AUTSSAR

Document Title

Requirements on Memory
Hardware Abstraction Layer

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 116

Document Status published

Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 | R24-11 Release » No content changes
Management
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
* Set items from draft to valid: SRS __
MemHwAb_ 14034, SRS _MemHwAb__
14035, SRS MemHwAb 14036, SRS
MemHwAb_ 14037, SRS_MemHwAb__
14038, SRS_MemHwAb_14039, SRS _
MemHwAb_ 14040, SRS _MemHwAb__
14041, SRS_MemHwAb_ 14042, SRS _
AUTOSAR MemHwAb_ 14043, SRS_MemHwAb
2022-11-24 R22-11 Release 14044, SRS_MemHwAb 14045, SRS
Management MemHwAb_ 14046, SRS _MemHwADb
14047, SRS_MemHwAb_14048, SRS _
MemHwAb_ 14049, SRS _MemHwAb
14050, SRS_MemHwAb_14051, SRS _
MemHwAb_ 14052, SRS _MemHwAb
14053, SRS_MemHwAb_14054, SRS _
MemHwAb_ 14055, SRS _MemHwAb
14056, SRS_MemHwAb_14057

AUTSSAR

» Added MemAcc and Mem related

RO1-11 gt;l':;(;f:R requirements (SRS_MemHwAb_14033
2021-11-25 - to SRS_MemHwAb_14056) due to
Management
Memory stack rework concept
AUTOSAR
2020-11-30 R20-11 Release * No content changes
Management
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
AUTOSAR
2016-11-30 | 4.3.0 Release » Added Requirements Tracing chapter
Management
AUTOSAR
2015-07-31 422 Release * Requirements linked to BSW features
Management
AUTOSAR
2014-10-31 4.2.1 Release * Requirements linked to BSW features
Management
AUTOSAR
2013-10-31 412 Release « Editorial changes
Management
« formal rework for requirements tracing
* requirements reworked according to
2013-03-15 | 4.1.1 AUTQ.SAR , TPS_STDT_00078
Administration
* requirements linked to BSW and RTE
features
2010-02-02 | 3.1.4 AUTQ.SAR . * Legal disclaimer revised
Administration
2008-08-13 | 3.1.1 AUTOSAR - Legal disclaimer revised
Administration
» Document meta information extended
2007-12-21 3.0.1 AUTOSAR

Administration

» Small layout adaptations made

AUTSSAR

» "Advice for users" revised

2007-01-24 2.1.15 QUTQ.SAR .
dministration « "Revision Information" added
2006-11-28 | 2.1.0 AUTOSAR « Legal disclaimer revised
Administration
2006-05-16 2.0.0 AUTOSAR * |nitial release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Scope of Document

2 How to read this document

2.1 Conventionsused
2.2 Requirementsstructureo

3 Acronyms and abbreviations

4 Functional Overview

41 Memory AccessModule Lo
4.2 Memory Driver. e
4.3 EEPROM AbstractionLayer
4.4 Flash EEPROM Emulation
4.5 Memory Abstraction Interface L.

5 Requirements Specification

5.1 Functional Requirements
5.1.1 Memory AbstractionModules
5.1.1.1 Configuration
5.1.1.2 Initialization
5.1.1.3 Normal Operation,
5.1.1.4 Shutdown Operation
5.1.1.5 FaultOperation
5.1.2 Memory Abstraction Interface
5121 General
5.1.2.2 Configurationo
5.1.23 Normal Operation,
5.1.24 FaultOperation
5.1.3 Onboard Device Abstraction
5.2 Non-Functional Requirements (Qualities)
5.2.1 Memory Abstraction Modules,
5.2.2 Memory Abstraction Interface L.
5.2.2.1 Timing Requirements
5.2.3 Onboard Device Abstraction

6 References

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release
R24-11 e e

A.1.1 Added Requirementsin R25-11
A.1.2 Changed Requirementsin R25-11
A.1.3 Deleted Requirementsin R25-11

o © o o«

11

11
11
11
12

13

13
13
13
17
17
28
28
29
30
30
31
31
32
32
32
33
33
33

34

35

AUTSSAR

A.2 Traceable item history of this document according to AUTOSAR Release

R24-11 e 35
A.2.1 Added Requirementsin R24-11 35
A.2.2 Changed Requirementsin R24-11 35

A.2.3 Deleted RequirementsinR24-11 35

AUTSSSAR Requirements on Memory Hardware Abs’[ra;_oa’:iyoer:r

AUTOSAR CP R25-11

1 Scope of Document

This document specifies requirements on the modules making up the Memory Hard-
ware Abstraction Layer (MemHwA). The picture below shows the architecture and con-
text of this Memory Hardware Abstraction Layer.

Figure 1.1: Components and Interfaces of the Memory Hardware Abstraction Layer

The Flash EEPROM Emulation (FEE) module and EEPROM Abstraction (EA) module
shall provide a block based addressing scheme and a configurable, "virtually unlimited"
number of erase-write-cycles. Thus, the upper layer module (the NVRAM manager)
needs not be changed if the underlying memory driver and device is changed.

The Memory Access (MemAcc) module shall abstract from the addressing scheme
of the underlying memory (Mem) drivers and provide an address based addressing
scheme. Also, it provides a device-agnostic address-based memory interface to main-
tain the access coordination of different upper layer modules like NvM, BndM or OTA
client compenent and the synchronization of the hardware access. Thus, the upper
layer module (FEE, EA, BndM, etc.) needs not be changed if the underlying Mem
drivers and devices are changed.

The Memory Abstraction Interface (Memlf) shall replace the driver interface layers
(EEPROM and flash interface) and allow the NVRAM manager to access several mem-
ory abstraction modules (FEE and EA modules).

Instead of the combination of FEE / flash driver and / or EA/ EEPROM driver, a vendor
specific library might be used that provides the same functionality and API as those
memory abstraction modules. The internals of such a library are of no concern as
long as the functionality and API are supported. In case the vendor library replaces all
needed FEE and EA modules, the Memory Abstraction Interface shall only be a bunch
of macros.

7 of 35 Document ID 116: AUTOSAR_CP_RS MemoryHWADbstractionLayer

AUTSSAR

2 How to read this document

Each requirement has its unique identifier starting with the prefix "BSW" (for "Basic
Software"). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as follows.

Note that the requirement level of the document in which they are used modifies the
force of these words.

* MUST: This word, or the adjective "LEGALLY REQUIRED", means that the defi-
nition is an absolute requirement of the specification due to legal issues.

* MUST NOT: This phrase, or the phrase "MUST NOT", means that the definition
is an absolute prohibition of the specification due to legal issues.

« SHALL: This phrase, or the adjective "REQUIRED", means that the definition is
an absolute requirement of the specification.

« SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

« SHOULD: This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

+ SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with
this label.

* MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item.

An implementation, which does not include a particular option, SHALL be prepared
to interoperate with another implementation, which does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which does
include a particular option, SHALL be prepared to interoperate with another implemen-
tation, which does not include the option (except, of course, for the feature the option
provides).

AUTSSAR

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic Soft-
ware Module. Requirements of the same kind within each chapter are grouped under
the following headlines (where applicable):

Functional Requirements:
+ Configuration (which elements of the module need to be configurable)
* Initialization

» Normal Operation

Shutdown Operation
+ Fault Operation
Non-Functional Requirements:
» Timing Requirements
» Resource Usage

Usability

Output for other WPs (e.g. Description Templates, Tooling,...)

AUTSSAR

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to this document

that are not included in the [1, AUTOSAR Glossary].

Abbreviation / Acronym: Description:

(Logical) Block Continuous area of memory that can be individually addressed by the module
user (i.e. for read / write / erase / compare operations). The block size is
statically configurable (pre-compile time).

Page Smallest amount of memory that can be written in one pass.

Sector Smallest amount of memory that can be erased in one pass.

FEE Flash EEPROM Emulation

EA EEPROM Abstraction Layer

Memlf Memory Abstraction Interface

Mem Memory Driver

MemAcc Memory Access module

BndM Bulk non-volatile data Manager

OTA client Over The Air software update client

Sector Batch Combination of multiple consecutive sectors of the same size

Sub Address Area Combination of multiple non-contiguous sectors of the same size; used by Mem
Acc

Address Area Combination of multiple Sub Address Area

MCU Microcontroller unit

MPU Microprocessor unit

AP AUTOSAR Adaptive Platform

CP AUTOSAR Classic Platform

Table 3.1: Acronyms and abbreviations used in the scope of this Document

As this is a document from professionals for professionals, all other terms are expected

to be known.

AUTSSAR

4 Functional Overview

4.1 Memory Access Module

The Memory Access (MemAcc) Module shall abstract any hardware dependency to
the upper layer module which makes the memory access completely technology inde-
pendent.

By abstracting the memory mapping in the Memory Access Module, the upper layer
module doesn’t need to know the physical segmentation of the underlying memory
technology because the Memory Access module provides a contiguous logical memory
area for the upper layer module.

The Memory Access Module shall handle all hardware independent functionality, such
as iteration over multiple flash pages to program large memory areas. Apart from that
it shall provide access coordination of different upper layer modules like NvM, BndM or
OTA client compenent and the synchronization of the hardware access.

4.2 Memory Driver

The Memory Driver (Mem) shall provide a memory device agnostic interface to support
all kinds of memory devices like flash, EEPROM, phase change memory (PCM), RAM,
etc.

It supports basic services for reading, writing, and erasing of memory devices based
on the physical segmentation.

In contrast to the FLS and EEP Driver, the Memory Driver works on physical addresses
and supports data and code memory access.

4.3 EEPROM Abstraction Layer

The EEPROM Abstraction Layer (EA) shall extend the EEPROM driver such that it
provides upper layer modules with a virtual segmentation on a linear address space
and a "virtually limitless" number of erase / write cycles. Apart from that it shall provide
the same functionality as an EEPROM driver.

4.4 Flash EEPROM Emulation

The Flash EEPROM Emulation (FEE) shall emulate the behavior of the EEPROM Ab-
straction Layer on flash memory technology. Thus it shall have the same functional
scope and API as the EEPROM Abstraction Layer and allow for a similar configuration
based on that of the underlying flash driver and flash device.

AUTSSAR

4.5 Memory Abstraction Interface

The Memory Abstraction Interface (Memlf) shall abstract from the number of underlying
FEE or EA modules and provide upper layer modules with a virtual segmentation on a
uniform linear address space.

AUTSSAR

5 Requirements Specification

5.1 Functional Requirements

5.1.1 Memory Abstraction Modules

5.1.1.1 Configuration

[SRS_MemHwAb_14057] MemAcc module shall allow the configuration of the
non-contiguous physical memory areas of different memory devices to a logical
address area |

MemAcc module shall allow the configuration of non-contiguous physical

memory areas of different memory devices to a logical address area.

The configuration parameters shall be used by the configuration tool to

generate the memory areas allocated to each upper layer module.

The following constraints shall be considered:

1. An address area can only be assigned to one upper layer module

B A 2. Address areas can span multiple memory devices

3. Start address and length of memory access requests need to be aligned to
the according physical memory segmentation

4. Within a sub-address area, only one sector size is allowed

5. Only one job per address area is allowed
1. Encapsulate hardware dependencies from upper layer modules

N

. Simplify the memory acess by providing a logical address space
Rationale:

w

. Enable merging non-contiguous physical address areas to a contiguous
logical memory area

N

. Enable merging of memory areas from different memory devices

1. Combination of internal and external memory devices to one address area
for the OTA software update use case. The combination of the different
physical areas to one logical address area simplifies the OTA client

implementation.
Use Case: P

2. The OTA software update client use case may need one address area for
active software and one address area for inactive software.

3. BndM with non-contiguous physical memory.

Dependencies: | —

Supporting -
Material:

AUTOSSAR Requirements on Memory Hardware Abstraction

Layer
AUTOSAR CP R25-11

Physical Logical

Sector
Batch

—

Sector
Batch

—

Sub Address
Area

Sub Address
Area Address
Area

Sub Address
Area

Figure 5.1: Overview of Address Translation/Mapping

[SRS_MemHwAb_14034] MemAcc module shall allow the configuration of the
priority for different logical address areas |

MemAcc module shall allow the configuration of the priority for different logical
address areas.

IS S This configuration parameter shall be used by the configuration tool to generate
the assigned priority for each upper layer module (address area).
1. Prioritization of writing crash data while OTA update running in the
background.

Rationale: 2. Typically, code- and data flash share the same flash controller, therefore the
write access of different upper layer modules or different CPUs needs to be
prioritized/synchronized.

1. Shared data flash access of BNDM and FEE.
Use Case: 2. OTA software update in combination with FEE and shared hardware
’ resources between code and data flash
3. FEE and HSM with shared data flash

Dependencies: | —

Supporting -

Material:

]
14 of 35 Document ID 116: AUTOSAR_CP_RS MemoryHWADbstractionLayer

AUTSSAR

[SRS_MemHwAb_14035] MemAcc module shall support variant mapping [

Description: MemAcc_: module shall support_ v_a_nqnt mapping of two physical address areas
to one virtual address area at initialization time.
For OTA software update use cases with an active and inactive memory area,
the memory access from the OTA software update client shall always work with

Rationale: the same address area. Therefore, a variant mapping of two physical memory
areas is necessary to one logical address area is needed. The variant selection
shall be done at startup time.

Use Case: OTA software update use case with active/inactive memory areas.

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14036] Mem driver shall be statically configurable |

The Mem driver shall allow the configuration of the physical attributes of a

Description: memory device like the memory segmentation or any memory device
technology specific attributes.

Rationale: Basic configuration

Use Case: Physical segmentation needs to be considered by upper layer modules to align

se Lase. memory access requests.

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14001] The FEE and EA modules shall allow the configuration
of the alignment of the start and end addresses of logical blocks [

The FEE and EA modules shall allow the configuration of the alignment of the
start and end addresses of logical blocks.

IS This configuration parameter shall be used by the configuration tool to generate
the block numbers according to the block start addresses.
1) Ease handling of blocks inside the FEE and EA modules by aligning logical
Rationale: blocks to the underlying physical memory technology.

2) Allow for FEE and EA modules to calculate block start addresses instead of
requiring a lookup table to map logical to physical addresses.

\Y

AUTSSAR

A

1) The Freescale Star12 has an internal EEPROM with 4 byte sector and 2 byte
page size. By aligning the block start and end addresses to 4 byte boundaries
the handling of blocks can be simplified since read-modify-write behavior is no
longer needed.

2) Example: The address alignment is set to 4 (bytes). The first logical block
gets the block number 1, its start address is 0 (a device specific base address
is added by the underlying memory driver). The block size is 22 bytes, so it
takes up 6 4-byte "pages". The next logical block should then get not the
number 2 but the number 7, thus allowing the memory abstraction module to
deduce that its start address is 24 ((block number -1) * page size).

Use Case:

Dependencies: | —

Supporting -
Material:

]

[SRS_MemHwAb_14002] The FEE and EA modules shall allow the configuration
of a required number of write cycles for each logical block |

The FEE and EA modules shall allow the configuration of a required number of

LS L write cycles for each logical block.
Rationale: Abstract from hardware properties of underlying physical devices.

An external flash device is specified for 10.000 erase cycles per erase unit. A
Use Case: logical block is configured that requires 50.000 erase cycles.

The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies: | [SRS_MemHwAb_14012] Spreading of write access

Supporting -
Material:

]

[SRS_MemHwAb_14026] The block numbers 0x0000 and OxFFFF shall not be
used |

Description: The block numbers 0x0000 and OxFFFF shall not be used by the memory
P) abstraction module / generated by the configuration tool.
Rationale: These numbers can not be distinguished from the erased value of a flash or
. EEPROM device.

The implementation stores the block number in non-volatile memory e.g. to

Use Case: mark the start or end of a logical block. When these numbers would be used,

se Lase: that marker could not be found / distinguished from an empty EEPROM or flash

memory.

Dependencies: | —

Supporting -

Material:

AUTSSAR

5.1.1.2 Initialization

[SRS_MemHwAb_14037] MemAcc module and Mem driver shall provide an inter-

face for initialization [

MemAcc module and Mem driver shall provide an interface for initialization of
Description: all states and all global variables of the module.

Before initialization, MemAcc module and Mem driver are inactive.
Rationale: Basic functionality
Use Case: ECU initialization.
Dependencies: | —
Supporting -
Material:

5.1.1.3 Normal Operation

[SRS_MemHwAb_14038] MemAcc module and Mem driver shall provide asyn-
chronous memory access functions |

o MemAcc module and Mem driver shall provide asynchronous functions for
Description: ;)
accessing memory devices.
Rationale: Basic functionality
Use Case: Memory access functions must be non-blocking since the upper layer modules
se Lase: expect an asynchronous interface.
Dependencies: | —
Supporting -
Material:

]

[SRS_MemHwAb_14039] MemAcc module and Mem driver shall support optional

services |
MemAcc module and Mem driver shall provide measures to make Mem driver
Description: services optional and indicate to the upper layer module that a specific service
is not available.
Rationale: The erase service is not needed for all memory device technologies, e.g.,
atiohaie: phase change memory (PCM).
1. Memory device technologies which don’t need an erase service
Use Case:)
2. Read-only Mem drivers
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_MemHwADb_14040] MemAcc module and Mem driver shall provide a syn-
chronous status function |

s MemAcc module and Mem driver shall provide a synchronous function which

Description:))
returns the job processing status.

Rationale: Provide memory job processing status to the upper layer module.
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_MemHwAb_14041] MemAcc module shall provide a job notification mech-
anism for the upper layer modules |

Description: MemAcc module and Mem driver shall provide a notification mechanism to
ption: notify the upper layer module about the completion of a memory job request.

Rationale: Provide memory job processing status to the upper layer module.

Use Case: Redt_Jpe r.untlme over_head for upper layer modules by providing a job

nontification mechanism.

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14042] MemAcc module shall support multiple Mem drivers for
different types of memory |

Description: MemAcc module shall support multiple memory drivers for different types of
p ’ memory (internal/external program flash, data flash, RAM, etc).
Rationale: Different memory device technologies require different memory driver
CHENLIE implementations
1. OTA software requires code memory access as well as data memory access
Use Case: with different memory drivers
2. Usage of internal and external memory for OTA software updates
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_MemHwAb_14043] Mem driver and shall support multiple instances of the
same memory device |

Description: Mem driver shall support multiple instances of the same memory device.

Rationale: Memory instance handling enables the usage of the same driver for multiple
ationale: memory devices of the same type.

Use Case: The OTA software update use case requires multiple memory devices of the
se Lase. same type to expand the memory resources.

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14044] MemAcc module shall manage the memory job re-
quests from different upper layer modules |

MemAcc module shall manage the memory job requests from different upper
layer modules.
The MemAcc job management includes
1. Splitting of access request according to the physical memory segmentation
2. Processing of parallel job requests of distinct memory sub address areas
s from different upper layer modules
Description:
3. Synchronization of conflicting hardware access requests
4. Prioritization of conflicting memory job requests from different upper layer
modules
5. Cancellation of job requests based on the physical memory segmentation,
i.e. flash page/sector
Rationale: The MemAcc job management reduces the impact on upper layer modules and
ationale: simplifies the implementation of the Mem drivers.
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_MemHwAb_14045] MemAcc module and Mem driver shall provide mea-
sures for dynamic driver activation |

Description:

The Mem driver shall provide measures for dynamic driver activation.

Rationale:

For some safety use-cases, it is undesirable that the Mem driver is available in
an executable form because the Mem driver might be accidently called and
overwrites the applications memory. Therefore, the Mem driver needs to be
dynamically downloaded to RAM or stored in encrypted form and just be
decrypted in RAM as needed.

Use Case:

Safety use cases to prevent accidental overwriting of memory areas.

\Y

AUTSSAR

Dependencies:

Supporting
Material:

]

[SRS_MemHwAb_14046] MemAcc module and Mem driver shall provide support
for 64-Bit address range |

s MemAcc module and Mem driver shall provide the support for 64-Bit address
Description:
range.
Rationale: 64-Bit address range is required to access more than 4GBytes memory.
Even though the typical CP ECUs don’t need to address more than 4GBytes,
Use Case: for the OTA software update use case also CP MCUs need to be able to handle
more than 4GBytes if the memory is shared with a POSIX/AP MPU.
Dependencies: | —
Supporting -
Material:

]

[SRS_MemHwAb_14047] MemAcc module shall provide optional support for the
initialization and main function triggering of memory drivers |

Description: MemAcc module shall provide optional support for the initialization and main
ption: function triggering of Mem drivers.

Since not all Mem drivers might be available all the time for some safety

Rationale: usecases, the Mem drivers cannot directly be initialized/triggered by ECUM/
SCHM.
For some safety use-cases, it is not desired that the Mem driver is available in
an executable form as the memory driver might be accidently called and

Use Case: overwrites the applications memory. In this case, the Mem driver needs to be
either downloaded dynamically to RAM or stored in encrypted form and just be
decrypted in RAM as needed.

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14048] Mem driver shall operate on physical segmentation/
physical addresses |

Description:

The Mem driver shall only operate on the physical segmentation/physical
addresses defined by the memory device technology i.e., pages and sectors for
flash memory. Operations on larger areas than the physical segmentation shall
be handled by MemAcc module.

\Y

AUTSSAR

A
Rationale: Simplify Mem driver implementation.
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_MemHwAb_14049] Mem driver shall use a standard binary format for dy-
namic driver activation |

Description: Thg Mgm driver shall use a standard binary format for dynamic driver
activation.
Since the MemAcc module shall not be hardware dependent, the Mem driver

Rationale: shall follow a standardized binary format so MemAcc can perform consistency

’ checks for the activation of Mem drivers and provide a standardized method to

call the Mem driver service functions.

Use Case: Safety use cases to prevent accidental overwriting of memory areas.

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14050] Mem driver shall handle only one job at one time |

Description: The Mem driver shall handle only one job (read, write or erase) at one time.
ption: Job requests during a running job shall be rejected.

Rationale: Different operations like write and erase can’t be handled at the same time and
ationale: the results are dependent on the execution order.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_MemHwAb_14051] Mem driver shall not buffer data |

Descrintion: The Mem driver shall not buffer data. The Mem driver services shall use the
P ’ data buffers that are passed by the MemAcc module.

Rationale: Avoid copy unnecessary copy operations.

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_MemHwAb_14052] Mem driver multi-core type mapping |

Description: The Mem driver shall support multi-core type Il requirements
To provide the most flexibility and to enable usage of hardware protection

Rationale: mechanisms (safety use cases), Mem driver shall support multi-core type Il
requirements.

Use Case: Multi-core and safety use cases

Dependencies: | —

Supporting -

Material:

]

[SRS_MemHwAb_14053] Mem driver shall provide a function to a system ECC
handle to propagate ECC errors |

Mem driver shall provide a function to a system ECC handle to propagate
non-correctable memory ECC errors to the Mem drive.

Dealing with ECC errors needs to be done on a system level as the error
reaction needs to be handled on system level as well.

Typically, the Mem driver cannot detect an ECC error, thus cannot indicate an
error to the upper layer module. Calling the Mem driver propagate ECC error
Use Case: API from a system ECC handler provides a way to propagate an ECC error

using the normal fault handling mechanism to the Mem upper layer modules.

Description:

Rationale:

Dependencies: | —

Supporting -
Material:

]

[SRS_MemHwAb_14054] MemAcc module shall provide a function to retrieve
memory segmentation information |

Description: MemAcq module shall provide a function to retrieve memory segment
information
Upper layer modules need to know segmentation of physical memory to align

Rationale: MemAcc access requests. No reference in the configuration required by upper
layer modules.

Use Case: OTA software update client with non-uniform sector layout

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_MemHwAb_14055] MemAcc module shall provide a lock function to enable/
disable the direct memory access from application |

MemAcc module shall provide lock function to enable/disable the direct

Description: N
memory access from application.
Lock functionality is required to avoid the parallel access of the same memory
Rationale: through MemAcc (i.e., from FEE, BNDM & OTA client etc.) and directly from
application.
BNDM use case writes the memory through MemAcc and reads the data
Use Case: ;
directly.
Dependencies: | —
Supporting -
Material:

[SRS_MemHwAb_14056]

MemAcc module and Mem driver shall provide a

generic function to access the hardware specific functionalities |

D Lo MemAcc module shall provide a generic function to access the hardware
escription: . . "
specific functionalities.
Rationale: The generic function enables MemAcc to be hardware independent.
Use Case: Hardware specific fault handling and additional hardware features not
se Lase. addressed by the standard MemAcc APls.

Dependencies: | —

Supporting -

Material:

[SRS_MemHwAb_14005] The FEE and EA modules shall provide upper layer
modules with a virtual 32bit address space |

The Flash EEPROM Emulation (FEE) and EEPROM Abstraction (EA) shall
provide upper layer modules with a virtual 32bit address space.
These 32 bit virtual (logical) addresses shall consist of a 16 bit logical block
Description: identifier and a 16 bit address offset within this logical block. Thus the memory
abstraction layer shall support a (theoretical) number of 65534 logical
(distinguishable) blocks per underlying physical device. Each block can have a
(theoretical) size of 64 KBytes.
. Abstract from hardware properties that would require changing the NVRAM
Rationale: manager if the underlying devices / drivers change.
1) Support systems with a high number of small blocks
2) Support systems with a few big blocks like e.g. MMI systems (fonts, speech)
Use Case: or navigation (maps, routes).
3) Allow NVRAM manager to encode block management information (e.g.
block type) in the logical block identifier (by making it big enough)
Dependencies: | [SRS_MemHwAb_14026] Don't use certain block numbers

\Y

AUTSSAR

uses 5 pages, 2 byte
internal residue

A
Supporting Figure 5.2: Virtual vs. physical address space
Material:
Virtual address space Physical address space
Page size: 64 KBytes Page size: 8 Bytes
16 B|t Block Num_bebr Block #1 with 32 bYte
........................... uses 4 pages, no
internal residue
Block #2 with 100 byte
uses 13 pages, 4 byte
4 internal residue
16 Bit Block Offset]) Block 1 : 38 Bytes Block #3 with 38 byte

Block 2

38 Bytes

Block-3

Note: Sizes not shown to scale
Figure 5.2: Virtual vs. physical address space

[SRS_MemHwAb_14006] The start address for a block erase or write operation
shall always be aligned to the virtual 64K boundary |

The start address for a block erase or write operation shall always be aligned to
Description: the virtual 64K boundary.
p ’ In other words: The offset shall be ignored for block erase / write requests,
every block erase / write request starts at address offset zero.
Allow optimized erase / write operations in underlying emulation modules and
Rationale: drivers if virtual 64K boundaries are mapped to physical sector / page
boundaries.
Use Case: Optimization of FEE and EA, simplify configuration and implementation.
Dependencies: | —
Supporting Just to make this clear: you can not erase or write only parts of the configured
Material: block, it’s either all or nothing.

AUTSSAR

[SRS_MemHwAb_14007] The start address and length for reading a block shall
not be limited to a certain alignment |

The start address and length for reading a block shall not be limited to a certain
Description: alignment, i.e. it shall be possible to read one byte starting from any memory
address.
Rationale: Byte-wise reading of flash / EEPROM.
Use Case: CRC calculation in the NVRAM manager.
Dependencies: | —
This allows reading a logical block in several passes, e.g. needed for CRC
calculation.
Note 1: If there are certain hardware properties that require an alignment of the
Supporting read address, e.g. only 32bit aligned read possible, this shall be handled by the
Material: underlying driver.
Note 2: This requirement shall allow the NVRAM manager to do a byte-wise
read access on a logical block, it does not require the NVRAM manager to do
SO.

]

[SRS_MemHwAb_14009] The FEE and EA modules shall provide a conversion
between the logical linear addresses and the physical memory addresses |

The FEE and EA modules shall provide an unambiguous conversion between
Description: the logical linear addresses and the addresses used to access the underlying
flash memory or EEPROM.
Rationale: The physical device and the start address of a logical block shall be derived
ationale: from the logical block identifier.
Use Case: Trar)sparent mapping of logical blocks to several physical non-volatile memory
devices.
Dependencies: | —
s ti The memory addresses obtained by that conversion are address offsets to a
Mu;;pc_)rlfng device specific base address as described in the flash and EEPROM driver
aterial: specifications.

]

[SRS_MemHwAb_14010] The FEE and EA modules shall provide a write service
that operates only on complete configured logical blocks |

The FEE and EA modules shall provide a write service that operates only on

gl complete configured logical blocks.
Rationale: Decouple the upper layer modules from driver internals.
The upper layer module shall only make one call to the Memory Abstraction
Use Case: Interface to write a logical block to non-volatile memory. If there are several
se Lase: passes needed to write all of the addressed memory area, this shall be handled
internally in the FEE or EA modules or the underlying device drivers.
Dependencies: | —

\Y

AUTSSAR

Supporting
Material:

]

[SRS_MemHwAb_14029] The FEE and EA modules shall provide a read service
that allows reading all or part of a logical block |

e i The FEE and EA modules shall provide a read service that allows reading all or
ption: part of a logical block.
Rationale: Allow for reading of NV memory.
Use Case: Read functionality of the NVRAM manager.
Dependencies: | —
Supporting -
Material:
]

[SRS_MemHwAb_14031] The FEE and EA modules shall provide a service that
allows canceling an ongoing asynchronous operation |

The FEE and EA modules shall provide a service that allows canceling an
Description: ongoing asynchronous operation like e.g. a read, write, erase or compare
operation.
Rationale: Needed for writing "immediate" data.
Use Case: Immediate data (crash data) has to be written, while a read operation is
se Lase: currently in process.
Dependencies: | [SRS_MemHwAb_14013] Writing of "immediate" data must not be delayed
Supporting -
Material:

[SRS_MemHwAb_14028] The FEE and EA modules shall provide a service to
invalidate a logical block [

The FEE and EA modules shall provide a service to invalidate a logical block.
This shall be done by setting the module internal block management data

Description: appropriately.
Note: Erasing the contents of the physical memory is an implementation option
but not required.

Rationale: To enable a data block to be marked as invalid by the upper layer.
Allow an application to mark data as outdated or no longer valid when

Use Case: physically erasing the data is not possible or not desirable (e.g. on flash
memory technology).

Dependencies: | —

\Y

AUTSSAR

Supporting -
Material:

]
[SRS_MemHwAb_14012] Spreading of write access |

If the configured number of write cycles for a logical block exceeds the number
provided by the underlying physical device, the FEE or EA module has to
provide sufficient mechanisms to spread the write requests for that logical block
over a bigger memory area.

Description:

Allow for "unlimited" number of write cycles while simultaneously preventing
Rationale: memory cells from being erased more often than specified by the hardware
vendor.

An external flash device is specified for 10.000 erase cycles per erase unit. A
logical block is configured that requires 50.000 write cycles.

The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies: | [SRS_MemHwAb_14002] Configuration of number of required write cycles

Use Case:

Supporting This requirement replaces [BSW032] Spreading of write access and [SRS_
Material: LIBS_08530] NVRAM block type - walking from MemSvc SRS.

]

[SRS_MemHwAb_14013] Writing of immediate data shall not be delayed by in-
ternal management operations nor by erasing the memory area to be written to

[

Writing of immediate data shall not be delayed by internal management
operations nor by erasing the memory area to be written to.

If internal management operations are under way when immediate data has to
Description: be written, they have to be interrupted until the data has been written to
non-volatile memory.

There has to be a pre-erased memory area for writing of immediate data
available at all times.

Immediate data has to be written immediately (that’s what the name implies)
that is as fast as the underlying hardware allows.

Rationale:

The FEE is reorganizing the blocks currently stored in flash when crash data
has to be written.

If an ongoing hardware access, e.g. an erase operation, can not be aborted its
Dependencies: | runtime has to be taken into account as the maximum allowable delay for
immediate write operations.

Supporting -

Material:

Use Case:

AUTSSAR

[SRS_MemHwAb_14032] The FEE and EA modules shall provide an erase service
that operates only on complete logical blocks containing immediate data |

The FEE and EA modules shall provide an erase service that operates only on

(S 17 complete logical blocks containing immediate data.
. SRS_MemHwAb_14013 requires pre-erased memory, therefore this memory
Rationale:
areas have to be somehow erasable.
Use Case: -

Dependencies: | [SRS_MemHwAb_14013] Writing of "immediate" data must not be delayed

* This service should only be called by a special application like e.g.

diagnostics.
SUPPC_” ting * A possible implementation would be to invalidate the block containing
Material: immediate data and subsequently force a re-organization of blocks. During

this re-organization invalidated blocks shall not be copied to the new memory
location, thus the memory area for the immediate data will be (left) erased.

5.1.1.4 Shutdown Operation

The modules of the Memory Abstraction Layer don’t need any shutdown capabilities
(also there are no shutdown capabilities in the flash or EEPROM driver).

5.1.1.5 Fault Operation

[SRS_MemHwAb_14014] The FEE and EA modules shall detect possible data
inconsistencies due to aborted / interrupted write operations |

The FEE and EA modules shall detect possible data inconsistencies due to

Description: aborted / interrupted write operations.

Rationale: The "user" shall not work on inconsistent data therefore it has to be recognized.

1) A write operation is interrupted by a loss of power, after power-on-reset the
possible inconsistency of data shall be detected upon the next read access to
Use Case: the affected memory area.

2) A write operation is cancelled by the upper layer. Upon next read access to
the affected memory area the possible data inconsistency shall be detected.

Dependencies: | —

Depending on the implementation, the physical device and the point in the write
Supporting operation at which the interrupt occurs the FEE or EA module might be able to
Material: determine that the operation has failed but not which was the block that should

have been written.

AUTSSAR

[SRS_MemHwAb_14015] The FEE and EA modules shall report possible data
inconsistencies |

The FEE and EA modules shall report possible data inconsistencies due to
aborted / interrupted write operations to the DEM exactly once. After that the
inconsistent memory area has to be marked such that no further errors are
reported for that block.

Rationale: Avoid "endless loops" in error reporting on every block read operation.

A write operation is interrupted or cancelled, the inconsistency is detected and
reported upon the next read access to the affected memory area.

Dependencies: | [SRS_MemHwAb_14014] Detection of data inconsistencies

Depending on the implementation and the point in the write operation at which
the interrupt occurs the FEE or EA module might be able to determine that the
Supporting operation has failed but not which was the block that should have been written.
Material: In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application, the
block has to be explicitly invalidated before it is overwritten.

Description:

Use Case:

]

[SRS_MemHwAb_14016] The FEE and EA modules shall not return inconsistent
data to the caller |

Description: The FEE and EA modules shall not return inconsistent data to the caller.
Rationale: The "user" shall not work on inconsistent data.

A write operation is interrupted or cancelled, the data of that block thus is
Use Case: inconsistent. This inconsistency is detected on the next read access to that

block, the data shall then not be returned to the caller.
Dependencies: | [SRS_MemHwAb_14014] Detection of data inconsistencies

Depending on the implementation and the point in the write operation at which
the interrupt occurs the FEE or EA module might be able to determine that the
operation has failed but not which was the block that should have been written.
Supporting In this case a read operation on that block might return old (outdated) data to
Material: the caller if such data is available. If this is not desired from the application, the
block has to be explicitly invalidated before it is overwritten.

Providing default data for an inconsistent block is the job of the NVRAM
manager.

5.1.2 Memory Abstraction Interface

The following requirements have been taken over from the SPAL SRS on Memory Ab-
straction and have been adapted (in wording only) to the architectural concept shown
in Figure 1.1.

AUTSSAR

5.1.2.1 General

[SRS_MemHwAb_14019] The Memory Abstraction Interface shall provide uni-
form access to the API services of the underlying memory abstraction modules

[

The Memory Abstraction Interface shall provide uniform access to those API
services of the underlying memory abstraction modules that are required for
usage within the NVRAM manager.

Further comments:

The initialization routines and the job processing functions are not mapped by
the memory abstraction interface.

Rationale: Allow usage of memory abstraction modules by one uniform interface.
Allow the upper layer module access to internal and external memory devices

Description:

Use Case: without any difference.
Dependencies: | —
Supporting This requirement shall replace [BSW12172].
Material:
|

[SRS_MemHwAb_14020] The Memory Abstraction Interface shall allow the se-
lection of an underlying memory abstraction module by using a device index

[

Description: The Memory Abstraction Interface shall allow the selection of an underlying
p ’ memory abstraction module (FEE or EA module) by using a device index.
Rationale: Requirement of the NVRAM Manager
Use Case: The NVRAM Manager uses a device index for selecting the appropriate
se Lase: memory abstraction module.
Dependencies: | —
Supporting SWS NVRAM Manager
Material: This requirement shall replace [BSW12173].

5.1.2.2 Configuration

[SRS_MemHwAb_14021] The Memory Abstraction Interface shall allow the pre-
compile time configuration of the number of underlying memory abstraction
modules |

PosCIiDlion: The Memory Abstraction Interface shall allow the pre-compile time
ption: configuration of the number of underlying memory abstraction modules.
Rationale: Flexibility

Y%

AUTSSAR

A
Use Case: One ECU only uses internal EEPROM (thus needing one EA module), another
se Lase: ECU uses both internal plus external EEPROM (thus needing two EA modules).
Dependencies: | —
Supporting WP Architecture
Material: This requirement shall replace [BSW12174].
]

5.1.2.3 Normal Operation

[SRS_MemHwAb_14022] The Memory Abstraction Interface shall preserve the
functionality of the underlying memory abstraction module |

The Memory Abstraction Interface shall preserve the functionality of the
Description: underlying memory abstraction module. It shall not provide additional
functionality.
Rationale: Simplicity, efficiency
The memory abstraction modules abstract from all hardware properties, the
Use Case: Memory Abstraction Interface does not need to add anything (it only is needed
to access more than one memory abstraction module).
Dependencies: | —
Supporting This requirement shall replace [BSW12175].
Material:

5.1.2.4 Fault Operation

[SRS_MemHwAb_14023] The Memory Abstraction Interface shall only check
those parameters that are used within the interface itself |

The Memory Abstraction Interface shall only check those parameters that are

Description: used within the interface itself and that are not passed to the underlying
memory abstraction modules.

Rationale: Simplicity, efficiency: avoid double checking of parameters.

Use Case: The device index may be checked (depending on the setting of the

se Lase: development error detection switch). The block address shall not be checked.

Dependencies: | —

Supporting This requirement shall replace [BSW12176].

Material:

AUTSSAR

5.1.3 Onboard Device Abstraction

For the Onboard Device Abstraction the same requirements like for the Memory Hard-
ware Abstraction apply. One member of the Onboard Device Abstraction is the Watch-

dog Interface.

5.2 Non-Functional Requirements (Qualities)

5.2.1

Memory Abstraction Modules

[SRS_MemHwAb_14017] The EA module shall extend the functional scope of an
EEPROM driver |

The EEPROM Abstraction Layer (EA) shall extend the functional scope of an

Description: EEPROM driver. In addition to the properties of an EEPROM driver, the EA

ption: shall work on a virtual 32bit address space and it shall abstract completely from

the limitation of erase / write cycles given by the underlying device.

Rationale: Uniform handling of all EEPROM devices.

Use Case: The NVRAM manager shall not need to be changed if the underlying EEPROM

se Lase: drivers and devices change.

Dependencies: | —

Supporting AUTOSAR SRS EEPROM driver

Material:

]

[SRS_MemHwAb_14018] The FEE module shall extend the functional scope of
an internal flash driver |

The Flash EEPROM Emulation (FEE) shall extend the functional scope of an

Description: internal flash driver. It shall have the same functional scope and APl as an EA
module.

Rationale: Uniform handling of all flash devices.

Use Case: The NVRAM manager shall not need to be changed if the underlying flash

se Lase: drivers and devices change.

Dependencies: | [SRS_MemHwAb_14017] Scope of EEPROM Abstraction Layer

Supporting AUTOSAR SRS EEPROM driver

Material: AUTOSAR SRS Flash driver

AUTSSAR

5.2.2 Memory Abstraction Interface

5.2.2.1 Timing Requirements

[SRS_MemHwAb_14024] The Memory Abstraction Interface shall preserve the
timing behavior of the underlying memory abstraction modules and their APIs |

The Memory Abstraction Interface shall preserve the timing behavior of the

Description: underlying memory abstraction modules and their APIs by 1:1 mapping of the
Memory Abstraction Interface API to the memory abstraction modules’ API

Rationale: Simplicity, efficiency
Example:

Use Case: The write service of the Memory Abstraction Interface is directly mapped to the
write service of an underlying memory abstraction module (FEE or EA).

Dependencies: | —

Supporting WP Architecture

Material: This requirement shall replace [BSW12177].

5.2.3 Onboard Device Abstraction

For the Onboard Device Abstraction the same requirements like for the Memory Hard-
ware Abstraction apply. One member of the Onboard Device Abstraction is the Watch-
dog Interface.

AUTSSAR

6 References

[1] Glossary
AUTOSAR_FO_TR_Glossary

AUTSSAR

A Change history of AUTOSAR traceable items
A.1 Traceable item history of this document according to AU-
TOSAR Release R24-11

A.1.1 Added Requirements in R25-11

none

A.1.2 Changed Requirements in R25-11

none

A.1.3 Deleted Requirements in R25-11

none

A.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

A.2.1 Added Requirements in R24-11

none

A.2.2 Changed Requirements in R24-11

none

A.2.3 Deleted Requirements in R24-11

none

	1 Scope of Document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Acronyms and abbreviations
	4 Functional Overview
	4.1 Memory Access Module
	4.2 Memory Driver
	4.3 EEPROM Abstraction Layer
	4.4 Flash EEPROM Emulation
	4.5 Memory Abstraction Interface

	5 Requirements Specification
	5.1 Functional Requirements
	5.1.1 Memory Abstraction Modules
	5.1.1.1 Configuration
	5.1.1.2 Initialization
	5.1.1.3 Normal Operation
	5.1.1.4 Shutdown Operation
	5.1.1.5 Fault Operation

	5.1.2 Memory Abstraction Interface
	5.1.2.1 General
	5.1.2.2 Configuration
	5.1.2.3 Normal Operation
	5.1.2.4 Fault Operation

	5.1.3 Onboard Device Abstraction

	5.2 Non-Functional Requirements (Qualities)
	5.2.1 Memory Abstraction Modules
	5.2.2 Memory Abstraction Interface
	5.2.2.1 Timing Requirements

	5.2.3 Onboard Device Abstraction

	6 References
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R24-11
	A.1.1 Added Requirements in R25-11
	A.1.2 Changed Requirements in R25-11
	A.1.3 Deleted Requirements in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Requirements in R24-11
	A.2.2 Changed Requirements in R24-11
	A.2.3 Deleted Requirements in R24-11

