AUTSSAR

Document Title Specification of ADC Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 10

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 R25-11 Release Datatype definition change
Management
AUTOSAR « Not applicable requirements list updated
2024-11-27 | R24-11 Release
Management + Datatype definition updated
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR Y
+ SWS_ADC_00460 editorially adapted
2022-11-24 | R22-11 Release according to TPS_STDT 00042
Management
AUTOSAR « SWS_ADC_00338 modified
2021-11-25 R21-11 Release
Management * Chapter 9 picture includes from model
AUTOSAR
2020-11-30 R20-11 Release « Error classification tables updated
Management
* API changed to asynchronous API:
Adc_SetupResultBuffer,
Adc_EnableHardwareTrigger,
AUTOSAR Adc_DisableHardwareTrigger,
2019-11-28 | R19-11 Release Adc_EnableGroupNotification,
Management Adc_DisableGroupNotification

» Changed Document Status from Final to
published

AUTSSAR

» Header file structure removed

» Sequence chart and state diagram

2018-10-31 4.4.0 Release
Management » Minor modification in API for input
parameter passing
« Editorial changes
* Runtime error introduced; part of
development errors changed into
runtime errors
 Exclude delta sigma ADC hardware from
AUTOSAR scope of ADC driver
2017-12-:08 | 4.3.1 Eﬂzlﬁssgment « Minor modifications in API
g Adc_SetupResultBuffer and
Adc_ReadGroup
» Header file structure update
« Editorial changes
* Variant-Post-Build requirements
removed
AUTOSAR « Variant specific requirements for
2016-11-30 | 4.3.0 Release initialization API removed
Management
* Error classification table update
« Editorial changes
AUTOSAR ,
Management ac u .
AUTOSAR . .
Management ! u :
AUTOSAR "Common" Published Information
2014-03-31 | 4.1.2 Release corrected
Management « ARXML adaptations
AUTOSAR « Editorial changes
2013-10-31 4.1.2 Release » Removed chapter(s) on change
Management

documentation

AUTSSAR

2013-03-15

411

AUTOSAR
Administration

» APl and configuration parameter added
to support ECU degradation concept

 Common Published Information
removed

+« BSW General rework

2011-12-22

4.0.3

AUTOSAR
Administration

* Requirement of ADC group status to be
available for debugging removed

2009-12-18

4.0.1

AUTOSAR
Administration

» ADC444 add Adc_ResultAlignmentType

« SWS_Adc 00124 version number check
correction

« SWS_Adc 00337 reformulation

+ Limitation of ranges for AdcPrescale and
AdcChannelld

* Instanceld removed
« ADC324 removed,

« SWS_Adc 00458 introduced , DET for
Adc_GetVersionInfo

2010-02-02

3.1.4

AUTOSAR
Administration

* Limit checking support included; new
config parameters added
AdcEnableLimitCheck,
AdcChannelLimitCheck,
AdcChannelLowLimit,
AdcChannelHighLimit and
AdcChannelRangeSelect introduced.

» ADC debug support added.

» ADC configurable ADC data buffer
alignment added.

* Min/max values for AdcGroupld,
AdcStreamingNumSamples,
AdcMaxChannelResolution and
AdcChannelResolution added.

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2008-02-01

3.0.2

AUTOSAR
Administration

» Correction of: Table of Content

AUTSSAR

2007-12-21

3.0.1

AUTOSAR
Administration

* New API Adc_ReadGroup introduced
* Removed API Adc_ValueReadGroup
» Modified APl Adc_GetStreamLastPointer
* New configuration parameter added

» *AdcGroupReplacement

* *AdcPrioritylmplementation

* *AdcResultBufferPointer

» *AdcEnableQueuing

* *AdcReadGroupApi

» Configuration parameter removed

« *ADC_GRP_PRIORITY_IMP_LEVEL

- *ADC_STREAMING_BUFFER
_POINTER

* Priority mechanism improved

* Type definitions modified and extended
« State diagrams added

* New state transitions defined

* New state
ADC_STREAM_COMPLETED added

« State based requirements added
» Sequence charts modified and extended

» ADC buffer access mode example
added

* New DET’s defined

* *new DET
ADC_E_ALREADY_INITIALIZED

* *'new DET ADC_E_PARAM_CONFIG
* *'new DET ADC_E_BUFFER_UNINIT

* Part of existing requirments reformulated
v

AUTSSAR

A
» Added new requirement ID’s

SWS Adc 00321-SWS_Adc 00432
» Document meta information extended

» Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

» "Advice for users" revised

* "Revision Information" added

2006-11-28

2.1.14

AUTOSAR
Administration

* Removed the "On Demand" functionality.
Related services not available anymore.

« Removed the "Gated Continuous"
conversion mode. Related services not
available anymore.

* Removed the distinction between
internal and external hardware trigger.

* Introduced a priority mechanism for
channel groups for allowing channel
groups with higher priority to interrupt
ongoing conversions (can cover also the
"On demand" functionality).

* Reworked the "Streaming Access
Mode". A dedicated data structure for
the returned values of a conversion is
now clearly defined.

» Conversion values access now allowed
only through channel groups (no single
channel value available. Related service
not available anymore).

2009-12-18

4.0.1

AUTOSAR
Administration

» Document structure adapted to common
Release 2.0 SWS Template.

2009-12-18

4.0.1

AUTOSAR
Administration

« Initial Release.

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

4 Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

5 Dependencies to other modules

6 Requirements Tracing

7 Functional specification

7.1 General behavior

711
7.1.2
7.1.3

Background & Rationale o oo
Requirements
ADC Buffer Access Mode Example

7.1.3.1 Example: Configuration
7.1.3.2 Example: Initializationo oL
7.1.3.3 Example: Adc_GetStreamLastPointer Usage
7.1.3.4 Example: Adc_ReadGroupUsage
7.2 Conversion processing and interaction

7.21
7.2.2

Background & Rationale
Requirements

7.3 State Diagrams

7.3.1

7.3.2

7.3.3
7.3.4

7.3.5

7.3.6

7.3.7

ADC State Diagram for One-Shot/Continuous Group Conversion
Mode e
ADC State Diagram for HW/SW Trigger in One-Shot Group Conver-
sionMode
ADC State Diagram for SW Trigger in Continuous Conversion Mode
ADC State Diagram for One-Shot Conversion Mode, Software Trig-
ger Source, Single AccessMode L.
ADC State Diagram for One-Shot Conversion, Hardware Trigger
Source, Single AccessMode L.
ADC State Diagram for One-Shot Conversion Mode, Hardware
Trigger Source, Linear and Circular Streaming Access Mode

ADC State Diagram for Continuous Conversion Mode, Software
Trigger Source, Single AccessMode

11
12

13

13
13

14

14
14

15
16

19

19
19
19
26
27
27
28
28
29
29
30
30

31

32
33

34

35

36

AUTSSAR

7.3.8 ADC State Diagram for Continuous Conversion Mode, Software
Trigger Source, Linear and Circular Streaming Access Mode

7.4 Support and management of HW low power states
7.4.1 Background
7.4.2 Requirements

7.5 Error Classification
7.5.1 DevelopmentErrors
7.5.2 RuntimeErrors
7.5.3 ProductionErrors o
7.5.4 Extended ProductionErrors oL

8 API specification

8.1 Importedtypes
8.2 Typedefinitions
8.2.1 Adc_ConfigType
8.22 Adc_ChannelType
8.2.3 Adc_GroupType e
8.2.4 Adc_ValueGroupType i
8.2.5 Adc PrescaleType
8.2.6 Adc_ConversionTimeType
8.2.7 Adc_SamplingTimeType
8.2.8 Adc_ResolutionType
8.2.9 Adc_StatusType
8.2.10 Adc_TriggerSourceType o o i
8.2.11 Adc_GroupConvModeType
8.2.12 Adc_GroupPriorityType
8.2.13 Adc_GroupDefType
8.2.14 Adc_StreamNumSampleType
8.2.15 Adc_StreamBufferModeType oL
8.2.16 Adc_GroupAccessModeType
8.2.17 Adc_HwTriggerSignalType
8.2.18 Adc_HwTriggerTimerType oo
8.2.19 Adc_PrioritylmplementationType
8.2.20 Adc_GroupReplacementType
8.2.21 Adc_ChannelRangeSelectType
8.2.22 Adc_ResultAlignmentType
8.2.23 Adc_PowerStateTypeo
8.2.24 Adc_PowerStateRequestResultType
8.3 Function definitions
8.3.1 Adc Init e
8.3.2 Adc_SetupResultBuffer
8.3.3 Adc Delnito
8.3.4 Adc_StartGroupConversion oo
8.3.5 Adc_StopGroupConversion

AUTSSAR

8.3.6 Adc_ReadGroup 61
8.3.7 Adc_EnableHardwareTrigger 62
8.3.8 Adc_DisableHardwareTrigger, 65
8.3.9 Adc_EnableGroupNotification. 67
8.3.10 Adc_DisableGroupNotification 68
8.3.11 Adc_GetGroupStatus 69
8.3.12 Adc_GetStreamLastPointer 72
8.3.13Adc_GetVersionInfo 74
8.3.14 Adc_SetPowerState o 75
8.3.15 Adc_GetCurrentPowerState 76
8.3.16 Adc_GetTargetPowerState 77
8.3.17 Adc_PreparePowerState 78
8.4 Callback notifications o 79
8.5 Scheduled functions 79
8.5.1 Adc_Main_PowerTransitionManager 79
8.6 Expectedinterfaces 80
8.6.1 Mandatory Interfaces 80
8.6.2 OptionalInterfaces 80
8.6.3 Configurableinterfaces 80
8.6.3.1 loHwAb_Adc_Notification<#groupID> 81
8.6.3.2 loHwADb_Adc_NotifyReadyForPowerState<#Mode> 82

9 Sequence diagrams 83
9.1 Initialization of the ADC Driver 83
9.2 De-lInitialization of the ADC Driver 83
9.3 Software triggered One-Shot conversion without notification 84
9.4 Software triggered continuous conversion with notification 85
9.5 Hardware triggered One-Shot conversion with notification 86
9.6 HW Trigger- One-Shot conversion - Linear Streaming 87
9.7 No Priority Mechanism-No Queuing 88
9.8 No Priority Mechanism-SW Queuing 89
9.9 HW_SW Priority Mechanism - SW Queuing 90
9.10HW Priority Mechanism - HW Queuing 91
9.11HW_SW Priority Mechanism - HW/SW Queuing 92
10 Configuration specification 93
10.1Howtoread thischapter 93
10.2Containers and configuration parameters 93
10.21AdC 93
10.2.2AdcGeneral 94
10.2.3 AdcPowerStateConfig 101
10.2.4 AdcConfigSet L 102
10.2.5AdcChannel 102
10.2.6 AdcHwUnit 115

10.3Published Information 117

AUTSSAR

10.3.1 AdcPublishedInformation 117
10.4Configuration of symbolicnames 119
A Not applicable requirements 120
B Change history of AUTOSAR traceable items 121
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11. . . e 121
B.1.1 Added Specification Itemsin R25-11 121
B.1.2 Changed Specification ltems in R25-11 121
B.1.3 Deleted Specification ltemsin R25-11 122
B.1.4 Added Constraintsin R25-11 123
B.1.5 Changed Constraints in R25-11 123
B.1.6 Deleted Constraintsin R25-11 123
B.2 Specification Iltem History of this document compared to AUTOSAR
R23-11. . . e 123
B.2.1 Added Specification ltemsin R24-11 123
B.2.2 Changed Specification ItemsinR24-11 123
B.2.3 Deleted Specification ltemsin R24-11 123
B.2.4 Added Constraintsin R24-11 124
B.2.5 Changed Constraintsin R24-11 124
B.2.6 Deleted Constraintsin R24-11 124
B.3 Specification Iltem History of this document compared to AUTOSAR
R22-11. . . e 124
B.3.1 Added Specification ltemsin R23-11 124
B.3.2 Changed Specification Itemsin R23-11 124
B.3.3 Deleted Specification ltemsin R23-11 124
B.3.4 Added Constraints in R23-11 124
B.3.5 Changed Constraintsin R23-11 124

B.3.6 Deleted Constraintsin R23-11 124

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration of the AU-
TOSAR Basic Software module ADC Driver. The ADC driver is targeting Successive
Approximation ADC Hardware. Delta Sigma ADC conversion use cases are out of
scope of this specification.

The ADC module initializes and controls the internal Analogue Digital Converter Unit(s)
of the microcontroller. It provides services to start and stop a conversion respectively
to enable and disable the trigger source for a conversion. Furthermore it provides
services to enable and disable a notification mechanism and routines to query the
status and result of a conversion.

The ADC module works on so called ADC Channel Groups, which are build from so
called ADC Channels.An ADC Channel Group combines an analogue input pin (ADC
Channel), the needed ADC circuitry itself and conversion result register into an entity
that can be individually controlled and accessed via the ADC module.

AUTSSAR

2 Acronyms and Abbreviations

Abbreviation / Description:

Acronym:

DEM Diagnostic Event Manager

DET Default Error Tracer

ADC Analogue Digital Converter

MCU Microcontroller Unit

API Application Programming Interface

HW Hardware

SW Software

ADC HW Unit Represents a microcontroller input electronic device that includes all parts necessary to perform
an "analogue to digital conversion".

ADC Module ADC Basic Software module ADC Driver, abbreviated also with ADC Driver

ADC Channel Represents a logical ADC entity bound to one port pin. Multiple ADC entities can be mapped to

the same port pin.

ADC Channel Group

A group of ADC channels linked to the same ADC hardware unit (e.g. one Sample&Hold and one
A/D converter).
The conversion of the whole group is triggered by one trigger source.

ADC Result Buffer
(ADC Streaming Buffer,
ADC Stream Buffer)

The user of the ADC Driver has to provide a buffer for every group. This buffer can hold multiple
samples of the same group channel if streaming access mode is selected. If single access mode
is selected one sample of each group channel is held in the buffer.

Software Trigger

Software API call that starts the conversion of one ADC channel group or a continuous series of
ADC channel group conversions.

Hardware Trigger

ADC internal trigger signal that starts one conversion of an ADC channel group. ADC hardware
trigger are generated internally in the ADC hardware, e.g. based on an ADC timer or a trigger
edge signal. The trigger hardware is tightly coupled or integrated in the ADC hardware. No
software is required to start the ADC channel group conversion after the hardware trigger is
detected.

Note: If the ADC hardware does not support hardware trigger, a similar behavior can be realized
with software trigger in combination with the GPT/ICU driver. E.g. in a GPT timer notification
function a software triggered ADC channel group conversion can be started.

Conversion Mode

One-Shot:

The conversion of an ADC channel group is performed once after a trigger and the results are
written to the assigned result buffer.

A trigger can be a software API call or a hardware event.

Continuous:

The conversions of an ADC channel group are performed continuously after a software API call
(start) and the results are written to the assigned result buffer. The conversions themselves are
running automatically (hardware/interrupt controlled). The Continuous conversions can be
stopped by a software API call (stop).

Sampling Time,
Sample Time

Time during which the analogue value is sampled (e.g. loading the capacitor, ...)

Conversion Time

Time during which the sampled analogue value is converted into digital representation.

Acquisition Time

Sample Time + Conversion Time.

Table 2.1: Acronyms and abbreviations used in this document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [1], which is
also valid for ADC Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for ADC Driver.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

Power State Control APIs are implementable only if the MCAL driver owns the
complete underlying HW peripheral i.e. the HW peripheral is not accessed by
other MCAL modules

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

Module MCU Driver

The Microcontroller Unit Driver (MCU Driver) is primarily responsible for initializing and
controlling the chip’s internal clock sources and clock prescalers. The clock frequency
may affect:

« Trigger frequency

» Conversion time

» Sampling time
Module PORT driver

The PORT module shall configure the port pins used by the ADC module. Both ana-
logue input pins and external trigger pins have to be considered.

AUTSSAR

6 Requirements Tracing

Requirement

Description

Satisfied by

[SRS_Adc_12280]

The ADC Driver shall allow a specific
result access modes for each ADC
Channel Group

[SWS_Adc_00140] [SWS_Adc_00382]
[SWS_Adc_00383]

[SRS_Adc_12283]

The ADC driver shall mask out
information bits from the conversion
result not belonging to the ADC value

[SWS_Adc_00122]

[SRS_Adc_12291]

The ADC Driver shall provide a
service for querying the status of an
ADC Channel Group

[SWS_Adc_00219] [SWS_Adc_00220]
[SWS_Adc_00221] [SWS_Adc_00222]
[SWS_Adc_00224] [SWS_Adc_00226]
[SWS_Adc_00325] [SWS_Adc_00326]
[SWS_Adc_00327] [SWS_Adc_00328]
[SWS_Adc_00329] [SWS_Adc_00330]
[SWS_Adc_00331]

[SRS_Adc_12292]

If the ADC provides signed values,
the ADC driver shall put the sign bit
into the MSB of the return value

[SWS_Adc_00113] [SWS_Adc_00214]

[SRS_Adc_12307]

The ADC Driver shall support a
specific basic static configurations
per channel

[SWS_Adc_00099]

[SRS_Adc_12317]

The ADC Driver shall provide
notification functions to inform the
caller about the end of a conversion
for a Channel Group

[SWS_Adc_00104] [SWS_Adc_00155]
[SWS_Adc_00156] [SWS_Adc_00157]

[SRS_Adc_12318]

The ADC driver shall provide a
service to enable and disable each
notification function separately

[SWS_Adc_00057] [SWS_Adc_00058]
[SWS_Adc_00077] [SWS_Adc_00156]
[SWS_Adc_00157]

[SRS_Adc_12364]

The ADC driver shall provide services
to start and stop the conversion of an
ADC Channel Group for all
conversion modes

[SWS_Adc_00060] [SWS_Adc_00061]
[SWS_Adc_00145] [SWS_Adc_00146]
[SWS_Adc_00157] [SWS_Adc_00356]
[SWS_Adc_00357] [SWS_Adc_00385]
[SWS_Adc_00386]

[SRS_Adc_12447]

The ADC Driver shall allow to group
ADC channels that belong to the
same ADC HW unit

[SWS_Adc_00090] [SWS_Adc_00091]
[SWS_Adc_00098] [SWS_Adc_00099]
[SWS_Adc_00100] [SWS_Adc_00101]
[SWS_Adc_00104] [SWS_Adc_00277]
[SWS_Adc_00280]

[SRS_Adc_12802]

The ADC driver shall provide (for
streaming access mode) a service to
identify most recent sample and
number of available samples of a
channel group

[SWS_Adc_00214] [SWS_Adc_00216]
[SWS_Adc_00219]

[SRS_Adc_12817]

The ADC Driver shall allow for each
ADC channel group the static
configuration of exactly one trigger
source

[SWS_Adc_00146] [SWS_Adc_00279]
[SWS_Adc_00283] [SWS_Adc_00356]
[SWS_Adc_00357]

[SRS_Adc_12818]

The ADC Driver shall allow assigning
one ADC channel to more than one
ADC Channel Group

[SWS_Adc_00092]

[SRS_Adc_12819]

The ADC Driver shall provide a
synchronous service for reading the
last valid conversion results of the
selected channel group

[SWS_Adc_00113] [SWS_Adc_00122]
[SWS_Adc_00318]

[SRS_Adc_12820]

The ADC driver shall allow the
configuration of a priority level for
each channel group

[SWS_Adc_00288] [SWS_Adc_00289]
[SWS_Adc_00310] [SWS_Adc_00340]
[SWS_Adc_00341]

\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Adc_12822]

The structure containing the results of
a channel group conversion shall be
generated with a uniform dimension

[SWS_Adc_00320]

[SRS_Adc_12823]

The ADC driver shall provide services
to enable and disable HW triggers for
each channel group

[SWS_Adc_00114] [SWS_Adc_00116]
[SWS_Adc_00144] [SWS_Adc_00273]
[SWS_Adc_00281] [SWS_Adc_00282]

[SRS_Adc_12824]

The result alignment shall be
configurable between right-alignment
and left-alignment

[SWS_Adc_00113]

[SRS_Adc_12825]

The results of the conversion of a
channel group configured in
streaming access mode shall be
returned into a buffer with a fixed
number of elements

[SWS_Adc_00319]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Adc_00054]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Adc_00120] [SWS_Adc_00121]
[SWS_Adc_00228] [SWS_Adc_00259]
[SWS_Adc_00260] [SWS_Adc_00265]
[SWS_Adc_00266]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Adc_00125] [SWS_Adc_00126]
[SWS_Adc_00128] [SWS_Adc_00129]
[SWS_Adc_00131] [SWS_Adc_00152]
[SWS_Adc_00225] [SWS_Adc_00241]

[SRS_BSW_00335]

Status values naming convention

[SWS_Adc_00221] [SWS_Adc_00222]
[SWS_Adc_00224]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Adc_00111]

[SRS_BSW_00359]

Callback Function Return Types for
AUTOSAR BSW

[SWS_Adc_00082]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Adc_00082]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Adc_00107] [SWS_Adc_00125]
[SWS_Adc_00126] [SWS_Adc_00128]
[SWS_Adc_00129] [SWS_Adc_00131]
[SWS_Adc_00133] [SWS_Adc_00136]
[SWS_Adc_00137] [SWS_Adc_00152]
[SWS_Adc_00154] [SWS_Adc_00164]
[SWS_Adc_00165] [SWS_Adc_00166]
[SWS_Adc_00218] [SWS_Adc_00225]
[SWS_Adc_00241]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Adc_00054]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Adc_00107] [SWS_Adc_00154]
[SWS_Adc_00294] [SWS_Adc_00295]
[SWS_Adc_00297] [SWS_Adc_00298]
[SWS_Adc_00299] [SWS_Adc_00300]
[SWS_Adc_00301] [SWS_Adc_00302]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Adc_00054]

Y

AUTSSAR

Requirement

Description

Satisfied by

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Adc_00057] [SWS_Adc_00058]
[SWS_Adc_00082] [SWS_Adc_00083]
[SWS_Adc_00104]

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_Adc_00080] [SWS_Adc_00084]
[SWS_Adc_00085]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Adc_00054]

[SRS_SPAL_12063]

All driver modules shall only support
raw value mode

[SWS_Adc_00113]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Adc_00056]

[SRS_SPAL_12129]

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

[SWS_Adc_00078]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Adc_00110] [SWS_Adc_00111]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_Adc_00107] [SWS_Adc_00125]
[SWS_Adc_00126] [SWS_Adc_00128]
[SWS_Adc_00129] [SWS_Adc_00131]
[SWS_Adc_00133] [SWS_Adc_00136]
[SWS_Adc_00137] [SWS_Adc_00152]
[SWS_Adc_00154] [SWS_Adc_00164]
[SWS_Adc_00165] [SWS_Adc_00166]
[SWS_Adc_00225] [SWS_Adc_00241]

[SRS_SPAL_12461]

Specific rules regarding initialization
of controller registers shall apply to all
driver implementations

[SWS_Adc_00054] [SWS_Adc_00246]
[SWS_Adc_00247] [SWS_Adc_00248]
[SWS_Adc_00249] [SWS_Adc_00250]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General behavior

7.1.1 Background & Rationale

The table below shows a list of possible desired functionalities of an ADC user and in
which way they are provided by the ADC module. Furthermore the table also depicts
a possible realization and the mapping of these functionalities to the capabilities of a
commercial microcontroller (C16x).

Desired Functionality

ADC Driver Function

Example: C16x Derivate
Wording

Just one conversion result of a
single channel.

Software triggered one-shot conversion where the
converted group consists of exactly one channel.

Fixed channel, single conversion,
software trigger.

Cyclic conversion of a single
channel.

Hardware triggered one-shot conversion where the
converted group consists of exactly one channel.

Fixed channel, single conversion,
hardware trigger.

Repeated conversion of a single
channel.

Continuous conversion where the converted group
consists of exactly one channel.

Fixed channel,continuous
conversion.

Just one conversion result of
each channel within a group.

Software triggered one-shot conversion where the
converted group consists of more than one
channel.

Auto scan, single conversion,
software trigger.

Cyclic conversion of each
channel within a group.

Hardware triggered one-shot conversion where
the converted group consists of more than one
channel.

Auto scan, single conversion,
hardware trigger.

Repeated conversion of each
channel within a group.

Continuous conversion where the converted group
consists of more than one channel.

Auto scan, continuous
conversion.

Table 7.1: Different possibilities of One-shot and Continuous conversions

7.1.2 Requirements

[SWS_Adc_00090]

Upstream requirements: SRS_Adc_12447

[The ADC module shall allow grouping of one or more ADC channels into so called
ADC Channel groups. |

[SWS_Adc_00091]
Upstream requirements: SRS_Adc_ 12447

[The ADC module’s configuration shall be such that an ADC Channel group contains
at least one ADC Channel. |

[SWS_Adc_00451] [The ADC module’s configuration shall be such that an ADC
Channel group contains exactly one ADC Channel if the global limit checking feature
is enabled and the channel specific limit checking is enabled for the ADC Channel. |

AUTSSAR

[SWS_Adc_00092]
Upstream requirements: SRS_Adc_12818

[The ADC module shall allow the assignment of an ADC channel to more than one
group. |

[SWS_Adc_00277]
Upstream requirements: SRS_Adc_12447

[The ADC module’s configuration shall be such that all channels contained in one ADC
Channel group shall belong to the same ADC HW Unit. |

The ADC module supports the following conversion modes:

* [SWS_Adc_00380] [The ADC module shall support the conversion mode "One-
shot Conversion" for all ADC Channel groups. One-shot conversion means that
exactly one conversion is executed for each channel configured for the group
being converted. |

* [SWS_Adc_00381] [The ADC module shall support the conversion mode "Con-
tinuous Conversion[1]" for all ADC Channel groups with trigger source soft-
ware."Continuous Conversion" means that after the conversion has been com-
pleted, the conversion of the whole group is repeated. The conversions of the
individual ADC channels within the group as well as the repetition of the whole
group don’t need any additional trigger events to be executed. Converting the
individual channels within the group can be done sequentially or in parallel de-
pending on hardware and/or software capabilities. |

The ADC module supports the following start conditions or trigger sources:

- [SWS_Adc_00356]
Upstream requirements: SRS_Adc_12817, SRS_Adc_12364

[The ADC module shall support the start condition "Software API Call" for all
conversion modes. The trigger source "Software API Call" means that the con-
version of an ADC Channel group is started/stopped with a service provided by
the ADC module. |

* [SWS_Adc_00357]
Upstream requirements: SRS_Adc_12817, SRS_Adc_12364

[The ADC module shall support the start condition "Hardware Event" for groups
configured in One-Shot conversion mode. The trigger source "Hardware Event"
means that the conversion of an ADC Channel group can be started by a hard-
ware event, e.g. an expired timer or an edge detected on an input line. |

AUTSSAR

[SWS_Adc_00279]
Upstream requirements: SRS_Adc_12817

[The ADC module shall allow configuring exactly one trigger source for each ADC
Channel group. |

The ADC module supports the following result access modes:

* [SWS_Adc_00382]
Upstream requirements: SRS_Adc_12280

[The ADC module shall support result access using the API function Adc_Get
StreamLastPointer. Calling Adc_GetStreamLastPointer informs the user about
the position of the group conversion results of the latest conversion round in the
result buffer and about the number of valid conversion results in the result buffer.
The result buffer is an external buffer provided from the application. |

Note: The function is used for both types of groups, configured in Streaming Access
Mode and in Single Access Mode (Single Access Mode is handled equal to Streaming
Access Mode with Streaming Counter equal to 1).

* [SWS_Adc_00383]
Upstream requirements: SRS_Adc_12280

[The ADC module shall support result access using the API function Adc_Read
Group, if the generation of this API function is statically configured. Calling Adc_
ReadGroup copies the group conversion results of the latest conversion round to
an application buffer which start address is specified as API parameter of Adc_
ReadGroup. |

Note: The function is used for both types of groups, configured in Streaming Access
Mode and in Single Access Mode.

[SWS_Adc_00140]
Upstream requirements: SRS_Adc_12280

[The ADC module shall guarantee the consistency of the returned result value for each
completed conversion. |

Note:

The consistency of the group channel results can be obtained with the following meth-
ods on the application side:

 Using group notification mechanism
* Polling via API function Adc_GetGroupStatus

In any case, new result data must be read out from the result buffer (e.g. via Adc_Read
Group) before they are overwritten. If the function Adc_GetGroupStatus reports state
ADC_STREAM_COMPLETED and conversions for the same group are still ongoing

AUTSSAR

(continuous conversion or hardware triggered conversion), the user is responsible to
access the results in the result buffer, before the ADC driver overwrites the group result
buffer.

[SWS_Adc_00384] [The ADC module’s environment shall ensure that a conversion
has been completed for the requested group before requesting the conversion result. |

Note: If no conversion has been completed for the requested channel group (e.g. be-
cause the conversion of the ADC Channel group has been stopped by the user) the
value returned by the ADC module will be arbitrary (Adc_GetStreamLastPointer will
return 0 and read NULL_PTR; Adc_ReadGroup will return E_NOT_OK).

[SWS_Adc_00288]
Upstream requirements: SRS_Adc_12820

[The ADC module shall allow the configuration of a priority level for each channel
group. |

Note: This implies a prioritization mechanism, implemented in SW, or where available,
supported by the HW. Groups with trigger source HW are prioritized always with the
HW prioritization mechanism.

[SWS_Adc_00310]
Upstream requirements: SRS_Adc_12820

[The ADC module’s priority mechanism shall allow aborting and restarting of channel
group conversions. |

[SWS_Adc_00345] [The ADC module’s priority mechanism shall allow suspending
and resuming of channel group conversions. |

[SWS_Adc_00430] [The ADC module shall allow a group specific configuration
whether the abort/restart or suspend/resume mechanism is used for interrupted chan-
nel groups. |

Note: In contrast to the software controlled abort/restart or suspend/resume mecha-
nism on channel group level, the ADC hardware can support abort/restart and sus-
pend/resume mechanism on ADC channel level. It is up to the implementation which
of both mechanisms is implemented on channel level.

[SWS_Adc_00311] [The ADC module’s priority mechanism shall allow the queuing of
requests for different groups. |

Note: Higher priority groups can abort or suspend lower priority groups. In this case
the priority handler should put the interrupted channel group conversion in the queue
and this channel group conversion will be restarted or resumed later, transparently to
the user.

[SWS_Adc_00312] [In the ADC module’s priority mechanism the lowest priority is 0. |

AUTSSAR

[SWS_Adc_00289]
Upstream requirements: SRS_Adc_12820

[The ADC module’s priority mechanism shall allow the configuration of 256 priority
levels (0...255). |

[SWS_Adc_00315] [The ADC module shall support the static configuration option to
disable the priority mechanism. |

[SWS_Adc_00340]
Upstream requirements: SRS_Adc_12820

[The ADC module shall support the static configuration option to enable the priority
mechanism ADC_PRIORITY_HW_SW, using both hardware and software prioritization
mechanism. If the hardware does not provide the hardware prioritization mechanism a
pure software prioritization mechanism shall be implemented. |

[SWS_Adc_00341]
Upstream requirements: SRS_Adc_12820

[If the priority mechanism is supported by the hardware: The ADC module shall sup-
port the static configuration option ADC_PRIORITY_HW to enable the priority mecha-
nism using only the hardware priority mechanism. |

Note: If hardware priority mechanism is selected, also groups with software trigger
source are prioritized from the hardware prioritization mechanism.

[SWS_Adc_00339] [If hardware priority mechanism is supported and selected: The
ADC module shall allow the mapping of the configured priority levels (0-255) to the
available hardware priority levels. |

Note: The specific implementation of the ADC module describes restrictions concern-
ing the available hardware priority levels and the possible mapping of the available
hardware priorities to the priorities of the ADC channel groups.

[SWS_Adc_00332] [If the priority mechanism is active, the ADC module shall support
a queuing of conversion requests. The conversion requsts shall be queued when,
if channel group with higher priority is requested for conversion while lower priority
channel group conversion is ongoing (here lower priority group shall be queued) OR
channel group conversion requests can not immediately be handled, because a higher
priority channel group conversion is ongoing. |

[SWS_Adc_00417] [If the priority mechanism is active, the ADC module shall handle
channel group conversion requests for groups with the same priority level, in a ’first
come first served’ order. |

[SWS_Adc_00333] [If the priority mechanism is not active and if the static configu-
ration parameter AdcEnableQueuing is set to ON, the ADC module shall support a

AUTSSAR

queuing of conversion requests and shall service the software groups in a ’first come
first served’ order. |

Note: Software conversion requests storage shall be supported in a software imple-
mented queue or by the hardware.

[SWS_Adc_00335] [If the queuing mechanism is active (priority mechanism active
or queuing explicitly activated), the ADC module shall store each software conversion
request per channel group at most one time in the software queue. |

Note: The ADC module shall only store one conversion request per channel group, not
multiple requests, which may occur if a high priority long-term conversion blocks the
hardware.

[SWS_Adc_00336] ['Enable hardware trigger requests’, generated with API function
Adc_EnableHardwareTrigger, shall not be stored in any queue. |

[SWS_Adc_00337] [The hardware prioritization mechanism shall be used in case of
hardware triggered conversion requests. |

[SWS_Adc_00338] [When the group status is equal to ADC_IDLE or group status is
equal to ADC_STREAM_COMPLETED and if an ADC group can be implicitly stopped,
then ADC module shall allow storing an additional software conversion request for the
same group. |

[SWS_Adc_00060]
Upstream requirements: SRS_Adc_12364

[The ADC module shall call the group natification function, whenever a conversion of
all channels of the requested group is completed and if the notification is configured
and enabled. |

[SWS_Adc_00413] [The ADC module functions shall be reentrant, if the functions
are called for different channel groups. This requirement shall be applicable for all API
functions, except Adc_Init, Adc_Delnit,Adc_GetVersioninfo, Adc_SetPowerState, Adc
GetTargetPowerState, Adc_GetCurrentPowerState and Adc_PreparePowerState. |

Note: The reentrancy of the API functions applies only if the caller takes care that there
is no simultaneous usage of the same group.

[SWS_Adc_00503] [Simple read calls,as implemented in Adc_ReadGroup and Adc_
GetGroupStatus,shall always be reentrant even if the functions are called for same
channel groups. It is up to the implementation to use adequate protection mechanisms
(e.g. disabling/enabling interrupts. |

Note: Calling Adc_ReadGroup can implicitely change the group status.

AUTSSAR

[SWS_Adc_00414] [The ADC module’s environment shall check the integrity (see
Note SWS_Adc_00413) if several calls for the same ADC group are used during run-
time in different tasks or ISR’s. |

[SWS_Adc_00415] [The ADC module shall not check the integrity (see Note SWS_
Adc_00413) if several calls for the same ADC group are used during runtime in different
tasks or ISRs. |

[SWS_Adc_00445] [The ADC module shall allow configuring limit checking for ADC
Channels. |

[SWS_Adc_00446] [If limit checking is active for an ADC Channel, only ADC conver-
sion results, which are in the configured range, are taken into account for updating the
user specified ADC result buffer. |

[SWS_Adc_00447] [If limit checking is active for an ADC Channel, only ADC conver-
sion results, which are in the configured range, are taken into account for triggering
state transitions of the ADC group status. |

[SWS_Adc_00448] [If continuous conversion mode with SW trigger source is se-
lected: if limit checking is active for an ADC Channel, ADC conversion results, which
are not in the configured range, are neglected from the ADC driver, and the conversion
is reiterated. |

[SWS_Adc_00449] [If one-shot conversion mode with SW trigger source is selected:
if limit checking is active for an ADC Channel, an ADC conversion result, which is not in
the configured range, is neglected from the ADC driver, and the ADC group, containing
the ADC channel, will stay in state ADC_BUSY. |

Note: Before a new SW triggered one-shot conversion can be reissued, it is required to
set the ADC group status to ADC_IDLE, using the APl Adc_StopGroupConversion().

[SWS_Adc_00450] [If one-shot conversion mode with HW trigger source is selected:
if limit checking is active for an ADC Channel, ADC conversion results, which are not
in the configured range, are neglected from the ADC driver, and the conversion is
reissued, triggered by the next HW trigger. |

AUTSSAR

7.1.3 ADC Buffer Access Mode Example

1. Configuration

Group ADC_GROUP_DEFINITION ADC_RESULT_FPOINTER

group G1; CHO, CH1 G1_ResultPtr

group G2; CH2 G2_ResultPtr

group G3: CH3 G3_ResultPtr

Group ADC_GROUP_ACCESS_MODE ADC_STREAMING_NUM_SAMPLES
group G1: ADC_ACCESS_MODE_STEREAMING 3

group G2: ADC_ACCESS_MODE_STREAMING 2

group G3: ADC_ACCESS_MODE_SINGLE (1)

2. Result Pointer Initialization with Adc_SetupResuliBuffer AP| function
Application ADC Driver

result buffer {required)

G1-CH1
G1-CH1
G1-CH1
G1-CHO
G1-CHO
G1-CHO

G1_ResultBuffer|[6]

G1_ResultPir |

G2-CH2 [G2 ResultPtr |

G2-CH2 o
G2 ResultBuffer[2]

[G3cH3 | [G3 ResutPrr |

-

G3_ResultBuffer(1]

3. Result access with Adc_GetStreamLastPointer API function
Application Application ADC Driver ADC HW

result buffer (required)
| G1_SamplePir | _ G1-CH1

G1CHT HW result register

G1-CH1

G1-CHO
4| _GI-CHO

G1_ResultBuffer|6]
R
G2-CH2

G2_ResultBuffer[2]
no direct access
| G3_SamplePir | =l s via ADC API functions

G3_ResultBuffer(1] SuPF:;rstjﬁ rtgg.?sttﬁ HW

SetStreamLale'.":' te

[G2_SamplePtr |

ry

Adc

Figure 7.1: Example for Group and Result Buffer configuration - Result pointer initial-
ization and calling Adc_GetStreamLastPointer for accessing results of latest conversion
round in the Result Buffer

AUTSSAR

4, Result access with Adc_ReadGroup API function

Application Application ADC Driver ADC HW
read buffer result buffer
(required if Ade_ReadGroup is used) (required)
HW result register
G1-CH G1-CHI g

GI-CHO |~ [0,

G1_ReadBuffer(2] G1-CH1
G1-CHO
550
G1-CHO

G1_ResultBuffer[6]

G2-CH2 /

GeLoen i

G2_CH2 G2_ResultBuffer[2] no direct access

or via ADC API functions

G3-CH3 " 0 305,77 supported to ADC HW
- result register

G2_G3_ReadBuffer[1] G3_ResultBuffer[1] ol

P

Adc ReadGrol

result of last conversion round

Z Z

Figure 7.2: Example for calling Adc_ReadGroup which copies results from Result Buffer
to optional Read Buffer

7.1.3.1 Example: Configuration

The example configuration consists of three ADC groups. Group 1 consists of 2 chan-
nels, group 2 and group 3 consist of one channel each. For group 1 and 2 the group
access mode ADC_ACCESS_MODE_STREAMING is configured. The group access
mode of group 3is ADC_ACCESS_MODE_SINGLE. The ADC driver will store the con-
version results of group 1-3 in three application buffers, accessed with three configured
ADC_RESULT_POINTER :

G1_ResultPtr, G2_ResultPtr and G3_ResultPtr.

7.1.3.2 Example: Initialization

The user has to provide application result buffers for the ADC group results. One buffer
is required for each group. The buffer size depends on the number of group channels,
the group access mode and from the number of streaming samples, if streaming ac-
cess mode is selected. Before starting a group conversion, the user has to initialize
the group result pointer using API function Adc_SetupResultBuffer which initializes the
group result pointer to point to the specified application result buffer.

AUTSSAR

7.1.3.3 Example: Adc_GetStreamLastPointer Usage

The ADC driver stores the conversion results of group G1, G2 and G3 in the according
result buffer G1_ResultBuffer[], G2_ResultBuffer[] and G3_ResultBuffer[]. A direct ac-
cess from the ADC API functions to the ADC hardware result register is not supported
from the ADC driver.

The user provides three pointers G1_SamplePtr, G2_SamplePtr and G3_SamplePtr

which will point to the ADC application result buffer after calling Adc_GetStream
LastPointer.Precisely pointer G1_SamplePtr points, after calling Adc_GetStreamLast
Pointer, to the latest G1_CHO result of the latest completed conversion round (G1_CHO
is the first channel in G1 group definition).The application result buffer layout is shown
in Figure 2. The application result buffer of group 1 holds three times the streaming
results of G1_CHO and then three times the streaming results of G1_CH1. Knowing
the application result buffer layout, the user is able to access all group channel results
of the latest conversion round. G2_SamplePtr and G3_SamplePtr are also aligned,
after calling Adc_GetStreamLastPointer, to point to the latest result of the first group
channel of the according group. Both groups have only one channel. G2_SamplePtr
points to one of the G2_CH2 results (the latest result). Because group 3 is configured
in single access mode, G3_SamplePtr points always to G3_CHa3.

Adc_GetStreamLastPointer returns the number of valid samples per channel, stored
in the application result buffer (number of complete group conversion rounds). If the
return value is equal to the configured parameter 'number of streaming samples’, all
conversion results in the streaming buffer are valid. If the return value is 0, no conver-
sion results are available in the streaming buffer (the sample pointer will be aligned to
NULL).

To enable Adc_GetStreamLastPointer to align the sample pointer (G1_SamplePtr, G2_
SamplePtr and G3_SamplePtr) to point to the latest channel result, the API is defined
to pass a pointer to the result pointer instead the result pointer itself.

7.1.3.4 Example: Adc_ReadGroup Usage

If the optional API function Adc_ReadGroup is enabled, the user has to provide ad-
ditional buffers for the selected groups, which can hold the results of one group con-
version round. Calling Adc_ReadGroup copies the latest results from the application
result buffer to the application read group buffer. In the example, one application read
buffer (G2_G3_ReadBuffer) is used for group G2 and G3.

AUTSSAR

7.2 Conversion processing and interaction

7.2.1 Background & Rationale

The following examples specify the order of channel conversion depending on group
and conversion type:

» Example 1: Channel group containing channels [CHO, CH1, CH2, CH3, and CH4]
is configured in Continuous conversion mode. After finishing each scan, the noti-
fication (if enabled) is called. Then a new scan is started automatically.

» Example 2: Channel group containing channels [CHO, CH1, CH2, CH3, and CH4]
is configured in One-Shot conversion mode. After finishing the scan the notifica-
tion (if enabled) is called.

« Example 3: Channel group containing channel [CH3] is configured in Continuous
conversion mode. After finishing each scan the notification (if enabled) is called.
Then a new scan is started automatically.

« Example 4: Channel group containing channel [CH4] is configured in One-Shot
conversion mode. After finishing the scan the notification (if enabled) is called.

Conversion
hannel T Proces
C el Type Type cess
Multi-channel) CHO | CH1 | CH2 | CH3 | CH4 | CHO | CH1 | CH2 | CH3 | CH4 | CHO | CH1 | CH2
Continuous
Group ' ; I
3
v v
Multi-channel CHO | CH1 | CH2 | CH3 | CH4
G One-Shot
roup -
3
v
Single Channel . CH3 | CH3 | CH3 | CH3 | CH3 | CH3
Continuous
Group P ,,,,,, >
O o o |
v v \ v v
Single Channel One-Shot CH4
Group
-
v
ADC Channel Start of conversions + Notification Channels or groups
4 being converted (hardware or ;¢ (if enabled) cH2 ntinue to be converted
> sofware trigger) vy L . continue to be converte

Figure 7.3: Conversion Mode behavior examples

AUTSSAR

7.2.2 Requirements

[SWS_Adc_00280]
Upstream requirements: SRS_Adc_ 12447

[The ADC module shall convert only one ADC Channel group per ADC HW Unit at a
time. The ADC module shall not support the concurrent conversion of different (even
exclusive) ADC Channel groups on the same ADC HW Unit. |

Note: Concurrent conversion of ADC Channel groups on different ADC HW Units may
be possible, depending on the capabilities of the hardware. Also concurrent conversion
of individual channels within one channel group may be possible if supported by the
hardware.

Note: If a channel shall be used in different conversion modes (e.g. continuous con-
version mode during normal operation and one-shot conversion mode for a special
conversion at a dedicated point in time), this channel shall be assigned to different
groups configured with the respective conversion modes.

Note: In order to request the conversion of a channel shared between two groups, the
ADC user has to stop the conversion of the first group containing the specified channel
and then start the conversion of the second group containing the specified channel.

7.3 State Diagrams

The ADC module has a state machine that is shown in the following figures. The
states are group specific and not module specific. The diagrams show all possible
configuration options for ADC groups. The state transitions depend on the ADC group
configuration.

AUTSSAR

7.3.1 ADC State Diagram for One-Shot/Continuous Group Conversion Mode

/ ADC_INIT \
[ONE_SHOT]
ONE-SHOT
OO,
ADC_UNINIT Adc_Delnit
Adc_Init
[CONTINUOUS]
CONTINUOUS
Reset
OO,

- /

ADC groups. One ADC group can be only in one of the two states.

The ‘concurrent states' ONE-SHOT and CONTINUOUS are configuration options for Ij

Figure 7.4: ADC State Diagram for One-Shot/Continuous Group Conversion Mode

AUTSSAR

7.3.2 ADC State Diagram for HW/SW Trigger in One-Shot Group Conversion
Mode

stm ONE-SHOT /

Ve ONE-SHOT N

[SW-TRIGGER]

SW-TRIGGER

(SINGLE-ACCESS

[HW-TRIGGER]

HW-TRIGGER N\

[SINGLE-ACCESS]

SINGLE-ACCESS

[STREAMING-ACCESS]

STREAMING-ACCESS

Initial

- /

The ‘concurrent states' SW-TRIGGER and HW-TRIGGER are configuration options for

ADC groups. One ADC group can be only in one of the two states.

The ‘concurrent states' SINGLE-ACCESS and STREAMING-ACCESS are configuration options for
ADC groups. One ADC group can be only in one of the two states.

Figure 7.5: State Diagram HW/SW Trigger in One-Shot Group Conversion Mode

AUTSSAR

7.3.3 ADC State Diagram for SW Trigger in Continuous Conversion Mode

stm CONTINUOUS /

Ve CONTINUOUS N\

e SW-TRIGGER N\

[SINGLE-ACCESS]

SINGLE-ACCESS

[STREAMING-ACCESS]

STREAMING-ACCESS

- /

ADC groups. One ADC group can be only in one of the two states.

The ‘concurrent states' SINGLE-ACCESS and STREAMING-ACCESS are configuration options for IT

Figure 7.6: State Diagram SW Trigger in Continuous Conversion Mode

AUTSSAR

7.3.4 ADC State Diagram for One-Shot Conversion Mode, Software Trigger
Source, Single Access Mode

I\ SINGLE-ACCESS /

ADC group configuration:
* one-shot conversion

* software trigger source
*single access

Adc_ReadGroup, .
Adc_GetStreamLastPointer Adc_StopGroupConversion

ADC_IDLE /\(ADCSTREAMCOMPLETE

D
Adc_ReadGroup, k
Adc_GetStreamLastPointer

Adc_StartGroupConversion :
- P Adc_StopGroupConversion

ADC_BUSY

Adc_ReadGroup,
Adc_GetStreamLastPointer

Adc_StartGroupConversion

conversion of all group
channels completed

Figure 7.7: State Diagram On-Shot, SW Trigger, Single Access

AUTSSAR

7.3.5 ADC State Diagram for One-Shot Conversion, Hardware Trigger Source,
Single Access Mode

&INGLE-ACCESS /

ADC group configuration:
* one-shot conversion
* hardware trigger source
* single access

Adc_ReadGroup,
Adc_GetStreamLastPointer

ADC_IDLE ADC_STREAM_COMPLETED
Adc_DisableHardwareTrigger

Adc_GetStrea[nLasPoinler,

Adc_EnableHardwareTrigger Adc_DisableHardwareTrigger
Adc_ReadGroup

ADC_BUSY

Adc_ReadGroup,
Adc_GetStreamLastPointer

conversion of all group
channels completed

Figure 7.8: State Diagram One-Shot, HW Trigger, Single Access

AUTSSAR

7.3.6 ADC State Diagram for One-Shot Conversion Mode, Hardware Trigger
Source, Linear and Circular Streaming Access Mode

&NG-ACCESS /

ADC group configuration:
* one-shot conversion
* hardware trigger source
* streaming access linear and circular

Adc_ReadGroup, Adc_DisableHardwareTrigger
Adc_GetStreamLastPointer

Adc_ReadGroup,
Adc_GetStreamLastPointer
[linear streaming buffer]

ADC_IDLE ADC_STREAM_COMPLETED

Adc_ReadGroup,
Adc_GetStreamLastPointer
[circular streaming buffer]

Adc_DisableHardwareTrigger

streaming buffer

. filled completely
Adc_EnableHardwareTrigger

Adc_EnableHardwareTrigger
[linear streaming buffer]

Adc_DisableHardwareTrigger

streaming buffer
filled completely

ADC_BUSY Adc_ReadGroup, ADC_COMPLETED

Adc_GetStreamLastPointer

\—/

conversion of all group channels completed [remaining nr of streaming samples >= 1]

Adr_ReadGroup,
Adc_GetStreamLastPointer

Figure 7.9: State Diagram One-Shot, HW Trigger, Streaming Access

AUTSSAR

7.3.7 ADC State Diagram for Continuous Conversion Mode, Software Trigger
Source, Single Access Mode

stm CONTINUOUSislNGLE-ACCESS/

ADC group configuration:
* continuous conversion
* software trigger source
* single access

Adc_ReadGroup,
Adc_GetStreamLastPointer

ADC_IDLE ADC_STREAM_COMPLETED

Adc_StopGroupConversion

Adc_StartGroupConversion Adc_StopGroupConversion

Adc_GetStreamLastPointer,
Adc_ReadGroup

conversion of all group channels
completed

ADC_BUSY

Adc_ReadGroup,
Adc_GetStreamLastPointer

Figure 7.10: State Diagram Continuous, SW Trigger, Single Access

AUTSSAR

7.3.8 ADC State Diagram for Continuous Conversion Mode, Software

Source, Linear and Circular Streaming Access Mode

Trigger

stm CONTINUOUS_STREAM ING-ACCESS/

ADC group configuration:

* continuous conversion

* software trigger source

* streaming access linear and circular

Adc_StopGroupConversion

Adc_ReadGroup,
Adc_GetStreamLastPointer

Adc_ReadGroup,
Adc_GetStreamLastPointer
[linear streaming buffer]

Adc_ReadGrour{,/

Adc_GetStreamLastPointer
[circular streaming buffer]

ADC_IDLE

Adc_StartGroupConversion Adc_StopGroupConversion streami

Adc_StartGroupConversion
[linear streaming buffer]

Adc_StopGroupConversion

streaming buffer
filled completely

ADC_BUSY

\—/

conversion of all group channels completed
[remaining nr of streaming samples >= 1]

Adc_ReadGroup,
Adc_GetStreamLastPointer

ADC_STREAM_COMPLETED

ing buffer

filled completely

Adc_ReadGroup, ADC_COMPLETED
Adc_GetStreamLastPointer

Figure 7.11: State Diagram Conversion, SW Trigger, Streaming A

7.4 Support and management of HW low power states

ccess

Some ADC HW Module allow to be set in some operation modes which reduce the
power consumption, eventually at the cost of a slower reaction time, a lower perfor-
mance or eventually complete unavailability. Each ADC module could support one or
more low power operation modes, considering the Full Power Mode as always present

and set per default at startup.

AUTSSAR

7.4.1 Background

The ADC Driver offers power state control APls and a background elaboration mecha-
nism to handle asynchronous power state change processes (i.e. power state changes
which are not immediately complete as the they are requested, but need some longer
operations).

It is assumed that all constraints deriving from ECU and SW architecture are already
satisfied by the upper layers (Application, Mode Management in the service layer, lo
HwADbstraction components dealing with peripheral control), thus the scope of control
is limited to the ADC HW peripheral.

A check on the operation sequence is executed by the ADC Driver in order to avoid
requesting a different power state before the previous request is still being processed
or activating a power state when no preparation for the same has been requested.

The ADC module shall support power control capabilities as an optional function. This
module neither mandates to use only power control enabled MCUs nor to configure
the same. Rather it proposes a way to handle power states if this is supported by the
suppliers.

7.4.2 Requirements

[SWS_Adc_00462] [The ADCDriver shall support power state changes and its APIs
when the corresponding configuration parameter AdcLowPowerStatesSupport is set to
TRUE. |

[SWS_Adc_00463] [If the parameter AdcLowPowerStatesSupport is enabled then
the APIls Adc_PreparePowerState, Adc_SetPowerState, Adc_GetCurrentPowerState,
Adc_GetTargetPowerState shall be generated and shall be used to manage and get
informations on power state transitions. |

[SWS_Adc_00464] [The APIs Adc_GetTargetPowerState and Adc_GetCurrentPower
State shall be respectively used to gather information on the requested and the target
ADC power states. |

[SWS_Adc_00465] [The API Adc_PreparePowerState shall be used to start a power
state transition. |

[SWS_Adc_00466] [After preparation for a power state is achieved by API
Adc_PreparePowertState then the APl Adc_SetPowerState shall be used to achieve
the requested power state of the ADC module.

In order to avoid incoherent power state conditions, some APIs (Adc_SetPowerState,
Adc_PreparePowerState) have to be called in a given sequence, otherwise an error (if
DET tracing is enabled) is stored and the action is interrupted. The ADC Driver keeps
track of the call sequence. |

AUTSSAR

[SWS_Adc_00467] [ADC Driver shall keep track of the call order of the APIs Adc_Set
PowerState and Adc_PreparePowerState. In case the first one is called before the
second one is called, a DET entry shall be stored and the action shall not be executed. |

[SWS_Adc_00469] [The Adc Module shall keep track of the current and of the target
powerstate if the parameter AdcLowPowerStatesSupport is set to TRUE. |

[SWS_Adc_00470] [After the Initiliazation the power state of the module shall be al-
ways FULL POWER if the AdcLowPowerStatesSupport is set to TRUE. |

[SWS_Adc_00471] [The ADC Driver shall support synchronuous and asynchronous
power state transitions, depending on the value of the configuration parameter Adc
PowerStateAsynchTransitionMode. |

[SWS_Adc_00472] [In case the configuration parameter AdcPowerStateAsynchTran-
sitionMode is set to FALSE, the preparation process and the setting process shall be
considered concluded as soon as the respective APIs return. |

[SWS_Adc_00473] [In case the configuration parameter AdcPowerStateAsynchTran-
sitionMode is set to TRUE, the preparation process shall continue in background after
the relative API returns and its completion shall be notified by means of the configured
callback. |

7.5 Error Classification

Chapter [1, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.:

7.5.1 Development Errors

[SWS_Adc_91005] Definition of development errors in module Adc |

Type of error Related error code Error value
APl is called prior to initialization. ADC_E_UNINIT 0x0A

API called while ADC is already initialized. ADC_E_ALREADY_INITIALIZED 0x0D

API called with incorrect buffer pointer. ADC_E_PARAM_POINTER 0x14

API called with non existing group. ADC_E_PARAM_GROUP 0x15

AP called for a group configured for continuous ADC_E_WRONG_CONV_MODE 0x16
conversion mode.

API call not allowed according group configuration. | ADC_E_WRONG_TRIGG_SRC 0x17

V

AUTSSAR

A

Type of error

Related error code

Error value

API called and notification function pointer is
NULL.

ADC_E_NOTIF_CAPABILITY

0x18

state.

API called while result buffer pointer is not ADE_E_BUFFER_UNINIT 0x19
initialized.

API call with unsupported power state request. ADE_E_POWER_STATE_NOT_SUPPORTED 0x1B
ADC not prepared for requested target power ADC_E_PERIPHERAL_NOT_PREPARED 0x1D

7.5.2 Runtime Errors

[SWS_Adc_91006] Definition of runtime errors in module Adc |

Type of error Related error code Error value
APl is called while another conversion is already ADC_E_BUSY 0x0B
running, a HW trigger is already enabled, a

request is already stored in the queue.

APl is called while group is in state ADC_IDLE or ADC_E_IDLE 0x0C

non enabled group.

API called while one or more ADC groups are not ADC_E_NOT_DISENGAGED Ox1A

in IDLE state.

Requested power state can not be reached. ADC_E_TRANSITION_NOT_POSSIBLE 0x1C

7.5.3 Production Errors

There are no production errors.

7.5.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:

[SWS_Adc_00364] Definition of imported datatypes of module Adc |

Module Header File Imported Type
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type definitions

8.2.1 Adc_ConfigType

[SWS_Adc_00505] Definition of datatype Adc_ConfigType |

Name Adc_ConfigType
Kind Structure
Elements -
Type -
Comment Implementation specific configuration data structure.
Description Data structure containing the set of configuration parameters required for initializing the ADC

Driver and ADC HW Unit(s).

Available via

Adc.h

8.2.2 Adc_ChannelType

[SWS_Adc_00506] Definition of datatype Adc_ChannelType |

Name Adc_ChannelType

Kind Type

Derived from uint

Range - The range of this type is pC
specific and has to be described
by the supplier.

Description Numeric ID of an ADC channel.

Available via Adc.h

AUTSSAR

8.2.3 Adc_GroupType

[SWS_Adc_00507] Definition of datatype Adc_GroupType |

Name

Adc_GroupType

Kind

Type

Derived from

uint

Range

- The range of this type is pC
specific and has to be described
by the supplier.

Description

Numeric ID of an ADC channel group.

Available via

Adc.h

8.2.4 Adc_ValueGroupType

[SWS_Adc_00508] Definition of datatype Adc_ValueGroupType |

Name

Adc_ValueGroupType

Kind

Type

Derived from

int

Range

- | Implementation specific.

Description

Type for reading the converted values of a channel group (raw, without further scaling, alignment
according precompile switch ADC_RESULT_ALIGNMENT).

Available via

Adc.h

]

The result values shall be stored in an integer buffer, i.e. an array of integers.

The following rules shall apply to the driver implementation:

* [SWS_Adc_00318]
Upstream requirements: SRS_Adc_12819

[In single value access mode the result buffer shall have as many elements as
channels belonging to the group. In this way each buffer element corresponds to

a channel, in the order the channels are defined in the group. |

- [SWS_Adc_00319]
Upstream requirements: SRS_Adc_12825

[In streaming access mode the result buffer shall have m*n elements, where
n is the number of channels belonging to the group, m the number of samples
acquired per channel. In this way the first m elements belong to the first channel

in the group, the second m elements to the second channel and so on. |

AUTSSAR

* [SWS_Adc_00320]
Upstream requirements: SRS_Adc_12822

[The dimension (in number of bits) of each buffer element (of type integer) shall

be uniform, tailored on the largest (in number of bits) channel belonging to any
group. |

Note: Only if all ADC channels of all ADC groups have 8 bit resolution,

Adc_ValueGroupType can be configured as 8 bit data type.

Note: The information about number of channels belonging to the group and number

of samples acquired per channel can be derived from the group configuration data.

8.2.5 Adc_PrescaleType

[SWS_Adc_00509] Definition of datatype Adc_PrescaleType |

Name Adc_PrescaleType

Kind Type

Derived from uint

Range - The range of this type is pC
specific and has to be described
by the supplier.

Description Type of clock prescaler factor. (This is not an API type).

Available via Adc.h

8.2.6 Adc_ConversionTimeType

[SWS_Adc_00510] Definition of datatype Adc_ConversionTimeType |

Name Adc_ConversionTimeType

Kind Type

Derived from uint

Range - The range of this type is pC
specific and has to be described
by the supplier.

Description Type of conversion time, i.e. the time during which the sampled analogue value is converted into

digital representation. (This is not an API type).
Available via Adc.h

AUTSSAR

8.2.7 Adc_SamplingTimeType

[SWS_Adc_00511] Definition of datatype Adc_SamplingTimeType |

Name Adc_SamplingTimeType

Kind Type

Derived from uint

Range - - The range of this type is pC
specific and has to be described
by the supplier.

Description Type of sampling time, i.e. the time during which the value is sampled, (in clock-cycles). (This is

not an APl type).
Available via Adc.h

8.2.8 Adc_ResolutionType

[SWS_Adc_00512] Definition of datatype Adc_ResolutionType [

Name Adc_ResolutionType

Kind Type

Derived from uint8

Range - - The range of this type is uC
specific and has to be described
by the supplier.

Description Type of channel resolution in number of bits. (This is not an API type).

Available via

Adc.h

8.2.9 Adc_StatusType

[SWS_Adc_00513] Definition of datatype Adc_StatusType |

Name Adc_StatusType
Kind Enumeration
Range ADC_IDLE 0x00 *» The conversion of the specified group has
not been started.
* No result is available.
ADC_BUSY 0x01 * The conversion of the specified group has
been started and is still going on.
» So far no result is available.
ADC_COMPLETED 0x02 + A conversion round (which is not the final
one) of the specified group has been
finished.
* A result is available for all channels of the
group.

AUTSSAR

ADGC_STREAM_
COMPLETED

0x03

* The result buffer is completely filled

+ For each channel of the selected group the
number of samples to be acquired is
available

Description

Current status of the conversion of the requested ADC Channel group.

Available via

Adc.h

8.2.10 Adc_TriggerSourceType

[SWS_Adc_00514] Definition of datatype Adc_TriggerSourceType |

Name Adc_TriggerSourceType

Kind Enumeration

Range ADC_TRIGG_SRC_SW 0x00 Group is triggered by a software API call.
ADC_TRIGG_SRC_HW 0x01 Group is triggered by a hardware event.

Description Type for configuring the trigger source for an ADC Channel group.

Available via

Adc.h

8.2.11 Adc_GroupConvModeType

[SWS_Adc_00515] Definition of datatype Adc_GroupConvModeType |

Name

Adc_GroupConvModeType

Kind

Enumeration

Range

ADC_CONV_MODE_
ONESHOT

0x00

Exactly one conversion of each channel in an
ADC channel group is performed after the
configured trigger event. In case of 'group
trigger source software’, a started One-Shot
conversion can be stopped by a software API
call. In case of 'group trigger source
hardware’, a started One-Shot conversion
can be stopped by disabling the trigger event
(if supported by hardware).

ADC_CONV_MODE_
CONTINUOUS

0x01

Repeated conversions of each ADC channel
in an ADC channel group are performed.
"Continuous conversion mode’ is only
available for 'group trigger source software’.
A started ’Continuous conversion’ can be
stopped by a software API call.

Description

Type for configuring the conversion mode of an ADC Channel group.

Available via

Adc.h

AUTSSAR

8.2.12 Adc_GroupPriorityType

[SWS_Adc_00516] Definition of datatype Adc_GroupPriorityType |

Name Adc_GroupPriority Type

Kind Type

Derived from uint8

Range 0..255 - -
Description Priority level of the channel. Lowest priority is 0.

Available via Adc.h

8.2.13 Adc_GroupDefType

[SWS_Adc_00517] Definition of datatype Adc_GroupDefType |

Name Adc_GroupDefType

Kind Type

Derived from implementation_specific

Description Type for assignment of channels to a channel group (this is not an API type).
Available via Adc.h

8.2.14 Adc_StreamNumSampleType

[SWS_Adc_00518] Definition of datatype Adc_StreamNumSampleType |

Name Adc_StreamNumSampleType

Kind Type

Derived from uint

Range - The range of this type is pC
specific and has to be described
by the supplier.

Description Type for configuring the number of group conversions in streaming access mode (in single access

mode, parameter is 1).
Available via Adc.h

AUTSSAR

8.2.15 Adc_StreamBufferModeType

[SWS_Adc_00519] Definition of datatype Adc_StreamBufferModeType |

Name Adc_StreamBufferModeType
Kind Enumeration
Range ADC_STREAM_BUFFER_ 0x00 The ADC Driver stops the conversion as soon
LINEAR as the stream buffer is full (number of
samples reached).
ADC_STREAM_BUFFER_ 0x01 The ADC Driver continues the conversion
CIRCULAR even if the stream buffer is full (number of
samples reached) by wrapping around the
stream bulffer itself.
Description Type for configuring the streaming access mode buffer type.
Available via Adc.h

8.2.16 Adc_GroupAccessModeType

[SWS_Adc_00528] Definition of datatype Adc_GroupAccessModeType |

Name Adc_GroupAccessModeType

Kind Enumeration

Range ADC_ACCESS_MODE_ 0x00 Single value access mode.
SINGLE
ADC_ACCESS_MODE_ 0x01 Streaming access mode.
STREAMING

Description Type for configuring the access mode to group conversion results.

Available via Adc.h

8.2.17 Adc_HwTriggerSignalType

[SWS_Adc_00520] Definition of datatype Adc_HwTriggerSignalType |

EDGES

Name Adc_HwTriggerSignalType
Kind Enumeration
Range ADC_HW_TRIG_RISING_ 0x00 React on the rising edge of the hardware
EDGE trigger signal (only if supported by the ADC
hardware).
ADC_HW_TRIG_FALLING_ | 0x01 React on the falling edge of the hardware
EDGE trigger signal (only if supported by the ADC
hardware).
ADC_HW_TRIG_BOTH_ 0x02 React on both edges of the hardware trigger

signal (only if supported by the ADC
hardware).

AUTSSAR

A

Description

Type for configuring on which edge of the hardware trigger signal the driver should react, i.e. start
the conversion (only if supported by the ADC hardware).

Available via

Adc.h

8.2.18 Adc_HwTriggerTimerType

[SWS_Adc_00521] Definition of datatype Adc_HwTriggerTimerType |

Name Adc_HwTriggerTimerType

Kind Type

Derived from uint

Range - - The range of this type is pC
specific and has to be described
by the supplier.

Description Type for the reload value of the ADC module embedded timer (only if supported by the ADC

hardware).
Available via Adc.h

8.2.19 Adc_PrioritylmplementationType

[SWS_Adc_00522] Definition of datatype Adc_PrioritylmplementationType |

Name Adc_PrioritylmplementationType
Kind Enumeration
Range ADC_PRIORITY_NONE 0x00 priority mechanism is not available
ADC_PRIORITY_HW 0x01 Hardware priority mechanism is available only
ADC_PRIORITY_HW_SW 0x02 Hardware and software priority mechanism is
available
Description Type for configuring the prioritization mechanism.

Available via

Adc.h

AUTSSAR

8.2.20 Adc_GroupReplacementType

[SWS_Adc_00523] Definition of datatype Adc_GroupReplacementType |

Name

Adc_GroupReplacementType

Kind

Enumeration

Range

ADC_GROUP_REPL _
ABORT_RESTART

0x00

Abort/Restart mechanism is used on group
level, if a group is interrupted by a higher
priority group. The complete conversion
round of the interrupted group (all group
channels)is restarted after the higher priority
group conversion is finished. If the group is
configured in streaming access mode, only
the results of the interrupted conversion
round are discarded. Results of previous
conversion rounds which are already written
to the result buffer are not affected.

ADC_GROUP_REPL _
SUSPEND_RESUME

0x01

Suspend/Resume mechanism is used on
group level, if a group is interrupted by a
higher priority group. The conversion round of
the interrupted group is completed after the
higher priority group conversion is finished.
Results of previous conversion rounds which
are already written to the result buffer are not
affected.

Description

Replacement mechanism, which is used on ADC group level, if a group conversion is interrupted

by a group which has a higher priority.

Available via

Adc.h

8.2.21 Adc_ChannelRangeSelectType

[SWS_Adc_00524] Definition of datatype Adc_ChannelRangeSelectType |

Name Adc_ChannelRangeSelectType
Kind Enumeration
Range ADC_RANGE_UNDER_ 0x00 Range below low limit - low limit value
LOW included
ADC_RANGE_BETWEEN 0x01 Range between low limit and high limit - high
limit value included
ADC_RANGE_OVER_HIGH | 0x02 Range above high limit
ADC_RANGE_ALWAYS 0x03 Complete range - independent from channel
limit settings
ADC_RANGE_NOT_ 0x04 Range above low limit
UNDER_LOW
ADC_RANGE_NOT_ 0x05 Range above high limit or below low limit -
BETWEEN low limit value included
ADC_RANGE_NOT_ 0x06 Range below high limit - high limit value
OVER_HIGH included
Description In case of active limit checking: defines which conversion values are taken into account related to

the boardes defineed with AdcChannelLowLimit and AdcChannelHighLimit.

Available via

Adc.h

AUTSSAR

8.2.22 Adc_ResultAlignmentType

[SWS_Adc_00525] Definition of datatype Adc_ResultAlignmentType |

Name Adc_ResultAlignmentType

Kind Enumeration

Range ADC_ALIGN_LEFT 0x00 left alignment
ADC_ALIGN_RIGHT 0x01 right alignment

Description Type for alignment of ADC raw results in ADC result buffer (left/right alignment).

Available via Adc.h

8.2.23 Adc_PowerStateType

[SWS_Adc_00526] Definition of datatype Adc_PowerStateType |

Name Adc_PowerStateType
Kind Type
Derived from uint8
Range ADC_FULL_POWER 0x00 Full Power
1..255 0x01..0xFF power modes with decreasing
power consumptions.
Description Power state currently active or set as target power state.
Available via Adc.h

8.2.24 Adc_PowerStateRequestResultType

[SWS_Adc_00527] Definition of datatype Adc_PowerStateRequestResultType |

Name Adc_PowerStateRequestResultType
Kind Enumeration
Range ADC_SERVICE_ 0 Power state change executed.
ACCEPTED
ADC_NOT_INIT 1 ADC Module not initialized.
ADC_SEQUENCE_ERROR | 2 Wrong API call sequence.
ADC_HW_FAILURE 3 The HW module has a failure which prevents
it to enter the required power state.
ADC_POWER_STATE_ 4 ADC Module does not support the requested
NOT_SUPP power state.
ADC_TRANS_NOT_ 5 ADC Module cannot transition directly from
POSSIBLE the current power state to the requested
power state or the HW peripheral is still busy.
Description Result of the requests related to power state transitions.

Available via

Adc.h

AUTSSAR

8.3 Function definitions

8.3.1 Adc_lInit

[SWS_Adc_00365] Definition of API function Adc_lInit |

Service Name

Adc_Init

Syntax void Adc_Init (
const Adc_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to configuration set in Variant PB (Variant PC requires a
NULL_PTR).
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the ADC hardware units and driver.
Available via Adc.h

]

[SWS_Adc_00054]

Upstream requirements: SRS_BSW_00405, SRS_BSW_00101, SRS_BSW_00414, SRS_SPAL _
12057, SRS_SPAL 12461

[In case of Variant PB: The function Adc_lInit shall initialize the ADC hardware units
and driver according to the configuration set referenced by ConfigPtr. |

[SWS_Adc_00056]

Upstream requirements: SRS_SPAL_12125
[The function Adc_Init shall only initialize the configured resources. Resources that
are not contained in the configuration file shall not be touched. |

The following rules regarding initialization of controller registers apply to this driver
implementation:

* [SWS_Adc_00246]
Upstream requirements: SRS_SPAL_12461

[If the hardware allows for only one usage of the register, the driver module
implementing that functionality is responsible for initializing the register. |

- [SWS_Adc_00247]
Upstream requirements: SRS_SPAL_12461

[If the register can affect several hardware modules and if it is an 1/O register, it
shall be initialized by the PORT driver. |

AUTSSAR

* [SWS_Adc_00248]
Upstream requirements: SRS_SPAL_12461

[If the register can affect several hardware modules and if it is not an I/O register,
it shall be initialized by the MCU driver. |

- [SWS_Adc_00249]
Upstream requirements: SRS_SPAL_12461

[One-time writable registers that require initialization directly after reset shall be
initialized by the startup code. |

* [SWS_Adc_00250]
Upstream requirements: SRS_SPAL_12461

[All other registers shall be initialized by the startup code. |

[SWS_Adc_00077]
Upstream requirements: SRS_Adc_12318

[The function Adc_lInit shall disable the notifications and hardware trigger capability (if
statically configured as active). |
[SWS_Adc_00307] [The function Adc_Init shall set all groups to ADC_IDLE state. |
[SWS_Adc_00107]

Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled:if called when the ADC
driver and hardware are already initialized, the function Adc_Init shall raise develop-
ment error ADC_E_ALREADY_INITIALIZED and return without any action. |

8.3.2 Adc_SetupResultBuffer

[SWS_Adc_91000] Definition of API function Adc_SetupResultBuffer |

Service Name Adc_SetupResultBuffer

Syntax Std_ReturnType Adc_SetupResultBuffer (
Adc_GroupType Group,
Adc_ValueGroupType* DataBufferPtr

)

Service ID [hex] 0x0c

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) Group Numeric ID of requested ADC channel group.
DataBufferPtr pointer to result data buffer

Parameters (inout) None

\Y

AUTSSAR

A
Parameters (out) None
Return value Std_ReturnType E_OK: result buffer pointer initialized correctly
E_NOT_OK: operation failed or development error occured
Description Initializes ADC driver with the group specific result buffer start address where the conversion

results will be stored. The application has to ensure that the application buffer, where Data
BufferPtr points to, can hold all the conversion results of the specified group. The initialization
with Adc_SetupResultBuffer is required after reset, before a group conversion can be started.

Available via Adc.h

]

[SWS_Adc_00420] [The function Adc_SetupResultBuffer shall initialize the result
buffer pointer of the selected group with the address value passed as parameter. |

[SWS_Adc_00421] [The ADC module’s environment shall ensure that no group con-
versions are started without prior initialization of the according result buffer pointer to
point to a valid result buffer. |

[SWS_Adc_00422] [The ADC module’s environment shall ensure that the application
buffer, which address is passed as parameter in Adc_SetupResultBuffer, has the ac-
cording size to hold all group channel conversion results and if streaming access is
selected, hold these results multiple times as specified with streaming sample param-
eter (see ADC292). |

[SWS_Adc_00423] [If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_SetupResultBuffer shall raise
development error ADC_E_PARAM_GROUP and return without any action. |

[SWS_Adc_00433] [If called while group is not in state ADC_IDLE, function Adc_
SetupResultBuffer shall report a runtime error ADC_E_BUSY. |

[SWS_Adc_00434] [If development error detection for the ADC module is enabled:
when called prior to initializing the driver, the function Adc_SetupResultBuffer shall
raise development error ADC_E_UNINIT. |

[SWS_Adc_00457] [If development error detection for the ADC module is enabled:
when called with a NULL_PTR as DataBufferPtr, the function Adc_SetupResultBuffer
shall raise development error ADC_E_PARAM_POINTER. |

AUTSSAR

8.3.3 Adc_Delnit

[SWS_Adc_00366] Definition of API function Adc_Delnit |

Service Name Adc_Delnit
Syntax void Adc_DelInit (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Returns all ADC HW Units to a state comparable to their power on reset state.
Available via Adc.h
]

[SWS_Adc_00110]
Upstream requirements: SRS_SPAL_12163

[The function Adc_Delnit shall return all ADC HW Units to a state comparable to their
power on reset state. Values of registers which are not writeable are excluded. It’s the
responsibility of the hardware design that this state does not lead to undefined activities
in the uC. |

[SWS_Adc_00111]
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163

[The function Adc_Delnit shall disable all used interrupts and notifications. |

[SWS_Adc_00358] [The ADC module’s environment shall not call the function Adc_
Delnit while any group is not in state ADC_IDLE. |

[SWS_Adc_00228]
Upstream requirements: SRS_BSW_00171

[The function Adc_Delnit shall be pre compile time configurable On/Off by the config-
uration parameter: AdcDelnitApi. |

[SWS_Adc_00112] [If calledwhile not all groups are either in state ADC_IDLE or state
ADC_STREAM_COMPLETED, while no conversion is ongoing (ADC groups which are
implicitly stopped), the function Adc_Delnit shall report a runtime error. |

[SWS_Adc_00154]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448
[If development error detection for the ADC module is enabled: if called before the

module has been initialized, the function Adc_Delnit shall raise development error
ADC_E_UNINIT and return without any action. |

AUTSSAR

8.3.4 Adc_StartGroupConversion

[SWS_Adc_00367] Definition of API function Adc_StartGroupConversion |

Service Name Adc_StartGroupConversion
Syntax void Adc_StartGroupConversion (

Adc_GroupType Group

)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Group Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) None
Return value None
Description Starts the conversion of all channels of the requested ADC Channel group.
Available via Adc.h
]

[SWS_Adc_00061]
Upstream requirements: SRS_Adc_12364

[The function Adc_StartGroupConversion shall start the conversion of all channels of
the requested ADC Channel group. Depending on the group configuration, one-shot
or continuous conversion is started. |

[SWS_Adc_00431] [The function Adc_StartGroupConversion shall reset the internal
result buffer pointer, that conversion result storage always starts, after calling Adc_
StartGroupConversion, at the result buffer base address which was configured with
Adc_SetupResultBuffer. |

[SWS_Adc_00156]
Upstream requirements: SRS_Adc_12317, SRS_Adc_12318

[The function Adc_StartGroupConversion shall NOT automatically enable the notifica-
tion mechanism for that group (this has to be done by a separate API call). |
[SWS_Adc_00146]

Upstream requirements: SRS_Adc_12817, SRS _Adc_ 12364
[The ADC module’s environment shall only call Adc_StartGroupConversion for groups
configured with software trigger source. |
[SWS_Adc_00259]

Upstream requirements: SRS_BSW_00171

[The function Adc_StartGroupConversion shall be pre-compile time configurable On/
Off by the configuration parameter AdcEnableStartStopGroupApi. |

AUTSSAR

[SWS_Adc_00125]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled:when called with a non-
existing channel group ID, function Adc_StartGroupConversion shall raise development
error ADC_E_PARAM_GROUP and return without any action. |

[SWS_Adc_00133]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled: when called on a
group with trigger source configured as hardware, function Adc_StartGroupConversion
shall raise development error ADC_E_WRONG_TRIGG_SRC and return without any
action. |

[SWS_Adc_00346] [If the priority mechanism is disabled and the queuing is disabled
: when called while any of the groups, which can not be implicitly stopped, is not in
state ADC_IDLE, the function Adc_StartGroupConversion shall report a runtime error
ADC_E_BUSY.|

Note: The condition that any group is not in state ADC_IDLE means in this context:
* Any conversion is ongoing
or

« Any HW trigger is enabled

[SWS_Adc_00426] [If the priority mechanism is disabled and the queuing is dis-
abled: when called while any of the groups, which can be implicitly stopped, is not
in state ADC_IDLE and not in state ADC_STREAM_COMPLETED, the function Adc_
StartGroupConversion shall report a runtime error ADC_E_BUSY. |

Note: Groups which can be implicitly stopped are:
» Software triggered groups configured in one-shot, single-access mode

» Software triggered groups configured in continuous, linear streaming access
mode

» Hardware triggered groups configured in one-shot, linear streaming access mode

[SWS_Adc_00348] [If the priority mechanism is enabled: when called while agroup,
which can not be implicitly stopped, is not in state ADC_IDLE, the function Adc_Start
GroupConversion shall report a runtime error ADC_E_BUSY. |

Note: The condition that the group is not in state ADC_IDLE means in this context:
» The conversion of the same group is currently ongoing

or

AUTSSAR

* A conversion request for the same group is already stored one time in the queue

[SWS_Adc_00427] [If the priority mechanism is enabled: when called while a group,
which can be implicitly stopped, is not in state ADC_IDLE and not in state ADC_
STREAM_COMPLETED, the function Adc_StartGroupConversion shall report a run-
time error ADC_E_BUSY. |

[SWS_Adc_00351] [If the priority mechanism is disabled and the queuing is enabled:
when called while a group, which can not be implicitly stopped, is not in state ADC_
IDLE, the function Adc_StartGroupConversion shall report a runtime error ADC_E__
BUSY. |

[SWS_Adc_00428] [If the priority mechanism is disabled and the queuing is enabled:
when called while a group, which can be implicitly stopped, is not in state ADC_IDLE
and not in state ADC_STREAM_COMPLETED, the function Adc_StartGroupConver-
sion shall report a runtime error ADC_E_BUSY. |

[SWS_Adc_00294]
Upstream requirements: SRS_BSW_00406
[If development error detection for the ADC module is enabled:when called prior to

initializing the driver, the function Adc_StartGroupConversion shall raise development
error ADC_E_UNINIT. |

[SWS_Adc_00424] [If development error detection for the ADC module is enabled:
when called prior to initializing the result buffer pointer with function Adc_SetupResult
Buffer, the function Adc_StartGroupConversion shall raise development error ADC_E
BUFFER_UNINIT. |

8.3.5 Adc_StopGroupConversion

[SWS_Adc_00368] Definition of API function Adc_StopGroupConversion |

Service Name Adc_StopGroupConversion
Syntax void Adc_StopGroupConversion (
Adc_GroupType Group

)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Group Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) None
Return value None
Description Stops the conversion of the requested ADC Channel group.
Available via Adc.h

AUTSSAR

[SWS_Adc_00385]
Upstream requirements: SRS_Adc_12364

[When the ADC Channel Group is in one-shot and software-trigger mode, the function
Adc_StopGroupConversion shall stop an ongoing conversion of the group. |

[SWS_Adc_00437] [When the ADC Channel Group is in one-shot and software-
trigger mode, the function Adc_StopGroupConversion shall remove a start/restart re-
quest of the group from the queue, if queuing is enabled and a start/restart request is
stored in the queue. |

[SWS_Adc_00386]
Upstream requirements: SRS_Adc_12364

[When the ADC Channel Group is in continuous-conversion and software-trigger
mode, the function Adc_StopGroupConversion shall stop an ongoing conversion of
the group. |

[SWS_Adc_00438] [When the ADC Channel Group is in continuous-conversion and
software-trigger mode, the function Adc_StopGroupConversion shall remove a start/
restart request of the group from the queue, if queuing is enabled and a start/restart
request is stored in the queue. |

[SWS_Adc_00155]

Upstream requirements: SRS_Adc_12317
[The function Adc_StopGroupConversion shall automatically disable group notification
for the requested group. |

Note:

Groups which are implicitly stopped shall not disable the group notification until Adc_
StopGroupConversion is called.

[SWS_Adc_00360] | The function Adc_StopGroupConversion shall set the group sta-
tus to state ADC_IDLE. |

[SWS_Adc_00283]

Upstream requirements: SRS_Adc_12817
[The ADC module’s environment shall only call the function Adc_StopGroupConver-
sion for groups configured with trigger source software. |

[SWS_Adc_00260]
Upstream requirements: SRS_BSW_00171

[The function Adc_StopGroupConversion shall be pre compile time configurable On/
Off by the configuration parameter AdcEnableStartStopGroupApi. |

AUTSSAR

[SWS_Adc_00126]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled:if the group ID is non-
existing, the function Adc_StopGroupConversion shall raise development error ADC_
E_PARAM_GROUP and return without any action. |

[SWS_Adc_00164]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled:if the group has a trig-
ger source configured as hardware, function Adc_StopGroupConversion shall raise
development error ADC_E_WRONG_TRIGG_SRC and return without any action. |

[SWS_Adc_00241]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[When called while the group is in state ADC_IDLE, the function Adc_StopGroupCon-
version shall report a runtime error ADC_E_IDLE. |

Note: For groups which are implicitly stopped (groups with conversion mode one-shot
or groups with linear streaming buffer mode), state is ADC_STREAM_COMPLETED
until results are accessed with Adc_ReadGroup or Adc_GetStreamLastPointer API
functions or until group is explicitly stopped by Adc_StopGroupConversion API.

[SWS_Adc_00295]
Upstream requirements: SRS_BSW_00406

[If development error detection for the ADC module is enabled: if called prior to ini-
tializing the module, function Adc_StopGroupConversion shall raise development error
ADC_E_UNINIT and return without any action. |

Note:

All groups which are started with Adc_StartGroupConversion should also be stopped
with Adc_StopGroupConversion, before they are started again to reset the group status
to ADC_IDLE. Exceptions to this rule are groups which are implicitly stopped because
of the selected conversion mode (linear buffer with streaming access mode or one-
shot conversion mode with single access).These groups can also be restarted while
the group is in state ADC_STREAM_COMPLETED.

AUTSSAR

8.3.6 Adc_ReadGroup

[SWS_Adc_00369] Definition of API function Adc_ReadGroup |

Service Name Adc_ReadGroup

Syntax Std_ReturnType Adc_ReadGroup (
Adc_GroupType Group,
Adc_ValueGroupType* DataBufferPtr

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Group Numeric ID of requested ADC channel group.

Parameters (inout) None

Parameters (out) DataBufferPtr ADC results of all channels of the selected group are stored in
the data buffer addressed with the pointer.

Return value Std_ReturnType E_OK: results are available and written to the data buffer
E_NOT_OK: no results are available or development error occured

Description Reads the group conversion result of the last completed conversion round of the requested

group and stores the channel values starting at the DataBufferPtr address. The group channel
values are stored in ascending channel number order (in contrast to the storage layout of the
result buffer if streaming access is configured).

Available via Adc.h

]

[SWS_Adc_00075] [The function Adc_ReadGroup shall read the latest available con-
version results of the requested group. |

[SWS_Adc_00113]

Upstream requirements: SRS_SPAL_12063, SRS_Adc_12819, SRS_Adc_12292, SRS_Adc_-
12824

[The function Adc_ReadGroup shall read the raw converted values without further
scaling. The read values shall be aligned according the configuration parameter setting
of ADC_RESULT_ALIGNMENT. |

[SWS_Adc_00122]
Upstream requirements: SRS_Adc_12283, SRS_Adc_12819

[If applicable, the function Adc_ReadGroup shall mask out all information or diagnos-
tic bits provided by the conversion but not belonging to the conversion results them-
selves. |

[SWS_Adc_00329]
Upstream requirements: SRS_Adc_ 12291

[Calling function Adc_ReadGroup while group status is ADC_STREAM_COMPLETED
shall trigger a state transition to ADC_BUSY for continuous conversion modes (single
access mode or circular streaming buffer mode) and hardware triggered groups in
single access mode or circular streaming access mode. |

AUTSSAR

[SWS_Adc_00330]

Upstream requirements: SRS_Adc_12291
[Calling function Adc_ReadGroup while group status is ADC_STREAM_COMPLETED
shall trigger a state transition to ADC_IDLE for software triggered conversion modes
which automatically stop the conversion (streaming buffer with linear access mode or

one-shot conversion mode with single access) and for the hardware triggered conver-
sion mode in combination with linear streaming access mode. |

[SWS_Adc_00331]
Upstream requirements: SRS_Adc_12291

[Calling function Adc_ReadGroup while group status is ADC_COMPLETED shall trig-
ger a state transition to ADC_BUSY. |

[SWS_Adc_00359] [The function Adc_ReadGroup shall be pre-compile configurable
On/Off by the configuration parameter AdcReadGroupApi. |

[SWS_Adc_00388] [When called while the group status is ADC_IDLE and the group
conversion was not started (no results are available from previous conversions), the
function Adc_ReadGroup shall report a runtime error ADC_E_IDLE. |

[SWS_Adc_00152]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled: if the group ID is non-
existing, the function Adc_ReadGroup shall raise development error ADC_E_PARAM _
GROUP and return E_NOT_OK |

[SWS_Adc_00296] [If development error detection for the ADC module is enabled:
when called prior to initializing the driver, the function Adc_ReadGroup shall raise de-
velopment error ADC_E_UNINIT and return E_NOT_OK. |

8.3.7 Adc_EnableHardwareTrigger

[SWS_Adc_91001] Definition of API function Adc_EnableHardwareTrigger |

Service Name Adc_EnableHardwareTrigger

Syntax void Adc_EnableHardwareTrigger (
Adc_GroupType Group
)

Service ID [hex] 0x05

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) Group ‘ Numeric ID of requested ADC Channel group.
Parameters (inout) None

\Y

AUTSSAR

A
Parameters (out) None
Return value None
Description Enables the hardware trigger for the requested ADC Channel group.
Available via Adc.h

]

[SWS_Adc_00114]
Upstream requirements: SRS_Adc_12823

[The function Adc_EnableHardwareTrigger shall enable the hardware trigger for the
requested ADC Channel group. |

Note: Adc_EnableHardwareTrigger can only be used for ADC internal trigger sources
controlled from the ADC hardware.

[SWS_Adc_00144]
Upstream requirements: SRS_Adc_12823

[A group with trigger source hardware, whose trigger was enabled with Adc_Enable
HardwareTrigger, shall execute the group channel conversions, whenever a trigger
event occurs. |

[SWS_Adc_00432] [The function Adc_EnableHardwareTrigger shall reset the internal
group result buffer pointer, that conversion result storage always starts, after calling
Adc_EnableHardwareTrigger, at the result buffer base address which was configured
with Adc_SetupResultBuffer. |

[SWS_Adc_00273]
Upstream requirements: SRS_Adc_12823

[The ADC module’s environment shall guarantee that no concurrent conversions take
place on the same HW Unit (happening of different hardware triggers at the same
time). |

Note: The reason for SWS_Adc_00273 is that the ADC module can only handle one
group conversion request per HW Unit at the same time. In case of concurrent HW
conversion requests, the HW prioritization mechanism controls the conversion order.

[SWS_Adc_00120]

Upstream requirements: SRS_BSW_00171
[The ADC module’s environment shall only call the function Adc_EnableHardwareTrig-
ger for groups configured in hardware trigger mode (see AdcGroupTriggSrc). |

[SWS_Adc_00265]
Upstream requirements: SRS_BSW_00171

[The function Adc_EnableHardwareTrigger shall be pre-compile time configurable On/
Off by the configuration parameter AdcHwTriggerApi. |

AUTSSAR

[SWS_Adc_00321] [If the priority mechanism is disabled and queuing disabled: when
called while any group with trigger source SW is not in state ADC_IDLE, the function
Adc_EnableHardwareTrigger shall report a runtime error ADC_E_BUSY. |

[SWS_Adc_00349] [If the HW trigger for the group is already enabled, the function
Adc_EnableHardwareTrigger shall report a runtime error ADC_E_BUSY. |

[SWS_Adc_00353] [If the maximum number of available hardware triggers is already
enabled (device and implementation specific), the function Adc_EnableHardwareTrig-
ger shall report a runtime error ADC_E_BUSY. |

[SWS_Adc_00128]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled: if the channel group
ID is invalid, the function Adc_EnableHardwareTrigger shall raise development error
ADC_E_PARAM_GROUP and return without any action. |

[SWS_Adc_00136]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled: if the group is con-
figured for software API trigger mode, the function Adc_EnableHardwareTrigger shall
raise development error ADC_E_WRONG_TRIGG_SRC and return without any ac-
tion. |

[SWS_Adc_00281]
Upstream requirements: SRS_Adc_12823

[If development error detection for the ADC module is enabled: if a HW group is er-
roneously configured for continuous conversion mode, the function Adc_EnableHard-
wareTrigger shall raise development error ADC_E_WRONG_CONV_MODE and return
without any action. |

Note: SW groups configured in continuous conversion mode shall raise development
error ADC_E WRONG_TRIGG_SRC instead.

[SWS_Adc_00297]
Upstream requirements: SRS_BSW_00406

[If development error detection for the ADC module is enabled: if called prior to ini-
tializing the driver, the function Adc_EnableHardwareTrigger shall raise development
error ADC_E_UNINIT and return without any action. |

[SWS_Adc_00425] [If development error detection for the ADC module is enabled:
when called prior to initializing the result buffer pointer with function Adc_SetupResult
Buffer, the function Adc_EnableHardwareTrigger shall raise development error ADC_
E_BUFFER_UNINIT. |

AUTSSAR

8.3.8 Adc_DisableHardwareTrigger

[SWS_Adc_91002] Definition of API function Adc_DisableHardwareTrigger |

Service Name

Adc_DisableHardwareTrigger

Syntax void Adc_DisableHardwareTrigger (
Adc_GroupType Group

)
Service ID [hex] 0x06
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Group Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Disables the hardware trigger for the requested ADC Channel group.

Available via

Adc.h

]

[SWS_Adc_00116]

Upstream requirements: SRS_Adc_12823
[The function Adc_DisableHardwareTrigger shall disable the hardware trigger for the
requested ADC Channel group. |

[SWS_Adc_00429] [The function Adc_DisableHardwareTrigger shall remove any
queued start/restart request for the requested ADC Channel group if queuing is en-
abled. |

[SWS_Adc_00145]

Upstream requirements: SRS_Adc_12364
[The function Adc_DisableHardwareTrigger shall abort an ongoing conversion, if ap-
plicable (supported by the hardware). |

[SWS_Adc_00157]

Upstream requirements: SRS_Adc_12317, SRS_Adc_12318, SRS_Adc_12364
[If enabled, the function Adc_DisableHardwareTrigger shall disable the notification
mechanism for the requested group. |

[SWS_Adc_00361] [The function Adc_DisableHardwareTrigger shall set the group
status to state ADC_IDLE. |

[SWS_Adc_00121]
Upstream requirements: SRS_BSW_00171

[The ADC module’s environment shall only call the function Adc_DisableHardware
Trigger for groups configured in hardware trigger mode (see AdcGroupTriggSrc). |

AUTSSAR

[SWS_Adc_00266]
Upstream requirements: SRS_BSW_00171

[The function Adc_DisableHardwareTrigger shall be pre-compile time configurable On/
Off by the configuration parameter AdcHwTriggerApi. |

[SWS_Adc_00129]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled: if the channel group
ID is non-existing, the function Adc_DisableHardwareTrigger shall raise development
error ADC_E_PARAM_GROUP and return without any action. |

[SWS_Adc_00137]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448

[If development error detection for the ADC module is enabled: if the group is con-
figured for software API trigger mode, the function Adc_DisableHardwareTrigger shall
raise development error ADC_E WRONG_TRIGG_SRC and return without any ac-
tion. |

[SWS_Adc_00282]
Upstream requirements: SRS_Adc_12823

[If development error detection for the ADC module is enabled:if a HW group is er-
roneously configured for continuous conversion mode, the function Adc_DisableHard-
wareTrigger shall raise development error ADC_E_WRONG_CONV_MODE and return
without any action. |

Note: SW groups configured in continuous conversion mode shall raise development
error ADC_E_WRONG_TRIGG_SRC instead.

[SWS_Adc_00304] [If the group is not enabled (with a previous call of Adc_Enable
HardwareTrigger), the function Adc_DisableHardwareTrigger shall report a runtime er-
ror ADC_E_IDLE. |

[SWS_Adc_00298]
Upstream requirements: SRS _BSW_00406

[If development error detection for the ADC module is enabled: if called prior to ini-
tializing the ADC module, Adc_DisableHardwareTrigger shall raise development error
ADC_E_UNINIT and return without any action. |

Note:

All groups which are enabled with Adc_EnableHardwareTrigger should also be dis-
abled with Adc_DisableHardwareTrigger, before they are enabled again, even if they
are implicitly stopped because of the selected conversion mode (streaming buffer with
linear access mode).

AUTSSAR

8.3.9 Adc_EnableGroupNotification

[SWS_Adc_91003] Definition of API function Adc_EnableGroupNotification |

Service Name

Adc_EnableGroupNotification

Syntax void Adc_EnableGroupNotification (
Adc_GroupType Group

)
Service ID [hex] 0x07
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Group Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Enables the notification mechanism for the requested ADC Channel group.

Available via

Adc.h

]

[SWS_Adc_00057]
Upstream requirements: SRS_SPAL_00157, SRS_Adc_12318

[The function Adc_EnableGroupNotification shall enable the notification mechanism
for the requested ADC Channel group. |

[SWS_Adc_00100]
Upstream requirements: SRS_Adc_12447

[The function Adc_EnableGroupNotification shall be pre-compile time configurable On/
Off by the configuration parameter AdcGrpNotifCapability. |

[SWS_Adc_00130] [If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_EnableGroupNotification shall
raise development error ADC_E_PARAM_GROUP and return without any action. |

(SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448,)

[SWS_Adc_00165]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448
[If development error detection for the ADC module is enabled: if the group notifi-

cation function pointer is NULL, the function Adc_EnableGroupNoatification shall raise
development error ADC_E_NOTIF_CAPABILITY and return without any action. |

[SWS_Adc_00299]
Upstream requirements: SRS_BSW_00406
[If development error detection for the ADC module is enabled: if called prior to ini-

tializing the ADC module, Adc_EnableGroupNotification shall raise development error
ADC_E_UNINIT and return without any action. |

AUTSSAR

8.3.10 Adc_DisableGroupNotification

[SWS_Adc_91004] Definition of API function Adc_DisableGroupNotification |

Service Name

Adc_DisableGroupNotification

Syntax void Adc_DisableGroupNotification (
Adc_GroupType Group

)
Service ID [hex] 0x08
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) Group Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Disables the notification mechanism for the requested ADC Channel group.

Available via

Adc.h

]

[SWS_Adc_00058]
Upstream requirements: SRS_SPAL_00157, SRS_Adc_12318

[The function Adc_DisableGroupNotification shall disable the notification mechanism
for the requested ADC Channel group. |

[SWS_Adc_00101]
Upstream requirements: SRS_Adc_12447

[The function Adc_DisableGroupNotification shall be pre-compile time configurable
On/Off by the configuration parameter AdcGrpNotifCapability |

[SWS_Adc_00131]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448
[If development error detection for the ADC module is enabled: if the channel group

ID is non-existing, the function Adc_DisableGroupNotification shall raise development
error ADC_E_PARAM_GROUP and return without any action. |

[SWS_Adc_00166]
Upstream requirements: SRS_BSW_00386, SRS_SPAL_12448
[If development error detection for the ADC module is enabled: if the group notifi-

cation function pointer is NULL, the function Adc_DisableGroupNotification shall raise
development error ADC_E_NOTIF_CAPABILITY and return without any action. |

[SWS_Adc_00300]
Upstream requirements: SRS_BSW_00406
[If development error detection for the ADC module is enabled: if called prior to ini-

tializing the ADC module, Adc_DisableGroupNotification shall raise development error
ADC_E_UNINIT and return without any action. |

AUTSSAR

8.3.11 Adc_GetGroupStatus

[SWS_Adc_00374] Definition of API function Adc_GetGroupStatus |

Service Name

Adc_GetGroupStatus

Syntax Adc_StatusType Adc_GetGroupStatus (
Adc_GroupType Group

)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Group ‘ Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) None

Return value

Adc_StatusType ‘ Conversion status for the requested group.

Description

Returns the conversion status of the requested ADC Channel group.

Available via

Adc.h

]

[SWS_Adc_00220]
Upstream requirements: SRS_Adc_12291

[The function Adc_GetGroupStatus shall return the conversion status of the requested
ADC Channel group. |

[SWS_Adc 00221]
Upstream requirements: SRS_BSW_00335, SRS_Adc_12291

[The function Adc_GetGroupStatus shall return ADC_IDLE:

If Adc_GetGroupStatus is called before the conversion of the requested group
has been started

For groups with trigger source software: If Adc_GetGroupStatus is called after
the conversion was stopped with Adc_StopGroupConversion

In continuous group conversion mode with linear streaming access mode: If Adc_
GetGroupStatus is called after calling Adc_GetStreamLastPointer (group was in
state ADC_STREAM_COMPLETED while calling Adc_GetStreamLastPointer).

In continuous group conversion mode with linear streaming access mode: If Adc_
GetGroupStatus is called after calling Adc_ReadGroup (group was in state ADC_
STREAM_COMPLETED while calling Adc_ReadGroup).

In one-shot SW conversion mode: If Adc_GetGroupStatus is called after calling
Adc_GetStreamLastPointer.

In one-shot SW conversion mode: If Adc_GetGroupStatus is called after calling
Adc_ReadGroup.

For groups with trigger source hardware: If Adc_GetGroupStatus is called after
calling Adc_DisableHardwareTrigger

AUTSSAR

]

For groups with trigger source hardware and linear streaming access mode: |If
Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer (group
was in state ADC_STREAM_COMPLETED while calling Adc_GetStreamLast
Pointer).

For groups with trigger source hardware and linear streaming access mode: |If
Adc_GetGroupStatus is called after calling Adc_ReadGroup (group was in state
ADC_STREAM_COMPLETED while calling Adc_ReadGroup).

[SWS_Adc_00222]
Upstream requirements: SRS_BSW_00335, SRS_Adc_12291

[The function Adc_GetGroupStatus shall return ADC_BUSY:

If it is called while the first conversion round of the requested group is still ongoing
(continuous conversion mode).

Once trigger is enabled for group with HW trigger source.
Once Adc_StartGroupConversion is called for group with SW trigger source.

In continuous group conversion mode with single access mode: If Adc_GetGroup
Status is called after calling Adc_GetStreamLastPointer

In continuous group conversion mode with single access mode: If Adc_GetGroup
Status is called after calling Adc_ReadGroup.

In continuous group conversion mode with circular streaming access mode: If
Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer

In continuous group conversion mode with circular streaming access mode If
Adc_GetGroupStatus is called after calling Adc_ReadGroup.

In continuous group conversion mode with linear streaming access mode: If Adc_
GetGroupStatus is called after calling Adc_GetStreamLastPointer (group was in
state ADC_COMPLETED while calling Adc_GetStreamLastPointer).

In continuous group conversion mode with linear streaming access mode: If Adc_
GetGroupStatus is called after calling Adc_ReadGroup (group was in state ADC_
COMPLETED while calling Adc_ReadGroup).

In one-shot HW conversion mode and single access mode: If Adc_GetGroup
Status is called after calling Adc_GetStreamLastPointer.

In one-shot HW conversion mode and single access mode: If Adc_GetGroup
Status is called after calling Adc_ReadGroup.

In one-shot HW conversion mode and circular streaming access mode: If Adc_
GetGroupStatus is called after calling Adc_GetStreamLastPointer.

In one-shot HW conversion mode and circular streaming access mode:

AUTSSAR

If Adc_GetGroupStatus is called after calling Adc_ReadGroup.

* In one-shot HW conversion mode and linear streaming access mode: If Adc_
GetGroupStatus is called after calling Adc_GetStreamLastPointer (group was in
state ADC_COMPLETED while calling Adc_GetStreamLastPointer).

* In one-shot HW conversion mode and linear streaming access mode:
If Adc_GetGroupStatus is called after calling Adc_ReadGroup
(group was in state ADC_COMPLETED while calling Adc_ReadGroup). |

[SWS_Adc_00224]
Upstream requirements: SRS_BSW_00335, SRS_Adc_12291

[The function Adc_GetGroupStatus shall return ADC_COMPLETED:

« If it is called after a conversion round (not the final one) of the requested group
has been finished.

]

[SWS_Adc_00325]
Upstream requirements: SRS_Adc_ 12291

[The function Adc_GetGroupStatus shall return ADC_STREAM_COMPLETED:
« If it is called in single access mode after one conversion round is completed.

« If it is called in streaming access mode after the number of conversion rounds of
the requested group have been finished, to fill the streaming buffer completely.

]

[SWS_Adc_00226]
Upstream requirements: SRS_Adc_12291

[The function Adc_GetGroupStatus shall provide atomic access to the status data by
the use of atomic instructions. |

[SWS_Adc_00305] [To guarantee consistent returned values, it is assumed that ADC
group conversion is always started (or enabled in case of HW group) successfully by
SW before status polling begins. |

[SWS_Adc_00225]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448
[If development error detection for the ADC module is enabled: if the channel group 1D

is non-existing, the function Adc_GetGroupStatus shall raise development error ADC_
E_PARAM_GROUP and return ADC_IDLE without any action. |

AUTSSAR

[SWS_Adc_00301]
Upstream requirements: SRS_BSW_00406

[If development error detection for the ADC module is enabled: if called prior to initial-
izing the ADC module, Adc_GetGroupStatus shall raise development error ADC_E__
UNINIT and return ADC_IDLE without any action. |

[SWS_Adc_00436] [In case of an aborted/suspended group, the state of the queued
group remains the same as it was before the group was aborted/suspended. |

8.3.12 Adc_GetStreamLastPointer

[SWS_Adc_00375] Definition of API function Adc_GetStreamLastPointer |

Service Name Adc_GetStreamLastPointer

Syntax Adc_StreamNumSampleType Adc_GetStreamLastPointer (
Adc_GroupType Group,
Adc_ValueGroupTypex** PtrToSamplePtr

)

Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Group Numeric ID of requested ADC Channel group.
Parameters (inout) None
Parameters (out) PtrToSamplePtr Pointer to result buffer pointer.
Return value Adc_StreamNumSample Number of valid samples per channel.
Type
Description Returns the number of valid samples per channel, stored in the result buffer. Reads a pointer,

pointing to a position in the group result buffer. With the pointer position, the results of all group
channels of the last completed conversion round can be accessed. With the pointer and the
return value, all valid group conversion results can be accessed (the user has to take the layout
of the result buffer into account).

Available via Adc.h

]

[SWS_Adc_00214]
Upstream requirements: SRS_Adc_12292, SRS_Adc_12802

[The function Adc_GetStreamLastPointer shall set the pointer, passed as parameter
(PtrToSamplePtr) to point in the ADC result buffer to the latest result of the first group
channel of the last completed conversion round. |

[SWS_Adc_00418] [All values which the ADC driver stores in the ADC result buffer,
are left without further scaling and shall be aligned according the configuration param-
eter setting of ADC_RESULT_ALIGNMENT. |

[SWS_Adc_00387] [The function Adc_GetStreamLastPointer shall return the number
of valid samples per channel, stored in the ADC result buffer. |

AUTSSAR

Note: Valid samples are in the ADC result buffer when the group is in state ADC_
COMPLETED or ADC_STREAM_COMPLETED. In state ADC_BUSY or ADC_IDLE
the value 0 is returned.

Note: The return value is 1 for groups with single access mode configuration, if valid
samples are stored in the ADC result buffer.

[SWS_Adc_00216]
Upstream requirements: SRS_Adc_12802

[When called while the group status is ADC_BUSY (a conversion of the group is in
progress), the function Adc_GetStreamLastPointer shall set the pointer, passed as pa-
rameter (PtrToSamplePtr), to NULL and return 0. |

[SWS_Adc_00219]
Upstream requirements: SRS_Adc_12291, SRS_Adc_12802

[The ADC module’s environment shall guarantee the consistency of the data that has
been read by checking the return value of Adc_GetGroupStatus. |

Note: See also SWS Adc 00140.

[SWS_Adc_00326]
Upstream requirements: SRS_Adc_12291

[Calling function Adc_GetStreamLastPointer while group status is ADC_STREAM_
COMPLETED shall trigger a state transition to ADC_BUSY for continuous conversion
modes (single access mode or circular streaming buffer mode) and hardware triggered
groups in single access mode or circular streaming access mode. |

[SWS_Adc_00327]
Upstream requirements: SRS_Adc_12291

[Calling function Adc_GetStreamLastPointer while group status is ADC_STREAM_
COMPLETED shall trigger a state transition to ADC_IDLE for software conversion
modes which automatically stop the conversion (streaming buffer with linear access
mode or one-shot conversion mode with single access) and for the hardware triggered
conversion mode in combination with linear streaming access mode. |

[SWS_Adc_00328]
Upstream requirements: SRS_Adc_12291

[Calling function Adc_GetStreamLastPointer while group status is ADC_COMPLETED
shall trigger a state transition to ADC_BUSY. |

[SWS_Adc_00215] [When called while the group status is ADC_IDLE and the group
conversion was not started (no results are available from previous conversions) , the
function Adc_GetStreamLastPointer shall report a runtime error ADC_E_IDLE. |

AUTSSAR

[SWS_Adc_00218]
Upstream requirements: SRS_BSW_00386

[If development error detection for the ADC moduleis enabled: if the group ID is non-
existent, the function Adc_GetStreamLastPointer shall raise development error ADC_
E_PARAM_GROUP, set the pointer, passed as parameter (PtrToSamplePtr), to NULL
and return 0 without any further action. |

[SWS_Adc_00302]
Upstream requirements: SRS_BSW_00406

[If development error detection for the ADC moduleis enabled:if called prior to initial-
izing the driver, the function Adc_GetStreamLastPointer shall raise development error
ADC_E_UNINIT, set the pointer, passed as parameter (PtrToSamplePtr), to NULL and
return 0 without any further action. |

8.3.13 Adc_GetVersioninfo

[SWS_Adc_00376] Definition of API function Adc_GetVersioninfo |

Adc_GetVersioninfo

Syntax void Adc_GetVersionInfo (
Std_VersionInfoTypex versioninfo

)

Service Name

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None

Description

Returns the version information of this module.

Available via

Adc.h

]

[SWS_Adc_00458] [If development error detection for the ADC module is enabled:
The function Adc_GetVersionInfo shall check the parameter versioninfo for not being

NULL and shall raise the development error ADC_E_PARAM_POINTER if the check

fails. |

AUTSSAR

8.3.14 Adc_SetPowerState

[SWS_Adc_00475] Definition of API function Adc_SetPowerState |

Service Name Adc_SetPowerState
Syntax Std_ReturnType Adc_SetPowerState (
Adc_PowerStateRequestResultTypex Result
)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) Result If the API returns E_OK: ADC_SERVICE_ACCEPTED: Power
state change executed.
If the API returns E_NOT_OK: ADC_NOT _INIT: ADC Module not
initialized. ADC_SEQUENCE_ERROR: wrong API call sequence.
ADC_HW_FAILURE: the HW module has a failure which
prevents it to enter the required power state.

Return value Std_ReturnType E_OK: Power Mode changed
E_NOT_OK: request rejected

Description This API configures the Adc module so that it enters the already prepared power state, chosen

between a predefined set of configured ones.
Available via Adc.h

[SWS_Adc_00481] [The API configures the HW in order to enter the previously pre-
pared Power State. All preliminary actions to enable this transition (e.g. setting all
channels in IDLE status, de-registering of all notifications and so on) must already
have been taken by the responsible SWCs (e.g. loHwADbs).

The API shall not execute preliminary, implicit power state changes (i.e. if a requested
power state is not reachable starting from the current one, no intermediate power state
change shall be executed and the request shall be rejected) |

[SWS_Adc_00482] [In case the target power state is the same as the current one, no
action is executed and the API returns immediately with an E_OK result. |

[SWS_Adc_00483] [In case the normal Power State is requested, the API shall refer
to the necessary parameters contained in the same containers used by Adc_Init. |

No separate container or hard coded data shall be used for the normal (i.e. full) power
mode, in order to avoid misalignments between initialization parameters used during
the init phase and during a power state change.

[SWS_Adc_00484] [For the other power states, only power state transition specific
reconfigurations shall be executed in the context of this API (i.e. the APl cannot be used
to apply a completely new configuration to the Adc module). Any other re-configuration
not strictly related to the power state transition shall not take place. |

AUTSSAR

[SWS_Adc_00485] [The API shall refer to the configuration container related to the
required Power State in order to derive some specific features of the state (e.g support
of Power States). |

[SWS_Adc_00486] [In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this APl is called before
having initialized the HW unit. |

[SWS_Adc_00487] [The API shall report a runtime error ADC_E_NOT_DISEN-
GAGED in case this APl is called when one or more HW channels (where applicable)
are in a state different then IDLE (or similar non-operational states) and/or there are
still notification registered for the HW module channels. |

[SWS_Adc_00488] [In case development error reporting is activated:

The API shall report the DET error ADC_E_POWER_STATE_NOT_SUPPORTED in
case this APl is called with an unsupported power state or the peripheral does not
support low power states at all. |

[SWS_Adc_00489] [The API shall report a runtime error ADC_E_TRANSITION_
NOT_POSSIBLE in case the requested power state cannot be directly reached from
the current power state. |

[SWS_Adc_00490] [In case development error reporting is activated:

The API shall report the DET error ADC_E_PERIPHERAL_NOT_PREPARED in case
the HW unit has not been previously prepared for the target power state by use of the
API Adc_PreparePowerState(). |

8.3.15 Adc_GetCurrentPowerState

[SWS_Adc_00476] Definition of API function Adc_GetCurrentPowerState |

Service Name Adc_GetCurrentPowerState

Syntax Std_ReturnType Adc_GetCurrentPowerState (
Adc_PowerStateTypex CurrentPowerState,
Adc_PowerStateRequestResultTypex Result

)

Service ID [hex] 0x11

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) CurrentPowerState The current power mode of the ADC HW Unit is returned in this

parameter

Y%

AUTSSAR

A

Result If the API returns E_OK: ADC_SERVICE_ACCEPTED: Current
power mode was returned.

If the API returns E_NOT_OK: ADC_NOT_INIT: ADC Module not
initialized.

Return value

Std_ReturnType E_OK: Mode could be read

E_NOT_OK: Service is rejected

Description

This API returns the current power state of the ADC HW unit.

Available via

Adc.h

]

[SWS_Adc_00491] [In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this APl is called before
having initialized the HW unit. |

8.3.16 Adc_GetTargetPowerState

[SWS_Adc_00477] Definition of API function Adc_GetTargetPowerState |

Service Name

Adc_GetTargetPowerState

Syntax Std_ReturnType Adc_GetTargetPowerState (
Adc_PowerStateType* TargetPowerState,
Adc_PowerStateRequestResultTypex Result
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) TargetPowerState The Target power mode of the ADC HW Unit is returned in this
parameter
Result If the API returns E_OK: ADC_SERVICE_ACCEPTED:Target

power mode was returned.
If the APl returns E_NOT_OK: ADC_NOT_INIT: ADC Module not
initialized.

Return value

Std_ReturnType E_OK: Mode could be read

E_NOT_OK: Service is rejected

Description

This API returns the Target power state of the ADC HW unit.

Available via

Adc.h

]

[SWS_Adc_00492] [The API returns the requested power state of the HW unit. This
shall coincide with the current power state if no transition is ongoing.

The API is considered to always succeed except in case of HW failures. |

[SWS_Adc_00493] [In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this API is called before
having initialized the HW unit. |

AUTSSAR

8.3.17 Adc_PreparePowerState

[SWS_Adc_00478] Definition of API function Adc_PreparePowerState |

Service Name Adc_PreparePowerState
Syntax Std_ReturnType Adc_PreparePowerState (
Adc_PowerStateType PowerState,
Adc_PowerStateRequestResultType* Result
)

Service ID [hex] 0x13

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) PowerState The target power state intended to be attained

Parameters (inout) None

Parameters (out) Result If the API returns E_OK: ADC_SERVICE_ACCEPTED: ADC
Module power state preparation was started.
If the APl returns E_NOT_OK: ADC_NOT_INIT: ADC Module not
initialized. ADC_SEQUENCE_ERROR: wrong API call sequence
(Current Power State = Target Power State). ADC_POWER_
STATE_NOT_SUPP: ADC Module does not support the
requested power state. ADC_TRANS_NOT_POSSIBLE: ADC
Module cannot transition directly from the current power state to
the requested power state or the HW peripheral is still busy.

Return value Std_ReturnType E_OK: Preparation process started
E_NOT_OK: Service is rejected

Description This API starts the needed process to allow the ADC HW module to enter the requested power

state.
Available via Adc.h

]

[SWS_Adc_00494] [This API initiates all actions needed to enable a HW module to
enter the target power state.

The possibility to operate the periphery depends on the power state and the HW fea-
tures. These properties should be known to the integrator and the decision whether to
use the periphery or not is in his responsibility. |

[SWS_Adc_00495] [In case the target power state is the same as the current one, no
action is executed and the API returns immediately with an E_OK result.

The responsibility of the preconditions is left to the environment. |

[SWS_Adc_00496] [In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this APl is called before
having initialized the HW unit. |

[SWS_Adc_00497] [In case development error reporting is activated:

The API shall report the DET error ADC_E_POWER_STATE_NOT_SUPPORTED in
case this APl is called with an unsupported power state is requested or the peripheral
does not support low power states at all. |

AUTSSAR

[SWS_Adc_00498] [The API shall report a runtime error ADC_E_TRANSITION_
NOT_POSSIBLE in case the requested power state cannot be directly reached from
the current power state.

All asynchronous operation, needed to reach the target power state, can be executed
in background in the context of Adc_Main_PowerTransitionManager. |

8.4 Callback notifications

Since the ADC Driver is a module on the lowest architectural layer it doesn’t provide
any call-back functions for lower layer modules.

8.5 Scheduled functions

8.5.1 Adc_Main_PowerTransitionManager

[SWS Adc 00479] Definition of scheduled function Adc_Main_PowerTransition
Manager |

Service Name Adc_Main_PowerTransitionManager
Syntax void Adc_Main_PowerTransitionManager (
void

)

Service ID [hex] 0x14

Description This APl is cyclically called and supervises the power state transitions, checking for the
readiness of the module and issuing the callbacks loHwAb_Adc_NotifyReadyForPower
State<Mode> (see AdcPowerStateReadyCbkRef configuration parameter).

Available via SchM_Adc.h

[SWS_Adc_00499] [This API executes any non-immediate action needed to finalize a
power state transition requested by Adc_PreparePowerState(). |

[SWS_Adc_00500] [The rate of scheduling shall be defined by Adc MainSchedule
Period and shall be variable, as the function only needs to be called if a transition has
been requested |

[SWS_Adc_00501] [This API shall also issue callback notifications to the eventually
registered users (loHwADbs) as configured, only in case the asynch mode is chosen. |

[SWS_Adc_00502] [In case the ADC module is not initialized, this function shall sim-
ply return without any further elaboration. This is needed to avoid to elaborate unini-
tialized variables. No DET error shall be entered, because this condition can easily be
verified during the startup phase (tasks started before the initialization is complete).

AUTSSAR

Rationale: during the startup phase it can happen that the OS already schedules tasks,
which call main functions, while some modules are not initialised yet. This is no real
error condition, although need handling, i.e. returning without execution.

Although the transition state monitoring functionality is mandatory, the implementation
of this APl is optional, meaning that if the HW allows for other ways to deliver notifica-
tion and watch the transition state the implementation of this function can be skipped. |

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill a core functionality of the
module.

[SWS_Adc_00530] Definition of mandatory interfaces required by module Adc |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Adc_00377] Definition of optional interfaces requested by module Adc |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of this kind of interfaces
are not fixed because they are configurable.

AUTSSAR

[SWS_Adc_00078]
Upstream requirements: SRS_SPAL_12129
[The ADC module’s ISR’s, providing the "conversion completed events", shall be re-

sponsible for resetting the interrupt flags (if needed by hardware) and calling the asso-
ciated notification function. |

Note: The notification functions loHwAb_Adc_Notification_<GroupID>run in interrupt
context. It’s the responsibility of the user to keep the code of these functions reasonably
short. The names of the group notification functions are configurable (see ADC402).

8.6.3.1 loHwADb_Adc_Notification<#grouplD>

[SWS_Adc_00082] Definition of configurable interface loHwAb_AdcNotifica-
tion<#grouplD>
Upstream requirements: SRS_BSW_00359, SRS_BSW_00360, SRS_SPAL_00157

[

Service Name

loHwAb_AdcNotification<#grouplD>

Syntax void IoHwAb_AdcNotification<#groupID> (
void
)
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Will be called by the ADC Driver when a group conversion is completed for group <#groupl|D>.

Available via

loHWAb_Adc.h

]

[SWS_Adc_00104]
Upstream requirements: SRS_SPAL_00157, SRS_Adc_12447, SRS_Adc_12317

[The ADC Driver shall support an individual notification per ADC Channel group (if
capability is configured) that is called whenever the conversion for all channels of that
group is completed. |

[SWS_Adc_00083]

Upstream requirements: SRS_SPAL_00157
[When the notification mechanism is disabled, the ADC module shall send no notifica-
tion. |

[SWS_Adc_00416] [When the notifications are re-enabled, the ADC module shall not
send notifications for events that occurred while notifications have been disabled. |

AUTSSAR

[SWS_Adc_00084]
Upstream requirements: SRS_SPAL_12056

[For every group, a particular notification call-back has to be configured. This can be
a function pointer or a NULL pointer. |

[SWS_Adc_00080]
Upstream requirements: SRS_SPAL_12056

[If for a notification call-back the NULL pointer is configured, no call-back shall be
executed. |

[SWS_Adc_00085]
Upstream requirements: SRS_SPAL_12056

[The call-back notifications shall be configurable as pointers to user defined functions
within the configuration structure.For all available channel groups, call-back functions
have to be declared during the configuration phase of the module. |

8.6.3.2 loHwAb_Adc_NotifyReadyForPowerState<#Mode>

[SWS_Adc_00480] Definition of configurable interface loHwAb_Adc_Notify
ReadyForPowerState<#Mode> |

Service Name loHwAb_Adc_NotifyReadyForPowerState<#Mode>
Syntax void IoHwAb_Adc_NotifyReadyForPowerState<#Mode> (
void

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The API shall be invoked by the ADC Driver when the requested power state preparation for
mode <#Mode> is completed.

Available via loHwAb_Adc.h

]

This interface provided by CDD or loHwAbs controlling the peripheral is needed if at
least one MCAL driver is configured for providing power mode control APIs.

There shall be one such a callback for each power mode in which the ADC has to
change power state. It is possible to have the same power state for different power
modes, but only one power state for a given power mode.

AUTSSAR

9 Sequence diagrams

9.1 Initialization of the ADC Driver

«module» «module»
EcuM Adc
(eos o)

| Adc_lInit(const Adc_ConfigType*) |

H<_ ______ adednit U

Figure 9.1: Initialization of the ADC Driver

9.2 De-Initialization of the ADC Driver

«module» «module»
EcuM Adc

1 Adc_Delnit() !

H(Adc_Delnit() “

Figure 9.2: De-Initialization of the ADC Driver

AUTSSAR

9.3 Software triggered One-Shot conversion without notification

Adc User «module» «Peripheral»
Adc ADC Conversion Uni

| Adc_StartGroupConversion(Adc_GroupType) I

Adc_ReadGroup(Std_ReturnType , Adc_GroupType, Adc_ValueGroupType *): Std_ReturnType

Adc_ReadGroup()

T
|
|
- 1
start conversion(Group1) |
Adc_StartGroupConversion() U
e]
I
I
| |
loop AdcﬁGetGmupStatus/ : :
[Adc_GetGrqupStatus = ADC_BUSY] | |
| |
Adc_GetGroupStatus(Adc_StatusType, Adc_GroupType) - | |
o 1
Adc_GetGroupStatus= ADC_BUSY() 1
- ——— T s e — |
n |
| | |
| |] 1
! | _conversion completed(Groupl)
! =]
| I I
I Adc_GetGroupStatus(Adc_StatusType, Adc_GroupType) | |
|
Adc_GetGroupStatus= ADC_STREAM_COMPLETED() |
<—-—— - e — !
|
|
I
I
|
|
|
I
|
|
|

-1
-1

Description: Software triggered One-Shot Conversion without Notification

Configuration: - Group 1: Channel 1, Channel 2
- One Shot Conversion Mode
- Single Access Mode

Figure 9.3: Software triggered one-shot conversion without notification

AUTSSAR

9.4 Software triggered continuous conversion with notification

Adc User «module» «Peripheral»
Adc ADC Conversion Uni
T T T
| | |
| Adc_EnableGroupNotification(Group1) o ! |
L I
Adc_EnableGroupNotification() 1
e e i X
|
Adc_StartGroupConversion(Adc_GroupType) - : :
L .
< Adc_StartGroupConversion() H start conversion(Group1) |
! R ! conversion completed(Group1)
| Adc_Notification_Group_1()
Adc_ReadGroup(Adc_GroupType*,
Adc_GroupType,Adc_ValueGroupType *): Std_ReturnType conversion
LJ Group1
Adc_ReadGroup() ongoing
< _______________________________________
T T [l
: : conversion completed(Group1) :
| Adc_Notification_Group_1()
Adc_ReadGroup(Adc_GroupType,
Adc_ValueGroupType*): Std_RetumType conversion
] Group1
e Adc ReadGrowp) | ongoing
Adc_Notification_Group_1()
_______________________________________ >
T T
: ! conversion completed(Group1) !
I [N
: Adc_Notification_Group_1()]
Adc_Notification_Group_1() conversion
_______________________________________ > Group1
T . T ongoing
| Adc_StopGroupConversion(Adc_GroupType) |
Adc_StopGroupConversion()
e stop conversion(Group1)

Description: Software triggered continuous conversion with notification

Figure 9.4: Software triggered continuous conversion with notification

AUTSSAR

9.5 Hardware triggered One-Shot conversion with notification

Adc User «module» «Peripheral» «Peripheral»

Adc ADC Conversion Unij HW Trigger Source
T T T T
| | | |
| Adc_EnableGroupNotification(Adc_GroupType) | | |
I I
Adc_EnableGroupNotification | |
K ———— ——— = pNotificatior (l ____________]]
- | |
Adc_EnableHardwareTrigger(Adc_GroupType) : : :
enable hardware trigger(Group1) |

B Adc_EnableHardwareTrigger() |

|
|
loop HW Trigger Event - Notification Enabled/

I
|
: Adc_Notification_Group_1()

—— -1

conversion completed()

start conversion()

Adc_ReadGroup(Std_RetumType,
Adc_GroupType,Adc_ValueGroupType *): Std_ReturnType

Adc_ReadGroup()

Adc_Notification_Group_1()

G

- >

F—— 4=

Adc_DisableGroupNotification(Adc_GroupType)

F—— -

loop HW Trigger Event - Notification Disabled /

conversion completed()

start conversion()

P e

Adc_DisableHardwareTrigger(Adc_GroupType)

Adc_DisableHardwareTrigger()

disable hardware trigggr source(Groupl)

-——O---—-=-+----

Description: Hardware triggered One-Shot Conversion with Notification enabled/disabled

Figure 9.5: Hardware triggered one-shot conversion with notification

AUTSSAR

9.6 HW Trigger- One-Shot conversion - Linear Streaming

Adc User

«module»
Adc

«Peripheral»
ADC Conversion Uni

Adc_EnableGroupNotification(Adc_GroupType)

< Adc_EnableGroupNotification()

Adc_EnableHardwareTrigger(Adc_GroupType)

< Adc_EnableHardwareTrigger()

streaming buffer filled with
results of first conversion round

«Peripheral»
HW Trigger Source

enable hardware trigger(Group1l)

conversion completed()
<

trigger(Group1)

 J

d

Adc_Notification_Group_1()

Adc_GetGroupStatus(Group1)

< Adc_GetGroupStatus = ADC_COMPLETED()

Adc_Notification_Group_1()

streaming buffer filed completely:
HW trigger disabled automatically;
notifications are still enabled

trigger(Groupl)

conversion completed()

disable hardware trigger(Groupl)

Adc_Notification_Group_1()

Adc_GetGroupStatus(Adc_GroupType)

< Adc_GetGroupStatus=sADC_STREAM_COMPLETED()

Adc_DisableGroupNotification(Adc_GroupType)

Adc_DisableGroupNotification()

Adc_Notification_Group_1()

o

 J

e s S m R s = S n TR

Configuration: HW trigger, one-shot, linear streaming

Linear streaming buffer: m=2 (2 group results stored in buffer)

Figure 9.6: Hardware triggered one-shot conversion - linear streaming

AUTSSAR

9.7 No Priority Mechanism - No Queuing

< ______________________

Adc_EnableHardwareTrigger(Adc_GroupType)

Det_ReportRuntimeErmor(ADC_E_B USY)!

._EnableHardwareTri
< — e T T Y

I
|
Adc_StartGroupConversion(Adc_GroupType) |

Det_ReportRuntimeEmor(ADC_E_BUSY)

gl
I

< ______________________

Adc_StartGroupConversion() J

Adc User «module» «module» «Peripheral» «Peripheral»
Adc Det ADC Conversion Unift | HW Trigger Source

T T T T T
! I | 1 1 1
1 Adc_EnableGroupNotification(Group_x) 1 1 1
I I I
Adc_EnableGroupNotification() | | |
e i for Group 1,234 | | |
s | | |
Adc_StartGroupConverson(Adc_GroupType) | | | |
start conversion(Group1) - ! I
< Adc_StartGroupConversion() : gl :
L 1 _B |
]] conversio]
| | n |
| | Group1 |
Adc_StartGroupConversion(Adc_GroupType) | | ongoing |
. Det_ReportRuntimeEror(ADC_E_BUSY)! |
Adc_StartGroupConversion() b |
< T T T T T T _'J H I
| |
Adc_EnableHardwareTrigger(Adc_GroupType) _ | | |
1 | !
. Det_ReportRuntimeError(ADC_E_BUSY)I |
Adc_EnableHardwareTrigger() I L |
< Tt TT T T T T _'J I'r| 1
o) 1 1
! 1 conversion completed(Group1) |
| Adc_Notification_Group_1() : :
Adc_Notification_Group_1 | |
e Ty - __B__O_____>]]
- - | I
| | | |
| | | |
! Adc_EnableHardwareTrigger(Adc_GroupType) ! : :
enable hardware trigger(Group3) - |

Adc_EnableHardwareTrigger() | b |
|
I
I
|
|
|
I
I
|
|
|
I
|
|
|
I
I

g
|
I
|

———————— e = — —]

Config

uration: - priority mechanism : NONE
- queuing : OFF
- SW conversion requests
- HW enable requests

Description: Runtime error for ADC_StartGroupConversion, priority mechanism NONE, queueing OFF

Figure 9.7: No priority mechanism - no queuing

AUTSSAR

9.8 No Priority Mechanism - SW Queuing

Adc User «module» «Peripheral»
Adc ADC Conversion Uni
T T T
| | |
| Adc_EnableGroupNotification(Group_x) | :
- enable group
e ————— — '_Ad_C:EEaEIe_GLOEpEO_mfa_“EnQ ________ notification :
L[[forGroup 1,2 |
I I
I I
Adc_StartGroupConversion(Group1) | |
. |
Adc_StartGroupConversion() start conversion (Group1) re-
iy i SR TJ
- —E
Adc_StartGroupConversion(Group2) ! conversion
store conversion request(Group2) Group1
ongoing
Adc_StartGroupConversion()
e - — - R
: : conversion completed (Groupl)]
|
1 start conversion(Group2) IT’
| L
| Adc_Notification_Group_1() _LIJ_B
Adc_Notification_Group_1() =] conversio
n
T T Group2
| Adc_StartGroupConversion(Group1) | ongoing
store conversion request(Groupl)
Adc_StartGroupConversion()
PRI A’ S gty LS S ——
L
| | conversion completed (Group2)
I
| start conversion(Group1) IT’
|
| Adc_Notification_Group_2()
Adc_Notification_Group_2() =) @EEsen
Group1
T ongoing
! conversion completed (Groupl1)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

H ____________________________ =]
|
|
1

]

Description: SW queue, priority mechanism NONE, queuing ON

Configuration: - priority mechanism : NONE

- queuing : ON
- SW conversion requests
- queuing in SW queue

Figure 9.8: No priority mechanism — software queuing

AUTSSAR

9.9 HW_SW Priority Mechanism - SW Queuing

Adc User «module» «Peripheral»
Adc ADC Conversion Uni
T T T
| | |
| Adc_EnableGroupNotification(Group1) | |
I
Adc_EnableGroupNotification() |
< ____________________________ 1
= |
Adc_EnableGroupNotification(Group2) | |
I
Adc_EnableGroupNotification() |
—— S e e S e — |
L |
Adc_StartGroupConversion(Adc_GroupType) | |
start conversion(Group1) :
Adc_StartGroupConversion() >|_|
<_ ____________________________
: conversion
| Group1
Adc_StartGroupConversion(Group2) | . ongoing
store conversion request(Group2)
Adc_StartGroupConversion()
<_ ____________________________
: : conversion completed(Group1l) |
|] U
1 start conversion(Group2) o |
I Adc_Notification_Group_1() -0
Adc_Notification_Group_1()
_____________________________>
- - conversion
! ! Group2
! Adc_StartGroupConversion(Group1) ! ongoing
abort/suspend(Group2) —
start conversion(Group1) ‘IT'
g
store conversion request(Group2)
converstion
Group1
= Adc_StartGroupConversion() ongoing
T T i
| | conversion completed(Group1)
: restart/resume conversion(Group2) ‘IT'
l Adc_Notification_Group_1() g
Adc_Notification_Group_1()
_____________________________> conversion
e Group2
| ongoing
I
|

Adc_Notification_Group_2()

conversion completed(Group2)

Adc_Notification_Group_2()

Description: SW queue, priority mechanism HW_SW

Configuration: - priority mechanism : HW_SW

- SW conversion requests

- priorities: Group1 > Group2
- queuing in SW queue

- one-shot conversion mode

Figure 9.9: Hardware/software priority mechanism - SW queuing

AUTSSAR

9.10 HW Priority Mechanism - HW Queuing

Adc User «module» «Peripheral» «Peripheral»
Adc ADC Conversion Uni HW Trigger Source
T T T T
| | | |
| Adc_EnableGroupNotification(Group1) - ! | |
Adc_EnableGroupNotification() o ! !
- - I T e | |
| |
Adc_EnableGroupNotification(Group2) : : :
Adc_EnableGroupNotification ! !
- ——— === Fl_____O _____ | |
- | |
Adc_EnableHardwareTrigger(Adc_GroupType) | | |
I '

d bl d K enable HW trigger(Group1) - :

o _ _Ade EnableHardwareTrigger) _ _ _ _ |] gn|
L 1 1
Adc_StartGroupConversion(Adc_GroupType) ! ! !
| . I |
start conversion(Group2) | |
e Adc_StartGroupConversion() =|_| 1
______________________ |
T T . !
| | conversion |
| 1 Group2 |
| | ongoing |
I I : I

I | 1~ ___InggerGroupl) _ _ _ _ _['.]
: : abort/supend (Group2) |
| | |
: : start conversion(Groupl) :
I I I	
	conversion completed(Group1) restart/resume conversion (Group2) 1
[Adc_Notification_Group_1()	
[A I	
} _____ Ade_Notification Group 10 _ _ _ __	[; !
T	
	conversion completed(Group2)
[Adc_Notification_Group_2()	
[Ade_Notiication Growp 20 _ _ _ __] H	
I I	
T I I	

Description: HW queuing of aborted SW conversion

Configuration: - priority mechanism : HW
- priorities: Group1 > Group2
- queuing in HW queue
- SW Group2 conversion aborted / suspended from HW Group1 conversion
- SW Group2 conversion restarted / resumed after HW Group1 conversion completed

Figure 9.10: Hardware priority mechanism — HW queuing

AUTSSAR

9.11 HW_SW Priority Mechanism - HW/SW Queuing

Adc User «module» «Peripheral» «Peripheral»
Adc ADC Conversion Uni HW Trigger Source

| Adc_EnableGroupNotification(Group_x) |

T
|
|
enable group |
Adc_EnableGroupNotification() notification |
iy for Group 1,234 :
Adc_EnableHardwareTrigger(Adc_GroupType: : | :
Adc_EnableHardwareTrigger() enable HW trigger(Group1) > !
K- == == === = — 1]
L 1 [
Adc_StartGroupConversion(Adc_GroupType) : : :
start conversion(Group2) ! !
Adc_StartGroupConversion() L |
<--—-——-—"-————=——————-——-——- |
L I
Adc_StartGroupConversion(Adc_GroupType) _ | O eSO |
store conversion request(Group3) Group2 :
ongoing |
Adc_StartGroupConversion() |
- - - e e - |
- |
| | trigger(Groupl) |
I I L L
: : abort/suspend(Group2) IT'
| | |
I | start conversion(Group1) |
I I I
| | |
| | |
| | |
I I I
: Adc_StarntGroupConversion(Adc_GroupType) : :
store conversion request(Group4) |
I
Adc_StartGroupConversion() :
|
|
| | conversion completed(Group1) |
| restart/resume(Group2) |
| |
| [|
| Adc_Notification_Group_1() |
I
Adc_Notification_Group_1() |
————————————————————— > \
T T |
| | conversion completed(Group2) |
I I
| start conversion((Group4)) |
| Adc_Notification_Group_2() 1
™ !
Adc_Notification_Group_2() I
————————————————————— > |
L L 1
: | conversion completed(Group4) :
I start conversion(Group3) |
! Adc_Notification_Group_4() ’[] :
Adc_Notification_Group_4() |
————————————————————— > |
- - |
| | |
: ! conversion completed(Group3) :
I L I
: L Adc_Notification_Group_3() : :
[| |
Adc_Notification_Group_3()
———————————————————— > | |
T v | |

escription: HW/SW queuing, HW_SW priority mechanism
Configuration: - priority mechanism : HW_SW
- queuing: HW/SW
- priorities : Group1 (high), Group2, Group4, Group3 (low)
Group1 and Group2 are prioritized via HW; Group3 and Group4 are prioritized via SW
- queuing in HW and SW queue

Figure 9.11: Hardware/software priority mechanism — hardware/software queuing

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
ADC_Driver.

Chapter 10.3 specifies published information of the module ADC_Driver.

10.1 How to read this chapter

For details refer to the [1] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

[SWS_Adc_00531] [The ADC module shall reject configurations with partition map-
pings which are not supported by the implementation. |

10.2.1 Adc

[ECUC_Adc_00462] Definition of EcucModuleDef Adc |

Module Name Adc

Description Configuration of the Adc (Analog Digital Conversion) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

AdcConfigSet 1 This container contains the configuration parameters and sub
containers of the AUTOSAR Adc module.

AdcGeneral 1 General configuration (parameters) of the ADC Driver software
module.

AdcPublishedInformation 1 Additional published parameters not covered by "Common"
Published Information. Note that these parameters have
"PUBLISHED-INFORMATION" configuration class setting, since
they are published information.

AUTSSAR

10.2.2 AdcGeneral

[ECUC_Adc_00027] Definition of EcucParamConfContainerDef AdcGeneral |

Container Name

AdcGeneral

Parent Container

Adc

Description

General configuration (parameters) of the ADC Driver software module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
AdcDelnitApi 1 [ECUC_Adc_00404]
AdcDevErrorDetect 1 [ECUC_Adc_00405]
AdcEnableLimitCheck 1 [ECUC_Adc_00452]
AdcEnableQueuing 1 [ECUC_Adc_00391]
AdcEnableStartStopGroupApi 1 [ECUC_Adc_00406]
AdcGrpNotifCapability 1 [ECUC_Adc_00105]
AdcHwTriggerApi 1 [ECUC_Adc_00408]
AdcLowPowerStatesSupport 0..1 [ECUC_Adc_00457]
AdcPowerStateAsynchTransitionMode 0..1 [ECUC_Adc_00458]
AdcPrioritylmplementation 1 [ECUC_Adc_00393]
AdcReadGroupApi 1 [ECUC_Adc_00394]
AdcResultAlignment 1 [ECUC_Adc_00444]
AdcVersionInfoApi 1 [ECUC_Adc_00409]
AdcEcucPartitionRef > [ECUC_Adc_00463]
AdcKernelEcucPartitionRef .1 [ECUC_Adc_00464]
Included Containers

Container Name Multiplicity Dependency

AdcPowerStateConfig 0..* Each instance of this parameter defines a power state and the

callback to be called when this power state is reached.

]

[ECUC_Adc_00404] Definition of EcucBooleanParamDef AdcDelnitApi |

Parameter Name

AdcDelnitApi

Parent Container

AdcGeneral

Description Adds / removes the service Adc_Delnit() from the code. true: Adc_Delnit() can be
used. false: Adc_Delnit() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

AUTSSAR

| Dependency

]

[ECUC_Adc_00405] Definition of EcucBooleanParamDef AdcDevErrorDetect |

Parameter Name

AdcDevErrorDetect

Parent Container

AdcGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Adc_00452] Definition of EcucBooleanParamDef AdcEnableLimitCheck

[

Parameter Name

AdcEnableLimitCheck

Parent Container

AdcGeneral

Description Enables or disables limit checking feature in the ADC driver.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Adc_00391] Definition of EcucBooleanParamDef AdcEnableQueuing |

Parameter Name

AdcEnableQueuing

Parent Container

AdcGeneral

Description Determines, if the queuing mechanism is active in case of priority mechanism disabled.
Note: If priority mechanism is enabled, queuing mechanism is always active and the
parameter ADC_ENABLE_QUEUING is not evaluated. true: Enabled. false: Disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

V

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

AdcPrioritylmplementation: parameter is only evaluated for priority implementation
ADC_PRIORITY_NONE.

]

[ECUC_Adc_00406]
GroupApi |

Definition of EcucBooleanParamDef AdcEnableStartStop

Parameter Name

AdcEnableStartStopGroupApi

Parent Container

AdcGeneral

Description Adds / removes the services Adc_StartGroupConversion() and Adc_StopGroup
Conversion() from the code. true: Adc_StartGroupConversion() and Adc_StopGroup
Conversion() can be used. false: Adc_StartGroupConversion() and Adc_StopGroup
Conversion() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Adc_00105] Definition of EcucBooleanParamDef AdcGrpNotifCapability

[

Parameter Name

AdcGrpNotifCapability

Parent Container

AdcGeneral

Description Determines, if the group notification mechanism (the functions to enable and disable
the notifications) is available at runtime. true: Enabled. false: Disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Adc_00408] Definition of EcucBooleanParamDef AdcHwTriggerApi |

Parameter Name

AdcHwTriggerApi

Parent Container

AdcGeneral

Description Adds / removes the services Adc_EnableHardwareTrigger() and Adc_DisableHardware
Trigger() from the code. true: Adc_EnableHardwareTrigger() and Adc_Disable
HardwareTrigger() can be used. false: Adc_EnableHardwareTrigger() and Adc_Disable
HardwareTrigger() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Adc_00457]
Support |

Definition of EcucBooleanParamDef AdcLowPowerStates

Parameter Name

AdcLowPowerStatesSupport

Parent Container

AdcGeneral

Description Adds / removes all power state management related APIs (ADC_SetPowerState, ADC_
GetCurrentPowerState, ADC_GetTargetPowerState, ADC_PreparePowerState, ADC_
Main_PowerTransitionManager), indicating if the HW offers low power state
management.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Adc_00458] Definition of EcucBooleanParamDef AdcPowerStateAsynch

TransitionMode |

Parameter Name

AdcPowerStateAsynchTransitionMode

Parent Container

AdcGeneral

Description Enables / disables support of the ADCDriver to the asynchronous power state
transition.

Multiplicity 0..1

Type EcucBooleanParamDef

\Y%

AUTSSAR

A

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency This parameter shall only be configured if the parameter AdcLowPowerStatesSupport
is set to true.

]

[ECUC_Adc_00393] Definition of EcucEnumerationParamDef AdcPrioritylmple-
mentation |

Parameter Name AdcPrioritylmplementation
Parent Container AdcGeneral
Description Determines whether a priority mechanism is available for prioritization of the

conversion requests and if available, the type of prioritization mechanism. The
selection applies for groups with trigger source software and trigger source hardware.
Two types of prioritization mechanism can be selected. The hardware prioritization
mechanism (AdcPriorityHw) uses the ADC hardware features for prioritization of the
software conversion requests and hardware trigger signals for groups with trigger
source hardware. The mixed hardware and software prioritization mechanism (Adc
PriorityHwSw) uses the ADC hardware features for prioritization of ADC hardware
trigger for groups with trigger source hardware and a software implemented
prioritization mechanism for groups with trigger source software. The group priorities
for software triggered groups are typically configured with lower priority levels than the
group priorities for hardware triggered groups.

ImplementationType: Adc_PrioritylmplementationType

Multiplicity 1
Type EcucEnumerationParamDef
Range ADC_PRIORITY_HW Hardware priority mechanism is available only
ADC_PRIORITY_HW_SW Hardware and software priority mechanism is
available
ADC_PRIORITY_NONE priority mechanism is not available
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]
[ECUC_Adc_00394] Definition of EcucBooleanParamDef AdcReadGroupApi |

Parameter Name AdcReadGroupApi

Parent Container AdcGeneral

Description Adds / removes the service Adc_ReadGroup() and from the code. true: Adc_Read
Group() can be used. false: Adc_ReadGroup() can not be used.

Multiplicity 1

V

AUTSSAR

A
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —

Post-build time -

Dependency

]

[ECUC_Adc_00444] Definition of EcucEnumerationParamDef AdcResultAlign-

ment |

Parameter Name

AdcResultAlignment

Parent Container

AdcGeneral

Description Alignment of ADC raw results in ADC result buffer (left/right alignment). Implementation
Type: Adc_ResultAlignmentType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_ALIGN_LEFT left alignment
ADC_ALIGN_RIGHT right alignment

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Adc_00409] Definition of EcucBooleanParamDef AdcVersioninfoApi |

Parameter Name

AdcVersionInfoApi

Parent Container

AdcGeneral

Description Adds / removes the service Adc_GetVersioninfo() from the code. true: Adc_GetVersion
Info() can be used. false: Adc_GetVersionInfor() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_Adc_00463] Definition of EcucReferenceDef AdcEcucPartitionRef |

Parameter Name

AdcEcucPartitionRef

Parent Container

AdcGeneral

Description Maps the ADC driver to zero or multiple ECUC partitions to make the driver API
available in the according partition.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[ECUC_Adc_00464] Definition of EcucReferenceDef AdcKernelEcucPartitionRef

[

Parameter Name

AdcKernelEcucPartitionRef

Parent Container

AdcGeneral

Description Maps the ADC kernel to zero or one ECUC partitions to assign the driver kernel to a
certain core. The ECUC partition referenced is a subset of the ECUC partitions where
the ADC driver is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Dependency

]

[SWS_Adc_CONSTR_00001] [The ECUC partitions referenced by AdcKernelEcuc
PartitionRef shall be a subset of the ECUC partitions referenced by AdcEcucPartition
Ref. |

[SWS_Adc_CONSTR_00003] [If AdcEcucPartitionRef references one or more ECUC
partitions, AdcKernelEcucPartitionRef shall have a multiplicity of one and reference
one of these ECUC partitions as well. |

AUTSSAR

10.2.3 AdcPowerStateConfig

[ECUC_Adc_00459] Definition of EcucParamConfContainerDef AdcPowerState

Config [
Container Name AdcPowerStateConfig
Parent Container AdcGeneral

Description Each instance of this parameter defines a power state and the callback to be called
when this power state is reached.
Multiplicity 0..*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
AdcPowerState 1 [ECUC_Adc_00461]
AdcPowerStateReadyCbkRef 1 [ECUC_Adc_00460]

No Included Containers

]

[ECUC_Adc_00461] Definition of EcucintegerParamDef AdcPowerState |

Parameter Name

AdcPowerState

Parent Container

AdcPowerStateConfig

Description Each instance of this parameter describes a different power state supported by the
ADC HW. It should be defined by the HW supplier and used by the ADCDriver to
reference specific HW configurations which set the ADC HW module in the referenced
power state.

At least the power mode corresponding to full power state shall be always configured.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

This parameter shall only be configured if the parameter AdcLowPowerStatesSupport
is set to true.

]

[ECUC_Adc_00460] Definition of EcucFunctionNameDef AdcPowerStateReady

CbkRef |

Parameter Name

AdcPowerStateReadyCbkRef

Parent Container

AdcPowerStateConfig

Description

Each instance of this parameter contains a reference to a power mode callback defined
in a CDD or loHwAbs component.

Multiplicity

1

\Y

AUTSSAR

A
Type EcucFunctionNameDef
Default value -
Regular Expression -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

This parameter shall only be configured if the parameter AdcLowPowerStatesSupport
is set to true.

10.2.4 AdcConfigSet

[ECUC_Adc_00390] Definition of EcucParamConfContainerDef AdcConfigSet |

Container Name

AdcConfigSet

Parent Container

Adc

Description

This container contains the configuration parameters and sub containers of the
AUTOSAR Adc module.

Multiplicity

1

Configuration Parameters

No Included Parameters

Included Containers

Container Name

Multiplicity Dependency

AdcHwUnit

1.* This container contains the Driver configuration (parameters)
depending on grouping of channels This container could contain
HW specific parameters which are not defined in the
Standardized Module Definition. They must be added in the
Vendor Specific Module Definition.

10.2.5 AdcChannel

[SWS_Adc_CONSTR_00002] [The ECUC partitions referenced by AdcGroupEcuc
PartitionRef shall be a subset of the ECUC partitions referenced by AdcEcucPartition

Ref. |

[ECUC_Adc_00028] Definition of EcucParamConfContainerDef AdcGroup |

AUTSSAR

Container Name

AdcGroup

Parent Container

AdcHwUnit

Description

This container contains the Group configuration (parameters).

Multiplicity

1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

AdcGroupAccessMode 1 [ECUC_Adc_00317]
AdcGroupConversionMode 1 [ECUC_Adc_00397]
AdcGroupld 1 [ECUC_Adc_00398]
AdcGroupPriority 0..1 [ECUC_Adc_00287]
AdcGroupReplacement 0..1 [ECUC_Adc_00435]
AdcGroupTriggSrc 1 [ECUC_Adc_00399]
AdcHwTrigSignal 0..1 [ECUC_Adc_00400]
AdcHwTrigTimer 0..1 [ECUC_Adc_00401]
AdcNotification 0..1 [ECUC_Adc_00402]
AdcStreamingBufferMode 1 [ECUC_Adc_00316]
AdcStreamingNumSamples 1 [ECUC_Adc_00292]
AdcGroupDefinition 1.* [ECUC_Adc_00014]
AdcGroupEcucPartitionRef 0..* [ECUC_Adc_00465]

No Included Containers

]

[ECUC_Adc_00317] Definition of EcucEnumerationParambDef AdcGroupAccess

Mode |
Parameter Name AdcGroupAccessMode
Parent Container AdcGroup

Description Type of access mode to group conversion results.
ImplementationType: Adc_GroupAccessModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_ACCESS_MODE_SINGLE Single value access mode
ADC_ACCESS_MODE_ Streaming access mode
STREAMING

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AdcGroupTriggSrc / AdcGroupConvMode: streaming access mode is not available for
one-shot conversion mode with software trigger source.

AUTSSAR

[ECUC_Adc_00397] Definition of EcucEnumerationParamDef AdcGroupConver-

sionMode |

Parameter Name

AdcGroupConversionMode

Parent Container

AdcGroup

Description Type of conversion mode supported by the driver.
ImplementationType: Adc_GroupConvModeType
Multiplicity 1
Type EcucEnumerationParamDef
Range ADC_CONV_MODE_ Conversions of an ADC channel group are

CONTINUOUS performed continuously after a software API call
(start). The conversions itself are running
automatically (no additional software or hardware

trigger needed).

ADC_CONV_MODE_ONESHOT The conversion of an ADC channel group is

performed once after a trigger.

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AdcGroupTriggSrc: Continuous conversion mode only available for software triggered
groups.

]

[ECUC_Adc_00398] Definition of EcuclntegerParamDef AdcGroupld [

Parameter Name

AdcGroupld

Parent Container

AdcGroup

Description Numeric ID of the group. This parameter is the symbolic name to be used on the API.
This symbolic name allows accessing Channel Group data. This value will be assigned
to the symbolic name derived of the AdcGroup container shortName.
ImplementationType: Adc_GroupType

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..1023

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Adc_00287] Definition of EcuclntegerParamDef AdcGroupPriority |

Parameter Name

AdcGroupPriority

Parent Container

AdcGroup

Description Priority level of the AdcGroup.
ImplementationType: Adc_GroupPriority Type
Multiplicity 0..1

V

AUTSSAR

A
Type EcuclntegerParamDef
Range 0. 255 |
Default value -
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency ADC_PRIORITY_IMPLEMENTATION

]

[ECUC_Adc_00435] Definition of EcucEnumerationParamDef AdcGroupReplace-
ment |

Parameter Name AdcGroupReplacement
Parent Container AdcGroup
Description Replacement mechanism, which is used on ADC group level, if a group conversion is

interrupted by a group which has a higher priority.
ImplementationType: Adc_GroupReplacementType

Multiplicity 0..1
Type EcucEnumerationParamDef
Range ADC_GROUP_REPL_ABORT_ Abort/Restart mechanism is used on group level,
RESTART if a group is interrupted by a higher priority group.
The complete conversion round of the interrupted
group (all group channels) is restarted after the
higher priority group conversion is finished. If the
group is configured in streaming access mode,
only the results of the interrupted conversion
round are discarded. Results of previous
conversion rounds which are already written to
the result buffer are not affected.
ADC_GROUP_REPL_ Suspend/Resume mechanism is used on group
SUSPEND_RESUME level, if a group is interrupted by a higher priority

group. The converions round (conversion of all
group channels) of the interrupted group is
completed after the higher priority group
conversion is finished. If the group is configured
in streaming access mode, only the results of the
interrupted conversion round are discarded.
Results of previous conversion rounds which are
already written to the result buffer are not

affected.
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

AUTSSAR

Post-build time | X | VARIANT-POSTBUILD

Dependency

]

[ECUC_Adc_00399] Definition of EcucEnumerationParamDef AdcGroupTriggSrc

[

Parameter Name

AdcGroupTriggSrc

Parent Container

AdcGroup

Description Type of source event that starts a group conversion.
ImplementationType: Adc_TriggerSourceType
Multiplicity 1
Type EcucEnumerationParamDef
Range ADC_TRIGG_SRC_HW Group is triggered by a hardware event.

ADC_TRIGG_SRC_SW Group is triggered by a software API call.

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AdcGroupConvMode: Trigger source HW is not available for continuous conversion
mode.

]

[ECUC_Adc_00400] Definition of EcucEnumerationParamDef AdcHwTrigSignal |

Parameter Name

AdcHwTrigSignal

Parent Container

AdcGroup

Description Configures on which edge of the hardware trigger signal the driver should react, i.e.
start the conversion (only if supported by the ADC hardware).
ImplementationType: Adc_HwTriggerSignalType

Multiplicity 0..1

Type EcucEnumerationParamDef

Range ADC_HW_TRIG_BOTH_EDGES React on both edges of the hardware trigger

signal (only if supported by the ADC hardware).

ADC_HW_TRIG_FALLING_
EDGE

React on the falling edge of the hardware trigger
signal (only if supported by the ADC hardware).

ADC_HW_TRIG_RISING_EDGE

React on the rising edge of the hardware trigger
signal (only if supported by the ADC hardware).

Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time

Post-build time

X VARIANT-POST-BUILD

AUTSSAR

A

Dependency

AdcTriggSrcHw: Valid only if the group is configured to be triggered by a hardware
event.

]

[ECUC_Adc_00401] Definition of EcucintegerParamDef AdcHwTrigTimer |

Parameter Name

AdcHwTrigTimer

Parent Container

AdcGroup

Description Reload value of the ADC module embedded timer (only if supported by ADC hardware).
ImplementationType: Adc_HwTriggerTimerType

Multiplicity 0..1

Type EcucintegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AdcTriggSrcHw: Valid only if the group is configured to be triggered by a hardware
event.

]

[ECUC_Adc_00402] Definition of EcucFunctionNameDef AdcNotification |

Parameter Name AdcNotification

Parent Container AdcGroup

Description Callback function for each group

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

This parameter is only available, if notification capability is configured available by Adc
GrpNotifCapability

AUTSSAR

[ECUC_Adc_00316]
BufferMode |

Definition of EcucEnumerationParamDef AdcStreaming

Parameter Name

AdcStreamingBufferMode

Parent Container

AdcGroup

Description Configure streaming buffer as "linear buffer" (i.e. the ADC Driver stops the conversion
as soon as the stream buffer is full) or as "ring buffer" (wraps around if the end of the
stream buffer is reached).

ImplementationType: Adc_StreamBufferModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_STREAM_BUFFER_ The ADC Driver continues the conversion even if

CIRCULAR the stream buffer is full (number of samples

reached) by wrapping around the stream buffer

itself.
ADC_STREAM_BUFFER_ The ADC Driver stops the conversion as soon as
LINEAR sthe stream buffer is full (number of samples
reached).
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AdcGroupAccessMode: Valid only for streaming access mode.

]

[ECUC_Adc_00292] Definition of EcucintegerParamDef AdcStreamingNumSam-

ples |

Parameter Name

AdcStreamingNumSamples

Parent Container

AdcGroup

Description Number of ADC values to be acquired per channel in streaming access mode.
Note: in single access mode this parameter assumes value 1, since only one sample
per channel is processed.

ImplementationType: Adc_StreamNumSampleType

Multiplicity 1

Type EcuclntegerParamDef

Range 1..255

Default value 1

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

AdcGroupAccessMode: Valid only for streaming access mode. In single access mode
this parameter assumes value 1, since only one sample per channel is processed.

AUTSSAR

[ECUC_Adc_00014] Definition of EcucReferenceDef AdcGroupDefinition |

Parameter Name

AdcGroupDefinition

Parent Container

AdcGroup

Description Assignment of AdcChannels to a AdcGroups.
ImplementationType: Adc_GroupDefType
Multiplicity 1.*
Type Reference to AdcChannel
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Adc_00465] Definition of EcucReferenceDef AdcGroupEcucPartitionRef

[

Parameter Name

AdcGroupEcucPartitionRef

Parent Container

AdcGroup

Description Maps an ADC channel group to zero or multiple ECUC partitions to limit the access to
this channel group. The ECUC partitions referenced are a subset of the ECUC
partitions where the ADC driver is mapped to.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Adc_00268] Definition of EcucParamConfContainerDef AdcChannel |

Container Name

AdcChannel

Parent Container

AdcHwUnit

Description

This container contains the channel configuration (parameters) depending on the
hardware capability. The organization of this data structure could contain dependencies
to the microcontroller so this is left up to the implementer and its location is left up to
the configuration. Note: Since a AdcChannel can be part of several AdcGroups, this
container is not realized as a subcontainer of AdcGroup but instead as a subcontainer
of AdcHwUnit.

Multiplicity

1.*

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name

Multiplicity

ECUC ID

AdcChannelConvTime

1

[ECUC_Adc_00011]

AdcChannelHighLimit

A

[ECUC_Adc_00455]

AdcChannelld

[ECUC_Adc_00392]

AdcChannelLimitCheck

[ECUC_Adc_00453]

AdcChannelLowLimit

[ECUC_Adc_00454]

AdcChannelRangeSelect

[ECUC_Adc_00456]

AdcChannelRefVoltsrcHigh

[ECUC_Adc_00089]

AdcChannelRefVoltsrcLow

[ECUC_Adc_00023]

AdcChannelResolution

[ECUC_Adc_00019]

AdcChannelSampTime

elefelefelele el
e

[ECUC_Adc_00290]

No Included Containers

]

[ECUC_Adc_00011] Definition of EcucintegerParamDef AdcChannelConvTime |

Parameter Name

AdcChannelConvTime

Parent Container

AdcChannel

Description Configuration of conversion time, i.e. the time during which the analogue value is
converted into digital representation, (in clock cycles) for each channel, if supported by
hardware.

ImplementationType: Adc_ConversionTimeType

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Adc_00455] Definition of EcucintegerParamDef AdcChannelHighLimit |

Parameter Name

AdcChannelHighLimit

Parent Container

AdcChannel

Description High limit - used for limit checking.
Multiplicity 0..1

Type EcuclintegerParamDef

Range 0 .. 18446744073709551615 |

Default value

Y%

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency AdcEnableLimitCheck: not available if limit checking is not globally enabled. Adc
ChannelLimitCheck: not available if channel specific limit check is not enabled. Adc
ChannelLowLimit: has to be greater or equal than AdcChannelLowLimit.

J
[ECUC_Adc_00392] Definition of EcuclntegerParamDef AdcChannelid |

Parameter Name AdcChannelld

Parent Container AdcChannel

Description This parameter defines the assignment of the channel to the physical ADC hardware
channel. ImplementationType: Adc_ChannelType

Multiplicity 1

Type EcuclintegerParamDef

Range 0..1024

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Adc_00453] Definition of EcucBooleanParamDef AdcChannelLimitCheck
[

Parameter Name AdcChannelLimitCheck

Parent Container AdcChannel

Description Enables or disables limit checking for an ADC channel.
Multiplicity 0..1

Type EcucBooleanParamDef

Default value -
Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time —
Post-build time -
Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

AUTSSAR

A

Dependency

AdcEnableLimitCheck: not available if limit checking is not globaly enabled. AdcGroup
Definition: ADC channels with limit checking feature enabled have to be assigned to
ADC groups which consist exactly of one limit checking enabled ADC channel.

]

[ECUC_Adc_00454] Definition of EcuclintegerParamDef AdcChannelLowLimit |

Parameter Name AdcChannelLowLimit

Parent Container AdcChannel

Description Low limit - used for limit checking.
Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AdcEnableLimitCheck: not available if limit checking is not globally enabled. Adc
ChannelLimitCheck: not available if channel specific limit check is not enabled. Adc
ChannelHighLimit: has to be less or equal than AdcChannelHighLimit.

]

[ECUC_Adc_00456] Definition of EcucEnumerationParamDef AdcChannelRange

Select |

Parameter Name

AdcChannelRangeSelect

Parent Container

AdcChannel

Description In case of active limit checking: defines which conversion values are taken into account
related to the boarders defined with AdcChannelLowLimit and AdcChannelHighLimit.
Implementation Type: Adc_ChannelRangeSelectType

Multiplicity 0..1

Type EcucEnumerationParamDef

Range ADC_RANGE_ALWAYS Complete range - independent from channel limit

settings.

ADC_RANGE_BETWEEN Range between low limit and high limit - high limit

value included.

ADC_RANGE_NOT_BETWEEN Range above high limit or below low limit - low

limit value included.

ADC_RANGE_NOT_OVER_
HIGH

Range below high limit - high limit value included.

ADC_RANGE_NOT UNDER_
LOW

Range above low limit.

ADC_RANGE_OVER_HIGH Range above high limit.

ADC_RANGE_UNDER_LOW Range below limit - low limit value included.

V

AUTSSAR

A
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency AdcEnableLimitCheck: not available if limit checking is not globally enabled. Adc
ChannelLimitCheck: not available if channel specific limit check is not enabled.

]

[ECUC_Adc 00089] Definition of EcucEnumerationParamDef AdcChannelRef
VoltsrcHigh |

Parameter Name

AdcChannelRefVoltsrcHigh

Parent Container

AdcChannel

Description Upper reference voltage source for each channel. Enumeration literals are defined
vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range _

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Adc_00023] Definition of EcucEnumerationParamDef AdcChannelRef
VoltsrcLow |

AdcChannelRefVoltsrcLow
AdcChannel

Parameter Name

Parent Container

Description Lower reference voltage source for each channel. Enumeration literals are defined
vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

AUTSSAR

A
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

[ECUC_Adc_00019] Definition of EcuclintegerParamDef AdcChannelResolution |

Parameter Name

AdcChannelResolution

Parent Container

AdcChannel

Description Channel resolution in bits.
ImplementationType: Adc_ResolutionType
Multiplicity 0..1
Type EcuclntegerParamDef
Range 1..63
Default value -
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AdcMaxChannelResolution: The actual resolution has to be less or equal than the
maximum resolution.

[ECUC_Adc_00290] Definition of EcucintegerParamDef AdcChannelSampTime |

Parameter Name

AdcChannelSampTime

Parent Container

AdcChannel

Description Configuration of sampling time, i.e. the time during which the value is sampled, (in
clock cycles) for each channel, if supported by hardware.
ImplementationType: Adc_SamplingTimeType

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time VARIANT-POST-BUILD

Value Configuration Class

x| X

Pre-compile time VARIANT-PRE-COMPILE

Link time —

AUTSSAR

Post-build time

| x

| VARIANT-POST-BUILD

Dependency

]

[SWS_Adc_CONSTR_00004] [If AdcEcucPartitionRef references one or more ECUC
partitions, AdcGroupEcucPartitionRef shall have a multiplicity of greater than zero and
reference one or several of these ECUC partitions as well. |

[SWS_Adc_00098]
Upstream requirements: SRS_Adc_12447

[(refers to ADC396): All channels of a group share the same group configuration
(channel can have different channel specific configurations). |

10.2.6 AdcHwUnit

[ECUC_Adc_00242] Definition of EcucParamConfContainerDef AdcHwUnit |

Module Definition.

Container Name AdcHwUnit
Parent Container AdcConfigSet
Description This container contains the Driver configuration (parameters) depending on grouping of

channels This container could contain HW specific parameters which are not defined in
the Standardized Module Definition. They must be added in the Vendor Specific

Multiplicity 1.7

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

AdcClockSource 0..1 [ECUC_Adc_00087]

AdcHwUnitld 1 [ECUC_Adc_00389]

AdcPrescale 0..1 [ECUC_Adc_00088]

Included Containers

Container Name Multiplicity Dependency

AdcChannel 1.* This container contains the channel configuration (parameters)
depending on the hardware capability. The organization of this
data structure could contain dependencies to the microcontroller
so this is left up to the implementer and its location is left up to
the configuration. Note: Since a AdcChannel can be part of
several AdcGroups, this container is not realized as a
subcontainer of AdcGroup but instead as a subcontainer of Adc
HwUnit.

AdcGroup 1.7 This container contains the Group configuration (parameters).

AUTSSAR

[ECUC_Adc_00087] Definition of EcucEnumerationParamDef AdcClockSource |

Parameter Name

AdcClockSource

Parent Container

AdcHwUnit

Description The ADC module specific clock input for the conversion unit can statically be
configured to select different clock sources if provided by hardware. Enumeration
literals are defined vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Adc_00389] Definition of EcucEnumerationParamDef AdcHwUnitld |

Parameter Name

AdcHwUnitld

Parent Container

AdcHwUnit

Description Description: Numeric ID of the HW Unit. This symbolic name allows accessing Hw Unit
data. Enumeration literals are defined vendor specific.

Multiplicity 1

Type EcucEnumerationParamDef

Range -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_Adc_00088] Definition of EcuclntegerParamDef AdcPrescale |

Parameter Name AdcPrescale

Parent Container AdcHwUnit

Description Optional ADC module specific clock prescale factor, if supported by hardware.
ImplementationType: Adc_PrescaleType

Multiplicity 0..1

Type EcuclintegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

AUTSSAR

A
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[SWS_Adc_00138] [(refers to ADC242): The ADC Driver shall support one or several
ADC HW Units of the same type. The selection of ADC HW Unit shall be done by the

configuration container AdcHwUnit. |

10.3 Published Information

For details refer to the [1] Chapter 10.3 “Published Information”.

10.3.1 AdcPublishedIinformation

[ECUC_Adc_00030] Definition of EcucParamConfContainerDef AdcPublishedIn-

formation |

Container Name

AdcPublishedInformation

Parent Container

Adc

Description Additional published parameters not covered by "Common" Published Information.
Note that these parameters have "PUBLISHED-INFORMATION" configuration class
setting, since they are published information.

Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

AdcChannelValueSigned

1

[ECUC_Adc_00410]

AdcGroupFirstChannelFixed

1

[ECUC_Adc_00411]

AdcMaxChannelResolution

1

[ECUC_Adc_00412]

No Included Containers

AUTSSAR

[ECUC_Adc_00410]
Signed |

Definition of EcucBooleanParamDef AdcChannelValue

Parameter Name

AdcChannelValueSigned

Parent Container

AdcPublishedInformation

Description Information whether the result value of the ADC driver has sign information (true) or not
(false). If the result shall be interpreted as signed value it shall apply to C-language
rules.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants

Dependency

]

[ECUC_Adc_00411] Definition of EcucBooleanParamDef AdcGroupFirstChannel

Fixed [

Parameter Name

AdcGroupFirstChannelFixed

Parent Container

AdcPublishedInformation

Description Information whether the first channel of an ADC Channel group can be configured
(false) or is fixed (true) to a value determined by the ADC HW Unit.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants

Dependency

]

[ECUC_Adc_00412] Definition of EcucintegerParambDef AdcMaxChannelResolu-

tion [

Parameter Name

AdcMaxChannelResolution

Parent Container

AdcPublishedInformation

Description Maximum Channel resolution in bits (does not specify accuracy).
Multiplicity 1

Type EcuclntegerParamDef

Range 1..63 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants

Dependency

AUTSSAR

10.4 Configuration of symbolic nhames

[SWS_Adc_00099]

Upstream requirements: SRS_Adc_12307, SRS_Adc_12447
[The symbolic names of ADC channels and ADC channel groups for use by the up-
per layer shall be defined by the configurator.They are to be defined in the modules
configuration header file. |

AUTSSAR

A Not applicable requirements

[SWS_Adc_NA_00460]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00167, SRS_BSW_00170, SRS_BSW _
00398, SRS_BSW_00375, SRS _BSW_00416, SRS _BSW_00168,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_
00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429,
SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00417, SRS_SPAL _
12267, SRS _SPAL 12463, SRS _SPAL 12068, SRS_SPAL 12069,
SRS _SPAL 12169, SRS_SPAL 12064, SRS _SPAL 12067, SRS _
SPAL 12077, SRS_SPAL 12078, SRS SPAL 12092, SRS _SPAL
12265

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-

links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11.

B.1.1

none

Added Specification Items in R25-11

B.1.2 Changed Specification Items in R25-11

Number

Heading

[ECUC_Adc_00011]

Definition of EcuclntegerParamDef AdcChannelConvTime

[ECUC_Adc_00014]

Definition of EcucReferenceDef AdcGroupDefinition

[ECUC_Adc_00019]

Definition of EcuclintegerParamDef AdcChannelResolution

[ECUC_Adc_00023]

Definition of EcucEnumerationParamDef AdcChannelRefVoltsrcLow

[ECUC_Adc_00027]

Definition of EcucParamConfContainerDef AdcGeneral

[ECUC_Adc_00028]

Definition of EcucParamConfContainerDef AdcGroup

[ECUC_Adc_00030]

Definition of EcucParamConfContainerDef AdcPublishedInformation

[ECUC_Adc_00087]

Definition of EcucEnumerationParamDef AdcClockSource

[ECUC_Adc_00088]

Definition of EcuclintegerParamDef AdcPrescale

[ECUC_Adc_00089]

Definition of EcucEnumerationParamDef AdcChannelRefVoltsrcHigh

[ECUC_Adc_00105]

Definition of EcucBooleanParamDef AdcGrpNotifCapability

[ECUC_Adc_00242]

Definition of EcucParamConfContainerDef AdcHwUnit

[ECUC_Adc_00268]

Definition of EcucParamConfContainerDef AdcChannel

[ECUC_Adc_00287]

Definition of EcuclIntegerParamDef AdcGroupPriority

[ECUC_Adc_00290]

Definition of EcuclntegerParamDef AdcChannelSampTime

[ECUC_Adc_00292]

Definition of EcucintegerParamDef AdcStreamingNumSamples

[ECUC_Adc_00316]

Definition of EcucEnumerationParamDef AdcStreamingBufferMode

[ECUC_Adc_00317]

Definition of EcucEnumerationParamDef AdcGroupAccessMode

[ECUC_Adc_00389]

Definition of EcucEnumerationParamDef AdcHwUnitld

[ECUC_Adc_00390]

Definition of EcucParamConfContainerDef AdcConfigSet

[ECUC_Adc_00391]

Definition of EcucBooleanParamDef AdcEnableQueuing

[ECUC_Adc_00392]

Definition of EcuclntegerParamDef AdcChannelld

\Y%

AUTSSAR

A

Number

Heading

[ECUC_Adc_00393]

Definition of EcucEnumerationParamDef AdcPrioritylmplementation

[ECUC_Adc_00394]

Definition of EcucBooleanParamDef AdcReadGroupApi

[ECUC_Adc_00397]

Definition of EcucEnumerationParamDef AdcGroupConversionMode

[ECUC_Adc_00398]

Definition of EcuclintegerParamDef AdcGroupld

[ECUC_Adc_00399]

Definition of EcucEnumerationParamDef AdcGroupTriggSrc

[ECUC_Adc_00400]

Definition of EcucEnumerationParamDef AdcHwTrigSignal

[ECUC_Adc_00401]

Definition of EcuclntegerParamDef AdcHwTrigTimer

[ECUC_Adc_00402]

Definition of EcucFunctionNameDef AdcNotification

[ECUC_Adc_00404]

Definition of EcucBooleanParamDef AdcDelnitApi

[ECUC_Adc_00405]

Definition of EcucBooleanParamDef AdcDevErrorDetect

[ECUC_Adc_00406]

Definition of EcucBooleanParamDef AdcEnableStartStopGroupApi

[ECUC_Adc_00408]

Definition of EcucBooleanParamDef AdcHw TriggerApi

[ECUC_Adc_00409]

Definition of EcucBooleanParamDef AdcVersionInfoApi

[ECUC_Adc_00410]

Definition of EcucBooleanParamDef AdcChannelValueSigned

[ECUC_Adc_00411]

Definition of EcucBooleanParamDef AdcGroupFirstChannelFixed

[ECUC_Adc_00412]

Definition of EcuclntegerParamDef AdcMaxChannelResolution

[ECUC_Adc_00435]

Definition of EcucEnumerationParamDef AdcGroupReplacement

[ECUC_Adc_00444]

Definition of EcucEnumerationParamDef AdcResultAlignment

[ECUC_Adc_00452]

Definition of EcucBooleanParamDef AdcEnableLimitCheck

[ECUC_Adc_00453]

Definition of EcucBooleanParamDef AdcChannelLimitCheck

[ECUC_Adc_00454]

Definition of EcuclntegerParamDef AdcChannelLowLimit

[ECUC_Adc_00455]

Definition of EcuclntegerParamDef AdcChannelHighLimit

[ECUC_Adc_00456]

Definition of EcucEnumerationParamDef AdcChannelRangeSelect

[ECUC_Adc_00457]

Definition of EcucBooleanParamDef AdcLowPowerStatesSupport

[ECUC_Adc_00458]

Definition of EcucBooleanParamDef AdcPowerStateAsynchTransitionMode

[ECUC_Adc_00459]

Definition of EcucParamConfContainerDef AdcPowerStateConfig

[ECUC_Adc_00460]

Definition of EcucFunctionNameDef AdcPowerStateReadyCbkRef

[ECUC_Adc_00461]

Definition of EcuclntegerParamDef AdcPowerState

[ECUC_Adc_00463]

Definition of EcucReferenceDef AdcEcucPartitionRef

[ECUC_Adc_00464]

Definition of EcucReferenceDef AdcKernelEcucPartitionRef

[ECUC_Adc_00465]

Definition of EcucReferenceDef AdcGroupEcucPartitionRef

[SWS_Adc_00526]

Definition of datatype Adc_PowerStateType

Table B.1: Changed Specification ltems in R25-11

B.1.3 Deleted Specification Iltems in R25-11

none

AUTSSAR

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

B.2 Specification Iltem History of this document compared to AU-
TOSAR R23-11.

B.2.1 Added Specification Iltems in R24-11

none

B.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_Adc_00505] Definition of datatype Adc_ConfigType
[SWS_Adc_00506] Definition of datatype Adc_ChannelType
[SWS_Adc_00507] Definition of datatype Adc_GroupType
[SWS_Adc_00508] Definition of datatype Adc_ValueGroupType
[SWS_Adc_00509] Definition of datatype Adc_PrescaleType
[SWS_Adc_00510] Definition of datatype Adc_ConversionTimeType
[SWS_Adc_00511] Definition of datatype Adc_SamplingTimeType
[SWS_Adc_00512] Definition of datatype Adc_ResolutionType
[SWS_Adc_00518] Definition of datatype Adc_StreamNumSampleType
[SWS_Adc_00521] Definition of datatype Adc_HwTriggerTimerType

Table B.2: Changed Specification Iltems in R24-11

B.2.3 Deleted Specification Iltems in R24-11

none

AUTSSAR

B.2.4

none

B.2.5

none

B.2.6

none

B.3

B.3.1

none

B.3.2

none

B.3.3

none

B.3.4

none

B.3.5

none

B.3.6

none

Added Constraints in R24-11

Changed Constraints in R24-11

Deleted Constraints in R24-11

Specification ltem History of this document compared to AU-
TOSAR R22-11.

Added Specification Items in R23-11

Changed Specification Items in R23-11

Deleted Specification Items in R23-11

Added Constraints in R23-11

Changed Constraints in R23-11

Deleted Constraints in R23-11

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.3 ADC Buffer Access Mode Example
	7.1.3.1 Example: Configuration
	7.1.3.2 Example: Initialization
	7.1.3.3 Example: Adc_GetStreamLastPointer Usage
	7.1.3.4 Example: Adc_ReadGroup Usage

	7.2 Conversion processing and interaction
	7.2.1 Background & Rationale
	7.2.2 Requirements

	7.3 State Diagrams
	7.3.1 ADC State Diagram for One-Shot/Continuous Group Conversion Mode
	7.3.2 ADC State Diagram for HW/SW Trigger in One-Shot Group Conversion Mode
	7.3.3 ADC State Diagram for SW Trigger in Continuous Conversion Mode
	7.3.4 ADC State Diagram for One-Shot Conversion Mode, Software Trigger Source, Single Access Mode
	7.3.5 ADC State Diagram for One-Shot Conversion, Hardware Trigger Source, Single Access Mode
	7.3.6 ADC State Diagram for One-Shot Conversion Mode, Hardware Trigger Source, Linear and Circular Streaming Access Mode
	7.3.7 ADC State Diagram for Continuous Conversion Mode, Software Trigger Source, Single Access Mode
	7.3.8 ADC State Diagram for Continuous Conversion Mode, Software Trigger Source, Linear and Circular Streaming Access Mode

	7.4 Support and management of HW low power states
	7.4.1 Background
	7.4.2 Requirements

	7.5 Error Classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Production Errors
	7.5.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Adc_ConfigType
	8.2.2 Adc_ChannelType
	8.2.3 Adc_GroupType
	8.2.4 Adc_ValueGroupType
	8.2.5 Adc_PrescaleType
	8.2.6 Adc_ConversionTimeType
	8.2.7 Adc_SamplingTimeType
	8.2.8 Adc_ResolutionType
	8.2.9 Adc_StatusType
	8.2.10 Adc_TriggerSourceType
	8.2.11 Adc_GroupConvModeType
	8.2.12 Adc_GroupPriorityType
	8.2.13 Adc_GroupDefType
	8.2.14 Adc_StreamNumSampleType
	8.2.15 Adc_StreamBufferModeType
	8.2.16 Adc_GroupAccessModeType
	8.2.17 Adc_HwTriggerSignalType
	8.2.18 Adc_HwTriggerTimerType
	8.2.19 Adc_PriorityImplementationType
	8.2.20 Adc_GroupReplacementType
	8.2.21 Adc_ChannelRangeSelectType
	8.2.22 Adc_ResultAlignmentType
	8.2.23 Adc_PowerStateType
	8.2.24 Adc_PowerStateRequestResultType

	8.3 Function definitions
	8.3.1 Adc_Init
	8.3.2 Adc_SetupResultBuffer
	8.3.3 Adc_DeInit
	8.3.4 Adc_StartGroupConversion
	8.3.5 Adc_StopGroupConversion
	8.3.6 Adc_ReadGroup
	8.3.7 Adc_EnableHardwareTrigger
	8.3.8 Adc_DisableHardwareTrigger
	8.3.9 Adc_EnableGroupNotification
	8.3.10 Adc_DisableGroupNotification
	8.3.11 Adc_GetGroupStatus
	8.3.12 Adc_GetStreamLastPointer
	8.3.13 Adc_GetVersionInfo
	8.3.14 Adc_SetPowerState
	8.3.15 Adc_GetCurrentPowerState
	8.3.16 Adc_GetTargetPowerState
	8.3.17 Adc_PreparePowerState

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Adc_Main_PowerTransitionManager

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 IoHwAb_Adc_Notification<#groupID>
	8.6.3.2 IoHwAb_Adc_NotifyReadyForPowerState<#Mode>

	9 Sequence diagrams
	9.1 Initialization of the ADC Driver
	9.2 De-Initialization of the ADC Driver
	9.3 Software triggered One-Shot conversion without notification
	9.4 Software triggered continuous conversion with notification
	9.5 Hardware triggered One-Shot conversion with notification
	9.6 HW Trigger- One-Shot conversion - Linear Streaming
	9.7 No Priority Mechanism - No Queuing
	9.8 No Priority Mechanism - SW Queuing
	9.9 HW_SW Priority Mechanism - SW Queuing
	9.10 HW Priority Mechanism - HW Queuing
	9.11 HW_SW Priority Mechanism - HW/SW Queuing

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Adc
	10.2.2 AdcGeneral
	10.2.3 AdcPowerStateConfig
	10.2.4 AdcConfigSet
	10.2.5 AdcChannel
	10.2.6 AdcHwUnit

	10.3 Published Information
	10.3.1 AdcPublishedInformation

	10.4 Configuration of symbolic names

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11.
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	B.2 Specification Item History of this document compared to AUTOSAR R23-11.
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Specification Item History of this document compared to AUTOSAR R22-11.
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11
	B.3.4 Added Constraints in R23-11
	B.3.5 Changed Constraints in R23-11
	B.3.6 Deleted Constraints in R23-11

