AUTSSAR

D t Titl Requirements on Mode
ocument vitie Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 69

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
2025-11-27 | R25-11 gLeJI-:; gsseAR * Use case based rework of BswM
requirements
Management
2024-11-27 | R24-11 QLSIZSSS:R * Use case based rework of EcuM
o i requirements
Management
AUTOSAR » Added chapter Service Discovery
2023-11-23 | R23-11 | Release Control for SWCs
Management « Editorial Changes
* Rework of PNC related ComM and NM
handling
AUTOSAR
2022-11-24 | R22-11 Release » Removed "DRAFT"-tag from
Management [SRS_ModeMgm_09249]
» Editorial Changes
* Removed Draft from
SRS_ModeMgm_09266 and
SRS_ModeMgm_09268
* Removed SRS_ModeMgm_09252
AUTOSAR (BswM shall be able to directly request
2021-11-25 | R21-11 Release communication modes for the available
Management Partial Networks)

* SRS_ModeMgm_09249 (PNC gateway
and coordination functionality)

« Editorial Changes

AUTSSAR

» Concept "VNSM (Vehicle Network Stage
Manager)" incorporated

AUTOSAR _
» Concept "EthernetWakeUpOnDataLine"
2020-11-30 | R20-11 | Release - Corpgrated P
Management
» Concept "Rework of PNC related ComM
and NM handling" incorporated
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 | 4.4.0 Release « EcuMFixed is obsolete
Management
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
* Clarification of Network Management
AUTOSAR requirements
2016-11-30 | 4.3.0 Release
Management * Introduced Requirements Tracing
information
AUTOSAR - , , -
+ Clarified post-build configurability of
2015-07-31 4.2.2 Release some requirements
Management
* Moved former SWS EcuM item
AUTOSAR describing the handling of sleep modes /
2014-10-31 | 4.21 Release shutdown targets to SRS level
Management
» Removed Defensive Behavior
AUTOSAR
2014-03-31 41.3 Release » Enhanced Traceability
Management
AUTOSAR « Editorial changes
2013-03-31 4.1.2 Release » Updated RS_BSWandFeature as
Management RS_Feature
* Introduced new requirement to
implement ECU degradation and
AUTOSAR EnhancedBSWAIllocation
2013-03-15 | 4.1.1 U

Administration

» Formal update to comply with the
standard doc template

* Introduced links to feature documents

AUTSSAR

2011-12-22

4.0.3

AUTOSAR
Administration

 Extension of BswM in order to implement
the mode management relevant parts of
the Partial Networks concept.

 Extension of ComM in order to
implement the communication mode
management relevant parts of the Partial
Networks concept.

2010-09-30

AUTOSAR
Administration

» The new module BswM (BSW Mode
Manager [1]).

» The EcuM-Flex (ECU State Manager [2]
Flexible) which has freely configurable
states.

» New functionality within the EcuM-Flex
to support: Multi Core, Alarm Clocks and
Defensive Behaviour of BSWMs

 Extension of the WdgM (Watchdog
Manager [3]) by:

* SRS_ModeMgm_09173 added for
clarification of ECU State Manager [2]
behavior

* program flow monitoring
* windowed watchdogs

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

» BSW09088 removed due to introduction
of Bus-specific State Managers below
Communication Manager [4]

+ BSW09130 and BSW09131 removed
due to direct initialization of the
communication stack by the ECU State
Manager [2]

+ BSW09170 and BSW09171 added for
alive supervision during startup,
shutdown, and sleep

* SRS_ModeMgm_09172 added for
clarification of Communication Manager

[4] behavior
v

AUTSSAR

A
* SRS_ModeMgm_09173 added for

clarification of ECU State Manager [2]
behavior

* Rephrased multiple requirements to
clarify behavior and configuration
classes

» Document meta information extended

» Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

* BSW09075 removed (moved to SRS
General)

* New requirements
SRS_ModeMgm_09168 and
SRS_ModeMgm_09169 created

* References to OSEK OS replaced with
references to AUTOSAR OS

» Formal adjustments and glossary update
* Legal disclaimer revised

* Release Notes added

* "Advice for users" revised

* "Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

* Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

A~ @

Scope of Document 8
Conventions to be used 9
Acronyms and abbreviations 10
Requirements Specification 14
4.1 ECU State Management 14
4.1.1 Functional Overview e 14
412 UseCases i i e 16
4.1.3 Functional Requirements L, 18
4131 Usecase1:StartupECU 18
4132 Usecase2: WakeupECU. 19
41.3.3 Usecase3: PutECUtosleep 19
4.1.3.4 Use case 4: ShutdownandresetECU 19
4.1.3.5 Use case 5: Keep ECU fully operational (RUN state) 20
4.1.3.6 Use case 6: Prepare ECU for Shutdown (POST_RUN State) . . 21
41.3.7 Use case 9: Activate Bootloader. 21
4.1.3.8 Use case 7: Schedule Wake-up Alarms 22
4.1.3.9 Use case 8: Provide time since startup 22
41310 Common e e 23

4.2 WatchdogManager 23
4.2.1 Functional Overview 23
4.2.2 Functional Requirements 24
4.2.2.1 Initialization 24
4222 NormalOperation 25
4223 Configuration 31
423 FaultOperation e 32
4.3 Communication Manager 33
4.3.1 Functional Overview 33
4.3.2 Functional Requirements, 34
4.3.2.1 Normal Operation 34
4.3.2.2 Configuration 48

4.4 Basic Software Mode Manager 51
4.41 Functional Overview 51
4.41.1 Interfaces between Mode -Requester, -Manager and -User . . . 52
4412 RelationofModes. 53
442 UseCases i i i i i e e 55
4.4.3 Functional Requirements 57
4.4.3.1 Use Case: Switch GeneralModes 57
443.2 Use Case: Initialize BSW. 58

4.4.3.3 Use Case: Prepare BSW for Shutdown 58

AUTSSAR

4.4.3.4 Use Case: Set CommunicationModes 58
4.4.3.5 Use Case: Control Service Discovery 59
5 References 60
A History of Requirements 61
A.1 Requirement History of this Document According to AUTOSAR Release
R25-11 . . . e 61
A.1.1 Added Requirementsin R25-11 61
A.1.2 Changed Requirementsin R25-11 61
A.1.3 Deleted Requirementsin R25-11 61
A.2 Requirement History of this Document According to AUTOSAR Release
R24-11 . . . e 61
A.2.1 Added Requirementsin R24-11 61
A.2.2 Changed Requirementsin R24-11 62
A.2.3 Deleted RequirementsinR24-11 62
A.3 Requirement History of this Document According to AUTOSAR Release
R23-11 . . . e 62
A.3.1 Added Requirementsin R23-11 62
A.3.2 Changed Requirementsin R23-11 62
A.3.3 Deleted Requirements in R23-11 62
A.4 Requirement History of this Document According to AUTOSAR Release
R22-11 . . . e 63
A.4.1 Added Requirementsin R22-11 63
A.4.2 Changed Requirementsin R22-11 63

A.4.3 Deleted Requirementsin R22-11 63

AUTSSAR

1 Scope of Document

The goal of this document is to define the functional and non-functional requirements
for all modules of the AUTOSAR mode management:

« ECU State Manager [2] (EcuM) which manages startup and shutdown of the
ECU. This includes triggering the shutdown when all requests for run are re-
leased;

» Watchdog Manager [3] (WdgM) which collects the indications of aliveness and
correct execution order from the independent applications and relays them to the
hardware watchdog in a suitable way;

» Communication Manager [4] (ComM) which coordinates the communication of
the independent applications.

+ Basic Software Mode Manager (BswM) which organizes mode handling and
mode related interaction of SW-Cs and the BSW modules.

All modules are needed if more than one independent software component resides on
the ECU.

The location of these modules within the whole AUTOSAR ECU SW Architecture is
defined in [REF].

AUTSSAR

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [5, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [5, Standardization Template].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as follows.

Note that the requirement level of the document in which they are used modifies the
force of these words.

« MUST: This word, or the adjective "LEGALLY REQUIRED", means that the defi-
nition is an absolute requirement of the specification due to legal issues.

* MUST NOQOT: This phrase, or the phrase "MUST NOT", means that the definition
is an absolute prohibition of the specification due to legal issues.

« SHALL: This phrase, or the adjective "REQUIRED", means that the definition is
an absolute requirement of the specification.

« SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

« SHOULD: This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

« SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with
this label.

* MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item.

An implementation, which does not include a particular option, SHALL be prepared
to interoperate with another implementation, which does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which does
include a particular option, SHALL be prepared to interoperate with another implemen-
tation, which does not include the option (except, of course, for the feature the option
provides).

AUTSSAR

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to Mode Manage-
ment that are not included in the AUTOSAR Glossary [6].

Acronym:

Description:

Active wake-up

Wake-up caused by the ECU e.g. by a sensor.

Alive indication

Indication that a supervised SW-C is alive - meaning active -
provided from the SW-C itself to the Watchdog Manager [3].

Application

Applications are used synonymous to a SW-C. A SW-C may
span several atomic SW-Cs. AUTOSAR provides the
element of a "composition” to formally group several atomic
SW-Cs of an application. A composition is used to structure
the description and does not affect the generated code.
Note: The atomic SW-Cs in a composition can still be
mapped to different ECUs. Application Modes are therefore
‘local’ to an application but can be 'global’ to several ECUs.

Application Mode

An Application Mode is a mode that is not controlled and
standardized by the Mode Managers in the BSW. The scope
of an Application Mode is a limited number of SW-Cs that
belongs to a logical Application. If a mode only affects one
composition, it is an Application Mode.

An Application Mode may be distributed across multiple
ECUs or may be local to one ECU depending on the
distribution of the SW-C belonging to that application.
Examples: Normal Operation, Limp Home

Application Mode Manager

An Application Mode Manager is a SW-C therefore a priori
not standardized. It collects environmental data and Mode
Requests via application-specific (non-standardized)
interfaces from other SW-Cs. It can switch Application
Modes (that are not controlled and standardized by the
Mode Managers in the BSW). It can also request modes
from other Mode Managers, specifically from Mode
Managers in the BSW.

BSW Mode

A BSW Mode is mode, which is controlled and standardized
by the Mode Manager in the BSW. A BSW Mode is always
local to one ECU.

Examples: EcuM Modes, ComM Modes

BSW Mode Manager [1]

The BSW Mode Manager [1]is a BSW module that collects
mode requests via a standardized interface and controls
functionality of other BSW modules accordingly. Examples
are: LIN Schedule Table Switching, Enabling/Disabling
I-PDU Groups, ...

Communication mode

Related to a physical channel or to a user, it indicates if it is
possible to send/receive, only receive, neither send nor
receive.

Communication request

A communication request indicates a demand for
communication from a given user (e.g. a runnable requiring
an operational communication stack). However, it can
neither be assumed that the request will be fulfilled within a
certain time nor that it will be fulfilled at all. The demander
itself has to make sure that communication is indeed
established, by using query functions or callbacks.

ECU state

General term to indicate the states managed by the ECU
State Manager [2]. They represent a structured model that
extends the power modes of the ECU with states and
transitions to support necessary activities of software to
enter/leave these power modes.

AUTSSAR

Acronym:

Description:

Inoperation

An artificial word to describe the ECU when it is not
operational, i.e. not running. It comprises all meanings of off,
sleeping, frozen, etc. Using this definition is beneficial since
it has no predefined meaning.

Low-power mode

All power modes except "on" (full power).

Mode

A mode is a certain set of states of the various state
machines that are running in the vehicle that are relevant to
a particular entity, e.g. a SW-C, a BSW module, an
application, a whole vehicle

In its lifetime, an entity changes between a set of mutually
exclusive modes. These changes are triggered by
environmental data, e.g. signal reception, operation
invocation.

Mode Declaration Group

A Mode Declaration Group is defined in the Software
Component Template and implemented by the RTE [7].

A Mode Declaration Group defines a number of mutually
exclusive modes. There is no hierarchy of modes within a
Mode Declaration Group.

Each Mode Declaration Group describes only one aspect of
the whole system. All modes of all Mode Declaration Groups
on an ECU describe the abstract mode of the ECU. Similarly,
all modes of all Mode Declaration Groups in a system
describe the abstract mode of all ECUs in the system. (The
mode is abstract because it cannot be physically accessed,
it just exists conceptually).

There is a standardized set of Mode Declaration Groups
defined in the BSW, e.g. ComM, WdgM, EcuM. Each system
designer is free to extend the number of Mode Declaration
Groups and define his/her own modes in there.

Only one Mode Manager is allowed to switch the mode of an
instance of a Mode Declaration Group. (Limitation in VFB

(8])

Mode Manager

A Mode Manager is a role that can be taken by either a BSW
module (and optionally additionally by an SW-C).

The Mode Manager collects requests from Mode
Requesters, arbitrates them and switches the mode of its
Mode Declaration Group(s) accordingly.

Examples of Mode Managers are: EcuM, ComM, WdgM and
BswM

Note: If a SW-C Mode Manager switches modes directly, the
mode arbitration in the BSW Mode Manager [1] cannot
resolve conflicts. Thus, it is recommended to use multi-level
mode arbitration, of SW-C mode Manager and BSW Mode
Manager [1]

Mode Port

A Mode Port is port that has a Sender-Receiver Interface
which contains a Mode Declaration Group.

Note: This is called Mode Port in SWS RTE [7] -> To
distinguish it from Mode Request Ports, we should call it
Mode Switch Port

Mode Request

A Mode Request is some information communicated to a
Mode Manager that requests the Mode Manager to switch to
a certain mode.

For Mode Managers in the BSW the interface to send a
Mode Request is a standardized client-server interface
defined by the corresponding Mode Manager. Examples:
Client-server interface ComM_UserRequest with operation
RequestComMode(...).

For Application Mode Managers the interface can be any
client-server or sender-receiver interface defined by the
Mode Manager.

AUTSSAR

Acronym:

Description:

Mode Request Port

A Mode Request Port is a port with the special semantics of
requesting a mode from a Mode Manager. It can be a
Client-Server or a Sender-Receiver Port.

For Mode Managers in the BSW the Mode Request Port is
standardized.

Note: For EcuM, ComM and WdgM it is always a Provided
Client-Server Port. For BswM it is a Required
Sender-Receiver Ports.

Mode Requester

A Mode Requester is an entity that requests modes from a
Mode Manager.

Mode Switch Port

Favored replacement of phrase Mode Port

Mode User

A Mode User is an entity that reacts on mode changes.

OFF state

ECU state. It denotes the unpowered ECU. Depending on
the hardware design, the ECU can or cannot react to
passive wake-up in this state (wakeability is not required in
this state).

Passive wake-up

Wakeup initiated by another ECU and propagated (e.g. by
bus or wakeup-line) to the ECU currently in focus.

PNC bit vector length

Represent the length of a PNC bit vector in bytes.

PNC bit vector

Represent the Partial Network information in a NM frame.

Port Group

A Port Group is a logical group of ports that are needed to
realize the same functionality in the Application. A port can
be a member of multiple Port Groups.

A Port Group can be used to request all associated
communication resources and to inquire their state. Thereby,
the Port Group also defines a mapping between Application
Ports and Communication Resources. Thus, the purpose of
a port group is to have an abstraction of the required
communication resources of that functionality

For example, an Application contains normal-operation
functionality and limp-home functionality with reduced
communication requirements. Then it is useful to define two
Port Groups, A and B. A contains the ports that are
necessary for the normal-operation functionality and B
contains the ports for the limp-home functionality. Thereby,
the Application can recognize the condition when the
communication resources for normal operation are
unavailable but are sufficient for limp home.

Port Groups are defined on SW-C composition level, which
means that they may be distributed on several ECUs. The
requests and indications for the Port Groups shall however
only affect the portion of the Port Group that is local to an
ECU. If distributed control of Port Groups is needed it can be
handled on "Application Mode Management" level (above
the RTE [7]) using normal communication features.

Power mode

Hardware power mode of the ECU. Typically: on (full power),
off, sleep, standby, etc... The last two items can take several
forms depending on hardware capabilities (reduced clock,
peripheral standby, etc.).

Program flow monitoring

Technique to detect errors that cause a divergence from the
valid program sequence seen during valid execution of a
program.

RUN state

ECU state. The ECU is fully functional, all BSW modules are
initialized and application software components are able to
run.

Shutdown target

The chosen low-power state (OFF, SLEEP) for the next
shutdown. If the SLEEP state supports several sleep modes,
the shutdown target shall indicate the chosen sleep mode.

AUTSSAR

Acronym:

Description:

Sleep mode

The term "mode" is related to the current availability of the
ECU’s capabilities. "Sleep mode" is the overall abstracted
term for a variety of low-power modes that could exist at
different CPU’s, which have in common that they currently do
not perform code-execution, but are still powered.

SLEEP state

ECU state. It is an energy saving state: no code is executed
but power is still supplied, and if configured correctly, the
ECU is wakeable. The SLEEP state provides a configurable
set of sleep modes which typically are a trade off between
power consumption and time to restart the ECU.

State/communication requestor

See User.

Supervised Entity

A supervised entity is a software entity which is included in
the monitoring of the Watchdog Manager [3]. Each
supervised entity has exactly one identifier. A supervised
entity denotes a collection of checkpoints within a software
component or basic software module. There may be zero,
one or more supervised entities in a software component or
basic software module.

User

Concept for requestors of the ECU State Manager [2] and of
the Communication Manager [4]. A user may be a runnable
entity, a SW-C/BSW or even a group of SW-Cs/BSWSs, which
acts as a single unit towards the ECU State Manager [2]
and the Communication Manager [4].

Vehicle Mode

A Vehicle Mode is a mode that is not controlled and
standardized by the Mode Managers in the BSW. The scope
of a Vehicle Mode is the whole vehicle. If a mode affects
multiple compositions, it is a Vehicle Mode.

A Vehicle Mode is by definition distributed across the whole
vehicle.

Example: Transport Mode, Power Saving Mode, Ignition On,
Ignition Off

Vehicle Mode Manager

A Vehicle Mode Manager is a special kind of Application
Mode Manager that switches Vehicle Modes.

Wake-up event

A physical event which causes a wake-up. A CAN message
or a toggling IO line can be wake-up events. Similarly, the
internal SW representation, e.g. an interrupt, may also be
called a wake-up event.

Wake-up reason

The wake-up event being actually the cause of the current/
last wake-up.

Wake-up source

The peripheral or ECU component which deals with wake-up
events is called a wake-up source.

Table 3.1: Acronyms

Abbreviation:

Description:

BSW Basic Software

BswM Basic Software Mode Manager

ComM Communication Manager [4]

DCM Diagnostic Communication Manager [4]
DEM Diagnostic Event Manager

EcuM ECU State Manager [2]

FiM Function Inhibition Manager

RE Runnable Entity

SW-C Software Component

WdgM Watchdog Manager [3]

Table 3.2: Abbreviations

AUTSSAR

4 Requirements Specification

This chapter describes all requirements driving the work to define the Mode Manage-
ment.

The Mode Management cluster is in charge of four Basic Software modules:

» the ECU State Manager [2], controlling the startup and shutdown phase of
AUTOSAR BSW modules including startup and shutdown of the OS;

« the Communication Manager [4], in charge of the network resource manage-
ment;

» the Watchdog Manager [3], responsible for triggering the watchdog based on the
aliveness status and control flow status of application software.

+ the Basic Software Mode Manager [1], responsible for supporting the mode han-
dling.

In the following, requirements will be assigned to each of these modules.

4.1 ECU State Management

4.1.1 Functional Overview

The ECU State Management handles basic activities related to
« ECU startup,
« ECU shutdown,
» ECU reset (including activation of the bootloader),
» ECU sleep,
» and ECU wake-up

Figure 4.1 shows the high level state machine of the ECU State Management.

AUTSSAR

stm ECU states)

& ~,
STARTUP

Initialization of OS and low level
driver medules completed

up
Optional support of RUN
and POST_RUN states I
| RUN |

POST_RUN state\RUN state

Reset requested

requested
| POST_RUN |
RUM and
POST_RUN state
released
J
UP state released Valid Wak UP state released
AND Shutdown state aéete;ej”p AND Shutdown state
SLEEP requested RESET or OFF requested
- Y 4
SLEEP SHUTDOWN

Power Off requested

Figure 4.1: State Machine of the ECU State Management

After basic initialization of the ECU has been completed, the ECU State Management
switches to the normal operation state (UP state). While in normal operation state, the
ECU State Management hands over control to the BSW Mode Management (refer to
chapter 4.4).

AUTSSAR

The ECU State Management will remain in that state until the BSW Mode Management
indicates, that the ECU should go to sleep or should shutdown.

Applications would typically interface with the BSW Mode Management to request or
release the ECU’s normal operation mode, because the BSW Mode Management pro-
vides full flexibility with respect to BSW mode handling (refer to chapter 4.4).

Alternatively, applications which do not need the flexibility offered by the BSW Mode
Management may interface directly with the ECU State Management to request or
release the ECU’s normal operation mode. For those applications the ECU State Man-
agement supports two (sub-)states "RUN" and "POST_RUN" while in the normal oper-
ation state. Specifically legacy applications make use of the standardized states RUN
and POST_RUN and benefit from the simplified mode handling.

Additionally, to the above ECU state handling the ECU State Management provides the
time since ECU start-up.

4.1.2 Use Cases

The following use case diagram shows the typical use cases of the ECU State Man-
agement and the actors.

AUTSSAR

Use Cases for ECU State Managemeng)

O

ECU State Management

e — ——-______u_.___._____._.—-—-—'—'_'_—

B,

(__UC2: Wake upECU)

/ \

Appllcatmn\\

[:

¢ uct: Startup ECU ‘a——x
e _____‘_‘_‘_‘_‘_‘_-_‘_‘_‘_‘-

_______.—-—-—'—'_/\
"

:""'ucr: Schedule Wake-up Alarms %
. _______,.4-._.___‘_____‘_‘_‘_
--_‘_‘_-_‘_-_‘_‘—-_

,_,_——"'—rf—'—‘—'-'z/ \-\
coD

\:”" UCO: Activate Bootloader
— I

A,
“

ECU HW

BSW

Figure 4.2: Use cases of ECU State Management

AUTSSAR

Use Case Name

Use Case Description

Start up ECU

This use case is to

* initialize the ECU HW and selected BSW in a configurable
order

+ and start the operating system

+ and hand-over control to BSW Mode Management for ini-
tialization of the rest of the BSW and the application.

Wake up ECU

This use case is to
+ validates the wake-up
» and initializes selected BSW

» and resumes execution of the operating system/schedul-
ing

Put ECU to sleep

This use case suspends the operating system/scheduling and
puts the ECU HW to sleep

Shutdown ECU

This use case shuts down the ECU upon request, i.e., switches
off or resets the ECU

Keep ECU fully operational
(RUN state)

This use case keeps the ECU alive, while application requests
are pending

Prepare ECU for shutdown
(POST_RUN state)

This use case prepares the ECU for shutdown, if no application
request is pending to keep it alive

Activate Bootloader

This use case is to activate the bootloader upon ECU reset

Schedule Wake-up Alarms

This use case is schedule alarms and to wake up the ECU, when
an alarm expires

Provide time since startup

This use case is to provide the time that has elapsed since the
last ECU startup

Table 4.1: Use cases of ECU State Management

4.1.3 Functional Requirements

4.1.3.1

Use case 1: Start up ECU

[SRS_ModeMgm_00001] Initialization of Basic Software Modules |

Description:

« initialize the ECU H

» and hand-over cont

When ECU is powered up or woken up, then the ECU State Management shall

W and selected BSW in a configurable order

« and start the operating system

rol to BSW Mode Management for initialization of the rest

of the BSW and the application.

AUTSSAR

4.1.3.2 Use case 2: Wake up ECU

[SRS_ModeMgm_00005] Reason for Last Wake-up |

B the reason/source of the latest validated wake-up.

When requested by the BSW, then the ECU State Management shall provide

]
[SRS_ModeMgm_00003] Validation of Wake-ups |

Description: shall validate the wake-up event.

When wake-up event occurs in ECU HW, then the ECU State Management

]
[SRS_ModeMgm_00004] Handling of Valid Wake-ups |

DA State Management shall re-start the BSW.

When a valid wake-up event has been successfully validated, then the ECU

4.1.3.3 Use case 3: Put ECU to sleep

[SRS_ModeMgm_00002] Switch to ECU Sleep Mode |

DA Management shall put the ECU to the selected sleep mode.

When supported by HW and the SLEEP state is entered, then the ECU State

4.1.3.4 Use case 4: Shutdown and reset ECU

[SRS_ModeMgm_00006] Shutdown ECU |

shutdown the ECU.

Additional Information:
Description: A shutdown of the ECU includes:
« stop the operating system

+ and de-initialize selected BSW in a configurable order

« and stop the ECU (e.g. MCU reset, watchdog reset).

When the SHUTDOWN state is entered, then the ECU State Management shall

AUTSSAR

[SRS_ModeMgm_00007] Synchronous Shutdown across Cores |

Description:

When SHUTDOWN state is entered, then the ECU State Management shall
shutdown the ECU synchronously across all cores.

]

[SRS_ModeMgm_00023] Reason for Last Shutdown |

Description:

When requested by application or the BSW, then the ECU State Management
shall provide the reason for the latest shutdown.

4.1.3.5 Use case 5: Keep ECU fully operational (RUN state)

[SRS_ModeMgm_00024] Configure States RUN and POST_RUN |

Description:

The ECU State Management shall allow to enable or disable the states RUN
and POST_RUN by configuration.

]

[SRS_ModeMgm_00008] Enter RUN State after Start-up |

Description:

When the Start-up is finished, then the ECU State Management shall enter fully
functional state (RUN state).

]

[SRS_ModeMgm_00010] Switch to RUN State |

Description:

If
» ECU is in shutdown synchronization state (POST_RUN state)

 and a configurable user in the application requests to switch to fully
functional state (RUN state),

then the ECU State Management shall enter fully functional state (RUN state).

AUTSSAR

4.1.3.6 Use case 6: Prepare ECU for Shutdown (POST_RUN State)

[SRS_ModeMgm_00009] Switch to POST_RUN state |

If
» ECU is in fully functional state (RUN state)

Description: and no configurable user in the application requests to remain in that state,

then the ECU State Management shall enter synchronization state
(POST_RUN state).

]
[SRS_ModeMgm_00011] Enter SHUTDOWN or SLEEP |

If
» ECU is in shutdown synchronization state (POST_RUN state)

« and no user in the application requests to remain in that state any longer

Description: . o .
P + and no user in the application requests to enter the fully functional state,

then the ECU State Management shall shutdown the ECU (SHUTDOWN state)
or enter SLEEP state.

]
[SRS_ModeMgm_00012] Select Target Shutdown State |

The ECU State Management shall allow the BSW or the application to select

eSS target state after leaving the POST_RUN state (i.e., SHUTDOWN or SLEEP).

4.1.3.7 Use case 9: Activate Bootloader

[SRS_ModeMgm_00022] Activate Bootloader |

When requested by application, then the ECU State Management shall switch
to the Bootloader.

BB Additional information:

Activating the bootloader is only intended for application SW related to
diagnostics (boot management).

AUTSSAR

4.1.3.8 Use case 7: Schedule Wake-up Alarms

[SRS_ModeMgm_00016] Start and Cancel Wake-up Alarm |

When requested by users in the application, then the ECU State Management

Description: shall activate or de-activate a Wake-up Alarm.

]
[SRS_ModeMgm_00017] ECU Wake-up by Alarm |

When the ECU is in sleep and a Wake-up Alarm expires, then the ECU State

Description: Management shall wake up the ECU.

J
[SRS_ModeMgm_00018] Cancel all Wake-Up Alarms |

At ECU wake-up the ECU State Management shall cancel all Wake-up Alarm

Description:
requests.

J
[SRS_ModeMgm_00019] Increment Alarm Clock |

If ECU is powered, then the ECU State Management shall increment the Alarm

RIS Clock (every second).

4.1.3.9 Use case 8: Provide time since startup

[SRS_ModeMgm_00013] Increment ECU Clock |

If ECU is powered, then ECU State Management shall increment the ECU

Description: Clock (every second).

J
[SRS_ModeMgm_00014] Set ECU Clock |

ECU State Management shall allow dedicated users in the application to set
the ECU Clock time.

AL Additional information:

Setting the ECU Clock time is only intended for test purposes during
development.

AUTSSAR

[SRS_ModeMgm_00015] Provide Time Since Power-up |

When requested by application, then ECU State Management shall provide

(LR G current time since power-up of the ECU (with a resolution of 1 sec).

4.1.3.10 Common

[SRS_ModeMgm_00020] Execute External Code on State Transitions [

The ECU State Management shall provide the ability to execute external,
statically configured code at each transition between ECU states.

Description:

J
[SRS_ModeMgm_00021] State Changes are Global |

When a state change is requested, then the ECU State Management shall
switch to the same new ECU state globally across all cores.

Description:

4.2 Watchdog Manager

4.2.1 Functional Overview

The Watchdog Manager [3] is a basic software module of the standardized basic soft-
ware architecture of AUTOSAR (service layer). It is intended to supervise the reliability
of application execution with respect to timing constraints (temporal program flow mon-
itoring) and with respect to the correct sequence of execution (logical program flow
monitoring).

Derived from the layered architecture approach [9], a decoupling between applica-
tion timing constraints and watchdog hardware timing constraints becomes possible.
Based on this decoupling the Watchdog Manager [3] provides temporal program flow
monitoring (alive-supervision) of several independent applications as well as logical
program flow monitoring (the supervision of the correct execution order) while trigger-
ing the watchdog hardware.

The following features are provided by the Watchdog Manager [3]:

» Supervision of multiple individual applications located on the ECU, having in-
dependent timing constraints and requiring a special supervision of runtime be-
haviour and aliveness.

» Logical supervision of safety-related tasks and periodic functions (main func-
tions).

AUTSSAR

* Fault-reaction mechanism for each independent supervised entity.

+ Possibility to switch off supervision of individual applications, without violating the
watchdog triggering (e.g. for inhibited applications).

« Triggering of internal or external, standard or window, watchdog, via a watchdog
driver. The access to the internal or external watchdog will be handled by the
Watchdog Interface.

+ Selection of the watchdog mode (Off Mode, Slow Mode, Fast Mode) depending
on the ECU state and the hardware capabilities.

Much more details about these functionalities can be found in the Watchdog Manager

[3].

4.2.2 Functional Requirements

4.2.2.1 |Initialization

[SRS_ModeMgm_09107] The Watchdog Manager shall provide an initialization
service |

The Watchdog Manager [3] shall provide an initialization service.
Description: This service allows the selection of one of the statically configured Watchdog
Manager [3] modes.
Rationale: Basic functionality.
Use Case: -
Dependencies: | —
Supporting -
Material:
]
[SRS_ModeMgm_09109] It shall be possible to prohibit the disabling of watchdog
[

It shall be possible to configure, by means of a pre-processor switch, whether
Description: the Watchdog Manager [3] initialization service and the Watchdog Manager [3]
mode selection service allow the disabling of the watchdog or not.

Avoid the presence of code sequences in a safety relevant ECU that disable

Rationale:

the watchdog.
Use Case: Usage within safety relevant systems.
Dependencies: | —
Supporting -
Material:

AUTSSAR

4.2.2.2 Normal Operation

[SRS_ModeMgm_09112] The Watchdog Manager shall cyclically check the peri-
odicity of the supervised entities |

L The Watchdog Manager [3] shall cyclically check the periodicity of the
Description: ; e . L
supervised entities, in order to detect aliveness of application.
Rationale: This requirement is needed by AUTOSAR Software Components requiring a
ationale: special supervision of runtime behavior and aliveness.
Use Case: -
Dependencies: | —
Supporting -
Material:

[SRS_ModeMgm_09221] The Watchdog Manager shall check the correct se-
quence of code execution in supervised entities |

D T The Watchdog Manager [3] shall check the correct sequence of code
escription: g) L
execution in supervised entities.
Rationale: To enable to detect if a program runs in an incorrect sequence.
Use Case: SW-Cs and BSW modules call logical program flow monitoring in order to
se Lase: detect the deviation from the correct execution sequence.

Dependencies: | —

Supporting -

Material:

[SRS_ModeMgm_09125] The Watchdog Manager shall provide a service allowing
the Update temporal program flow monitoring |

The Watchdog Manager [3] shall provide a service allowing supervised entities
Description: to forward an alive indication, thus updating the temporal program flow
monitoring for the given entity.

This requirement is needed by AUTOSAR Software Components requiring a

AL special supervision of runtime behavior and aliveness

Use Case: -

Dependencies: | This could also be done via the service in SRS_ModeMgm_09222
Supporting -

Material:

AUTSSAR

[SRS_ModeMgm_09222] The Watchdog Manager shall provide a service allowing

the Update logical program flow monitoring |

The Watchdog Manager [3] shall provide a service allowing SW-Cs and BSW

Description: modules to indicate that they have reached a checkpoint in their code
execution.

Rationale: This requirement is needed by SW-Cs and BSW modules requiring a special

atiohaie: supervision of execution sequence.

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09160] The Watchdog Manager shall provide the indication of

failed temporal monitoring |

The Watchdog Manager [3] shall be able to notify the application when the
monitoring of a supervised entity by temporal program flow monitoring fails.

Description: This information shall be forwarded through the RTE [7] in order to allow fault
reaction by software. In this case, the information about which supervised
entity has failed shall also be made available to the application.
This gives the opportunity to establish some fault-reactions by software before

Rationale: a watchdog-reset occurs (fault recovery/reporting to the Diagnostic Event
Manager).

Use Case: -

Dependencies: | [SRS_ModeMgm_09112]

Supporting -

Material:

]

[SRS_ModeMgm_09225] The Watchdog Manager shall provide the indication of

failed logical monitoring [

The Watchdog Manager [3] shall be able to notify the application when the
monitoring of a supervised entity by logical program flow monitoring fails. This
information shall be forwarded through the RTE [7] in order to allow fault

LSS e reaction by software. In this case, the information about which supervised
entity ID and which check point has failed shall also be made available to the
application.

This gives the opportunity to establish some fault-reactions by software before

Rationale: a watchdog-reset occurs (fault recovery/reporting to the Diagnostic Event
Manager).

Use Case: -

Dependencies: | [SRS_ModeMgm_09221] Logical program flow monitoring

\Y

AUTSSAR

Supporting
Material:

]

[SRS_ModeMgm_09161] The Watchdog Manager shall reset the triggering con-
dition in the Watchdog Driver in Case of temporal failure |

The Watchdog Manager [3] shall reset via the Watchdog Interface the
triggering condition in the Watchdog Driver (to the value 0) if the temporal

Description: monitoring of a given supervised entity fails continuously during a configurable
amount of time (this amount of time can be set to 0 by configuration, thus
excluding any software recovery possibility).

Rationale: This means the monitoring failure is now considered unrecoverable. Then, a

ationale: watchdog reset is the only solution.

Use Case: -

Dependencies: | [SRS_ModeMgm_09162] Indication of an upcoming watchdog reset.

Supporting -

Material:

[SRS_ModeMgm_09226] The Watchdog Manager shall reset reset the triggering
condition in the Watchdog Driver in Case of logical program flow violation |

The Watchdog Manager [3] shall reset via the Watchdog Interface the
Description: triggering condition in the Watchdog Driver (to the value 0) if the monitoring of
the execution sequence fails.
Rationale: This means the monitoring failure is now considered unrecoverable. Then, a
ationale: watchdog reset is the only solution.
Use Case: -
Dependencies: | [SRS_ModeMgm_09162] Indication of an upcoming watchdog reset.
Supporting It shall not be possible to configure a number of times similar to SRS_Mode
Material: Mgm_09161.

[SRS_ModeMgm_09169] The Watchdog Manager shall be able to immediately

reset the MCU |

Description:

The Watchdog Manager [3] shall be able to immediately reset the MCU when a
temporal or logical program flow monitoring failure is detected, without waiting
for the hardware watchdog to expire. This feature shall be configurable.

If this feature is enabled, no notification will be sent to the application (see
SRS_ModeMgm_09162).

\Y%

AUTSSAR

JAN
When the Watchdog Manager [3] has detected an unrecoverable fault it will
simply reset the triggering condition of the watchdog(s). A reset will only occur
Rationale: when the first watchdog expires. In some use cases it is necessary to reset the
. ECU as soon as the unrecoverable fault has been detected. In these cases the
WdgM shall perform a reset as soon as possible. This shall be a configurable
feature.
Use Case: -
Dependencies: | [SRS_ModeMgm_09162] Indication of an upcoming watchdog reset.
Supporting -
Material:
]

[SRS_ModeMgm_09162] The Watchdog Manager shall be able to notify the soft-
ware of an upcoming watchdog reset |

The Watchdog Manager [3] shall be able to notify the software (BSW and
SW-C) when the decision to reset the triggering condition has been taken due

Description: to a temporal or logical program flow monitoring failure. This information shall
be forwarded through the RTE [7] in order to allow software preparing to the
imminent reset.

Rationale: Some applications need to perform some activity before a reset.

Use Case: Storing of persistent data in the NV-RAM.

Dependencies: | [SRS_ModeMgm_09163] Delay before provoking a watchdog reset.

Supporting -

Material:

]

[SRS_ModeMgm_09163] It shall be possible to configure a delay before provok-
ing a watchdog reset |

It shall be possible to configure a delay between the moment the decision has
Description: been taken to reset the triggering condition due to a temporal or logical
p ’ program flow monitoring failure and the moment the Watchdog Manager [3]
actually resets the triggering condition.
Rationale: Giving the time to the whole software to prepare properly to the upcoming reset.
Use Case: -
Dependencies: | [SRS_ModeMgm_09162] Indication of an upcoming watchdog reset
Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09143] The Watchdog Manager shall set the triggering condi-
tion during inactive monitoring |

s The Watchdog Manager [3] set the triggering condition in the Watchdog Driver

Description: L2 .
also when no monitoring is active/necessary.

Rationale: Prevent unintended watchdog resets.

Use Case: Thfare are no supervised entities or for all supervised entities monitoring is
switched off.

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09231] The Watchdog Manager shall periodically set the trig-
gering condition in the Watchdog Driver as long as the monitoring has not failed

[

The Watchdog Manager [3] shall periodically set the triggering condition in the

Description: Watchdog Driver (via the Watchdog Interface) as long as the monitoring of the

ption: supervised entities has not failed, thus preventing the hardware watchdog from

expiring.

Rationale: Basic functionality.
The Watchdog Manager [3] sets the triggering condition to a configured value.
The Watchdog Driver triggers the hardware watchdog cyclically and
decrements the triggering condition. If the triggering condition reaches zero,

Use Case: the Watchdog Driver stops triggering the hardware watchdog. If the Watchdog
Manager [3] periodically sets the triggering condition, the hardware watchdog
will never expire. Even if the Watchdog Manager [3] fails, it will also fail to set
the triggering condition, and thus cause a watchdog reset.

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09110] The watchdog Manager shall provide a service inter-
face, to select a mode of the Watchdog Manager |

The watchdog Manager shall provide a service interface, to select a mode of

Description: the Watchdog Manager [3]. Each mode corresponds to a watchdog driver
mode.
The watchdog triggering will be provided by three modes of the watchdog driver
(off, slow, fast), which will be related to the length of the time-period before the
Rationale: watchdog expires (no expiration, short time-period and long time-period). The

decision about which mode is necessary could not be done internally by the
Watchdog Manager [3]. Therefore, the Watchdog Manager [3] provides an
interface to perform the watchdog driver mode selection.

Y%

AUTSSAR

A
Appropriate modes of the watchdog are typically related to the current state of
Use Case: the ECU. The ECU State Manager [2] could forward a mode-selection from
slow to fast, when initialization phase is finished.
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09028] The Watchdog Manager shall support multiple watch-

dog instances |

Description: The Watchdog Manager [3] shall support multiple watchdog instances.
Rationale: There are ECUs including both an internal and an external watchdog for
CLlnEIEy monitoring the system.
Due to the usage of the same clock, the internal watchdog doesn’t recognize
Use Case: the "hang-up" of a system. To achieve a higher robustness an external
watchdog is used too.
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09233] The Watchdog Manager shall support independent trig-
gering condition values for each watchdog instance |

L The Watchdog Manager [3] shall support independent triggering condition

DA values for each watchdog instance under its control.
If multiple watchdog instances exist on one platform (e.g. internal and external

Rationale: watchdog) it’s very likely, that these watchdogs will come up with different

ationale: timing constraints. Thus, the values of the triggering condition need to be

adapted to the different cycles in the Watchdog Drivers.

Use Case: HW-platform with internal and external watchdog

Dependencies: | [SRS_ModeMgm_09028] Support multiple watchdog instances

Supporting -

Material:

]

[SRS_ModeMgm_09232] The Watchdog Manager shall provide a service to cause
a watchdog reset |

Description: The Watchdog Manager [3] shall provide a service that can be used to cause a
ption: watchdog reset independent of the monitoring states of supervised entities.
Rationale: DCM needs to cause a watchdog reset when it switches between application
) and boot loader mode.

Y

AUTSSAR

Use Case: -
Dependencies: | —

Supporting -
Material:

4.2.2.3 Configuration

[SRS_ModeMgm_09106] The list of entities supervised by the Watchdog Manager
shall be configurable at pre-compile time |

The list of entities supervised by the Watchdog Manager [3] shall be

Description: configurable at pre-compile time. The usage of additional configuration classes
is not restricted

Rationale: Application supervising.

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09220] It shall be possible to configure all the transition rela-
tions |

Description: It shall be possible to configure the transition relations for each supervised
p ’ entity and global transitions between supervised entities.
There are two possibilities to establish logical supervision of the execution
sequence:
* One global transition relation for the whole ECU
Rationale: ")) ,
+ One transition relation for each supervised entity.
Both of the possibilities shall be supported.
Use Case: -
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09158] The Watchdog Manager shall support Post build time
and mode dependent selectable configuration sets for the Watchdog Manager |

The Watchdog Manager [3] shall support several mode dependent selectable
configuration sets on one ECU. These configuration sets shall be post build
Description: time configurable and shall include the individual timing constraints of each
ption: supervised entity.
It shall also be possible to switch between these different configurations sets at
runtime (e.g. depending on the current scheduling table).
Rationale: Adapting temporal monitoring to the current schedule.
- Schedule table switch between STARTUP Il and RUN states (see ECU State
Use Case: Manager [2] SWS).
- Allowing a limp-home mode, having a totally different schedule.
Dependencies: | —
Supporting -
Material:

[SRS_ModeMgm_09223] The Watchdog Manager shall support Post build time
and mode dependent selectable configuration of transition relations |

The Watchdog Manager [3] shall support several mode dependent selectable
configuration sets on one ECU. These configuration sets shall be post build
A time configurable and shall include the transition relations of each supervised
Description: entity,
It shall also be possible to switch between these different configurations sets at
runtime (e.g. depending on the current scheduling table).
Rationale: Adapting logical program flow monitoring to the current schedule.
» Schedule table switch between STARTUP Il and RUN states (see ECU State
Use Case: Manager [2] SWS).
« Allowing a limp-home mode, having a totally different schedule.
Dependencies: | —
Supporting -
Material:

4.2.3 Fault Operation

[SRS_ModeMgm_09159] The Watchdog Manager shall report failure of temporal
or program flow monitoring to DEM |

Description:

The Watchdog Manager [3] shall report to DEM the failure of temporal or
program flow monitoring (When a failure is detected).
The report to DEM shall be a configurable option of the Watchdog Manager [3].

\Y

AUTSSAR

A
Rationale: Error tracing, Diagnostics.
Use Case: -
Dependencies: | —

Supporting -
Material:

4.3 Communication Manager

4.3.1 Functional Overview

The Communication Manager [4] collects and coordinates the communication access
requests from communication requestors (users, see glossary).

The purpose of the Communication Manager [4] is:

« Simplifying the usage of the communication protocol stack for the user. This in-
cludes the starting and stopping physical channel communication and a simplified
network management handling.

» Temporarily disabling sending of messages to prevent the ECU from (actively)
waking up the physical channel(s).

+ Controlling of more than one physical channels of an ECU by implementing a
state machine for every physical channel.

» Requesting the appropriate communication state to the BusState Manager

» Simplifying the resource management by allocating all resources necessary for
the requested communication mode.

In order to do so, the Communication Manager [4] defines "communication modes",
indicating if a given physical channel is available for the application and how (send/
receive; only receive, neither send nor receive).

Much more details about these functionalities can be found in the Communication Man-
ager [4].

AUTSSAR

4.3.2 Functional Requirements

4.3.2.1

Normal Operation

[SRS_ModeMgm_09078] The Communication Manager shall coordinate multiple
communication requests |

The Communication Manager [4] shall coordinate multiple communication
requests for multiple physical channels independently. The rule for coordination

Description: is that the highest requested communication mode is the target state of the
physical channel (see SRS_ModeMgm_09083 for a brief description of the
communication modes).
Main functionality of Communication Manager [4]. A SW-C cannot know with

Rationale: which other SW-C it will share an ECU in a particular configuration.
Coordination of communication requests has to be provided by BSW.

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09246] The communication manager shall arbitrate and coor-
dinate requests from users on physical channel and users on PNCs |

Description: The communication manager shall arbitrate and coordinate requests from
ption: users on physical channel and users on PNCs.
PNCs are virtual channel running on physical channels. More than one PNC
Rationale: can be located on a single physical channel and the communication mode of
the channel has an effect on the PNCs running on it.
A channel is used directly by a single use and indirectly by one or more PNC
Use Case: users. The channel remains in Full Comm as long as the channel user remains
. in Full Comm, even in the case all the PNC user have released their
communication.
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09247] For each configured PNC an independent state machine
shall be instantiated |

Descriotion: For each configured PNC an independent state machine shall be instantiated,
ption: in order to keep track of the activation state of each PNC.
Rationale: PNC must be able to be activated and deactivated independently of each other,
ationare: in the same way physical channels are independent of each other.

\Y

AUTSSAR

A
Use Case: On a specific physical channel, three PNCs are mapped and each can have a
se Lase: different activation status at any given moment.
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09248] it shall be possible to distinguish between internal and
external PNC activation requests [

When a PNC is in full communication mode, there shall be substates indicating
Description: whether the activation request is originating from the ECU local applciation or
from an external PNC activator.

Decision whether to release a PNC or not depends on the origin of the
activation request and therefore it must be taken track of it.

A PNC is requested from the ECU local application, as long as this is true, the
Use Case: PNC shall not be deactivated. In case it is required from outside, it shall only
remain active as long as it is constantly requested.

Dependencies: | —

Supporting -
Material:

Rationale:

]

[SRS_ModeMgm_00049] The Communication Manager shall initiate the wake-up
and keep awake physical channels |

The Communication Manager [4] controls the Network Management modules
assigned to the physical channels according to the target communication
modes of these physical channels.

Description: As soon as a user requests communication, the Communication Manager [4]
shall initiate the physical channel wake-up by switching the affected physical
channel’s NM to the AWAKE state (requesting communication for this physical
channel).

If the Network Management has set the communication system into sleep
mode the Communication Manager [4] shall wake it up again if at least one

Rationale: ECU/Application requires physical channel communication.
Basic functionality, responsibility to initiate physical channel wake-up.
Use Case: -
Dependencies: | [SRS_ModeMgm_09087]
Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09080] Each physical channel shall be controlled by an inde-
pendent communication mode |

Each physical channel shall be controlled by an independent communication

Description:

S mode.

Rationale: Possibility to have partial networks at physical channel level. Unnecessary
e/l physical channels shall not be activated.

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09081] The Communication Manager shall provide an API al-
lowing collecting communication requests |

A The Communication Manager [4] shall provide an API allowing collecting

Description: o
communication requests.

Rationale: Means of interaction necessary
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09083] The Communication Manager shall support two com-

munication modes for each physical channel |

The Communication Manager [4] shall support Two communication modes for
each physical channel. Theses modes are:
« full communication (send & receive operations)
Description: « no communication (neither send nor receive operations)
The modes have an implicit order with full communication being the "highest"
mode and no communication the "lowest" mode.
Rationale: Full communication mode should be self explanatory, needed for normal
ationale: operation of distributed functions.
Use Case: -
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09084] The Communication Manager shall provide an API
which allows application to query the current communication mode |

A The Communication Manager [4] shall provide an API which allows application
Description: L
to query the current communication mode.
SW-Cs shall have the possibility to query the real mode because it is unknown
Rationale: if and when a requested mode is reached. The querying of the requested mode
is added for completeness (see SRS_ModeMgm_09149).
Use Case: -
Dependencies: | [SRS_ModeMgm_09149]
Supporting -
Material:
]
[SRS_ModeMgm_09172] It shall be possible to evaluate the current communica-
tion mode |
Description: If more than one channel is linked to one user request and the modes of the
ption: channels are different, the user shall get always the lowest mode indicated.
Rationale: One user may request more than one communication Channel
Use Case: -
Dependencies: | [SRS_ModeMgm_09084] ,[SRS_ModeMgm_09149]
Supporting -
Material:
|

[SRS_ModeMgm_09149] The Communication Manager shall provide an API for
querying the requested communication mode |

The Communication Manager [4] shall provide an API which allows application

B IE to query the requested (target) communication mode.
SW-Cs shall have the possibility to query the real mode because it is unknown
Rationale: if and when a requested mode is reached (see SRS_ModeMgm_09084). The
querying of the requested mode is added for completeness.
Use Case: -
Dependencies: | [SRS_ModeMgm_09084] API for querying the current communication mode
Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09085] The Communication Manager shall provide an indica-
tion of communication mode changes |

Description: The Communication Manager [4] shall provide an indication in order to notify
P ’ application and DCM when the communication mode of the user has changed.

Rationale: State changes shall be communicated to affected entities, constant polling
AUl would hinder performance.

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09168] The Communication Manager shall support users that
are connected to no physical channel |

The Communication Manager [4] shall support users that are connected to no
physical channel.

Description: If one or more SW-Cs request communication and are connected to the
pseudo-channel for local communication, the channel state shall be Full
communication and Run shall be requested from EcuM.

This requirement is necessary to support the AUTOSAR architecture. A SW-C

Rationale: description has to be independent of the mapping of SW-Cs to ECUs.

ationale: Consequently, the service ports to the ComM have to be defined independent
of the mapping of the SW-Cs connections being ECU internal or external.

Use Case: -

Dependencies: | [SRS_ModeMgm_09090] User-to-channel relationship.

Supporting -

Material:

]

[SRS_ModeMgm_09071] It shall be possible to limit communication modes inde-
pendently for each physical channel |

Description:

It shall be possible to limit communication modes independently for each
physical channel. An API shall be provided to set the highest available mode.
Limiting communication modes takes effect immediately:

« If the current mode of a physical channel exceeds the selected limit, the
Communication Manager [4] shall take action to set down the
communication mode to such limit, as soon as possible. This mode reduction
will propagate to all users linked to the affected physical channel.

* Requests for modes exceeding the selected limit are not satisfied until the
limitation is revoked.
Communication mode ordering is described in SRS_ModeMgm_09083.

Passive wake-up shall always be possible, disregarding of the limitation.

\Y

AUTSSAR

JAN
Rationale: This feature is mainly to be used under error conditions, in order to force
L communication capabilities limitations.

* Prevention of physical channel wake-up.

* Forcing into no communication mode.
Use Case: g

* Force ECU to sleep because it is assumed that this ECU keeps without

reason, the physical channel awake or floods it with junk messages.

Dependencies: | [SRS_ModeMgm_09083],[SRS_ModeMgm_09157]
Supporting -
Material:

]

[SRS_ModeMgm_09157] It shall be possible to revoke a communication mode

limitation, independently for each physical channel |

Description: It shall be possible to revoke a communication mode limitation, independently
ption: for each physical channel. An API shall be provided.

Rationale: This feature is necessary to cancel the effects of the mode limitation service

atlonale: described in SRS_ModeMgm_09071.

Use Case: -

Dependencies: | [SRS_ModeMgm_09083],[SRS_ModeMgm_09071]

Supporting -

Material:

]

[SRS_ModeMgm_09087] The Minimum duration of communication request after

wakeup shall be configurable |

The Communication Manager [4] shall maintain the state Full com of a
communication channel after communication request

Description: The minimum duration of the FullCom shall be configurable at pre build Time

for each channel

Rationale: Safeguard against possible irregularities caused by short time span with no

atiohaie: communication request e.g. due to delayed functions.
 Passive wake-up: keeping the communication stack awake until the
application is able to forward the first user request.

Use Case: « Active wake-up: keeping the communication stack awake for a configured
time after application has NoCom requested, to prevent toggling between
COMM_NO_COMMUNICATION and COMM_FULL_COMMUNICATION.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_ModeMgm_09089] The Communication Manager shall be able to prevent
waking up physical channels |

The Communication Manager [4] shall be able to prevent the host ECU from

Description: waking up physical channels. An API to set the wake-up prevention shall be
provided.

Rationale: Prevent constant wake-up from an ECU which is triggered by an error.

Use Case: -

Dependencies: | [SRS_ModeMgm_09141]

Supporting -

Material:

[SRS_ModeMgm_09155] The Communication Manager shall provide a counter
for inhibited communication requests |

The Communication Manager [4] shall provide a counter for all rejected "Full

Description: Communication” mode requests, due to communication mode limitations.
The counter shall be stored in non-volatile memory.

Rationale: The counter is used for detecting latent software problems relating to

ationale: unmotivated communication bus wake-up.

Use Case: -

Dependencies: | [SRS_ModeMgm_09071],[SRS_ModeMgm_09089]

Supporting -

Material:

[SRS_ModeMgm_09156] It shall be provided an API to retrieve the number of
inhibited "Full Communication” mode requests [

It shall be possible to read out (and reset) the number of "Full Communication”

Description: mode requests that were inhibited due to communication mode limitations. This
value shall be accessible via a Communication Manager [4] API.

Rationale: -

Use Case: It shall be possible to read out and reset the current status of the counter by a
se Lase: diagnostic service.

Dependencies: | [SRS_ModeMgm_09155] Counting of inhibited communication requests.

Supporting -

Material:

AUTSSAR

[SRS_ModeMgm_09249] PNC gateway and coordination functionality |

Communication Manager [4] shall be aware of the distribution of each PNC
over different ComM channels (where each channel represents a particular
connection to a bus (e.g. CAN, FlexRay) or network (e.g. switched Ethernet
network)) and shall take care to forward the activation requests from one
channel to the other. The Communication Manager of a PNC gateway can
either act per PNC as top-level PNC coordinator or as intermediate PNC
coordinator. The top-level PNC coordinator is responsible for the coordinated
shutdown of all PNC members, because it is the only node which has the full
Description: overview of the states of all PNCs. If the top-level PNC coordinator detects, that
a PNC request has been released, then a NM message is transmitted where
this PNC is indicated as released. The NM message is forwarded as usual NM
message by the intermediate PNC coordinate to the PNC leaf nodes. If the
optional feature "synchronized PNC shutdown" is enabled the top-level PNC
coordinator transmits a NM message as PN shutdown message. The
intermediate PNC coordinator is responsible to forward a PN shutdown
message (request for a synchronized PNC shutdown) per channel has fast as
possible.

A PNC can span over different buses which are not necessarily connected to
each involved ECU. AUTOSAR supports Partial Network topologies, where
different PNCs are coordinated by different ECUs in the role of a top-level PNC
coordinator. Please note, a PNC can have only one top-level coordinator
across a Partial Network. This has to be ensured by a proper Partial Network
communication design.

Rationale:

ECU A is connected to network 1 and 2, ECU B is connected to network 2 and
3, ECU C is connected to network 3; as PNC 1 involves SWCs on all these
ECUs, the communication manager on each ECU must know where and how to
forward the activation requests. ECU A is acting as top-level PNC coordinator
Use Case: for PNCA1. If all ECUs have released PNC1 and optional feature "synchronized
PNC shutdown" is enabled, then ECU A transmit a PN shutdown message on
network 1 and 2 to start a synchronized PNC shutdown of PNC1. ECU B is
acting as intermediate PNC coordinator and forwards the request for a
synchronized PNC shutdown of PNC1 to network 3

Dependencies: | —

Supporting -
Material:

]

[SRS_ModeMgm_09250] PNC activation requests shall be exchanged with the
Network Management via a PNC bit vector |

Communication Manager [4] shall provide callback functions get external PNC
activation requests as PNC bit vector and call functions of the Network
Description: Management in order to forward PNC activation requests as PNC bit vector
according to the specified bit codes. The content of the PNC bit vector is
provided/required by the Network Management.

\Y

AUTSSAR

A

Internal activation requests are encoded as PNC bit vector and exchanged
between Communication Management and Network Management via
dedicated APIs.

External activation requests are received by the Network Management as

Rationale: encoded PNC bit vector and forwarded as PNC bit vector to Communication
Manager.
The Communication Management and Network Management decode the PNC
bit vector for internal processing.
ECU A is connected to CAN A and CAN B, ECU B is connected to CAN B and

Use Case: Flexray A, ECU C is connected to Flexray A; as PNC 1 involves SWCs on all

se Lase: these ECUs, the communication manager on each ECU must know where and

how to forward the activation requests.

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09278]

The Communication Manager shall support syn-

chronous and asynchronous request upon a indicated wakeup |

s ComM shall support to request its configured ComMChannels and / or PNC in

Description: SV
a synchronous or asynchronous manner upon an indicated wakeup.

In dependency of the expected behavior upon a indicated wakeup, ComM may

Rationale: need to request all its configured ComMChannels and / or PNCs (synchronous
wakeup) or only the given ComChannel or PNC (asynchronous wakeup).

In some cases the network communication design may expect to start all
configured PNCs and the affected TX paths to provide any data as soon as
possible on the network.

Use Case: In some cases the network communication design may expect to start the
affected channels and postpone the startup of the PNCs until a NM message is
received which contain PNC request. Upon the reception, the affected PNCs
are started.

Dependencies: | —

Supporting -

Material:

]

[SRS_ModeMgm_09279] The Communication Manager shall support a coordi-
nated release of PNCs |

Description: ComM shall support to release its configured PNCs in a coordinated manner.
A released PNC should stay for a configurable amount of time in active state to

Rationale: avoid toggling between requested and released state. This should support the
robustness of PNC handling across the PN topology.

Use Case: Reliable and predictable release process of a PNC

Dependencies: | —

Y%

AUTSSAR

Supporting -
Material:

]

[SRS_ModeMgm_09251] PNC communication state shall be forwarded to the
BswM |

BswM shall be notified of each change in the communication state of each
configured PNC, meaning with this communication mode and relative substate.

This is needed in order to let BswM operate the necessary actions to allow an
according operation mode change in the other BSM modules involved.

PNC A is deactivated, I-PDU group A, which contains the I-PDUs
Use Case: corresponding to this PNGC, is disabled by a corresponding action in the BswM
configuration.

Description:

Rationale:

Dependencies: | —

Supporting -
Material:

]

[SRS_ModeMgm_09256] PNC Gateway Functionality shall consider systems with
more than one gateways connected to the same network |

If there are multiple PNC Gateways within the system, then mirroring of
cluster-requests need to be limited to avoid keeping awake each other
(forwarding of cluster-requests is unaffected). For this, the following distinction
shall be possible:

Channel Connector of PNC Gateway is of type "active", then PNC requests are
forwarded and mirrored on the channel

Channel Connector of PNC Gateway is of type "passive”, then PNC requests
are only forwarded, but not mirrored on the channel

Channel Connector of PNC Gateway is of type "none", then PNC requests are
not forwarded and not mirrored back on the channel

Constraint: If there are multiple PNC Gateways within the system, there shall
always be one Gateway on top of the PNC Gateways hierarchical topology.

Description:

Rationale: -
The concept shall be designed to avoid every deadlock situation where the
system does not go to sleep (for instance by mirroring back PNC requests).

Use Case:

Dependencies:

Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09257] ComM shall forward PNC-Clusters also to busses that
are currently not awake |

Description:

When PNCs need to be forwarded to busses that are currently not awake the
ComM shall wakeup the according busses and forward the PNCs.

Rationale:

Use Case:

Dependencies:

Supporting
Material:

]

[SRS_ModeMgm_09258] Optional Dynamic Extension of PNC Gateway |

The PNC Gateway shall be extended to support a dynamic PNC Learning
mechanism so that new PNC routing rules can be learned during run-time. This
Description: feature shall be configurable and only available if enabled.
For dynamic Extension of PNC Gateway, it shall be possible to have
PN-Clusters available that are not mapped to any network
Dynamic entries to PNC-to-channel-mapping are needed when cluster
Rationale: members (ECUs) might change, for instance by install/uninstall/relocate
software components on adaptive platforms.
Use Case: Dynamic PNC Mapping
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09259] ComM API shall provide interfaces to access PNC Map-

ping (optional) |

The API of the ComM shall provide interfaces for the configurable PNC
Mapping stored in NVRAM:
* to read out the current entries (includes "statically" entries) *

Description: » to update / add entries (optional) *
* to reset all entries ("statically” entries will be unaffected)
* for testing reasons only
Rationale: Debug/Test and reset learning routine to default-values
Use Case: Dynamic PNC Mapping
Dependencies: | [SRS_ModeMgm_09258]
Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09260] ComM API shall provide an interface to start PNC Learn-

ing mechanism for PNC Mapping (optional) |

L The API of the ComM shall offer an interface to start the learning process, so
Description: . . e
that it can be triggered by any specific event.
Rationale: -
Use Case: Dynamic PNC Mapping
Dependencies: | [SRS_ModeMgm_09258], [SRS_ModeMgm_09265]
Supporting -
Material:
]

[SRS_ModeMgm_09261] ComM shall forward the information for Partial Network-
ing Learning (optional) |

Gateways only:
When the bit with value for partial networking learning is received by a
PNC-Gateway on an actively coordinated channel, it shall forward this bit to all
other coordinated channels.

Description: When the bit with value for partial networking learning is received by a

’ PNC-Gateway on an passively coordinated channel, it shall forward this bit to

all other actively coordinated channels.
Hint: Partial network learning bit must be sent to all nodes in the network but it
must not be mirrored back (this must also consider possible circles in the
network topologies)."

Rationale: -

Use Case: Dynamic PNC Mapping

Dependencies: | [SRS_ModeMgm_09258], [SRS_ModeMgm_09262], [SRS_ModeMgm_09265]

Supporting -

Material:

]

[SRS_ModeMgm_09262] ComM shall set all its assigned PNCs when partial net-
working learning is requested (optional) |

Description:

When the bits for partial networking learning and Repeat Message Request bit
are received with value set, ComM shall request internally the PNCs which it
wants to communicate to the gateway and transmit them in its NM PDUs on all
buses with NM until the bit is cleared. Within this response message the bit for
partial networking learning shall be set, but the Repeat Message Request bit
shall be cleared.

Hint: Due to the activation of all its PNCs it is ensured that the
PNC-membership will be provided on the bus by every ECU.

Hint: Gateways can also be at the same time normal nodes providing PNC
information and should therefore merge their received information with their
provider information when sending NM messages.

Rationale:

Y%

AUTSSAR

JAN
Use Case: Dynamic PNC Mapping
Dependencies: | [SRS_ModeMgm_09258], [SRS_ModeMgm_09261]
Partial Network learning differs between:
) * request NM PDU, where the bit for partial networking learning and Repeat
Supporting Message Request bit, both are set
Material: . . . -
* response NM PDU, where only the bit for partial networking learning is set
(but Repeat Message Request bit stays unset)
|

[SRS_ModeMgm_09263] ComM API shall provide an interface to set PNC-
membership on Host-ECU (optional) |

Description: The API of the ComM shall offer an interface to set the PNC-membership of the
ption: Host-ECU in order to answer during PN learning phase.

Rationale: -
Dynamic PNC Mapping: When the PN learning is requested, the ECU /

Use Case: Gateway shall be aware of all PNCs, of which itself is a member of. This might

se Lase: change dynamically, for example in the case of a Software Component being

the only member of a specific PNC but might be de-/activated by diagnosis.

Dependencies: | [SRS_ModeMgm_09258], [SRS_ModeMgm_09262]

Supporting -

Material:

]

[SRS_ModeMgm_09265] ComM shall send the information for Partial Networking
Learning (optional) |

When the start of PN learning procedure is requested ComM shall request to

Description: send the bit for partial networking learning via the <Bus>Nms for as long as it
remains in NmRepeatMessageState.

Rationale: -

Use Case: Dynamic PNC Mapping

Dependencies: | [SRS_ModeMgm_09258]

Supporting -

Material:

]

[SRS_ModeMgm_09266] ComM shall support communication channels that act
as communication slaves with wake-up capability |

Description:

Communication channels which act as communication slaves with wake-up
capability are in relation to a communication master. The communication
channels which act as communication slaves with wake-up support are able to
wake-up the communication master.

\Y%

AUTSSAR

A
Rationale: A communication channel that acts as an communication slave with wake-up
atlonare: capability could be requested locally by a user
Use Case: LIN slaves
Dependencies: | —
ISO 17987-2:2016 Road vehicles - Local Interconnect Network (LIN) - Part 2:
Supporting Transport protocol and network layer services
Material: ISO 17987-3:2016 Road vehicles - Local Interconnect Network (LIN) - Part 3:
Protocol specification

]

[SRS_ModeMgm_09267] ComM shall support communication channels which
act as communication slaves without wake-up capability |

Communication channels which act as communication slaves without wake-up
capability in relation to a corresponding communication master. The
communication channels which act as communication slaves without wake-up
support are not able to wake-up the corresponding communication master. The
communication slave will just follow and react on the wake-up request of the
corresponding communication master.

Description:

A communication channel that acts as a communication slave without wake-up
Rationale: capability could only be requested remotely (passive wake-up) by its
corresponding communication master.

Ethernet communication channels which use Ethernet hardware that support of
OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)
Use Case: and do NOT using network management. Only single ECU which do NOT
maintain an Ethernet switch could have a communication channels which act
as communication

Dependencies: | —

Supporting OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)
Material:

]

[SRS_ModeMgm_09268] ComM shall support the possibility to forward the infor-
mation if the communication request is active or passive to it’s lower layer layer

[

It is necessary to distinguish between active and passive communication
Description: requests to the lower layers for communication channels that uses hardware
which have the possibility to send wake-up requests on the network.

Active communication requests will end up with a wake-up request on the
Rationale: network, while passive communication requests will end up without wake-up
request on the network

Ethernet communication channels which comply to the OPEN ALLIANCE
Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

Dependencies: | —

Use Case:

\Y

AUTSSAR

A

Supporting
Material:

OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

]

[SRS_ModeMgm_09269] The Communication Manager shall support synchro-
nized PNC shutdown |

The ComM of a ECU in the role of a top-level PNC coordinator shall forward
PNCs which are detected as released and forward the request to Nm per Com
Description: MChannel.
The ComM of a ECU in the role of an intermediate PNC coordinator shall be
able to react on received PN shutdown messages and forward the PNC bit
vector to active coordinated ComMChannels
An ECU in the role of a top-level PNC coordinator has to transmit a PN
Rationale: shutdown message. A receiving ECU in the role of an intermediate PNC
. coordinator shall react immediately and forward the received PNC bit vector of
a PN shutdown message as fast as possible on the affected ComMChannels.
Use Case: Synchronized PNC shutdown of PNCs across the whole PN topology
Dependencies: | [RS_Nm_02517]
Supporting -
Material:

4.3.2.2 Configuration

[SRS_ModeMgm_09090] Relationship between users and physical channels
shall be configurable at pre compile time |

Relationship between users and physical channels (which user communicates
Description: on which physical channel) are configurable at pre compile time. The usage of
additional configuration classes is not restricted.
Rationale: Necessary for physical channel independency; communication shall be only
ationare: activated if communication is needed on this physical channel.
Use Case: -
Dependencies: | —
s ti Note: A possible solution is a 2D matrix with users as rows and physical
Mu;:pqufng channels as columns; an entry in this matrix links the user (row) with the
aterial: corresponding physical channel (column).

AUTSSAR

[SRS_ModeMgm_09133] It shall be possible to assign physical channels to the
Communication Manager |

Physical channels, which should be handled by the Communication Manager
Description: [4], shall be assigned to the module by pre compile time configuration. The
usage of additional configuration classes is not restricted.

The ECU specific implementations of the Communication Manager [4] shall
have knowledge about how many and which physical channels have to be
treated by the Communication Manager [4] on the dedicated ECU. This
knowledge is required to enhance the independency of the physical channel
management within the Communication Manager [4]. Additionally, it gives
flexibility to tailor required data-resources for the specific implementations.

The Communication Manager [4] shall cope with individual communication
. resources of different ECUs e.g.:

Use Case: ECU A : two FlexRay busses, one CAN bus

ECU B : one CAN bus, one LIN bus

Dependencies: | —

Supporting -
Material:

Rationale:

]

[SRS_ModeMgm_09132] It shall be possible to assign Network Management to
physical channels |

The usage of Network Management shall be assigned to the physical channels
by pre compile time configuration. This option shall be provided independently
for all physical channels, which are assigned to the Communication Manager
[4]. The usage of additional configuration classes is not restricted.

The Communication Manager [4] needs the knowledge of the Network
Management usage on each physical channel in order to provide each channel
with the suitable synchronization-mechanism to the Network Management
(handling of additional indications and acknowledges from/to Network
Management).

For physical channels without Network Management, the Communication
Manager [4] has to be aware of the simplified handling (no indication or
acknowledges needed to/from Network Management).

An ECU with two physical channels (A, B): A is related to powertrain domains,
B is related to comfort-components.

- physical channel A does not use Network Management

- physical channel B must use Network Management

Description:

Rationale:

Use Case:

Dependencies: | —

Supporting -
Material:

AUTSSAR

[SRS_ModeMgm_09141] The Communication Manager shall be able to configure
the physical channel wake-up prevention |

The Communication Manager [4] shall be able to prevent wake-up at the level

Description: of physical channels (SRS_ModeMgm_09089). This feature shall be

ption: configurable at pre compile time or post build time. The usage of additional

configuration classes is not restricted.

Rationale: This feature will not appear in all ECUs.

Use Case: -

Dependencies: | [SRS_ModeMgm_09089] Preventing waking up physical channels.

Supporting -

Material:

[SRS_ModeMgm_09243] The Communication Manager shall be able to handle
the Partial Networks on Flexray, CAN and Ethernet |

Description: The Communication Manager [4] shall be able to handle Partial Networks
ption: spanning on CAN, Flexray and Ethernet physical channels.
Rationale: Partial Network implementation is needed at least on these bus types.
Use Case: -
Dependencies: | —
Supporting -
Material:
]

[SRS_ModeMgm_09244] The number of supported PNCs shall be configurable
strictly at pre-compile time |

Description: ;Ii'rr:]inumber of supported PNCs shall be configurable strictly at pre-compile

Rationale: Letting complete freedom in configuring the number of PNCs also at Post-Build
ationale: time would increase complexity in comparison to the advantages.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_ModeMgm_09245] Enabling or disabling the Partial Network Cluster man-
agement in ComM shall be post-build selectable. |

Description:

The management of the PNC states shall be post-build activatable.

Rationale:

It has to be possible to disable or enable the management without having to
recompile the code.

\Y%

AUTSSAR

JAN
Use Case: Activation and deactivation via diagnostic command
Dependencies: | —
Supporting -
Material:

]

[SRS_ModeMgm_09207] ComM shall allow for additional bus specific state man-
agers |

Description: ComM shall allow for additional bus specific state managers

Rationale: Allow writing of CDDs as defined in the AUTOSAR architecture
Use cases for CDDs need not to be given. However, to state some current
problems:

» CDDs accessing MCAL (e.g. PWM, but call back routines of MCAL only call
IOHWA, not a CDD)

B e » CDDs accessing PduR (e.g. Debugging; but PduR only interfaces to Com or
Dcm), CDDs accessing Canlf (e.g. OSEK NM or XCP, but there exists a
parameter to only select PduR, CanTp or CanNm in Canlf)

« validl/O busses besides SPI like USB etc.

Dependencies: | —

Supporting Covered feature request:

Material: + RS_BRF_00225 (Enabling CDDs in the BSW architecture)

4.4 Basic Software Mode Manager

4.4.1 Functional Overview

The VFB [8] defines and the RTE [7] implements the concept of Mode Declaration
Groups.

There can be multiple Mode Declaration Groups that are independent of each other.
E.g. in Figure 1 the Mode Declaration Group is "AMM_KeySwitch" and the Modes in
this group are "Off", "Accessory", "Ignition".

A Mode Declaration Group can not contain parallel Modes. Parallel Modes must be
implemented by separate Mode Declaration Groups. E.g. diagnostic modes are inde-
pendent of key switch modes, i.e., they go into a validMode Declaration Group "AMM_
Diagnostics".

There is no hierarchy of Modes within a Mode Group. E.g. "Diagnostics_On" and
"Diagnostics_Off" cannot have sub-modes.

AUTSSAR

4.41.1 Interfaces between Mode -Requester, -Manager and -User

sm AMM_Diagnostics/

DiagnosticOff
DiagnosticOn

Figure 4.3: Mode Declaration Groups(1)

sm AMM_KeySwitch/

Figure 4.4: Mode Declaration Groups(2)

As defined above there are three roles that an SW-C or a BSW module can take: Mode
Requester, Mode Manager, and Mode User.

Requester

Mode DJ_

C

e s

Mode

-

>

Mode
Switch

Request Mode [
Manager I}

=

Mode [
User

Figure 4.5: Mode Management Roles and Interfaces

AUTSSAR

The Mode Requester requests a Mode from a Mode Manager by sending some data
via a port with a Mode Request interface. As shown in Figure 2, this port can be a
Client or a Sender port, in case of a Mode Manager in the BSW even a C function call.
This interface is not standardized.

The Mode Manager receives the incoming information via its Server or Receiver ports
or C functions with Mode Request Interfaces, arbitrates the requests and decides upon
a resulting mode. It uses a local Sender port with a Mode Switch Interface ! to switch
a Mode Declaration Group into the resulting mode.

To react upon mode changes, Mode Users have a local Receiver port where it receives
Mode Switch Notifications. It can either read and evaluate the information directly or
via its Software Component Description instruct the RTE [7] to start and stop some of
its runnables.

Note that in all cases there may be multiple ports with Mode Request and Mode Switch
Interfaces attached to the corresponding roles. E.g., one Mode Requester may re-
quest Modes from multiple Mode Managers (This requires the use of a sender-receiver-
interface). One Mode Manager may receive requests from multiple Mode Requesters.
One Mode Manager may switch multiple Mode Declaration Groups each with multiple
Mode Users. And one Mode User may receive Mode Switch Notifications from multiple
Mode Managers, where one mode machine instance is switched by only one mode
manager.

4.4.1.2 Relation of Modes

Every system contains modes at different levels of granularity. As shown in Figure
3, there are Vehicle Modes and several Applications with modes and ECUs with local
BSW Modes.

A Mode Switch Interface is a special kind of Sender-Receiver Interface that is tagged as a local
Service and contains a Mode Declaration Group Prototype as a data element.

AUTSSAR

Vehicle
Modes

Application 03] >3
Modes APP A APPBY | ceeeee APP X
BSW

Modes ECU 1@ ECU 2@ ececceoe ECU n@

Figure 4.6: Levels of Modes

But all these modes are not really independent: In reality, Modes at all levels influence

each other.

Vehicle
Modes

A

Influence each other

Application
Modes

A

Influence each other

BSW
Modes

v v

Figure 4.7: Influences between Mode Levels

Figure 4.7 shows the following relationships:

» Depending on Vehicle Modes, Applications may be active or inactive and thus be
in different Application Modes.

* Vice versa, the operational state of certain Applications may cause Vehicle Mode

changes.

AUTSSAR

» Depending on Vehicle and Application Modes, the BSW modes may change, e.g.
the communication needs of an Application may cause a change in the BSW
Mode of a communication network.

* Vice versa, BSW Modes may influence the Modes of Applications and even the
whole vehicle, e.g. when a communication network is unavailable, Applications
that depend on it may change into a Limp-Home Mode.

There are also cross-dependencies within all levels of Modes through mode relations.
These get even more complicated because Applications can be distributed over several
ECUs.

Vehicle o
Modes VMM -Manage?®

Influence each othe /’/ /‘/;M\ 'K\\\
Application / / j \ \1\ \

OG> G>(2)
bl APPAST | APP a5 .. AP X
E I 1
S oK
A S o SN
BSW S A=
Modes ECU 1. z ECU 2 I~ _eeeeee, ECU n

Figure 4.8: Influences between Modes

Figure 4.8 gives an impression of the resulting network of complex dependencies.

4.4.2 Use Cases

The following use case diagram shows the actors and their use cases.

AUTSSAR

Use Cases for BSW Mode Managemen;)

BSW Mode Management

¢ UCH: Initialize BSWRTE

. / UCS Switch General Modes

Jf /0

A= - T

. \\. -‘-‘-‘___‘-‘_"—‘—-—-.,_-——'____ ____'——-__(44'_#_#_’_ A
Application LN

(_ UC4: Control Service Dism\rery.‘:::-

Figure 4.9: Use cases for BSW Mode Management

Use Case Name Use Case Description
This use case allows the application or the BSW to arbitrate and
Switch General Modes switch to pre-defined (i.e., standardized) and user-defined modes

in a generic way

This use case is triggered by the ECU State Management to ini-
Initialize BSW tialize BSW beyond drivers and OS (which are initialized in scope
of ECU state management)

This use case prepares BSW for shutdown, before control is
Prepare BSW for Shutdown handed over to ECU state management which actually shuts
down the OS and the ECU

This use case allows application and BSW to enable or disable
Set Communication Mode network communication - or change the communication accord-
ing to the current mode

This use case allows the application to trigger a Service Discov-
Control Service Discovery ery at any point in time - in case default behavior ("auto offer /
auto subscribe") is not sufficient

AUTSSAR

4.4.3 Functional Requirements

4.43.1 Use Case: Switch General Modes

[SRS_ModeMgm_02000] Mode Arbitration on Request |

Description: When the BSW Mode Management receives a mode request from a mode
p ’ requester, then the BSW Mode Management shall arbitrate the new mode.
]
[SRS_ModeMgm_02001] Configuration of Mode Requesters |
Descriotion: The BSW Mode Management shall allow to register mode requester in/from
ption: application, BSW or CDD.
]
[SRS_ModeMgm_02002] Configuration of Mode Arbitration Rules |
Description: The BSW Mode Management shall allow to configure the rules for mode
) arbitration.
Each each project requires very specific rules for mode changes. Configuration
Rationale: allows to tailor the generic arbitration mechanism of the BSW Mode
Management to the needs of a given project.
]

[SRS_ModeMgm_02003] Performing Mode Specific Actions |

When the BSW Mode Management has finished mode arbitration, then the
BSW Mode Management shall

Description: « execute a configurable list of actions (standardized or user-defined ones)

< and then switch to the arbitrated mode

]
[SRS_ModeMgm_02004] Mode Notification to Users |

When the BSW Mode Management switches to a new mode, then the BSW
Description: Mode Management shall notify all registered mode users in application, BSW
or CDD about the mode switch.

AUTSSAR

4.43.2 Use Case: Initialize BSW

[SRS_ModeMgm_02005] Initialize BSW [

Description:

When requested by BSW, then the BSW Mode Management shall initialize
BSW modules and RTE.

Additional Information:
« Typically ECU State Management initializes drivers, OS and BSW Mode
Management before BSW Mode Management takes over

* RTE is initialized on each core

44.3.3 Use Case: Prepare BSW for Shutdown

[SRS_ModeMgm_02006] Prepare BSW for Shutdown |

Description:

When requested by BSW or application, then the Basic SW Mode Management
shall stop the RTE and prepare BSW modules for shutdown.

Additional Information:
* BSW Mode Management only prepares for shutdown

« ECU State Management actually shuts off ECU or puts it to sleep

4434 Use Case: Set Communication Modes

[SRS_ModeMgm_02007] Set Communication Modes |

Description:

When requested by registered mode users in application, CDD or BSW, then
the Basic SW Mode Management shall request
« to enable/disable communication

* or to change the communication mode

on supported networks.
Additional Information:

Communication on a network may also be partially startup or shutdown.

AUTSSAR

44.3.5 Use Case: Control Service Discovery

[SRS_ModeMgm_02008] Control Service Discovery |

Description:

When requested by application, then the Basic SW Mode Management shall
allow
* a server/provider of a service

— to offer/ stop offering a service
— and to query the service subscribers

« and a client/subscriber of a service
— to subscribe to a service
— and to query the subscription status.

AUTSSAR

5 References

[1] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS BSWModeManager

[2] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[3] Specification of Watchdog Manager
AUTOSAR_CP_SWS_WatchdogManager

[4] Specification of Communication Manager
AUTOSAR_CP_SWS COMManager

[5] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[6] Glossary
AUTOSAR_FO_TR_Glossary

[7] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[8] Virtual Functional Bus
AUTOSAR _CP_TR _VFB

[9] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

AUTSSAR

A History of Requirements

Please note that the lists in this chapter also include requirements that have been
removed from the specification in a later version. These requirements do not appear
as hyperlinks in the document.

A.1 Requirement History of this Document According to
AUTOSAR Release R25-11

A.1.1 Added Requirements in R25-11

[SRS_ModeMgm_02000] [SRS_ModeMgm_02001] [SRS_ModeMgm_02002] [SRS_
ModeMgm_02003] [SRS_ModeMgm_02004] [SRS_ModeMgm_02005] [SRS_
ModeMgm_02006] [SRS_ModeMgm_02007] [SRS_ModeMgm_02008]

A.1.2 Changed Requirements in R25-11

none

A.1.3 Deleted Requirements in R25-11

[SRS_ModeMgm_09174] [SRS_ModeMgm_09175] [SRS_ModeMgm_09176] [SRS_
ModeMgm_09177] [SRS_ModeMgm_09178] [SRS_ModeMgm_09179] [SRS._-
ModeMgm_09180] [SRS_ModeMgm_09182] [SRS_ModeMgm_09183] [SRS_
ModeMgm_09184] [SRS_ModeMgm_09228] [SRS_ModeMgm_09229] [SRS -
ModeMgm_09230] [SRS_ModeMgm_09240] [SRS_ModeMgm_09241] [SRS_
ModeMgm_09253] [SRS_ModeMgm_09255] [SRS_ModeMgm_09281]

A.2 Requirement History of this Document According to
AUTOSAR Release R24-11

A.2.1 Added Requirements in R24-11

[SRS_ModeMgm_00001] [SRS_ModeMgm_00002] [SRS_ModeMgm_00003] [SRS_
ModeMgm_00004] [SRS_ModeMgm_00005] [SRS_ModeMgm_00006] [SRS -
ModeMgm_00007] [SRS_ModeMgm_00008] [SRS_ModeMgm_00009] [SRS_
ModeMgm_00010] [SRS_ModeMgm_00011] [SRS_ModeMgm_00012] [SRS._-
ModeMgm_00013] [SRS_ModeMgm_00014] [SRS_ModeMgm_00015] [SRS_
ModeMgm_00016] [SRS_ModeMgm_00017] [SRS_ModeMgm_00018] [SRS_-
ModeMgm_00019] [SRS_ModeMgm_00020] [SRS_ModeMgm_00021] [SRS_
ModeMgm_00022] [SRS_ModeMgm_00023] [SRS_ModeMgm_00024]

AUTSSAR

A.2.2 Changed Requirements in R24-11

[SRS_ModeMgm_09256]

A.2.3 Deleted Requirements in R24-11

[SRS_ModeMgm_09001] [SRS_ModeMgm_09009] [SRS_ModeMgm_09017] [SRS_

ModeMgm_09072]
ModeMgm_09100]
ModeMgm_09104]
ModeMgm_09115]
ModeMgm_09119]
ModeMgm_09126]
ModeMgm_09136]
ModeMgm_09147]
ModeMgm_09166]
ModeMgm_09186]
ModeMgm_09189]
ModeMgm_09199]
ModeMgm_09236]
ModeMgm_09239]
ModeMgm_09270]
ModeMgm_09274]
ModeMgm_09277]

A.3 Requirement History of this

[SRS_ModeMgm_09097]
[SRS_ModeMgm_09101]
[SRS_ModeMgm_09113]
[SRS_ModeMgm_09116]
[SRS_ModeMgm_09120]
[SRS_ModeMgm_09127]
[SRS_ModeMgm_09145]
[SRS_ModeMgm_09164]
[SRS_ModeMgm_09173]
[SRS_ModeMgm_09187]
[SRS_ModeMgm_09190]
[SRS_ModeMgm_09234]
[SRS_ModeMgm_09237]
[SRS_ModeMgm_09254]
[SRS_ModeMgm_09271]
[SRS_ModeMgm_09275]

AUTOSAR Release R23-11

A.3.1

Added Requirements in R23-11

[SRS_ModeMgm_09281]

A.3.2 Changed Requirements in R23-11

none

A.3.3 Deleted Requirements in R23-11

none

[SRS_ModeMgm_09098]
[SRS_ModeMgm_09102]
[SRS_ModeMgm_09114]
[SRS_ModeMgm 09118]
[SRS_ModeMgm_09122]
[SRS_ModeMgm_09128]
[SRS_ModeMgm_09146]
[SRS_ModeMgm_09165]
[SRS_ModeMgm_09185]
[SRS_ModeMgm_09188]
[SRS_ModeMgm_09194]
[SRS_ModeMgm_09235]
[SRS_ModeMgm_09238]
[SRS_ModeMgm_09264]
[SRS_ModeMgm_09272]
[SRS_ModeMgm_09276]

[SRS._-
[SRS_
[SRS_-
[SRS_
[SRS._-
[SRS_
[SRS._-
[SRS_
[SRS_-
[SRS_
[SRS._-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_

Document According to

AUTSSAR

A.4 Requirement History of this Document According to
AUTOSAR Release R22-11

A.4A1

none

Added Requirements in R22-11

A.4.2 Changed Requirements in R22-11

[SRS_ModeMgm_00049] [SRS_ModeMgm_09009] [SRS_ModeMgm_09017] [SRS_

ModeMgm_09028]
ModeMgm_09083]
ModeMgm_09089]
ModeMgm_09101]
ModeMgm_09106]
ModeMgm_09112]
ModeMgm_09118]
ModeMgm_09122]
ModeMgm_09128]
ModeMgm_09141]
ModeMgm_09155]
ModeMgm_09160]
ModeMgm_09165]
ModeMgm_09169]
ModeMgm_09179]
ModeMgm_09185]
ModeMgm_09188]
ModeMgm_09194]
ModeMgm_09222]
ModeMgm_09226]
ModeMgm_09232]
ModeMgm_09237]
ModeMgm_09243]
ModeMgm_09269]
ModeMgm_09272]

[SRS_ModeMgm_09078]
[SRS_ModeMgm_09084]
[SRS_ModeMgm_09097]
[SRS_ModeMgm_09102]
[SRS_ModeMgm_09107]
[SRS_ModeMgm_09114]
[SRS_ModeMgm_09119]
[SRS_ModeMgm_09125]
[SRS_ModeMgm_09133]
[SRS_ModeMgm_09143]
[SRS_ModeMgm_09158]
[SRS_ModeMgm_09161]
[SRS_ModeMgm_09166]
[SRS_ModeMgm_09172]
[SRS_ModeMgm_09180]
[SRS_ModeMgm_09186]
[SRS_ModeMgm_09189]
[SRS_ModeMgm_09199]
[SRS_ModeMgm_09223]
[SRS_ModeMgm_09228]
[SRS_ModeMgm_09233]
[SRS_ModeMgm_09238]
[SRS_ModeMgm_09249]
[SRS_ModeMgm_09270]
[SRS_ModeMgm_09274]

ModeMgm_09276] [SRS_ModeMgm_09277]

A.4.3 Deleted Requirements in R22-11

[SRS_ModeMgm_09280]

[SRS_ModeMgm_09081]
[SRS_ModeMgm_09085]
[SRS_ModeMgm_09098]
[SRS_ModeMgm_09104]
[SRS_ModeMgm_09110]
[SRS_ModeMgm_09115]
[SRS_ModeMgm_09120]
[SRS_ModeMgm_09127]
[SRS_ModeMgm_09136]
[SRS_ModeMgm_09149]
[SRS_ModeMgm_09159]
[SRS_ModeMgm_09162]
[SRS_ModeMgm_09168]
[SRS_ModeMgm_09174]
[SRS_ModeMgm_09182]
[SRS_ModeMgm_09187]
[SRS_ModeMgm_09190]
[SRS_ModeMgm_09221]
[SRS_ModeMgm_09225]
[SRS_ModeMgm_09231]
[SRS_ModeMgm_09235]
[SRS_ModeMgm_09239]
[SRS_ModeMgm_09254]
[SRS_ModeMgm_09271]
[SRS_ModeMgm_09275]

[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS -
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_-
[SRS_
[SRS_

	1 Scope of Document
	2 Conventions to be used
	3 Acronyms and abbreviations
	4 Requirements Specification
	4.1 ECU State Management
	4.1.1 Functional Overview
	4.1.2 Use Cases
	4.1.3 Functional Requirements
	4.1.3.1 Use case 1: Start up ECU
	4.1.3.2 Use case 2: Wake up ECU
	4.1.3.3 Use case 3: Put ECU to sleep
	4.1.3.4 Use case 4: Shutdown and reset ECU
	4.1.3.5 Use case 5: Keep ECU fully operational (RUN state)
	4.1.3.6 Use case 6: Prepare ECU for Shutdown (POST_RUN State)
	4.1.3.7 Use case 9: Activate Bootloader
	4.1.3.8 Use case 7: Schedule Wake-up Alarms
	4.1.3.9 Use case 8: Provide time since startup
	4.1.3.10 Common

	4.2 Watchdog Manager
	4.2.1 Functional Overview
	4.2.2 Functional Requirements
	4.2.2.1 Initialization
	4.2.2.2 Normal Operation
	4.2.2.3 Configuration

	4.2.3 Fault Operation

	4.3 Communication Manager
	4.3.1 Functional Overview
	4.3.2 Functional Requirements
	4.3.2.1 Normal Operation
	4.3.2.2 Configuration

	4.4 Basic Software Mode Manager
	4.4.1 Functional Overview
	4.4.1.1 Interfaces between Mode -Requester, -Manager and -User
	4.4.1.2 Relation of Modes

	4.4.2 Use Cases
	4.4.3 Functional Requirements
	4.4.3.1 Use Case: Switch General Modes
	4.4.3.2 Use Case: Initialize BSW
	4.4.3.3 Use Case: Prepare BSW for Shutdown
	4.4.3.4 Use Case: Set Communication Modes
	4.4.3.5 Use Case: Control Service Discovery

	5 References
	A History of Requirements
	A.1 Requirement History of this Document According to AUTOSAR Release R25-11
	A.1.1 Added Requirements in R25-11
	A.1.2 Changed Requirements in R25-11
	A.1.3 Deleted Requirements in R25-11

	A.2 Requirement History of this Document According to AUTOSAR Release R24-11
	A.2.1 Added Requirements in R24-11
	A.2.2 Changed Requirements in R24-11
	A.2.3 Deleted Requirements in R24-11

	A.3 Requirement History of this Document According to AUTOSAR Release R23-11
	A.3.1 Added Requirements in R23-11
	A.3.2 Changed Requirements in R23-11
	A.3.3 Deleted Requirements in R23-11

	A.4 Requirement History of this Document According to AUTOSAR Release R22-11
	A.4.1 Added Requirements in R22-11
	A.4.2 Changed Requirements in R22-11
	A.4.3 Deleted Requirements in R22-11

