

Document Title	Requirements on Ethernet Support in AUTOSAR
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	419

Document Status	published
Part of AUTOSAR Standard	Classic Platform
Part of Standard Release	R25-11

Document Change History			
Date	Release	Changed by	Description
2025-11-27	R25-11	AUTOSAR Release Management	No content changes
			DoIP - Trace links from AP to CP
		AUTOSAR Release Management	EthSwt - Specification is lacking of SRS requirement to access Ethernet switch internal configuration
	R24-11		Introduce independent VLAN learning
2024-11-27			EthSwt - The specification is lacking of a SRS requirement to support handling of low power mode for an Ethernet switch
=0= : : : = : : = : : -			Add EgressSchedulerAlgorithm at Ethernet driver
		Deterministic Communication with TSN Concept Part 2, Concept Part 3 - frame preemption is missing in the EthSwt datamodel	
		Deterministic Communication with TSN - Concept Part 8	
2023-11-23	R23-11	AUTOSAR Release Management	 Introduction of Secure SOME/IP-ACL Introduction of Deterministic Communication with TSN: Parts 1 - 4 and 6 (DRAFT)

		\triangle	
2022-11-24	R22-11	AUTOSAR Release Management	Introduction of CAN XL
2021-11-25	R21-11	AUTOSAR Release	Validation of 10BASE-T1S
		Management	Validation of Ethernet Wake on data line
		AUTOSAR	Introduction of 10BASE-T1S (DRAFT)
2020-11-30	R20-11	Release Management	Introduction of Ethernet Wake on data line (DRAFT)
		AUTOSAR	Introduction of Ipsec
2019-11-28	R19-11	Release Management	Changed Document Status from Final to published
2018-10-31	4.4.0	AUTOSAR Release Management	Introduction of Transport Layer Security - TLS (DRAFT)
2017-12-08	4.3.1	AUTOSAR Release Management	Editorial changes
		AUTOSAR	Improvements of switch related requirements
2016-11-30	4.3.0	Release Management	Introduction of testing and diagnostics features
			Editorial changes
2015-07-31	4.2.2	AUTOSAR Release Management	Editorial changes
			Introduction of IPv6 for in-vehicle communication
2014-10-31	AUTOSAR 4.2.1 Release Management		Support for Global Time Synchronization over Ethernet
		Support for Switch Control/Configuration, Semi-Static Auto-Configuration	
			Tcplp generic upper layer support (CDD)
		AUTOSAR	Added support for ISO 13400-2
2013-10-31	4.1.2	Release	Updated Document Traceability
		Management	Editorial changes

		Introduced IPv6 Protocol, VLAN	
	2013-03-15 4.1.1	AUTOSAR Administration	Added support for SWS_Service_Discovery
2013-03-15			Added support for SWS_TCPIP
			Added support for SWS_DoIP
			Editorial changes
2013-03-15	4.1.1	AUTOSAR Administration	New traceability mechanism
2010-09-30	3.1.5	AUTOSAR Administration	Initial Release

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Table of Contents

1	Scope of Document	/
2	Conventions to be used	8
3	Acronyms and abbreviations	9
4	Requirements Specification	10
	4.1 Functional Overview	10
	4.1.1 TCP/IP Protocol Stack (TCPIP)	10
	4.1.2 SWS Socket Adaptor (SoAd)	10
	4.1.3 SWS Diagnostics over IP (DoIP)	10
	4.1.4 SWS Ethernet Interface (EthIf)	10
	4.1.5 SWS Ethernet Driver (Eth)	10
	4.1.6 SWS Ethernet Transceiver Driver (EthTrcv)	11
	4.1.7 SWS Ethernet Driver (WEth)	11
	4.1.8 SWS Ethernet Switch Driver (EthSwt)	11
	4.1.9 SWS Ethernet State Manager (EthSM)	11
	4.1.10 SWS UDP Network Management (UdpNm)	11
	4.1.11 SWS Service Discovery (Sd)	11
	4.2 General Requirements	12
	4.2.1 Configuration	12
	4.2.2 Operation	12
	4.2.3 AUTOSAR Interfaces	13
	4.3 Functional Requirements	14
	4.3.1 SWS TCP/IP Protocol Stack	14
	4.3.1.1 TCP/IP General Requirements	14
	4.3.1.2 TCP/IP Internet Protocol	16
	4.3.1.3 TCP/IP Sub Module: IPv4	16
	4.3.1.4 TCP/IP Sub Module: IPv6	17
	4.3.1.5 TCP/IP ICMP	21
	4.3.1.6 TCP/IP Sub Module: ICMPv4	22
	4.3.1.7 TCP/IP Sub Module: ICMPv6	22
	4.3.1.8 TCP/IP TCP	22
	4.3.1.9 TCP/IP TLS	24
	4.3.1.10 TCP/IP UDP	26
	4.3.1.11 TCP/IP DHCP	26
	4.3.1.12 TCP/IP Sub-Module: DHCPv4	27
	4.3.1.13 TCP/IP Sub-Module: DHCPv6	29
	4.3.1.14 TCP/IP IPsec	30
	4.4 SWS Socket Adaptor (SoAd)	31
	4.5 SWS Ethernet Interface (Ethlf)	37
	4.6 SWS Ethernet Driver (Eth)	42

Requirements on Ethernet Support in AUTOSAR AUTOSAR CP R25-11

	4.7 SWS Wireless Ethernet Driver (WEth)	48
	4.8 SWS Ethernet Transceiver Driver (EthTrcv)	50
	4.9 SWS Ethernet Switch Driver (EthSwt)	54
	4.10SWS Ethernet State Manager (EthSM)	60
	4.11SWS UDP Network Management (UdpNm)	61
	4.12SWS Service Discovery (Sd)	62
	4.13Non-Functional Requirements (Qualities)	64
	4.13.1 SWS TCP/IP Protocol Stack	64
	4.13.2 SWS Socket Adaptor (SoAd)	64
	4.13.3 SWS Ethernet Interface (EthIf)	65
	4.13.4 SWS Ethernet Driver (Eth)	65
	4.13.5 SWS Wireless Ethernet Driver (WEth)	66
	4.13.6 SWS Ethernet Transceiver Driver (EthTrcv)	66
	4.13.7 SWS Ethernet State Manager (EthSM)	67
	4.13.8 SWS UDP Network Management (UdpNm)	67
5	References	68
J	Tielelelelices	00
A	Change history of AUTOSAR traceable items	71
	A.1 Traceable item history of this document according to AUTOSAR Release	
	R25-11	71
	A.1.1 Added Requirements in R25-11	71
	A.1.2 Changed Requirements in R25-11	71
	A.1.3 Deleted Requirements in R25-11	71
	A.2 Traceable item history of this document according to AUTOSAR Release	
	R24-11	71
	A.2.1 Added Requirements in R24-11	71
	A.2.2 Changed Requirements in R24-11	72
	A.2.3 Deleted Requirements in R24-11	72
	A.3 Traceable item history of this document according to AUTOSAR Release	
	R23-11	73
	A.3.1 Added Requirements in R23-11	73
	A.3.2 Changed Requirements in R23-11	73
	A.3.3 Deleted Requirements in R23-11	73
	A.4 Traceable item history of this document according to AUTOSAR Release	
	R22-11	74
	A.4.1 Added Requirements in R22-11	74
	A.4.2 Changed Requirements in R22-11	74
	A.4.3 Deleted Requirements in R22-11	74
	•	

1 Scope of Document

This document is intended to list the general requirements for the implementation of an AUTOSAR Ethernet communication stack by considering the following software specifications:

- 414 UDP Network Management (UdpNm)
- 415 Ethernet State Manager (EthSM)
- 416 Socket Adaptor (SoAd)
- 417 Ethernet Interface (EthIf)
- 418 Diagnostics over IP (DoIP)
- 430 Ethernert Driver (Eth)
- 431 Ethernet Transciever Driver (EthTrcv)
- 616 Service Discovery (Sd)
- 617 Tcp/lp Stack (Tcplp)
- 656 Ethernet Switch Driver (EthSwt)
- 798 Wireless Ethernet Driver (WEth)

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified in [TPS_STDT_00078], see [1, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall be used to indicate requirements, see [1, Standardization Template].

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to SRS Ethernet that are not included in the AUTOSAR Glossary [2].

Abbreviation / Acronym:	Description:
COTS	Commercial Of The Shelf
DAD	Duplicate Address Detection
DHCPv4	Dynamic Host Configuration Protocol for Internet Protocol Version 4
DHCPv6	Dynamic Host Configuration Protocol for Internet Protocol Version 6
IANA	Internet Assigned Numbers Authority
ICMPv4	Internet Control Message Protocol for Internet Protocol Version 4
ICMPv6	Internet Control Message Protocol for Internet Protocol Version 6
IETF	Internet Engineering Task Force
IPv4	Internet Protocol for Version 4
IPv6	Internet Protocol for Version 6
NDP	Neighbor Discovery Protocol
SoAd	AUTOSAR Socket Adaptor Module
TCP/IP	A family of communication protocols used in computer networks
UdpNm	AUTOSAR UDP Network Management Module

4 Requirements Specification

This chapter describes all requirements driving the work to define the Requirements on Ethernet Support in AUTOSAR.

4.1 Functional Overview

4.1.1 TCP/IP Protocol Stack (TCPIP)

The TCP/IP protocol stack (TCP/IP stack) is intended to handle layers 2 through 4 of the ISO/OSI layer model. This includes, but is not limited to protocols like IPv4, IPv6, DHCPv4, DHCPv6, ARP, NDP, TCP, UDP, ICMPv4, ICMPv6, TLS and others.

In Terms of this model the SoAd and therefore the whole AUTOSAR COM stack above represent the application at layer 7.

4.1.2 SWS Socket Adaptor (SoAd)

The SoAd is an adaptor layer, not only matching the AUTOSAR APIs to standard socket APIs [3], but also mapping PDU IDs to socket connections.

4.1.3 SWS Diagnostics over IP (DoIP)

The DoIP part of the SoAd implements the functionality required by [4].

4.1.4 SWS Ethernet Interface (Ethlf)

The Ethernet Interface provides standardized interfaces to provide the communication with the Ethernet bus system of an ECU. The APIs are independent from the specific Ethernet Controllers and Transceivers and their access through the responsible Driver layer. The Ethernet Interface is conceptually able to access one or more Ethernet Drivers and Ethernet Transceiver Drivers via one uniform interface.

4.1.5 SWS Ethernet Driver (Eth)

The Ethernet Driver offers uniform interfaces for the Ethernet Interface. The Ethernet Driver hides hardware specific details of the used Ethernet controller.

4.1.6 SWS Ethernet Transceiver Driver (EthTrcv)

The Ethernet Transceiver Driver offers uniform interfaces for the Ethernet Interface. The Ethernet Transceiver Driver hides hardware specific details of the used Ethernet transceiver.

4.1.7 SWS Ethernet Driver (WEth)

The Wireless Ethernet Driver offers uniform interfaces for the Ethernet Interface. The Wireless Ethernet Driver hides hardware specific details of the used Ethernet controller for wireless communication.

4.1.8 SWS Ethernet Switch Driver (EthSwt)

Ethernet is a switched network and switches need to be integrated into AUTOSAR-ECUs. These ECUs need to have the capability to configure Ethernet switches.

Ethernet Switch Driver provides an interface for managing and controlling a switch and its ports.

4.1.9 SWS Ethernet State Manager (EthSM)

The Ethernet State Manager offers uniform interfaces for the Communication Manager (ComM). The Ethernet State Manager hides network specific details.

4.1.10 SWS UDP Network Management (UdpNm)

The UDP Network Management offers uniform interfaces for the Network Management Interface (NmIf). The UDP Network Management hides network specific details.

4.1.11 SWS Service Discovery (Sd)

Service Discovery serves primarily to determine the operational status of a service. A service may be comprised of any combination of SW-Cs and/or BSWs in an ECU. The BswM is used to aggregate the SW-Cs and BSWs status and trigger Sd when the required combination is available. Secondly Sd can also be used as a registration protocol for publish/subscribe communication patterns. In both cases Sd can transport addressing information in addition to the registration and availability information.

4.2 General Requirements

4.2.1 Configuration

[SRS_Eth_00053] SWS shall specify configuration [

Description:	The SWS documents shall include a configuration section to allow adaption of the functionality.
Rationale:	The functionality needs to be adapted to different use-cases and environments.
Use Case:	-
Dependencies:	_
Supporting Material:	_

4.2.2 Operation

[SRS_Eth_00085] Robustness aganist the change of logical addresses [

Description:	The Ethernet-related BSW modules of the AUTOSAR communication stack shall be able to handle the change of logical addresses of remote nodes.
Rationale:	ECUs can by configured for dynamic address assignment (e.g. DHCP) hence it is possible that ECUs change their addresses
Use Case:	DoIP, V2G, SD
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00111] Robustness against unexpected communication patterns [

Description:	The Ethernet-related BSW modules shall provide configuration options to restrict the processing of frames or PDUs that don't fulfill certain expected properties.
Rationale:	This allows to define data policies and to drop all unexpected traffic, thereby reducing the processing overhead. This also limits the impact of faulty communication and the vulnerability to malicious attacks.
Use Case:	Robustness
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00112] Ethernet-related BSW modules shall report relevant runtime errors from the used protocols \lceil

Description:	The Ethernet-related BSW modules shall collect relevant runtime error information from the used protocols and report them to the Default Error Tracer module.
Rationale:	This allows error handling and monitoring of erroneous behavior.
Use Case:	Error handling and monitoring
Dependencies:	_
Supporting Material:	[5] IETF RFC 792; [6] RFC 793; [7] RFC 1122; [8] RFC 4443

4.2.3 AUTOSAR Interfaces

[SRS_Eth_00055] SoAd shall support UDP NM [

Description:	The SoAd shall offer an interface API for UDP NM to send network management messages. This interface shall mimic the API of interfaces in Autosar.
Rationale:	-
Use Case:	_
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00056] SoAd shall support XCP [

Description:	The SoAd module shall offer a data path to the AUTOSAR XCP module.
Rationale:	Exchange XCP frames between master and client
Use Case:	Calibration and Measurement
Dependencies:	_
Supporting Material:	ASAM XCP

[SRS_Eth_00058] SoAd shall support generic upper layers [

Description:	The SoAd shall offer an interface API for a generic upper layer to send and receive PDUs via socket connections, to control socket connections and to provide notification of socket connection and IP address assignment state changes.
--------------	--

Rationale:	Simplifies adding of additional upper layers
Use Case:	DoIP, V2G, DNS-SD
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00103] Tcplp shall support generic upper layers [

Description:	The TcpIp shall offer a socket-based API for a generic upper layer to send and receive data, to control sockets and to provide notification of sockets and IP address assignment state changes.
Rationale:	Simplifies adding of custom tesing module for TCP/IP protocol testing allowing a more flexible testing than only using SoAd.
Use Case:	TCP/IP Protocol Testing during development and later phases
Dependencies:	_
Supporting Material:	_

١

4.3 Functional Requirements

4.3.1 SWS TCP/IP Protocol Stack

4.3.1.1 TCP/IP General Requirements

[SRS_Eth_00054] TCPIP minimum functionality [

Description:	If DoIP is not implemented, the minimum requirements on the functionality of the TCP/IP stack shall be determined by the configuration of the Socket Adaptor.
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

ı

[SRS_Eth_00019] TCP and UDP related requirement specified in IETF RFC 1122 shall be implemented $\ \lceil$

Description:	TCP and UDP related requirements specified in IETF RFC 1122 shall be implement in the TCP/IP stack
Rationale:	_
Use Case:	IETF RFC 768, IETF RFC 793
Dependencies:	_
Supporting Material:	[7] IETF RFC 1122

1

[SRS_Eth_00129] The TCPIP shall support access to measurement counter values $\ \lceil$

Description:	The TCPIP shall provide an optional API to access measurement counter values, like for example the number of dropped datagrams
Rationale:	_
Use Case:	Interface for diagnostics
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00187] The Tcplp module shall support PDU based communication

Status: DRAFT

Γ

	The TcpIp module shall support PDU based communication with its lower layer.
Description:	The Tcplp module shall support the configuration of PDU-pools with multiple communication paths to the same destination module.
	 The Tcplp module shall support PDU state handling per Tcplp controller, where each Tcplp controller refers to an EthIf controller.
Rationale:	Transmission of transport / network layer messages as PDUs. Reception of transport / network layer messages as PDUs.
Use Case:	Interaction with the L-SDU router
Dependencies:	_
Supporting Material:	_

4.3.1.2 TCP/IP Internet Protocol

[SRS_Eth_00045] TCPIP automatic IP address assignment [

Description:	The TCP/IP stack shall implement a mechanism to automatically configure an IP addresses.
Rationale:	This is necessary when no static IP-addresses are assigned to still allow for plug and play configuration of the TCP/IP stack.
Use Case:	-
Dependencies:	[SRS_Eth_00002]
Supporting Material:	[9] IEEE 802.1AS

[SRS_Eth_00115] TCPIP shall allow to categorize outbound IP traffic \lceil

Description:	The TCP/IP stack shall implement a mechanism to assign labels and/or service classes to the outbound traffic.
Rationale:	This allows network components like routers to differentiate the traffic based on this information and treat it appropriately.
Use Case:	Improved traffic forwarding algorithms, monitoring
Dependencies:	_
Supporting Material:	[10] IETF RFC 2474; [11] IETF RFC 6437

1

4.3.1.3 TCP/IP Sub Module: IPv4

[SRS_Eth_00014] IPv4 shall be implemented according to IETF RFC 791 [

Description:	The Internet Protocol (IPv4) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 791
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	[12] IETF RFC 791

I

[SRS_Eth_00015] ARP shall be implemented according to IETF RFC 826 [

Description:	For DoIP the Address Resolution Protocol (ARP) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 826
Rationale:	_
Use Case:	_
Dependencies:	[SRS_Eth_00014]
Supporting Material:	[13] IETF RFC 826

[SRS_Eth_00022] The dynamic configuration of IPv4 link-local addresses as specified in IETF RFC 3927 shall be implemented \lceil

Description:	For DoIP the dynamic configuration of IPv4 link-local addresses as specified in IETF RFC 3927 shall be implemented in the TCP/IP stack
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	[14] IETF RFC 3927

I

4.3.1.4 TCP/IP Sub Module: IPv6

[SRS_Eth_00059] IPv6 shall be implemented according to IETF RFC 2460 [

Description:	Internet Protocol Version 6 (IPv6) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 2460. Limitation: the Authentication and Encapsulating Security Payload extension headers and other IPsec functionalities may not be supported. The handling of IPsec headers shall be tolerated Limitation: The TcpIp shall limit the IETF RFC 2460 to support only the reception of IPv6 fragment header and forbid the transmission. IETF RFC 2460 section 5. Packet Size Issue discourage the use of IP Fragmentation and therefore it can be covered by IETF RFC 1981 Path MTU Discovery for IP version 6. Extension: The Deprecation of Type 0 Routing Headers in IPv6 shall be implemented as stated in IETF RFC 5095
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[15] IETF RFC 2460; [16] IETF RFC 5095; [17] IETF RFC 1981

[SRS_Eth_00089] The Deprecation of Type 0 Routing Headers shall be implemented according to IETF RFC 5095 \crewtriangleft

Description:	The Deprecation of Type 0 Routing Headers in IPv6 shall be implemented as stated in IETF RFC 5095
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	[15] IETF RFC 2460
Supporting Material:	[16] IETF RFC 5095

[SRS_Eth_00090] The Neighbor Discovery Protocol shall be implemented according to IETF RFC 4861 $\crup{\lceil}$

Description:	The Neighbour Discovery Protocol shall be implemented in the TCP/IP stack according to the host specification of IETF RFC 4861 unless stated otherwise.
Rationale:	IETF RFC 4861 replaces the IETF RFC 2461
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[18] IETF RFC 4861

[SRS_Eth_00110] The Relationship between Links and Subnet Prefixes shall be considered according to IETF RFC 5942 \lceil

Description:	The Neighbour Discovery Protocol implemented in the TCP/IP stack shall use the definition of the relationship between links and subnet prefixes as stated in IETF RFC 5942.
Rationale:	IETF RFC 5942 updates IETF RFC 4861
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[19] IETF RFC 5942;

╛

[SRS_Eth_00113] The Neighbour Discovery Protocol shall provide a configuration possibility for Prefix List entries \lceil

Description:	The Neighbour Discovery Protocol implemented in the TCP/IP stack shall provide support for manual configuration of Prefix List entries as described in IETF RFC 5942.
Rationale:	_

Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[19] IETF RFC 5942;

[SRS_Eth_00091] The Optimistic Duplicate Address Detection (DAD) for IPv6 shall be implemented according to IETF RFC 4429 \lceil

Description:	The Optimistic Duplicate Address Detection (DAD) for IPv6 shall at least be implemented in the TCP/IP stack as stated in IETF RFC 4429.
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	[18] IETF RFC 4861
Supporting Material:	[20] IETF RFC 4429; [18] IETF RFC 4861

1

[SRS_Eth_00092] The IPv6 Addressing Architecture shall be implemented according to IETF RFC 4291 $\ \lceil$

Description:	The IPv6 Addressing Architecture shall at least be implemented in the TCP/IP stack as stated in IETF RFC 4291. Limitation: Section 2.8 A Node's Required Addresses shall be limited to the node requirements for host only.
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	-
Supporting Material:	[21] IETF RFC 4291

[SRS_Eth_00093] The Transmission of IPv6 Packets shall be implemented according to IETF RFC 2464 $\crup{\lceil}$

Description:	The Transmission of IPv6 Packets over Ethernet Networks shall at least be implemented in the TCP/IP stack as stated in IETF RFC 2464.
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[22] IETF RFC 2464

Ī

[SRS_Eth_00094] The Default Address Selection for IPv6 shall be implemented according to IETF RFC 6724 \lceil

Description:	The Default Address Selection for IPv6 shall at least be implemented in the TCP/IP stack as stated in IETF RFC 6724. Limitation: Only Section 5. Source Address Selection shall be supported
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[23] IETF RFC 6724

1

[SRS_Eth_00095] The Handling of Overlapping IPv6 Fragments shall be implemented according to IETF RFC 5722 $\creat{\lceil}$

Description:	The Handling of Overlapping IPv6 Fragments shall at least be implemented in the TCP/IP stack as stated in IETF RFC 5722. Limitation: Only section 4. Node Behavior, first paragraph shall be supported.
Rationale:	For security reason, the overlapping of IP Fragments is explicitly forbidden (transmission and reception).
Use Case:	In-vehicle communication and diagnostics
Dependencies:	[15] IETF RFC 2460
Supporting Material:	[24] IETF RFC 5722

1

[SRS_Eth_00096] The Stateless Address Autoconfiguration for IPv6 shall be implemented according to IETF RFC 4862 \lceil

Description:	The Stateless Address Autoconfiguration for IPv6 shall at least be implemented in the TCP/IP stack as stated in IETF RFC 4862. Limitation: Only the sections 5.1. Node Configuration Variables, 5.3. Creation of Link-Local Addresses, 5.4. Duplicate Address Detection, 5.5 Creation of Global Addresses and section 5.6 Configuration Consistency shall be supported.
Rationale:	-
Use Case:	In-vehicle communication and diagnostics
Dependencies:	-
Supporting Material:	[25] IETF RFC 4862

ı

[SRS_Eth_00097] The Path MTU Discovery for IPv6 shall be implemented according to IETF RFC 1981 $\ \lceil$

Description:	The Path MTU Discovery for IPv6 shall at least be implemented in the TCP/IP stack as stated in IETF RFC 1981.
Rationale:	If a packet exceeds the configured MTU size, the packet shall be discarded.
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[17] IETF RFC 1981

4.3.1.5 TCP/IP ICMP

[SRS_Eth_00061] An API shall be available to generate any ICMP message [

Description:	An API Shall be available to generate any ICMP message
Rationale:	-
Use Case:	_
Dependencies:	_
Supporting	_
Material:	

١

[SRS_Eth_00062] A call-back function shall be configurable for any received ICMP message type \lceil

Description:	A call-back function shall be configurable for any received ICMP message type
Rationale:	-
Use Case:	-
Dependencies:	_
Supporting Material:	_

4.3.1.6 TCP/IP Sub Module: ICMPv4

[SRS_Eth_00016] ICMPv4 shall be implemented according to IETF RFC 792 [

Description:	For the Internet Control Message Protocol (ICMP) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 792
Use Case:	In-vehicle communication and diagnostics
Dependencies:	[SRS_Eth_00014]
Supporting Material:	[5] IETF RFC 792

4.3.1.7 TCP/IP Sub Module: ICMPv6

[SRS_Eth_00098] ICMPv6 shall be implemented according to IETF RFC 4443 [

Description:	Internet Control Message Protocol (ICMPv6) for IPv6 shall at least be implemented in the TCP/IP stack as stated in IETF RFC 4443
Rationale:	-
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[8] IETF RFC 4443

1

4.3.1.8 TCP/IP TCP

[SRS_Eth_00017] TCP shall be implemented according to IETF RFC 793 [

Description:	The Transmission Control Protocol (TCP) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 793
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[6] IETF RFC 793

ı

[SRS_Eth_00099] Congestion Control strategies shall be implemented according to IETF RFC 5681 $\ \lceil$

Description:	The Congestion control strategies shall at least be implemented in the TCP/IP stack as stated in IETF RFC 5681. Limitation: The strategies Slow-Start, Congestion Avoidance, Fast Retransmit and Fast Recovery shall be implemented.
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	-
Supporting Material:	[26] IETF RFC 5681

[SRS_Eth_00100] The NewReno Modification shall be implemented according to IETF RFC 6582 \crewtriangleft

Description:	The NewReno Modification to TCP's Fast Recovery Algorithm shall at least be implemented in the TCP/IP stack as stated in IETF RFC 6582. Limitation: The modification shall only be used if the Fast Recovery strategy of IETF RFC 5681 is enabled.
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	[26] IETF RFC 5681
Supporting Material:	[27] IETF RFC 6582

ı

[SRS_Eth_00109] TCP shall support the Nagle algorithm according to IETF RFC 896 $\ \lceil$

Description:	The "Congestion Control in IP/TCP Internetworks" aka Nagle algorithm shall be implemented in the TCP/IP stack as stated in IETF RFC 896.
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[28] IETF RFC 896;

Ī

4.3.1.9 TCP/IP TLS

[SRS_Eth_00133] TCP sockets shall be assigned to TLS connections \lceil

Description:	It shall be configurable if a TCP socket uses TLS. The configuration also implies if the connection for this socket is for a TLS server or client.
Rationale:	Dedicated sockets shall use TLS.
Use Case:	A tester that communicates over a specific port number shall be forced to use TLS.
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00134] Configuration of ciphersuites for TLS connections [

Description:	To limit the amount of crypto jobs that are necessary for TLS, AUTOSAR shall support the pre-configuration of a sub-set of ciphersuites.
Rationale:	Only those ciphersuites shall be offered for or by a dedicated TLS connection that are needed. This reduces the required resources within the ECU.
Use Case:	The TLS server and client offer a number of ciphersuites so that the server depicts one for best practice.
Dependencies:	_
Supporting Material:	

[SRS_Eth_00135] The number of TLS connections that can be opened in parallel shall be configurable $\ \lceil$

Description:	An ECU may support more than one secure port for TLS communication. To determine the number of TLS connections that can be active at the same time, the amount of TLS connections shall be configurable.
Rationale:	Minimize resource consumption. Not all possible communication links are used at the same time.
Use Case:	Support of several TLS connections in parallel, e.g. external and internal diagnostic tester
Dependencies:	-
Supporting Material:	-

ı

[SRS_Eth_00136] The size of a TLS fragment length shall be configurable [

Description:	Data transmission over TCP/TLS is done on block basis. According to IETF, the maximum size of such a block is 16kB. The size of such a block shall be configurable but meet the requirements of the communication partner.
Rationale:	Minimize resource consumption.
Use Case:	-
Dependencies:	_
Supporting Material:	_

I

[SRS_Eth_00137] PSK Identity to PSK mapping shall be possible using custom software. $\ \lceil$

Description:	When using TLS with PSK, for the mapping on server side from PSK identity to stored key, custom OEM software shall be usable. Additional configurations for mapping PSK Identity to key can be provided.
Rationale:	Offer custom ways of handling PSK identities.
Use Case:	-
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00138] TLS shall support at least basic requirements as defined in IETF RFC 5246 for version 1.2 or higher \lceil

Description:	AUTOSAR shall support the standardized protocol for transport layer security for at least version 1.2. Subsets are possible as long as security aspects are not violated.
Rationale:	Support an IETF standard.
Use Case:	-
Dependencies:	_
Supporting Material:	[29] IETF RFC 5246

١

[SRS_Eth_00139] TLS shall support elliptic curve cryptography as defined in IETF RFC 4492 $\crit{\lceil}$

Description:	AUTOSAR shall support elliptic curve cryptography for transport layer security.
Rationale:	Support TLS with elliptic curve support.
Use Case:	_

 \vee

Dependencies:	_
Supporting Material:	[30] IETF RFC 4492

[SRS_Eth_00141] TLS shall support the use of pre-shared keys as defined in IETF RFC 4279 \lceil

Description:	AUTOSAR shall support the standardized protocol for transport layer security using pre-shared keys. Subsets are possible as long as security aspects are not violated.
Rationale:	Support an IETF standard.
Use Case:	-
Dependencies:	_
Supporting Material:	[31] IETF RFC 4279

1

4.3.1.10 TCP/IP UDP

[SRS_Eth_00018] UDP shall be implemented according to IETF RFC 768 \lceil

Description:	The User Datagram Protocol (UDP) shall at least be implemented in the TCP/ IP stack as stated in IETF RFC 768
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	[32] IETF RFC 768

4.3.1.11 TCP/IP DHCP

[SRS_Eth_00065] An API shall be available to fill DHCP options field [

Description:	An API shall be available to fill any DHCPv4 and DHCPv6 options field
Rationale:	-
Use Case:	-
Dependencies:	_

Supporting	_
Material:	

[SRS_Eth_00066] An API shall be available to read any received DHCP options field $\ \lceil$

Description:	An API shall be available to read any received DHCPv4 and DHCPv6 options field
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00088] DHCP Server

Upstream requirements:

Γ

Description:	IP-addresses can be assigned depending on the port a DHCP request has been received.
Rationale:	DHCP server functionality is a standard feature in IP-networks and shall be supported. In automotive networks a modification is necessary that allows to assign defined IP addresses on a port basis.
Use Case:	ECU without a predefined IP address can get an IP address assigned via DHCP.
Dependencies:	_
Supporting Material:	_

١

4.3.1.12 TCP/IP Sub-Module: DHCPv4

[SRS_Eth_00020] DHCPv4 shall be implemented according to IETF RFC 2131 [

Description:	The Dynamic Host Configuration Protocol (DHCP) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 2131
Rationale:	-
Use Case:	-

Supporting	[33] IETF RFC 2131
Material:	

[SRS_Eth_00021]The DHCPv4 host name option shall be implemented according to IETF RFC 2132 $\ \lceil$

Description:	The DHCPv4 host name option shall at least be implemented in the TCP/IP stack as stated in IETF RFC 2132
Rationale:	_
Use Case:	_
Dependencies:	[RS_Diag_04275]; SRS_Eth_00020
Supporting Material:	[34] IETF RFC 2132

1

[SRS_Eth_00101] The Fully Qualified Domain Name (FQDN) Option for DHCPv4 shall be implemented according to IETF RFC 4702 \cdot

Description:	The Fully Qualified Domain Name Option for Dynamic Host Configuration Protocol for IPv4 shall at least be implemented in the TCP/IP stack as stated in IETF RFC 4702 (The Dynamic Host Configuration Protocol for IPv4 (DHCPv4) Client Fully Qualified Domain Name (FQDN) Option).
Rationale:	_
Use Case:	-
Supporting Material:	[35] IETF RFC 4702

4.3.1.13 TCP/IP Sub-Module: DHCPv6

[SRS_Eth_00067] The IPv6 stack shall implement DHCPv6 as a DHCPv6 client according to IETF RFC 3315 \crewtriangleft

Description:	The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) shall at least be implemented in the TCP/IP stack as stated in IETF RFC 3315 as a DHCPv6 client. Limitation: The following sections shall not be implemented according to the "only Client" Use Case: Relay Agent Behavior Server Behavior Section 12. Management of Temporary Addresses Section 21. Authentication of DHCP Messages Section 22.5. Identity Association for Temporary Addresses Option Section 22.11. Authentication Option Section 22.14. Rapid Commit Option
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	_
Supporting Material:	[36] IETF RFC 3315

[SRS_Eth_00102] The Client Fully Qualified Domain Name (FQDN) Option for IPv6 shall be implemented according to IETF RFC 4704 \lceil

Description:	The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN) Option shall at least be implemented in the TCP/IP stack as stated in IETF RFC 4704. Limitation: Only the client behavior shall be supported
Rationale:	_
Use Case:	In-vehicle communication and diagnostics
Dependencies:	[36] IETF RFC 3315
Supporting Material:	[37] IETF RFC 4704

1

[SRS_Eth_00068] The DNS configuration options for DHCPv6 shall be supported by IETF RFC 3646 $\cup\cup$

Description:	The DNS Configuration Options for Dynamic Host Configuration Protocol for IPv6 shall be supported by IETF RFC 3646.
Rationale:	_

Use Case:	-
Dependencies:	
Supporting Material:	[38] IETF RFC 3646; [36] IETF RFC 3315

4.3.1.14 TCP/IP IPsec

[SRS_Eth_00142] The Security Architecture for the Internet Protocol shall be implemented according to IETF RFC 4301 \lceil

Description:	The Security Architecture for the Internet Protocol shall be implemented in the TCP/IP stack as stated in IETF RFC 4301. Limitation: Any sections related to tunnel mode, may or may not be implemented, e.g. section 5.1.2, 7.1, 7.2
Rationale:	Ethernet is mostly used to connect to other AUTOSAR bus nodes. They use these protocols; therefore, they need to be available inside AUTOSAR
Use Case:	In-vehicle secure communication
Dependencies:	_
Supporting Material:	[39] IETF RFC 4301

١

[SRS_Eth_00143] The IP Authentication Header (AH) shall be implemented according to IETF RFC 4302 $\crup{\crup{1}{2}}$

Description:	The IP Authentication Header (AH) shall be implemented in the TCP/IP stack as stated in IETF RFC 4302. Limitation: Section 3.1.2, related to tunnel mode, may or may not be implemented
Rationale:	Ethernet is mostly used to connect to other AUTOSAR bus nodes. They use these protocols; therefore, they need to be available inside AUTOSAR
Use Case:	In-vehicle secure communication
Dependencies:	_
Supporting Material:	[40] IETF RFC 4302

[SRS_Eth_00144] IP Encapsulating Security Payload (ESP) shall be implemented according to IETF RFC 4303 \cdot

Description:	The IP Encapsulating Security Payload (ESP) shall be implemented in the TCP/IP stack as stated in IETF RFC 4303. Limitation: Any section related to tunnel mode, may or may not be implemented, e.g. section 3.1.2
Rationale:	Ethernet is mostly used to connect to other AUTOSAR bus nodes. They use these protocols; therefore, they need to be available inside AUTOSAR
Use Case:	In-vehicle secure communication
Dependencies:	_
Supporting Material:	[41] IETF RFC 4303

1

[SRS_Eth_00145] The Internet Key Exchange (IKEv2) Protocol shall be implemented according to IETF RFC 7296 $\crup{\lceil}$

Description:	The Security Architecture for the Internet Protocol shall be implemented in the TCP/IP stack as stated in IETF RFC 7296. Limitation: Support is limited to scenario 1.1.2 'Endpoint-to-Endpoint Transport'
Rationale:	Ethernet is mostly used to connect to other AUTOSAR bus nodes. They use these protocols; therefore, they need to be available inside AUTOSAR
Use Case:	In-vehicle secure communication
Dependencies:	_
Supporting Material:	[42] IETF RFC 7296

1

4.4 SWS Socket Adaptor (SoAd)

[SRS_Eth_00004] The SoAd shall support a local multi-homed host \lceil

Description:	The SoAd shall support a local multi-homed host.
Rationale:	An ECU might be connected to multiple IP networks for different use-cases
Use Case:	-
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00002] The IP addresses as well as the method of acquisition shall be a configurable item. $\ \lceil$

Description:	The IP addresses as well as the method of acquisition shall be a configurable item.
Rationale:	_
Use Case:	-
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00001] The initialization the SoAd shall be able to establish all TCP connections $\ \lceil$

Description:	The initialization the SoAd shall be able to establish all TCP connections as described in the configuration.
Rationale:	_
Use Case:	-
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00005] Both UDP or TCP shall be usable [

Description:	Both UDP or TCP shall be usable.
Rationale:	-
Use Case:	_
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00009] Upon Shutdown the Socket Adaptor shall close all open TCP connections \lceil

Description:	Upon Shutdown the Socket Adaptor shall close all open TCP connections.
Rationale:	-
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00008] The Socket Adaptor shall immediately try to re-establish any TCP connection if it is lost \lceil

Description:	The Socket Adaptor shall immediately try to re-establish any TCP connection if it is lost. 'never give up' strategy
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00011] The resources required for the socket connections shall be predictable by analyzing the configuration information \lceil

Description:	The resources required for the socket connections shall be predictable by analyzing the configuration information.
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00012] An API shall be offered where buffer memory is required \lceil

Description:	The Socket Adaptor, Tcplp,Ethlf and Eth shall offer an API where buffer memory for transmission and reception of AUTOSAR PDUs via Ethernet is required
Rationale:	-
Use Case:	_
Dependencies:	_
Supporting Material:	AUTOSAR API will be able to satisfy this requirement!

-

[SRS_Eth_00013] An API shall be offered for reduced copy operation [

Description:	The Socket Adaptor, Tcplp, Ethlf and Eth shall offer an API where the number of copy operations for transmission and reception of AUTOSAR PDUs via Ethernet is optimized (i.e. reduced to a minimum)
Rationale:	_
Use Case:	AUTOSAR API
Dependencies:	-

Supporting	_
Material:	

[SRS_Eth_00006] The Socket Adaptor shall be able to transfer data using TCP/IP without the introduction of additional protocol overhead \lceil

Description:	The Socket Adaptor shall be able to transfer data using TCP/IP without the introduction of additional protocol overhead.
Rationale:	The protocol overhead introduced by Ethernet and TCP/IP is so large, that additional overhead is considered harmful.
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00048] SoAd shall implement a mechanism to bi-directionally route PDUs between an AUTOSAR connector and the TCP/IP stack [

Description:	SoAd shall implement a mechanism to bi-directionally route PDUs between an AUTOSAR connector and the TCP/IP stack.
Rationale:	This is necessary to allow communication
Use Case:	_
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00049] SoAd shall implement an API towards higher layers, which is equivalent to the API provided by interface modules \lceil

Description:	SoAd shall implement an API towards higher layers, which is equivalent to the API provided by interface modules like FrIf, CanIf and LinIf.
Rationale:	Higher layers shall not be aware of the underlining communication stack.
Use Case:	-
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00050] SoAd shall implement an API towards higher layers, which is equivalent to the API provided by transport layer \lceil

Description:	SoAd shall implement an API towards higher layers, which is equivalent to the API provided by transport layer modules like FrTP and CanTP.
Rationale:	Higher layers shall not be aware of the underlining communication stack.
Use Case:	-
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00051] The Socket Adaptor shall specify and be able to use a call-back interface towards the TCP/IP stack \lceil

Description:	The Socket Adaptor shall specify and be able to use a call-back interface towards the TCP/IP stack.
Rationale:	the SoAd shall specify and be able to make use of a call-back interface, that reduces the number of required copy actions to and from the TCP/IP stack (optimized parameter) and reduces the latency (call-back functions).
Use Case:	Instead of a commercial of the shelf TCP/IP stack an optimized automotive TCP/IP stack shall be usable.
Dependencies:	-

[SRS_Eth_00069] The Socket Adaptor shall implement a mechanism to share multiple PDUs from/to the same or different upper modules \lceil

Description:	The SoAd shall implement a mechanism by which a socket connection can be shared among multiple PDUs from/to the same or different upper layer modules.
Rationale:	Minimize resource consumption
Use Case:	Transmission of multiple COM-PDUs to the same remote node.
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00070] The Socket Adaptor shall implement a mechanism to transmit PDUs to more than one receiver \lceil

Description:	The SoAd shall implement a mechanism by which a PDU shall be transmitted to more than one receiver using the same or a different socket connection and by which a received PDU shall be forwarded to more than one upper layer PDU using the same or a different socket connection to the same or a different upper layer module. (i.e. fan out to lower and upper layer, fan in from multiple connections)
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00116] The Socket Adaptor shall implement a mechanism to transmit multiple PDUs within the same UDP datagram \lceil

Description:	The SoAd shall implement a mechanism by which it shall be possible to transmit multiple PDUs within the same UDP datagram.
Rationale:	Improved bandwidth utilization
Use Case:	Efficient data transmission
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00071] The Socket Adaptor shall implement a mechanism to activate or deactivate an upper layer using a routing group [

Description:	The SoAd shall implement a mechanism by which a routing group can be activated or deactivated by an upper layer during runtime. A routing group consist of a number of PDUs from the same or different socket connections which shall be blocked (i.e. not routed to or from the upper layer). A PDU may only be part of a single routing group.
Rationale:	Blocking of undesired messages
Use Case:	Blocking of undesired notifications from a Publish/Subscribe Server
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00124] The SoAd shall implement mechanisms to share the same PDU pair for the reception from and transmission to multiple remote nodes \lceil

Description:	The SoAd shall support configurations that relate multiple remote nodes to one single receive PDU for receptions as well as to one single transmit PDU for transmissions. Upon reception of such a PDU, the SoAd shall be able to provide additional information regarding the remote node to the upper layer. Upon transmission the SoAd shall be able to select one of the multiple possible targets based on additional information provided by the upper layer.
Rationale:	This allows to deliver the response data to the same remote node that requested it, without explicit configuration of all possible data paths.
Use Case:	Scalability of Client/Server Communication
Dependencies:	_
Supporting Material:	_

l

[SRS_Eth_00131] The SoAd shall support access to measurement counter values $\ \lceil$

Description:	The SoAd shall provide an optional API to access measurement counter values, like for example the number of dropped PDUs
Rationale:	_
Use Case:	Interface for diagnostics
Dependencies:	_
Supporting Material:	_

I

4.5 SWS Ethernet Interface (Ethlf)

[SRS_Eth_00031] The Ethernet Interface shall be pre-compile time configurable for interrupt or polling. $\ \lceil$

Description:	The Ethernet Interface shall provide configuration for interrupt and polling mode. In interrupt mode received frames shall be reported from the driver. In polling mode the main function shall check for received frames.
Rationale:	Interface and interaction
Use Case:	For low latency interrupt mode is crucial. On systems with high system load the polling mode reduces the system load
Dependencies:	
Supporting Material:	_

[SRS_Eth_00032] The Ethernet Interface shall provide hardware configuration and initialization. $\ \lceil$

Description:	The Ethernet Interface shall provide hardware independent configuration and initialization interface.
Rationale:	Hardware abstraction
Use Case:	Exchanging the used Ethernet controller and transceiver shall be transparent and only be reflected by replacing the used driver.
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00033] The Ethernet Interface shall provide indication for link state change. $\ \lceil$

Description:	The Ethernet Interface shall provide indication for link state change of connected transceivers.
Rationale:	Interface and interaction
Use Case:	Disconnection of the cable results in invalid IP address. Thus a valid IP assignment cycle has to be started.
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00072] The Ethernet Interface shall provide VLAN support \lceil

Description:	The Ethernet Interface shall support VLAN tagging of Ethernet frames according to IEEE 802.1Q, i.e. add/remove VLAN tag at transmission/reception of Ethernet frames. A VLAN shall appear as a separate EthIf controller to the upper layer. The VLAN identifier shall be specified via EthIf configuration; the VLAN priority shall be specified by the upper layer as part of the transmission request and ignored at reception.
Rationale:	Separation of logical networks
Use Case:	Separation of internal and external vehicle communication
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00160] The Ethernet Interface shall support the CAN XL driver as lower layer interface $\ \lceil$

Description:	The Ethernet interface shall allow access to the CAN XL driver in parallel and similar to the Ethernet Driver and the Wireless Ethernet Driver.
Rationale:	CAN XL allows native tunneling of Ethernet frames. The processing of CAN XL based Ethernet frames is identical to Ethernet frames that are handled by the Ethernet driver.
Use Case:	Transmit and receive Ethernet frames over CAN XL and handle them just like ordinary Ethernet frames in the upper layers, and handle CAN bus errors as link state.
Dependencies:	Requires an extended CAN driver and CAN bus transceiver driver that support CAN XL.
Supporting Material:	[43] CiA 611-1 CAN XL - Part 1: Definition of SDU types

[SRS_Eth_00182] The Ethernet Interface shall support hardware independent APIs to access hardware functionality and configuration via the Ethernet stack drivers

Status: DRAFT

Γ

Description:	The Ethernet Interface shall support hardware independent APIs to access hardware functionality and configuration via the Ethernet stack drivers.
Rationale:	Ethernet stack driver provide hardware specific functionalities (e.g. cable diagnostics, Ethernet switch port configuration) which need to be abstracted by the EthIf to allow hardware independent implementation, for example of an diagnostic CDD.
Use Case:	Interface for diagnostics
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00132] The Ethernet Interface shall support access to measurement counter values [

Description:	The Ethernet Interface shall provide an optional API to access measurement counter values, like for example the number of dropped frames
Rationale:	-
Use Case:	Interface for diagnostics
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00156] The Ethernet Interface shall provide indication for a received sleep request. $\ \lceil$

Description:	OPEN ALLIANCE (OA) TC10 Sleep/Wake-up specification for Automotive Ethernet define the sleep and wake-up capability over data line. The EthIf shall forward a received sleep request to EthSM to shut down the communication channel if it's configured as a communication slave.
Rationale:	Interface and interaction
Use Case:	If an ECU acts as an communication slave on the communication channel, the ECU shall follow the communication requests of its communication master
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

ĺ

[SRS_Eth_00157] The Ethernet Interface shall trigger requested modes for Ethernet hardware with wake-up capability even if the requested mode has already been reached. \lceil

Description:	The Ethernet Interface shall re-trigger requested modes for Ethernet hardware with wake-up capability even if the requested mode has already been reached
Rationale:	An Ethernet switch network need to trigger wake-up and propagate the wake-up on the whole network to signal connected ECUs about a communication request
Use Case:	Wake-up of the Ethernet switched network, due to a PNC request.
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

[SRS_Eth_00169] Ethernet Interface upper layer PDU based communication [

Description:	 The Ethernet Interface shall support PDU based communication with its upper layers.
	 The Ethernet Interface shall support the configuration of PDU-pools with multiple communication paths to the same destination module.
	The Ethernet Interface shall bridge from frame based communication of an Ethernet network to a PDU based communication of the internal communication stack.
	 The Ethernet Interface shall bridge from PDU based communication of the internal communication stack to a frame based communication of an Ethernet network.
Rationale:	Forwarding of Ethernet frames as PDUs enables harmonization of the communication stack in AUTOSAR, since all other communication stacks are using PDUs for interaction with the upper layers.

	Interaction with the L-SDU router
Use Case:	 Support of reception forwarding to same upper layer with a small time period of indications (e.g. 200us)
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00170] Ethernet Interface scheduling a subset of ingress queues [

Description:	The Ethernet Interface shall support the configuration of scheduling a subset of ingress queues in its mainfunction.
Rationale:	This allows to handle best effort and low latency communication in the AUTOSAR stack. Best effort could be handled in the context of the mainfunction, while low latency could be handled on interrupt level.
Use Case:	Support to handle low latency and best effort in parallel
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00175] The Ethernet Interface shall support access to PTP Physical Clocks $\c\lceil$

Description:	The Ethernet Interface shall provide optional APIs to access PTP physical clocks of an Ethernet controller.
Rationale:	_
Use Case:	_
Dependencies:	[SRS_Eth_00167]
Supporting Material:	[45] IEEE 802.1AS 2020

[SRS_Eth_00176] The Ethernet Interface shall support control of pulse per second signal generation $\ \lceil$

Description:	The Ethernet Interface shall provide an optional API to control pulse per second signal generation of an Ethernet controller.
Rationale:	-
Use Case:	-
Dependencies:	[SRS_Eth_00168]
Supporting Material:	_

4.6 SWS Ethernet Driver (Eth)

[SRS_Eth_00035] The Ethernet Driver shall be pre-compile time configurable for interrupt or polling. $\ \lceil$

Description:	The Ethernet Driver shall provide configuration for interrupt and polling mode. In interrupt mode received frames shall be reported from the driver.
Use Case:	For low latency interrupt mode is crucial. On systems with high system load the polling mode reduces the system load
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00036] The Ethernet Driver shall provide hardware configuration and initialization. $\ \lceil$

Description:	The Ethernet Driver shall provide hardware independent configuration and initialization interface.
Rationale:	Hardware abstraction
Use Case:	Exchanging the used Ethernet controller shall be transparent and only be reflected by replacing the used driver.
Dependencies:	_
Supporting Material:	_

Ī

[SRS_Eth_00073] The Ethernet Driver shall support to receive MAC broadcast frames $\ \lceil$

Description:	The Ethernet driver shall support the configuration of the Ethernet controller to receive MAC broadcast frames.
Rationale:	Reception of frames by all nodes
Use Case:	ARP Request
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00074] The Ethernet Driver shall support to receive MAC groupcast frames $\ \lceil$

Description:	The Ethernet driver shall support the configuration of the Ethernet controller to receive MAC multicast frames.
Rationale:	Reception of frames by multiple nodes
Use Case:	Notification messages
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00105] Support of time stamping in hardware [

	The Ethernet driver shall provide an implementation which allows time
Description:	stamping of Ethernet frames for time synchronized messages. This implementation has to be compatible as defined in "[9], ANNEX B.1.2 Time measurement granularity". If this granularity could be ensured less than 100% by the supported hardware an additional software solution within the driver might be needed. However, a 100% software solution, by using resources outside of the Ethernet controller, e.g. own GPT etc., is not recommended.
Rationale:	Efficient implementation without hidden hardware resources
Use Case:	GlobalTimeSynchronization
Dependencies:	-
Supporting	_
Material:	

[SRS_Eth_00127] The Ethernet Driver shall provide statistic counter values [

Description:	The Ethernet Driver shall provide interfaces to read out statistic counter values (such as number of received, transmitted and dropped frames, etc.) for diagnostic analysis.
Rationale:	_
Use Case:	Diagnostics
Dependencies:	-
Supporting Material:	-

l

[SRS_Eth_00146] The Ethernet Driver shall provide 10BASE-T1S support [

Description:	The Ethernet Driver shall support 10BASE-T1S compliant hardware
Rationale:	Hardware abstraction
Use Case:	Support of ECUs which are connected via 10BASE-T1S compliant hardware
Dependencies:	_
Supporting Material:	[46] OPEN Alliance TC14

1

[SRS_Eth_00147] The Ethernet Driver shall support SPI

Description:	The Ethernet Driver shall support SPI interface
Rationale:	Hardware access
Use Case:	Support of ECUs which are using 10BASE-T1S compliant hardware
Dependencies:	_
Supporting Material:	[46] OPEN Alliance TC14

[SRS_Eth_00148] The Ethernet Driver shall support MII [

Description:	The Ethernet Driver shall support MII interface
Rationale:	Hardware access
Use Case:	Support of ECUs which are using 10BASE-T1S compliant hardware
Dependencies:	_
Supporting Material:	[46] OPEN Alliance TC14

[SRS_Eth_00171] Ethernet Driver ingress and egress queues

Status: DRAFT

Γ

Description:	The Ethernet Driver shall support to configure ingress and egress queues, where Ethernet frames are sorted by layer 2 Ethernet frame attributes (e.g. VLAN-ID, priority, Ether type, destination MAC address).
Rationale:	A particular ingress configuration could be optimized, such that for particular applications dedicated ingress queues are used for communication. An ingress queue could be configured to hold specific Ethernet frames with specific properties. A configuration of egress queues could optimize transmission handling. An egress queue could be configured to hold specific Ethernet frames with specific properties.

Use Case:	Support of reception indications with a small time period (e.g. 200us), where the frames are processed by the same destination module. Support to prioritize transmission request for Ethernet frames with a specific Ethernet frame type (e.g. global time synchronization frames).
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00172] Ethernet Driver hardware supported data transfer [

Description:	The Ethernet Drivers shall support hardware supported data transfer.
Rationale:	This could relax the CPU load if data with a large size needs to be transfered from the upper layer to the egress buffer
Use Case:	IEEE1722-based streams transmitted with a small period (e.g. 200us) and a large size of data
Dependencies:	_
Supporting Material:	_

I

[SRS_Eth_00173] Ethernet Driver transmission requests with direct data provision $\ \lceil$

Description:	The Ethernet Driver shall support transmission requests with direct data provision. Additional Information: • The upper layer initiates the transmission and directly provides all required data pointers and data length information within the transmission request.
Rationale:	Efficient way to provide data information and a transmission request in a single call
Use Case:	IEEE1722-based streams transmitted with a small period (e.g. 200us) and a large size of data
Dependencies:	
Supporting Material:	_

[SRS_Eth_00188] Ethernet Driver transmission requests with indirect data provision

Status: DRAFT

Γ

Description:	The Ethernet Driver shall support transmission requests with indirect data provision. The upper layer request for an egress queue element allocation to provide data in the allocated buffer. Afterwards the upper layer trigger the transmission.
Rationale:	Support the possibility for the upper layer to allocate an egress queue buffer and process on the location
Use Case:	TCP streams may need egress queue element allocation
Dependencies:	_
Supporting Material:	_

I

[SRS_Eth_00174] Ethernet Driver ingress queue handling [

Description:	 The Ethernet Driver shall support the configuration of ingress queue handling. Additional Information: The ingress queue handling depends on the traffic category (e.g. low latency, best effort) and the surrounding pre conditions (e.g. performance of hardware platform, availability of resoures): handle all ingress queues in interrupt mode or all ingress queues in polling mode. handle a subset of ingress queues in polling mode for best effort traffic and a subset of ingress queues in interrupt mode for low latency traffic
	polling is performed by an AUTOSAR basic software module (e.g. EthIf)
	 specific ingress queues are configured to handle specific traffic. A specific function for this specific ingress queue is needed. The scheduling of this function may be triggered by an CDD, based on external hardware unit (e.g. precise clock with a specific frequency)
Rationale:	-
Use Case:	IEEE1722-based streams continously received with a small period (e.g. 200us) and a large size of data
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00167] PTP Physical Clock Adjustment [

Description:	Ethernet Driver shall support a PTP physical clock of an Ethernet controller. The Ethernet driver shall support configuration of a PTP physical clock and APIs to access the PTP physical clock.
Rationale:	-
Use Case:	_
Dependencies:	_
Supporting Material:	[45] IEEE 802.1AS 2020

[SRS_Eth_00168] Pulse Per Second Signal Configuration [

Description:	Ethernet Driver shall support configuration of a pulse per second signal per Ethernet controller.
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00177] Ethernet Driver Transmission Selection Algorithm [

Description:	The Ethernet Driver shall support the following transmission selection algorithm, at each egress queue of an Ethernet controller: • credit-based shaper (add new transmission selections)
	asynchronous traffic shaping
	enhanced traffic shaping
	strict priority traffic shaping
Rationale:	Guaranteed Network Robustness and Latency for time Critical Traffic
Use Case:	_
Dependencies:	-
Supporting Material:	 [47] IEEE Std 802.1Q section "5.28 End station requirements - Cyclic queueing and forwarding" section "8.6.8 Transmission selection"

[SRS_Eth_00184] Ethernet Driver scheduler algorithm

Status: DRAFT

١

Description:	The Ethernet Driver shall support the following transmission selection algorithm, at each egress queue of an Ethernet controller: • strict priority scheduler algorithm • enhanced traffic scheduler algorithm
Rationale:	Guaranteed Network Robustness and Latency for time Critical Traffic
Use Case:	-
Dependencies:	_
Supporting Material:	 [47] IEEE Std 802.1Q section "5.28 End station requirements - Cyclic queueing and forwarding" section "8.6.8 Transmission selection"

Ī

[SRS_Eth_00185] Ethernet Driver Frame Preemption

Status: DRAFT

Description:	The Ethernet Driver shall support frame preemption for ingress side.
Rationale:	Guaranteed Network Robustness and Latency for time Critical Traffic
Use Case:	-
Dependencies:	_
Supporting Material:	[47] IEEE Std 802.1Qsection "5.26 End station requirements - enhancements for frame preemption"

4.7 SWS Wireless Ethernet Driver (WEth)

[SRS_Eth_00189] Wireless Ethernet Driver hardware supported data transfer

Status: DRAFT

Γ

Description:	The Wireless Ethernet Drivers shall support hardware supported data transfer.
Rationale:	This could relax the CPU load if data with a large size needs to be transferred from the upper layer to the egress buffer
Use Case:	Exchange of data with large size via a wireless communication of a Vehicle-2-X communication scenario

Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00190] Wireless Ethernet Driver transmission requests with direct data provision

Status: DRAFT

Γ

Description:	The Wireless Ethernet Driver shall support transmission requests with direct data provision. Additional Information: The upper layer initiates the transmission and directly provides all required data pointers and data length information within the transmission request.
Rationale:	Efficient way to provide data information and a transmission request in a single call
Use Case:	Exchange of data with large size via a wireless communication of a Vehicle-2-X communication scenario
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00191] Wireless Ethernet Driver transmission requests with indirect data provision

Status: DRAFT

Γ

Description:	The Wireless Ethernet Driver shall support transmission requests with indirect data provision. The upper layer request for a transmission buffer allocation to provide data in the allocated buffer. Afterwards the upper layer trigger the transmission
Rationale:	Support the possibility for the upper layer to allocate an transmission buffer and process on the location
Use Case:	The V2xGn module (geo networking) may need a transmit buffer allocation
Dependencies:	_
Supporting Material:	_

I

4.8 SWS Ethernet Transceiver Driver (EthTrcv)

[SRS_Eth_00039] The Ethernet Transceiver Driver shall provide hardware configuration and initialization.

Description:	The Ethernet Transceiver Driver shall provide hardware independent configuration and initialization interface.
Rationale:	Hardware abstraction
Use Case:	Exchanging the used Ethernet transceiver shall be transparent and only be reflected by replacing the used driver.
Dependencies:	_
Supporting Material:	_

Ī

[SRS_Eth_00040] The Ethernet Transceiver Driver shall provide access to the link state. \lceil

Description:	The Ethernet Transceiver Driver shall provide access to the link state of connected transceivers.
Rationale:	Interface and interaction
Use Case:	Disconnection of the cable results in invalid IP address. Thus a valid IP assignment cycle has to be started.
Dependencies:	_
Supporting Material:	_

Ī

[SRS_Eth_00117] The Ethernet Transceiver Driver shall provide access to standardized hardware features $\ \lceil$

Description:	The Ethernet Transceiver Driver shall provide access to standardized hardware features such as signal quality measurement and physical layer test modes.
Rationale:	Hardware abstraction
Use Case:	Diagnostics and monitoring
Dependencies:	-
Supporting Material:	-

[SRS_Eth_00106] The Ethernet Transceiver Driver shall switch on/off wake up functionality at pre compile time. \lceil

Description:	The Ethernet Transceiver Driver shall enable and disable wake up functionality of connected transceivers if supported by the hardware.
Rationale:	Support the transceivers' wake-up capabilities
Use Case:	Wake up the ECU by bus
Dependencies:	_
Supporting Material:	_

I

[SRS_Eth_00107] The Ethernet Transceiver Driver shall support access to the wake up reason. \lceil

Description:	The Ethernet Transceiver Driver shall provide access to the wake up reason of connected transceivers if supported by the hardware.
Rationale:	Distinguish between wake-up by bus or other wake-up
Use Case:	Different handling of the wake-up event (e.g. starting/non starting of communication after a wake-up)
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00108] The Ethernet Transceiver Driver shall be able to wake-up an Ethernet network. \(\)

Description:	The Ethernet stack shall be able to wake-up an Ethernet network if supported by hardware.
Rationale:	Support the Ethernet PHY's wake-up capabilities
Use Case:	Wake up the Ethernet network actively on dataline
Dependencies:	_
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

١

[SRS_Eth_00151] The Ethernet Transceiver Driver shall support a controlled link shutdown (sleep request) \lceil

Description:	OPEN ALLIANCE (OA) TC10 Sleep/Wake-up specification for Automotive Ethernet define the sleep capability over data line. Therefore the EthTrcv shall provide a possibility to trigger a sleep request to shut down the link with a confirmation of the linked communication partner.
--------------	---

Rationale:	OA TC10 compatible hardware provide sleep handling to put linked communication partner synchronous in a sleep mode
Use Case:	Used to set the Ethernet hardware in a sleep mode after network management has finished the synchronous shut down of the communication.
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

[SRS_Eth_00152] The Ethernet Transceiver Driver shall be able to react on sleep request received from the network. \lceil

Description:	OPEN ALLIANCE (OA) TC10 Sleep/Wake-up specification for Automotive Ethernet define the sleep and wake-up capability over data line. Therefore the EthTrcv shall provide a possibility to react on sleep request received from the link partner.
Rationale:	OA TC10 compatible hardware provide sleep handling to put linked communication partner synchronous in a sleep mode
Use Case:	If an ECU acts as a communication slave on the communication channel, the ECU shall follow the communication requests of its communication master
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

[SRS_Eth_00153] The Ethernet Transceiver Driver shall be able to configure the Ethernet hardware (PHY) according to the wake-up handling. \lceil

Description:	OPEN ALLIANCE(OA) TC10 Sleep/Wake-up specification for Automotive Ethernet define the sleep and wake-up capability over data line. Therefore the Ethernet Transceiver Driver shall support a possibility to configure the Ethernet hardware regarding the wake-up handling: • Forward a remote received wake-up request • Forward a local received wake-up request • Enable / Disable wake-up request forwarding
	Timing constraints regarding local wake-up request
Rationale:	OA TC10 compatible hardware provide wake-up forwarding to ensure a fast propagation of a wake-up request within an Ethernet switched network
Use Case:	An Ethernet switched network has to be configured regarding the wake-up forwarding to ensure a fast propagation of a wake-up request
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

Ī

[SRS_Eth_00154] The Ethernet Transceiver Driver shall provide a possibility to re-trigger a wake-up request. $\ \lceil$

Description:	The Ethernet Transceiver Driver shall provide a possibility to re-trigger a wake-up request of active communication request
Rationale:	An Ethernet switched network need to re-trigger a wake-up request to ensure reliability and availability of communication requests within an Ethernet switched network. Repeating a wake-up request could overcome error scenarios where the propagation of a wake-up request was inhibited due to disturbing pulse on the data line.
Use Case:	Overcome error scenarios where disturbing pulse inhibit propagation of wake-up on data line
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

[SRS_Eth_00155] The Ethernet Transceiver Driver shall provide a possibility to re-trigger a sleep request. \lceil

Description:	The Ethernet Transceiver Driver shall provide a possibility to re-trigger a sleep request, if the sleep request was not accepted by the Ethernet hardware of the connected ECU in an Ethernet switched network
Rationale:	An ECU which is connected to an Ethernet switched network that uses OA TC10 compliant Ethernet hardware need to re-trigger a sleep request, if the Ethernet hardware of the connected ECU has not confirmed to transit to sleep mode. The ECU which initiated the sleep request, shall repeat the sleep request a configurable amount of time. If the repetitions of the sleep requests were not confirmed by the Ethernet hardware of the connected ECU, the ECU which initiate the sleep request shall shutdown the affected communication channel. This shall avoid to keep an ECU awake if the Ethernet hardware do not confirm a sleep request for some reasons (error scenario)
Use Case:	Overcome error scenarios where a sleep request
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

[SRS_Eth_00149] The Ethernet Transceiver Driver shall provide 10BASE-T1S support \lceil

Description:	The Ethernet Transceiver Driver shall support 10BASE-T1S compliant hardware.
Rationale:	Hardware abstraction
Use Case:	Support of ECUs which are connected via 10BASE-T1S compliant hardware
Dependencies:	-
Supporting Material:	[46] OPEN Alliance TC14

[SRS_Eth_00150] The Ethernet Transceiver Driver shall provide MII interface \lceil

Description:	The Ethernet Driver shall support MII interface
Rationale:	Hardware abstraction
Use Case:	Support of ECUs which are using 10BASE-T1S compliant hardware (standalone transceiver)
Dependencies:	-
Supporting Material:	[46] OPEN Alliance TC14

4.9 SWS Ethernet Switch Driver (EthSwt)

[SRS_Eth_00118] Transparent interface to underlying EthTrcv module(s)

Description:	Ethernet Switch Driver shall provide a transparent interface to underlying Eth Trcv module(s) for transceiver related APIs (GetLinkState, GetBaudRate, Get DuplexMode, etc.)
Rationale:	Transceiver related interfaces like GetLinkState, GetBaudRate or GetDuplex Mode shall be accessible without the dedicated knowledge of the underlying hardware architecture of Switches and Transceivers.
Use Case:	Access to Transceiver Driver
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00119] Access to hardware status of ports [

Description:	The Ethernet Switch Driver shall provide the hardware status to the upper layer.
Rationale:	To read for example the link state the Ethernet Switch Driver needs to provide interfaces to read the status of the connected port hardware.
Use Case:	Access to ports
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00120] Hardware access via MII and/or SPI

Description:	Ethernet Switch Driver shall provide an interface for managing and controlling over SPI and/or MII.
Rationale:	Automotive Ethernet networks can include managed switches with MII and/or SPI interfaces. The Ethernet Switch Driver shall give access to the needed interfaces. For the management, i.e. control and configuration of these switches and their ports, such an interface has to be provided.
Use Case:	Control Switch hardware with MII or SPI interface
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00122] Persistent storage of configurations [

Description:	Ethernet Switch Driver shall be able to store configurations persistently.
Rationale:	It shall be possible to store the Switch configuration in the non volatile memory.
Use Case:	Store Configuration persistently
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00087] Semi-Static Auto-Configuration \lceil

Description:	Beside the possibility to statically configure a switch, switches are able to automatically learn certain parameters. This learning process should be executed at assembly time or after replacement of ECUs with spare parts. Therefore, a process needs to be defined which triggers the learning process in these scenarios and also allows a persistent storage of learned parameters.
Rationale:	This Semi-static Auto-Configuration will be used in assembly and maintenance situations where Ethernet components are connected for the first time or replaced by spare parts.
Use Case:	Necessary for each Ethernet-ECU
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00121] Configuration of forwarding rules [

Description:	Ethernet Switch Driver shall support configuration of forwarding rules performed by hardware.
Rationale:	Ethernet Switch Driver shall support configuration of forwarding rules like ARL tables, VLAN memberships, priority regenerations and transmit schedulers and shapers.
Use Case:	Control forwarding rules
Dependencies:	_
Supporting Material:	

[SRS_Eth_00114] Ethernet Switch Filtering and Policing [

Description:	If supported by Ethernet switch hardware, the Ethernet Switch Driver shall support configuration of (per-stream) filtering and policing (PSFP) of Ethernet traffic/frames in the switch hardware.
Rationale:	These mechanisms can be used to avoid bursts, restrict babbling idiots and to prevent denial of service attacks.
Use Case:	Ensure reliable communication bandwidth for applications which transmit time critical Ethernet frames in the network
Dependencies:	Per-Stream filtering and policing requires Stream Identification (see [SRS_Eth_00178])
Supporting Material:	[47] IEEE Std 802.1Q, section Qci 8.6

ı

[SRS_Eth_00178] Ethernet Switch Stream Identification [

Description:	If supported by Ethernet switch hardware, the Ethernet Switch Driver shall support configuration of the stream identification criteria in the Ethernet switch hardware, based on different protocol layers (e.g. the priority (PCP value) or the VLAN-ID or the destination MAC address and the priority (PCP value)) of incoming Ethernet frames.
Rationale:	Incoming Ethernet frames need to be inspected to support different kind of actions (e.g. drop a frame, rate limit a traffic class, etc.)
Use Case:	MAC identification allows rate limiting of an individual stream which support more granularity in bandwidth control
	The stream identification in combination with a filter and policer could rate limit the entire class of traffic.
Dependencies:	_
Supporting Material:	[48] IEEE Std 802.1CB-2017

Ī

[SRS_Eth_00179] Ethernet Switch Transmission Selection Algorithm [

Description:	If supported by the switch hardware, the Ethernet Switch Driver shall support configuration of the transmission selection algorithm in the switch hardware, as • credit-based shaper • asynchronous traffic shaping • enhanced traffic shaping • or strict priority per egress queue
Rationale:	Guaranteed Network Robustness and Latency for time Critical Traffic
Use Case:	Audio and video streaming
Dependencies:	_
Supporting Material:	[47] IEEE Std 802.1Q, section 8.6.8 "Transmission selection"

[SRS_Eth_00180] Ethernet Switch port scheduling of egress queues [

	If supported by the switch hardware, the Ethernet Switch Driver shall support configuration of the scheduling algorithm in the switch hardware as: • strict priority
Description:	weighted round robin
	deficit round robin
	per egress port
Rationale:	Guaranteed Network Robustness and Latency for time Critical Traffic
Use Case:	Audio and video streaming
Dependencies:	-
Supporting Material:	[47] IEEE Std 802.1Q, section 8.6.8.1

1

[SRS_Eth_00123] Testing and diagnostic of switch ports \lceil

Description:	The Ethernet Switch Driver shall provide interfaces to support testing and diagnostic functionalities like port mirroring, cable diagnostics and port monitoring depending on the possibilities of the used hardware.
Rationale:	To use diagnostic functionalities of switches and the connected transceivers, the Ethernet Switch Driver shall provide interfaces to configure test modes and read diagnostic data from the switch and/or transceiver hardware.
Use Case:	Testing and Diagnostics
Dependencies:	_

Supporting Material:	_
----------------------	---

[SRS_Eth_00125] The Ethernet Switch Driver shall support switch frame management \lceil

Description:	The Ethernet Switch Driver shall enable switch frame management control for Ethernet frames regarding a switch port specific ingress and egress handling as well as providing a switch port specific timestamp, depending on the possibilities of the used hardware.
Rationale:	Switch frame management control is essential for upper layer modules, in particular for EthTSyn, which requires port specific information associated to a time synchronization or path-delay measurement frame.
Use Case:	Global time synchronization over Ethernet
Dependencies:	_
Supporting Material:	_

I

[SRS_Eth_00126] Independent reset of host ECU and switch hardware $\ \lceil$

Description:	The Ethernet Switch Driver module shall allow to handle resets of the host ECU and the switch hardware independently, i.e. the reset of either one shall not require a restart of the other. To ensure the correct operation of the switch hardware, it shall be possible to verify the switch configuration and to determine if a reconfiguration is required.
Rationale:	This allows the continuous operation of the host ECU and the switch hardware.
Use Case:	Continuous operation
Dependencies:	-
Supporting Material:	

╛

[SRS_Eth_00128] The Ethernet Switch Driver shall provide statistic counter values per port \lceil

Description:	The Ethernet Switch Driver shall provide shall provide interfaces to read out statistic counter values (such as number of received, transmitted and dropped frames, etc.) per individual port for diagnostic analysis.
Rationale:	_
Use Case:	Diagnostics
Dependencies:	_

Supporting	_
Material:	

[SRS_Eth_00181] Access to hardware internal configuration

Status: DRAFT

Γ

Description:	The Ethernet Switch Driver shall provide APIs to access hardware internal configuration.
Rationale:	To read for example the assigned MAC address of a dedicated Ethernet switch port.
Use Case:	Access to internal hardware configuration (e.g. read out MAC to port mapping, read the Ethernet switch port mirroring configuration)
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00183] Support of Ethernet Switch reducing energy consumption

Status: DRAFT

Γ

Description:	The Ethernet Switch Driver shall support the handling of energy saving measures.
Rationale:	To save energy and to grant a fast start-up, the Ethernet Switch needs to be able to go on energy saving mode.
Use Case:	Put Ehernet switch hardware to low power mode in dependency of partial network requests
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00186] Ethernet Switch Frame Preemption

Status: DRAFT

Γ

Description:	The Ethernet Switch Driver shall support frame preemption for ingress and egress side.
Rationale:	Guaranteed Network Robustness and Latency for time Critical Traffic

Use Case:	_
Dependencies:	_
Supporting Material:	 [47] IEEE Std 802.1Q section "5.26 End station requirements - enhancements for frame preemption"
	section "8.6.8 Transmission selection"

4.10 SWS Ethernet State Manager (EthSM)

[SRS_Eth_00043] The Ethernet State Manager shall provide network configuration and initialization. $\ \lceil$

Description:	The Ethernet State Manager shall provide network independent configuration and initialization interface.
Rationale:	Hardware abstraction
Use Case:	Exchanging the used network shall be transparent and only be reflected by replacing the used State Manager.
Dependencies:	_
Supporting Material:	_

I

[SRS_Eth_00158] The Ethernet state manager shall trigger requested modes for Ethernet hardware with wake-up capability even if the requested mode has already been reached. \lceil

Description:	The Ethernet State Manager shall re-trigger requested modes for an Ethernet network with wake-up capability even if the requested mode has already been reached
Rationale:	An Ethernet switch network need to trigger wake-up and propagate the wake-up on the whole network to signal connected ECUs about a communication request
Use Case:	Wake-up of the Ethernet switched network, due to a PNC request.
Dependencies:	[SRS_Eth_00157]
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

[SRS_Eth_00159] The Ethernet state manager shall forward sleep requests indicated by the maintained Ethernet hardware that act as communication slaves to the responsible upper layer. \[\]

Description:	The Ethernet state manager shall forward sleep requests indicated by the maintained Ethernet hardware that act as communication slaves to the responsible upper layer
Rationale:	A communication channel that acts as a communication slave without wake-up capability could only be requested remotely (passive wake-up) by its corresponding communication master. If the used Ethernet hardware detect a sleep request, the request shall be indicated directly to the ComM
Use Case:	Ethernet communication channels which use Ethernet hardware that support of OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017) and do NOT using network management. Only single ECU which do NOT maintain an Ethernet switch could have a communication channels which act as communication slave.
Dependencies:	-
Supporting Material:	[44] OPEN ALLIANCE Sleep/Wake-up Specification Version 2.0 (Rel Feb 21, 2017)

4.11 SWS UDP Network Management (UdpNm)

[SRS_Eth_00037] The UDP Network Management shall provide an interface for transmission of network management information. \lceil

Description:	The UDP Network Management shall provide an interface to send and receive network management information over UDP.
Rationale:	Hardware abstraction
Use Case:	Exchanging the used network shall be transparent and only be reflected by replacing the used Network Management.
Dependencies:	-
Supporting Material:	_

[SRS_Eth_00075] The UDP Network Management shall at least provide the functionality of CAN NM. \crewty

Description:	The UDP Network Management shall match the functionality of CAN NM. (i.e Including optional services such as Partial Networking)
Rationale:	Bus independence
Use Case:	Replacement of CAN by Ethernet and IP

Dependencies:	_
Supporting Material:	_

4.12 SWS Service Discovery (Sd)

[SRS_Eth_00076] The APIs of the Service Discovery module shall support any protocol $\ \lceil$

Description:	The APIs of the Sd module shall encapsulate the use of any protocol on the wire.
Rationale:	The Sd functionality may be achieved with any number of different wire protocols.
Use Case:	-
Dependencies:	_
Supporting Material:	_

١

[SRS_Eth_00161] Service Provider Check [

Description:	SOME/IP-SD client shall support accepting service offer only if the IP address in this service offer's endpoint option is listed in this service instance providers ACL.
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00162] Event Subscriber Check \lceil

Description:	SOME/IP-SD server shall support accepting SubscribeEventGroup request only if the IP address in this SubscribeEventGroup's endpoint option and the source IP address of this request's message is listed in this event service instance consumers ACL.
Rationale:	_
Use Case:	-
Dependencies:	-

Supporting	_
Material:	

[SRS_Eth_00163] Method Call Request Check \lceil

Description:	SOME/IP server shall support accepting Method call request only if the source IP address of this request's message is listed in this Method service instance consumers ACL.
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00164] ACL Policy Configuration [

Description:	ACL policy enforcement enabling or disabling per service instance and ACL contents 'Remote IP address' shall be configurable.
Rationale:	-
Use Case:	-
Dependencies:	_
Supporting Material:	_

[SRS_Eth_00165] ACL Update \lceil

Description:	The IP addresses in the ACL shall be updatable at runtime per service instance.
Rationale:	_
Use Case:	_
Dependencies:	_
Supporting Material:	_

1

[SRS_Eth_00166] Security Alerts Raising \lceil

Description:	When a not-permitted access request is received and ACL security events reporting is enabled, Then SOME/IP shall raise security event SEv to IdsM.
Rationale:	_
Use Case:	_

 ∇

Dependencies:	IdsM module
Supporting Material:	

4.13 Non-Functional Requirements (Qualities)

4.13.1 SWS TCP/IP Protocol Stack

[SRS_Eth_00077] The TCP/IP stack shall be implemented as independent submodules. $\c \lceil$

Description:	The TCP/IP stack shall be implemented as independent sub-modules.
Rationale:	The TCP/IP protocol suite is too large to be implemented in a monolithic block.
Use Case:	-
Dependencies:	_
Supporting Material:	_

J

4.13.2 SWS Socket Adaptor (SoAd)

[SRS_Eth_00078] The SoAd module shall be the sole upper layer PDU interface to the TCP/IP stack \lceil

Description:	SoAd module shall be the single PDU interface to the TCP/IP stack for AUTOSAR modules.
Rationale:	Modular design Single implementations of PDU to socket transformation
Use Case:	PDU communication via Ethernet used by multiple AUTOSAR modules.
Dependencies:	-
Supporting Material:	

4.13.3 SWS Ethernet Interface (Ethlf)

[SRS_Eth_00029] Ethernet Interface shall be the single interface via the LSduR regarding the data path for all Ethernet modules to the Ethernet hardware drivers.

Description:	The Ethernet Interface shall be the single interface for all upper modules via the LSduR (e.g. TCP/IP module, EthTSyn module) to the lower layer Ethernet hardware drivers for each Ethernet controller (Ethernet Driver), Ethernet transceiver (Ethernet Transceiver Driver) and Ethernet switch (Ethernet Switch Driver).
Rationale:	Interface and interaction regarding the data path
Use Case:	Multiple software modules shall transmit and receive data via the LSduR through multiple Ethernet connections in a uniform way.
Dependencies:	-
Supporting Material:	-

١

[SRS_Eth_00030] The Ethernet Interface shall be independent of the actual hardware. $\ \lceil$

Description:	The Ethernet Interface shall provide a hardware independent interface to its upper layer modules (e.g. TCP/IP module, Ethernet State Manager).
Rationale:	Portability and reusability
Use Case:	Exchanging the used Ethernet hardware (e.g. Ethernet controller, Ethernet transceiver (PHY), Ethernet switch) shall be transparent and only be reflected by replacing the used driver.
Dependencies:	_
Supporting Material:	_

1

4.13.4 SWS Ethernet Driver (Eth)

[SRS_Eth_00034] An Ethernet Driver shall offer a hardware independent interface. \lceil

Description:	An Ethernet Driver shall offer a hardware independent interface for all Ethernet controllers of the same type
Rationale:	Hardware abstraction
Use Case:	Exchanging the used Ethernet controller shall be transparent and only be reflected by replacing the used driver.

Dependencies:	_
Supporting Material:	_

4.13.5 SWS Wireless Ethernet Driver (WEth)

[SRS_Eth_00192] Wireless Ethernet Driver hardware independent interface

Status: DRAFT

Γ

Description:	A Wireless Ethernet Driver shall offer a hardware independent interface for all Ethernet controllers for wireless communication of the same type.
Rationale:	Hardware abstraction
Use Case:	Exchanging the used Ethernet controller for wireless communication shall be transparent and only be reflected by replacing the used driver.
Dependencies:	_
Supporting Material:	_

4.13.6 SWS Ethernet Transceiver Driver (EthTrcv)

[SRS_Eth_00038] An Ethernet Transceiver Driver shall offer a hardware independent interface. $\ \lceil$

Description:	An Ethernet Transceiver Driver shall offer a hardware independent interface for all Ethernet transceivers of the same type
Rationale:	Hardware abstraction
Use Case:	Exchanging the used Ethernet transceiver shall be transparent and only be reflected by replacing the used driver.
Dependencies:	_
Supporting Material:	_

4.13.7 SWS Ethernet State Manager (EthSM)

[SRS_Eth_00041] An Ethernet State Manager shall offer network independent state handling $\ \lceil$

Description:	An Ethernet State Manager shall offer network independent state handling. - Uninitialized - No Communication - Full Communication
Rationale:	Hardware abstraction
Use Case:	Exchanging the used network shall be transparent and only be reflected by replacing the used State Manager.
Dependencies:	_
Supporting Material:	

4.13.8 SWS UDP Network Management (UdpNm)

[SRS_Eth_00042] A UDP Network Management shall offer network independent interface. $\ \lceil$

Description:	A UDP Network Management shall offer network independent interface
Rationale:	Hardware abstraction
Use Case:	Exchanging the used network shall be transparent and only be reflected by replacing the used Network Management.
Dependencies:	_
Supporting Material:	_

5 References

- [1] Standardization Template
 AUTOSAR FO TPS StandardizationTemplate
- [2] Glossary
 AUTOSAR FO TR Glossary
- [3] Standard for Information Technology–Portable Operating System Interface (POSIX(R)) Base Specifications, Issue 7 http://pubs.opengroup.org/onlinepubs/9699919799/
- [4] ISO 13400-2:2019 Road vehicles Diagnostic communication over Internet Protocol (DoIP) Part 2: Network and transport layer requirements and services (Edition 2, Release 2019-12) https://www.iso.org/standard/74785.html
- [5] Internet Control Message Protocol https://rfc-editor.org/rfc/rfc792.txt
- [6] Transmission Control Protocol https://rfc-editor.org/rfc/rfc793.txt
- [7] Requirements for Internet Hosts Communication Layers https://rfc-editor.org/rfc/rfc1122.txt
- [8] Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification https://rfc-editor.org/rfc/rfc4443.txt
- [9] IEEE 802.1AS-2011 IEEE Standard for Local and metropolitan area networks -Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks, Rev. 2011
- [10] Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers https://rfc-editor.org/rfc/rfc2474.txt
- [11] IPv6 Flow Label Specification https://rfc-editor.org/rfc/rfc6437.txt
- [12] Internet Protocol https://rfc-editor.org/rfc/rfc791.txt
- [13] An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware https://rfc-editor.org/rfc/rfc826.txt
- [14] Dynamic Configuration of IPv4 Link-Local Addresses https://rfc-editor.org/rfc/rfc3927.txt
- [15] Internet Protocol, Version 6 (IPv6) Specification

- https://rfc-editor.org/rfc/rfc2460.txt
- [16] Deprecation of Type 0 Routing Headers in IPv6 https://rfc-editor.org/rfc/rfc5095.txt
- [17] Path MTU Discovery for IP version 6 https://rfc-editor.org/rfc/rfc1981.txt
- [18] Neighbor Discovery for IP version 6 (IPv6) https://rfc-editor.org/rfc/rfc4861.txt
- [19] IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes https://rfc-editor.org/rfc/rfc5942.txt
- [20] Optimistic Duplicate Address Detection (DAD) for IPv6 https://rfc-editor.org/rfc/rfc4429.txt
- [21] IP Version 6 Addressing Architecture https://rfc-editor.org/rfc/rfc4291.txt
- [22] Transmission of IPv6 Packets over Ethernet Networks https://rfc-editor.org/rfc/rfc2464.txt
- [23] Default Address Selection for Internet Protocol Version 6 (IPv6) https://rfc-editor.org/rfc/rfc6724.txt
- [24] Handling of Overlapping IPv6 Fragments https://rfc-editor.org/rfc/rfc5722.txt
- [25] IPv6 Stateless Address Autoconfiguration https://rfc-editor.org/rfc/rfc4862.txt
- [26] TCP Congestion Control https://rfc-editor.org/rfc/rfc5681.txt
- [27] The NewReno Modification to TCP's Fast Recovery Algorithm https://rfc-editor.org/rfc/rfc6582.txt
- [28] Congestion Control in IP/TCP Internetworks https://rfc-editor.org/rfc/rfc896.txt
- [29] The Transport Layer Security (TLS) Protocol Version 1.2 https://rfc-editor.org/rfc/rfc5246.txt
- [30] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) https://rfc-editor.org/rfc/rfc4492.txt
- [31] Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) https://rfc-editor.org/rfc/rfc4279.txt
- [32] User Datagram Protocol https://rfc-editor.org/rfc/rfc768.txt

- [33] Dynamic Host Configuration Protocol https://rfc-editor.org/rfc/rfc2131.txt
- [34] DHCP Options and BOOTP Vendor Extensions https://rfc-editor.org/rfc/rfc2132.txt
- [35] The Dynamic Host Configuration Protocol (DHCP) Client Fully Qualified Domain Name (FQDN) Option https://rfc-editor.org/rfc/rfc4702.txt
- [36] Dynamic Host Configuration Protocol for IPv6 (DHCPv6) https://rfc-editor.org/rfc/rfc3315.txt
- [37] The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN) Option https://rfc-editor.org/rfc/rfc4704.txt
- [38] DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6) https://rfc-editor.org/rfc/rfc3646.txt
- [39] RFC 4301, Security Architecture for the Internet Protocol
- [40] RFC 4302, IP Authentication Header
- [41] RFC 4303, IP Encapsulating Security Payload (ESP)
- [42] RFC 7296, Internet Key Exchange Protocol Version 2 (IKEv2)
- [43] CiA 611-1 version 1.0.0 (DSP) CAN XL higher layer functions Part 1: Definition of service data unit types http://www.can-cia.org
- [44] OPEN Sleep/Wake-up Specification for Automotive Ethernet http://www.opensig.org/Automotive-Ethernet-Specifications/
- [45] IEEE 802.1AS-2020 IEEE Standard for Local and metropolitan area networks -Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks, Rev. 2020
- [46] OPEN TC14 Interoperability and Compliance Tests for 10BASE-T1S PHYs http://www.opensig.org/Automotive-Ethernet-Specifications/
- [47] IEEE 802.1Q-2022 IEEE Standard for Local and Metropolitan Area Network Bridges and Bridged Networks https://ieeexplore.ieee.org/
- [48] IEEE 802.1CB-2017 IEEE Standard for Local and Metropolitan Area Network Frame Replication and Elimination for Reliability https://ieeexplore.ieee.org/

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been removed from the specification in a later version. These items do not appear as hyperlinks in the document.

A.1 Traceable item history of this document according to AUTOSAR Release R25-11

A.1.1 Added Requirements in R25-11

none

A.1.2 Changed Requirements in R25-11

none

A.1.3 Deleted Requirements in R25-11

none

A.2 Traceable item history of this document according to AUTOSAR Release R24-11

A.2.1 Added Requirements in R24-11

Number	Heading
[SRS_Eth_00181]	Access to hardware internal configuration
[SRS_Eth_00182]	The Ethernet Interface shall support hardware independent APIs to access hardware functionality and configuration via the Ethernet stack drivers
[SRS_Eth_00183]	Support of Ethernet Switch reducing energy consumption
[SRS_Eth_00184]	Ethernet Driver scheduler algorithm
[SRS_Eth_00185]	Ethernet Driver Frame Preemption
[SRS_Eth_00186]	Ethernet Switch Frame Preemption
[SRS_Eth_00187]	The Tcplp module shall support PDU based communication
[SRS_Eth_00188]	Ethernet Driver transmission requests with indirect data provision
[SRS_Eth_00189]	Wireless Ethernet Driver hardware supported data transfer

Number	Heading
[SRS_Eth_00190]	Wireless Ethernet Driver transmission requests with direct data provision
[SRS_Eth_00191]	Wireless Ethernet Driver transmission requests with indirect data provision
[SRS_Eth_00192]	Wireless Ethernet Driver hardware independent interface

Table A.1: Added Requirements in R24-11

A.2.2 Changed Requirements in R24-11

Number	Heading
[SRS_Eth_00021]	The DHCPv4 host name option shall be implemented according to IETF RFC 2132
[SRS_Eth_00029]	Ethernet Interface shall be the single interface via the LSduR regarding the data path for all Ethernet modules to the Ethernet hardware drivers.
[SRS_Eth_00030]	The Ethernet Interface shall be independent of the actual hardware.
[SRS_Eth_00171]	Ethernet Driver ingress and egress queues
[SRS_Eth_00177]	Ethernet Driver Transmission Selection Algorithm

Table A.2: Changed Requirements in R24-11

A.2.3 Deleted Requirements in R24-11

Number	Heading
[SRS_Eth_00024]	DoIP messages shall be bi-directionally routed
[SRS_Eth_00025]	Valid DoIP messages shall be recognized
[SRS_Eth_00026]	DoIP Vehicle Identification shall be provided
[SRS_Eth_00027]	DoIP diagnostic message shall have a format
[SRS_Eth_00028]	Multiple DoIP sockets shall be allowed on a single port
[SRS_Eth_00047]	DoIP shall be able to access the DHCP host name option.
[SRS_Eth_00080]	DoIP shall implement a mechanism to retrieve diagnostic power mode
[SRS_Eth_00081]	DoIP shall be able to dynamically maintain connection to different testers
[SRS_Eth_00082]	DoIP shall implement a mechanism to retrieve Entity Status
[SRS_Eth_00083]	DoIP shall implement a mechanism to check if diagnostic testers are alive
[SRS_Eth_00084]	DoIP shall implement routing activation mechanism
[SRS_Eth_00104]	DoIP shall support USDT and UUDT messages according to ISO 14229-5
[SRS_Eth_00140]	TLS for diagnostic communication (DoIP) shall support at least one ciphersuite as defined in ISO13400-2.

Table A.3: Deleted Requirements in R24-11

A.3 Traceable item history of this document according to **AUTOSAR Release R23-11**

A.3.1 Added Requirements in R23-11

Number	Heading
[SRS_Eth_00161]	Service Provider Check
[SRS_Eth_00162]	Event Subscriber Check
[SRS_Eth_00163]	Method Call Request Check
[SRS_Eth_00164]	ACL Policy Configuration
[SRS_Eth_00165]	ACL Update
[SRS_Eth_00166]	Security Alerts Raising
[SRS_Eth_00167]	PTP Physical Clock Adjustment
[SRS_Eth_00168]	Pulse Per Second Signal Configuration
[SRS_Eth_00169]	Ethernet Interface upper layer PDU based communication
[SRS_Eth_00170]	Ethernet Interface scheduling a subset of ingress queues
[SRS_Eth_00171]	Ethernet Driver ingress and egress queues
[SRS_Eth_00172]	Ethernet Driver hardware supported data transfer
[SRS_Eth_00173]	Ethernet Driver transmission requests with direct data provision
[SRS_Eth_00174]	Ethernet Driver ingress queue handling
[SRS_Eth_00175]	The Ethernet Interface shall support access to PTP Physical Clocks
[SRS_Eth_00176]	The Ethernet Interface shall support control of pulse per second signal generation
[SRS_Eth_00177]	Ethernet Driver Transmission Selection Algorithm
[SRS_Eth_00178]	Ethernet Switch Stream Identification
[SRS_Eth_00179]	Ethernet Switch Transmission Selection Algorithm
[SRS_Eth_00180]	Ethernet Switch port scheduling of egress queues

Table A.4: Added Requirements in R23-11

A.3.2 Changed Requirements in R23-11

Number	Heading
[SRS_Eth_00114]	Ethernet Switch Filtering and Policing
[SRS_Eth_00121]	Configuration of forwarding rules

Table A.5: Changed Requirements in R23-11

A.3.3 Deleted Requirements in R23-11

none

A.4 Traceable item history of this document according to AUTOSAR Release R22-11

A.4.1 Added Requirements in R22-11

Number	Heading
[SRS_Eth_00160]	The Ethernet Interface shall support the CAN XL driver as lower layer interface

Table A.6: Added Requirements in R22-11

A.4.2 Changed Requirements in R22-11

Number	Heading
[SRS_Eth_00134]	Configuration of ciphersuites for TLS connections
[SRS_Eth_00135]	The number of TLS connections that can be opened in parallel shall be configurable
[SRS_Eth_00136]	The size of a TLS fragment length shall be configurable
[SRS_Eth_00137]	PSK Identity to PSK mapping shall be possible using custom software.

Table A.7: Changed Requirements in R22-11

A.4.3 Deleted Requirements in R22-11

none