AUTSSAR

Document Title Requirements on Core Test
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 258

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date

Release

Changed by

Description

2025-11-27

R25-11

AUTOSAR
Release
Management

* No content changes

2024-11-27

R24-11

AUTOSAR
Release
Management

* No content changes

2023-11-23

R23-11

AUTOSAR
Release
Management

* No content changes

2022-11-24

R22-11

AUTOSAR
Release
Management

* No content changes

2021-11-25

R21-11

AUTOSAR
Release
Management

* No content changes

2020-11-30

R20-11

AUTOSAR
Release
Management

* No content changes

2019-11-28

R19-11

AUTOSAR
Release
Management

* No content changes

» Changed Document Status from Final to
published

2018-10-31

4.4.0

AUTOSAR
Release
Management

« Editorial changes

2017-12-08

4.3.1

AUTOSAR
Release
Management

« Editorial changes

AUTSSAR

AUTOSAR
2016-11-30 | 4.3.0 Release « Editorial changes
Management
AUTOSAR
2014-10-31 4.2.1 Release « Editorial changes
Management
AUTOSAR « Editorial changes
2013-10-31 | 412 | Release + Renamed "RS_BSWAndRTEFeatures"
Management into "RS_Features"
» Formal update of the document template
2013-03-15 | 4.1.1 AUTOSAR + Add traceability to features
Administration
» Clarification of one requirement
» Added a new requirement for foreground
2011-12-22 | 4.0.3 AUTOSAR test
Administration
* Clarification of some requirements
2010-09-30 | 3.1.5 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Scope of Document
2 Conventions to be used
3 Acronyms and abbreviations

4 Requirements Specification

4.1 Functional Overview e
411 DefinitionofCore.
4.1.2 Multicore Support
4.1.3 Architectural Prerequisites oL,

4.1.3.1 Resource Allocation
4132 TestConcept
41.3.3 Limitations

4.2 Functional Requirements o
421 Configuration
422 Normal Operation
423 Initialisation
4.2.4 Shutdown Operation

4.3 Non-Functional Requirements (Qualities)

5 References

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
A.1.1 Added Requirementsin R25-11
A.1.2 Changed Requirementsin R25-11
A.1.3 Deleted Requirements in R25-11

10
11
11
11
12
12
12
13
20
21
21

23
24

AUTSSAR

1 Scope of Document

This document defines general rules and requirements for Core Test specification in
AUTOSAR. It shall be used as a basis for each requirements document.

Care has been taken to insure consistency between the Core test, RAM test and Flash
test SRS documents.

AUTSSAR

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [1, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [1, Standardization Template].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as follows.

Note that the requirement level of the document in which they are used modifies the
force of these words.

« MUST: This word, or the adjective "LEGALLY REQUIRED", means that the defi-
nition is an absolute requirement of the specification due to legal issues.

* MUST NOQOT: This phrase, or the phrase "MUST NOT", means that the definition
is an absolute prohibition of the specification due to legal issues.

« SHALL: This phrase, or the adjective "REQUIRED", means that the definition is
an absolute requirement of the specification.

« SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

« SHOULD: This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

« SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with
this label.

* MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item.

An implementation, which does not include a particular option, SHALL be prepared
to interoperate with another implementation, which does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which does
include a particular option, SHALL be prepared to interoperate with another implemen-
tation, which does not include the option (except, of course, for the feature the option
provides).

AUTSSAR

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to CoreTest that are
not included in the AUTOSAR Glossary [2].

Abbreviation / Acronym: Description:

CPU Central Processing Unit

MPU Memory Protection Unit

L1 18! level memory

L2 2nd level memory

MCU Microcontroller Unit

BIST Built in Self Test

IRQ Interrupt Request

Core A CPU plus closely located functional resources

Atomic sequence/ atomic part

Sequence of software code execution which must not be interrupted at any time

Partial test A partial test is defined as the test of one or more ’hardware resources’. (A
partial test is interruptible because it is executed in background mode).
PCB Printed Circuit Board

External device

A physical external entity; e.g. a second microcontroller

Resource A core internal unit which executes a unique functionality (e.g. IRQ-controller)
Checksum/ A numerical representation of the result of a test execution or atomic sequence of
signature a test execution.

Caller/calling entity

The caller/calling entity is located on a higher AUTOSAR or ISO layer. It is the
user of the API call.

Table 3.1: Acronyms and abbreviations used in the scope of this Document

Term:

Description:

Background test

Background test is called periodically by a SW-scheduler.

Foreground test

Foreground test is called via users call.

Golden (Ref.) Value

Reference value used for comparison (e.g. Checksum/Signature)

Good Case

The execution finished without reporting an error

Table 3.2: Terms used in the scope of this Document

As this is a document from professionals for professionals, all other terms are expected

to be known.

AUTSSAR

4 Requirements Specification

This chapter describes all requirements driving the work to define the CoreTest.

4.1 Functional Overview

This module describes the requirements for an API specifying test cases in accordance
with the automotive norm. It covers periodic as well as start-up tests. This is meant
to be integrated in the overall safety concept and will not give the required diagnostic
coverage on its own.

The test may be run in background or foreground mode.

In background mode the test is called periodically by a scheduler, and is interruptible
on completion of the current atomic sequence which is a part of the core test. One
complete test may consist of many atomic sequences which test functionality of
the core entities. This complete test is split up over many atomic test parts to take
care of real time operating system requirements in case of scheduling of tasks.

In foreground mode the tests can be used to test the whole core functionality or se-
lected blocks, e.g. prior to running a critical task.

It shall be allowed to cancel the background mode and start a foreground mode. It shall
not be possible to have both modes being executed at the same time. If a background
task is running and a foreground task is requested, the background task should be
cancelled (e.g. at the end of an atomic sequence) before calling the foreground task.

The complete test consists of 2 steps:

1. Run dedicated instruction sequences to stimulate gates and flops and compute a
checksum/signature as the result representation.

2. Provides compared checksum/signature - or - Compare computed checksum
with reference value ("Golden reference value") and decides whether the test
is passed or failed - or - stores computed checksum and provide it on demand to
an external caller.

The test computes both steps and returns pass/fail status, or just computes the check-
sum and provide a notification of completion to the calling entity. This is to allow a
higher degree of flexibility in the implementation of test and supervision concepts.

The caller can also be a software component running on a different CPU or an external
device.

4.1.1 Definition of Core

The Core is defined as the central processing unit (CPU), all dedicated memory and
bus interfaces (TCM, L1, L2 cache, system bus, etc.) and all dedicated supporting

AUTSSAR

functionality (e.g. interrupt controller, debug, etc.). Throughout this document the ex-
pression ‘Core’ is used for referencing to this definition. A very generic block diagram is

shown below. Cores which implement more than one generic CPU should have more
than one core test entity.

v Y

Interrupt

Debug interface
controller

A
Y
\

Tighty Coupled |
CPU -

Interface(s)

Instruction Data
Cache MPU Cache

Bus

Interfrfce(s) CORE

Figure 4.1

System

The requirements are derived from the automotive standards. Busses have to be tested
including arbitration, MMU/MPU, caches, tightly coupled memories, general purpose

and dedicated registers, numerical execution units, including address generation and
interrupts plus exception handling.

The corresponding tests are listed in the automotive standard. APIs are foreseen for
techniques defined as test by the automotive standard, with exception of boundary
scan test which will not be in the scope of this document.

AUTSSAR

Not covered are permanent monitoring techniques nor redundant hardware techniques
(e.g. lock-step CPU). If present and requiring software support, they may have to be
addressed by MCAL complex drivers.

Note: The Core test initiates diagnostic events only. It shall be used to detect static
hardware errors at runtime. Transient faults and intermittent faults are not covered and
cannot be detected by dedicated test-software support.

Note: A Core test reports errors in all dedicated memory and bus interfaces (TCM, L1,
L2 cache, system bus, etc.) and all dedicated supporting functionality (e.g. interrupt
controller, debug, etc.) to the diagnostic event manager (DEM) [3]. For the CPU (e.g.
ALU, Prefetch queue) inside a core - only a successful execution of a test or an atomic
part of the test ("Good case") can be reported. The errors cases for the CPU inside the
core cannot be reliably reported to DEM. Events at DEM have to be defined accord-
ingly. Results/errors are reported though the DEM API (BSW, Dem_SetEventStatus()

).

Note: The Core test implementation shall be focused to test the core itself with no
interference to the application implementation itself. Anyhow some performance and
timing effort shall be considered due to core test computation needs. Anyhow, this
needs to be handled by upper entities/layers as seen relative to the Core test driver
executing on lower layers or any caller of MCAL core test driver and therefore is out of
scope of a driver implementation.

4.1.2 Multicore Support

It shall be possible to execute a Core test on every equal instance of a core inside a
silicon device. The Core test itself and the APl do not have to be aware of the system
architecture itself due to its fact of being a driver located on lower AUTOSAR layers [4].

Additionally a Core test have not to be aware of the number of cores which co-exist
in the overall system architecture and is only focused on one single core entity (i.e. if
there are multi-cores, then the user-application has to schedule multiple entities of the
same test for each core).

Therefore there has to be a clear distinction between the expressions 'Multi-
microcontroller’ and 'multi-core’. Multi-Microcontroller system designs are out of scope
of a core test and its driver API due to the nature of being a driver and a driver API.

Au-r@ SAR Requirements on Core Test

AUTOSAR CP R25-11

Interrupt Interrupt
controller controller

Cache Cache
stel System
u: Bus
Interface (s) Interface (s)

Peripheral & 1/O Interfaces etc.

Instruction Instruction MPU

Figure 4.2

As a summary, the core test is a local MCAL driver and as such it has no horizontal
view to the system architecture design as well as to other microcontrollers or upper
layer services.

4.1.3 Architectural Prerequisites
4.1.3.1 Resource Allocation

There is no resource managing entity available in AUTOSAR upper layers (e.g. 1ISO
7-layer model - session management). It is necessary to temporarily free a local core
resource (e.g. IRQ controller) from application usage to avoid unwanted behavior and
interference between test and application during runtime. There is no managing entity
available within AUTOSAR architecture to actively handle this requirement prior starting
to execute a core test (Feb/2008, R3.0). An MCAL driver cannot handle resource
management due to its state of being a driver located in lower AUTOSAR layers. The
ECU state manager [5] might be extended to handle this as an additional state or mode.

4.1.3.2 Test Concept

Today AUTOSAR does not support runtime testing; therefore no test managing entity
is available in AUTOSAR upper layers. Due to the intentionally missing ability of an

11 of 24 Document ID 258: AUTOSAR_CP_RS CoreTest

AUTSSAR

MCAL driver to directly access test results being executed on other cores (e.g. Multi-
microcontroller systems), a test managing entity is needed in upper AUTOSAR layers
architecture [4] to handle test result processing (local, external) and related reactions
of the overall system architecture.

4.1.3.3 Limitations

Due to 4.1.3.1 and 4.1.3.2, a Core test implementation might be limited to be executed
during power-up/start-up time where core resources are not shared among different
active application tasks or entities (e.g. IRQ-controller, DMA) -OR- might be limited to
test resources with are not shared during runtime (e.g. CPU itself).

4.2 Functional Requirements

4.2.1 Configuration

[SRS_CoreTst_14101] The Core Test Shall Be Configurable |

e The Core functionality to be tested and the atomic tests to be run shall be
Description: .
configurable.
The new Cores are highly configurable at synthesis. Caches, MPU, Tightly
Rationale: Coupled Memories/Internal Memories and other functionality is implementation
ationale- specific and optional/configurable. The tests need to reflect the configuration of
the Core on which they will be finally executed
Use Case: Reuse same test software with different versions of core and select
se Lase: configuration.
Dependencies: | —
Supporting -
Material:
[SRS_CoreTst_14102] Link Time Configuration Shall Be Supported |
Description: The Core functionality to be tested and the atomic tests to be run shall be
p ’ configured at link time by object libraries
The core test shall be available as object library. No runtime (post build)
Rationale: configuration is required as core functionality is fixed and not dependent on
software variants and use cases.
Use Case: Reuse same test software with different versions of core and select
se Lase: configuration.
Dependencies: | —
Supporting -
Material:

AUTSSAR

4.2.2 Normal Operation

[SRS_CoreTst_14104] Core Register Test Shall Be Available |

Description:

Shall support test according the automotive standard.

Rationale:

The automotive standard requires testing of all critical Core components.

Use Case:

Part of Core test strategy to detect failures of the Core.

Dependencies:

Supporting
Material:

]

[SRS_CoreTst_14105] Core Interrupt and Exception Detection Tests Shall Be

Available |

Description:

Shall support test according to the automotive standard.

Rationale:

The automotive standard requires testing of all critical Core components

Use Case:

Dependencies:

Supporting
Material:

]

[SRS_CoreTst_14106] Core ALU Test Shall Be Available |

Description: Shall support test of ‘coding and execution including flag registers’ as
ption: suggested by the automotive standard.

Rationale: The automotive standard requires testing of all critical Core components.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_CoreTst_14107] Core Address Generator Test Shall Be Available |

Description: Shall support test of ‘address generation’ as suggested by the automotive
standard

Rationale: The automotive standard requires testing of all critical Core components

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_CoreTst_14108] Core Memory Interfaces Test Shall Be Available |

Description: Shall support Bus test as suggested by the automotive standard
Rationale: The automotive standard requires testing of all critical Core components

Use Case: -
Dependencies: | —

Supporting -
Material:

]

[SRS_CoreTst_14109] Memory Management/Protection Unit (MMU/MPU) Test
Shall Be Available |

Description: Shall support MMU/MPU test as suggested by the automotive standard.
Rationale: the automotive standard requires testing of all critical Core components.
Use Case: -
Dependencies: | —
Supporting -
Material:
J
[SRS_CoreTst_14110] Cache Controller Test Shall Be Available |
Description: Shall support Bus test as suggested by the automotive standard.
The automotive standard requires testing of all critical Core components.
Rationale: Cache controller, although not explicitly covered by the automotive standard is
a standard component of the Core.
Use Case: -
Dependencies: | —
Supporting -
Material:

]
[SRS_CoreTst_14111] The Core Test Shall Be Divided into Atomic Sequences |

The Core test module shall be divided into a sequence of atomic tests. The
execution time as well as the code length of an atomic test shall be as short as
practically feasible. The implementer shall provide the runtime in number of
cycles.

In order not to corrupt the state a Core test, it cannot be interrupted and
resumed and will have to run to completion of at least a single atomic
Rationale: sequence. To avoid increasing the interrupt latency beyond acceptable levels,
the different building blocks of a Core shall be tested separately in individual
atomic tests.

Use Case: -

Dependencies: | —

Description:

AUTSSAR

Supporting
Material:

]

[SRS_CoreTst_14112] There Shall Be a Single API for the Core Test Service |

Description: There shall be a single API calling the atomic Core tests in sequence. The
ption: implementer shall state the sequence and dependencies if required.
, . Ease of implementation: single entry point for multiple tests (expected to be to
Rationale: most common use)
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_CoreTst_14113] The API Shall Have a Parameter to Select Which Compo-
nent Shall Be Tested |

There shall be a parameter to select which component of the core to test.
The following components shall be testable separately e.g.:
* CPU a as whole
Description: External and annex modules to the CPU like e.g. cache, MPU, interrupt
controller individually
Any kind of combination of tests can be selected, but a least one test have to
be selected as a minimum.
Rationale: -
OS can test components individually prior to re-initialisation or mode change or
Use Case: all available Core component tests in a one go sequence during start up
phase/time.
Dependencies: [SRS_CoreTst_14112]
Supporting -
Material:

]

[SRS_CoreTst_14114] A Main Function for the Core Test Shall Be Available |

Description:

There shall be a main-processing function for the Core Test (which has a
different meaning compared to the main() function call in a C-language
representation). Though the main function the test sequence can be executed
without any handling overhead of the Core test execution internals by the
application.

Rationale:

The Core test may be called by the BSW scheduler in background mode.

Use Case:

Cyclic background core test.

\Y

AUTSSAR

Dependencies:

Supporting
Material:

]

[SRS_CoreTst_14115] Test Metrics Shall Be Available to Caller |

The checksum result of each partial test shall be stored in an internal variable.
Description: This variable hold the last result for the call to read out, no history buffer is
foreseen.
The caller will compare with a golden value’ and decide whether the test is
Rationale: passed or failed, The caller could be a SW component running on the tested, a
separate on chip CPU or an external device.
Having the detailed results for each part of the core will allow a higher flexibility
Use Case: in the implementation of recovery mechanisms. E.g. if the MPU is detected to
se Lase: be faulted, the OS could run in an unprotected mode, if the cache is faulty, the
system could run with reduced performance and functionality, etc.
Dependencies: | —
Supporting -
Material:

]

[SRS_CoreTst_14116] A Service shall be provided which returns a checksum/sig-
nature as test result |

The test first computes a checksum/signature as test result representation. The

Description: comparison with the golden reference value to decide whether it is passed or
failed is left over to an external/higher entity.

Rationale: This service is needed because the check of a pass or fail criteria shall be done

GHIIELE, from a different entity.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_CoreTst_14131] A Service shall be provided which returns a Pass/Fail Sta-
tus Representation as a test result |

The test first computes an algorithm to test the core module and then compares

Description: the test result with the golden reference value to decide whether it is passed or
failed. The representation value for ’pass’ or ‘fail’ is returned to the calling entity.

Rationale: Provide a different reporting method for smaller ECU systems.

Use Case: -

Dependencies: | —

AUTSSAR

Supporting
Material:

]

[SRS_CoreTst_14117] Faults Shall Be Treated as Production Errors |

The Core test module shall report detected faults inside the core to the DEM

Description: except faults detected inside the CPU itself (e.g. ALU, MAC, Registers etc.)
which cannot be reliably reported.

Rationale: React and reconfigure system according to resource availability.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_CoreTst_14118] The results of the Core test module shall be provided to
the user |

The results of the Core test module shall be provided to the user. User shall

D Lo have the possibility to get the status of the Core test at any time. This shall be

escription:

implemented as a get-status-interface and shall be configurable during compile
time. This function shall be optional.

Rationale: Consistency with RAM test

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_CoreTst_14119] A Notification of Completion Shall Be Provided |

Description:

The system or caller shall be notified the test has run to completion.

Rationale:

See description of core test usage in section 5.1

Use Case:

Dependencies:

Supporting
Material:

AUTSSAR

[SRS_CoreTst_14126] It Shall Be Possible to Cancel a Running Test |

Description: It shall be possible to stop the test after completion of current atomic sequence.
Requirement for stopping the service from running due to change running

Rationale: mode. If you change the ECU mode it should be possible to stop the running
coretest by software.
It shall be allowed to cancel the background mode and start a foreground
mode. It shall not be possible to have both modes being executed at the same

Use Case: time. If a background task is running and a foreground task is requested, the
background task should be cancelled (e.g. at the end of an atomic sequence)
before calling the foreground task.

Dependencies: | —

Supporting -

Material:

]

[SRS_CoreTst_14130] Destructive Test Shall Restore Original State of tested En-

tity |
Description: A core.test shall restore the state of the tested entity as it was before the test
execution was started.
Rationale: In case of destructive tests, values will be modified during core test and this will
atlonate: cause interference with the application.
Use Case: E.g. test of core register set or interrupt controller configuration
Dependencies: | —
Supporting -
Material:

]

[SRS_CoreTst_14133] Each Core Test interval shall have an identifier |

Each Core Test interval shall have an identifier which shall be incremented by

Descriotion: each start of a new test interval in background mode. This value of the Core

p ’ Test interval shall be provided to upper layers. The end value of the identifier

shall be configurable.

Rationale: Assign test result or test signature to a test interval on order to monitor test flow

ationale: from upper software layers.

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_CoreTst_14134] A Foreground Core Test Shall be Available (open) [

Description: A service shall be available to test a core entity in foreground mode.
Rationale: Test core entity during start-up phase.

ationaie: Test core entity before critical operations or core-mode changes
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_CoreTst_14128] Core Test shall Not Interfere With the Application (re-

jected) |
A core test shall be independently implemented from the application running on
Description: the core. The Core test implementation shall be focused to test the Core itself
P ’ with no modification to the application task. Timing influences to the application
shall be considered due to core test computation effort and scheduling.
The core test shall be transparent to the application. A core test has to be
Rationale: provided by the core designer due to very specific test algorithms and complex
core structures.
. Testing of the core functionality during run time operation in foreground or
Use Case: background mode.
Dependencies: [SRS_CoreTst_14121], [SRS_CoreTst_14123]
Supporting -
Material:

]

[SRS_CoreTst_14129] Multimicrocontroller Support (rejected) |

Both ECUs supervise each other either themselves or by a third external
decision-making unit.

Description: If there is more than one Core implemented on an ECU, the calling application
or the calling OS shall be able to assign core test to a certain core within the
ECU. Core test explicitly does no core assignment.

Rationale: Applications which require enhanced safety and/or high data throughput.

Use Case: Testing of ECUs during run time operation.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_CoreTst_14127] The Test Shall Have the Ability to Request a Checksum
From An External Entity (rejected) |

The checksum result of an atomic test executed on an external entity shall be
requested. This received checksum shall be compared to the internally

Description: processed checksum. There is no history buffer foreseen for received
checksums.
The core will compare a received checksum with its own final core test result
, and therefore will be able to decide whether its own test is passed or failed.
Rationale:

The external checksum providing entity could be a SW component running on a
separate CPU, a monitoring MCU or just an external storage device.

WPII-1.3 "Multi-Microcontroller Support" document proposes a flexible
Use Case: architecture approach where all scales of external monitoring from a simple
watchdog until dual core MCU architectures are covered.

Dependencies: | —

Supporting WPII-1.3, "Multi-Microcontroller Support" document, V1.0, sept/26/2007
Material:

4.2.3 Initialisation

[SRS CoreTst _14103] An init Function for the Core Test Shall Be Available (re-
jected) [

Shall support test according to the automotive standard.
* Select a dedicated test coverage level
B AU * Activate dedicated diagnostic hardware (if available)

« Activate Core internal test and diagnostic modes (if available)

For high coverage levels a hardware support is likely to be needed to achieve
Rationale: related test coverage requirements. An APl is needed to initialise the dedicated
diagnostic hardware (if available)

Dependencies: | —

Supporting -
Material:

AUTSSAR

4.2.4 Shutdown Operation

[SRS_ CoreTst _14120] A Delnit Function for the Core Test Shall Be Available (re-

jected) [
« Stop dedicated diagnostic hardware (if available)
Description: . . . _ . _
« Disable Core internal test and diagnostic modes (if available)
Rationale: For the automotive standard additional hardware support is likely to be needed.
RS An API is needed to reset the dedicated diagnostic hardware.
Use Case: -
Dependencies: | —
Supporting -
Material:

4.3 Non-Functional Requirements (Qualities)

[SRS_CoreTst_14123] Shared Resources to Be Tested Shall Be Made Exclusively
Available to Test |

A mechanism for requesting and releasing shared resources in multi master

Descriotion: systems shall be available. The caller has to handle the state of the shared

P ’ resource. Saving/restoring the state prior to the call to APl in NOT handled by

the test itself, but rather a task of the caller.
In Cores some resources such as tightly coupled memory interfaces are shared
with external masters, e.g. DMA. These shared resources need to be made

Rationale: exclusively available for testing purposes. The test can then freely manipulate
them, e.g. change to test mode if supported, etc. without conflicting with the
rest of the application.

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_CoreTst_14121] Timing Requirements (rejected) [

Description: Test duration of a Core test software
Run time execution of a Core test is identified a vital requirement and therefore
Rationale: will be a debug event during development phase.
ationale: Maximum execution time shall not be exceeded to avoid conflicts with OS
and/or application software as well as Core performance requirements.
Use Case: -
Dependencies: | —

AUTSSAR

Supporting
Material:

]

[SRS_CoreTst_14122] An Interface to the DET shall be Available (rejected) |

Description: The Core test shall provide an interface to the DET for monitoring critical
ption: parameters during development.

Rationale: Critical parameter such as timing budget overrun, or test in progress, should be
ationale: monitored during development.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_CoreTst_14125] Diagnostic Coverage (rejected) |

Diagnostic coverage of 60%, 90% and 99% shall be proven; the diagnostic
coverage refers to the Core. In addition, transient and intermittent errors will

Description: have to be detected.

ption: It is questionable whether coverage levels higher than 60% can be achieved in

SW only, without support of dedicated additional Core test hardware; a software
test would not catch the faults as required by the fault model for 90% and 99%.

Rationale: Mandated by the automotive standard

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_CoreTst_14124] The implementation of the Core test shall have to comply
with the IEC61508 (rejected) |

The implementation of the Core test will have to comply with the IEC61508

Description: Software Requirements to achieve certification. This affects both the
development process and the programming techniques.

Rationale: Mandated by IEC61508

Use Case: -

Dependencies: | —

Supporting BRF 00001 - 00100 (ID)

Material:

]

Note: Questionable whether sufficient test coverage levels can be achieved in SW
only, without support of dedicated additional Core test hardware; a software test would
not catch the all faults as required by common fault models (e.g. transient faults).

AUTSSAR

5 References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[5] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

A.1.1 Added Requirements in R25-11

none

A.1.2 Changed Requirements in R25-11

none

A.1.3 Deleted Requirements in R25-11

none

	1 Scope of Document
	2 Conventions to be used
	3 Acronyms and abbreviations
	4 Requirements Specification
	4.1 Functional Overview
	4.1.1 Definition of Core
	4.1.2 Multicore Support
	4.1.3 Architectural Prerequisites
	4.1.3.1 Resource Allocation
	4.1.3.2 Test Concept
	4.1.3.3 Limitations

	4.2 Functional Requirements
	4.2.1 Configuration
	4.2.2 Normal Operation
	4.2.3 Initialisation
	4.2.4 Shutdown Operation

	4.3 Non-Functional Requirements (Qualities)

	5 References
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Requirements in R25-11
	A.1.2 Changed Requirements in R25-11
	A.1.3 Deleted Requirements in R25-11

