
Requirements on Runtime Environment
AUTOSAR CP R25-11

Document Title Requirements on Runtime
Environment

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 83

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Added ComHandler Concept
[SRS_Rte_00323] - [SRS_Rte_00326]

• Removed VENDOR_MODE

2024-11-27 R24-11
AUTOSAR
Release
Management

• Editorial changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Removed PartitionRestart

• Set Requirements related to
RTE_Implementation_Plug-ins and
ClassicPlatformFlexibility to valid

• Added chapter "Change history of
AUTOSAR traceable items"

2022-11-24 R22-11
AUTOSAR
Release
Management

• Removed Support for Compiler
Abstraction

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• Added support for ClassicPlatfrom
Flexibility [SRS_Rte_00318] -
[SRS_Rte_00321]

• Added missing requirement for
MetaData support [SRS_Rte_00322]

• Data filtering on sender side
▽

1 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

2019-11-28 R19-11
AUTOSAR
Release
Management

• RTE Implementation Plug-ins: Set
[SRS_Rte_00300] - [SRS_Rte_00317]
to type valid

• Extended Serialization for Data
Structures in SOME/IP with
tag/length/value encoding (TLV): Set
[SRS_Rte_00261] to valid

• Category 2 interrupts and
RunnableEntities

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Added support for RTE Implementation
Plug-ins: [SRS_Rte_00300] -
[SRS_Rte_00317]

• Added support for Extended
Serialization for Data Structures in
SOME/IP with tag/length/value encoding
(TLV): [SRS_Rte_00261]

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Added support for
ExtendedBufferAccess:
[SRS_Rte_00254], [SRS_Rte_00255],
[SRS_Rte_00256], [SRS_Rte_00257],
[SRS_Rte_00258], [SRS_Rte_00259],
[SRS_Rte_00260]

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Added requirement: [SRS_Rte_00253]

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Added support for concepts:

– NVDataHandlingRTE:
[SRS_Rte_00245]

– EfficientCOMforLargeData:
[SRS_Rte_00246]

– SenderReceiverSerialization:
[SRS_Rte_00247], [SRS_Rte_00248],
[SRS_Rte_00249], [SRS_Rte_00250],
[SRS_Rte_00251]

• Added requirement: [SRS_Rte_00252]
▽

2 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Removed requirement:
[SRS_Rte_00125]

2013-03-15 4.1.1
AUTOSAR
Release
Management

• Added support for concepts:

– Enhance Port Compatibility:
[SRS_Rte_00236]

– Refined Scheduling of Runnables:
[SRS_Rte_00237]

– Provide Activating RTE Event:
[SRS_Rte_00238]

– Enhanced BSW Allocation:
[SRS_Rte_00241], [SRS_Rte_00242],
[SRS_Rte_00243]

– Rapid Prototyping Support for
AUTOSAR ECUs: [SRS_Rte_00244]

• Added requirements: [SRS_Rte_00239],
[SRS_Rte_00240]

• Changed requirements:
[SRS_Rte_00084]

2011-12-22 4.0.3
AUTOSAR
Release
Management

• Changed requirements:
[SRS_Rte_00155], [SRS_Rte_00154]

• Added requirements: [SRS_Rte_00234],
[SRS_Rte_00235]

2011-04-15 4.0.2
AUTOSAR
Release
Management

• Changed requirements:
[SRS_Rte_00210], [SRS_Rte_00020]

2009-12-18 4.0.1
AUTOSAR
Release
Management

• Added support for concepts:

– AUTOSAR Scheduler harmonization

– RTE API enhancement

– Triggered Event

– Enhance Measurement and
Calibration

– Avoidance of duplicated Type
Definitions

– Integrity and Scaling at ports

– Implicit Communication Enhancement

– A2L Generation Support

– Support of large data types
▽

▽

3 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
△

– Fixed Data Exchange

– Variant Handling

– Time Determinism

– DLT Concept

– Memory related Concepts

– Build System Enhancement

– Multi Core Architectures

– Memory Partitioning

– Error Handling

– VMM AMM Concept

• Legal disclaimer revised

2009-02-04 3.1.2
AUTOSAR
Release
Management

• Changed requirement:
[SRS_Rte_00005]

• Removed requirement:
[SRS_Rte_00044]

2008-08-13 3.1.1
AUTOSAR
Release
Management

• Legal disclaimer revised

2007-12-21 3.0.1
AUTOSAR
Release
Management

• Document meta information extended

• Small layout adaptations made

2.1.1
AUTOSAR
Release
Management

• "Advice for users" revised

• "Revision Information" added

2006-11-28 2.1
AUTOSAR
Release
Management

• Added requirements: [SRS_Rte_00153],
[SRS_Rte_00154], [SRS_Rte_00155],
[SRS_Rte_00156], [SRS_Rte_00157],
[SRS_Rte_00158], [SRS_Rte_00159],
[SRS_Rte_00160], [SRS_Rte_00161]

• Changed requirement:
[SRS_Rte_00151]

• Legal disclaimer revised
▽

4 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

2006-05-16 2.0
AUTOSAR
Release
Management

• Added requirement: [SRS_Rte_00152]

• Changed requirements:
[SRS_Rte_00133], [SRS_Rte_00013],
[SRS_Rte_00077], [SRS_Rte_00075]

• Removed requirement:
[SRS_Rte_00136]

• Date format changed to dd-mm-yyyy

2005-05-31 1.0
AUTOSAR
Release
Management

• Initial release

5 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

6 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

Table of Contents

1 Scope of this document 10

1.1 Document Conventions . 10

2 Functional Overview 11

3 Requirements on RTE 12

3.1 Functional Requirements . 12
3.1.1 Interaction with AUTOSAR OS . 12
3.1.2 Interaction with AUTOSAR COM . 14
3.1.3 Interaction with Application Software Components 18
3.1.4 Interaction with Basic Software Components 28
3.1.5 Generation of the BSW Scheduler 32
3.1.6 Support for Measurement and Calibration 37
3.1.7 General Requirements . 40
3.1.8 VFB Tracing . 65
3.1.9 Application Software Component Initialization and Finalization . . . 68
3.1.10 API . 70
3.1.11 C/C++ API . 81
3.1.12 Initialization and Finalization Operation 81
3.1.13 Partition Restarting and Termination 82
3.1.14 Fault Operation . 82
3.1.15 RTE Implementation Plug-Ins . 83

3.2 Non-Functional Requirements . 91
3.2.1 General Requirements . 91

4 Change history of AUTOSAR traceable items 92

4.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . 92

4.1.1 Added Requirements in R25-11 . 92
4.1.2 Changed Requirements in R25-11 92
4.1.3 Deleted Requirements in R25-11 . 92

4.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . 93

4.2.1 Added Requirements in R24-11 . 93
4.2.2 Changed Requirements in R24-11 93
4.2.3 Deleted Requirements in R24-11 . 93

4.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . 93

4.3.1 Added Requirements in R23-11 . 93
4.3.2 Changed Requirements in R23-11 93
4.3.3 Deleted Requirements in R23-11 . 93

7 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

4.4 Traceable item history of this document according to AUTOSAR Release
R22-11 . 94

4.4.1 Added Requirements in R22-11 . 94
4.4.2 Changed Requirements in R22-11 94
4.4.3 Deleted Requirements in R22-11 . 94

8 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Virtual Functional Bus
AUTOSAR_CP_TR_VFB

[3] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[4] Basic Software Module Description Template
AUTOSAR_CP_TPS_BSWModuleDescriptionTemplate

[5] Requirements on Mode Management
AUTOSAR_CP_RS_ModeManagement

[6] Specification of Memory Mapping
AUTOSAR_CP_SWS_MemoryMapping

[7] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

[8] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[9] Specification of Diagnostic Log and Trace
AUTOSAR_CP_SWS_DiagnosticLogAndTrace

9 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

1 Scope of this document

The goal of AUTOSAR and of this document is to define the requirements and behavior
of the AUTOSAR Run-time environment.

It is not within the remit of AUTOSAR to consider how the RTE is implemented but
however all requirements and behavioral specifications are reviewed internally to en-
sure that at least one feasible implementations is possible.

1.1 Document Conventions

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [1, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [1, Standardization Template].

10 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

2 Functional Overview

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB) and thus provides the infrastructure services for commu-
nication between Application Software Components as well as facilitating access to
basic software components including the OS.

Application Software Components contain system software that is CPU and location in-
dependent. This means that, subject to constraints imposed by the system designer, an
Application Software Component can be mapped to any available ECU during system
configuration. The RTE is responsible for ensuring that components can communicate
and that the system continues to function as expected wherever the components are
mapped.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized
RTE services. The RTE is generated and/or configured for each ECU to ensure that
the RTE is optimal for the ECU.

11 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3 Requirements on RTE

3.1 Functional Requirements

3.1.1 Interaction with AUTOSAR OS

The requirements in this section all concern how the RTE interacts with the AUTOSAR
OS. The AUTOSAR ECU architecture defines all interactions to occur over a standard-
ized interface.

[SRS_Rte_00020] Access to OS ⌈

Description:
The RTE shall abstract the features of Os from AUTOSAR Software
Components. Only the access to the service interface of the RTE shall be
available for AUTOSAR Software Components directly.

Rationale:

The Application Software Components are intended to be Os independent and
therefore should not access any particular Os function directly, except for the
service interface.
For example, the RTE uses task-based functionality (tasks, resources, events,
.) to provide Runnable Entity functionality to the application. The existence of
OS tasks is not made visible to the application.

Dependencies: [SRS_Rte_00025]

Use Case:

The Os offers a standardized interface. This interface is accessed by Software
Components only via the RTE API and hence access is controlled by the RTE.
The Os offers a service interface. This is directly accessible by the Software
Components.

Supporting
Material:

Specification of the Virtual Functional Bus [2]
The AUTOSAR ECU architecture defines a standardized interface for the OS
and an AUTOSAR interface for Application Software Components and
therefore there can be no direct interaction.

⌋

[SRS_Rte_00099] Decoupling of interrupts ⌈

Description:

The RTE shall not permit category 1 interrupt context to be propagated to
Application Software Components.
To ensure low latency times and determinism, the interrupt context may have to
be propagated to the RTE.

Rationale:
If Application Software Components were able to execute within an category 1
interrupt context they would be able to block the system schedule for
unacceptably long periods of time.

Dependencies: –

Use Case:
The RTE ‘intercepts’ interrupts and enables a Runnable Entity to handle the
notification. The Runnable Entity executes in the context of a task.

▽

12 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Supporting
Material:

Specification of the Virtual Functional Bus [2]
In this requirement, blocking meant to indicate that the RTE shall not suspend
(Running->Waiting) the thread of control executing the callback. It is not meant
to indicate that the thread cannot be pre-empted.
i.e. blocking is "suspended" but not "pre-empted"

⌋

[SRS_Rte_00036] Assignment to OS Applications ⌈

Description:
When partitioning is in use, the RTE generator shall reject configurations where
the Runnable Entities of one Software Component instance are not assigned to
tasks within the same OS-Application.

Rationale:
All objects (e.g. resources, alarms) which belong to one OS-Application have
access to each other - the OS will kill tasks that attempt direct access without
being mapped to the same OS application.

Dependencies: [SRS_Rte_00018]

Use Case:
Efficient access is required - if mapped to different OS applications then the
RTE would be required to implement the protection mode switches which would
have a significant impact on efficiency.

Supporting
Material:

Where memory protection is used the tasks mapped for a component instance
form a single OS Application - this permits intra-component interactions to
occur with minimum overhead.

⌋

[SRS_Rte_00049] Construction of task bodies ⌈

Description:

The RTE generator shall construct task/ISR2 bodies to execute Runnable
Entities and Basic Software Schedulable Entities in a form suitable for the
AUTOSAR OS - this will typically be as a function exported with C linkage. The
SW-Component description declares the Runnable Entities present in a
component. The Basic Software Module description declares the Basic
Software Schedulable Entities present in a BSW Module.

Rationale:

The mapping of Runnable Entities and Basic Software Schedulable Entities to
tasks/ISR2s forms part of the input to the generator. Automatic mapping is too
complex a task (and insufficient data is present in the input) to be considered
as part of AUTOSAR at this stage.

Dependencies: [SRS_Rte_00219]

Use Case:

Runnable Entities and Basic Software Schedulable Entities in a sequence
mapped to the same task.
It is possible to provide
• tasks/ISR2s with only Runnable Entities

• tasks/ISR2s with support for interlaced execution of Runnable Entites and
Basic Software Schedulable Entities

• tasks/ISR2s with only Basic Software Schedulable Entities.
▽

13 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

–

⌋

[SRS_Rte_00193] Support for Runnable Entity execution chaining ⌈

Description:
The RTE Generator shall allow Runnable Entity monitoring by mapping of the
monitored Runnable Entities to one or several OS Tasks and - in case of the
usage of several OS Tasks - chain the execution of these OS Tasks.

Rationale:

In order to monitor the execution time of Runnable Entities per individual (or
several) Runnable Entity, the mechanism of task chaining shall be used so the
monitoring can be implemented using OS Task monitoring.
The RTE shall be able to activate (chain) the execution of the chained tasks in
order to get the desired Runnable Entity execution order.

Dependencies: –

Use Case:

Runnable Entities which are configured to be executed sequentially in one OS
Task shall be able to be spilt to several OS Tasks in order to apply OS
execution time monitoring on a fine grained level (individual Runnable Entity or
several Runnable Entities).
To get the same behavior the chain task mechanism shall be applied.

Supporting
Material:

–

⌋

[SRS_Rte_00210] Support for inter OS application communication ⌈

Description:
RTE shall support the communication between Software Component instance
that are allocated to different OS applications, where different OS applications
may be located on different memory partitions and/or cores.

Rationale:

As Software Component instances from different OS applications may be
located on different cores and different memory partitions, the communication
between them may require the use of dedicated communication and signaling
methods like the use of a Cross OS Application Communication Module.

Dependencies: [SRS_Rte_00011]

Use Case: Multi core support, memory partitioning support

Supporting
Material:

–

⌋

3.1.2 Interaction with AUTOSAR COM

The requirements in this section all concern how the RTE interacts with the AUTOSAR
COM. The AUTOSAR ECU architecture defines all interaction to occur over a stan-
dardized interface.

14 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00068] Signal initial values ⌈

Description: The RTE generator shall ensure that signals for which an INIT_VALUE is
specified are initialized.

Rationale:
Data can be read before COM or Efficient COM for large data has provided a
first value and applications should be prevented from reading uninitialized data.

Dependencies:

[SRS_Rte_00108]
The INVALIDATE attribute can be used in conjunction with an INIT_VALUE to
indicate to an Application Software Component that no data has been received
since COM or Efficient COM for large data or the RTE started.
The INVALIDATE attribute shall be initialized too.

Use Case: –
Supporting
Material:

Specification of the Virtual Functional Bus [2]

⌋

[SRS_Rte_00069] Communication timeouts ⌈

Description:

The RTE generator shall include run-time checks for monitoring timeouts
specified in the ECU Configuration for blocking communication.
When synchronous intra-task client server communication is optimized to a
direct function call, no timeout can occur though clients can still be written to
expect a timeout were the configuration to change. Therefore this requirement
does not apply when the synchronous client server call is optimized to a direct
function call.

Rationale: Prevent infinite blocking of receivers.

Dependencies: [SRS_Rte_00147]

Use Case:
A Runnable Entity performs a blocking "read" of a data item. A blocking read
will wait forever if no data arrives unless a timeout is applied.

Supporting
Material:

Specification of the Virtual Functional Bus [2] - timeouts are required within
components to prevent infinite blocking and thus apply both to inter-ECU
communication (that uses COM or Efficient COM for large data) and intra-ECU
communication (that may or may not use COM or Efficient COM for large data).

⌋

[SRS_Rte_00073] Atomic transport of Data Elements ⌈

Description:

The RTE shall ensure that the transmission and reception of data elements
(regardless whether they are simple or composite), and all arguments of a
single RTE operation are treated as atomic units.
Where a parameter is passed by reference rather than by value the RTE is
forced to rely on the component not modifying the target of the reference while
the parameter is in use by the RTE.

Rationale: –
▽

15 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Dependencies:

[SRS_Rte_00032] - data consistency.
This should not be read as requiring COM to treat the transmission as atomic -
it (or a lower layer in the COM stack) shall remain free to split across multiple
(network) frames as long as the split is not visible to the RTE.

Use Case:
Elements of a record cannot be handled separately by the Application Software
Component but, instead, the whole record should be treated as a single atomic
unit.

Supporting
Material:

Specification of the Virtual Functional Bus [2]
Software Component Template [3]

⌋

[SRS_Rte_00082] Standardized communication protocol ⌈

Description:

The RTE shall define and implement the protocol (e.g. message sequences)
for inter-ECU client-server communication.
For communication mechanisms that are not directly provided by the
AUTOSAR COM layer (e.g. client-server communication) a standardized
protocol that is implemented by every AUTOSAR RTE has to be defined.

Rationale: This ensures that RTEs of different vendors are interoperable.

Dependencies: [SRS_Rte_00062]

Use Case:
If C/S is mapped to paired COM or Efficient COM for large data message
channels then both RTEs shall implement the same mapping to be compatible.

Supporting
Material:

[SRS_Rte_00091] - common protocol for COM or Efficient COM for large data
transmissions.

⌋

[SRS_Rte_00091] Inter-ECU Marshalling ⌈

Description:

The RTE shall use a common format for transmitting/receiving data elements or
parameters of operations between ECUs. On transmission the (target specific)
signal data shall be converted to the common format and the reverse operation
performed on reception.
It shall be possible to exchange record types between components written in
different programming languages.

Rationale:

The RTE is responsible for ensuring that data elements or parameters of
operations (e.g. records, parameter lists, .) can be sent between ECUs. Since
each ECU may define signals differently in memory a straight transmission
cannot be performed and, instead, the sender shall convert the data elements
or parameters to a common format before transmission and the reverse
transformation shall be performed by the receiving RTE.
A common communication protocol enables RTEs from different vendors to
interoperate.

Dependencies: [SRS_Rte_00082] - defines common message sequence for client-server.

Use Case: –
Supporting
Material:

Software Component Template [3]
The term "Marshalling" is used synonymously to "Serialization".

⌋

16 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00181] Conversion between internal and network data types ⌈

Description:

The RTE shall generate conversion routines - when configured - for different
data types for data elements used in sender-receiver communication within one
ECU (high resolution) and data elements used between ECUs (low resolution)
to save serial data link bandwidth and non-productive development work.

Rationale: Save bandwidth in inter-ECU communication.
Dependencies: –

Use Case:

Within one ECU the SWCs want to use data types with high resolutions in
computations to get a small epsilon (computational deviation). When the same
data is transported to another ECU it is converted into the network
representation on the sender side (with loss of precision). On the receiver side
the data is converted back to the original type.

Supporting
Material:

–

⌋

[SRS_Rte_00246] Support of Efficient COM for large data ⌈

Description: RTE shall support more than one Interaction layer module. Currently COM and
Efficient COM for large data are supported.

Rationale:
Besides the "traditional" COM a lean module shall be supported giving the
option to omit either of them in case they are not needed.

Dependencies: –

Use Case:

An ECU has many Signals of large and dynamic size. The usage of Efficient
COM for large data will save resources in the communication stack (e.g.
buffers).
Another ECU has only large and dynamic signals being transmitted on request.
This ECU may omit COM if no use case out of COM is needed.

Supporting
Material:

–

⌋

[SRS_Rte_00251] Array based signal group handling with Com ⌈

Description: The Rte shall use the uint8-array API to pass the serialized representation of a
composite data to COM when this configured.

Rationale:
The AUTOSAR transformer chain provides means to serialize composite data
into a uint8-array representation. This serialized uint8-array shall be passed as
one entity to COM.

Dependencies: –

Use Case: Usage of transformer with Com-based serialization and Com Interaction to
enable the communication with a fixed communication matrix.

Supporting
Material:

–

⌋

17 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00322] Support of Metadata ⌈

Description: The Rte shall support (transparently) forwarding meta data from/to (Ld-)COM
and SWCs if configured.

Rationale:

MetaData is used for the interaction with COM or LdCom to provide additional
information about the actual payload of a PDU instance. This can be e.g.
addresses of client ECUs forwarded transparently, allowing to keep RTE bus
agnostic.

Dependencies: –

Use Case: Distinguishing C/S requests/responses originating from different client(ECUs).

Supporting
Material:

–

⌋

3.1.3 Interaction with Application Software Components

Includes Application Software Components, sensor components and actuator compo-
nents.

[SRS_Rte_00011] Support for multiple Application Software Component in-
stances. ⌈

Description:
The RTE shall support multiple instances of the same
Application/Sensor/Actuator Software Component type mapped to the same
ECU.

Rationale:
Repetition of the same Application Software Component type on an ECU to
promote component reuse.

Dependencies:
Name space - rules for "instantiating" an application / sensor / actuator have to
be defined.
[SRS_Rte_00210]

Use Case:

• Having one Application Software Component type for the window lifter which
is instantiated four times in a vehicle.

• Homogenous SW redundancy is a basic/simple solution for increasing fault
tolerance.

Supporting
Material:

Software Component Template [3]

⌋

18 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00012] Multiple instantiated AUTOSAR software components deliv-
ered as binary code shall share code ⌈

Description:

The RTE generator shall implement multiple instantiations (delivered as binary
code) of the AUTOSAR software component type (on the same ECU) through
sharing the same Application Software Component code for all instances.
Source code deliverables can be instantiated either by code sharing or code
duplication. This depends on the implementation of the RTE.

Rationale:

1) VFB metamodel.
2) Requirement to minimise code space.
3) Cannot modify binary-code software components and therefore all instances
must use the same object-code.

Dependencies: [SRS_Rte_00133]

Use Case: –

Supporting
Material:

Software Component Template [3]
Code that is to be shared between instances should be re-entrant because of
the pre-emptive environment it which it will run. Re-entrant code is indicated by
the "supportsMultipleInstantiation" flag in the software component description.

⌋

[SRS_Rte_00013] Per-instance memory ⌈

Description:

The RTE shall provide per-instance memory to Application Software
Components, where each Application Software Component instance has its
own copy of memory, not shared with other instances of the same Application
Software Component type.

Rationale:

Require variables with lifetime greater than that of a Runnable Entity but remain
protected from different instances of the same Software Component type.
RTE shall not provide memory shared between instances of an Application
Software Component type.
Also required for multiple instance support.

Dependencies: [SRS_Rte_00075] - API for accessing per-instance memory

Use Case: –
Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00077] Instantiation of per-instance memory ⌈

Description:

The RTE generator shall instantiate each per-instance memory section of a
software component according to the attributes given in its software component
description.
The instantiation of per-instance memory shall be either derived from input
information or instantiated automatically by the RTE generator (where such
information is not available). In the latter case the address of the per-instance
memory is assigned by the RTE generator and therefore is not subject to
control by the system integrator.

▽

19 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Rationale: Required by the Software Component Template

Dependencies: –

Use Case: RAM mirror from NVRAMManager.

Supporting
Material:

The per-instance memory presented as input to the RTE generator shall be
uniquely identifiable.
Software Component Template [3]

⌋

[SRS_Rte_00017] Rejection of inconsistent component implementations ⌈

Description:

The RTE generator shall ensure that the compiler can detect (and reject)
access to undefined RTE API calls.
The RTE generator is required to reject "invalid" configurations, part of this is
rejecting invalid APIs (i.e. calls to an unknown port at compile time).

Rationale: –
Dependencies: –

Use Case:

The component description defines the names of the ports that a component
"requires" and "provides" and the associated interfaces. The RTE generator
can then define only the valid API calls.
For example, consider a component that has a Port ‘p1’ with a data items ‘a’
and ‘b’. In this case, the RTE generator will only create an API for the send of
data items ‘a’ and ‘b’. Thus an attempt by the component to send any invalid
data item, e.g. ‘c’ on the interface shall be detected by the compiler and a
warning issued.

Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00134] Runnable Entity categories supported by the RTE ⌈

Description:

The RTE shall support the Runnable Entity categories 1a, 1b and 2
Runnable Entity category:
• 1a) The Runnable Entity is only allowed to use implicit reading

(DataReadAccess) and writing (DataWriteAcess). A category 1a Runnable
Entity cannot block and cannot use explicit read/write.

• 1b) The Runnable Entity can use explicit reading and writing
(DataReadAccess). A category 1b Runnable Entity cannot block. Implicit
read/write is also allowed.

• 2) The Runnable Entity may use explicit reading/writing including blocking
behavior.

Rationale: Support several kinds of runnable entity implementation kinds.

Dependencies: [SRS_Rte_00128], [SRS_Rte_00129] - Implicit reception and transmission.
[SRS_Rte_00098] - Explicit transmission.

Use Case:
It is easier to reason about time behavior for category 1a Runnable Entities that
do not invoke RTE API calls that (may) not execute in constant time.

▽

20 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00072] Activation of Runnable Entities ⌈

Description: The RTE shall start/resume a Runnable Entity according to the RTEEvents to
which it is linked.

Rationale:
Activations of Runnable Entities due to arrival of data from other components,
invocation of operations of one port or time based execution of Runnable
Entities is based on the RTEEvent model [3].

Dependencies: [SRS_Rte_00160], [SRS_Rte_00161]

Use Case:
Cyclic, time based activation of Runnable Entities; activation of a Runnable
Entity due to the arrival of data using the sender-receiver communication
pattern.

Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00160] Debounced start of Runnable Entities ⌈

Description:
The RTE shall allow the configuration of a debounce start time of Runnable
Entities to avoid the same Runnable Entity being executed shortly after each
other.

Rationale:

In case several RTE Events occur within a short time interval there shall only
be a limited amount of executions of the Runnable Entity. It shall be possible to
define a minimum time which in which all activations are noticed, but the
Runnable Entity will start only after that period has passed.

Dependencies: [SRS_Rte_00072]

Use Case:

Runnable Entities being activated with along timing period and additionally
activated on several DataReceivedEvents. If the Runnable Entity has just been
executed the RTE shall wait for the defined period until the Runnable Entity is
executed again.

Supporting
Material:

–

⌋

[SRS_Rte_00161] Activation offset of Runnable Entities ⌈

Description: The RTE shall allow the definition of an activation offset of Runnable Entites.

Rationale:

In order to allows optimizations in the scheduling (smooth cpu load, mapping of
Runnable Entities with different periods in the same task to avoid data sharing,
etc.), the RTE has to handle the activation offset information from a task shared
reference point for time trigger Runnable Entites.

Dependencies: [SRS_Rte_00072]
▽

21 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00031] Multiple Runnable Entities ⌈

Description: The RTE shall support multiple Runnable Entities in one Software Component
type.

Rationale:
Runnable Entities are used for servers, receivers, feedback, . etc and therefore
each component can have many Runnable Entities.

Dependencies: –

Use Case: –
Supporting
Material:

VFB Metamodel

⌋

[SRS_Rte_00032] Data consistency mechanisms ⌈

Description:

The RTE shall support one or more mechanism for ensuring data consistency
within an Application Software Component instance.
No direct access to data ‘outside’ the component instance is possible within
AUTOSAR.
The scope of the mechanism (e.g. exclusive area) shall be all Runnable
Entities (that statically specify the same exclusive area - RTE_IN004) in the
software component instance. If consistency between component instances is
required then an additional software component can be created to provide
appropriate access semantics to the encapsulated data.
A side effect of a data consistency mechanism may be to prevent other
Runnable Entities in different component instances from executing, for
example, the RTE may lock out all interrupts for a short period of time. However
this is not deemed to be an illegal (non-AUTOSAR) communication channel
since the set of affected Runnable Entities is not defined and therefore cannot
be relied upon by a component author.

Rationale:

Multiple Runnable Entities can be active within an Application Software
Component and therefore a mechanism shall exist to prevent concurrency
conflicts. An Application Software Component cannot access the OS directly
and therefore the RTE shall provide the mechanism.

Dependencies: –
▽

22 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:

Exclusive areas are an example of a mechanism suitable, e.g.:
void RTERunnable_a(RTEInstance self)
} .
RTEEnter_<region>(self);
/* read-modify-write data */
RTEExit_<region>(self);

An Application Software component, which server function is concurrently
called by several clients: in this case multiple executions of runnable entities
(associated to each call, supporting "canBeInvokedConcurrently") usually need
to access shared data.

Supporting
Material:

VFB Requirements (VFB_C60, Sched70)
To permit an exclusive area to affect all instances of a software component type
would be incorrect since component instances are independent and would also
open a non-AUTOSAR communication channel between the components.
Note: The APIs using in this requirement that are mentioned are only examples
of how the APIs may look like - the API presented in the SWS is subject to
change.

⌋

[SRS_Rte_00046] Support for "Executable Entity runs inside" Exclusive Areas ⌈

Description:

The RTE shall support exclusive areas where a Runnable Entity or a Basic
Software Schedulable Entity is declared as "running inside" the Exclusive Area.
All Runnable Entities in a SW-Component or Basic Software Schedulable
Entities that specify the same "runs inside" Exclusive Area shall be scheduled
non preemptively with respect to other Runnable Entities respectively Basic
Software Schedulable Entities in the set.

Rationale:

"Runs inside" Exclusive Areas satisfies the requirement from the
SW-Component template and Basic Software Module Description template that
certain Exclusive Areas can be defined that are automatically entered whenever
a Executable Entity is invoked by the RTE / Basic Software Scheduler.

Dependencies: [SRS_Rte_00032]

Use Case: –
Supporting
Material:

SW-Component Template [3]
BSWMD Template [4]

⌋

[SRS_Rte_00142] Support for InterRunnableVariables ⌈

Description:

The RTE shall support InterRunnableVariables.
A Software Component shall be able to declare one or more
InterRunnableVariables used for data consistency purposes. An
InterRunnableVariable is use when several Runnable Entities of the same
Software Component instance access the same data item.
InterRunnableVariables are used to store data item copies to avoid concurrent
Runnable Entity accesses to the one original data item.

▽

23 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Rationale:

InterRunnableVariables satisfy the requirement from the software component
template that certain InterRunnableVariables can be defined that can be
accessed by Runnable Entities of same software component instance to
implement the "variable copies" strategy.

Dependencies: [SRS_Rte_00032]

Use Case:

Data item write access by Runnable Entity in 10ms task. Several data item
read accesses by Runnable Entity in 50ms task. 50ms task can be preempted
by 10ms task. Data inconsistency can be prevented if Runnable Entity in 50ms
task gets a copy of the original data in an InterRunnableVariable to work on
during activation.

Supporting
Material:

SW-Component Template [3]

⌋

[SRS_Rte_00033] Serialized execution of Server Runnable Entities ⌈

Description:

The RTE shall support serialized and non-serialized execution of Server
Runnable Entities.
The RTE shall complete the processing of one serialized service request
before it accepts and dispatches the next request for that server.
The serialization is applied on the service level, so one server can handle
multiple service calls concurrently (this implies that the service’s Runnable
Entities are mapped to different tasks and there is no shared data between
them).
If serialization is supported by a server and how big the actual queue is shall be
configurable.

Rationale:

A serialized server only accepts and processes requests atomically and thus
avoids potential conflicting concurrent access. Invocation of the server’s
Runnable Entity shall be encapsulated within an exclusive area when
simultaneous intra-ECU and inter-ECU execution is possible.

Dependencies: [SRS_Rte_00032] - Per-instance scope of exclusive areas.
[SRS_Rte_00110] - Support for buffering.

Use Case:
The NVRAM Manager is capable of handling multiple requests. If for each
stored data item there is a separate port generated during configuration the
generic serialization mechanism works fine.

Supporting
Material:

The execution of a server is independent of how it is invoked, in particular,
whether the call is synchronous or asynchronous is a property of the client and
not the server.
This requirement explicitly enforces strict serialization of Server Runnable
Entities. An RTE generator can optimize a client/server call to a direct function
call only if serialization is maintained. This can be done through the insertion of
resource locks or other mechanisms.

⌋

24 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00133] Concurrent invocation of Runnable Entities ⌈

Description:

RTE has to allow and support the concurrent invocation of a Runnable Entity
(means several activations of same Runnable Entity at same time) for those
Runnable Entities whose attribute "canBeInvokedConcurrently" is set to TRUE.
The RTE generator shall reject input configurations requiring several concurrent
activations of a Runnable Entity when the attribute "canBeInvokedConcurrently"
of the Runnable Entity is set to FALSE.
Note that this is independent of the Runnable Entities ability to be multiple
instantiated or not.

Rationale: Requirement from SwCT Runnable Entities description

Dependencies: [SRS_Rte_00012]

Use Case:
Direct client-server calls implementation with Runnable Entity implemented as
a server. E.g. needed for Basic-SW services.

Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00143] Mode Switches ⌈

Description: The RTE shall implement the functionality of ModeSwitchEvent and
ModeDisablingDependency.

Rationale:

ModeDisablingDependency is the only mean by which AUTOSAR allows to
define sets of Runnable Entities that run only in certain modes.
ModeSwitchEvent allows to trigger Runnable Entities on the transitions
between modes.

Dependencies: [SRS_Rte_00144]

Use Case:

Use cases are, e.g.:
Initialization and finalization phases,
different communication modes (telling, whether the SW-C can expect the
communication partners of the ports to be available).

Supporting
Material:

Software Component Template [3]
Requirements on Mode Management [5]

⌋

[SRS_Rte_00176] Sharing of NVRAM data ⌈

Description: Several Application Software Components shall be able to access the same
data - through ports - defined in NvBlockComponentType.

Rationale:
This permits to lower the amount of NVRAM needed on an ECU and to avoid
duplication of data and the maintenance of this duplicated data in the
engineering processes.

Dependencies: –

Use Case:
Reuse of common parameters.
Reduce NVRAM usage.

▽

25 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

–

⌋

[SRS_Rte_00180] DataSemantics range check during runtime ⌈

Description:

Provide functionality in the RTE to enable checking the ranges of data element
values for both S/R and C/S communication.
If specified at SW-Component level a violation shall be reported to the
SW-Component and a correction strategy shall be implemented.
If configured during ECU Configuration a violation shall be reported to the DET.

Rationale:

For integration of SW-Components from different providers the check of the
actual contract is needed in order to detect violations.
For debugging it is useful to check whether SWCs sending data do provide the
data within the specified ranges. In case there is a violation a Development
Error may be raised.

Dependencies: –

Use Case:

Even when a SW-Component specifies in the PortInterface that a certain
DataElementPrototype value shall be within 0-100 it is technically possible to
send a value of 110. The RTE shall be able to check for such range violations.
Range check on sender/client side: No propagation of illegal values through the
RTE (local and remote). Reaction in case of error: "Out Of Bounds" error code
in the status value.
Range check on receiver/server side: Protection against reception of out of
bounds values on the receiver side (assuming the sender has not already
checked). Reaction in case of error: "Out Of Bounds" error code in the status
value.

Supporting
Material:

–

⌋

[SRS_Rte_00182] Self Scaling Signals at Port Interfaces ⌈

Description:

When explicitly specified, the RTE shall support the connection of ports whose
interfaces have incompatible data types or incompatible data semantics
according to the compatibility rules of the SWC-T.
The RTE shall allow specifying the scaling of signals for ports on the
sender/server side and the receiver/client side to allow automatic re-scaling in
the RTE. A deterministic generation of the re-scaling shall be supported by the
RTE generator independent of its implementation.
Dedicated connector needs to be modeled on VFB level, and based on that the
RTE generator has to create the adapter. The RTE generator is not allowed to
do it completely on its own.

▽

26 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Rationale:

Avoid writing SWC glue code to interface two different SWCs conversion code
provided by the integrator / sub-system designer (e.g. using a
COMPU-METHOD). Hence, no recalculation of signal resolution in the affected
SWCs is necessary.
In order to allow deterministic generation of the re-scaling code additional input
information might be need to specify the details of the desired re-scaling.

Dependencies: –

Use Case:

In diagnostics the resolution of signals has to be provided as specified in the
ISO document for OBDII (e.g. engine speed). If the RTE could provide these
signals in the correct resolution the SWC is not required to do this
re-calculation.
For the re-scaling of LINEAR to LINEAR data an optional/alternative call-out
function from the RTE might be utilized in order to support deterministic
conversion formula specification.

Supporting
Material:

–

⌋

[SRS_Rte_00236] Support for ModeInterfaceMapping ⌈

Description:

The RTE shall support that ports are connected which are typed by different
ModeSwitchInterfaces and where the ModeDeclarationGroupPrototype of the
provide port are typed by ModeDeclarationGroup which ModeDeclarations are
mapped to ModeDeclarations of the require port. Hereby the number of
ModeDeclarations of the require port might be different than the number of
ModeDeclarations of the provide port.

Rationale: Mode Manager and mode User are designed independently from each other.

Dependencies: –

Use Case:

Receiving Software Component has to be connected to a Mode Manager
providing a ModeDeclarationGroup with different ModeDeclaration than the
user.

In the case that Software Component is reused scenarios happens that the
ModeDeclarationGroup used by the ModeManager is incompatible to the
ModeDeclarationGroup used by the ModeUser.
For instance
A) the ModeManager is basically able to differentiate sub-states more fin
grained as it is required by the generic ModeUser. But due to the definition of
the mode communication it is not possible to use two Mode Switch Ports at the
Mode Manager because this would lead to two independent and
unsynchronized ModeMachineInstances in the RTE.
B) the generic Mode User is basically able to support additionally modes which
are not used by all Mode Manager.

Supporting
Material:

–

⌋

27 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00237] Time recurrent activation of Runnable Entities ⌈

Description:
The RTE shall support the time recurrent activation of Runnable Entities. The
applicable time period shall be definable by the software component type and
be overwriteable per component instance.

Rationale: Support closed loop controllers with different time base

Dependencies: –

Use Case: Reuse of components in different rasters

Supporting
Material:

–

⌋

3.1.4 Interaction with Basic Software Components

[SRS_Rte_00152] Support for port-defined argument values ⌈

Description: The mechanism of "port-defined argument values", as defined in the AUTOSAR
Software Component Template [3], has to be supported.

Rationale: To allow the interaction of Application Software Components with the
infrastructural basic software.

Dependencies: –

Use Case: Access of a SW-C to the NVRAM Manager.

Supporting
Material:

AUTOSAR Software Component Template [3]

⌋

[SRS_Rte_00022] Interaction with call-backs ⌈

Description: The RTE shall not suspend execution while executing a call-back.

Rationale: Blocking COM (e.g. in a call-back) could prevent reception of data and
therefore lead to data loss.

Dependencies: [SRS_Rte_00099] - decoupling of interrupts.

Use Case: –

Supporting
Material:

If the RTE cannot process (e.g. pass the information to a Runnable Entity) the
call-back immediately then the information must be queued and processed at a
later point.
A call-back is not the same as activation of a Runnable Entity.

⌋

28 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00062] Local access to basic software components ⌈

Description:

The RTE shall permit application and basic software components to directly
(via RTE) access the AUTOSAR interfaces of basic software components
located on the same ECU.
The RTE generator shall prevent direct access to the AUTOSAR interfaces of
remote basic software components. One exception is the BswM module which
is allowed to be accessed on other ECUs as well.
Indirect access to the AUTOSAR interfaces of basic software components
located on a remote ECU shall be possible via the inclusion of an Application
Software Component on the remote ECU to ‘export’ an appropriate AUTOSAR
interface to the basic software component.

Rationale:

This requirement is imposed for two reasons:
• Efficiency - remote access to a basic software component permits only the

lowest level of optimization. For example, the RTE generated would be
unable to take advantage of intra-task access to optimize communication to
either a direct function call (client-server) or queue write (sender-receiver).

• Control - an ECU integrator can know, a priori, that scheduling will not be
affected by components on remote ECUs accessing the basic software and
blocking access by local components.

Dependencies: [SRS_Rte_00018] - rejection invalid configurations.

Use Case:

• On a given ECU, sensor/actuators components are not allowed to
communicate with remote ECU abstraction. This means that sensor/actuator
SWCs SHALL be mapped to the same ECU to which the sensor/actuator
devices are mapped.

• Exception: A mode request to the local BswM is also distributed by the RTE
to other ECUs which are configured to need the mode request as well.

Supporting
Material:

See VFB chapter 4.4.2.2. The location of a service can be implemented by a
proxy implemented as an AUTOSAR software component.

⌋

[SRS_Rte_00169] Map code and memory allocated by the RTE to memory sec-
tions ⌈

Description: The RTE shall map its generated code and allocated memory to RTE memory
sections.

Rationale: Enable memory mapping control of the whole ECU, not only BSWM and SWC.

Dependencies: –

Use Case:
Efficiency of the interactions between SWC Runnable Entities and generated
code. Memory Mapping of calibration parameters. Memory partitioning and
memory mapping of PIM and other variables in the same partition as the users.

Supporting
Material:

–

⌋

29 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00170] Provide used memory sections description ⌈

Description: The RTE generator shall produce an XML file with a description of memory
sections used by the means of the BSW Module template.

Rationale: Enable memory mapping control of the whole ECU, not only BSWM and SWC.

Dependencies: [SRS_Rte_00169] - Map code and memory allocated by the RTE to memory
sections.

Use Case:
Efficiency of the interactions between SWC Runnable Entities and generated
code. Memory Mapping of calibration parameters. Memory partitioning and
memory mapping of PIM and other variables in the same partition as the users.

Supporting
Material:

Basic Software Module Description template [4]

⌋

[SRS_Rte_00177] Support of NvBlockComponentType ⌈

Description:
The RTE shall support NvBlockComponentType by providing a NvRAM and
NvROM block to the NVRAM Manager and access to the data stored in the
block.

Rationale: Allow data to be grouped together in the same NVRAM block to lower the
amount of needed NVRAM blocks.

Dependencies: –

Use Case: Storage of several small flags in a large NvRAM block.

Supporting
Material:

–

⌋

[SRS_Rte_00228] Fan-out NvBlock callback function ⌈

Description:

The RTE shall support the fan-out (take one incoming callback function and
distribute it into several callback function calls) of the NvBlock callback function
from the NVRAM Manager to multiple Software Component instances which
use the corresponding NvBlock.

Rationale:
It is possible to define several users for one NvBlock,but the NVRAM Manager
is not able to handle several callback functions. Therefore the callback function
has to be fan-out by the RTE.

Dependencies: [SRS_Rte_00177]

Use Case: Two Software Component Instances accessing the same NvBlock.

Supporting
Material:

–

⌋

30 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00233] Generation of the Basic Software Module Description ⌈

Description: The RTE Generator shall provide a Basic Software Module Description of the
actual generated RTE.

Rationale:
The Basic Software Module Description provides information how the
described module interacts with other modules and needs to be integrated.

Dependencies: [SRS_Rte_00169], [SRS_Rte_00170]

Use Case: Support the integration of AUTOSAR software.

Supporting
Material:

Specification of Basic Software Module Description [4]

⌋

[SRS_Rte_00241] Support for Local or Remote Handling of BSW Service Calls
on Partitioned Systems ⌈

Description:

For systems where the BSW modules can be executed in multiple partitions,
the RTE generator shall redirect the BSW service call from a SWC either to the
local or to a remote partition based on the partition mapping(s) assigned to the
BSW Module.

Rationale:
If a module is available on a local partition, execution within that partition is
preferable for performance reasons. If it is not available, the RTE is responsible
for routing service calls to the partition as configured.

Dependencies: –

Use Case: BSW running on multi core systems.

Supporting
Material:

–

⌋

[SRS_Rte_00245] Support of Writing Strategies for NV data ⌈

Description:
The RTE shall provide a mechanism in order to write updated NV data of RAM
Blocks to NV memory with a certain timing schema (writing strategy).
The availability of this mechanism shall be configurable.

Rationale: Support different write strategies for NV data.

Dependencies: –

Use Case: SW-Cs that have to fulfill different functional requirements on NV data handling.

Supporting
Material:

–

⌋

31 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.1.5 Generation of the BSW Scheduler

[SRS_Rte_00211] Cyclic time based scheduling of BSW Schedulable Entities ⌈

Description: The RTE shall support to the cyclic time based scheduling of BSW Schedulable
Entities.

Rationale:
Many BSW Modules rely on the cyclic time based call of their Schedulable
Entities in order to fulfill their functionality.

Dependencies: [SRS_Rte_00072]

Use Case: Call of the function "Com_MainFunctionTx" to achieve periodic sending of
IPdus.

Supporting
Material:

–

⌋

[SRS_Rte_00212] Activation Offset of BSW Schedulable Entities ⌈

Description: The RTE shall allow the definition of an Activation Offset of BSW Schedulable
Entities.

Rationale:
In order to allow optimizations in the scheduling the RTE has to handle the
activation offset information from a task shared reference point for time trigger
BSW Schedulable Entities.

Dependencies: [SRS_Rte_00211], [SRS_Rte_00161]

Use Case: Mapping of BSW Schedulable Entities with different periods in the same task

Supporting
Material:

–

⌋

[SRS_Rte_00213] Mode Switches for BSW Modules ⌈

Description:
The RTE shall support Mode Switches for BSW modules. BSW Schedulable
Entities are scheduled dependent on modes or are activated by entering and
exiting a mode.

Rationale:
Conditional scheduling of BSW Schedulable Entities dependent on different
operating modes of the ECU.

Dependencies: [SRS_Rte_00144]

Use Case:
• Initialization and finalization phases

• Different communication modes
Supporting
Material:

–

⌋

32 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00214] Common Mode handling for Basic SW and Application SW ⌈

Description: The RTE shall support the coordinated switching of a Mode affecting BSW
Modules and Application Software Components.

Rationale:
Synchronized behavior during a mode transition controlling AUTOSAR BSW
Modules and Application Software Components.

Dependencies: [SRS_Rte_00144], [SRS_Rte_00143], [SRS_Rte_00213]

Use Case: ECU initialization and finalization phase.

Supporting
Material:

–

⌋

[SRS_Rte_00215] API for Mode switch notification to the SchM ⌈

Description: The SchM shall provide APIs for communication of active modes from the BSW
mode manager to the SchM.

Rationale:
The SchM needs to disable the execution of certain BSW Schedulable Entities
depending on modes, therefore it needs to know the current modes.

Dependencies: [SRS_Rte_00213], [SRS_Rte_00214]
This might be implemented via a Port-Based API or a direct C-API.

Use Case: See [SRS_Rte_00213]

Supporting
Material:

–

⌋

[SRS_Rte_00216] Triggering of BSW Schedulable Entities by occurrence of Ex-
ternal Trigger ⌈

Description:

The RTE shall support the triggering of BSW Schedulable Entities by the
occurrence of External Triggers.
Particular BSW Schedulable Entities in BSW dependent from External Triggers
shall be executed after occurrence of the event in a defined and deterministic
order specified by the integrator.
The occurrence of the External Trigger is either reported via API to the RTE or
by means of the OS (e.g. expiration of an OS Alarm).
Restriction: This is only applicable for intra-ECU usage.

Rationale: Sporadic and non timing based periodic activation of BSW Schedulable Entities
in different BSW Modules.

Dependencies: [SRS_Rte_00218]

Use Case: Angle periodic triggering of the ignition for a combustion engine.

Supporting
Material:

–

⌋

33 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00230] Triggering of BSW Schedulable Entities by occurrence of In-
ternal Trigger ⌈

Description:

The Basic Software Scheduler shall support the triggering of BSW Schedulable
Entities by the occurrence of Internal Trigger.
Particular BSW Schedulable Entities in BSW dependent from Internal Events
shall be executed after occurrence of the event in a defined and deterministic
order specified by the integrator.
The occurrence of the Internal Trigger is either reported via API to the RTE or
by means of the OS (e.g. expiration of an OS Alarm).
Restriction: This is only applicable for intra-ECU usage.

Rationale: Decoupling from Interrupt Context inside a Basic Software Module.

Dependencies: –

Use Case:
An interrupt which shall not exceed a certain WCET activates a BSW
Schedulable Entity to process more time consuming algorithms.

Supporting
Material:

–

⌋

[SRS_Rte_00217] Synchronized activation of Runnable Entities and BSW
Schedulable Entities ⌈

Description: The RTE shall support the triggering of both, Runnable Entities and BSW
Schedulable Entities by the same Triggered Events.

Rationale:
Synchronous activation of routines in AUTOSAR BSW modules and Application
Software Components.

Dependencies: –

Use Case:
Angle periodic triggering of the routines in Application Software Components
and Complex Drivers for a combustion engine.

Supporting
Material:

–

⌋

[SRS_Rte_00218] API for Triggering BSW modules by Triggered Events ⌈

Description: The RTE shall provide an API usable for BSW modules to notify the RTE about
the occurrence of Triggered Events.

Rationale:
The sources for Triggered Events may be captured in the BSW and need to be
forwarded to the application SWCs.

Dependencies: [SRS_Rte_00216], [SRS_Rte_00217]

Use Case: See [SRS_Rte_00216]

Supporting
Material:

–

⌋

34 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00219] Support for interlaced execution sequences of Runnable Enti-
ties and BSW Schedulable Entities ⌈

Description:

The RTE shall support the interlaced execution sequences of Runnable Entities
and BSW Schedulable Entities within the same Os Task.
The whole execution sequence for all Runnable Entities and BSW Schedulable
Entities which are mapped to the same OS Task can be arbitrarily defined.

Rationale: Usage of OS Tasks for scheduling of Application Software Components and
BSW Modules.

Dependencies: –

Use Case:
Reduce response time of a closed loop control by configuration of a signal flow
orientated calculation sequence (plant determination, controller, actuator).
Reduce number of tasks.

Supporting
Material:

–

⌋

[SRS_Rte_00220] ECU life cycle dependent scheduling ⌈

Description:

The RTE shall support the exclusive Scheduling of BSW modules dependent
from the ECU life cycle. Before the RTE is fully initialized (call of Rte_Start) or
after the RTE is finalized (call of Rte_Stop) only BSW Schedulable Entities shall
be scheduled.

Rationale:
Support different life-cycles of BSW Modules and Application Software
Components.

Dependencies: –

Use Case: Exclusive Scheduling of BSW Modules during start-up and shut-down phase of
the ECU.

Supporting
Material:

–

⌋

[SRS_Rte_00221] Support for "BSW integration" builds ⌈

Description:

The RTE generator shall provide means to generate the API for only for BSW
Modules (with the related BSW Scheduling code), excluding the API for
Application Software Components.
When the input information contains Application Software Component parts
these shall be ignored in this mode.
The complete input information must be valid, including the ignored parts.

Rationale: Support integration of BSW Modules without Application Software Components.

Dependencies: –

Use Case: Pre-integration and test of BSW Module packages.

Supporting
Material:

–

⌋

35 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00222] Support shared exclusive areas in BSW Service Modules and
the corresponding Service Component ⌈

Description: The RTE shall provide APIs to enter or exit exclusive areas for both, BSW
Service Modules and the corresponding Service Component.

Rationale:
Coordinated access to shared memory between BSW Schedulable Entities and
BSW Runnable Entities of the SAME module (i.e. the AUTOSAR Service which
has both, a BSW aspect and a SW-C aspect).

Dependencies: [SRS_Rte_00046]

Use Case:
Coordinate the access to the NvM job buffer from the NvM module Schedulable
Entities and the NvM server Runnable Entities called by the Application
SW-Components.

Supporting
Material:

–

⌋

[SRS_Rte_00229] Support for Variant Handling of BSW Modules ⌈

Description:
The RTE Generator shall support the generation of the BSW scheduling where
"PreCompileTime" and "PostBuild" variability is left open and shall be resolved
after the generation.

Rationale:
Some variability may stay in the input information after the RTE Generation
phase.

Dependencies: [SRS_Rte_00201]

Use Case:

A simple NvM only needs one Schedulable Entity while the full-featured NvM
requires several Schedulable Entities. Both variants can be described in one
input information and the generated RTE shall contain means to switch
between both variants after the generation.

Supporting
Material:

–

⌋

[SRS_Rte_00243] Support for inter-partition communication of BSW modules ⌈

Description:

On multi-core systems that use the SchM for parallel execution of BSW
modules, the SchM shall provide APIs for the inter-partition communication of
modules, including APIs for the initialization of satellites and functions for
service invocation on a specific partition.

Rationale:
The SchM needs to provide mechanisms for inter-partition communication,
because invocations of a module function are not assigned to specific
partitions.

Dependencies: –

Use Case: BSW running on multi core systems.

Supporting
Material:

–

⌋

36 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.1.6 Support for Measurement and Calibration

[SRS_Rte_00153] Support for Measurement ⌈

Description:

The RTE generator shall create code allowing read out of ECU internal
communication data and variable contents. Responsibility of RTE is to supply
RAM locations where the measurement data can be read by other SW (e.g.
Basic SW, external measurement tools). This read out might be asynchronous
to all RTE actions.
The RTE is not responsible to deliver the measurement values to ECU external
instances.

Rationale:
Measurement is needed to get knowledge about ECU internal behavior when
ECU is running.

Dependencies: –

Use Case: Monitor SWC internal signals (e.g.InterRunnableVariables), VFB
communication or mode states.

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”

⌋

[SRS_Rte_00154] Support for Calibration ⌈

Description:

RTE and BSW Scheduler shall support calibration process of ECUs.
RTE and BSW Scheduler are not responsible to make parameter or
interpolation curve/map modifications by itself but must support calibration data
emulation. RTE and BSW Scheduler are neither responsible to handle
exchange of calibration parameter values nor for communication with ECU
external instances.

Rationale:
Calibration is the process of adjusting an ECU SW to fulfill its tasks to control
physical processes resp. to fit to special project needs or environments.

Dependencies: [SRS_Rte_00153] - Support of Measurement: calibration needs means of
measurement to work properly.

Use Case:
Adapt ECU SW to motor specific properties.
Environment specific adaptation of ECU SW.

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”
ASAP Standard (www.asam.net)

⌋

37 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00156] Support for different calibration data emulation methods ⌈

Description:

The RTE generator shall support these data emulation methods for calibration
purposes:
directAccess
Calibration data is stored in ROM and accessed directly. This method can be
used with appropriate calibration hardware.
Single pointered method
Calibration data accesses are done via one indirection over a pointer table in
RAM
Double pointered method
Calibration data accesses are done via a base pointer in RAM and over a
pointer table in ROM/FLASH
InitRAM parameter method
RTE accesses calibration parameters located in RAM directly (without any
indirection) and copies the values from ROM/FLASH during startup
Methods 2-4 need SW support from RTE.

Rationale: Projects in different domains have different requirements and different RAM
availabilities.

Dependencies: [SRS_Rte_00154] - Support of Calibration.

Use Case:

DirectAccess method:
No overhead. Appropriate HW support present or after rebuild for production
Single pointered method:
more available RAM present than with InitRAM method, only 1 indirection, no
time for initial copy
Double pointered method:
less RAM needs than single pointered method when calibration is off, activate
several modified parameters simultaneously
InitRAM parameter method:
Only few parameters to calibrate

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”

⌋

[SRS_Rte_00157] Support for calibration parameters in NVRAM ⌈

Description: RTE shall support allocation of calibration parameters in NVRAM

Rationale:
Allocation in NVRAM allows independent parameter manipulation by other
instances without re-flashing the ECU

Dependencies: [SRS_Rte_00154] - Support of Calibration.

Use Case:
Modify a NVRAM calibration parameter via a diagnostic service, e.g. modify
window lifter speed or enable a SW option

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”

⌋

38 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00158] Support separation of calibration parameters ⌈

Description: RTE shall support separation of calibration parameters

Rationale: Separation required e.g. due to security reasons

Dependencies: [SRS_Rte_00154] - Support of Calibration.

Use Case:
Separate calibration parameters for monitoring purposes from the other
calibration parameters to get independency from parameters for normal
functional operation in case of partly corrupted memory.

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”

⌋

[SRS_Rte_00159] Sharing of calibration parameters ⌈

Description:
Several software components (and also several instances of software
components) shall be able to share same calibration parameters defined in
CalprmComponentTypes.

Rationale:
Avoids potential inconsistencies between several calibration parameters for
same item on 1 ECU, reduces ECU resource consumption

Dependencies: [SRS_Rte_00154] - Support of Calibration.

Use Case:
Common use of calibration parameters like maximum vehicle speed, left/right
steering wheel, temperature sensor interpolation curve, ..

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”

⌋

[SRS_Rte_00189] A2L Generation Support ⌈

Description: The RTE generator shall support the generation of output information in order
to support the later generation of a complete A2L file.

Rationale:
The RTE generator is allocating the variables which shall be measurable.
Therefore the information about the allocated variables shall be exported for
further usage by subsequent tools.

Dependencies: –

Use Case: In order to measure some RTE allocated variables the symbols used in the
allocation have to be available for the measurement tools.

Supporting
Material:

–

⌋

39 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.1.7 General Requirements

[SRS_Rte_00021] Per-ECU RTE customization ⌈

Description:

The RTE shall be customizable (generated and/or configured) for each ECU.
The RTE generator should avoid, where possible, the use of generic functions
and should, instead, favor functions that are configured/generated to
specifically implement the required communication patterns.

Rationale:

Generic functions are considered to be too computationally expensive since the
function needs to dynamically determine what actions to perform (e.g. switch
on parameters).
In contrast, statically configured/generated functions know implicitly what needs
to be done and therefore avoid these costs and are therefore considered
necessary for the production of optimal systems.

Dependencies: –

Use Case: –

Supporting
Material:

An ECU with two or more micro-controllers can be configured using either
shared memory (and hence a single OS, single basic software set, etc) or with
separate memory (multiple OSs, multiple basic software sets, etc.). In the first
case there is only a single ECU according to the AUTOSAR ECU architecture
and therefore only one RTE. In the second case there are multiple,
independent, ECUs and therefore multiple RTEs.

⌋

[SRS_Rte_00065] Deterministic generation ⌈

Description:

A given version of a RTE generator from a vendor - for an identical set of input
files - shall reproduce, every time it is invoked, the same RTE code with the
exception of time-related information in code comments, like ‘generated at..’,
which may differ.

Rationale:
The generated RTE code shall be equal in case the same generator (version)
and input information is used.

Dependencies: –

Use Case:
There shall be no difference (other than information in comments) between
RTEs generated by the same generator for the same input files.

Supporting
Material:

–

⌋

[SRS_Rte_00028] "1:n" Sender-receiver communication ⌈

Description:
The RTE shall support "1:n" sender-receiver communication.
Sender-receiver communication is message passing and the RTE shall support
scenarios with a single-sender-multiple-receivers ("1:n").

Rationale: VFB Specification requires support for single-sender-multiple-receiver ("1:n")

Dependencies: [SRS_Rte_00131] - "n:1" communication.
▽

40 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Use Case: –
Supporting
Material:

VFB Specification

⌋

[SRS_Rte_00131] "n:1" Sender-receiver communication ⌈

Description:
The RTE shall support "n:1" sender-receiver communication.
Sender-receiver communication is message passing and the RTE shall support
scenarios with multiple-senders-single-receiver ("n:1").

Rationale: VFB Specification requires support for multiple-senders-one-receiver ("n:1")

Dependencies: [SRS_Rte_00028] - "1:n" communication.

Use Case: –
Supporting
Material:

VFB Specification

⌋

[SRS_Rte_00029] "n:1" Client-server communication ⌈

Description:

The RTE shall support multiple-client-single-server ("n:1") client-server
(function invocation) communication. Individual clients are independent - there
is no coordination of requests between clients.
Single-client-multiple-server ("1:n") communication is not required. Such
communication raises issues about buffering and selection of results that are
application dependent and therefore not considered to be the domain of the
RTE.

Rationale: –

Dependencies: VFB requires support multiple-clients-one-server ("n:1") but explicitly does not
require to support single-client-multiple-server ("1:n") communication

Use Case:

The fog light shall serve as backup for the brake light this can be implemented
by one "fog light" - server switching fog light on/off and two clients, the "fog
light"-client and the "brake light"-client both switching fog lights on and off for
different purposes.

Supporting
Material:

VFB Specification

⌋

41 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00079] Single asynchronous client-server interaction ⌈

Description:

The RTE shall support at most one asynchronous call at a time from a single
operation in a required port categorized by a client-server interface (i.e. there
can only be one outstanding request per "AsynchronousServerCallPoint").
Note that a single client can simultaneously have multiple outstanding requests
provided each is to different server operations.
When a SW-component instance restarts it may receive a stale reply - replies
to a request made before the component was restarted. The RTE shall forward
stale replies and it is the job of the SW-component instance to detect and reject
the reply, for example, through sequence numbers.

Rationale:
Requirement from VFB spec (4.1.4.2 Client-Server Communication). There is
no queuing (of parameters and return locations) on the client-side and
therefore only one single outstanding request can be supported.

Dependencies: –

Use Case: –
Supporting
Material:

Software Component Template [3]
VFB Specification [2]

⌋

[SRS_Rte_00080] Multiple requests of servers ⌈

Description:

The RTE shall support the queuing of concurrent calls to a server (by different
clients). A server specified using the "BUFFERING queue(n)" attribute may
have queued requests from multiple clients. Requests shall be read from the
server’s queue using first-in-first-out semantics.
Depending on the RTE implementation the queue may be present in the either
in the RTE or in COM.

Rationale: Requirement from VFB spec (4.1.4.2 Client-Server Communication)

Dependencies: [SRS_Rte_00033]

Use Case: –
Supporting
Material:

Queues are applied at the operation level, i.e. each operation in a client-server
interface has a dedicated queue.

⌋

[SRS_Rte_00162] "1:n" External Trigger communication ⌈

Description:

The RTE shall support the communication of External Trigger events from one
trigger source to multiple trigger sinks ("1:n").
The Runnable Entity(s) in the trigger sink(s) linked to the event shall be
executed after occurrence of the event in a defined and deterministic order
defined by the integrator.
Restriction: This is only applicable for intra-ECU usage.

Rationale:
Sporadic and non timing based periodic activation of Runnable Entities in
different Software Components.

Dependencies: –
▽

42 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:
Angle periodic triggering of the Mass Air Flow calculation for a combustion
engine.

Supporting
Material:

–

⌋

[SRS_Rte_00163] Support for InterRunnableTriggering ⌈

Description:
The RTE shall support InterRunnableTriggering.
A software component instance shall be able to explicitly trigger the execution
of Runnable Entities of the same component instance.

Rationale:
Decoupling of calculation and processing sequences inside a Software
Component instance.

Dependencies: –

Use Case:
A time base triggered Runnable Entity which shall not exceed a certain WCET
activates a second Runnable Entity of the same SW-C instance in case of error
to process more time consuming exception handling.

Supporting
Material:

–

⌋

[SRS_Rte_00235] Support queued triggers ⌈

Description:

External and internal trigger event communication shall support queuing the
number of triggers issued by a trigger source. When the trigger source is
informed of the end of execution of all triggered executable entities, the RTE
shall (if any trigger is in the queue) dequeue a trigger by activating again the
triggered executable entities.

Rationale: –
Dependencies: –

Use Case:
There are use cases existing where it is important to queue the number of
activations done by a trigger source when triggers are faster issued in the
trigger source as the runnables in the trigger target can be activated.

Supporting
Material:

–

⌋

43 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00025] Static communication ⌈

Description:

The RTE shall support only those communication connections known when the
RTE is generated - the source(s) and destination(s) of all communication shall
be known statically.
Static communication is considered to include Application Software Component
access to the publisher-subscriber service - components are statistically
configured to access the service and then subscribers are dynamically chosen
from a statically configured set.

Rationale:
Dynamic communication is deemed too expensive (both at run-time and in
code overhead) and would therefore limit the range of devices for which the
RTE is suitable.

Dependencies: –

Use Case: –

Supporting
Material:

VFB Specification
In AUTOSAR (and in COM) only static communication connections are
permitted. If dynamic communication will be allowed in future, all specifications
have to be reworked.

⌋

[SRS_Rte_00144] RTE shall support the notification of mode switches via
AUTOSAR interfaces ⌈

Description:
RTE shall use the well defined mechanisms of AUTOSAR interfaces for the
communication of active modes from the mode manager to the mode
dependent software component.

Rationale: Use the flexibility and configuration mechanisms defined for AUTOSAR
interfaces.

Dependencies: [SRS_Rte_00143]

Use Case: See [SRS_Rte_00143]

Supporting
Material:

AUTOSAR. Software Component Template. Version 1.04 - Final, 04 2005 (p.
61, L 7-8)

⌋

[SRS_Rte_00018] Rejection of invalid configurations ⌈

Description:
The RTE generator shall detect, and reject where appropriate, the invalid
deployment and communication configuration of application and basic software
components.

Rationale:
The RTE is required to reject "invalid" configurations, e.g. wait point in category
1a or 1b Runnable Entity, interface incompatibility, .

Dependencies: [SRS_Rte_00062] - local access to basic software.

Use Case:

Multiple instantiation of a component where the "supportsMultipleInstantiation"
flag is not set.
The RTE generator shall reject the mapping of event-triggered and
"communication triggered" Runnable Entities to the same basic task. (An
implementation is possible, if inefficient, for extended tasks).

▽

44 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Supporting
Material:

A valid RTE cannot be generated for an invalid configuration.
For example, AUTOSAR is required to be interoperable with "legacy ECUs"
(Requirement RS_Main_00190, AUTOSAR_MainRequirements_v2.2_r.doc, p.
32). The capabilities of such ECUs may not be precisely compatible with
AUTOSAR and therefore some configurations, e.g. client-server communication
with the legacy ECU, should be rejected - that’s an invalid configuration.

⌋

[SRS_Rte_00055] RTE use of global namespace ⌈

Description:

The RTE specification shall define standard naming conventions for all the
symbols created by the RTE generator that are visible within the global
namespace.
Creating symbol definitions within the global namespace using this naming
convention is the exclusive right of the RTE generator. Application and/or basic
software components shall not create symbols defined by this naming
convention within the global namespace.

Rationale:
Prevents conflicts with symbols created by application and/or basic software
components.

Dependencies: –

Use Case: –
Supporting
Material:

All symbols use the prefix "RTE".

⌋

[SRS_Rte_00164] Ensure a unique naming of generated types visible in the
global namespace ⌈

Description:

The RTE shall define standard naming conventions for all the type symbols
created by the RTE generator that are visible within the global namespace. The
naming convention shall be defined in a way, that each type requiring an own
implementation within the global namespace is named uniquely.

Rationale:
Prevent type conflicts within the global namespace caused by integration of
SWC provided from different suppliers.

Dependencies: [SRS_Rte_00055]

Use Case: –
Supporting
Material:

–

⌋

45 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00165] Suppress identical "C" type re-definitions ⌈

Description: The RTE generator shall suppress the re-definition of compatible type
declarations resulting in identical "C" type definition.

Rationale:
ECU Extract can contain (compatible) type definitions which are resulting in the
identical type definitions.

Dependencies: –

Use Case:
Improvement of code quality by avoidance of type re-definitions.
Enabling stricter type checking and suppress compiler errors/warnings.

Supporting
Material:

–

⌋

[SRS_Rte_00166] Use the AUTOSAR Standard Types in the global namespace if
the AUTOSAR data type is mapped to an AUTOSAR Standard Type ⌈

Description:
The RTE shall suppress the re-declaration of AUTOSAR data types mapped to
the AUTOSAR Standard Types and shall use directly the AUTOSAR Standard
Types instead.

Rationale:
Improving code quality by avoidance of type casts in case of communication
with Basic Software and in case of library calls.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00167] Encapsulate a Software Component local name space ⌈

Description:
The RTE generator shall encapsulate a Software Component local name space
for declarations and definitions for APIs and types related to one Software
Component.

Rationale:

From a SW-C providers point of view this is the only name space which can be
ensured by the SW-C provider. Therefore the RTE Generator has to provide the
mapping from the SW-C locally used names within the application header file to
the names used within the global namespace.

Dependencies: [SRS_Rte_00055], [SRS_Rte_00087]

Use Case: Support embedding of SW-Components in different ECUs by avoiding type
conflicts.

Supporting
Material:

–

⌋

46 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00252] Encapsulate a BSW Module local name space ⌈

Description: The RTE generator shall encapsulate a BSW Module local name space for
declarations and definitions for APIs and types related to one BSW Module.

Rationale:
From a BSW Module providers point of view this is the only name space which
can be ensured by the BSW Module provider.

Dependencies: [SRS_Rte_00055], [SRS_Rte_00087]

Use Case: Support embedding of BSW Modules in different ECUs by avoiding type
conflicts.

Supporting
Material:

–

⌋

[SRS_Rte_00126] C language support ⌈

Description: The RTE generator shall support SW-Components and BSW Modules created
using ‘ANSI C’.

Rationale: Support common used programming language.

Dependencies: –

Use Case: –
Supporting
Material:

Specification of the Virtual Functional Bus [2]
ANSI/ISO 9899-1989, "Programming Languages - C"

⌋

[SRS_Rte_00138] C++ language support ⌈

Description: The RTE generator shall support SW-Components and BSW Modules created
using ISO C++.

Rationale: Support common used programming language.

Dependencies: –

Use Case: –
Supporting
Material:

Specification of the Virtual Functional Bus [2]
ISO/IEC 14882-1998, "Programming Languages - C++"

⌋

[SRS_Rte_00051] RTE API mapping ⌈

Description:

The RTE specification shall define a standard naming convention for all RTE
API artifacts visible by a component author that are created by the RTE
generator.
The names of RTE API artifacts shall not include the component instance
names.

▽

47 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Rationale:

The requirement for an API mapping enables the signature of generated RTE
functions to be hidden from users and permits targeted optimization depending
on configuration.
The hiding of signatures is desirable for two reasons:
The names of generated RTE functions may be long (to ensure name
uniqueness) and therefore unwieldy for users to reference directly.
The generated function name may include information not known when the
component is compiled, such as the instance name.

Dependencies: –

Use Case: –

Supporting
Material:

At the point the component is written the component instance name is not
defined (deployment has not be performed) and therefore the component
instance name cannot be included in the API. However, the instance name is
required by the RTE generator when actually generating the RTE to ensure
name uniqueness and therefore the RTE generator shall implement a
well-defined API mapping from the RTE API to the generated RTE API
functions.

⌋

[SRS_Rte_00048] RTE Generator input ⌈

Description: The RTE generator shall accept input consisting of zero or more
databases/files.

Rationale:
It is not reasonable to expect input as a single file. The RTE generator shall
collect information from multiple input files and check their consistency.

Dependencies: –

Use Case:

• Provide each Software Component type description in a separate input file.

• Provide the System description in a separate input file.

• Be prepared to not find any input file and provide proper error reporting.

Supporting
Material:

AUTOSAR design flow does not restrict input to one source and therefore RTE
generator must be flexible.

⌋

[SRS_Rte_00024] Source-code AUTOSAR software components ⌈

Description: The RTE shall support AUTOSAR software components where the source is
available ("source-code software components").

Rationale:
AUTOSAR software components as source-code increase the optimization
potential for the generated RTE.

Dependencies: –

Use Case: –
Supporting
Material:

Software Component Template [3]

⌋

48 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00140] Binary-code AUTOSAR software components ⌈

Description: The RTE shall support AUTOSAR software components where only the object
code ("binary-code software components") is available.

Rationale: Binary-code AUTOSAR software components are required for IP hiding.

Dependencies: –

Use Case: –

Supporting
Material:

Software Component Template [3]
Support for binary-code AUTOSAR software components requires the same
compiler type and compiler version.

⌋

[SRS_Rte_00083] Optimization for source-code components ⌈

Description:

The RTE generator should provide optimized communication when the
source-code of an Application Software Component is available.
Optimizations envisaged include elimination of the RTE for that communication
channel.

Rationale: VFB_C20

Dependencies:
- minimize overheads, has been rephrased from the specification of VFB_C20
to be testable. This requirement is considered testable provided the
"contemporary" solution is suitable for comparison.

Use Case:
Conversion of intra-task S-R communication to direct variable write. This can
only be performed for source-code components since the deployment is not
known when a binary-code component is compiled.

Supporting
Material:

VFB_C20 requires that optimizations should enable the RTE to impose zero
overhead when compared with "contemporary" implementations.
When comparing solutions, one should make sure that the AUTOSAR system
has the same features as the "contemporary solution", for
example, by using the "SupportsMultipleInstantiation" attribute of the
"Implementation" class.

⌋

[SRS_Rte_00027] VFB to RTE mapping shall be semantic preserving ⌈

Description: The RTE generator shall configure the RTE to implement the specified
communication paths while retaining their semantics.

Rationale:

The mapping from VFB model expressed in the XML input to generated RTE is
required to be semantic preserving.
This requirement applies regardless of whether communication is done by
COM, by the RTE directly or if the RTE generator optimizes the generated RTE
to bypasses the RTE completely for certain communication paths.

Dependencies: –

Use Case:
The RTE generator is not permitted to modify the semantics of communication,
for example, converting synchronous to asynchronous.

▽

49 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

VFB_C10

⌋

[SRS_Rte_00190] Support for variable-length Data Types ⌈

Description:

The RTE shall support the transfer of data with variable size (could be bigger
than 8 bytes but has a fixed maximum size).
The variable length support shall be applicable to
• strings

• primitive byte arrays

Rationale:

The support of variable length data allows a more efficient utilization of
resources in the ECU and on the communication busses. It also supports the
implementation of dynamic communication protocols (like SAE J1939).
Handling of strings with always a fixed length is not preferable, since a lot of
ECU resources will be allocated by this approach.
The usage of an always fixed size would result in wasting runtime and
bandwidth in case of not used but reserved space.
The alternative usage of a couple of interfaces and signals to serve different
sizes will complicate the APIs and waste configuration freedom.

Dependencies: –

Use Case:

• Transferring message and information strings of variable length between
ECU’s, e.g. Central ECU and Instrument Cluster.

• Transferring the content of a received SMS to display it.

• Transferring (variable) strings to a display.

• Primitive byte arrays which are similar to strings but are not zero terminated.

Supporting
Material:

–

⌋

[SRS_Rte_00234] Support for Record Type sub-setting ⌈

Description:

The RTE shall support that ports are connected which are typed by different
interfaces and where the elements of the provide port are typed by composite
data types which composite elements are mapped to elements of the require
port. Hereby the require port might contain only a sub set of the elements
contained in the provide port.

Rationale:

Since the handling of data in a consistent manner requires using a record type,
it shall be allowed at the receiver of a RecordType to only receive a sub-set of
the sent record data elements. Since different receivers do require a different
sub-set of the provided data.

Dependencies: –
▽

50 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:

4 wheel speed signals and the movement direction signal are provided in one
record. If a receiver is only interested in the movement direction information all
of the other information from this record does not have to be considered at this
specific receiver.

Supporting
Material:

–

⌋

[SRS_Rte_00098] Explicit Sending ⌈

Description:

The RTE shall provide a mechanism for making requests for explicit sending of
AUTOSAR signals (i.e. an implementation of DataSendPoint).
The DataSendPoint of a Runnable Entity references an instance of a
data-element in a provided port. Using the DataSendPoint, a Runnable Entity
can use an explicit RTE API call to write new values of the specified
data-element (which may cause an immediate send depending on component
and communication configuration).

Rationale: Implementation of internal component model from VFB Specification.

Dependencies:

[SRS_Rte_00134], [SRS_Rte_00128] and [SRS_Rte_00129] - The current
SwCT and VFB specifications require that the Runnable Entity is of cat 2 for
explicit sending. This situation is being revised so that cat 1b and 2 will be able
to access DataSendPoints (e.g. extended to cat 1b).

Use Case: –
Supporting
Material:

VFB Specification [2]
Software Component Template [3]

⌋

[SRS_Rte_00129] Implicit Sending ⌈

Description:

The RTE shall provide a mechanism for the implicit sending of data elements.
The mechanism shall grant write-access to a data element of a provided port
that may be freely changed until the Runnable Entity returns.
The presence of DataWriteAccess means that the Runnable Entity will
potentially modify the DataElement in the pPort. The Runnable Entity has free
access to the data-element while it is running but the Runnable Entity should
ensure that the data-element is in a consistent state when it returns.
When using DataWriteAccess the new values of the data-element are made
available, by the RTE, when the Runnable Entity returns. Depending on the
configuration the RTE may either have nothing to do or it may need to actually
initiate sending of the data element.

Rationale: Implementation of internal component model from VFB Specification.

Dependencies:

[SRS_Rte_00134] and [SRS_Rte_00128] - Previous SwCT and VFB
specifications required that the Runnable Entity is (at most?) of cat 1b. This
situation is being revised so that cat 1a are allowed to access DataReadAccess
and DataWriteAccess.

Use Case: –
▽

51 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

VFB Specification [2]
Software Component Template [3]

⌋

[SRS_Rte_00128] Implicit Reception ⌈

Description:

The RTE shall provide a mechanism for the implicit reception of data elements.
The mechanism shall grant read-access to a data element of a required port
that will not be modified by the RTE and may be freely read until the Runnable
Entity returns.
The presence of DataReadAccess means that the Runnable Entity will require
access to the DataElement in the rPort. The Runnable Entity expects that the
contents of this data does not change during execution of the Runnable Entity.

Rationale: –

Dependencies:

[SRS_Rte_00134] and [SRS_Rte_00129] - Previous SwCT and VFB
specifications required that the Runnable Entity is (at most?) of cat 1b. This
situation is being revised so that cat 1a are allowed to access DataReadAccess
and DataWriteAccess.

Use Case: –
Supporting
Material:

VFB Specification [2]
Software Component Template [3]

⌋

[SRS_Rte_00141] Explicit Reception ⌈

Description:

The RTE shall provide a mechanism for making requests for explicit reception
of AUTOSAR signals (i.e. an implementation of DataReceivePoint).
The DataReceivePoint of a Runnable Entity references an instance of a
data-element in a required port. Using the DataReceivePoint, a Runnable
Entity can use an explicit RTE API call to receive new values of the specified
data-element (e.g. the ‘next’ value is read out of the local queue).

Rationale: Implementation of internal component model from VFB Specification.

Dependencies: [SRS_Rte_00134], [SRS_Rte_00128], [SRS_Rte_00098], and
[SRS_Rte_00129]

Use Case: –
Supporting
Material:

VFB Specification [2]

⌋

52 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00092] Implementation of VFB model "waitpoints" ⌈

Description:

The RTE API shall support wait points at which Runnable Entities will block
until an "RTEEvent" occurs.
A category 2 Runnable Entity shall, through the RTE API, be able to suspend
its execution (i.e. block) until a well-defined event occurs.
This requirement does not mean that "wait points" shall be explicitly specified in
the API and could be satisfied by blocking calls that suspend the caller until an
event (defined in the VFB meta-model) occurs.

Rationale: Runnable Entities need to be able to suspend execution (block) until a defined
event occurs.

Dependencies: [SRS_Rte_00027]

Use Case:
• Waiting for the arrival of data

• Waiting for the return of a call

Supporting
Material:

This requirement is a special case of [SRS_Rte_00027].
Software Component Template [3]

⌋

[SRS_Rte_00145] Software Sharing ⌈

Description:
The RTE Generator shall provide a default operating mode that guarantees
compatibility between different RTE implementations both for source code and
object code components.

Rationale:

For IP hiding purposes a component may be delivered as object code only.
Then it has to be precompiled against a header file created by an RTE
implementation that may not be the RTE implementation that is used in the
integration environment.

Dependencies:
Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00148] Support "Specification of Memory Mapping" ⌈

Description: The document "Specification of Memory Mapping" shall be supported by RTE
implementations.

Rationale: To allow the integration of several software modules in one ECU.

Dependencies: –

Use Case: –
Supporting
Material:

Specification of Memory Mapping [6]

⌋

53 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00150] Support "Specification of Platform Types" ⌈

Description: The document "Specification of Platform Types" shall be supported by RTE
implementations.

Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

Specification of Platform Types [7]

⌋

[SRS_Rte_00151] Support RTE relevant requirements of the "General Require-
ments on Basic Software Modules" ⌈

Description:

The following requirements of the "General Requirements on Basic Software
Modules" shall be supported by RTE implementations:
[SRS_BSW_00007] [SRS_BSW_00101] [SRS_BSW_00161]
[SRS_BSW_00300] [SRS_BSW_00305] [SRS_BSW_00307]
[SRS_BSW_00308] [SRS_BSW_00310] [SRS_BSW_00312]
[SRS_BSW_00326] [SRS_BSW_00327] [SRS_BSW_00330]
[SRS_BSW_00336] [SRS_BSW_00337] [SRS_BSW_00338]
[SRS_BSW_00342] [SRS_BSW_00345] [SRS_BSW_00346]
[SRS_BSW_00347] [SRS_BSW_00353] [SRS_BSW_00397]
[SRS_BSW_00399] [SRS_BSW_00400] [SRS_BSW_00405]
[SRS_BSW_00407] [SRS_BSW_00415] [SRS_BSW_00447]

Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

General Requirements on Basic Software Modules [8], only a subset of the
requirements needs to be taken into account for the RTE.

⌋

[SRS_Rte_00171] Support for fixed and constant data ⌈

Description: The RTE shall support the access to fixed and constant data shareable
between SWCs.

Rationale: SWCs shall be able to access fixed data which are commonly defined for
several SWCs.

Dependencies: –

Use Case:
Definition of general constant values to be used by many SWCs (like pi,
avogadro).

Supporting
Material:

–

⌋

54 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00178] Data consistency of NvBlockComponentType ⌈

Description: The RTE shall protect the data defined in NvBlockComponentType against
concurrent write and read access (by SWCs or NVRAM Manager).

Rationale:
The data of a NvBlockComponentType is shared amongst SWCs (and also with
the NVM). The data needs to be protected against concurrent write and read
access.

Dependencies: [SRS_Rte_00176]

Use Case: –
Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00179] Support of Update Flag for Data Reception ⌈

Description:

In case of Sender Receiver communication with last is best semantics, if the
configuration requires, RTE shall support an update flag that indicates whether
there has been an update of the data since the last read operation from the
Software Component to the data element. The update flag shall be set during
reception of the data by the RTE and reset during the read operation from the
software component.

Rationale: Allows polling for updates.

Dependencies: [SRS_Rte_00110]

Use Case:

This allows a Runnable Entity - that is, e.g., triggered by the FlexRay cycle - to
take action depending on the availability of new data.
It shall be possible to refrain from re-reading the data element, if the data is not
updated.

Supporting
Material:

–

⌋

[SRS_Rte_00184] RTE Status "Never Received" ⌈

Description:
The RTE shall support the RTE-Status "never received". This is the new initial
status of each data element for which it is configured. This initial status will be
cleared when the first reception occurs.

Rationale:
This additional status establishes the possibility to check, whether a data
element has been changed since system start or partition restart.

Dependencies: –

Use Case:
Get the information whether involved data have been received at any time since
system start or partition restart.

Supporting
Material:

–

⌋

55 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00191] Support for Variant Handling ⌈

Description: The RTE shall support the resolution and implementation of the AUTOSAR
Variant Handling mechanism.

Rationale:
With the support of variant handling it is also possible to leave some variation
until the RTE generation. Then the RTE Generator needs to support the
resolution of these variation points.

Dependencies: –

Use Case:

• Using the same ECU (hardware and software) for several vehicle lines. This
leads to different communication matrices, which need to be used depending
in which vehicle line the ECU is build in. Also the functionality may be slightly
different in each vehicle line.

• A project can choose out of different existing implementations of AUTOSAR
SWCs respectively SW-compositions with same or compatible interfaces to
implement the sum of the system functionality. This addresses pre-built
variant handling.

Supporting
Material:

–

⌋

[SRS_Rte_00201] Contract Phase with Variant Handling support ⌈

Description:
The RTE shall support the generation of the Application Software Component
header file where "PreCompileTime" or "PostBuild" variability is left open and
shall be resolved later.

Rationale:
Some variability may be defined as having the binding time "PreCompileTime"
or "PostBuild". This variability has to be represented in the generated
application software component header file.

Dependencies: –

Use Case:

The existence of a Port is specified to be variable with a binding time
"PreCompile". Then in the application software component header file the
corresponding APIs could be wrapped in #IFDEFs so the compiler can actually
benefit from the binding during compiling.
When the binding time is "PostBuild" the application software component
header file shall consider the superset of all possible variants.

Supporting
Material:

–

⌋

[SRS_Rte_00202] Support for array size variants ⌈

Description: The RTE generator shall be able generate arrays whose size is depending on a
model attribute.

Rationale: Software supporting a variable - but fixed during runtime - number of entities.

Dependencies: This shall be resolved until "PreCompile" time.
▽

56 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:
"Length of Arrays, size of Calibration Axis": depending on the system, the
number of cylinders varies, values required per cylinder are combined in arrays
to implement scalable algorithms.

Supporting
Material:

–

⌋

[SRS_Rte_00204] Support the selection / de-selection of SWC prototypes ⌈

Description:

The RTE shall support the configuration - post-build time - a software
component to run or not.
When the SWC does not run, the RTE needs to behave as if the software
component does not exist, therefore all RTE events for that SWC’s Runnable
Entities shall be suppressed.

Rationale: Handling of optional functionality.

Dependencies: The behavior of a "deselected" SW-Component prototype shall be defined.

Use Case: Disabling trailer functionality if not used.

Supporting
Material:

–

⌋

[SRS_Rte_00206] Support the selection of a signal provider ⌈

Description: RTE shall support selection of a signal provider at "PostBuild" time.

Rationale:

The provider of a signal could come from one/several internal software
component, or via a network signal. The RTE shall support the selection of the
source post-build loadable.
Support variants where the source of a signal can be either internal or external
to the ECU.

Dependencies: –

Use Case:
A system where in one variant the temperature sensor is connected to the local
ECU and is available locally, another variant the temperature value is provided
via the network.

Supporting
Material:

–

⌋

[SRS_Rte_00207] Support N to M communication patterns while unresolved vari-
ations are affecting these communications ⌈

Description:

In a system N:M communication shall be allowed when this communication is
subject to a variation point. After all affecting variants have been resolved only
1:N or N:1 communication shall be possible.
This shall be available for Postbuild variants.

▽

57 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Rationale:
Some variants will have multiple components publish the same data. The
receivers require the data from any publisher. But after variant resolving only
one publisher is actually sending the data.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00231] Support native interface between Rte and Com for Strings and
uint8 arrays ⌈

Description:
Com does support the sending / receiving of an array of uint8 natively. The Rte
shall use this native interface if the communicated data type is supported by
Com.

Rationale: Allow an easy access to data natively supported by Com.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00232] Synchronization of runnable entities ⌈

Description:

The RTE shall support the synchronization of runnable entities.
Synchronization means that the mechanisms that implement the runnable
entity activation (OsAlarm, OsTask, OsEvent, etc...) are triggered (expired,
activated, set, etc...) at the same point of time.
Synchronization shall be possible even if runnable entity are mapped to
different OsTasks, different OsPartitions, different cores or even different ECUs.

Rationale:
In some cases, multiple sensors or actuators have to be acquired or driven by
different runnable entities at the same point of time.

Dependencies: Global time service for synchronization over ECU is required.

Use Case:
On a Flexray cluster, some processus are time triggered and shall be
synchronized between ECUs.

Supporting
Material:

–

⌋

58 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00238] Allow enabling of RTE-Feature to get the activating Event of
Executable Entity ⌈

Description:
It is possible to request the activation of one Executable Entity by several
Events. It shall be possible to identify the activating Event during the execution
of the activated Executable Entity.

Rationale:
The Executable Entity’s code shall be able to identify the actually activating
Event which caused the current execution of this Executable Entity.

Dependencies: –

Use Case:
A Executable Entity is defined to be activated by a "TimingEvent" as well as by
a "DataReceivedEvent". During the execution of the Executable Entity the code
needs to distinguish which activation source actually triggered the execution.

Supporting
Material:

–

⌋

[SRS_Rte_00244] Support for bypass ⌈

Description:

The RTE shall provide support for implementation of software component
bypass.
A bypass consists in reading/modifying/writing a data for testing or rapid
prototyping purpose.

Rationale:
To support the integration on a standard RTE of different implementations of
bypass tools and software.

Dependencies: –

Use Case:

A Rapid Prototyping tool/software vendor provides an implementation that can
be integrated on a standard RTE. A Tier 1 supplier integrates the Rapid
Prototyping software in an AUTOSAR ECU. The Rapid Prototyping tool is used
by an OEM on the ECU provided by the Tier 1 supplier to evaluate/test new
control algorithms.

Supporting
Material:

–

⌋

[SRS_Rte_00254] Selectable RP Preparation ⌈

Description: The RTE shall support selectable data preparation for RP.

Rationale:
A "hookable" flag attached to data permits the RTE generator to enable RP
preparation for the data element and thus ensure that resources are only
allocated where they are required.

Dependencies: –

Use Case:
"Interesting" signals generated/consumed by SWCs are prepared for RP and
subsequently made available for presentation to RP tool users by the RTE
generator.

Supporting
Material:

–

⌋

59 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00255] RP Memory Interface ⌈

Description: The RTE shall support a write-read access pattern for RP prepared data.

Rationale:

The write-read pattern results in the RTE generator writing each associated RP
prepared data element to a RP buffer and subsequently reading from the RP
buffer rather than the data element.
These modifications ensure that if an RP tool patches the write to the RP buffer
then the value that is written by the RP tool to the RP buffer will be used by
subsequent RTE generated code instead of the actual API parameter.

Dependencies: –

Use Case:

An RP tool intercepts writes to the RP global buffer and uses bypass
functionality to change the written value. Since the RTE no longer uses the
original but performs subsequent reads from the RP global buffer it will use the
value as modified by the RP tool.

Supporting
Material:

–

⌋

[SRS_Rte_00256] Conditional Bypass ⌈

Description: The RP memory interface provided by the RTE shall support the enabling or
disabling of bypass functionality.

Rationale:
RP enables the bypass of existing functionality however the selection is
dynamic and therefore it may be necessary to re-enable the original runnable
entity and thus disable the bypass functionality.

Dependencies: –

Use Case:
Algorithm under test, i.e. the bypass functionality, is erroneous and the original
algorithm must be re-enabled.

Supporting
Material:

–

⌋

[SRS_Rte_00257] RunnableEntity Bypass ⌈

Description: The RTE generator shall support disabling the execution of runnable entities.

Rationale:

RP enables the bypass of existing functionality and therefore it may be
necessary to disable the original runnable entity to prevent unwanted
side-effects.
The enable/disable decision is dynamic and may be selected by, for example,
calibration tools, either prior to system start or change during run-time.
The conditional execution of the original RunnableEntity is unrelated to the
normal conditionality of the invocation, e.g. due to the presence of pre-scalers
created by the RTE generator when multiple RteEvents are mapped to the task.

Dependencies: –
▽

60 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:

The introduction of bypass functionality replaces an existing algorithm and to
reduce system load the original algorithm is not executed. The switch between
the two algorithms occurs during run-time so that the behavior of the two can
be compared.

Supporting
Material:

–

⌋

[SRS_Rte_00258] RTE Generated Service Points ⌈

Description: The RTE shall support the generation of service points.

Rationale:

A service point is a call of a service function provided by the service component
(typically a BSW module, not a SwServiceComponentType).
The service function is responsible for sampling (reading) and stimulating
(writing) the bypass data. The action of sampling may then trigger the RP
system to perform the bypass (this may involve the communication of the
sampled data to an external system for computation) ready for reading when
the stimulation occurs.
Data is sampled and/or stimulated at service points. During either sampling or
stimulation the data is read and/or written from the memory associated with the
data to/from a local buffer during the execution of the service point and hence
transferred to/from the RP tool.

Dependencies: –

Use Case:
A service point placed before a runnable entity can be used to trigger the RP
system. A service point placed after a runnable entity can be used to sample
bypass values.

Supporting
Material:

–

⌋

[SRS_Rte_00259] Manually Inserted Service Points ⌈

Description: The RTE generator shall support manually inserted service points within SWCs.

Rationale:

In this scenario the service function signature of the BSW that provides the
service is known by the SWC developer and manually inserted into the SWC’s
code when it is developed. The description of these service points is both an
input to, and output from, the RTE generator however the generator’s role is
restricted to validating the manual service points do not conflict with the
generated service points.
Note that there is no requirement for the RTE generator to insert calls within
generated code for manually inserted service points. However the RTE
generator must ensure that the description of the SWC’s service hooks is
exported for subsequent tools.

Dependencies: –
▽

61 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:

A SWC developer implements the service function calls at the required
positions within the RunnableEntity’s code, typically one right before and a
second one right after every area to be prepared for bypassing. This
mechanism might be used in migration scenarios where a RunnableEntity
contains multiple functionality.

Supporting
Material:

–

⌋

[SRS_Rte_00260] RP Interface Documentation ⌈

Description:
The RP interface documentation shall describe the elements of the RP memory
interface provided by the RTE and their relationship to the bypassed SWCs and
service points.

Rationale:

The RP interface documentation provides the standardized mechanism for an
RP tool to determine the use of memory, e.g. buffers and flags, of the RP
prepared RTE.
The same documentation also describes the generated service points
(including their relationship to SWCs) and their usage (e.g. the use as pre- and
post-hooks).

Dependencies: –

Use Case:

The RP interface documentation describes the symbol of the buffer used by the
RP memory interface to implement the write-read cycle. Using this information,
along with address information from the linker output, the RP tool can provide
direct access to the buffer.

Supporting
Material:

–

⌋

[SRS_Rte_00247] The Rte shall execute transformer chains for SWC communi-
cation ⌈

Description:
The Rte shall execute transformer chains for SWC communication for Senders,
Receivers, Servers and Clients of Sender/Receiver and Client/Server
inter-ECU communication.

Rationale:
Modification or extension of data is often necessary within the communication
between Software Components in inter-ECU communication in a way which is
transparent for the Software Components.

Dependencies: –

Use Case:

Serialize complex data which are sent over a communication bus and
de-serialized them at the receiver’s RTE.
Extend the data with checksums which are created at the sender’s and checked
at the receiver’s side RTE.

Supporting
Material:

–

⌋

62 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00248] The Rte shall provide the buffer for the data transformation ⌈

Description: The Rte shall provide the buffer for the data transformation.

Rationale:
Data Transformation requires space to be executed on. As the Rte coordinates
the execution of transformers, also the Rte has to provide the buffer the
transformers work on.

Dependencies: SRS_Rte_00247

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00249] The Rte shall provide transformation errors to the SWCs ⌈

Description: The Rte shall provide transformation errors to the SWCs to enable them to
react accordingly to errors.

Rationale:
SWCs are not only interested in the fact that communication failed but they also
might need more detailed information which transformer failed with which error.

Dependencies: SRS_Rte_00247

Use Case:
Safety related SWCs want to distinguish between deserialization error and
failed checksum checking.

Supporting
Material:

–

⌋

[SRS_Rte_00253] The RTE shall execute data transformation for SWC/BSW com-
munication within one ECU ⌈

Description: The Rte shall execute data transformation for SWC/BSW communication for
Senders, Receivers of Sender/Receiver intra-ECU communication.

Rationale:
Transformation of data is often necessary within the communication between
Software Components or Basic Software Modules in intra-ECU communication
in a transparent way.

Dependencies: –

Use Case:
Transform different representations of data structures between Software
Components or Basic Software Modules within one ECU - e.g. between
NvBlockSwComponentType and DCM.

Supporting
Material:

–

⌋

63 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00250] The Rte shall provide size indications of variable size arrays to
SWCs ⌈

Description: The Rte shall provide size indications of variable size arrays to SWCs.

Rationale:

SWCs which send variable size arrays to other SWCs are the only instances
which know how many elements of the variable size array are filled with valid
data. These SWC can indicate the number of valid elements to the Rte. Then,
the Rte can consider that information and transmit only the valid elements to
the receiver.

Dependencies: SRS_Rte_00202, SRS_Rte_00247

Use Case: Bus load efficient transmission of arrays with a variable size.

Supporting
Material:

–

⌋

[SRS_Rte_00261] The RTE shall support optional struct members. ⌈

Description: The RTE shall support optional struct members.

Rationale:
A support for optional members in the RTE allows that the SOME/IP
Transformer can use this information to skip members which are not available
during serialization.

Dependencies: SRS_Xfrm_00106

Use Case:
Optional members are helpful in large data structures where not all members
exist at the same time. The provider only has to provide members which are
currently available. Only this data needs to be transferred to a consumer.

Supporting
Material:

–

⌋

[SRS_Rte_00323] RTE Reporting Data Element Invalidation Errors to DEM ⌈

Description: The RTE shall report data element invalidation errors to the DEM if configured.

Rationale: To provide the diagnostic information about the data element invalidity.

Dependencies: –

Use Case: Diagnostic Reporting Extensions.

Supporting
Material:

–

⌋

[SRS_Rte_00324] RTE Proxy for Cyclic Reception Handling ⌈

Description:

The RTE shall enable reception proxy that allows the cyclic reception of data,
store the data, and return value.
Additional Information: Applications access the data in their individual
schedule.

▽

64 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00325] RTE Last Valid Value as Error Alternative ⌈

Description: The RTE shall use the last valid value as replacement in case error is detected.

Rationale: –
Dependencies: –

Use Case: Storage of last valid value

Supporting
Material:

–

⌋

[SRS_Rte_00326] RTE Support for Debounce Counter Values for Infrastructure
and Value Qualifier ⌈

Description:
The RTE shall evaluate the data received and shall return an Infrastructure
Qualifier counter value or Value Qualifier counter value, along with an existing
return value.

Rationale: Support for error debouncing.

Dependencies: –

Use Case: Evaluation of Infrastructure and Value Qualifier.
Supporting
Material:

–

⌋

3.1.8 VFB Tracing

[SRS_Rte_00005] The RTE generator shall support "trace" builds ⌈

Description:
If the RTE provides means for tracing which cost additional RAM and/or ROM
and/or RUNTIME in the ECU. It shall be possible to switch these features off
statically during RTE generation.

Rationale: Allow monitoring of VFB communication and runtime behavior.

Dependencies: [SRS_Rte_00045], [SRS_Rte_00008]

Use Case: DLT, Debugging
▽

65 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

VFB90, VFB_C10

⌋

[SRS_Rte_00045] Standardized VFB tracing interface ⌈

Description:

In ‘trace’ build the RTE implementation shall provide a standardized interface to
make data values and events available to VFB tracing tools.
When in ‘trace’ build the RTE generator inserts hook calls at interesting points
(e.g. API invocation, interactions with COM, task start, Runnable Entity start,
etc).

Rationale:
By defining a standardized VFB tracing interface tool vendors can adapt
existing trace tools quickly - this will promote the adoption of AUTOSAR ECUs.

Dependencies: [SRS_Rte_00005]

Use Case: –

Supporting
Material:

VFB Specification (VFB90); VFB Specification V1.03, Sect. 4.4.3, p. 94
An RTE implementation can define ‘null’ implementations of the hooks - to
enable an RTE to build - but then permit them to be re-implemented by tool
vendors to target vendor specific interfaces to standard tracing tools.
The VFB tracing interface shall be configurable to interface with the AUTOSAR
Diagnostic Log and Trace [9] functionality.

⌋

[SRS_Rte_00008] VFB tracing configuration ⌈

Description:
If the RTE is configured for tracing communication across the VFB, it shall be
possible to detail the configuration of the RTE for what has to be logged and
traced.

Rationale: Tracing only of interesting signals/activations/system states, to reduce
overhead in RAM+RUNTIME.

Dependencies: [SRS_Rte_00005]

Use Case: –
Supporting
Material:

VFB Specification (VFB90)

⌋

[SRS_Rte_00192] Support multiple trace clients ⌈

Description: The RTE Generator shall be able to support multiple trace clients for the same
trace event.

Rationale: It shall be possible to configure several trace functions on the same trace event.
The individual trace functions shall not need to know about each other.

Dependencies: [SRS_Rte_00008]

Use Case: The Debugger and the Diagnostic Log and Trace (DLT) are interested in the
same trace event.

▽

66 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

–

⌋

[SRS_Rte_00003] Tracing of sender-receiver communication ⌈

Description:

The ‘trace’ builds of the RTE generator shall support tracing of sender-receiver
signals on the VFB.
The RTE should provide means for the tracing of transported signals of
sender-receiver communication. It should be possible to trace both intra-ECU
and inter-ECU communication.

Rationale: Log data and supply it for debugging purposes.

Dependencies: [SRS_Rte_00005]

Use Case: –
Supporting
Material:

VFB Specification (VFB90)

⌋

[SRS_Rte_00004] Tracing of client-server communication ⌈

Description:

The ‘trace’ builds of the RTE generator shall support the tracing of client-server
communication.
The RTE should provide means for the tracing of transported signals of
client-server communication. It should be possible to trace both intra-ECU and
inter-ECU communication.

Rationale: Log data and supply it for debugging purposes.

Dependencies: [SRS_Rte_00005]

Use Case: –
Supporting
Material:

VFB Specification (VFB90)

⌋

67 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.1.9 Application Software Component Initialization and Finalization

[SRS_Rte_00052] Initialization and finalization of components ⌈

Description:

The RTE shall support initialization and finalization of Application Software
Components.
The term "initialization of a component" refers to the phase of a software
components life cycle which will be executed before entering the normal
operational mode, normally in order to set up an appropriate environment for
executing the application.
The term "finalization of a component" refers to the phase of a software
components life cycle which will be executed after the normal operational mode,
normally in order to reset the operational environment to a determined state.

Rationale:

The general ECU life-cycle is characterized by transitions from inoperational
states to run states and back to the inoperational states of the
ECUStateManager. When in run states the OS scheduler is responsible for the
ECUs schedule and Runnable Entities will be executed with respect to the OS
scheduler. In all other states the ECUStateManager is responsible for schedule
of the ECU, but Runnable Entities can only be executed in synchronous and
sequential way. Since the initialization and finalization phase of components
refer to the transition from inoperational state to run states or vice versa, the
Runnable Entities given for initialization and finalization can be executed
synchronously as well as asynchronously depending on the intention of the
system designer. That means the RTE shall provide means to invoke those
Runnable Entities in the one or the other way and shall ensure that Runnable
Entities of Application Software Components always communicate at least
conceptually with modules of the basic software via the RTE.

Dependencies: SWS ECUStateManager

Use Case:

Reading application specific parameters from non-volatile RAM while
initialization application specific software component, writing application
specific parameters to the non-volatile RAM while finalization of the Application
Software Component.

Supporting
Material:

VFB Specification (Sched42)

⌋

[SRS_Rte_00070] Invocation order of Runnable Entities ⌈

Description: The RTE generator shall respect the invocation order of Runnable Entities as
specified in the input information.

Rationale:

The invocation order of Runnable Entities may be of importance to the
functionality of the algorithm or its timing.
The invocation order may be provided with the description of the
SW-Components or in the configuration of the RTE.

Dependencies: –

Use Case:
A control loop implemented with several SW-Components. The execution of the
individual Runnable Entities of this control loop shall be respected by the
generated RTE code.

▽

68 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00239] Support rule-based initialization of composite DataPrototypes
and compound primitive DataPrototypes ⌈

Description:

The RTE shall support the rule-based initialization of composite
DataPrototypes and compound primitive DataPrototypes.
The rule shall support the following cases:
• same value for all elements

• explicit list of values, rest shall be initialized with a given value

Rationale:
Init values are required at sender and receiver side if the UNCONNECTED
R-Port feature of RTE shall be used which ends up in a plenty of
ValueSpecifications.

Dependencies: –

Use Case: SWCs with many interfaces

Supporting
Material:

–

⌋

[SRS_Rte_00240] Support of init runnables for initialization purposes ⌈

Description:
The RTE shall support the execution of initialization runnable entities as a part
of startup sequence controlled by the Bsw Manager and delay the start of
timing events until the end of the startup sequence.

Rationale:
Simpler approach to initialize data inside a software-component other than to
use mode-management.

Dependencies: –

Use Case: Define initialization runnables without being aware of integration details like
ECU modes.

Supporting
Material:

Software Component Template [3]

⌋

69 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.1.10 API

[SRS_Rte_00100] Compiler independent API ⌈

Description: The RTE API (for a particular programming language) shall be compiler and
platform independent.

Rationale:
There shall be no need to change an Application Software Component
source-code when the component is moved between ECUs and/or the compiler
is changed.

Dependencies: –

Use Case: –

Supporting
Material:

In addition the RTE should, ideally, also be retargetable (i.e. portable) with
minimum effort. This is explicitly not stated as an RTE requirement since it is a
statement about RTE implementation and not RTE behavior.

⌋

[SRS_Rte_00168] Typing of RTE API. ⌈

Description:

For parameters which are typed by an AUTOSAR data type the RTE API shall
either use data types related to the whole AUTOSAR data type or data types
related to the used Base Type. The kind of API is defined in the
SWC-Description and is part of the contract phase input.

Rationale:

Dependent from the SWCs implementation either usage of Base Type related
types (comprising only the "C" implementation aspect) or full AUTOSAR data
type related types (comprising the semantic of the data type as well) is more
advantageous. This depends how many library functions are used in the
SW-C’s implementation. In general the RTE shall support both typing to avoid
unnecessary type casts as far as possible and to support strong type checking.

Dependencies: –

Use Case: Strong type checking with a static code analyzer.

Supporting
Material:

–

⌋

[SRS_Rte_00059] RTE API shall pass "in" primitive data types by value ⌈

Description: An API input parameter that is a primitive data type (with the exception of a
string) shall be passed by value.

Rationale: Pass by value is efficient for small data types.

Dependencies: –

Use Case: –
Supporting
Material:

In the context of this requirement, primitive data types include integers (both
signed and unsigned), floating point and opaque types.

⌋

70 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00060] RTE API shall pass "in" composite data types by reference ⌈

Description: The RTE API shall pass all input parameters that are composite data types (i.e.
a record or an array) or strings by reference.

Rationale: Pass by reference is efficient for large data types.

Dependencies: –

Use Case: –
Supporting
Material:

[SRS_Rte_00036] - Assignment to OS Applications.

⌋

[SRS_Rte_00061] "in/out" and "out" parameters ⌈

Description: The RTE API shall pass ‘in/out’ and "out" formal parameters by reference.

Rationale: Required so that modifications to the actual parameters made by the called
function are visible to the caller.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00115] API for data consistency mechanism ⌈

Description: The RTE shall provide an API to access the data consistency mechanism(s).

Rationale:
The data mechanism may rely on AUTOSAR OS mechanisms (e.g. resources)
which cannot be accessed directly by Application Software Components.

Dependencies: [SRS_Rte_00032] - data consistency mechanism.

Use Case: –
Supporting
Material:

VFB Requirements (VFB_C60, Sched70)

⌋

[SRS_Rte_00075] API for accessing per-instance memory ⌈

Description:
The RTE generator shall generate an API in the application header file through
which the Runnable Entities of a component instance can access their
per-instance memory for reading and writing.

Rationale: Required by the software component template

Dependencies: [SRS_Rte_00013] - per-instance memory.

Use Case: –
▽

71 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Supporting
Material:

"per-instance memory" is synonymous to "Individual data of a component
instance" described in Software Component Template [3]
The RTE does not impose a data consistency mechanism on access to
per-instance memory. If a component requires consistency then the RTEEnter
and RTEExit API calls should be used.

⌋

[SRS_Rte_00107] Support for INFORMATION_TYPE attribute ⌈

Description:

The RTE generator shall support the INFORMATION_TYPE attribute with
values "data" and "event".
The RTE generator shall support different information types for each data item
in an AUTOSAR interface.
The RTE generator shall raise a configuration-time error if the specification of
INFORMATION_TYPE is inconsistent for sender and receiver.

Rationale: Required by VFB Specification.

Dependencies: –

Use Case: –

Supporting
Material:

VFB Specification v1.03, p. 40
VFB Specification v1.03, Section 4.1.7.4
VFB Specification v1.03, Table 4-15
VFB Specification v1.04, p. 61 line 14
When "data" is specified, the RTE shall presume the following;
Receive mode shall be (explicit read) "data_read_access".
Buffering shall be "last_is_best".
Specification of an initial value is required.
Specification of "TIME_FOR_RESYNC" is required.
Specification of "LIVELIHOOD" is required.
When "event" is specified, the RTE shall presume the following:
The "TIME_FOR_RESYNC" is not specified.
The "LIVELIHOOD" is not specified.
An attempt to redefine the presumptions shall cause a configuration time error.
Failure to fulfill the presumptions shall cause a configuration time error.

⌋

[SRS_Rte_00108] Support for INIT_VALUE attribute ⌈

Description:

The RTE generator shall support the INIT_VALUE attribute for both intra-ECU
and inter-ECU communication (though the latter is expected to requires no
direct support if AUTOSAR COM is used).
If an initial value is specified for a receiver and not a sender (or vice versa) the
RTE generator shall apply the same initial value to both sender and receiver.
If an initial value is specified for both sender and receiver the RTE generator
shall use the specifications for the receiver.

Rationale:
The input information can contain conflicting values for the INIT_VALUE
attribute (sender and receiver).

Dependencies: [SRS_Rte_00068] - Signal initial values.
▽

72 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Use Case: The INIT_VALUE is different in the sender- and receiver com spec.

Supporting
Material:

VFB Specification v1.03, p. 42

⌋

[SRS_Rte_00109] Support for RECEIVE_MODE attribute ⌈

Description:

The RTE generator shall support the RECEIVE_MODE attribute with the values
"data_read_access", "wake_up_of_wait_point" and
"activation_of_runnable_entity".
The RTE generator shall support different receive modes for each data item in
an AUTOSAR interface.

Rationale: Derived from the VFB Specification.

Dependencies: –

Use Case: –

Supporting
Material:

VFB Specification v1.03, p. 43
When "data_read_access" is specified the RTE generator shall create a
non-blocking read API for the data item. The name of the API could include the
port name and data item name.
When "wake_up_of_wait_point" is specified the RTE generator shall create a
blocking read API for the data item. The name of the API shall include the port
name and data item name. The API could support a timeout specified at
configuration time.
When "activation_of_runnable_entity" is specified the RTE generator shall
invoke a Runnable Entity when data is received passing the received data as
parameters to the Runnable Entity. The name of the Runnable Entity could
include the port name and data item name.

⌋

[SRS_Rte_00110] Support for BUFFERING attribute ⌈

Description:

The RTE generator shall support the BUFFERING attribute with the values
"last_is_best" (sender/receiver only), "queue" and "no" (client/server only).
The RTE generator shall support different buffering specifications for each data
item in an AUTOSAR interface.
Note the queues may be implemented by either the RTE or by COM.

Rationale: –
Dependencies: [SRS_Rte_00033] - Serialization of Server Runnable Entities.

Use Case: –
▽

73 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Supporting
Material:

VFB Specification v1.03, p. 43
When "last_is_best" is specified the RTE generator
Shall create a non-consuming read API for the data item. The name of the API
shall include the port name and data item name.
Shall store received data shall be stored in a single-element queue and new
data shall overwrite existing data.
When "queue" is specified for sender/receiver the RTE generator
Shall create a consuming read API for the data item. The name of the API shall
include the port name and data item name.
Shall store received data in a queue (the length of which is specified by the
"queue" attribute value) accessed on a first-in-first-out basis.
Shall discard new data if the queue is full.
When "no" or "queue" is specified for client/server see [SRS_Rte_00033].

⌋

[SRS_Rte_00111] Support for CLIENT_MODE attribute ⌈

Description:

The RTE generator shall support the CLIENT_MODE attribute with the values
"synchronous" and "asynchronous".
The RTE generator shall support different client mode specifications for each
operation in an AUTOSAR interface.

Rationale: –
Dependencies: [SRS_Rte_00049] - construction of task bodies.

Use Case: –

Supporting
Material:

VFB Specification v1.03, p. 51
When "synchronous" is specified the RTE generator
Shall create an API that invokes the operation synchronously. The name of the
API could include the port name and operation name.
Shall support a timeout specified at the configuration time. The RTE generator
should ignore any timeout specified for intra-task communication.
When "asynchronous" is specified the RTE generator
Shall create an API that invokes the operation asynchronously. The name of
the API could include the port name and operation name.
Reject configurations that specify asynchronous invocation of server where
both Runnable Entities are mapped to the same task.

⌋

[SRS_Rte_00121] Support for FILTER attribute ⌈

Description:

The RTE generator shall support the FILTER attribute. If specified, the attribute
value shall specify the filter type used.
The RTE generator shall support different filter specifications for each data item
in an AUTOSAR interface.
The RTE generator shall apply value-based filtering regardless whether
communication occurs via COM or is handled by the RTE.

Rationale:
Same behavior independent of RTE implementation and component
deployment.

▽

74 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Dependencies: –

Use Case: –
Supporting
Material:

VFB Specification v1.03, p. 44

⌋

[SRS_Rte_00147] Support for communication infrastructure time-out notification
⌈

Description:

The RTE shall support the notification of time-outs on cyclically received
signals/signal-groups via COM.
The deadline monitoring has to be enabled for these signals and the callback
has to be configured in COM.
This is only applicable for sender-receiver communication with info-type "data".

Rationale: Indicate the missing update of signals received via COM.

Dependencies: [SRS_Rte_00069]

Use Case:
When the "vehicle speed" signals is not updated because of communication
infrastructure errors it needs to be indicated to the SW-Components interested.

Supporting
Material:

nonBSW Feature list (v0.40) F049
The value is specified as "aliveTimeout" in the Software Component Template
[3] (Required ComSpec).
The value is specified as "timeout" in combination with
"needsOutdatedIndication" in the System Template (SystemSignal).
COM already performs the "deadline monitoring" and notifies the RTE.

⌋

[SRS_Rte_00078] Support for Data Element Invalidation ⌈

Description:

The RTE shall support the invalidation of Data Elements.
The RTE shall provide an API to invalidate a Data Element and to query if a
Data Element has been invalidated. Also a notification on the reception of an
invalid Data Element shall be supported.

Rationale:
The "canInvalidate" communication attribute shall be visible to the software
components.

Dependencies: –

Use Case: Data invalid
Supporting
Material:

–

⌋

75 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00122] Support for Transmission Acknowledgement ⌈

Description: The RTE generator shall support Transmission Acknowledgement for outgoing
communication.

Rationale:
Allow the transmitting Application Software Component to wait for the
acknowledgement and handle the successful / failed transmission.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00094] Communication and Resource Errors ⌈

Description:

The RTE shall handle errors related to communication or resources.
The RTE is required to handle communication errors (e.g. message
transmission failed) and resource errors (e.g. network not available) and to
notify the relevant software component through the RTE API.

Rationale: –
Dependencies: [SRS_Rte_00084] - Support infrastructural errors.

Use Case: –

Supporting
Material:

Software Component Template [3]
VFB v1.03 explicitly delegates the definition of the error handling mechanism to
be defined by WP RTE.

⌋

[SRS_Rte_00084] Support infrastructural errors ⌈

Description:

The RTE API shall support the forwarding of infrastructural errors (see [2]) to
components. This can occur synchronously with API calls (e.g. read, send) or
asynchronously (i.e. activation of Runnable Entity). Infrastructural errors
include communication and resource errors and are split into two groups:
Immediate Infrastructure Error:
If the RTE detects an error which is specific to the current processed data.
The remaining bit0..bit5 may describe the specific error.
Overlayed Error:
If the RTE detects an error which is not specific to the current processed data.
Overlayed Errors are set using bit6.

Rationale: VFB Specification [2]

Dependencies: [SRS_Rte_00094] - Communication and Resource Errors.

Use Case: –
Supporting
Material:

VFB Specification [2]
Software Component Template [3]

⌋

76 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00123] The RTE shall forward application level errors from server to
client ⌈

Description:
The RTE shall pass the application error ID together with the communication
reply from the server to the client. The RTE shall only pass the application
error, if no structural error is present.

Rationale:
For client-server communication, the application SW components require a
method to transfer application specific errors under the condition that there are
no structural errors on the communication path.

Dependencies: [SRS_Rte_00124] - API for application level server errors.

Use Case:
A crypto library provides a server. An application error should be returned if the
arguments of the call are miss-configured.

Supporting
Material:

–

⌋

[SRS_Rte_00124] API for application level errors during Client Server communi-
cation ⌈

Description:

The RTE shall communicate application level errors on the same path as
structural errors of the communication stack.
The RTE shall receive error information from the server operation’s return
value.

Rationale:
This requirement enables the efficient use of return values to pass error IDs. By
a common use of the return value for structural and application errors, the
application only has to check once for "OK".

Dependencies: [SRS_Rte_00123] - Forwarding of application level server errors.

Use Case:

Rte_StatusType
sqrt(Rte_Instance self,
Double p, Double *result)
}
if (p < (Double)0.0) }
/* Set application error
* (API to be defined) */
return ERROR_IMAGINARY_NUMBER;
{
*result = (Double)sqrt(p);
return RTE_E_OK;
{

Supporting
Material:

–

⌋

77 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00089] Independent access to interface elements ⌈

Description: The RTE API shall support independent access to data items (sender-receiver
interface) or operations (client-server interface).

Rationale: Required by the VFB Specification

Dependencies: –

Use Case: –

Supporting
Material:

VFB Specification
Data items (or operations) in an interface form multiple logical channels
between the same end-points (ports).
Each logical channel is handled independently - data can be sent and received
or operations invoked without reference to other logical channels. Since logical
channels are independent there is not guarantee of consistency between sends
over different channels.

⌋

[SRS_Rte_00137] API for mismatched ports ⌈

Description:

The RTE generator shall provide null API calls for data elements or operations
for ports where more elements/operations are provided than required.
The API for an unconnected provided data element or operation shall discard
the input parameters and return "no error".

Rationale: –
Dependencies: –

Use Case:
A provided sender-receiver port defines two data elements ‘a’ and ‘b’ yet is
required by a port with only element ‘a’. The API call for ‘b’ shall be generated
but shall have no effect.

Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00139] Support for unconnected ports ⌈

Description:

The RTE shall handle ports, whether required or provided, that are not
connected.
The APIs for an unconnected required sender/receiver port shall return a
dedicated status code that the sender is not connected. The result value shall
be the init value.
The API to call a client-server port for an unconnected required port shall return
a dedicated status code that the server is not connected.
The API to collect the result from an asynchronous client-server port for an
unconnected required port shall return a dedicated status code that the server
is not connected.
The API for an unconnected provided sender/receiver port shall discard the
input parameters and return "no error".

Rationale:
In a component based system design there is a high chance to end up with
unconnected ports for software components.
In a variant rich system design unconnected ports can occur.

▽

78 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Dependencies: [SRS_Rte_00200]

Use Case: A not connected port of a software component.

Supporting
Material:

Software Component Template [3]

⌋

[SRS_Rte_00200] Support of unconnected R-Ports ⌈

Description:

The RTE Generator shall support generating an RTE with unconnected
R-Ports.
The strict checking of unconnected R-Ports shall be supported via configuration
as well.

Rationale:
During the development of an ECU there are intermediate building states when
not all needed communication partners are available yet, however it shall be
possible to generate an RTE anyways.

Dependencies: [SRS_Rte_00139]

Use Case:
The RTE Generator issues a warning for each unconnected R-Port during the
generation if strict checking is enabled.

Supporting
Material:

–

⌋

[SRS_Rte_00155] API to access calibration parameters ⌈

Description:

The SW-C and basic software module source code shall be independent from
the actual calibration method (data emulation with SW or HW support) chosen
for the needed calibration parameters. To abstract from the different access
methods to calibration parameters the RTE and SchM shall provide an API.

Rationale:
The SW-C source code shall use a dedicated API to access the calibration
parameters.

Dependencies: [SRS_Rte_00154] - Support of Calibration.

Use Case:
The SW-C code uses the same API call regardless whether the calibration
parameter is stored directly in ROM or is stored in a structure to support data
emulation with SW support.

Supporting
Material:

Software Component Template [3] Chapter 2.3 “Measurement and Calibration”

⌋

[SRS_Rte_00183] RTE Read API returning the dataElement value ⌈

Description:
For explicit sender-receiver communication, when it is configured, the RTE
generator shall provide an API returning the value of a primitive DataElement
directly in the C-language return statement of the API.

Rationale: When the SWC implementation does not need the Std_ReturnType value, this
more efficient API returns the result as a return value.

▽

79 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Dependencies: –

Use Case:
Many calls to RTE_Read() are expected for Application SWCs. Allow the RTE
to generate efficient code which does not need special code optimization
compilers to benefit from.

Supporting
Material:

–

⌋

[SRS_Rte_00185] RTE API with Rte_IFeedback ⌈

Description: The RTE shall support the generation of an API to retrieve the transmission
acknowledgement in an implicit communication.

Rationale: Allow to query the transmission state also for implicit communication.

Dependencies: –

Use Case:
Enable a Runnable Entity to check whether the information provided from the
last execution (in an implicit API) has actually been transmitted.

Supporting
Material:

–

⌋

[SRS_Rte_00203] API to read system constant ⌈

Description:

The RTE shall provide an API to read a system constant value. This API shall
be usable for the C-preprocessor code or the C-compiler code.
Support for the following kinds if information shall be generated:
• Read the actual value of the SystemConstantDef

• Read the setting of an attribute (e.g. array size)

• Check the existence of a variable element

Rationale:

The software module implementation can use the value of the system constant
in its execution code.
The software module implementation can query the existence of a variable
element.
This is applicable for Basic Software as well as for application software
components.

Dependencies: This requirement is dedicated to variant handing, a more generic requirement
is [SRS_Rte_00171] which might lead to the same implementation.

Use Case:

The existence of a Port is specified to be variable with a binding time
"PreCompile". The implementation of the SWC can query the value of the
system constant used to enable/disable the port, in order to change its
behavior.

Supporting
Material:

–

⌋

80 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00242] Support for Cross-Core Exclusive Areas ⌈

Description:

On multi-core systems, the APIs to enter and exit exclusive areas shall ensure
that no two entities may run inside the same exclusive area at any one time,
neither by preemption nor by parallel execution of multiple entities on different
cores.

Rationale:
For systems where the BSW modules can safely be executed in multiple
partitions, possibly running on multiple cores, access to shared data shall be
protected across partition and core boundaries.

Dependencies: [SRS_Rte_00046]

Use Case: BSW running on multi core systems.

Supporting
Material:

–

⌋

3.1.11 C/C++ API

[SRS_Rte_00087] Software Module Header File generation ⌈

Description:

The RTE Generator shall create exactly one software module header file to be
explicitly included in each C/C++ application or basic software component type
that defines that component’s RTE API. There may be a hierarchy of include
files implicitly included.

Rationale:

Required to define API mapping and to perform optimizations and monitoring
targeted for specific components.
The software component header file is generated and can therefore include
component specific information, including task header files for zero-overhead
access to OS facilities.

Dependencies: –

Use Case: –
Supporting
Material:

AUTOSAR design flow.
This requirement does not preclude a component including its own header files.

⌋

3.1.12 Initialization and Finalization Operation

Requirements for component finalization are considered above [SRS_Rte_00052].

81 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00116] RTE Initialization and finalization ⌈

Description:

The RTE generator shall provide mechanisms to initialize and finalize the RTE
in two steps:
Step 1: set all initial values of the communication and mode machine instances
start the schedule of BSW modules
treat the communication with application SW-Cs like unconnected remote
communication
Step2: start the schedule and communication of all application SW-Cs
The RTE startup shall support the startup of SW-C and BSW modules mapped
to different OS applications, specifically different cores and memory partitions.

Rationale: Support the initialization of the BSW Scheduler and the RTE.

Dependencies: –

Use Case:
Initialize the mode management and the scheduling of BSW before initializing
and executing the Application SW-Components.

Supporting
Material:

–

⌋

3.1.13 Partition Restarting and Termination

[SRS_Rte_00196] Inter-partition communication consistency ⌈

Description:

When two SWCs communicate, if one SWC is on a terminated partition (resp. a
partition being restarted), it should behave for the initiating SWC as if it was
mapped on a shutdown remote ECU (resp. an ECU being restarted).
The RTE may provide the feedback with a timeout error immediately.

Rationale:

Servers on terminated partitions will not answer and server calls should result
in timeouts for the clients.
Servers’ feedback should be dropped if the client is terminated or has been
restarted since it sent the request.
Received data during a restart should be discarded and init values should be
proposed to the SWCs.

Dependencies: –

Use Case:
Avoid transmission of potentially inconsistent data.
Avoid inconsistent feedback to clients (sequence number needed).

Supporting
Material:

–

⌋

3.1.14 Fault Operation

Errors are directly reported to invoking Software Component (see [SRS_Rte_00094]).

82 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.1.15 RTE Implementation Plug-Ins

[SRS_Rte_00318] Modular Runtime Environment ⌈

Description:

The RTE shall support to split the implementation of the VFB functionality
between RTE Generator and so called Rte Implementation Plug-Ins. Thereby
two different specialization of Rte Implementation Plug-Ins shall be supported:
• Local Software Cluster Communication Plug-Ins generally take care about

the implementation of preemption and concurrency locks, protection of data
accesses, and implicit communication buffering inside a Software
Cluster.

• Cross Software Cluster Communication Plug-Ins generally handling the
communication towards a non-software-cluster-local communication partner.

Rationale:

Runtime and memory optimization of semaphore mechanisms in complex
scheduling scenarios.
Non AUTOSAR standardized buffering schema, e.g. LET
Cross Software Cluster Communication

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00300] RTE Implementation Plug-Ins for explicit communication ⌈

Description:

The RTE shall support to implement for explicit communication following sub
functionality
• getting a semaphore

• releasing a semaphore

• implementation of the semaphore

• accessing the global copy of the data

• invocation of transformers

• APIs to enable the communication across different ASIL levels

• APIs to enable the communication between Software Clusters

via RTE Implementation Plug-Ins outside the RTE Generator. This includes
port based communication as well as Inter Runnable Variables.

Rationale:
Runtime and memory optimization of semaphore mechanisms in complex
scheduling scenarios.

Dependencies: –

Use Case:
Activation of RunnableEntities accessing the same data. The access is
mutually exclusive due to functional conditions.

Supporting
Material:

–

⌋

83 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00301] RTE Implementation Plug-Ins for implicit communication ⌈

Description:

The RTE shall support an implicit communication implementation with the
following sub-functionalities:
• access buffer or global copy by a RunnableEntity

• decision about buffering

• implementation of the buffering

• buffer fill and buffer flush routines

via RTE Implementation Plug-Ins outside the RTE Generator. This includes
port based communication as well as Inter Runnable Variables.

Rationale:
Runtime and memory optimization of implicit communication buffering.
Customized buffering strategies differing from the RTE standardized ones.

Dependencies: –

Use Case: Time triggered buffering supporting the Logical Execution Time paradigms.

Supporting
Material:

–

⌋

[SRS_Rte_00320] RTE Implementation Plug-Ins for implicit communication II ⌈

Description:

The RTE shall support for an implicit communication implementation that the
Local Software Cluster Communication Plug-In can control point in
time when the Cross Software Cluster Communication Plug-In
reads and writes data from / to other Software Clusters

Rationale: –
Dependencies: –

Use Case:
Time triggered buffering supporting the Logical Execution Time (LET)
paradigms.

Supporting
Material:

–

⌋

[SRS_Rte_00302] RTE Implementation Plug-Ins for exclusive areas ⌈

Description:

The RTE shall support an exclusive area implementation with the following
sub-functionalities:
• getting a semaphore

• releasing a semaphore

• implementation of the semaphore

via RTE Implementation Plug-Ins outside the RTE Generator.

Rationale:
Runtime and memory optimization of semaphore mechanisms in complex
scheduling scenarios.

Dependencies: –
▽

84 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:
Activation of RunnableEntities accessing the same data. The access is
mutually exclusive due to functional conditions.

Supporting
Material:

–

⌋

[SRS_Rte_00303] RTE Implementation Plug-Ins for global copy instantiation ⌈

Description: The RTE shall support to implement the instantiation of the global copy via RTE
Implementation Plug-Ins outside the RTE Generator.

Rationale: Data consistency mechanisms with various global copies.

Dependencies: RTE measurement support with symbols for measurement buffers.

Use Case: Data consistency by ring-buffer principle.

Supporting
Material:

–

⌋

[SRS_Rte_00304] Multiple RTE Plug-Ins ⌈

Description:

The RTE shall support the implementation of specific sub-functionalities in
distinct communication graphs. It shall be realized either by dedicated RTE
Implementation Plug-Ins or by the RTE Generator. Thereby all accesses to one
communication graph are handled either
• by RTE only

OR

• by RTE + exactly one Local Software Cluster Communication
Plug-In

OR

• by RTE + exactly one Cross Software Cluster Communication
Plug-In

OR

• by RTE + exactly one Local Software Cluster Communication
Plug-In + exactly one Cross Software Cluster Communication
Plug-In

Different communication graphs might have a different configuration w.r.t. to the
mentioned scenarios above.

Rationale: Multiple RTE Implementation Plug-In instances in one environment.

Dependencies: [SRS_Rte_00300]; [SRS_Rte_00301]; [SRS_Rte_00302]; [SRS_Rte_00303] ;
[SRS_Rte_00311]; [SRS_Rte_00312]; [SRS_Rte_00315]

▽

85 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△

Use Case:

In a large set of software components only few communication graphs are
utilizing RTE features which are not supported by the RTE Plug-In provider.
Such communication graphs are fully implemented by RTE Generator whereas
the majority of communication can still be optimized. In a large ECU different
sets of software components applying different scheduling principles. Different
scheduling principles require different RTE Implementation Plug-Ins in one
environment. The cross cluster communication is implemented by another
vendors solution as the internal communication.

Supporting
Material:

–

⌋

[SRS_Rte_00305] Graduated validation strategy ⌈

Description:

The RTE shall support a graduated validation strategy to detect and to reject
invalid configurations. In case a communication graph is assigned to an RTE
Implementation Plug-In the RTE Generator shall only apply validation checks
safeguarding the sub-functionality in the RTE implementation. In addition the
RTE Implementation Plug-In provider shall apply checks safeguarding the
sub-functionality in the RTE Implementation Plug-In.

Rationale:
An RTE Implementation Plug-In may handle configurations which are not
supported by a standard RTE Generator.

Dependencies: [SRS_Rte_00018]

Use Case:

The standard implicit buffering in RTE is not capable to handle pre-emptiv
scheduled Runnable since this would require multiple buffers for one data
access. In case the RTE Implementation Plug-In offers functionality to handle
multiple buffers for one data access of a Runnable it can accept this
configuration.

Supporting
Material:

–

⌋

[SRS_Rte_00306] Standardized interfaces for RTE Implementation Plug-Ins ⌈

Description:

In case a communication graph is assigned to one or more RTE
Implementation Plug-In(s) the RTE Generator shall provide a standardized
interface to implement the selected sub-functionality by the assigned RTE
Implementation Plug-In(s).

Rationale: RTE Implementation Plug-In and RTE Generator are provided by different
vendors.

Dependencies: [SRS_Rte_00300]; [SRS_Rte_00301]; [SRS_Rte_00302]; [SRS_Rte_00303] ;
[SRS_Rte_00311]; [SRS_Rte_00312]; [SRS_Rte_00315]

Use Case: –
Supporting
Material:

–

⌋

86 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00307] RTE Implementation Plug-Ins for cross core communication ⌈

Description: The RTE shall support the implementation of cross core communication
between software components in an RTE Implementation Plug-In.

Rationale: Distribute whole software components to different cores.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00309] RTE Implementation Plug-Ins for cross safety partition com-
munication ⌈

Description:
The RTE shall support the implementation of cross safety partition
communication between software components with a different ASIL level in an
RTE Implementation Plug-In.

Rationale: ISO26262 "Freedom from interference" for safety related functionalities

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00310] Shared mode queue ⌈

Description:
The RTE shall queue mode switch requests of configurable sets of mode
machine instances in common queues. Thereby the mode machine instances
may be assigned to different partitions.

Rationale: Preserve global execution order of mode switch requests.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

87 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00311] Core synchronous transitions for mode switches ⌈

Description:

The RTE shall provide interfaces for the graduated ramp-down and ramp-up of
the task schedule during a mode switch. Thereby the interfaces shall support
the notification of a task coordinator about::
• the reception of the mode switch notification

• the execution of on-entry ExecutableEntitys, on-transition ExecutableEntitys,
on-exit ExecutableEntitys

• the dequeuing of the mode switch notification

Additionally the interface shall support:

• delaying all pending and newly activated tasks until the transition is over

• waiting until currently executed tasks have been finished.

• resuming the task system on all cores/partitions in the group

Rationale: Deterministic task execution during mode switches.

Dependencies: –

Use Case:
The mode transition in a multi core configuration with many OS task shall be
performed in a managed way.

Supporting
Material:

–

⌋

[SRS_Rte_00312] RTE Implementation Plug-Ins for transformers in client server
communication ⌈

Description: The RTE shall support to implement the invocation of transformers for client
server communication in an RTE Implementation Plug-In.

Rationale: Adapt the transformer buffer allocation strategy (static, stack based) to the ECU
SW architecture needs.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00317] RTE Implementation Plug-Ins for transformers in trigger com-
munication ⌈

Description: The RTE shall support to implement the invocation of transformers for trigger
communication in an RTE Implementation Plug-In.

Rationale: Adapt the transformer buffer allocation strategy (static, stack based) to the ECU
SW architecture needs.

Dependencies: –

Use Case: –
▽

88 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Supporting
Material:

–

⌋

[SRS_Rte_00319] RTE Implementation Plug-Ins for parameter communication ⌈

Description:

The RTE shall support to implement for parameter communication following
sub functionality:
• accessing the global copy of the parameter

• APIs to enable the reading from other Software Clusters.

Rationale:
Cross Software Cluster Communication with the restriction that parameters are
read-only

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00313] Description of RTE Implementation Plug-in properties ⌈

Description: The RTE Implementation Plug-In shall describe its implementation properties
relevant for the RTE Generator.

Rationale:
The to be generated RTE code can depend on RTE Implementation Plug-In
properties.

Dependencies: –

Use Case:
In case of a buffering strategy without global copy the RTE Generator shall not
provide a global copy for the related communication graph.

Supporting
Material:

–

⌋

[SRS_Rte_00314] Avoid nesting of critical sections ⌈

Description: The RTE code shall prevent from nesting of critical sections caused from the
interleaved usage of macro based RTE API.

Rationale:

In case the RTE API gets implemented as macro and the SWC uses one RTE
API as argument for another RTE API it may occur that the critical sections
(and according protection calls) might be interleaved with the critical sections of
the other macros. Such a code can cause dead locks.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

89 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

[SRS_Rte_00315] Protection of mode machine instance access ⌈

Description: The RTE shall support to protect the access to mode machine instances and
shared mode queues related data via the RTE Implementation Plug-in.

Rationale:
Runnables accessing the same mode machine instance from different cores.
Runnables accessing mode machines instances handled in a common shared
mode queue from different cores.

Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00321] RTE Implementation Plug-Ins for mode communication ⌈

Description:

The RTE shall support to implement for mode communication following sub
functionality:
• inform the Cross Software Cluster Communication Plug-In about

start of a mode switch

• inform the Cross Software Cluster Communication Plug-In about
end of a mode switch

• dequeuing of the mode switch notification by RTE after the Cross
Software Cluster Communication Plug-In has synchronized the
mode switches of the receiving Software Cluster

Rationale: Cross Software Cluster Communication of mode switches
Dependencies: –

Use Case: –
Supporting
Material:

–

⌋

[SRS_Rte_00316] RTE Implementation Plug-Ins for Software Sharing ⌈

Description:
The RTE and RTE Implementation Plug-ins shall support to apply RTE
Implementation Plug-ins for Software Components requiring object code
integration.

Rationale: –
Dependencies: [SRS_Rte_00145]

Use Case: A Software Component is integrated as object code.

Supporting
Material:

–

⌋

90 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

3.2 Non-Functional Requirements

3.2.1 General Requirements

[SRS_Rte_00064] AUTOSAR methodology ⌈

Description: The RTE generator shall operate according to the AUTOSAR methodology.

Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

AUTOSAR Methodology

⌋

[SRS_Rte_00019] RTE is the communication infrastructure ⌈

Description:

All communication between Application Software Components and between
Application Software Components and basic software components shall occur,
at least conceptually, via the RTE.
Note that communication between modules within the basic software and to
shared libraries does NOT occur through the RTE.
This is a basic requirement and ensures that the RTE controls all
communication involving Application Software Components. This requirement
is not intended to prevent the RTE generator providing optimizations that
bypass the RTE such as optimizing client-server to direct function call.

Rationale: AUTOSAR ECU architecture
Dependencies: –

Use Case: –

Supporting
Material:

VFB Specification
This requirement applies regardless of whether communication is done
by COM, by the RTE directly or if the RTE generator optimizes the generated
RTE to bypasses the RTE completely for certain communication paths.
The phrase "at least conceptually" is used to indicate that on the conceptual
(model M2/M1 levels) all communication occurs via the virtual function bus and,
since the RTE is the realization of the VFB for an ECU, via the RTE. However
this is only conceptual since the actual implementation (model M0 level) may
not use the RTE for communication. For example, client-server communication
conceptually occurs via the RTE but may be implemented as a direct function
call (and hence bypass the RTE).

⌋

91 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

4 Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

4.1 Traceable item history of this document according to
AUTOSAR Release R25-11

4.1.1 Added Requirements in R25-11

Number Heading

[SRS_Rte_00323] RTE Reporting Data Element Invalidation Errors to DEM

[SRS_Rte_00324] RTE Proxy for Cyclic Reception Handling

[SRS_Rte_00325] RTE Last Valid Value as Error Alternative

[SRS_Rte_00326] RTE Support for Debounce Counter Values for Infrastructure and Value
Qualifier

Table 4.1: Added Requirements in R25-11

4.1.2 Changed Requirements in R25-11

Number Heading

[SRS_Rte_00145] Software Sharing

[SRS_Rte_00316] RTE Implementation Plug-Ins for Software Sharing

Table 4.2: Changed Requirements in R25-11

4.1.3 Deleted Requirements in R25-11

Number Heading

[SRS_Rte_00023] RTE Overheads
[SRS_Rte_00146] Vendor mode

Table 4.3: Deleted Requirements in R25-11

92 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

4.2 Traceable item history of this document according to
AUTOSAR Release R24-11

4.2.1 Added Requirements in R24-11

none

4.2.2 Changed Requirements in R24-11

none

4.2.3 Deleted Requirements in R24-11

none

4.3 Traceable item history of this document according to
AUTOSAR Release R23-11

4.3.1 Added Requirements in R23-11

none

4.3.2 Changed Requirements in R23-11

Number Heading

[SRS_Rte_00318] Modular Runtime Environment
[SRS_Rte_00319] RTE Implementation Plug-Ins for parameter communication

[SRS_Rte_00321] RTE Implementation Plug-Ins for mode communication

Table 4.4: Changed Requirements in R23-11

4.3.3 Deleted Requirements in R23-11

Number Heading

[SRS_Rte_00195] No activation of Runnable Entities in terminated or restarting partitions

[SRS_Rte_00223] Callout for partition termination notification
▽

93 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

Requirements on Runtime Environment
AUTOSAR CP R25-11

△
Number Heading

[SRS_Rte_00224] Callout for partition restart request

Table 4.5: Deleted Requirements in R23-11

4.4 Traceable item history of this document according to
AUTOSAR Release R22-11

4.4.1 Added Requirements in R22-11

none

4.4.2 Changed Requirements in R22-11

Number Heading

[SRS_Rte_00201] Contract Phase with Variant Handling support

[SRS_Rte_00206] Support the selection of a signal provider

[SRS_Rte_00207] Support N to M communication patterns while unresolved variations are
affecting these communications

Table 4.6: Changed Requirements in R22-11

4.4.3 Deleted Requirements in R22-11

Number Heading

[SRS_Rte_00149] Support "Specification of Compiler Abstraction"

Table 4.7: Deleted Requirements in R22-11

94 of 94 Document ID 83: AUTOSAR_CP_RS_RTE

	1 Scope of this document
	1.1 Document Conventions

	2 Functional Overview
	3 Requirements on RTE
	3.1 Functional Requirements
	3.1.1 Interaction with AUTOSAR OS
	3.1.2 Interaction with AUTOSAR COM
	3.1.3 Interaction with Application Software Components
	3.1.4 Interaction with Basic Software Components
	3.1.5 Generation of the BSW Scheduler
	3.1.6 Support for Measurement and Calibration
	3.1.7 General Requirements
	3.1.8 VFB Tracing
	3.1.9 Application Software Component Initialization and Finalization
	3.1.10 API
	3.1.11 C/C++ API
	3.1.12 Initialization and Finalization Operation
	3.1.13 Partition Restarting and Termination
	3.1.14 Fault Operation
	3.1.15 RTE Implementation Plug-Ins

	3.2 Non-Functional Requirements
	3.2.1 General Requirements

	4 Change history of AUTOSAR traceable items
	4.1 Traceable item history of this document according to AUTOSAR Release R25-11
	4.1.1 Added Requirements in R25-11
	4.1.2 Changed Requirements in R25-11
	4.1.3 Deleted Requirements in R25-11

	4.2 Traceable item history of this document according to AUTOSAR Release R24-11
	4.2.1 Added Requirements in R24-11
	4.2.2 Changed Requirements in R24-11
	4.2.3 Deleted Requirements in R24-11

	4.3 Traceable item history of this document according to AUTOSAR Release R23-11
	4.3.1 Added Requirements in R23-11
	4.3.2 Changed Requirements in R23-11
	4.3.3 Deleted Requirements in R23-11

	4.4 Traceable item history of this document according to AUTOSAR Release R22-11
	4.4.1 Added Requirements in R22-11
	4.4.2 Changed Requirements in R22-11
	4.4.3 Deleted Requirements in R22-11

