to the range of 0..65535.
This parameter may be used to map the values given by "instanceParameter" and/or
the "eventParameter" of the ARTI_TRACE macro.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00026] Definition of EcucStringParamDef ArtiParameterTypeMap
PairOutput |

Parameter Name

ArtiParameterTypeMapPairOutput

Parent Container

ArtiParameterTypeMapPair

Description The string to display for the Input value.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity

false

Post-Build Variant Value

false

Multiplicity Configuration Class

Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Arti_00025] Definition of EcucReferenceDef ArtiParameterTypeMapPair

InputExpressionRef |

Parameter Name

ArtiParameterTypeMapPairlnputExpressionRef

Parent Container

ArtiParameterTypeMapPair

Description Refers to an expression that evaluates to a numerical value to translate.

Multiplicity 0..1

Type Reference to ArtiExpression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00027] Definition of EcucChoiceReferenceDef ArtiParameterType

MapPairOutputRef |

Parameter Name

ArtiParameterTypeMapPairOutputRef

Parent Container

ArtiParameterTypeMapPair

Description Choice Reference to ArtiOsTaskInstance, ArtiOslsrinstance, ArtiStatesTaskState, Os
AppMode, ArtiOsContextlnstance, or ArtiOsStackInstance.

Multiplicity 0..1

Type Choice reference to [ArtiOsContextinstance, ArtiOslsrinstance, ArtiOsStackInstance,

ArtiOsTasklInstance, ArtiStatesScheduleTableState, ArtiStatesSpinlockOwnerType, Arti
StatesSpinlockState, ArtiStatesTaskState, OsAppMode]

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTSSAR

| Dependency

]

Example 10.10
Exemplary Values of an ArtiParameterTypeMap Containers

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskId</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>TaskHighPrio</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput</
DEFINITION-REF>
<VALUE>HighPriority</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC—-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_OsAppMode</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>AppModeDefault</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>

AUTSSAR

<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput</
DEFINITION-REF>
<VALUE>OSDEFAULTAPPMODE</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>AppModeNone</SHORT-NAME >
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/Artivalues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>(0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput</
DEFINITION-REF>
<VALUE>OS_APPMODE_NONE</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskExpr</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Task_1</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>&Task_1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput</
DEFINITION-REF>
<VALUE>Task_1</VALUE>

AUTSSAR

</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

10.7.7 ArtiStates

[ECUC_Arti_00029] Definition of EcucParamConfContainerDef ArtiStates |

Container Name ArtiStates
Parent Container ArtiValues
Description This container contains all states of tasks, isrs... that the EcuC uses.
Multiplicity 0..*
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

ArtiStatesTaskEnhanced 1 [ECUC_Arti_00032]

Included Containers

Container Name Multiplicity Dependency

ArtiStatesScheduleTableState 0..” Each state used by the OsScheduleTable has to be listed as Arti
StatesScheduleTableState parameter with a choice of the states.

ArtiStatesSpinlockOwnerType 0..* Each owner type used by the OsSpinlock has to be listed as Arti
StatesSpinlockOwnerType parameter with a choice of the states.

ArtiStatesSpinlockState 0..” Each state used by the OsSpinlock has to be listed as ArtiStates
SpinlockState parameter with a choice of the states.

ArtiStatesTaskState 0..* Each state used by the OS has to be listed as ArtiStatesTask

State Parameter with a choice of the states.

]

[ECUC_Arti_00032] Definition of EcucBooleanParamDef ArtiStatesTaskEn-
hanced |

Parameter Name ArtiStatesTaskEnhanced

Parent Container ArtiStates

Description Set to true, if the OS provides an "enhanced" state model with "READY" split to
"Activated", "Preempted”, "Released".

Multiplicity 1

Type EcucBooleanParamDef

Default value -
Post-Build Variant Value false

Y%

AUTSSAR

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Arti_00205] Definition of EcucParamConfContainerDef ArtiStatesSched-
uleTableState |

Container Name ArtiStatesScheduleTableState

Parent Container ArtiStates

Description Each state used by the OsScheduleTable has to be listed as ArtiStatesScheduleTable
State parameter with a choice of the states.

Multiplicity 0..”

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiStatesScheduleTableStateEnum 1 [ECUC_Arti_00206]

No Included Containers

]

[ECUC_Arti_00206] Definition of EcucEnumerationParamDef ArtiStatesSchedule
TableStateEnum |

Parameter Name ArtiStatesScheduleTableStateEnum

Parent Container ArtiStatesScheduleTableState

Description ArtiStatesScheduleTableState choice of the states.
Multiplicity 1

Type EcucEnumerationParamDef

Range ArtiScheduleTableStateNext activated

ArtiScheduleTableStateRunning activated

ArtiScheduleTableStateRunning activated

AndSynchronous
ArtiScheduleTableStateStopped activated
ArtiScheduleTableStateWaiting activated
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

| Dependency

]

[ECUC_Arti_00207] Definition of EcucParamConfContainerDef ArtiStatesSpin-

lockOwnerType |

Container Name ArtiStatesSpinlockOwnerType
Parent Container ArtiStates
Description Each owner type used by the OsSpinlock has to be listed as ArtiStatesSpinlockOwner
Type parameter with a choice of the states.
Multiplicity 0.x
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiStatesSpinlockOwnerTypeEnum 1 [ECUC_Arti_00208]

No Included Containers

]

[ECUC_Arti_00208] Definition of EcucEnumerationParamDef ArtiStatesSpinlock

OwnerTypeEnum [

Parameter Name

ArtiStatesSpinlockOwnerTypeEnum

Parent Container

ArtiStatesSpinlockOwnerType

Description ArtiStatesSpinlockOwnerType choice of the states.

Multiplicity 1

Type EcucEnumerationParamDef

Range ArtiSpinlockOwnerTypelsr2 activated
ArtiSpinlockOwnerTypeTask activated

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00209] Definition of EcucParamConfContainerDef ArtiStatesSpin-

lockState |

AUTSSAR

Container Name ArtiStatesSpinlockState

Parent Container ArtiStates

Description Each state used by the OsSpinlock has to be listed as ArtiStatesSpinlockState
parameter with a choice of the states.

Multiplicity 0..”

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time —

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
ArtiStatesSpinlockStateEnum 1 [ECUC_Arti_00210]

No Included Containers

]

[ECUC_Arti_00210] Definition of EcucEnumerationParamDef ArtiStatesSpinlock
StateEnum |

Parameter Name ArtiStatesSpinlockStateEnum

Parent Container ArtiStatesSpinlockState

Description ArtiStatesSpinlockState choice of the states.

Multiplicity 1

Type EcucEnumerationParamDef

Range ArtiSpinlockStateLocked activated
ArtiSpinlockStateUnlocked activated

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Arti_00030] Definition of EcucParamConfContainerDef ArtiStatesTask
State |

Container Name ArtiStatesTaskState

Parent Container ArtiStates

Description Each state used by the OS has to be listed as ArtiStatesTaskState Parameter with a
choice of the states.

Multiplicity 0..*

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTSSAR

A
Post-build time B
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID

ArtiStatesTaskStateEnum

1

[ECUC_Arti_00033]

| No Included Containers

]

[ECUC_Arti_00033]
StateEnum |

Definition of EcucEnumerationParamDef ArtiStatesTask

Parameter Name

ArtiStatesTaskStateEnum

Parent Container

ArtiStatesTaskState

Description ArtiStatesTaskState choice of the states.

Multiplicity 1

Type EcucEnumerationParamDef

Range ArtiTaskStateActivated activated
ArtiTaskStatePreempted preempted
ArtiTaskStateReady ready
ArtiTaskStateReleased released
ArtiTaskStateRunning running
ArtiTaskStateSuspended suspended
ArtiTaskStateWaiting waiting

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

10.8 Published Information

For details refer to [4] Chapter 10.3 “Published Information”.

AUTSSAR

A Not applicable requirements

No content.

AUTSSAR

B Example

The example provided in this chapter demonstrates how to apply ARTI to an operating
system. It also shows how the generic ARTI_TRACE macro can be mapped to different
tracing implementations. In the example, these first tracing implementations is provided
by vENDOR_A the second by VENDOR_B.

The C code of the example compiles but is not functional. The operating sys-
tem is boiled down to three functions: suspendaAllInterrupts, ResumeAllInter—
rupts and startos. The application code defined the main function and two tasks:
Task_Cylinder0 and Task_Cylinderl.

Section B.1 holds all the C code demonstrating the ARTI instrumentation and section
B.2 contains the corresponding ARXML code.

B.1 ARTI Instrumentation

B.1.1 ARTI Tool Binding (Arti.h)

#ifndef _ARTI_H_

1

2 #define _ARTI_H_

3

4 #include <stdint.h>

5

6 #if defined VENDOR_A

7 /* ARTI Trace Macro */

8 define ARTI_TRACE (_contextName, _className, _instanceName,

instanceParameter, _eventName, event_value) \

9 (void) TraceImpl ## _ ## _className ## _ ## _eventName ## _ ##

_instanceName ## _ ## _contextName ((instanceParameter), (

event_value))

11 #elif defined VENDOR_B
12 /* ARTI Trace Macro x/

13 # define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, event_value) \
14 (void) TraceImpl ## _ ## _className ## _ ## _contextName ((
_instanceName), (instanceParameter), (_eventName), (

event_value))

16 #else

17 # define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, event_value) (void)O0

18 #endif

21 #endif /+ _ARTI_H_ =/
Listing B.1: Example for Arti.h

1 #ifndef _OS_ARTI_H
2 #define _OS_ARTI_H_

AUTSSAR

#include "stdint.h"
#include "Arti.h"

#if defined VENDOR_A

/+ Prototypes for AR _CP_OS_TASK =/

10 void TraceImpl_ AR_CP_OS_TASK OsTask_Start_OS_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value);

11 void TraceImpl_ AR CP_OS_TASK_OsTask_Stop_0OS_SHORT_NAME_SPRVSR (uint32_t

instanceParameter, uint32_t event_value);

13 void TraceImpl_ AR_CP_OS_TASK OsTask_Start_OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value);

14 void TraceImpl_ AR _CP_OS_TASK_OsTask_Stop_0OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value);

16 void TraceImpl_ AR_CP_OS_TASK OsTask_Start_OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value);

17 void TraceImpl_ AR_CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value);

19 #elif defined VENDOR_B

21 /+ Prototypes for AR_CP_OS_TASK «/

22 void TraceImpl_ AR _CP_OS_TASK_SPRVSR(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

23 void TraceImpl_ AR CP_OS_TASK USER(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

24 void TraceImpl_AR_CP_OS_TASK_NOSUSP (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

25

26 #endif

27

28 #endif /x _OS_ARTI_H_ =*/

Listing B.2: Example for Os_Arti.h

#include <stdint.h>

2
3 #include "Os.h"

4 #include "Arti.h"

5 #include "Os_Arti.h"

6

7 /x Stubs for intrinsics =/

8 #define _ disable() ((void) (0))
9 #define __enable() ((void) (0))

11 #1if defined VENDOR_A

13 void TraceImpl_ AR CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value)

15 _ _disable();

16 TraceImpl_ AR _CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

AUTSSAR

17 __enable();

20 void TraceImpl_AR_CP_OS_TASK_OsTask_Stop_0S_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value)
21 |

22 _ _disable();

23 TraceImpl_AR_CP_OS_TASK_OsTask_Stop_0OS_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

24 __enable();

25}

26

27 void TraceImpl_ AR_CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value)

28 |

29 SuspendAllInterrupts();

30 TraceImpl AR CP_OS_TASK OsTask_ Start_0S_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

31 ResumeAllInterrupts();

32 }

33

3¢ void TraceImpl AR CP_OS_TASK OsTask_Stop_OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value)

35 |

36 SuspendAllInterrupts();

37 TraceImpl_ AR _CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

38 ResumeAllInterrupts();

39}

40

41 void TraceImpl AR_CP_OS_TASK OsTask_Start_OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value)

42 |

43 (void) instanceParameter; // avoid warning "unused parameter"
44 (void)event_value; // avoid warning "unused parameter"

45

46 // actual tracing code goes here

47}

48

49 void TraceImpl_AR_CP_OS_TASK_OsTask_Stop_0OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value)

50 |

51 (void) instanceParameter; // avoid warning "unused parameter"
52 (void)event_value; // avoid warning "unused parameter"

53

54 // actual tracing code goes here

55 }

56

57 #elif defined VENDOR_B

58

59 void TraceImpl_ AR_CP_OS_TASK_SPRVSR(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

60 {

61 __disable();

62 TraceImpl_ AR CP_OS_TASK_NOSUSP (instanceName, instanceParameter,

eventName, event_value);

AUTSSAR

63
64
65
66

67
68
69

70
7
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86

__enable();

void TraceImpl_AR_CP_OS_TASK_USER(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

SuspendAllInterrupts();

TraceImpl_AR_CP_OS_TASK_NOSUSP (instanceName, instanceParameter,
eventName, event_value);

ResumeAllInterrupts();

void TracelImpl_ AR_CP_OS_TASK _NOSUSP (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

(void) instanceName; // avoid warning "unused parameter”

(void) instanceParameter; // avoid warning "unused parameter"
(void)eventName; // avoid warning "unused parameter"
()

void)event_value; // avoid warning "unused parameter"

// actual tracing code goes here

#else

#endif
Listing B.3: Example for Arti.c

B.1.2 ARTI OS Instrumentation

© 0 N o O »~ 0 N =

=3

© 0 N o O »~ 0 N =

o

#ifndef _OS_H_
#define _OS_H_

#define TASK(_taskname) void OS_TASK ## _ ## _taskname (void)

void SuspendAllInterrupts (void);
void ResumeAllInterrupts (void);

void StartOS (void);
#endif

Listing B.4: Example for OS instrumentation header

#include "user_main.h"
#include "Arti.h"

void SuspendAllInterrupts (void)
{
//

void ResumeAllInterrupts (void)

{

AUTSSAR

11 //

14 void StartOS (void)
15 |

16 const int myCorelId = 0;

17 const int OS_TASK_ Task_Cylinder0_ID = 2;

18

19 // for testing the ARTI interface, we call the task UserTaskl here
directly (rather than implementing an O0S)

20 ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OS_SHORT_NAME, myCoreld,
OsTask_Start, OS_TASK_Task_CylinderO_ID);

21 OS_TASK_Task_CylinderO();

22 ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OS_SHORT_NAME, myCoreld,

OsTask_Stop, OS_TASK_Task_Cylinder0_1ID);
23}

Listing B.5: Example for OS instrumentation source

B.1.3 ARTI User Code

#ifndef _USER_MAIN_H_
#define _USER_MAIN_H_

#include "os.h"
extern TASK(Task_CylinderO);
extern TASK(Task_Cylinderl);

o N o O »~ 0N =

#endif
Listing B.6: Example for user code header

#include <stdlib.h>

#include "os.h"

TASK (Task_Cylinder0)

{
// inject

© 0 N o o »~ w N

10 TASK(Task_Cylinderl)
1 {
12 // inject

15 int main (void)
16 {

17 Start0OS () ;

18

19 exit (EXIT_SUCCESS) ;
20

21 return -1;

2 |}

Listing B.7: Example for user code source

AUTSSAR

B.2 ARXML Representation of Instrumentation

Example B.1
Exemplary value of the ArtiHook container for OsTask_Start

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ ArtiOs_TaskStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtivValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>AR_CP_OS_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>OS_SHORT_NAME</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues/ArtiHook/ArtiHookEventParameterTypeRef</DEFINITION-
REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_TaskCylinderId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues/ArtiHook/ArtiHookInstanceParameterTypeRef</DEFINITION
—REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_Core</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC—-CONTAINER-VALUE>

Example B.2
Exemplary value of the ArtiOsInstance container using the hooks

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsInstance</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceEcucRef</DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlEcucOs/
Vendor10s</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ ArtiOs_TaskStart</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ArtiOs_TaskStop</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

Example B.3
Exemplary value of the ArtiHook container for arbitrary use

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_IgnitionControl_Cyl0_IgnitionStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>Ignition_Control</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>IgnitionStart</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>Cylinder(0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

Example B.4

Exemplary value of an ArtiGenericComponentClass container with parameters holding
hooks

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_IgnitionControl</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>

AUTSSAR

<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassName</DEFINITION-REF>
<VALUE>ADIFFERENT</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>IgnitionStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</DEFINITION-
REF>
<VALUE>Ignition Start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>
<VALUE>IGNITION_START</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>IgnitionStop</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</DEFINITION-
REF>
<VALUE>Ignition Stop</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>
<VALUE>IGNITION_STOP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

AUTSSAR

Example B.5
Exemplary value of an ArtiGenericComponentinstance container using the hooks

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_IgnitionCyl0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceName</DEFINITION-REF>
<VALUE>Ignition Cylinder 0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceClassRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArtiGeneric/
ArtiGenericComponentClass_IgnitionControl</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>IgnitionCylOStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterClassParameterRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/
VendorlArtiGeneric/ArtiGenericComponentClass_IgnitionControl
/IgnitionStart</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterHookRef</DEFINITION-REF
>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_IgnitionControl_Cyl0_IgnitionStart</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>TIgnitionCyl0Stop</SHORT-NAME>

AUTSSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterClassParameterRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/
VendorlArtiGeneric/ArtiGenericComponentClass_IgnitionControl
/IgnitionStop</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterHookRef</DEFINITION-REF
>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_IgnitionControl_Cyl0_IgnitionStop</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

AUTSSAR

C Expression Syntax

This section describes the grammar of Expressions using the Extended Backus-Naur

Form.

expression logical OR_expression { ’?’ expression ’:’ expression } ;
logical OR_expression logical AND_expression { ' ||’ logical AND_expression } ;
logical AND_expression inclusive_OR_expression { ’&&’ inclusive_OR_expression } ;
inclusive_OR_expression exclusive_OR_expression { ' |’ exclusive_OR_expression } ;

exclusive_OR_expression AND_expression {

rar

AND_expression } ;

AND_expression equality_expression { ’&’ equality_expression } ;
equality_expression relational_expression { (==’ | ’!=’) relational_expression } ;
relational_expression shift_expression { (/<’ | /> | ’'<=' | ’>=') shift_expression } ;
shift_expression additive_expression { (’'<<’ | ’>>’) additive_expression } ;

additive_expression
multiplicative_expression
cast_expression
unary_expression

{ " (’ type_name

unary_operator LA A A I A A A R A

postfix_expression primary_expression { ' [’ expression ']’ | (.’ | '->") appl_identifier } ;

primary_expression appl_identifier | constant | ’ (' expression ')’

constant integer_constant | character_constant | floating_constant | enumeration_constant ;

type_name type_specifier { type_specifier } ["*"] ;

type_specifier void’ | 'char’ | ’'short’ | ’'int’ | "long’ | ’'float’ | ’"double’ | ’'signed’ | ’unsigned’ | type_def_name ;

type_def_name appl_identifier;

Where:

multiplicative_expression { ("+’ | -’) multiplicative_expression } ;
cast_expression {
)’ } unary_expression ;

postfix_expression | unary_operator cast_expression | ’sizeof’ unary_expression | ’sizeof’ ' (’ type_name

("" | "/" | '%$") cast_expression } ;

integer_constant

represents an integer number, where the standard C convention
is used for decimal, hexadecimal and octal notation.

character_constant

follows the C definition for a character, including the support of
all standard escape sequences, such as '\n’, "\’ etc.

floating_constant

follows the C definition for a floating point number.

enumeration_constant

follows the C definition for an "enum" constant.

appl_identifier

represents any C identifier and represents application symbols.
These symbols rely on symbolic information retrieved from the
debug information of the application and must have ’external
linkage’ scope (e.g. global C variables). The symbol value is
only valid after the application has executed its initialization
phase (typically this is the system startup code before reaching
the applications entry point, which is main() in C). The only
exception to this constraint is when using the unary
address-operator (&).

Table C.1: Base types of the grammar

Further rules:

» Whitespace (blank, TAB) between terminals is ignored.

 All keywords and identifiers are case-sensitive.

ryr

AUTSSAR

D Change history of AUTOSAR traceable items

D.1 Traceable item history of this document according to
AUTOSAR Release R22-11

D.1.1 Added Specification Items in R22-11

Number Heading

[SWS_Arti_00011] Generate RTE VFB Trace Client
[SWS_Arti_00012] Define AR_CP_RTE_RUNNABLE
[SWS_Arti_00013] Define AR_CP_SCHM_SCHEDULABLE
[SWS_Arti_00014] Macro AR_CP_RTE_RUNNABLE
[SWS_Arti_00015] Macro AR_CP_SCHM_SCHEDULABLE
[SWS_Arti_00016] Macro AR_CP_VOID

[SWS_Arti_00017] ARTI Tracing Macro Parameters
[SWS_Arti_00018] ARTI Tracing Macro Format (single event)
[SWS_Arti_00019] ARTI Tracing Macro Format (multiple events)
[SWS_Arti_00020] Define AR_CP_RTE_API
[SWS_Arti_00021] Macro AR_CP_RTE_API
[SWS_Arti_00022] Define AR_CP_BSW_API
[SWS_Arti_00023] Macro AR_CP_BSW_API

Table D.1: Added Specification Items in R22-11

D.1.2 Changed Specification Iltems in R22-11

Number Heading

[SWS_Arti_00009]

[SWS_Arti_00010]

[SWS_Arti_91002]

[SWS_Arti_91004]

[SWS_Arti_91005]

Table D.2: Changed Specification Iltems in R22-11

D.1.3 Deleted Specification Iltems in R22-11

none

AUTSSAR

D.2 Traceable item history of this document according to
AUTOSAR Release R23-11

D.2.1 Added Specification ltems in R23-11

Number Heading

[SWS_Arti_91000] Definition of datatype ARTI_STOPWATCH_FLAT, ARTI_STOPWATCH_
- - NESTED

[SWS_Arti_91006] Definition of imported datatypes of module Arti

Table D.3: Added Specification Items in R23-11

D.2.2 Changed Specification Iltems in R23-11

Number Heading

[SWS_Arti_00002] Macro USER_STOPWATCH

Table D.4: Changed Specification Iltems in R23-11

D.2.3 Deleted Specification Iltems in R23-11

none

D.3 Traceable item history of this document according to
AUTOSAR Release R24-11

D.3.1 Added Specification Items in R24-11

Number Heading

[ECUC_Arti_00205] Definition of EcucParamConfContainerDef ArtiStatesScheduleTableState

[ECUC_Arti_00206] Eﬁﬂmtion of EcucEnumerationParamDef ArtiStatesScheduleTableState

[ECUC_Arti_00207] Definition of EcucParamConfContainerDef ArtiStatesSpinlockOwnerType

[ECUC_Arti_00208] gﬁl‘jpr:tion of EcucEnumerationParamDef ArtiStatesSpinlockOwnerType

[ECUC_Arti_00209] Definition of EcucParamConfContainerDef ArtiStatesSpinlockState

[ECUC_Arti_00210] Definition of EcucEnumerationParamDef ArtiStatesSpinlockStateEnum

Table D.5: Added Specification Items in R24-11

AUTSSAR

D.3.2 Changed Specification Iltems in R24-11

Number Heading

[ECUC_Arti_00027] Definition of EcucChoiceReferenceDef ArtiParameterTypeMapPairOutputRef

[ECUC_Arti_00029] Definition of EcucParamConfContainerDef ArtiStates

[ECUC_Arti_00177] Definition of EcucParamConfContainerDef ArtiRteVibTraceHooks

Table D.6: Changed Specification Iltems in R24-11

D.3.3 Deleted Specification Items in R24-11

none

D.4 Traceable item history of this document according to
AUTOSAR Release R25-11

D.4.1 Added Specification ltems in R25-11

none

D.4.2 Changed Specification Items in R25-11

none

D.4.3 Deleted Specification Iltems in R25-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 ARTI Module Description
	7.2 ARTI Hook Implementation
	7.3 ARTI OS Implementation
	7.4 ARTI RTE VFB Trace Client
	7.4.1 RTE VFB Trace Client Configuration

	7.5 Error Classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Production Errors
	7.5.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Symbol definitions
	8.3.1 ARTI_STOPWATCH_FLAT, ARTI_STOPWATCH_NESTED

	8.4 Function definitions
	8.4.1 Arti_Init
	8.4.2 Arti_GetVersionInfo

	8.5 Callback notifications
	8.6 Scheduled functions
	8.7 Expected interfaces
	8.7.1 Mandatory interfaces
	8.7.1.1 ARTI Tracing Macro
	8.7.1.2 ARTI Tracing Macro with Multiple Parameters

	8.7.2 Optional interfaces
	8.7.2.1 ARTI Generic Stopwatch
	8.7.2.2 ARTI Generic Dataflow Stopwatch
	8.7.2.3 ARTI Generic Datapoint
	8.7.2.4 ARTI Category 1 Interrupts
	8.7.2.5 ARTI RTE VFB Trace Client
	8.7.2.6 ARTI BSW Module Interface

	8.7.3 Configurable interfaces

	8.8 Service Interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 ARTI Parameters
	10.3 ARTI Generic Container
	10.3.1 ArtiGenericComponentClass
	10.3.2 ArtiGenericComponentInstance

	10.4 ARTI Hardware Container
	10.5 ARTI Os Container
	10.6 ARTI Rte Container
	10.6.1 ArtiRteRunnableClass
	10.6.2 ArtiRteRunnableInstance
	10.6.3 ArtiRteSchedulableClass
	10.6.4 ArtiRteSchedulableInstance
	10.6.5 ArtiRteVfbTraceHooks

	10.7 ARTI Values Container
	10.7.1 ArtiConstant
	10.7.2 ArtiExpression
	10.7.3 ArtiHook
	10.7.4 ArtiObjectClassParameter
	10.7.5 ArtiObjectInstanceParameter
	10.7.6 ArtiParameterTypeMap
	10.7.7 ArtiStates

	10.8 Published Information

	A Not applicable requirements
	B Example
	B.1 ARTI Instrumentation
	B.1.1 ARTI Tool Binding (Arti.h)
	B.1.2 ARTI OS Instrumentation
	B.1.3 ARTI User Code

	B.2 ARXML Representation of Instrumentation

	C Expression Syntax
	D Change history of AUTOSAR traceable items
	D.1 Traceable item history of this document according to AUTOSAR Release R22-11
	D.1.1 Added Specification Items in R22-11
	D.1.2 Changed Specification Items in R22-11
	D.1.3 Deleted Specification Items in R22-11

	D.2 Traceable item history of this document according to AUTOSAR Release R23-11
	D.2.1 Added Specification Items in R23-11
	D.2.2 Changed Specification Items in R23-11
	D.2.3 Deleted Specification Items in R23-11

	D.3 Traceable item history of this document according to AUTOSAR Release R24-11
	D.3.1 Added Specification Items in R24-11
	D.3.2 Changed Specification Items in R24-11
	D.3.3 Deleted Specification Items in R24-11

	D.4 Traceable item history of this document according to AUTOSAR Release R25-11
	D.4.1 Added Specification Items in R25-11
	D.4.2 Changed Specification Items in R25-11
	D.4.3 Deleted Specification Items in R25-11

