AUTSSAR

Requirements on Debugging,
Document Title Tracing and Profiling support of
AUTOSAR Components
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 916
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 R24-11 Release * Removal of "transient faults"
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR « Added requirements for tracing
2022-11-24 | R22-11 Release runnables, schedulables, VFB tracing
Management hooks and BSW module entries/exits.
» Added functional requirements on
Tracing
AUTOSAR
2021-11-25 | R21-11 Release » Removed some superfluous
Management requirements
* Adjusted spec items to module name
AUTOSAR
5020-11-30 | R20-11 Release . Cr:%nged document status from draft to
Management vail
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management

published

AUTSSAR

2018-10-31

4.4.0

AUTOSAR
Release
Management

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Scope of Document
2 Conventions used
3 Acronyms and abbreviations

4 Requirements Specification

4.1 Functional Overview
4.2 Functional Requirementson Tracing
4.3 Functional Requirements on ARTIl Template
4.4 Functional Requirements on ARTI Description
4.5 Functional Requirements regarding locating
4.6 Default Error Tracer (DET)

5 References

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e
A.1.1 Added Requirementsin R22-11
A.1.2 Changed Requirementsin R22-11
A.1.3 Deleted Requirementsin R22-11
A.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e
A.2.1 Added Requirementsin R23-11
A.2.2 Changed Requirementsin R23-11
A.2.3 Deleted Requirements in R23-11
A.3 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
A.3.1 Added RequirementsinR24-11
A.3.2 Changed Requirementsin R24-11
A.3.3 Deleted RequirementsinR24-11
A.4 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
A.4.1 Added Requirementsin R25-11
A.4.2 Changed Requirementsin R25-11
A.4.3 Deleted Requirementsin R25-11

12
14
17
17

21

22

AUTSSAR

1 Scope of Document

This document refines the requirements specified in Foundation [1]. It focuses on
requirements special to the Classic Platform of AUTOSAR. See also chapter "Scope

of Document” of [1].

AUTSSAR

2 Conventions used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [2, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [2, Standardization Template].

AUTSSAR

3 Acronyms and abbreviations

All acronyms and abbreviations relevant to FO_RS_DebugTraceProfile are included in
the AUTOSAR Glossary [3].

AUTSSAR

4 Requirements Specification

This chapter describes all requirements driving the work to define the ARTI extensions
in Classic Platform.

4.1 Functional Overview

This document refines the requirements specified in the Foundation [1]. It focuses on
requirements special to the Classic Platform of AUTOSAR. See also chapter "Func-
tional Overview" of [1].

4.2 Functional Requirements on Tracing

[RS_Arti_00029] AUTOSAR shall support recording timing events of application

states |
Description: AUTOSAR shall support the recording and tracing of application state changes.
Rationale: Provide a standardized way to trace timing events on application state changes

ationare: to ensure tool compatibility and compatibility to TIMEX.
Dependencies: | —
Use Case: Add a trace instrumentation to application state changes.
Supporting -
Material:

]

[RS_Arti_00030] AUTOSAR shall support recording timing events of tasks |
Description: AUTOSAR shall support the recording and tracing of task state changes.
Rationale: Provide a standardized way to trace timing events on task state changes to

GHfEz, ensure tool compatibility and compatibility to TIMEX.
Dependencies: | —
Use Case: Add a trace instrumentation to task state changes.
Supporting -
Material:

AUTSSAR

[RS_Arti_00031] AUTOSAR shall support recording timing events of category 2
interrupt states |

Description: AUTOSAR shall support the recording and tracing of category 2 interrupt state
changes.

Rationale: Provide a standardized way to trace timing events on category 2 interrupt state
glienaic, changes to ensure tool compatibility and compatibility to TIMEX.

Dependencies: | —

Use Case: Add a trace instrumentation to category 2 interrupt state changes.

Supporting -

Material:

[RS_Arti_00032] AUTOSAR shall support recording timing events of service calls
Description: é)IZthZOSAR shall support the recording and tracing of service call entries and
Rationale: Provide a standardized way to trace timing events on service call entries and

atiohaie: exits to ensure tool compatibility and compatibility to TIMEX.
Dependencies: | —
Use Case: Add a trace instrumentation to service calls.
Supporting -
Material:

[RS_Arti_00033] AUTOSAR shall support recording timing events of spinlock

states |
Description: AUTOSAR shall support the recording and tracing of spinlock state changes.
Rationale: Provide a standardized way to trace timing events on spinlock state changes to

atiohaie: ensure tool compatibility and compatibility to TIMEX.
Dependencies: | —
Use Case: Add a trace instrumentation to spinlock state changes.
Supporting -
Material:

[RS_Arti_00034] AUTOSAR shall support recording timing events of protection

hooks |
Description: AUTOSAR shall support the recording and tracing of protection hooks.
Rationale: Provide a standardized way to trace timing events on protection hooks to

atiohaie: ensure tool compatibility.
Dependencies: | —
Use Case: Add a trace instrumentation to protection hooks.

\Y%

AUTSSAR

Supporting
Material:

]

[RS_Arti_00035] AUTOSAR shall support tracing of arbitrary intervals between a

start and a stop event |

. The tracing of arbitrary intervals between a start and a stop event shall be

Description:
supported.

Rationale: Provide a standardized way to define this to ensure tool compatibility.
Dependencies: | —
Use Case: Add user defined instrumentation to software components.
Supporting -
Material:

[RS_Arti_00036] AUTOSAR shall support tracing of arbitrary intervals between a

start and several stop events |

Descrintion: The tracing of arbitrary intervals between a start and several stop events shall
ption: be supported, with the aim to provide insides to a dataflow.

Rationale: Provide a standardized way to define this to ensure tool compatibility.

Dependencies: | —

Use Case: Add user defined instrumentation to software components.

Supporting -

Material:

[RS_Arti_00037] AUTOSAR shall support tracing of arbitrary values |

Description: The tracing of arbitrary values shall be supported.
Rationale: Provide a standardized way to define this to ensure tool compatibility.
Dependencies: | —
Use Case: Add user defined instrumentation to software components.
Supporting -
Material:

|

[RS_Arti_00038] AUTOSAR shall support tracing of category 1 interrupts. |

Description:

AUTOSAR shall support the recording and tracing of category 1 interrupts.

Rationale:

Provide a standardized way to trace timing events on category 1 interrupts to
ensure tool compatibility and compatibility to TIMEX.

\Y%

AUTSSAR

JAN

Dependencies: | —

Use Case: Add a trace instrumentation to category 1 interrupts.

Supporting -

Material:
[RS_Arti_00039] AUTOSAR shall support recording timing events of runnable
entities. |

s AUTOSAR shall support recording and tracing of runnable entities state
Description:
changes.
Rationale: Provide standardized way to trace timing events on runnable entities state
L changes to ensure tool compatibility and compatibility with TIMEX.

Dependencies: | —

Use Case: Add a trace instrumentation to runnable entities state changes.

Supporting -

Material:
[RS_Arti_00040] AUTOSAR shall support recording timing events of schedulable
entities. |

s AUTOSAR shall support recording and tracing of schedulable entities state
Description:
changes.
Rationale: Provide standardized way to trace timing events on schedulable entities state
giienaic, changes to ensure tool compatibility and compatibility with TIMEX.

Dependencies: | —

Use Case: Add a trace instrumentation to schedulable entities state changes.

Supporting -

Material:
]

[RS_Arti_00041] AUTOSAR shall support recording events from the standardized

VFB tracing interface. |

AUTOSAR shall support recording events from the standardized VFB tracing

Description: .
interface.
Rationale: Provide a standarized way to support the VFB tracing interface with ARTI.
Dependencies: | [SRS_Rte 00045]
Use Case: Add ARTI trace instrumentation to VFB tracing events.
Supporting -
Material:

AUTSSAR

[RS_Arti_00042] AUTOSAR shall support tracing of entries and exits of BSW

modules. |
Description: AUTOSAR shall support recording and tracing of entry and exit events of BSW
modules.
Rationale: Provide a standardized way to trace timing events on BSW entries and exits to
ationale: ensure tool compatibility.
Dependencies: | [SRS_Rte 00045]
Use Case: Add a trace instrumentation to BSW module API functions.
Supporting -
Material:

4.3 Functional Requirements on ARTI Template

This chapter defines the requirements on the ARTI template.

[RS_Arti_00001] The ARTI template shall support core specific ARTI additions |

L The ARTI template shall define a mechanism to allow core specific ARTI
Description:
parameters.
ARTI needs core specific evaluations. The Template shall define a “class” to
Rationale: define additional parameters to cores as well as an “instance” to define values
ationale: of specific cores. The core instance shall include a reference to the core
definition in the EcuC description.
Dependencies: | —
Use Case: Debuggers and Tracing tools need specific core related information to display
se Lase: and trace the core activity.
Supporting -
Material:

]

[RS_Arti_00002] The ARTI template shall support a parameter for the current

application |

s The ARTI template shall define a parameter that contains the evaluation for the
Description: ,‘ e, ; . g
current application” that is running on a specific core.

Rationale: ARTI needs to know which application is running at a core at a specific time.
Dependencies: [RS_Arti_00001]

. Debuggers and Tracing tools need to know the current application to display
Use Case: and trace the core activity.
Supporting -
Material:

AUTSSAR

[RS_Arti_00003] The ARTI template shall support a parameter for the current

task |

s The ARTI template shall define a parameter that contains the evaluation for the

Description: ,‘ » : ; i
current task” that is running on a specific core.
Rationale: ARTI needs to know which task is running at a core at a specific time.
Dependencies: [RS_Arti_00001]
. Debuggers and Tracing tools need to know the current task to display and trace

Use Case: the core activity.
Supporting -
Material:

]

[RS_Arti_00004] The ARTI template shall support a parameter for the last error |

Description: The ARTI template shall define a parameter that contains the evaluation for the

ption: “last error” that happened on a specific core.
Rationale: ARTI needs to know which error happened at a core at a specific time.
Dependencies: [RS_Arti_00001]

. Debuggers and Tracing tools need to know the last error to display and trace

Use Case: the core activity.
Supporting -
Material:

]

[RS_Arti_00005] The ARTI template shall support OS specific ARTI additions |

s The ARTI template shall define a mechanism to allow OS specific ARTI

Description:

parameters.

ARTI needs OS specific evaluations. The Template shall define a “class” to
Rationale: define additional parameters to an OS as well as an “instance” to define values

CHEIELE, of the OS. The OS instance shall include a reference to the OS definition in the

EcuC description.

Dependencies: | —
. Debuggers and Tracing tools need specific OS related information to display

Use Case: and trace the OS activity.
Supporting -
Material:

AUTSSAR

[RS_Arti_00007] The ARTI template shall support task specific ARTI additions |

. The ARTI template shall define a mechanism to allow task specific ARTI
Description:
parameters.
ARTI needs task specific evaluations. The Template shall define a “class” to
Rationale: define additional parameters to a task as well as an “instance” to define values
UL of the task. The task instance shall include a reference to the task definition in
the EcuC description.
Dependencies: | —
. Debuggers and Tracing tools need specific task related information to display
Use Case: and trace the task activity.
Supporting -
Material:
]
[RS_Arti_00008] The ARTI template shall support SWC specific ARTI additions [
P The ARTI template shall define a mechanism to allow SWC specific ARTI
Description:
parameters.
ARTI needs SWC specific evaluations. The Template shall define an “instance”
Rationale: to define values of an SWC. The SWC instance shall include a reference to the
SWC definition in the EcuC description.
Dependencies: | —
Use Case: Debuggers and Tracing tools need specific SWC related information to display
se Lase. and trace the SWC activity.
Supporting -
Material:
J

4.4 Functional Requirements on ARTI Description

This chapter defines the requirements on the ARTI description.

[RS_Arti_00009] The ARTI description shall include a core class definition. |

s Additional parameters to a core are collected in a class definition, following the
Description:
ARTI Template.
Rationale: An ARTI consuming tool needs to know the layout of a core class used by this
ationare: implementation.
Dependencies: | —
Use Case: Evaluating the form of display for cores.
Supporting -
Material:

AUTSSAR

[RS_Arti_00011] The ARTI description for a core class shall include a “current
task” reference to the interpret the parameter value |

o A core class shall include a reference to a parameter definition that defines how
Description: o p ” :
a specific value of the “current task” parameter should be interpreted.
Rationale: An ARTI consuming tool needs to know how to interpret the values for a
ationale: “current task”, used by this implementation.
Dependencies: [RS_Arti_00009]
Use Case: Defining the display for “current task”.
Supporting -
Material:

[RS_Arti_00012] The ARTI description shall include instance definitions for all
cores of the ECU. |

Description: Additional parameter values to a core are collected in an instance definition,
ption: following the ARTI Template.

Rationale: An ARTI consuming tool needs to know how to evaluate the parameter values
ationale: of a specific core used by this implementation.

Dependencies: [RS_Arti_00009]

Use Case: Evaluating the parameter values of a core for debugging and tracing.

Supporting -

Material:

[RS_Arti_00014] The ARTI description for a core instance shall include a “current
task” reference to evaluate the parameter value |

o A core instance shall include a reference to a parameter value that defines how
Description: « ”
to evaluate value of the “current task” parameter.
Rationale: An ARTI consuming tool needs to know how to evaluate the values for a
ationale: “current task”, used by this implementation.
Dependencies: [RS_Arti_00011], [RS_Arti_00012]
Use Case: Evaluating the parameter value of “current task” of a specific core.
Supporting -
Material:
]
[RS_Arti_00016] The ARTI description shall include an OS class definition. |
Lo Additional parameters to an OS are collected in a class definition, following the
Description:
ARTI Template.
Rationale: An ARTI consuming tool needs to know the layout of an OS class used by this
ationare: implementation.
Dependencies: | —

\Y%

AUTSSAR

A
Use Case: Evaluating the form of display for cores.
Supporting -
Material:
]

[RS_Arti_00018] The ARTI description shall include an instance definition for the
OS of the ECU. |

Description: Additional parameter values to an OS are collected in an instance definition,
ption: following the ARTI Template.

Rationale: An ARTI consuming tool needs to know how to evaluate the parameter values
ationale: of a specific OS used by this implementation.

Dependencies: [RS_Arti_00016]

Use Case: Evaluating the parameter values of an OS for debugging and tracing.

Supporting -

Material:

]

[RS_Arti_00022] The ARTI description shall include a task class definition. |

L Additional parameters to a task are collected in a class definition, following the
Description:
ARTI Template.
Rationale: An ARTI consuming tool needs to know the layout of a task class used by this
ationale: implementation.
Dependencies: | —
Use Case: Evaluating the form of display for task.
Supporting -
Material:

]

[RS_Arti_00023] The ARTI description shall include instance definitions for all

tasks of the ECU. |

Description: Additional parameter values to a task are collected in an instance definition,
ption: following the ARTI Template.

Rationale: An ARTI consuming tool needs to know how to evaluate the parameter values
ationaie: of a specific task used by this implementation.

Dependencies: [RS_Arti_00022]

Use Case: Evaluating the parameter values of a task for debugging and tracing.

Supporting -

Material:

AUTSSAR

[RS_Arti_00025] The ARTI description shall include instance definitions for all
SWCs of the ECU. |

Description: Additional parameter values to an SWC are collected in an instance definition,
ption: following the ARTI Template.

Rationale: An ARTI consuming tool needs to know how to evaluate the parameter values
ationale: of a specific SWC used by this implementation.

Dependencies: | -

Use Case: Evaluating the parameter values of an SWC for debugging and tracing.

Supporting -

Material:

4.5 Functional Requirements regarding locating

The requirements in this section are related to how code is located in the ECU memory.

[RS_Arti_00028] Grouping of Traceables |

o The locating process shall allow grouping of traceable functions to be located in
Description: .
the same memory region.
Many processors support instruction tracing (“program flow trace”) without any
software instrumentation. Tracing everything consumes high band-width and
trace memory, whereas the user usually only is interested in a subset of
. functions. Most processors allow efficient tracing on a function level as long as
Rationale: the functions to trace are located in the same memory region (in which no other
function must be located). Runnables and task bodies are implemented as
functions, so by offering a way to group all functions of interest into memory
regions of their own, AUTOSAR supports such efficient non-intrusive tracing.
Dependencies: | —
Use Case: -
Supporting -
Material:

4.6 Default Error Tracer (DET)

[RS_Arti_04090] A configurable list of error report receivers shall be provided |

s The Default Error Tracer shall support a configurable list of functions for fan-out
Description: . .
of received error reports. This list can be empty.
Rationale: This implements the debugging concept in R4.0 (Documentid 298).

\Y

AUTSSAR

A
Use Case: Even development errors shall be captured by the Log and Trace functionality.
se Lase: Error Handling shall be enabled to react on development errors
AppliesTo: CP
Dependencies: | —
Supporting -
Material:

]

[RS_Arti_04086] Report errors shall contain a dedicated set of information |

Error reports, which the Default Error Tracer receives, shall consist of the ID of

Description: the reporting module, the ID of reporting instance, the ID of the API service in
which the error has been detected and the error ID itself.

Rationale: For optimal support of the error tracing some tracing information is necessary.
During software development phase a BSW module has been called using

Use Case: wrong parameters. Due to communication of some tracing information the
location of the error source will be supported.

AppliesTo: CP

Dependencies: | —

Supporting -

Material:

]

[RS_Arti_04087] The Default Error Tracer shall provide a development error re-

port reception service |

Description: The Default Error Tracer shall be accessible by applications to report
ption: development error.

Rationale: It shall be possible to perform error tracing during development of applications.
During software development phase a applictaion has received an unexpected

Use Case: response by a BSW module. By generating a development error and reporting
it to the DET, configuration errors can be detected.

AppliesTo: CP

Dependencies: | —

Supporting -

Material:

]

[RS_Arti_04089] The DET module shall support fan-out of received error reports

[

Descrintion: The Default Error Tracer shall forward each received error report by calling
ption: each element of a configurable list of functions.
Rationale: This implements the debugging concept in R4.0 (Documentld 298)

\Y

AUTSSAR

A
Use Case: Even development errors shall be captured by the Log and Trace functionality.
se Lase: Error Handling shall be enabled to react on development errors
AppliesTo: CP
Dependencies: | —
Supporting -
Material:

]

[RS_Arti_04085] The Default Error Tracer shall provide an interface to receive

error reports |

o The Default Error Tracer shall provide an interface to get a development error
Description:
report.
Rationale: An interface will be needed to enable handling of development errors
During software development phase a BSW module has been called using
Use Case: wrong parameters. By generating a development error and reporting it to the
DET, configuration errors can be detected.
AppliesTo: CP
Dependencies: | —
Supporting -
Material:

]

[RS_Arti_04101] The DET module shall forward its trace events to the DLT |

The DET receives trace events from errors from the BSW and application

Description: during debugging time. If a DLT module exists, these events should be
forwarded to the DLT to collect logs and traces only in one instance.
To have an overview of all log, trace and error messages and to set all of them
in the correct context, it is important to have all these messages and events in
Rationale: one list (context). Also it is not practicable to use more than one mechanism to
report errors, logs and traces to a debugging interface. So all these sources
should be routed to the DLT.
* A debugging scenario, an application or BSW Module uses the DET
interface to trace an error
Use Case: * This error is forwarded by the DET to the DLT
» The DLT turns these events in the DLT format and sends it over the
debugging interface, together with all the other logs and traces
AppliesTo: CP
Dependencies: | —
Supporting -
Material:

AUTSSAR

[RS_Arti_04143] The Default Error Tracer shall provide an interface to receive
runtime error reports |

The Default Error Tracer shall provide an interface to get a runtime error report,
Description: issued by BSW modules. The Default Error Tracer returns to the caller in order
to allow continuation of intended program flow.
An interface will be needed to enable handling of runtime errors, caused by
Rationale: seldom occurring systematic faults. The caller will handle the error and
continue appropriate in a deterministic manner.
Use Case: CANNM_E_NET_START_IND: Reception of NM PDUs in Bus-Sleep Mode
AppliesTo: CP
Dependencies: | —
Supporting -
Material:

]

[RS_Arti_04145] The Default Error Tracer shall forward received runtime error
reports to configured integrator code |

The Default Error Tracer shall propagate all received runtime error reports
using configurable callout. The received callout return value shall be returned
Description: to the reporter of the runtime error. If no callout has been configured, a default
return value shall be provided. The Default Error Tracer returns to the caller in
order to allow continuation of intended program flow.

Integrator shall be able to recognize runtime errors and to handle in an

Rationale: appropriate manner.

Use Case: CANNM_E_NET_START_IND: Reception of NM PDUs in Bus-Sleep Mode
AppliesTo: CP

Dependencies: | —

Supporting -

Material:

AUTSSAR

5 References

[1] Requirements on Debugging, Tracing and Profiling support of AUTOSAR Compo-
nents
AUTOSAR_FO_RS_DebugTraceProfile

[2] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[3] Glossary
AUTOSAR_FO_TR_Glossary

AUTSSAR

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to
AUTOSAR Release R22-11

A.1.1 Added Requirements in R22-11

Number

Heading

[RS_Arti_00039]

AUTOSAR shall support recording timing events of runnable entities.

[RS_Arti_00040]

AUTOSAR shall support recording timing events of schedulable entities.

[RS_Arti_00041]

AUTOSAR shall support recording events from the standardized VFB tracing
interface.

[RS_Arti_00042]

AUTOSAR shall support tracing of entries and exits of BSW modules.

Table A.1: Added Requirements in R22-11

A.1.2 Changed Requirements in R22-11

none

A.1.3 Deleted Requirements in R22-11

none

A.2 Traceable item history of this document according to
AUTOSAR Release R23-11

A.2.1 Added Requirements in R23-11

none

A.2.2 Changed Requirements in R23-11

none

A.2.3 Deleted Requirements in R23-11

none

AUTSSAR

A.3 Traceable item history of this document according to
AUTOSAR Release R24-11

A.3.1 Added Requirements in R24-11

none

A.3.2 Changed Requirements in R24-11

Number Heading

[RS_Arti_00028] Grouping of Traceables

Table A.2: Changed Requirements in R24-11

A.3.3 Deleted Requirements in R24-11

Number Heading

[RS_Arti_04144] The Default Error Tracer shall provide an interface to receive transient fault
- - reports

[RS_Arti_04146] The Default Error Tracer shall forward received transient fault reports to
- = configured integrator code

Table A.3: Deleted Requirements in R24-11

A.4 Traceable item history of this document according to
AUTOSAR Release R25-11

A.4.1 Added Requirements in R25-11

none

A.4.2 Changed Requirements in R25-11

none

A.4.3 Deleted Requirements in R25-11

none

	1 Scope of Document
	2 Conventions used
	3 Acronyms and abbreviations
	4 Requirements Specification
	4.1 Functional Overview
	4.2 Functional Requirements on Tracing
	4.3 Functional Requirements on ARTI Template
	4.4 Functional Requirements on ARTI Description
	4.5 Functional Requirements regarding locating
	4.6 Default Error Tracer (DET)

	5 References
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R22-11
	A.1.1 Added Requirements in R22-11
	A.1.2 Changed Requirements in R22-11
	A.1.3 Deleted Requirements in R22-11

	A.2 Traceable item history of this document according to AUTOSAR Release R23-11
	A.2.1 Added Requirements in R23-11
	A.2.2 Changed Requirements in R23-11
	A.2.3 Deleted Requirements in R23-11

	A.3 Traceable item history of this document according to AUTOSAR Release R24-11
	A.3.1 Added Requirements in R24-11
	A.3.2 Changed Requirements in R24-11
	A.3.3 Deleted Requirements in R24-11

	A.4 Traceable item history of this document according to AUTOSAR Release R25-11
	A.4.1 Added Requirements in R25-11
	A.4.2 Changed Requirements in R25-11
	A.4.3 Deleted Requirements in R25-11

