AUTSSAR

Document Title

Requirements on CAN

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1

Document Status published

Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Transmission request queue for TP
channels
AUTOSAR * Remove obsolet requirements
2025-11-27 R25-11 Release SRS Can 01002,
Management SRS _Can_01003,SRS _Can 01111
* Minor corrections / clarifications /
editorial changes
» Minor corrections / clarifications /
editorial changes
» Modified from draf to valid [SRS_Can_
02001], [SRS_Can_02002], [SRS_Can_
02003]
AUTOSAR . o
2024-11-27 | R24-11 Release * Introduced Deterministic Communication
Management with TSN
Obsolete requirements [SRS_Can_
01002], [SRS_Can_01003], [SRS_Can_
01111]
Added Requirements [SRS_Can_
02004], [SRS_Can_02005], [SRS_Can_
02006], [SRS_Can_02007]
AUTOSAR » Minor corrections / clarifications /
2023-11-23 | R23-11 Release editorial changes
Management
AUTOSAR » CanXL requirements were added
2022-11-24 | R22-11 | Release - Minor corrections / clarifications /
Management editorial changes

AUTSSAR

AUTOSAR
2020-11-30 | R20-11 Release « Editorial changes
Management
* Bus-independent solution regarding
AUTOSAR channel states upon initialization
2019-11-28 | R19-11 Release
Management » Changed Document Status from Final to
published
AUTOSAR « Added requirements for BusMirroring
2018-10-31 4.4.0 Release
Management » Removed half-duplex mode from CanTp
AUTOSAR
2016-12-08 | 4.3.1 Release « Editorial changes
Management
2016-11-30 | 4.3.0 gglzgf:ﬂ » Added method to obtain error
o e M active/passive state of a CAN
anagement
AUTOSAR + Added requirements for CAN FD support
2014-10-31 4.2.1 K{/Ielease ; » Removed requirements for transmit
anagemen cancellation
AUTOSAR * Revised DLC checks depending on
2014-03-31 | 4.1.3 Release adding configuration
Management P 9 9
» Corrected requirement for: "Do not send
AUTOSAR WUF as First Message on the Bus after
2013-10-31 | 4.1.2 Release BusOff"
Management
* Editorial changes
* Support for 29bit Mixed Addressing
» Wakeup by bus callback shall be
2013-10-15 | 4.1.1 ﬁgTOS?Rt synchronous or asynchronous
ministration depending on the hardware
» Advanced transmit buffer handling
+ Added high level requirements for partial
networking
2011-12-22 | 4.0.3 ﬁgTQ_S’:‘Rt_ - Added improvement of transmit buffer
ministration handling
* Added full duplex support
AUTOSAR * BSW01017 requirement for CAN
2011-04-15) 4.0.2 Administration polling/interrupt mode removed

AUTSSAR

+ Additional requirements for transport
layer CAN

2010-09-30 | 3.1.5 AUTQ,SAR , * Requirement for remote frame support
Administration
added
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTQSAR . * Legal disclaimer revised
Administration
* "Advice for users" revised
2007-07-24 | 2.1.16 ﬁgT.O.SAR .
ministration « "Revision Information" added
2007-01-24 | 2.1.15 AUTQ.SAR . » PDF file corrections made
Administration
* Architecture design change: CAN
Transceiver Driver is now layered below
CAN Interface
20061108 | 2.1 AUTOSAR . CE));I[Enlded f1 1/29 bit Identifier support in
' Administration nterface
* Added N_SA in [SRS_Can_01069] and
[SRS_Can_01074]
* Legal disclaimer revised
* CAN Driver, CAN Interface
* Optimized timing behavior for
transmission (multiplexed transmission,
priority based transmission, transmission
cancellation)
» Support of Standard and Extended CAN
Identifiers on one network
» CAN Transport Layer
2006-05-16 | 2.0 AUTOSAR « Multiple connections mechanism,

Administration

* Support of ISO-15765-4,

» Support of Connection specific time out
values

 Support of different addressing modes in
parallel

* CAN Transceiver Driver

* Requirements for CAN Transceiver
Driver added

AUTSSAR

2005-05-31

1.0

AUTOSAR
Administration

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Scope of Document

2 How to read this document

2.1 Document Conventions
2.2 Requirements Structureo

3 Acronyms and Abbreviations
4 Functional Overview

5 Requirements Specification

5.1 Remarks to the CAN Bus Transceiver Driver
5.1.1 Explicitly uncovered CAN Bus Transceiver functionality
5.1.2 System Basis Chip and CAN Bus Transceiver Driver
5.2 Functional Requirements
5.2.1 CANDriver e
5.2.1.1 Configuration
5.2.1.2 nitialization
5.2.1.3 Normal Operation,
5.2.1.4 Shutdown Operation
5.2.1.5 FaultOperation
5.2.2 CAN Interface (Hardware Abstraction)
5.2.2.1 Configuration
5.2.2.2 Initialization
5.2.2.3 Normal Operation
5.2.2.4 Shutdown Operation
52.25 FaultOperation
52.3 CANState Manager
5.2.3.1 Configuration
5.2.3.2 Initialization
5.2.3.3 Normal Operation
5.2.3.4 Shutdown Operation
5285 FaultOperation
5.2.4 TransportLayer CAN
5.2.4.1 Configurationo
5.2.4.2 Initialization
52.43 NormalOperation
5.2.5 CANBus Transceiver Driver.,
5.2.5.1 Configuration
5.2.5.2 Initialization
5.2.5.3 Normal Operation
5.2.5.4 Shutdown Operation
5255 FaultOperation

AUTSSAR

5.3 Non-Functional Requirements (Qualities) 66
5.3.1 CANDriver e 66
5.3.2 CAN Interface (Hardware Abstraction) 67
583 CANStateManager 68
5.8.4 TransportLayer CAN 69
5.83.5 CANBus Transceiver Driver. 71

5.3.5.1 Timing Requirements 71
5.3.6 CAN Driver and Interface together 71
6 References 73
A Change history of AUTOSAR traceable items 74
A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 74
A.1.1 Added Requirementsin R25-11 74
A.1.2 Changed Requirementsin R25-11 74
A.1.3 Deleted Requirementsin R25-11 74
A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 74
A.2.1 Added Requirementsin R24-11 74
A.2.2 Changed Requirementsin R24-11 74

A.2.3 Deleted Requirementsin R24-11 74

AUTSSAR

1 Scope of Document

This document specifies the requirements for the following Basic Software Modules
(module names in brackets):

» CAN Driver (Can[1])

CAN Interface (Canlf[2])

CAN State Manager (CanSM[3])

CAN Transport Layer (CanTp[4])

CAN Bus Transceiver Driver (CanTrcv[5])

AUTSSAR

2 How to read this document

Each requirement has its unique identifier starting with the prefix "BSW" (for "Basic
Software"). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Document Conventions

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [6, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [6, Standardization Template].

2.2 Requirements Structure

Each module specific chapter contains a short functional description of the Basic Soft-
ware Module. Requirements of the same kind within each chapter are grouped under
the following headlines (where applicable):

Functional Requirements:
+ Configuration (which elements of the module need to be configurable)
* Initialization

» Normal Operation

Shutdown Operation

+ Fault Operation
Non-Functional Requirements:

+ Timing Requirements

» Resource Usage
Usability

Output for other WPs (e.g. Description Templates, Tooling,...)

AUTSSAR

3 Acronyms and Abbreviations

Acronym: Description:
CAN Communica- | Describes the complete CAN network:
tion Matrix

« Participating nodes
« Definition of all CAN PDUs (ldentifier, DLC)
» Source and Sinks for PDUs

Format is defined in other AUTOSAR workpackage

Physical Channel

A physical channel represents an interface to the CAN Network. Different
physical channels of the CAN Hardware Unit may access different networks.

L-PDU CAN (Data Link Layer) Protocol Data Unit. Consists of Identifier, DLC and
Data (L-SDU).
L-SDU CAN (Data Link Layer) Service Data Unit. Data that is transported inside the

L-PDU.

Hardware Object

A Hardware Object is defined as message buffer inside the CAN RAM of the
CAN Hardware Unit. Also often called Message Object

Hardware Object | The hardware object handle (HOH) is defined and provided by the CAN Driver.
Handle Typically each HOH represents a hardware object.
The HOH is used as parameter by the CAN Interface Layer for transmit and
read requests to the CAN Driver.
L-PDU Handle The L-PDU handle is defined and placed inside the CAN Interface Layer.

Typically each handle represents a L-PDU or a range of L-PDUs, and is a
constant structure with information for Tx/Rx processing.

CAN Controller

A CAN controller serves exactly one physical channel. See Figure "Typical
CAN HW Unit" in CAN Interface SWS.

CAN
Unit

Hardware

A CAN hardware unit may consist of one or multiple CAN controllers of the
same type and one or multiple CAN RAM areas. The CAN hardware unit is
either on-chip, or an external device. The CAN hardware unit is represented
by one CAN Driver. See Figure "Typical CAN HW Unit" in CAN Interface SWS.

Multiplexed Trans-
mission

Usage of three TX HW objects, which are represented as one transmit entity
(Hardware Object Handle) to the upper layer. Used for Outer Priority Inversion
avoidance

Inner Priority Inver-
sion

Transmission of a high-priority L-PDU is prevented by the presence of a pend-
ing low-priority L-PDU in the same physical channel.

Quter Priority In- | Occurs when a time gap is between two consecutive TX L-PDU transmissions.

version In this case a lower priority L-PDU from another node can prevent sending the
next L-PDU because the higher priority L-PDU can’t participate in the running
bus arbitration because it comes too late.

Bus A bus represents a CAN or LIN network. A bus has a given physical behavior
(e.g. CAN low-speed or high-speed). A bus may support wakeup via bus or is
"always on".

N-PDU Network Protocol Data Unit of the CAN Transport Layer

N-SDU Service Data Unit of the CAN Transport Layer. Data that is transported inside

the N-PDU.

static configuration

Configuration, that is not changeable during runtime. This means that a con-
figuration is typically done once during startup phase of the ECU.

This concern is independent from the possibilities to introduce the configu-
ration parameters into the ECU itself: Pre-Compile-Time, Link-Time or Post-
Build-Time

STmin

Separation Time min

BS

Block Size

HTH

CAN hardware transmit handle

AUTSSAR

Table 3.1: Acronyms and Abbreviations

AUTSSAR

4 Functional Overview

The CAN bus transceiver driver is responsible to handle the CAN transceivers on an
ECU according to the expected state of the bus specific NM in relation to the current
state of the whole ECU.

The transceiver is a hardware device, which mainly transforms the logical on/off signal
values of the uC ports to the bus compliant electrical levels, currents and timings.
Within an automotive environment there are mainly three different CAN physics
used. These physics are ISO11898 for high-speed CAN (up to 1Mbd), ISO11519 for
low-speed CAN (up to 125kBd). Both are regarded in AUTOSAR, whereas SAE J2411
for single-wire CAN is not. CAN FD utilizes the same CAN physic as it is used for
high-speed CAN but provide faster transmission rates.

In addition, the transceivers are often able to detect electrical malfunctions like wiring
issues, ground offsets or transmission of too long dominant signals. Depending on the
interface they flag the detected error summarized by a single port pin or very detailed
via SPI.

Some transceivers also support power supply control and wakeup via the bus. A lot
of different wakeup/sleep and power supply concepts are available on the market with
focus to best-cost optimized solution for a given task.

Latest developments are so called SystemBasisChips (SBC) where not only the CAN
and/or LIN transceivers but also power-supply control and advanced watchdogs are
implemented in one housing and are controlled via one interface (typically an SPI).

A typical CAN transceiver is the TJA1054 for a low-speed CAN bus. The same
state transition model is also used in TJA1041 (high-speed CAN with support for
wakeup via CAN) and could be transferred also to a lot of other products on the market.

Transceiver Wakeup Reason
The transceiver driver is able to store the local view on who has requested the wakeup:
bus or software.

Bus: The bus has caused the wakeup.
Internally: The wakeup has been caused by a software request to the driver.

Sleep: The transceiver is in operation mode sleep and no wakeup has been occurred.

AUTSSAR

5 Requirements Specification

5.1 Remarks to the CAN Bus Transceiver Driver

CAN bus transceivers are very different in their behavior and supported features.
The range starts with very simple CAN transceivers, which are "always on", includes
transceivers with support for advanced limp home handling and error detection and
ends with so called system basis chips (SBC) which contain internally multiple CAN
bus transceivers, watchdog, voltage regulators and more.

The size of transceiver data sheets is from few pages to more than 80 pages and the
additional application notes for the devices are nearly countless.

The target of this document is to specify interfaces and behavior, which is applicable to
most current and future CAN bus transceivers on the market for nearly all use cases. If
it could be reached that at least the "user" of the bus transceiver functionality, typically
the AUTOSAR NM and the AUTOSAR Communication Manager, are bus independent
and therefore reusable, will be great.

It will not be possible to cover all possible combinations of bus transceivers with all
conceivable power concepts within one AUTOSAR implementation.

5.1.1 Explicitly uncovered CAN Bus Transceiver functionality

Some CAN bus transceivers offer additional functionality to improve e.g. ECU self test
or enhanced error detection capability for diagnostics.

ECU self test and enhanced error detection are not defined within AUTOSAR and
requiring such functionality in general will lock out most currently used (and cheap)
transceiver devices. Therefore features like "ground shift detection”, "selective
wakeup", "slope control" and others are not supported within this requirement. A
general and "open" API like IOControl() is not applicable (and accepted) within

AUTOSAR due to portability and reuse.

5.1.2 System Basis Chip and CAN Bus Transceiver Driver

A system basis chip (SBC) contains beside the CAN bus transceivers additional hard-
ware related to power control and safety (e.g. multiple voltage regulators and a watch-
dog) and even more features (e.g. persistent memory).

In the AUTOSAR concept, a separate manager/driver/handler (in AUTOSAR called: In-
terface) is responsible for each identified hardware device. Therefore additional man-

AUTSSAR

ager/driver/handler covers the functionality inside a SBC beside the bus transceiver
driver (e.g. Watchdog Manager, non-volatile memory manager, power control driver,
...). Due to the shared communication access and the (security-related) restrictions
within this communication, independent handling of each SBC-sub-functionality will
not be possible.

This will lead to the situation that either a SBC could not be used within an AUTOSAR
compliant ECU or (the better solution) a specialized manager/driver/handler for the
SBC functionality with all APIs of each single domain has to be used.

5.2 Functional Requirements

5.2.1 CAN Driver

The CAN Driver offers uniform interfaces for the above user of this layer, the CAN
Interface. The CAN Driver hides the hardware specific properties of the related CAN
Controller as far as possible and reasonable.

For a detailed functional description and interface definition see CAN Driver Specifica-
tion [Can[1]].
5.2.1.1 Configuration

[SRS_Can_01036] The Can Driver shall support Standard Identifier and Extended
Identifier |

The CAN driver shall be able to operate with both standard and extended CAN
Identifiers on one CAN Controller if supported by CAN Hardware. Each
hardware object shall be statically and individually configurable for one of the
both identifier types if supported by CAN Hardware.

All L-PDUs sent and received over that CAN controller shall be conform this
Description: configuration.

The CAN Driver shall support reception and transmission of L-PDUs with
Standard and Extended ID, including both at the same time on one Hardware
Object.

The configuration parameters shall be allowed to be of types
Pre-Compile-Time, Link-Time or Post-Build-Time

Rationale: CAN Standard Coverage
CAN Standard allows Standard and Extended Identifier. Different projects
Use Case: might require the usage of Extended CAN IDs in addition to Standard CAN IDs

due to the lack of remaining StandardCAN IDs.
Dependencies: | [SRS_Can_01016]

Supporting -
Material:

AUTSSAR

[SRS_Can_01037] The CAN driver shall allow the static configuration of the hard-
ware reception filter |

HW supported filtering of receive L-PDUs shall be configurable. The
configuration shall be done during initialization phase. Reconfiguration during
Description: normal operation shall only be possible in STOPPED mode.
It shall be allowed for the configuration parameters to be of types Pre-Compile,
Link-Time or Post-Build
Rationale: Coverage of hardware capabilities
Use Case: CAN controller allow filtering of messages inside hardware. That reduces the
se Lase: software load caused by messages not relevant for the ECU.
Dependencies: [SRS_Can_01018]
Supporting -
Material:

]

[SRS_Can_01038] The bit timing of each CAN Controller shall be configurable [

The bit timing and thus the Baud Rate of each CAN controller served by the
CAN Driver shall be configurable
The following list describes typical attributes:
» Propagation delay
» Tseg1
Description: » Tseg2
» Samples/bit
« SJW
The configuration parameters shall be allowed to be of types
Pre-Compile-Time, Link-Time or Post-Build-Time
Rationale: CAN Standards coverage, coverage of hardware capabilities
Use Case: CAN Standard doesn’t specify one baud rate -> baud rate is project specific.
se Lase: Possible configuration of the timing parameters is hardware dependent
Dependencies: | [SRS_Can_01139]
Supporting -
Material:

]

[SRS_Can_01039] Hardware Object Handles shall be provided for the CAN Inter-
face in the static configuration file. |

All available hardware object handles shall be defined in the ECU configuration
description. The syntax of the public part shall be standardized, because that is

Description: the configuration interface to the CAN Interface
The configuration parameters shall be allowed to be of types
Pre-Compile-Time, Link-Time or Post-Build-Time

Rationale: Coverage of hardware capabilities, configuration interface to CAN Interface

Y%

AUTSSAR

A

For an optimized co-operation of software and hardware filtering and optimized
Use Case: usage of underlying hardware the CAN Interface needs to know the available
hardware resources and their configuration.

Dependencies: | [SRS_Can_01016]

Supporting -
Material:

]

[SRS_Can_01058] shall be configurable whether Multiplex Transmission is used

[

The Multiplexed Transmission feature shall be Pre-Compile-Time configurable.
Description: This feature shall only be supported if the underlying CAN Controller supports
Multiplexed Transmission

Rationale: -

Use Case: Outer priority inversion can be avoided
Dependencies: | [SRS_Can_01134]

Supporting -

Material:

]

[SRS_Can_01062] Each event for each CAN Controller shall be configurable to
be detected by polling or by an interrupt |

Each possible event of each CAN Controller shall be Pre-Compile-Time
configurable to be in one of the following two modes

Polling:

The CAN Driver represents at least one periodically called task. It polls the
CAN Controller. The appropriate notifications are called based upon the events
that occurred. It is optional for the CAN Driver to support multiple poll cycles.
Description: The CAN interrupt for the appropriate event is disabled in that mode.

Interrupt driven:

The CAN Controller notifies the CAN Driver of detected HW events by way of
an interrupt.

CAN Hardware Unit implementations may differ in regards to which events may
be reported by interrupts or can only be polled -> The configuration for polling
or interrupt shall be done inside the driver

Rationale: Coverage of hardware capabilities

Polling mode is required when a deterministic timing behavior (response time)
is needed. For example for motor management systems.

Dependencies: | —

Supporting -
Material:

Use Case:

AUTSSAR

[SRS_Can_01135] It shall be possible to configure one or several TX Hardware
Objects |

It shall be possible to configure one or several TX Hardware Objects, where
each Hardware Obiject is represented by it's own Hardware Object Handle.
(Not to be mixed-up with multiplexed transmission)

The selection of the TX Hardware Object is done by the caller of the transmit
Description: request service, with a parameter that identifies the Hardware Object Handle
This requires that the hardware allows configuration of several TX Hardware
Objects.

The configuration shall be allowed to be of types Pre-Compile, Link-Time or
Post-Build

Rationale: Basic functionality

Support of typical CAN Controller capabilities: Configuration of several

Use Case: Full-CAN Transmit Objects and several Basic-CAN Transmit Objects as well as
one Basic-CAN Transmit Object and several Full-CAN Transmit objects etc.
Dependencies: | [SRS_Can_01058], [SRS_Can_01049]

Supporting -
Material:

5.2.1.2 Initialization

[SRS_Can_01041] The CAN Driver shall implement an interface for initialization
Upstream requirements:

The CAN Driver shall implement an interface for initialization.
Description: This service shall initialize all module global variables and all Registers of the
ption: CAN Hardware Unit and its Controller(s).
This function shall only be called once during startup
Rationale: Basic functionality.
A CAN Hardware Unit has registers that must be set according the static
Use Case: configuration. Some register values belong to one single CAN controller some
influence the complete unit
Dependencies: | —
Supporting
Material:

AUTSSAR

[SRS_Can_01042] The CAN Driver shall support dynamic selection of configura-

tion sets

Upstream requirements:

The CAN Driver shall support the dynamic selection of one static configuration
set out of a list of configuration sets. This shall be done by a parameter passed
via the initialization interface.
Refer to CAN Driver SWS[1] for a detailed view of parameters.

Description: To switch to another configuration set shall only be possible if the CAN driver’s
state machine is in STOPPED mode.
Hints: The selection of the appropriate configuration set itself as well as the
way to incorporate the configuration sets into the ECU (Post-Build,
Pre-Compile) are not affected by this requirement

Rationale: Support of different configurations during runtime

Use Case: Use different configuration sets with e.g. different CAN IDs depending on

se Lase: different mounting positions of the ECU

Dependencies: | —

Supporting

Material:

5.2.1.3 Normal Operation

[SRS_Can_01043] The CAN Driver shall provide a service to enable/disable inter-
rupts of the CAN Controller. |

The CAN Driver shall offer services for enabling and disabling all interrupts
generated by a CAN controller

Description: « Disabling means: Disable all interrupts of the related CAN Controller
 Enabling means: Re-enable all interrupts which were disabled before

Rationale: Basic functionality, ensure data consistency

Use Case: Used to disable asynchronous interruptions by a CAN Driver event.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01059] The CAN Driver shall guarantee data consistency of received
L-PDUs

Upstream requirements:

Description: The CAN Driver shall guarantee that the data inside a Hardware Object is not
ption: overwritten while it is copied
Rationale: Basic functionality
A newly arrived message may overwrite the CAN Hardware buffer during the
Use Case: data is read out of the CAN Controller. This may lead to inconsistent data.
Therefore the Driver shall ensure that inconsistent data is not copied.
Dependencies: | —
Supporting -
Material:

[SRS_Can_01045] The CAN Driver shall offer a reception indication service.

Upstream requirements:

The CAN Driver shall notify the CAN Interface about a successful reception.
The notification is done by call of a static callback function implemented inside
the CAN Interface.

The Notification includes the following information:

Description: » CAN Identifier
+DLC

» CAN Hardware Object

* Pointer to SDU data
Rationale: Basic functionality, CAN Standards coverage

According the CAN Service primitive, the reception of a received CAN frame
shall be indicated to the next upper layer. This Service here is used by the CAN

Use Case: Interface (on indication it notifies the L-SDU Router to route the notification to
next upper layer and the destination upper layer copies the received data)

Supporting

Material:

AUTSSAR

[SRS_Can_01049] The CAN Driver shall provide a dynamic transmission request
service

Upstream requirements:

The CAN Driver API shall provide a dynamic transmission request service
(called by CAN Interface). The DLC and ID of the L-PDU are given as
parameter.
The CAN Interface provides following parameters:
.. » CAN Hardware Object Handle (implies the CAN Controller)
Description:
« L-PDU:
— Pointer L-SDU source
— CAN Identifier
-DLC
Rationale: Basic functionality, CAN Standards coverage
Use Case: Basic-CAN transmit hardware objects
Dependencies: | [SRS_Can_01008]
Supporting -
Material:
J

[SRS_Can_01051] The CAN Driver shall provide a transmission confirmation ser-
vice

Upstream requirements:

The CAN driver shall notify the CAN Interface about a successful transmission.
Successful transmission means in this case, that at least one receiver
Description: acknowledged the CAN frame and it has not been disturbed by an error.

The notification is done by call of a static call-back function implemented inside
the CAN Interface

Rationale: Basic functionality, CAN Standards coverage

Use Case: Accqrdmg the CAN Service primitive, the transmission of a CAN frame shall be
confirmed.

Dependencies: | [SRS_Can_01009]

Supporting ISO11898[7] Section 6.3.3 'Recovery management

Material:

AUTSSAR

[SRS_Can_01053] The CAN Driver shall provide a service to change the CAN
controller mode. |

The CAN Driver shall provide a service to change the mode of the specified
CAN controller.
The following states shall be supported:
* UNINIT - The CAN controller is not configured, typically the registers are in
reset state

+ STOPPED - The CAN controller is configured but does not take part in the
CAN communication

« STARTED - The CAN controller is up and running
* SLEEP - The CAN controller is in sleep mode.

Description:

The corresponding CAN Driver SWS describes the possible state transitions in
detail.

All necessary HW-initializations for the respective mode transition are done
inside thisservice.

Rationale: Basic functionality

The CAN controller may be initialized for low power consumption in sleep
mode. This is done with this service for SLEEP transition.

In case of bus-off, the controller may be set in UNINIT state (typically reset of
controller) and set to running later on.

Dependencies: | [SRS_Can_01027]

Supporting -
Material:

Use Case:

]

[SRS_Can_01054] The CAN Driver shall provide a notification for controller wake-
up events

Upstream requirements:

The CAN driver module shall notify the Service Layer in case of a wake-up
interrupt of the CAN controller. The notification is done by a call of a static
callback function which is specified by ECU StateManager, but implemented by

Description: Complex Driver or so called "Integration Code".

ption: This functionality shall only be implemented, if CAN Hardware unit supports

sleep mode and a specific wakeup interrupt is available.
Even if the CAN Hardware supports it, this feature shall be Pre-Compile-Time
configurable.

Rationale: Basic functionality
Any wakeup source is notified to the ECU StateManager. The ECU

Use Case: StateManager forwards this notification to the responsible module (typically the
CAN Interface), which checks the wakeup source.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01122] The CAN driver shall support the situation where a wakeup by
bus occurs during the same time the transition to standby/sleep is in progress

Upstream requirements:

Wakeup by bus is always asynchronous to the internal transition to sleep. In
worst case, the wakeup occurs during the transition to sleep. This situation
must be covered by the software design and explicitly tested for each ECU.

Descrivtion: Assuming this worst case, the driver shall raise the Wake-up Notification

p ’ immediately after the API to enter the standby/sleep mode has finished.

Hint: In case the ECU hardware has the capability to notify one wakeup reason
from different hardware components e.g. Transceiver and Controller, it's up to
the system configuration to select one source

Rationale: Safe wakeup and sleep handling.

Use Case: All busses with a wakeup by bus are affected.

Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01132] The CAN driver shall be able to detect notification events mes-
sage object specific by CAN-Interrupt and polling [

Dependent on configuration the detection of any reception, transmission or
error event shall be done by release a CAN Interrupt and by Polling through the

LR CAN driver. Both mechanisms shall be configurable for each message object if
supported by CAN Hardware
Polling the CAN HW globally leads to the problem, that the polling rate belongs
Rationale: to the CAN message with the shortest cycle time, which may result in very high

runtimes. Notification by interrupt offers the possibility to react real time. This is
useful especially on messages with very short cycle times.

Gateway / CCP / Network Layer <=> Intersystem communication. Time
Use Case: triggered Complex Drivers, which have strong restrictions to guarantee fixed
reaction times and which shall ensure predictable behavior.

Dependencies: | —

Supporting -
Material:

AUTSSAR

[SRS_Can_01134] The CAN Driver shall support multiplexed transmission |

Description:

The CAN Driver shall support multiplexed transmission if supported by the
underlying CAN Controller

Definition of 'multiplexed transmission’: Three TX HW objects are represented
as one Transmit entity (Hardware Object Handle) to the upper layer. This avoids
gaps between consecutive sending of L-PDUs.

This feature option shall only be implemented when the CAN Hardware fulfills
the following requirements:

[The three HW objects are represented as single register set OR

the hardware provides registers that identify a free buffer]

AND

[The L-PDUs are sent out in the order of their priority]

Rationale:

Outer priority inversion can be avoided

Use Case:

Basic-CAN transmit hardware objects

Dependencies:

[SRS_Can 01058]

Supporting
Material:

]

[SRS_Can_01147] The CAN Driver shall not support remote frames |

The CAN driver shall not transmit messages triggered by remote transmission

Description: requests. The CAN driver shall initialize the CAN HW to ignore any remote
transmission requests.

Rationale: Remote transmission requests are not used in automotive area.

Use Case: See rational

Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01161] The CAN Driver shall not support remote frames |

The CAN driver shall be able to operate with both classic CAN and CAN FD

BB frames on one CAN Controller if supported by CAN Hardware.

Rationale: CAN (FD) standard coverage

Use Case: CAN FD frames support up to 64 bytes per frame at a higher baud rate which
se Lase: might be required by some projects.

Dependencies: | —

Supporting ISO 11898-1[7]

Material:

AUTSSAR

[SRS_Can_02001] The CAN Driver shall support CAN XL |

Description: The CAN driver shall support CAN XL besides CAN 2.0 and CAN FD.
Rationale: CAN XL provides higher bandwidth than CAN 2.0 or CAN FD and allows native

Ml tunneling of Ethernet frames.
Use Case: Transmission and reception of CAN XL frames of all SDU types, handling of

. CAN and Ethernet bus states.
. Requires an extended CAN transceiver driver that supports the CAN XL baud
Dependencies: :)
rates and Ethernet link state handling.

Supporting CiA 611 (see [1])
Material:

[SRS_Can_01167] The CAN Driver shall provide a function to return the current
CAN controller error state |

Description: The function shall return the current driver state ACTIVE, PASSIVE and
BUSOFF.
Rationale: Setting DTC when entering CAN passive or bus-off state.
. User of the CAN driver require setting a DTC in case of CAN passive or bus-off
Use Case:
state.
Dependencies: | —
Supporting -
Material:

[SRS_Can_01170] The CAN Driver shall provide a function to return the current
CAN controller Rx and Tx error counters |

The CAN driver shall report the current Rx and Tx error counters via dedicated

Description: ;
functions.
Rationale: The error counters are available in most CAN controllers, and AUTOSAR
ationale: should provide a standardized access to this information.
Use Case: Provide information about current state of a CAN bus for diagnostic purposes.
Dependencies: | —
Supporting Concept 634 "Bus Mirroring"
Material:

AUTSSAR

[SRS_Can_02006] CAN Driver Service for Fetching L-PDU Message
Status: DRAFT

Description: -Il_--hlchEJan Driver shall provide an service to fetch the message state of an
Rationale: L-PDUs encapsulated with [8, IEEE1722] protocol require the message state
. which is added to the ACF header.
Use Case: Support for IEEE1722 tunneling of CAN frames as Time Synchronous and
se Lase: Non-Time Synchronous Control Frames Format
Dependencies: | —
Supporting [8, IEEE1722]
Material:
]

5.2.1.4 Shutdown Operation

[SRS_Can_01166] The CAN Driver shall implement an interface for de-
initialization |

Description: The CAN Driver shall implement an interface for de-initialization. This service
p ’ shall de-initialize the CAN Hardware Unit and its Controller(s).
Rationale: Basic Functionality
Use Case: A CAN Hardware Unit shall be re-configured with a new configuration set
. without the need for an ECU reset.
Dependencies: | —
Supporting -
Material:
]

5.2.1.5 Fault Operation

[SRS_Can_01055] CAN Driver shall provide a notification for bus-off state

Upstream requirements:

The CAN driver shall notify the CAN Interface if the CAN Controller goes in
Description: bus-off state. The notification is done by call of a static callback function
implemented inside the CAN Interface.
Rationale: Basic Functionality

V

AUTSSAR

A

Any state transition is notified to the CAN Interface. The CAN Interface
forwards this notification to the responsible layer.

Dependencies: [SRS_Can_01029]

Supporting -
Material:

Use Case:

]

[SRS_Can_01060] The CAN driver shall not recover from bus-off automatically
Upstream requirements:

The bus-off recovery shall be software driven. If an automatic bus-off recovery
Description: is implemented in the hardware it has to be suppressed by software e.g. force
CAN controller to reset state within the bus off interrupt service routine

Rationale: Basic Functionality

Use Case: A software-controlled recovery allows other nodes to communicate without the
se Lase: damaged node disturbing the bus for some time period

Dependencies: | —

Supporting -

Material:

5.2.2 CAN Interface (Hardware Abstraction)

The CAN Interface provides standardized interfaces to provide the communication with
the CAN bus system of an ECU. The APIs are independent from the specific CAN
Controllers and Transceivers and their access through the responsible Driver layer.
The CAN Interface is able to access one or more CAN Drivers and CAN Transceiver
Drivers via one uniform interface.

For a detailed functional description and interface definition see CAN Interface Speci-
fication [[2]].

AUTSSAR

5.2.2.1

Configuration

[SRS_Can_01015] The CAN Interface configuration shall be able to import infor-
mation from CAN communication matrix. |

The static configuration of the CAN Interface shall be based on information
from the CAN communication matrix. The following information shall be
extracted from the CAN communication matrix:
* Individual RX L-PDUs for each CAN Controller - identified by CAN 1D
+ RX L-PDU ranges for each CAN Controller
L. * All TX L-PDUs for each CAN Controller - identified by CAN ID
Description:
» TX L-PDU ranges for each CAN Controller
» Upper layer client for each L-PDU (-range)
» DLC for each L-PDU (-range)
The configuration parameters shall be allowed to be of types Pre-Compile,
Link-Time or Post-Build
Rationale: Common Database for CAN Network
The communication matrix is used to describe all messages in a network and
Use Case: their sender and receiver. This information can be taken to configure the
. software filter algorithm, the DLC check and the notifications for the CAN
Interface.
Dependencies: | —
Supporting -
Material:
]

[SRS_Can_01016] The CAN Interface shall have an interface to the static config-
uration information of the CAN Driver |

Description: The CAN Interface and its code configurator/generator shall be able to read the
ption: CAN Driver configuration inside the ECU configuration description
Rationale: Flexibility and scalability
Use Case: Optimization of software filtering according configured hardware filters
Dependencies: | [SRS_Can_01036], [SRS_Can_01039]
Supporting -
Material:
]

[SRS_Can_01018] The CAN Interface shall have an interface to the static config-
uration information of the CAN Driver |

All L-PDUs that are not filtered by HW-Filters and are not defined as receive
Description: L-PDUs in the network database need to be rejected by a filter implemented in
software.
Rationale: Basic functionality

\Y

AUTSSAR

A

Messages that shall not be received by the ECU, but could not be filtered by

Use Case: hardware filters, shall be filtered by software in the CAN Interface.
Dependencies: | [SRS_Can_01037], [SRS_Can_01004], [SRS_Can_01039]
Supporting -
Material:

J

[SRS_Can_01019]

It shall be Pre-Compile-Time configurable whether a DLC

check is performed or not |

Description: It shall be Pre-Comp|_Ie-T|me configurable whether the DLC check global for
each CAN controller is performed
Rationale: Basic functionality
Use Case: Turning off the DLC check improves the exchangeability of older ECUs, where
se Lase: IDs stay the same but SDU length differs
Dependencies: | —
Supporting -
Material:
]

[SRS_Can_01020] The TX-Buffer shall be statically configurable |

Description: It shall be cqnfigurable Pre-Compile-Time, whether one or no buffer per L-PDU
shall be available

Rationale: -

Use Case: Different properties are necessary to realize different variants of ECUs

Dependencies: | [SRS_Can_01011]

Supporting -

Material:
|
5.2.2.2 Initialization
[SRS_Can_01021] CAN The CAN Interface shall implement an interface for ini-
tialization

Upstream requirements:

L The CAN Interface shall implement an interface for initialization.
L This service shall initialize all module global variables.
Rationale: Basic functionality.

\Y%

AUTSSAR

A
Use Case: A CAN Interface has static variables that need to be initialized, before the CAN
) Interface can be used.
Dependencies: | —
Supporting -
Material:

]

[SRS_Can_01022] The CAN Interface shall support the selection of configuration
sets

Upstream requirements:

The CAN Interface shall support the selection of one configuration set out of a
Description: list of different static configuration sets. This shall be done by a parameter
ption: passed via the initialization interface.
This is typically done once during startup
Rationale: Support of different configurations during runtime
Another module (independently from Canlf) checks the startup conditions e.g.
Use Case: depending on the mounting position in the car, selects the appropriate
configuration set. This is then passed to the Canlf.
Dependencies: | —
Supporting -
Material:

J
[SRS_Can_01023] The CAN Interface shall be initialized in a defined way.

Upstream requirements:

The CAN Interface shall be initialized in the following sequence:
1. Initialize global variables

Description: 2. Reset flags

This sequence has to be executed in this order, because the CAN Interface has
to be operable before CAN Driver (and thus the communication started)

Rationale: Defined initialization sequence without side effects.
Use Case: Power on reset

Dependencies: | —

Supporting -

Material:

AUTSSAR

5.2.2.3 Normal Operation

[SRS_Can_02004] Canlf Forwarding of L-PDUs to L-SDU Router |

The Canlf shall forward L-PDUs to the L-SDU Router.
Additional Information: The Canlf must have exactly one upper layer module
Descriotion: which perform the PDU routing with frame specific information. Therefore a
P ’ L-PDU must be split in frame specific information and payload. Frame specific
information must be added to meta data and payload shall be assigned to the
according PDU ID
Rationale: Basic functionality
* Provide access to received CAN data by different upper layers via the L-SDU
Router
Use Case: . .
 Support for IEEE1722 tunneling of CAN frames as Time Synchronous and
Non-Time Synchronous Control Frames Format
Dependencies: | —
Supporting [8, IEEE1722]
Material:

]

[SRS_Can_02005] The appropriate higher communication stack shall be notified
by the CAN Interface via the L-SDU Router about an occurred reception
Upstream requirements:

The CAN driver will indicate each successfully received L-PDU. The

appropriate higher communication stack shall be notified by the CAN Interface
Description: via the L-SDU Router about an occurred reception. This routing of an indication

ption: event is the task of the L-SDU Router.

An indication is only a notification, where no data is transferred.

The information which L-PDU has been received shall be part of the indication
Rationale: Basic functionality, CAN Standards Coverage
Use Case: According the CAN Service primitive, the reception of a received CAN frame

’ shall be indicated to the L-SDU Router.

Dependencies: | [SRS_Can_01045]
Supporting -
Material:

]

[SRS_Can_01114] Data Consistency of L-PDUs to transmit shall be guaranteed
Upstream requirements:

[

Description:

During copying of transmit data it must be prevented that the corresponding
memory area is overwritten by upper layer

Rationale:

Data Consistency

\Y

AUTSSAR

A
Upper Layer writes to a data area that is at the same read out for a CAN
Use Case: transmission. This will lead to inconsistent data and therefore has to be
prevented
Dependencies: | —
Supporting -
Material:

[SRS_Can_01004] Software filtering shall be implemented by the CAN Interface

Upstream requirements:

[
A L-PDU filtering based on the CAN Identifier shall be implemented by the CAN
Description: Interface.
p ’ In case the received L-PDU did not pass the software filter, it will not further be
processed. The upper layer will not be notified
Rationale: Basic functionality
Use Case: Messages that shall not be received by the ECU, but could not be filtered by
se Lase: hardware filters, shall be filtered by software in the CAN Interface.
Dependencies: | [SRS_Can_01015], [SRS_Can_01018], [SRS_Can_01037], [SRS_Can_01039]
Supporting -
Material:
]

[SRS_Can_01005] The CAN Interface shall perform a check for correct DLC of

received PDUs |

The CAN Interface shall check the DLC of received L-PDUs that have passed

Descriotion: the SW filter. The DLC shall be larger or equal to the configured L-PDU length.

p : In case the received L-PDU did not pass the DLC check, it shall not be further

processed

Rationale: Basic functionality

Use Case: Avoid data inconsistency because of incomplete L-SDU

Dependencies: | [SRS_Can_01015]

Supporting -

Material:

[SRS_Can_01006] The CAN Interface shall provide a service to enable/disable

AUTSSAR

L-PDU reception per CAN Controller

Upstream requirements:

The API of the CAN Interface shall provide a service to enable/disable the
reception of all incoming L-PDUs belonging to one CAN Controller, that
normally would cause a receive indication (and data copy).

LTI In case the received L-PDU is disabled, it will not further be processed. The
upper layer will not be notified.
This service is directly tunneled to the appropriate CAN driver
Rationale: Basic functionality
The COM Manager must be capable to suppress all reception event of the
Use Case: corresponding CAN network
It is the complementary functionality to switching on/off the transmission path.
Dependencies: [SRS_Can_01013]
Supporting -
Material:

]

[SRS_Can_01007] The CAN Interface shall dispatch the transmission request by

an upper layer module to the desired CAN controller
Upstream requirements:

In case the CAN Hardware Unit consists of more than one CAN controller the

Description: CAN Interface shall dispatch the transmission request by an upper layer
module to the desired CAN controller

Rationale: Basic functionality

Use Case: More than one on-chip CAN Controller on one ECU.

Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01008] The CAN Interface shall provide a transmission request ser-

vice

Upstream requirements:

[

The CAN Interface API shall provide a transmission request service.

Description: The L-PDU is either forwarded to the CAN Driver or stored in the TX Buffer
Rationale: Basic functionality, CAN Standards Coverage

According the CAN Service primitive, a service for transmission shall be
Use Case:

provided.

\Y%

AUTSSAR

A
Dependencies: | [SRS_Can_01011], [SRS_Can_01020]
Supporting -
Material:

]

[SRS_Can_01009] The CAN Interface shall provide a transmission confirmation
dispatcher

Upstream requirements:

The CAN Interface has to notify the appropriate upper layer modules about
successful transmission. Therefore the CAN Interface has to dispatch the
Description: transmit confirmation after confirmation of the CAN driver.

It shall be statically configurable per PDU if the confirmation shall be forwarded
to upper layer or not

Rationale: Basic functionality, CAN Standards Coverage

Use Case: Accqrdmg the CAN Service primitive, the transmission of a CAN frame shall be
confirmed.

Dependencies: | [SRS_Can_01051]

Supporting -

Material:

J
[SRS_Can_01011] The CAN Interface shall provide a transmit buffer

Upstream requirements:

The CAN Interface shall buffer pending transmit requests only:
« if the CAN driver rejected the preceded transmit request because of not
available hardware resources

* in case that a pending transmit request was cancelled in the CAN Driver
The transmit buffer shall provide the following functionality:

« each transmit L-PDU shall have exactly one reference to a buffer container

Description: « the size of buffer container defines the number of L-PDU’s which can be
buffered

« if the buffer size is 0 it means no Canlf buffering will be made

« each Buffer container shall have 1...n references to logical hardware transmit
objects(HTH’s) (which will be used for transmission)

» one HTH has exactly one reference to a buffer

« the buffer shall be flushed only in case of reaching the "Tx Offline" state
\

\Y

AUTSSAR

A

A
« the buffer shall have a priority order and shall not store more than one

instance of a L-PDU
« in case of buffer overflow the transmission service shall return "Not OK"

* During Tx confirmation the L-PDU with the highest priority shall be forwarded
to the CAN driver. The priority is defined by the CAN Identifier that belongs
to the transmit L-PDU. Only the newest instance of an L-PDU shall be stored
in an own buffer and older ones shall be overwritten

« There shall be a configuration option to define the buffer fixed to 8 Bytes.

It shall be Pre-Compile-Time configurable whether the Canlf provides transmit
buffers or not.

Rationale: Basic functionality, limited resources for Tx-buffering
A message might not be sent out immediately because messages with higher
Use Case: priority are pending.
. Buffering of one instance per PDU is needed to ensure minimal delay times per
L-PDU.
Dependencies: | [SRS_Can_01020],[SRS_Can_01008]
Supporting -
Material:

]

[SRS_Can_01013] The CAN Interface shall provide a Tx-L-PDU enable/disable
service per CAN Controller
Upstream requirements:

NMs require an additional software service to lock and unlock the transmission

Description: of outgoing L-PDUs belonging to one CAN Controller. This functionality has to
be placed in the CAN Interface. Decision by WP Architecture.

Rationale: Basic functionality

Use Case: -

Dependencies: | [SRS_Can_01006]

Supporting -

Material:

AUTSSAR

[SRS_Can_01027] The CAN Interface shall provide a service to change the CAN
Controller mode.

Upstream requirements:

The CAN Interface shall provide a service to change the mode of the specified
CAN controller. This service is typically called by the NM with respect on view
of a physical channel. Restriction: a physical channel is only represented by
one CAN controller.
The following modes shall be supported:
« UNINIT
« STARTED
Description: . STOPPED
* BUSOFF (not reachable by software)
* SLEEP
All necessary initializations for the respective mode transition is done inside the
CAN Driver. Possible state transitions are described in the corresponding CAN
Driver SWS
Rationale: Basic functionality
Use Case: This service represents the interface for the CAN Driver Mode Select service.
Dependencies: | [SRS_Can_01053]
Supporting -
Material:

]

[SRS_Can_01028] The CAN Interface shall provide a service to query the CAN
controller state

Upstream requirements:

The CAN Interface shall provide a service to query the CAN controller state.
Please refer to the CAN Interface SWS document for details of the possible
Description: states.

Hint: With this service the internal state of CAN Interface is polled. The actual
hardware state may differ in some situations for a certain time

Rationale: Basic functionality

Use Case: May be used if CAN Controller doesn’t provide interrupt service.
Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01151] The CAN Interface shall provide a service to check for a CAN

Wake-up event.

Upstream requirements:

The CAN Interface module shall provide a service to check for a CAN wake-up

Description: source in case of a CAN wake-up event. This service queries the CAN

ption: controllers and CAN transceivers by the Driver modules in order to find the

wake-up source.

Rationale: Basic functionality
A wake up by CAN can be recognized by an ECU in different ways: polling,
CAN Controller interrupt, CAN Transceiver interrupt. In each case the ECU

Use Case: StateManager will need this service to check the CAN interface for the
Wake-up Source that caused the Wake-up. For further details on the use case
see figures 33-35 in document ECU StateManager.

Dependencies: [SRS_Can_01032]

Supporting -

Material:

]

[SRS_Can_01032] The CAN Interface shall report a wake-up notification to the
ECU StateManager

Upstream requirements:

After the CAN Interface module checks the CAN controller and the CAN

Description: transceiver for wake-up events, it should notify the ECU StateManager about
the event and source that caused the wake-up.

Rationale: Basic functionality
A wake up by CAN can be recognized by an ECU in different ways. In each

Use Case: case the ECU StateManager will need this notification in order to activate the

se Lase. correct CAN Controller for Wake-up validation. For further details on the use

case see figures 33-35 in document ECU StateManager.

Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01061] The CAN Interface shall provide dynamic TX Handles |

The CAN Interface shall provide dynamic TX Handles which can be allocated
by the upper layers. It shall be possible to change the ID and DLC of a Dynamic

A TX Handle by the upper layers.
It shall be Pre-Compile-Time configured whether to use this feature or not
. Communication with a blank or invalidL-PDU ID table or direct upper layer
Rationale:

control of the CAN identifier.

\Y

AUTSSAR

A

Dynamically calculated TX IDs. Only ranges of IDs are allowed that are known

Use Case: in the network. Typically used by TP, where the target address is coded within
the CAN Identifier. The target address can’t be statically defined
Dependencies: | —
Supporting -
Material:
]

[SRS_Can_01159] The CAN Interface shall provide dynamic RX Handles

Upstream requirements:

The CAN Interface shall provide dynamic RX handles which can beallocated by
e the upper layers. The ID and DLC of a dynamic RX handle will be provided to

Description:

the upper layers.

It shall be Pre-Compile-Time configured whether to use this feature or not.
Rationale: Access to the CAN identifier by upper layers.
Use Case: Dynamically evaluated RX IDs. Typically used by TP or J1939, where the target

. and/or source addresses are coded within the CAN Identifier.

Dependencies: | —
Supporting -
Material:

]

[SRS_Can_01130] Receive Status Interface of CAN Interface |

Description: The CAN Interface shall additionally provide an Interface that the notification
ption: state of messages can be polled by upper layers
Flexible integration
Rationale: Avoid strong coupling and dependencies
Deterministic behavior of upper layers for time triggered behavior
The completion of a CAN transmit request command can be signaled not only
by a callback function, now also by a status information, which is accessible via
Use Case: the module interface.
A fault occurred during the CAN transmit request (bus is blocked, CAN
controller is defective) can be signalized via an error hook.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_Can_01131] The CAN Interface module shall provide the possibility to have
polling and callback notification mechanism in parallel

Upstream requirements:

Description:

Beside callback notification mechanisms at the same time a "Read Message
Data" and "Read Message Status" API shall be able to be used.

It shall be possible, that upper layers can adapt the access to new data and
status of received CAN messages according to their needs and they are not
dependent to the network traffic.

Rationale: Different CAN Interface clients have different needs for latencies (notification
mechanism provide a small latency time, a polling mechanism provides a big
latency time). Thus it shall be possible, to differentiate the read data and
notification mechanisms between the different CAN message to be received.

Gateway / CCP / Network Layer <=> Intersystem communication. Time
Use Case: triggered Complex Drivers, which have strong restrictions to guarantee fixed
reaction times and which shall ensure predictable behavior.

Dependencies: | —

Supporting -
Material:

]

[SRS_Can_01136] The CAN Interface module shall provide a service to check for
validation of a CAN wake-up event

Upstream requirements:

The CAN Interface module shall provide a service to check for validation of a
CAN wake-up event (see [SRS_Can_01032)). It notifies the ECU

BRI StateManager about a validated wake-up event, only if a message was
received correctly on the CAN bus where the wake-up event was detected.
Rationale: Reduce power consumption

The Wake-up validation service should be called by the ECU Statemanager
after the corresponding CAN Tranceiver was set to normal mode and the CAN
Use Case: Controller was started. During validation incoming messages must not be
forwarded by the CAN Interface to upper layers, since the corresponding
L-PDU channel groups should still be disabled (offline).

Dependencies: [SRS_Can_01032]

Supporting -
Material:

AUTSSAR

[SRS_Can_01129] The CAN Interface module shall provide a procedural interface
to read out data of single CAN messages by upper layers (Polling mechanism)

Upstream requirements:

Description:

After getting information about new received data (by call get status interface
SRS_SPAL_00157) the upper layer must be able to read out data. Thus the
CAN Interface shall provide a corresponding API (ReadMessageData()’) to
read out data of received CAN messages.

The described function shall be Pre-Compile-Time selectable

Rationale:

Flexibility (The layer above should have the possibility to decide when and if
data should be transferred (data flow is controlled by upper layer))

Avoid strong coupling and dependencies (see Rationale of BSW 157)
There are applications with deterministic behavior inside time triggered
software systems. Deterministic behavior can only be ensured if these
applications aren’t interrupted by bus events

Use Case:

The notification of the completion of a CAN message reception event can be
used to read out the data at point of time the upper layers needs it.

Using the API the data are accessed either from the CAN Hardware buffer or
from the shadow buffer of the CAN driver. This intermediate buffer needed e.g.
data normalization for the '‘GetMessageData()’ API shall be configurable for
each CAN Rx Identifier.

Dependencies:

Supporting
Material:

]

[SRS_Can_01140] The CAN Interface shall support both Standard (11bit) and
Extended (29bit) Identifiers |

The CAN Interface shall support Standard and Extended Identifiers. It shall be

Description: configurable per network whether Standard or Extended Identifiers are
supported

Rationale: Standard CAN 2.0b functionality

Use Case: -

Dependencies: | [SRS_Can_01141]

Supporting -

Material:

AUTSSAR

[SRS_Can_01141] The CAN Interface shall support both Standard (11bit) and
Extended (29bit) Identifiers at same time on one network |

This requirement describes an implementation variant beyond
[SRS_Can_01140]:

The CAN Interface shall be able to support Standard and Extended Identifiers
Description: at same time on one network (=mixed mode support).

Due to significant consequences on code efficiency and complexity, this feature
shall be optional.

In case of not purchasing this feature, [SRS_Can_01140] is still valid.

Rationale: -
Usage of cheap Basic CAN Controllers in CAN networks with both Identifier
Use Case: t
ypes
Dependencies: [SRS_Can_01036]
Supporting -
Material:
|

[SRS_Can_01153] The Tx-Filter shall ensure, that the first message which is sent
on the bus is a Wakeup Frame (WUF) in the case of partial networking

Upstream requirements:

If a L-PDU gets activated for transmission the Tx-Filter shall be switched into
blocking mode.

If a Tx-Filter is in blocking mode, then all L-PDUs shall be discarded, except the
Wakeup Frame (WUF).

If a L-PDU is in blocking mode and the Wakeup Frame (WUF) gets transmitted
Description: it shall be forwarded to the lower layer.

If the CAN-Interface receives a transmit notification of the WUF, the Tx-Filter
shall be switched into pass mode.

If the Tx-Filter is in pass mode, then all L-PDUs shall be forwarded to the lower
layer.

The Tx-Filter shall not be activated during Bus-Off mode.

If partial networking is used the ECU must secure that the first message on the

e bus is the Wakeup Frame (WUF).

Use Case: Starting communication from BusSleep Mode, PrepareBusSleep Mode, BusOff
Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01181] If partial networking is used, the ECU shall secure that the first
message on the bus is the wakeup frame. |

Descrivtion: If partial networking is used, the ECU shall secure that the first message on the
p ’ bus is the wakeup frame. This requirement will be implemented in Canlf.

If all ECUs on the bus use partial networking, they use the CAN transceiver

Rationale: with the partial networking extensions. These transceivers only wake up after
receiving the Wakeup Frame.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_Can_01182] Canlf shall provide an optional channel-specific TX filter |

If a L-PDU gets activated for transmission the Tx-Filter shall be switched into
blocking mode.

Description: Canlf shall provide an optional channel-specific TX filter. In blocking mode, the
filter shall only pass transmission of wakeup frames. In pass mode the filter
shall pass every PDU transmitted by an upper layer.

Rationale: -

Use Case: -

Dependencies: | —

Supporting -

Material:

|

[SRS_Can_01183] Canlf shall provide the possibility to initiate clear and check
wake-up flags in the transceiver |

Description:

Canlf shall provide the possibility to initiate clear and check wake-up flags in
the transceiver.

Rationale:

Use Case:

Dependencies:

Supporting
Material:

]

[SRS_Can_01158] The CAN stack shall provide a TX offline active mode for ECU

passive mode |

Description: U;ed gAN stack shall provide a tx offline active mode to allow ECU Passive
Rationale: ECU Passive Mode is used for disabling all Tx Requests by "simulating”
ationale: successfull transmit requests towards applications.

\Y%

AUTSSAR

A
Use Case: Diagnostics, switching all transmissions off temporarily
Dependencies: | —
Supporting -
Material:
]
[SRS_Can_01160] Padding of bytes due to discrete CAN FD DLC |
D L Unused bytes caused by discrete DLC for CAN FD frames > 8 bytes shall be
escription:
padded.
CAN FD frames support up to 64 bytes by using only 4 bit DLC to indicate
Rationale: payload length. However, the length for frames > 8 bytes can be configured to
AL 12, 16, 20, 24, 32, 48, and 64 bytes. If a PDU does not exactly match these
configurable sizes the unused bytes shall be padded.
PDUs are declared to different sizes than the discrete DLC for CAN FD. Sizes
Use Case: up to next discrete DLC must be padded to avoid misinterpretation while
reception.
Dependencies: | —
Supporting ISO 11898-1[7]
Material:
]
[SRS_Can_01162] CAN Interface shall support classic CAN and CAN FD frames
[
Description: The CAN Interface shall support classic CAN and CAN FD L-PDUs. It shall be
ption: configurable per L-PDU whether classic CAN or CAN FD frames are assigned.
Rationale: CAN (FD) standard functionality
Use Case: Canlf has to differ between CAN and CAN FD L-PDUs to allow adequate
se Lase: processing in upper layers e.g. CanTp.
Dependencies: | [SRS_Can_01061]
Supporting ISO 11898-1[7]
Material:
]

[SRS_Can_02003] The CAN Interface shall support CAN XL frames |

Description: The CAN interface shall allow access to CAN XL drivers

Rationale: CAN XL provides higher bandwidth than CAN 2.0 or CAN FD, and allows native
UL, tunneling of Ethernet frames.

Use Case: Transmission and reception of all kinds of CAN XL frames apart from SDU Type
Se Lase: 5 (mapped Ethernet) and bus state handling.

Dependencies: Requires an extended CAN driver and CAN bus transceiver that support CAN

XL.

V

AUTSSAR

Supporting
Material:

CiA 611 (see[1])

]

[SRS_Can_01169] The CAN interface shall provide a function to return the cur-
rent CAN controller error state |

e The function shall return the current driver state ACTIVE, PASSIVE and
Description: BUSOFF
Rationale: Setting DTC when entering CAN passive or bus-off state.
User of the CAN driver require setting a DTC in case of CAN passive or bus-off
Use Case:
state.
Dependencies: | —
Supporting -
Material:

[SRS_Can_01171] The CAN Interface shall provide a function to return the cur-
rent CAN controller Rx and Tx error counters |

The CAN interface shall report the current Rx and Tx error counters via

D iption:
escription dedicated functions.

Rationale: The error counters are available in most CAN controllers, and AUTOSAR
ationare: should provide a standardized access to this information.

Use Case: Provide information about current state of a CAN bus for diagnostic purposes.

Dependencies: | —

Supporting Concept 634 "Bus Mirroring"

Material:

[SRS_Can_01172] The CAN Interface shall provide a function to provide received
and transmitted frames to the Bus Mirroring [

Description: If enabled, the CAN interface shall report all frames received and transmitted
ption: by one CAN controller to the Bus Mirroring.

This functionality should reside in the CAN interface, because the CAN

Rationale: interface abstracts from the different CAN driver modules, and still has access
to all CAN frames that the CAN driver handles.

Use Case: Mirroring of CAN bus traffic for diagnostic purposes.

Dependencies: | —

Supporting Concept 634 "Bus Mirroring"

Material:

AUTSSAR

5.2.2.4 Shutdown Operation

[SRS_Can_01168] The CAN Interface shall implement an interface for de-
initialization |

The CAN Interface shall implement an interface for de-initialization. This

Description: service shall put the module in a state that accepts a subsequent initialization
call.
Rationale: Basic functionality

A CAN Stack shall be re-configured with a new configuration set without the
need for an ECU reset.

Dependencies: | —

Supporting -
Material:

Use Case:

5.2.2.5 Fault Operation

[SRS_Can_01029] The CAN Interface shall report bus-off state of a device to an
upper layer
Upstream requirements:

When the CAN Interface detects a bus-off state (by CAN Driver state change
Description: notification) a notification call-back function shall be called that is implemented

in CAN State Manager.
Rationale: Basic functionality

Any state transition is notified by the CAN Interface. The bus-off notification is
Use Case:

typically handled by the CAN State Manager.
Dependencies: | [SRS_Can_01055]

Supporting -
Material:

AUTSSAR

5.2.3 CAN State Manager

5.2.3.1 Configuration

[SRS_Can_01143] The CAN State Manager shall support a configurable BusOff
recovery time
Upstream requirements:

The CAN State Manager shall control the BusOff recovery algorithm. The time
Description: between the CAN Controller detects a BusOff event and the restart of the
communication shall configurable.

Rationale: Basic functionality

Use Case: D_elay of communication after BusOff detection to overcome temporay bus
disturbance.

Dependencies: | —

Supporting -

Material:

5.2.3.2 Initialization

[SRS_Can_01144] The CAN State Manager shall implement an interface for ini-
tialization.
Upstream requirements:

The CAN State Manager shall provide an interface to initialize the
Description: communication mode at power-on. The communication mode for initialisation
’ shall be configurable. It shall be possible to start up with full communication
mode, with silent communication mode or with no communication mode.
Rationale: Basic functionality
Different kinds of communication behaviours of ECUs after power-on (listen
Use Case: only until application needs full communication capability or immediate full
communication capability).
Dependencies: | —
Supporting -
Material:

AUTSSAR

5.2.3.3 Normal Operation

[SRS_Can_01145] The CAN State Manager shall control the assigned CAN De-

vices |
Description: The CAN State Manager shall start and stop the CAN Devices and shall
prepare them for sleep.
Rationale: Complexity of CAN Interface is reduced
Use Case: Split of data and control flow
Dependencies: | —
Supporting -
Material:

[SRS_Can_01184] When full communication is requested, CanSm shall enable
pass mode on the Canlf TX filter |

Description:

When full communication is requested, CanSm shall enable pass mode on the
Canlf TX filter

Rationale:

Use Case:

Dependencies:

Supporting
Material:

]

[SRS_Can_01185] CanSm shall provide the possibility to initiate clear and check
wake-up flags in the transceiver |

Description:

CanSm shall provide the possibility to initiate clear and check wake-up flags in
the transceiver

Rationale:

Use Case:

Dependencies:

Supporting
Material:

]

[SRS_Can_01186] CanSm shall support a valid PN shutdown sequence |

o CanSm shall support a validPN shutdown sequence (CAN CC STOP -> CAN
LS I TRCV STANBY?E CAN CC SLEEP) | (
Rationale: -
Use Case:
Dependencies: | —

AUTSSAR

Supporting
Material:

5.2.3.4 Shutdown Operation

[SRS_Can_01164] The CAN State Manager shall implement an interface for de-

initialization. [

The CAN State Manager shall implement an interface for de-initialization. This

Description: service shall put the module in a state that accepts a subsequent initialization
call.

Rationale: Basic functionality

Use Case: A CAN Stack shall be re-configured with a new configuration set without the
need for an ECU reset.

Dependencies: | —

Supporting -

Material:

5.2.3.5 Fault Operation

[SRS_Can_01146] The CAN State Manager shall contain a CAN BusOff recovery
algorithm for each used CAN Controller
Upstream requirements:

[

The CAN State Manager shall control the CAN BusOff recovery by a algorithm.

Description: It shall report the production error "CAN BusOff" to the Diagnostic Event

ption: Manager. It shall report a specific "CAN BusOff"-production error for each

configured CAN network, if recovery is not possible within a configurable time.

Rationale: Network controller specific error and bus state management

Use Case: See Rationale

Dependencies: | —

Supporting -

Material:

5.2.4 Transport Layer CAN

This chapter describes the requirements for the CAN Transport Layer [[4]].

AUTSSAR

The AUTOSAR CAN Transport Layer generally bases on the ISO 15765-2[9] and ISO
15765-4[10] specifications.

5.2.4.1 Configuration

[SRS_Can_01066] The AUTOSAR CAN Transport Layer shall be statically config-
urable to support either single or multiple connections in an optimizing way

Upstream requirements:

The AUTOSAR CAN Transport Layer shall be statically configurable to support
Description: either single or multiple connections in an optimizing way. This configuration is
done Pre-Compile-Time

When an ECU enables gateway capabilities, it must handle different message
transmissions concurrently across distinct sub-networks. So the AUTOSAR
Rationale: Transport Layer allows concurrent connections. But, most ECU’s will only need
single connection for diagnostic, which has to be implemented in an optimizing
way.

The use case is to provide both single and multiple connections in an
optimizing way to save runtime and code size.

Dependencies: | —

Supporting -
Material:

Use Case:

]

[SRS_Can_01068] The CAN Transport Layer shall identify each N-SDU with a
unique identifier.

Upstream requirements:

[

The CAN Transport Layer identifies each N-SDU with a unique identifier. So the

Description: upper layer can address a N-SDU without any assumption on the addressing

P ’ mode configuration of the CAN-TP. Furthermore, a symbolic name may be

assigned for each N-SDU identifier value to simplify usage of the API

Rationale: Independence of upper layer with the CAN-TP configuration.

Use Case: The PDU-Router can manipulate all N-SDUs (FlexRay, CAN and LIN)

se Lase: regardless addressing mode particularity of its underlying protocols.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01069] CAN address information and N-SDU identifier mapping

Upstream requirements:

An N-SDU represents either a specific connection defined by a set of address
information (N_AI, consisting of MType, N_TAtype, N_TA, N_SA, and N_AE) or
a generic connection that represents a dedicated communication path to or
from the upper layer for the possible combinations of address information
Description: excluding MType and N_TAtype, which are always defined for a connection.
Thus, for a specific connection there exists a 1:1 relation between N-SDU ID
and address information, while a generic connection is just restricted tocertain
addressing formats and functional/physical requests, and possibly to a certain
local address.

An N-SDU identifier is used to transmit or receive only one kind of applicative
message. N-SDUs are either associated with only one CAN address
Rationale: information (specific connection) or with a set of address information (generic
connection). On the other hand, CAN address information is either linked to
just one specific connection or to a number of identical, generic connections.

« To transmit or receive an applicative message, the CAN Transport Layer only
needs the data and the N-SDU identifier.

« To receive and transmit diagnostic messages from different testers, the CAN
Use Case: Transport Layer shall handle the CAN ID directly, using dynamic TX and RX
handles of the CAN Interface.

« Partitioning of functions among multiple ECUs, therefore an ECU can belong
to different functional groups.

Dependencies: | —

Supporting -
Material:

]

[SRS_Can_01071] The CAN Transport Layer shall identify each N-PDU (also
called L-SDU) with a unique identifier

Upstream requirements:

The CAN Transport Layer identifies each N-PDU with a unique identifier.
Because the CAN-TP uses the CAN Interface for transmission and reception of
N-PDU, these handles shall be unique in both layers. So some common
configuration check is needed.

Furthermore, a symbolic name may be assigned for each identifier value to
simplify the implementation

Each CAN identifier correspond to only one N-PDU identifier of the CAN
Transport Layer. So a N-PDU may be completely identified by an identifier.
For optimization reasons, the CAN N-PDU identifier may be different to the
CAN identifier.

Dependencies: | —

Description:

Rationale:

Use Case:

\Y

AUTSSAR

Supporting -
Material:

]

[SRS_Can_01073] The CAN Transport Layer shall be statically configured to pad
unused bytes of PDU

Upstream requirements:

The CAN Transport Layer shall be statically configurable per connection
whether to pad unused bytes or not. This affects the last Consecutive Frame
(CF), Single Frames (SF) and Flow Control (FC). In the case where CAN FD
padding is mandatory for DLC values greater than eight when the length of the
data to be transmitted is not equal to one of the discrete length values defined
Description: in the ISO 11898-1:2014 DLC table, pad bytes will be added. In case of
padding the DLC will always be 8 (bytes) for classic CAN or 8, 12, 16, 20, 24,
32, 48, or 64 (bytes) for CAN FD.

The DLC check shall run on the used bytes only. If padding is configured or
mandatory, the DLC check shall run over all bytes (DLC = 8, 12, 16, 20, 24, 32,
48, or 64)

Fulfill requirements of legislated OBD communication (ISO 15765-4) and let this

RE IS feature optional for OEM enhanced diagnostics and applicative communication.
Use Case: For a full compatibility with old ECUs.

Dependencies: [SRS_Can_01005], [SRS_Can_01086]

Supporting -

Material:

]

[SRS_Can_01074] The Transport connection properties shall be statically con-
figured

Upstream requirements:

* Its unique identifier

« Communication direction: sender or receiver
* Minimum length of the N-SDU

* Associated N-PDU identifier

Description:
* Physical (1 to 1 communication) or functional (1 to n communication)
addressing
» Addressing modes: refer to [SRS_Can_01078]
* In case of an extended addressing mode connection: N_TA and N_SA values
. At runtime the CAN TP module must have all the needed information to
Rationale:

manage a transport connection.

\Y

AUTSSAR

A
Use Case: This information can be used at generation time to check the network
se Lase: configuration with a TP point of view.
Dependencies: | —
Supporting -
Material:

]

[SRS_Can_01149] The CAN Transport Layer shall support full-duplex communi-
cation for TP channels

Upstream requirements:

The CAN Transport Layer shall support full-duplex communication for TP
Description: channels. That means the CAN Transport Layer shall be able to manage a
reception and a transmission at same time on the same channel.
Rationale: Save Can ldentifiers.
Use Case: OEM specific non diagnostic applications which do require a full duplex
se Lase. implementation of the CAN transport protocol.
Dependencies: | —
Supporting -
Material:

J
[SRS_Can_02008] Configuration of Request Queueing |

Description: The CAN Transp_ort Layer shall support the configuration of the transmission
request queue size.

Rationale: CanTp mixed addressing mode.

Dependencies: | —

Supporting -

Material:

AUTSSAR

5.2.4.2 Initialization

[SRS_Can_01075] The CAN Transport Layer shall implement an interface for ini-
tialization
Upstream requirements:

The CAN Transport Layer implements an interface for initialization.
Description: This service shall initialize all global variables of the module and set all
transport protocol connections in a default state (ldle)

Rationale: Basic functionality

Use Case: Set Transport Layer software to a defined state
Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01076] The CAN Transport Layer services shall not be operational
before initializing the module
Upstream requirements:

Before using the transmission capabilities of the CAN Transport Layer, it shall
Description: be initialized. If it is not the case, the services have to return an error and a
development error shall be reported

Rationale: Basic functionality.

To avoid usage of the module without a complete initialization this could cause
the transmission of corrupted frames.

Use Case:

Dependencies: | —

Supporting -
Material:

AUTSSAR

5.2.4.3 Normal Operation

[SRS_Can_01078] The AUTOSAR CAN Transport Layer shall support the ISO
15765-2 addressing formats
Upstream requirements:

The AUTOSAR CAN Transport Layer shall support the normal, extended,
mixed 11 bit, mixed 29 bit and normal fixed addressing formats of ISO 15765-2.

Rationale: Basic functionality.

In addition to the normal and extended addressing format, the mixed
addressing mode is required for remote diagnostics in automotive area.

Description:

Use Case:

Dependencies: | —

Supporting -
Material:

]

[SRS_Can_01079] The CAN Transport Layer shall be compliant with the CAN
Interface module notifications

Upstream requirements:

[
The CAN Transport Layer shall only implement the CAN Interface notification
services concerning TP messages:
» Reception notification
Description:))
* Tx confirmation
Hint: BusOff management is handled by the CAN State Manager
Rationale: In AUTOSAR architecture, the CAN Transport Layer is placed between the
. PDU Router and the CAN Interface.
. The CAN Transport Layer has to support the notification services called by the
LR CAN Interface.
Dependencies: | [SRS_Can_01009]
Supporting -
Material:

AUTSSAR

[SRS_Can_01081] The value of CAN Transport protocol timeouts shall be stati-
cally configurable for each connection

Upstream requirements:

All the defined timeout of the ISO 15765-2 specification are statically

Description: configurable for each connection

ption: The configuration parameters shall be allowed to be of types

Pre-Compile-Time, Link-Time or Post-Build-Time

Rationale: To adapt the timeout value to the ECU application domain.

Use Case: The communication constraints may be totally different between a diagnostics

se Lase: connection and an applicative one (e.g. display data).

Dependencies: | —

Supporting ISO 15765-2[9] specification

Material:

]

[SRS_Can_01082] Error handling

Upstream requirements:

If an unexpected N-PDU is received by the CAN Transport Layer, it shall
Descrintion: respect the behavior defined in chapter "unexpected arrival of network protocol
ption: data unit" of the ISO-15765-2 specification. For others errors, the CAN-TP just
aborts the segmentation session
Rationale: To define the layer behavior on error.
Use Case: What happens when receiving the third CF frame instead of the second one?
Dependencies: | —
Supporting ISO 15765-2[9] specification
Material:

]

[SRS_Can_01086] Data padding value of unused bytes |

Description: When the CAN Transport Layer is configured to have fixed data length (DLC =
p ’ 8), the PDUs are sent without initializing the unused bytes
Rationale: Setting unused data in the last frame to a specific value will result in increased
ationale: runtime and resources needs within the uC.

The ISO 15765-4 recommendation for OBD communication explicitly says that

Use Case: CAN DLC contained in every diagnostic CAN frame shall always be set to eight
and that unused data bytes of a CAN frame are undefined.

Dependencies: | —

Supporting ISO 15765-4[10] §7

Material:

AUTSSAR

[SRS_Can_01116] The AUTOSAR CAN Transport Layer shall be able to manage
both normal and extended modes in parallel |

When the CAN Transport Layer is configured to support more than one
s connection, it should also be possible to configure if it has to deal with both

Description: ! .
normal and extended addressing mode in parallel or only one of the normal or
extended addressing mode

Rationale: Do not constrain communication capabilities when concurrent connection is

R allowed. But let it as an OEM specific decision.

A CAN sub-network could mix connection with either normal or extended

Use Case: addressing mode e.g. usage of OBD (normal addressing) and UDS (extended
addressing) in parallel

Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01148] The AUTOSAR CAN Transport Layer shall provide a service to
enable dynamic setting of protocol parameters |

The AUTOSAR CAN Transport Layer shall provide a service to change BS and
Description: STmin parameters during run-time.This service enable the dynamic setting of
protocol parameters according to ISO 15765-2 specification.
Rationale: Dynamic slow down of communication.
Slow down a flash reprogramming process in case high performance ECUs are
Use Case: connected to networks with less performance gateways.
Modify the parameters in case a CAN stack is not post build configurable.
Dependencies: | —
Supporting ISO 15765-2[9] specification
Material:

]

[SRS_Can_01163] The AUTOSAR CAN Transport Layer shall support classic CAN
and CAN FD communication as specified by ISO 15765-2 |

The CAN Transport Layer shall support classic CAN and CAN FD

Description: communication. This includes the support of N-PDUs up to 64 Bytes length, the

’ extension of the maximum transmission length to 4GBytes, and the

differentiation between classic CAN and CAN FD communication.

Rationale: CAN FD capable transport protocol

Use Case: Utilizing the extended payload and the increased baud rate of CAN FD

se Lase: improves communication performance.

Dependencies: | [SRS_Can 01161], [SRS_Can_01162]

Supporting ISO 15765-2[9] specification

Material:

AUTSSAR

[SRS_Can_02009] Request Queueing |

If the transmit channel is not free, then the CAN Transport Layer shall store up
Description: to the configured number of transmission requests. If the transmission request
ption: queue becomes full, then the CAN Transport Layer shall remove the oldest
request from the queue before entering the new request.
Rationale: CanTp mixed addressing mode.
Dependencies: | —
Supporting -
Material:

5.2.5 CAN Bus Transceiver Driver

5.2.5.1 Configuration

[SRS_Can_01090] The bus transceiver driver package shall offer configuration
parameters that are needed to configure the driver for a given bus and the sup-
ported notifications

Upstream requirements:

Typical parameters are:
» Max. supported baudrate of each bus to enable the detection of
configuration errors

» Wakeup by bus

Description: « Transceiver control via SPI or port pin

» Call context of the notification functions (ISR, polling) to enable detection of
necessary data consistency mechanisms during configuration time

Please refer to the corresponding software specification for a more detailed

view
Rationale: Basic functionality for transceiver configuration.
Use Case: -
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_Can_01091] The CAN bus transceiver driver shall support the configura-
tion for more than one bus |

The driver shall be able to support multiple CAN busses on the ECU.
It must be possible to configure the used transceiver type independently for
each bus. This includes also mixed systems with e.g. two CANs using different
bus physics.
Only Pre-Compile-Time configuration shall be possible
Transceiver handling depends strongly on the used device. Therefore each
transceiver may need its own implementation within the driver and only known
and supported devices could be selected.
A general solution for the transceiver driver for all use cases might not be
L. possible.

Description: By default each CAN controller is attached to an own bus and needs therefore
an own bus transceiver.
In some cases more than one CAN controller is attached to the same bus to
increase the number of mailboxes. Two alternatives appear:
a) These CAN controllers share the same bus transceiver
b) Each CAN controller has an own bus transceiver
Case a) is covered within this spec and shall be supported by this AUTOSAR
driver.
Case b) is a very rarely used setup and is therefore not covered by this driver

Rationale: Basic functionality for transceiver configuration

Use Case: Multi bus systems, e.g. CAN-CAN gateways

Dependencies: | —

Supporting -

Material:

]

[SRS_Can_02002] The CAN bus transceiver driver shall support the configura-
tion for more than one bus |

The CAN XL transceiver driver shall support the specialties of CAN XL besides

Description: CAN 2.0 and CAN FD. Partial Networking shall only be supported with CAN 2.0
frames

Rationale: Basic functionality for transceiver configuration

Use Case: Multi bus systems, e.g. CAN-CAN gateways

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01095] The bus transceiver driver shall support the compile time
configuration of one notification to an upper layer for change notification for

"wakeup by bus" events |

The CAN XL transceiver driver shall support the specialties of CAN XL besides

Description: CAN 2.0 and CAN FD. Partial Networking shall only be supported with CAN 2.0
frames

Rationale: CAN XL provides higher bandwidth than CAN 2.0 or CAN FD and allows native

GHEIEL) tunneling of Ethernet frames

Use Case: Bus transceiver state handling for CAN and Ethernet

Dependencies: | Requires an extended CAN Driver that supports CAN XL bus state handling.

Supporting CiA 611 (see [1])

Material:

]

[SRS_Can_01154] The bus transceiver driver package shall offer configuration
parameters that are required to configure the driver for partial networking
Upstream requirements:

[
Typical parameters are:
* Partial networking support
O « CAN ID of the Remote Wake-up Frame (RWUF)
» SPI timeout parameter
Rationale: To support partial networking tranceivers.
Use Case: Partial network configurations are affected.
Dependencies: | —
Supporting -
Material:
]
5.2.5.2 Initialization

[SRS_Can_01096] The bus transceiver driver shall provide an API to initialize the
driver internally |

The driver must be initialized during the power-up/reset sequence of the ECU.
Depending on the used drivers to control the transceivers (e.g. DIO, SPI), they

Description: must be already available and working when the transceiver driver is initialized.
The wakeup reason has to be detected and stored during the execution of the
driver initialization, too

Rationale: Set bus transceivers and driver in a pre-defined and known state

Use Case: Basic functionality for transceiver control.

\Y%

AUTSSAR

A

[SRS_Can_01103]

The bus transceiver driver setup information must provide the necessary
Dependencies: | configuration data to enable the generation tool to select the appropriate control
mechanism (e.g. SPI, I/O ports) and to guarantee the correct allocation of the
necessary communication resources and initialization sequences.

Supporting -

Material:

]

[SRS_Can_01155] The bus transceiver driver shall support the selection of con-
figuration sets

Upstream requirements:

The CAN Interface shall support the selection of one configuration set out of a
list of different static configuration sets. This shall be done by a parameter

BB passed via the initialization interface.
This is typically done once during startup
Rationale: Support of different configurations during runtime

Rationale of this request is that at the startup of the ECU some external
condition could determine the ECU configuration, without needing coding
Use Case: through a tester or an EOL process (e.g. a coded connection plug,
whichsignals through a digital code were an ECU is connected in a given
vehicle, hence determining the necessary configuration)

Dependencies: | [SRS_Can_01096]

Supporting -
Material:

5.2.5.3 Normal Operation

[SRS_Can_01097] CAN Bus Transceiver driver API shall be synchronous |

The bus transceiver driver API shall execute the requested action immediately
and shall deliver the result state immediately to the caller.
This will ease up the implementation of wakeup and sleep concepts within the

Description: | \\;10SAR BSW stack.
Some API may require an asynchronous behaviour due to hardware limitations
(SPI).
. . Better usage of transceiver functionality in the complex AUTOSAR BSW
Rationale:

environment.

Atomic transition to other operation mode; easier and better abstraction for
Use Case: upper layers like the ECU state manager or ComManager.
Improved testability compared to asynchronous handling.

V

AUTSSAR

Dependencies: | —

Supporting -
Material:

]

[SRS_Can_01098] The bus transceiver driver shall support an API to send the
addressed transceiver into its Standby mode |

Many transceivers support the transition to the Sleep mode only via the
transition to Standby mode. In addition, some power concepts have the need to
Description: set the transceiver to Standby only instead of Sleep mode.

Not all transceivers will support such a state. If this is true for a given device,
the driver shall confirm the state transition with success

Rationale: Implementation of ECU low power modes with wakeup via bus and internal.

The upper service layers agreed together with other nodes to set the bus into
the sleep mode. The transceiver shall be switched now to a state where the
wakeup via bus is supported and the power consumption is as low as possible
for the current state of the ECU.

Dependencies: [SRS_Can_01099]

Supporting -
Material:

Use Case:

]

[SRS_Can_01099] The bus transceiver driver shall support an API to send the
addressed transceiver into its Sleep mode |

The transition to sleep mode will be requested with this API.

Description: Not all transceivers will support such a state. If this is true for a given device,
the drive shall confirm the state transition with success
Rationale: Implementation of ECU low power modes with wakeup via bus and internal.

The upper service layers agreed together with other nodes to set the bus into
the sleep mode. The transceiver is already in StandBy and shall be switched to
Use Case: Sleep with lowest power consumption.

Please note that the state sleep of the transceiver is often similar to the state
"unpowered" of the ECU.

Dependencies: | [SRS_Can_01098]

Supporting -
Material:

AUTSSAR

[SRS_Can_01100] The bus transceiver driver shall support an API to send the

addressed transceiver into its Normal mode |

Description: All transceivers support this state due to it’s the "working state”
Rationale: Communication!

Use Case: All communication must be enable to communicate.
Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01101] The bus transceiver driver shall support an API to read out the

current operation mode of the transceiver of a specified bus within the ECU |

The current operation mode of the transceiver will be necessary for upper
Description: layers (e.g. diagnostics). The API shall always return the current state seen by

the transceiver driver (this may be a locally stored state, too)
Rationale: State access to transceiver driver

. Check for current operational mode during development and via diagnostic

Use Case:

command.
Dependencies: | —
Supporting -
Material:

]

[SRS_Can_01103] The bus transceiver driver shall support an API to read out the

reason of the last wakeup of a specified bus within the ECU |

Description:

The transceiver driver shall be able to store the local view "who has requested
the wakeup: bus or internally”.
Bus: The bus has caused the wakeup.

Internally: The wakeup has been caused by software

Sleep: The transceiver is in operation mode sleep and no wakeup has been
occurred.

Partial network wake-up: If the transceiver hardware supports a Partial
network wake-up

Wake pin: An edge on the wake pin of the transceiver (if present) has caused
the wakeup.

The wakeup reason should be "sleep" when the operation mode is not Normal
and no wakeup has been occurred.

When a wakeup has occurred, the API shall always return the first detected
wakeup reason (e.g. if a wakeup by bus occurs and than nearly at the same
time an internal wakeup, the wakeup reason is "bus".).

After leaving the operation mode Normal, the wakeup reason shall be set to
"sleep" again

Y%

AUTSSAR

A
Rationale: Detection of wakeup reason during development and via diagnostic command.
ationale: May also be used by the NM or ECU state manager.
Use Case: -
Dependencies: | —
Supporting -
Material:

]

[SRS_Can_01106] The bus transceiver driver shall call the appropriate callback
function of EcuM in case a wakeup by bus event is detected

Upstream requirements:

The CAN Bus Transceiver Driver gets a wake up by bus events either through a
notification of a lower layer or through polling lower layers. In these cases bus
transceiver driver will call appropriate API of EcuM to hand over the event.

Description: It shall be possible to support more than one bus within the ECU with this
notification.
This requirement only applies for transceivers with the appropriate wakeup
capability

Rationale: Efficient coupling between bus transceiver driver and upper layers.

The bus transceiver detects a wakeup condition on the bus and shows this to
the 1.C via e.g. a port pin.

Further handling depends on current ECU state. Assumed the ECU is halted,
the change on the port may terminate the HALT statement and let the

Use Case: processor continue its work. The assigned port interrupt will be executed and
this handler is called. Now, the transceiver driver will store the wakeup reason
and give the call via this notification to e.g. the NM to let the NM decide how to
handle the event.

See [SRS_Can_01095] for details, too.

Upper layer, i.e. one of (bus specific) NM or ECU state manager.
[SRS_Can_01095], [SRS_Can_01138]

Supporting -

Material:

Dependencies:

AUTSSAR

[SRS_Can_01138] The CAN Bus Transceiver Driver shall provide one callback
function for lower layer ICU Driver for wake up by bus events

Upstream requirements:

ICU driver shall call this API in case of wake up by bus events. One parameter
of this function shall refer to the CAN bus which has caused the wakeup by bus
event.
This API shall be compile time configurable and only available if the

Description: corresponding bus transceiver has wakeup capability.
If support of wake up by bus is disabled or wake up by bus events are polled
this functions shall be removed.
This API shall be synchronous or asynchronous depending on the transceiver
communication.

Rationale: Efficient coupling between lower layers and bus transceiver driver.

Use Case: Notification of wake up by bus events by lower layer.

Dependencies: | [SRS_Can_01106]

Supporting -

Material:

[SRS_Can_01156] The bus transceiver driver shall support wake up events by
a Remote Wake-up Pattern (RWUP) or Remote Wake-up Frame (RWUF) if partial
networking is supported by the tranceiver hardware

Upstream requirements:

If partial networking is supported by bus tranceiver hardware, then the wake-up

Description: reasons Wake-up Pattern (RWUP) or Remote Wake-up Frame (RWUF) shall be
supported by the bus transceiver driver.

Rationale: Additional wake-up reasons for partial networking transceivers

Use Case: Partial network configurations are affected.

Dependencies: [SRS_Can_01106]

Supporting -

Material:

AUTSSAR

[SRS_Can_01107] The CAN Transceiver Driver shall support the situation where
a wakeup by bus occurs during the same time the transition to standby/sleep is
in progress

Upstream requirements:

Wakeup by bus is always asynchronous to the internal transition to sleep. In
worst case, the wakeup occurs during the transition to sleep. This situation
must be covered by the software design and explicitly tested for each ECU.
Description: The driver shall create a wakeup notification by bus immediately after the API
to enter the standby/sleep mode has finished.

The calling/controlling component (NM or ECU state manager) must be
capable to handle the wakeup immediately after requesting the standby/sleep

Rationale: Safe wakeup and sleep handling.

Use Case: All busses with a wakeup by bus are affected.
Dependencies: | —

Supporting -

Material:

]

[SRS_Can_01115] The bus transceiver driver shall support an API to enable and
disable the wakeup notification for each bus separately

Upstream requirements:

To enable upper layers to command the bus transceiver safe into its standby
and/or sleep state, an additional API to disable and enable the wakeup
notification is necessary.

If the notification is disabled, driver shall not perform the notification but store
Description: the event internally until the notification is enabled again. The notification shall
then be processed immediately.

It shall be possible to clear a pending wakeup event. If no further wakeup event
occurs, no notification shall be performed after enabling the notification again.
If a further wakeup event occurs it shall be notified

Rationale: Safe wakeup and sleep handling.

Use Case: All busses with a wakeup by bus are affected.
Dependencies: | —

Supporting -

Material:

AUTSSAR

5.2.5.4 Shutdown Operation

[SRS_Can_01108] The bus transceiver driver shall support the AUTOSAR ECU
state manager in a way that a safe system startup and shutdown is possible
Upstream requirements:

[

In general, for startup the bus transceivers shall not be enabled until the power
supply is available and stable to prevent errors on the bus. Also the
communication hardware and driver must not be enabled until the transceiver is

Description: configured into its normal operation mode.

ption: For shutdown, the communication must be stopped according to the AUTOSAR

NM algorithm, the CAN/LIN drivers must be stopped and then the transceivers
may be set to standby/sleep, too. The correct sequence depends on the used
bus and the wakeup sleep concept of AUTOSAR

Rationale: Safe system start up and shut down

Use Case: Systems with support for wakeup by bus.

Dependencies: | —

Supporting See joint work group meeting WP CAN/LIN and WP Mode Management on

Material: 2005-01-11/12 for results.

]

[SRS_Can_01157] The bus transceiver driver shall provide an API for clearing
the WUF bit in the tranceiver hardware

Upstream requirements:

[

This API is part of the shutdown flow of a CAN communication channel. The
API clears the WUF flag in the transceiver hardware to be able to signal a

Descrintion: following wake-up frame. For CAN transceivers supporting Partial Networking

ption: the detection of wake-up frames is also possible in transceiver normal mode.

This ensures that no wake-up frame is lost during ECU transition to standby
mode, after the WUF flag has been cleared.

Rationale: Safe system start up and shut down

Use Case: Systems with support for partial networking.

Dependencies: | —

Supporting -

Material:

AUTSSAR

5.2.5.5 Fault Operation

[SRS_Can_01109] The bus transceiver driver shall check the control communi-
cation to the transceiver and the reaction of the transceiver for correctness

Upstream requirements:

Depending on the supported transceiver device, the driver shall check the
o correctness of the executed control communication and the operation mode a
Description: N
transceiver is in.
A separation of errors according to SRS_BSW_00337 shall be done
Rationale: Diagnostics and trouble shooting
1. Detection of defect or misbehaving transceiver hardware
2. Detection of corrupted SPI communication
Use Case: The check shall only be applied to errors within the transceiver or the
transceiver control communication (ports or SPI), i.e. errors caused by
malfunction of the uC, SW or a defect transceiver device.
"Errors" caused by the "outer world" (e.g. disturbed bus lines or ground offsets)
are not in the scope of this API.
Dependencies: | —
Supporting -
Material:

5.3 Non-Functional Requirements (Qualities)

5.3.1

CAN Driver

[SRS_Can_01033] The CAN Driver shall fulfill the general requirements for Basic
Software Modules as specified in AUTOSAR_SRS_SPAL |

Description: Based on Requirements in Document AUTOSAR_SRS_SPAL version 2.0.0

Rationale: Re-use of requirements validfor all Drivers

Use Case: CAN Diriver is in the same layer as other Drivers (SCI, SPI). Therefore the CAN
seé Lase. driver shall fulfill the general SPAL requirements also.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_Can_01034] The CAN Driver shall offer a Hardware independent interface.

Upstream requirements:

The Interface between CAN Driver and CAN Interface shall be independent

Description: from underlying hardware.

ption: The implementation of the CAN Driver is hardware dependent and statically

configurable

Rationale: Portability

Use Case: Same CAN Interface implementation can be used for different uCs.

Dependencies: | [SRS_Can_01001]

Supporting -

Material:

[SRS_Can_01035] The CAN Driver shall support multiple CAN controllers of the
same CAN hardware unit |

The CAN Driver shall support multiple CAN controllers inside one CAN
Description: Hardware unit.

It shall be possible Pre-Compile-Time to de-select an unused CAN Controller
Rationale: Coverage of hardware capabilities

. Devices exist on the market that incorporate several CAN controller in one

Use Case: :

device.
Dependencies: | [SRS_Can_01053]
Supporting -
Material:

5.3.2 CAN Interface (Hardware Abstraction)

[SRS_Can_01121] CAN Interface shall be the interface layer between the under-
lying CAN Driver(s) and CAN transceiver Driver(s) and Upper Layers

Upstream requirements:

[
The CAN Interface is the single interface for all upper Layers for CAN operation.
Description: The CAN Interface is the single user of the CAN Driver and the CAN
Transceiver Driver.
Rationale: Interfaces and interaction

Y%

AUTSSAR

A
Different upper layers (as described in AUTOSAR_WP
Architecture_SoftwareArchitecture) may access the same CAN Hardware Unit.
Use Case: Also more than one CAN Hardware Unit with their corresponding drivers
se Lase: (internal and external) may exist in one ECU.
Users of the CAN Interface may be the PDU Router, CAN Transport Layer,
Network Management and CAN State Manager
Dependencies: | —
Supporting AUTOSAR_WP Architecture_SoftwareArchitecture
Material:

]

[SRS_Can_01001] The CAN Interface implementation and interface shall be in-

dependent from underlying CAN Controller and CAN Transceiver |

The implementation may depend on the amount of available resources of the

Description: underlying hardware (i.e. number of CAN Controllers, Hardware Object

ption: Handles, HW cancellation allowed) but the Hardware Abstraction Layer

encapsulates different mechanisms of hardware access.

Rationale: Portability and reusability.

Use Case: Encapsulate implementation details of a specific CAN controller from higher

se Lase. software layers.

Dependencies: | [SRS_Can_01034]

Supporting -

Material:

5.3.3 CAN State Manager

[SRS_Can_01142] The CAN State Manager shall offer a network abstract API to

upper layer |

Description:

The interface of CAN State Manager to the upper layer (ComM) shall be a
network abstract interface.
The CAN State Manager shall handle the states of peripherals assigned to a
network. It shall perform following actions to control the states of the
peripherals CAN controller(s) and CAN Transceiver(s):

* Init

« Start

* Stop

» WakeUp

* Sleep

» BusOff Recovery

AUTSSAR

JAN

Rationale: Abstraction between Com Manager and networks

The bus state manager controls the states of the network specific peripherals of
Use Case:

each network.
Dependencies: | —
Supporting -
Material:

]

[SRS_Can_01014] The CAN State Manager shall offer a network configuration
independent interface for upper layers |

The interface of the CAN State Manager to upper layers shall be independent

SIS from the network configuration.
Rationale: Layer Concept. Information hiding.
Use Case: Encapsulation of hardware dependencies within CAN Driver and Interface.
se Lase: Modules accessing the CAN State Manager don'’t need to be hardware specific
Dependencies: | —
Supporting -
Material:
]

5.3.4 Transport Layer CAN

[SRS_Can_01065] The AUTOSAR CAN Transport Layer shall be based on ISO
15765-2 and 15765-4 specifications [

Description:

If no requirement is explicitly added or excluded, the implementation of the
AUTOSAR CAN Transport Layer shall follow the ISO 15765-2 specification for
OEM enhanced (diagnostics or applicative) communication and ISO 15765-4
for on-board diagnostics (OBD) communication

Rationale:

Reuse of existing standards for AUTOSAR BSW.
The ISO 15765-2 and 15765-4 specifications are the most used CAN Transport
Layer in automotive area.

Use Case:

Transport protocol on CAN according to ISO 15765-2:
» Segmentation of data in transmit direction

* Collection of data in receive direction

* Control of data flow

« Detection of errors (message loss/doubling/sequence)
The network layer described in ISO 15765-4 specification is in accordance with
ISO 15765-2 with some restrictions/additions.

Refer to the AUTOSAR CAN Transport Protocol software specification for the
appropriate version

\Y

AUTSSAR

A
Dependencies: | —
Supporting ISO 15765-2[9] and ISO 15765-4[10] specifications
Material:

]

[SRS_Can_02007] The CAN Transport Layer shall be the interface layer between
PDU Router and L-SDU Router for CAN messages needing transport protocol
functionalities |

The CAN Transport Layer is used by the PDU Router to transmit and receive
CAN messages coming from the Diagnostic Communication Manager.

The PDU Router communicates through CAN Transport Layer and L-SDU
Router with the CAN interface. Therefore two interfaces shall be coherent (i.e.
if they provide a similar primitive, for example Transmit, parameters of those
primitives must be as similar as possible).

To process transmission the CAN Transport module uses services L-SDU
Router, which forward the calls to the CAN Interface

Rationale: Interfaces and interaction

By using coherent APl (homogeneity of service parameters and so on) the
readability and maintainability of source code are improved.

Dependencies: | BSW01118

Supporting AUTOSAR_WP Architecture_SoftwareArchitecture
Material:

Description:

Use Case:

]

[SRS_Can_01112] The CAN Transport Layer interface shall be independent of its
internal communication configuration |

The CAN Transport Layer shall offer the PDU Router an interface that is
completely independent to its internal communication configuration (N_TA
L value, extended or normal addressing mode, functional or physical addressing,
Description:) .
etc.) and implementation.
The interface shall just deal with PDU identifiers and data units (N-SDU)
properties
Rationale: Layered Software Architecture. Information hiding. Common interface for all
ationale: applications
Use Case: -
Dependencies: | [SRS_Can_01014]
Supporting -
Material:

AUTSSAR

5.3.5 CAN Bus Transceiver Driver

5.3.5.1 Timing Requirements

[SRS_Can_01110] CAN Bus Transceiver driver shall handle the transceiver spe-
cific timing requirements internally |

The communication between the ;.C and the transceiver is performed via ports
or SPI or both. If ports are used, applying values in a predefined sequence and
with a given timing to the ports are used to communicate and change the
hardware operation modes. These sequences and timings must be handled
within the bus transceiver driver.

Small times like the 50us for TJIA1054 "reaction time of go-to-sleep command”
may be implemented as a wait loop inside the driver. Disadvantages are that
this time is lost for the other software and the wait time depends on the used
1C and e.g. system clock.

Large wait times (e.g. >200us) may require an asynchronous API of the bus
transceiver driver. Disadvantage is then that the complete API and usage will
be different for such a hardware device

Rationale: Correct handling of used transceiver

Description:

E.g. toggling a port pin performs the transition from StandBy to Sleep for the
Use Case: TJA1054. The port value must be kept for at least 50us to guarantee the
transceiver has detected and handled the request in hardware.

Dependencies: | —

Supporting -
Material:

5.3.6 CAN Driver and Interface together

This chapter describes requirements that shall be fulfilled by the CAN Driver and CAN
Interface together.

[SRS_Can_01125] The CAN stack shall ensure not to lose messages in receive
direction |

The CAN stack shall ensure that the HW receive buffer is read out in a time

BB frame that no message is lost for a bus load of 100% with a payload of 1 byte

It shall be possible to work with message bursts without loss of data. This
requirement intentionally uses CAN frames with 1 byte payload. They produce
more overhead to process them than longer ones. 0 byte messages are seldom
used.

Hint: Of course this doesn’t imply that the general usage of 0 Byte messages is
forbidden

Use Case: See rationale

Dependencies: | —

Rationale:

AUTSSAR

Supporting -
Material:

]
[SRS_Can_01126] The CAN stack shall be able to produce 100% bus load |

The CAN stack shall be able to produce 100% bus load (except gaps resulting
due to not using multiplexed HW transmit buffers). This requirement
intentionally uses CAN frames with 1 byte payload. They produce more

Description: overhead to process them than longer ones. 0 byte messages are seldom
used.
Hint: Of course this doesn’t imply that the general usage of 0 Byte messages is
forbidden

Rationale: Service the maximum speed of the used CAN bus.

Use Case: See rationale

Dependencies: | —

Supporting -

Material:

]

[SRS _Can_01139] The CAN Interface and Driver shall offer a CAN Controller
specific interface for initialization

Upstream requirements:

This service shall initialize the CAN Controller specific configuration like e.g.
parameters concerning Baud Rate [SRS_Can_01038].

This service is typically used for re-initialization after e.g. BusOff, but not
Description: explicitly restricted to that case.

This function call shall only return without error if the CAN driver’s state
machine is in STOPPED mode. The selection of one out of several
configuration sets shall be supported by passing a parameter with the API

Rationale: Basic functionality.
Use Case: -

Dependencies: | See description
Supporting -

Material:

AUTSSAR

6 References

[1] Specification of CAN Driver
AUTOSAR_CP_SWS_ CANDriver

[2] Specification of CAN Interface
AUTOSAR_CP_SWS CANiInterface

[3] Specification of CAN State Manager
AUTOSAR_CP_SWS_CANStateManager

[4] Specification of CAN Transport Layer
AUTOSAR_CP_SWS_CANTransportLayer

[5] Specification of CAN Transceiver Driver
AUTOSAR_CP_SWS_ CANTransceiverDriver

[6] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[7] 1SO 11898-1:2015 — Road vehicles — Controller area network (CAN)

[8] IEEE Standard 1722-2016 - IEEE Standard for a Transport Protocol for Time-
Sensitive Applications in Bridged Local Area Networks

[9] ISO 15765-2 — Road vehicles — Diagnostics on Controller Area Networks (CAN)
— Part2: Network layer services

[10] ISO 15765-4 — Diagnostics on controller area network (CAN) — Part 4: Require-
ments for emission-related systems (Release 2005 01-04)

AUTSSAR

A Change history of AUTOSAR traceable items
A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Requirements in R25-11
[SRS_Can_02008] [SRS_Can_02009]

A.1.2 Changed Requirements in R25-11

none

A.1.3 Deleted Requirements in R25-11
[SRS_Can_01002] [SRS_Can_01003] [SRS_Can_01111]

A.2 Traceable item history of this document according to
AUTOSAR Release R24-11

A.2.1 Added Requirements in R24-11
[SRS_Can_02004] [SRS_Can_02005] [SRS_Can_02006] [SRS_Can_02007]

A.2.2 Changed Requirements in R24-11

[SRS_Can_01002] [SRS_Can_01003] [SRS_Can_01045] [SRS_Can_01111] [SRS_
Can_02001] [SRS_Can_02002] [SRS_Can_02003]

A.2.3 Deleted Requirements in R24-11

none

	1 Scope of Document
	2 How to read this document
	2.1 Document Conventions
	2.2 Requirements Structure

	3 Acronyms and Abbreviations
	4 Functional Overview
	5 Requirements Specification
	5.1 Remarks to the CAN Bus Transceiver Driver
	5.1.1 Explicitly uncovered CAN Bus Transceiver functionality
	5.1.2 System Basis Chip and CAN Bus Transceiver Driver

	5.2 Functional Requirements
	5.2.1 CAN Driver
	5.2.1.1 Configuration
	5.2.1.2 Initialization
	5.2.1.3 Normal Operation
	5.2.1.4 Shutdown Operation
	5.2.1.5 Fault Operation

	5.2.2 CAN Interface (Hardware Abstraction)
	5.2.2.1 Configuration
	5.2.2.2 Initialization
	5.2.2.3 Normal Operation
	5.2.2.4 Shutdown Operation
	5.2.2.5 Fault Operation

	5.2.3 CAN State Manager
	5.2.3.1 Configuration
	5.2.3.2 Initialization
	5.2.3.3 Normal Operation
	5.2.3.4 Shutdown Operation
	5.2.3.5 Fault Operation

	5.2.4 Transport Layer CAN
	5.2.4.1 Configuration
	5.2.4.2 Initialization
	5.2.4.3 Normal Operation

	5.2.5 CAN Bus Transceiver Driver
	5.2.5.1 Configuration
	5.2.5.2 Initialization
	5.2.5.3 Normal Operation
	5.2.5.4 Shutdown Operation
	5.2.5.5 Fault Operation

	5.3 Non-Functional Requirements (Qualities)
	5.3.1 CAN Driver
	5.3.2 CAN Interface (Hardware Abstraction)
	5.3.3 CAN State Manager
	5.3.4 Transport Layer CAN
	5.3.5 CAN Bus Transceiver Driver
	5.3.5.1 Timing Requirements

	5.3.6 CAN Driver and Interface together

	6 References
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Requirements in R25-11
	A.1.2 Changed Requirements in R25-11
	A.1.3 Deleted Requirements in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Requirements in R24-11
	A.2.2 Changed Requirements in R24-11
	A.2.3 Deleted Requirements in R24-11

